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Abstract

Given a polynomial ring P over a field K, an element g € P, and a K-subalgebra S of P, we deal
with the problem of saturating S with respect to g, i.e. computing Saty(S) = S[g,¢~ '] N P. In
the general case we describe a procedure/algorithm to compute a set of generators for Saty(.S)
which terminates if and only if it is finitely generated. Then we consider the more interesting case
when S is graded. In particular, if S is graded by a positive matrix W and g is an indeterminate,
we show that if we choose a term ordering o of g-DegRev type compatible with W, then the two
operations of computing a 0-SAGBI basis of S and saturating S with respect to g commute.
This fact opens the doors to nice algorithms for the computation of Saty(.S). In particular, under
special assumptions on the grading one can use the truncation of a o-SAGBI basis and get the
desired result. Notably, this technique can be applied to the problem of directly computing some
U-invariants, classically called semi-invariants, even in the case that K is not the field of complex
numbers.
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1. Introduction

This paper has two main ancestors. Our attention to the problem discussed here was
drawn by a nice discussion with Claudio Procesi about the paper [7] where the following
claim is made: If we want to understand U-invariants from these formulas it is necessary
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to compute the intersection S,, = Clca, . .., cu][ao, ag ']NClag, - . . , a,]. Here C denotes the

field of complex numbers, aq, . . ., a,, are indeterminates, and the formulas are expressions
of the ¢; given, for i =1,...,6, as follows:
Co = —a[l] + apas

c3 = 2(1[1 I _ apaias + a3a3

= —3a[14] + aoa[12]a2 — a%alag + a8a4
3] 2_[2] 3

Cc5 = 4a[1] apa; az + aoa as — aga1aq4 + a§a5

6 3 2
cg = [ ] + aoa[ ]ag — a%a[ }ag + aoa[l ] a4 — aéalag, + agag

where oYl means ,a In version 1 of [7] the theoretical background for this claim was fully
explained and in its Section 3.5 a sketch of an algorithm to compute S,, was illustrated. In
version 3 of [7] the authors dropped the section about the algorithm and wrote: A general
algorithm for these types of problems has been in fact developed by Bigatti-Robbiano in a
recent preprint, referring to the first arXiv version of this paper.

Why are the elements of S, called U-invariants? A detailed explanation can be found
in [7]. For the sake of completeness, let us summarise it here.

Let Clx]<, denote the vector space of polynomials in C[z] of degree < n. The alge-
bra S,, of U-invariants of polynomials of degree n, is the subalgebra of the algebra of
polynomial functions on C[z]<,, which are invariant under the action of (C,+) defined
by p(x) = p(x + A) for A € C. Now let HC|z, y],, denote the vector space of homoge-
neous polynomials in C[z,y| of degree n, and let U = {(} 1)}, the unipotent subgroup
of SL(2, C). We can identify C[z]<,, with HC[z, y],, and then the action of (C,+) can be
identified with the action of U on the algebra of polynomial functions on HC|z, y],,.

For example, let f(x) = aoé + a1z + a2 € Cz]<2 and compute f(x + N).

fla+ ) = a()%—kal(x—l—)\)—l—az = ao%z—l—(ao)\—l—al):z:—l—(aoA; +aiA+ ao) .

2
Then consider ¢y = —a[l] + agas = —% + agpaz (as above), and compute the new cy

2
relative to the coefficients of f(z + \). We get —M + ao(ao%2 + a1 A + ag) which
is equal to co for every A € C, proving that ¢y is a U-invariant.

The first motivation for our investigation is that the problem of computing a set of
generators of S, = Clcz, ..., ¢y)[ao, ag '] N Clag, . . ., a,] can be viewed as a special case
of the following task.

Problem 1.1. Given a field K, a polynomial ring P = Klag, a1, . . ., a,], and polynomials
gis---,9r € P, let S denote the subalgebra K|[g1,...,g.] of P, and let g € P\{0}. The
problem is to compute generators of the K-algebra S[g,g~'] N P.

The second motivation for taking on this challenge is the evidence of the analogy
with the standard problem in computer algebra of computing the saturation of an ideal.
The analogy is clearly explained by recalling that the saturation of an ideal I C P with
respect to g is the ideal IP[g~!] N P. How to compute the saturation of an ideal with
respect to an element in P and also with respect to another ideal is well-understood and



its solutions are described in the literature (see for instance [8, Section 3.5.B| and [9,
Sections 4.3 and 4.4]) and implemented in most computer algebra systems.

On the other hand, the main problem formulated above has not received the same
attention. In this paper we describe a solution if the algebra Saty(S) = S[g,¢g7'] N P
is finitely generated. As suggested by Gregor Kemper, a similar description is contained
in [4, Semi-algorithm 4.10.16].

Then we present algorithms removing redundant generators of Saty(S) . A strategy is
to use elimination techniques, another strategy is to make a good use of SAGBI bases. The
acronym SAGBI stands for “Subalgebra Analog to Grébner Bases for Ideals”. The theory
of SAGBI bases was introduced by Robbiano and Sweedler in [11] and independently
by Kapur and Madlener in [6]. Since then many improvements and applications were
discovered (see for instance [3]). A more modern approach is contained in [9, Section
6.6], and [14, Chapter 11], and a nice survey is described in [2]|. In [13] there are results
somehow related to this paper.

In the case Saty(S) is not finitely generated, the algorithms turns out to be merely
procedures providing a sequence of algebras ever closer to Saty(S). We show that this
phenomenon can happen (see Examples 3.14 and 5.3), which is not a surprise, since
there are even examples of finitely generated subalgebras of a polynomial ring whose
intersection is not finitely generated (see for instance [10]).

We observe that our solutions do not require any assumption about the base field K,
and do not need that the polynomials g1, ...g, are homogeneous. However, if they are
homogeneous we have better results in Sections 5, 6, 7, which make a clever use of SAGBI
bases and are the core of our paper.

Now we give a more precise description of the content of the paper. The general setting
is as follows. We are given a field K, a polynomial ring P over K, a K-subalgebra S of P,
and an element g € P\{0}.

In Section 2 we introduce the notion of the saturation Sat,(S) of S with respect to g.
The main point is that if g € S, then Saty(S) = S : ¢°° (see Definition 2.1), as shown
in Proposition 2.4. Using this fact we can rephrase the main problem addressed in this
paper (see Problem 1.1).

Section 3 provides a first solution. After recalling standard results in computer alge-
bra (see Propositions 3.2 and 3.3) we prove Theorem 3.4 which shows how to add new
elements to S in order to get closer to Sat,(S). With the help of this result we prove
Theorem 3.10 and Corollary 3.11. They provide the building blocks for Algorithm 3.12
which solves the problem if Saty(.S) is finitely generated. If not, the algorithm does not
terminate producing an infinite sequence of subalgebras ever closer to Sat,(S). A case of
Saty(S) not being a finitely generated K-algebra is shown in Example 3.14.

Algorithm 3.12 is largely inspired by the suggestion contained in [7] and similar to [4,
Semi-algorithm 4.10.16].

At this point we describe methods for rewriting the computed generators of Saty(S).
The first part of Section 4 recalls different procedures to reduce elements in a subalgebra
and the second part generalises these techniques to combine reduction and saturation.

As anticipated, our problem shows different features when the subalgebra S is graded.
Section 5 marks the beginning of the most original part of the paper by showing some
good aspects of this setting. Nevertheless, even in the graded case there are examples of
subalgebras whose saturation is not finitely generated (see Example 5.3).



After the first glimpse provided in the previous section into the theory of SAGBI bases,
its full strength comes alive in the case of a graded subalgebra.

The first benefit from the assumption that our subalgebra S is positively graded is
described in Section 6 where we show how to make a good use of a truncated SAGBI
basis for minimalizing the generators of S (see Algorithm 6.2).

Then we come to the main novelties contained in Section 7. Given a grading defined
by a positive matrix W and an indeterminate, say ag, there are special term orderings
called of ap-DegRev type compatible with W (see Definition 7.1). If o is one of these,
its full power is shown in Theorem 7.2 which essentially says that the two operations
of computing a 0-SAGBI basis of S and saturating S commute. Using this fact, if the
subalgebra S has a finite 0-SAGBI basis, then the problem of saturating S with respect
to ag is essentially solved, and not only we get a set of generators of Sat,,(S) but also
its 0-SAGBI basis. Procedure 7.5 captures this idea, and some examples show its good
behaviour (see for instance Examples 7.9 and 7.10). However, the reason why we said
essentially is that currently we can only conjecture that the procedure is indeed an
algorithm, i.e. terminates, whenever Sat,, (S) is finitely generated.

Finally, in Section 8 we come back to the beginning of the story and use our methods
to compute U-invariants via the computation of the algebras S,,. The ideas developed
in Section 7 frequently collide with the fact that computing a SAGBI basis can be very
expensive. In many cases it is even not clear if it is finite or not. So, what about computing
a truncated SAGBI basis, as described in Section 6?7 The problem is that the saturation
of a polynomial with respect to ag lowers its degree unless deg(ag) = 0, and unfortunately
this condition cannot be paired with a term ordering of agp-DegRev type. However, if the
subalgebra S is graded also with respect to another grading with deg(ag) > 0, we are in
business. And this is the case of U-invariants. Given a multi-grading of this special type
and a term ordering of ag-DegRev type compatible with it we have the nice Algorithm 8.4.
The algebras S3 and S, can be easily computed, and indeed we compute even a SAGBI
basis of them together with a minimal set of generators. But when we come to S5 and Sg
we need a bit of extra information which comes from the classical work, namely that the
maximum weighted degree is 45 for both. The weighted degree is such that deg(ag) = 0, so
it suffices to use Algorithm 8.4, truncating the computation in weighted degree 45. Once
the truncated SAGBI basis is computed, we can use Algorithm 6.2 to get a minimal
set of generators. To see some information about the computation of S5 and Sg see
Examples 8.8 and 8.9.

All the examples described in the paper were computed on a MacBook Pro 2.9GHz
Intel Core i7, using our implementation in CoCoA 5. Unless explicitly stated otherwise,
we use the definitions and notation given in [8] and [9].
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2. Basic Results

In this section we recall some basic definitions and results. In particular, we define the
weak saturation and the saturation of a subalgebra of P with respect to an element, which
allows us to rewrite the main problem described in the introduction (see Problem 1.1).

In the following we let K be a field, let ag,ai,...,a, be indeterminates, and let
P = Klag,a1,...,a,]. The word term is a synonym of power product while the word
monomial indicates a power product multiplied by a coefficient. Consequently, if o is a
term ordering and f is a polynomial, the symbols LT, (f), LM, (f), LCs(f) denote the
leading term, the leading monomial, and the leading coefficient of f, so that we have
LM, (f) = LC,(f) - LT (f). For the ideal generated by elements g1, ..., g, we use the
notation (g1,...,gr).

For a polynomial f € P we write f : g to denote the saturation of f with respect
to g, i.e. the polynomial f/g?, where g* is the highest power of g which divides f. Given
a subset T' C P, the K-subalgebra of P generated by T is denoted by K|[T.

We recall some definitions and properties from the context of ideals. Let I be an ideal
in P, and g # 0 in P. We first recall the colon ideal, defined as I:g={f € P | g f € I}.
Notice that we naturally have that [:g¢ is an ideal, and I C [ : g.

Then, we recall the saturation of I with respect to the element g, defined as
I:9°° =J;enI:g", and we also have I:¢g>® = IP,NP =1IP[g~'|NP.

Next, we generalize the definitions above to the context of subalgebras, and we point
out some properties which do not extend to this setting.

Definition 2.1. Let S be a K-subalgebra of the polynomial ring P, and let g # 0 in P.
(a) The subalgebra S[g='] N P is called the weak saturation of S with respect
to g and denoted by wSatg4(S).
(b) The subalgebra S[g,g~!] N P is called the saturation of S with respect to g
and denoted by Satg(S).
(¢) We denote the set {f € P | g' f € S} by S:g* and the set [J;cy S:g" by S : g°°.

Remark 2.2. Notice that S C S:g if and only if g € S. Thus, only in this case S: g* is
an ascending chain of sets for increasing j € N. We also observe that S = S:¢° C S: ¢>.

The following example shows that in general S:g and S: ¢ are not subalgebras.

Example 2.3. Let P = Q[ao, a1] and S = Q[aga1] C P. Trivially, a1 is in S': ag, but its
square a? is not in S:ag because aga? ¢ S.
Now consider S = Q[aZa;] € P. Then aga; € S:ag, and a3 € S:a?, thus they are in

S :ag®, but their sum apa; + a; is not in S': af® because ag(aoal +a1) ¢ S for any d € N.

Next, we prove that if g € S then S': ¢ is a K-subalgebra of P, and S: ¢ is indeed
the saturation of S with respect to g.

Proposition 2.4. Let S be a K -subalgebra of P, and g # 0 in P.
(a) We have S: g™ C wSaty(S).
(b) We have wSaty(wSat,(S)) = wSaty(S).
(c) If Ais a K-subalgebra of P with S C A C wSaty(S), then wSaty(A) = wSaty(S).
(d) If g € S we have S: g™ = wSaty(S) = Saty(5).



Proof. To prove claim (a) we observe that for f € S: g there exists r such that g"f € S
hence f = ¢g"f(g~')" € S[g~ '] N P.

To prove claim (b) it is clearly enough to show wSat,(wSaty(S)) C wSat,(S). Let
f= Z?:o fig™t with f € P and f; € wSat,(S) for i« = 0,...,d. Then we have the
equalities f; = ijzo 85,977 with f; € P for i =0,...,6; and s, € S for i = 0,...,d,
ji=0,...,8;. Hence we have f = ;0. a4 $;,9 "7, which shows that f € wSaty(9).

vvvvv K3

Let us prove claim (c). From the Jz;ssumption S C A C wSat,(S) we get the chain of
inclusions wSaty(S) C wSaty(A) C wSaty(wSaty(S)), and the conclusion follows from
claim (b).

Finally, we prove claim (d). The second equality is obvious, and from (a) we get
the inclusion S: g™ C wSaty(S). To conclude the proof, we need to show the inclusion
Saty(S) C S:¢°. An element f € S[g71] N P can be viewed as polynomial in g=! with
coefficients s; € S, hence it can be written as f = Z?:o 597" = (Z?:o 5,977")/g?. The
assumption g € S implies that fg? = Z?:o 5,977 € S, hence f € S:g>®. DO

Example 2.3 shows that without the assumption g € S, the set S:¢g> need not be a
K-algebra, hence the inclusion in item (a) may be strict.

Under the light of these definitions and properties, we rephrase the problem stated in
the introduction (see Problem 1.1) with the extra assumption that g € S\ {0}.

Problem 2.5. Given a field K, a polynomial ring P = Klag, a1, . .., ay), and polynomials
91,---,9r € P, let S denote the subalgebra K|gi,...,g.| of P, and let g € S\ {0}. The
problem is to compute a set of generators of S:g>.

The assumption that g is an element of S can be weakened as shown by the following
proposition.

Proposition 2.6. Let S be a K-subalgebra of P, let g € P\{0}, and let f(z) € K[z]\K.
If f(g) € S then wSaty(S) = Saty(S[g]) = Slg]: 9>

Proof. The second equality trivially follows from Proposition 2.4.(d) because g € S[g].
Let us prove wSat,(S) = Saty(S[g]) using induction on deg(f(2)). If deg(f(z)) = 1,
i.e. f(2) = c12 + co, clearly g = (c1)7' - (f(g) — co) € S, hence the claim follows from
Proposition 2.4.(d). Then assume that if a K-subalgebra A of P contains f(g) with
deg(f(z)) < d then wSaty(A) = Saty(Alg]).

Now, we let f(g) € S with deg(f(2)) =d, i.e. f(z) = E?:o ¢;z" with ¢q # 0, and we
let f(z) = Z?Zl ci2""1 thus g- f(g) = f(g9)—co € S, in other words, f(g) € S : g°°. Then,
by Proposition 2.4.(a) it follows that f(g) € wSaty(S), therefore we define A = S[f(g)]
and we have S C A C wSat,(5). Consequently, by Proposition 2.4.(c),

wSat,(A4) = wSaty(S) (%)

On the other hand, from deg(f(z)) = d — 1 and the inductive assumption we get the
equalities wSaty(A) = Saty(A[g]). From the obvious equality Alg] = S[f(g)]lg] = Slg] we
get wSaty(A) = Saty(S[g]) which, combined with (x), concludes the proof. O



3. The General Case

In this section we tackle Problem 2.5. We start with the following theorem which
shows how to add new generators to a subalgebra of P in order to get closer to its
saturation. The theorem uses generators of Relg(g1,...,gr) (see Definition 3.1) which
can be effectively computed according to Proposition 3.2.

3.1.  Ideal of Relations and Subalgebra Membership

The following K-algebra homomorphisms will be used systematically throughout the
paper. Let S = Klg1,...,9-] € P = Klag,...,a,] and let g € P. We will use the
homomorphism ev: Klz1,...,2,] — P, defined by ev(z;) = g¢;, and the canonical
homomorphism mg: P — P/{g). The fundamental notion of an ideal of relations is
recalled.

Definition 3.1. The kernel of the composition 7,0 ev is called the ideal of relations
of g1,...,9, modulo g and is denoted by Relg(g1,...,9r)-

In the following proposition we show how to compute Rely(g1, ..., gr) using an elim-
ination ideal. We recall the following propositions using new indeterminates yi, ..., ym
to emphasize that they are quite general.

Proposition 3.2 (Computing Relyg).
Let g, g1,---,9- € Kly1,..-,ym]. Then let Q = Klx1,...,%r,Y1,...,Ym], and define the
ideal J = {g, 1 — g1,-.-,Zr — gr) C Q.
(a) We have the equality Rely(g1,...,9-) = J N K[z1,...,2,].
(b) Let G be the reduced o-Gribner basis of J where o is an elimination ordering for
{Y1,--.,ym}. Then we have Relyg(g1,...,9-) = (GNKlz1,...,2.]).

Proof. See [8, Proposition 3.6.2]. O

We will also need to test subalgebra membership. A method for checking it is recalled
here.

Proposition 3.3 (Subalgebra Membership Test).

Let g1,...,9r € K[y1,...,ym]. Then let Q = Klx1,...,Zp,Y1,-..,Ym], and define the

ideal J = (x1 — g1, -, %r — gr) € Q. Finally, let S = Kl[g1,...,9-] C K[y1,---,Ym]-
Then a polynomial f € Klyi,...,Ym] is such that f € S if and only if we have

NF, ;(f) € K[z1,...,2,] where o is an elimination ordering for {y1,...,ym}. In this

case, if we let h = NF, ;(f), then f = h(g1,...,9r) is an explicit representation of f as

an element of S.

Proof. See [8, Corollary 3.6.7]. O
We are ready to prove the first theorem of this paper.

Theorem 3.4. Let ¢1,...,9, € P = Klag,a1,...,a,], let S = Klg1,...,9+], and let
g € S\{0}. Then let {H1,...,H} be a set of generators of the ideal Relg(g1,...,9r),

and finally let h;=Hi(g1, ..., 9,)/g and hi=H;(g1,...,g,): &> fori=1,...,t. We have

SgK[S:g]:K[glv"'ag’rvﬁlv"'vh’t]gK[glv"'ng;hla"'aht]gS:gOO



Proof. The first inclusion follows from Remark 2.2.

Now we prove the inclusion K[S:g] C K(g1,...,gr, h1,..., k). If f € S:g we deduce
that gf € Klg1, ..., gr], hence there is a polynomial F' € K[x1,...,z,] such that we have
gf = F(q1,...,9r). This means that F(z1,...,2,) € Relg(g1,...,9r), thus F may be
written as 22:1 Bj H; which implies F'(g1,...,9r)= 22:1 Bi(g1,.--,9-)Hj(g1,...,9r)=
Z;:l Bj(g1,- .. ,gT)gﬁj, and hence we have gf=F(g1,... ,gr)zzzzl Bj(g1, ... ,gr)gizj.
From this relation we deduce the equality f = 22:1 Bj(g1,- - ,gr)ﬁj.

Next we prove that K[gi,...,gr h1,...,h,] C K[S:g]. Firstly, gg; € S for every
i =1,...,r since g € S. Moreover, we have gh; = Hi(g1,...,9-) € S, hence also
h;€ S: g for i = 1,...¢. Thus the inclusion is proved which concludes the proof of the
equality K[S:g] = K[g1,.--,Gr h1, ..,

The inclusion Klg1,...,gr, hi,..., ﬁt] C Klgi,---y9r,h1,...,h] follows again from
the assumption that g € S, and the last inclusion of the claim is clear since S:g™> is a
K-algebra by Proposition 2.4.(b). O

The following example shows that if g ¢ S then S C K[S:g] may not hold, and
K[S:g] may not be a finitely generated K-algebra.

Example 3.5. Let P = Klag, a1], and let g = ag.
(a) Let S = K[ay]. Then S:ag = {0}, hence K[S:ag] = K.
(b) Let S= K[agai]. Then K[S:ao] = K|a1,apa},aas, ... ayait™, ... € Klay,apa1],
and S ¢ KI[S:ap] since agay ¢ K[S: ag].

A straightforward consequence of Theorem 3.4 is an interesting independence of the
set of generators of the ideal Relg(g1, ..., gr)-

Corollary 3.6. With the same assumptions of the theorem, let { Hy,... ,H!} be another
set of generators of Relg(g1,. . ..,gr), and let f;’i = H!(g1,...9r)/ag fori=1,...,u. Then

we have K[gl,...,gr,ﬁl,...,ﬁt] :K[gl,...,gr,g’l,...,h’u].

Proof. The claim follows immediately from the theorem since both algebras are equal to
the K-algebra K[S:g]. O

This independence does not hold if we substitute h; with h; for i = 1,...,t, and
likewise h/; with h} for i = 1,...,u, as the following example shows. Please note that in
all examples using g = ag we identify Klag,a1,...,a,]/{ao) with K[a, ..., a,].

Example 3.7. Let P = Qlag,a1,az], let g1 = a? — adaz, g2 = araz — ag, g3 = a3,
gs = a1a3, g = ag, and S = Q|g1, 92, g3, 94, ). Then we have mg(g1) = a3, Tg(g2) = aras,
Tg(93) = a3, mg(g4) = ara3.

If we let I = Relg(g1,...,94,8) C Qlx1,x2, 23,4, x5] we get I = (Hy, Ho, H3) where
Hy = 23 — 2123, Hy = x12% — 23, H3 = x5. Then it is also true that I = (Hy, H}, Hs)
where H) = Hy + x3H, = 2323 — 23,



Let Bi - Hi(917927g3ag47g)/g and let hl — Hi(glug2ug3ug47g):goo for i = 17273'
Simﬂa'rIYa let h/2 = Hé(glug2ag3ag47g)/ga and hl2 = Hé(91792793ug47g) goo We have

hi = Hi(91, 92,93, 94.8)/8 = —2a1a2 + ao(a3 + 1) h1 = Hi(g1, 92, 93, 94.8) : 8% = hy
ha = Ha(g1, 92, 93, 94, 8)/& = —aoa3 hy = Ha(g1,92,93,94,8) : 8 =—aj
Wy = Hj(g1,92, 93, 91,8)/8 = —2a13 + aga3 hy = Hb (91,92, 93, 94,8) : 8% = h'y
hs = Hs(g1,92,93,94,8)/g = g/g =1 hs = Hs(g1, 92,93, 94, 8) : 8 =
According to Corollary 3.6 and these equalities we have
Qlg1, 92, 93, 94, 8 h1, hy] = Qlg1, 92, 93, 94, &, b1, ha] (*)
Let us check it using Proposition 3.3. On the polynomial ring Q[z1, ..., z7, ap, a1, az] we

introduce a term ordering o of elimination for {ag, a1, a2}, and we let

Ji=(g, ®1— g1, T2 — g2, T3 — g3, T4 — ga, Ts — &, Te — hy, T7 — hj)
Jy = <g, T1— g1, T2 — g2, T3 — g3, T4 — G4, Ts — &, Te — N1, $7—7L2>

We get NF, Jl(ﬁg) = —x3w + x7 which means that ho = —gzhy + h% and hence we
deduce that h2 € Qlg1, 92, 93, g4, &, h1, hb]. We get NF,, j,(h}) = x326 + 27 which means

that hl = gshy + h and hence we deduce that h} € Q[ao, 91, 92, g3, g4, h1, hg]
Finally, we Clalm that

Q[91792593ag45 g, hla h/2] g Q[915925g3vg47g7 h’17 h’2]

The inclusion Q[917 92,93,94,8, h17 hl2] g Q[glu 92,93, 94,8, h17 h?] follows from (*) since
Clea‘rly Q[glu 92,93,94, 8, hlu iLQ] g Q[glu 92,93,94,8, h17 h?] Fina'HYa to check the claim we

show that hy ¢ Q|g1, 92,93, 94,8, h1, hb]. To do this we compute NF, , (h2) = —23as,
and the conclusion follows from Proposition 3.3.

3.2.  The general Algorithm
Theorem 3.4 motivates the following definition.

Definition 3.8. Given a subalgebra S = K|[g1,...,g,] of P, and g € S\{0}, we denote
by Eg(S) the algebra Klg1,...,gr, h1,..., ] as described in Theorem 3.4. Then we let
E(S) = S, and recursively E}(S)= Eg(E."(S)) for i > 0.

Remark 3.9. We observe that there is an abuse of notation since Eg(S) depends on
the set of generators of S, as shown in Example 3.7. Moreover, we notice that the last
inclusion of Theorem 3.4 can be read as Eg(S) C S:g>

We are ready to prove some fundamental results for our algorithm.

Theorem 3.10. Let P = Klag,a1,...,a,], let g1,...,9, € P, let S = Klg1,...,9r], and
g € S\{0}. Then let A be a finitely generated K -subalgebra of P such that S C A C S:g™.
(a) We have K[S:g'] C E;(S) € S:g> for everyi > 0.
(b) We have S = E3(S) C El(S) - C EL(S) € S:g> for every i > 0.



(¢c) We have A:g>® = S:g™.
(d) If A= Eg(A) then A= S:g>.

Proof. For claim (a) we have to prove two inclusions. For the first inclusion it suffices to
show S:g' C E.(S) for i > 0. From Theorem 3.4 and Remark 3.9 we get S:g C E(S).
By induction we may assume that S:g'~! C Ei~'(S) and let f € P be such that g'f € S.
Then gf € S:gi~! C Eé_l(S) by induction, and hence f € Eé_l(S) g C Eé(S) by
Theorem 3.4 applied to the subalgebra EL'(S).

The second inclusion of claim (a) is true for i = 0. By induction we may assume that
EIN(S) CS:g™ Let fe EL(S). Since EL(S) = Eg(EL '(S)) there exists s such that
g'f € EL1(S) € S:g™. Consequently, there exists ¢ such that g***f € S, and hence
we get f € S:g™.

Claim (b) follows from the definition of E%(S) and claim (a).

Claim (c) follows from Proposition 2.4.(c),(d).

To prove claim (d) it suffices to show the inclusion S:g>* C A. So let f € S:g™
which means that there exists ¢ € N such that g'f € S. If i = 0 we have f € S C A.
Using induction on i we may assume that g'~'f € S implies f € A. From gi'f € S
we deduce gi~'(gf) € S, hence by induction we get gf € A. Consequently, we get
f € A:g C Eg(A) by Theorem 3.4. By assumption we have Eg(A) = A hence f € A and
the proof is complete. O

From this theorem we deduce the following result.

Corollary 3.11. Let K be a field, let P = K|ag,a1,...,ay], let S=K|[g1,...,9-] C P,
and let g € S\{0}. The following conditions are equivalent.

(a) The algebra S:g> is finitely generated.

(b) There exists i such that EL(S) = EZT(S).

Moreover, if the two equivalent conditions are satisfied, then S:g> = Eé(S).

Proof. To show the implication (a)=(b) we assume that S:g> = KJhq,...,hs] and let
m = max{_,{i | g'h; € S for j = 1,...,s}. We deduce that K[hq,...,hs] C K[S:g™].
By Theorem 3.10.(a) we have K[S:g™] C Eg*(S), hence

S:g® = Klh,...,h,] C K[S:g™] € EJ'(S) C EJ () € §:g*

which implies the equality EZ"(S) = EF*+'(S).

To show that (b) = (a) it suffices to prove that S:g> = E¢(S) since E,(S) is finitely
generated by definition. We have the equality E%(S) = Eg(E%(S)) by assumption, and
hence Eg(S) = S:g* by Theorem 3.10.(d). O

We are ready to describe an algorithm to compute a set of generators for S:g,
if it is finitely generated. If it is not, this procedure does not terminate, producing an
infinite sequence of subalgebras ever closer to S : g>°. Instances of S : g* being not finitely
generated are Example 3.14 and Example 5.3. A similar algorithm /procedure is contained
in [4, Semi-algorithm 4.10.16]. In our case we can claim that it is an algorithm since we
assume that S : g is finitely generated.
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Algorithm 3.12. SUBALGEBRASATURATION

notation: P = Klag,...,ay] is a polynomial ring.
Input S =Kjgi1,...,9-] C P, and g € S\{0} such that S: g is finitely generated.
1 Let =S8
2 Main Loop:
2.1 call gf,...,¢. the non-constant generators of S’
2.2 compute {Hq,..., H}, a set of generators of the ideal Relg(g], ..., g.)
2.3 forj=1,...,t,let hj = H;(¢4,...,9,): 8%
2.4 if hy,...,hy € 5, e if Eg(S") =5, then return S’
2.5 redefine S” as K|[g},..., 9% h1,..., hi]
Output S:g*

Proof. Since S: g™ is finitely generated, correctness and termination follow immediately
from Corollary 3.11. O

Remark 3.13. When g is indeed in the list G of the generators of the subalgebra 5,
say in position ¢, then z; is in Relg(G). Then h; = 1 which trivially belongs to S. In the
following examples we will use this fact sistematically.

The following example shows that the procedure may not terminate, and \S': ag® needs
not be a finitely generated K-algebra.

Example 3.14. Let P = Qlag, a1, as], let g = ag, g2 = a1 — apa?, g3 = aa, g4 = aiaz,
and let S = Q[g, g2, g3, g4]. Notice that P/(g) ~ Q[a1,az]. Then we have mg(g2) = a1,
Tg(93) = a2, Tg(ga) = airaz, hence Relg(g, 92,93,94) = (x1, T4 — x2x3). First, from
Hy, = 21 we have hy = 1 € S (as shown in Remark 3.13). Then, from Hy = x4 — 2223
we have g4 — gags = ap(ataz) hence hy = a?ay. Therefore, after the first loop, Eg(S) =

Qlao, a1—apa?, az, araz, a3az]. Inductively, we may assume that

i _ 2 2 i+1
Eg(S) = Qlao, a1—apa?, az, araz, afasg,...,a7 az]
The only new relation_in Relg(g, g2, 93, 94, a%ag, ... ,aﬁag, aﬁ“ag) iS Toxi43 — Tipq and
after the loop we get aﬁ”ag. The procedure does not stop, nevertheless we can conclude
that
.00 2 2 1+1
S:ag® = Qlag, a1—aoai, az, a1az, ajas, ..., a7 asz,...]

hence it is not finitely generated.
Let us see an example where the procedure stops, hence it computes S:ag°.

Example 3.15. Let P = Q[ag, a1, az, a3, let g = ag, g2 = a? — apaz, g3 = a3 — apas,
and let S = Q[g, g2, g3]. We have mg(g2) = a} and 7g(g3) = a3, hence Relg(g, g2, 93) =
(z1, 23 — 23). We get g2 — g5 = 3apatas — 2apaias — 3a2a2a? + aZa? + ala3, hence
g4 = ataz—32ataz—apaia3+iaga3+3ada3, and hence we deduce Eg(S) = K|g, g2, g3, 94),
4

and indeed we can check that g4 ¢ S. Moreover, we have mg(g4) = ataz — 2a}as and
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Relg(g, 92, g3, 94) = (3—13), so no new generator is created in Step 2.2 and the procedure

stops in Step 2.3. The conclusion is that S:al° = K|[g, g2, g3, g4)-
Moreover, from the computation we deduce the equality apgs = %(g% — g3) which gives
an explicit proof of the fact that g4 € S:af°.

Algorithm 3.12 comes as a direct application of the theory developed in Section 3, in
particular Corollary 3.11. It is useful to improve it by using suitable rewriting procedures
which we are going to describe in the next section.

4. Subalgebra Reduction, Interreduction, and Sat-Interreduction

We recall some definitions and facts from the theory of SAGBI bases. For a general
introduction to this topic see [9, Section 6.6]; here, we reshape its Definition 6.6.16 and
adapt it for our purposes.

Definition 4.1. Let P = K]Jayg,...,a,] with term-ordering o. Let G = {g1,...,9+},
where all g;’s are monic polynomials in P, and let h be a non-zero polynomial in P.
If LT,(h) € K[LTs(g1),--.,LT+(gr)], and we have LT,(h) = LT;(g1)** - - - LT» (g, ),
then we let b’ = h — LC,(h) - g7 - - - g% and we say that the passage from h to A’ is an
Srr-reduction step for h.

The following is a running example for this section.

Example 4.2. Let P = QJag, a1, az], with T(ao, a1, az2) ordered by o, the term-ordering
111
defined by the matrix (—(1) 0 8). Then, let h = aja§ — 4ajaiaz + 4aja? + aaz + af,
and
_ _ 2 _ 2 _ 2
g1 =ao, ¢g2=a102 —aj, g3 =0a, g4 =010
We observe that all polynomials are monic and we have

LT,(91) = a0, LTo(g2) =aras, LT,(g3)=a3, LTo(g4)=aia3, LT,(h)=aias,

We observe that LT, (h) = LT,(g3)? LT, (g4). Hence we have an Spr-reduction step
h' = h— g3gs = —4ajaias + 4aja? + alas + af.

Note that an Spr-reduction step replaces LT, (h) with o-smaller terms. Therefore,
being o a term ordering, a chain of LT-reduction steps must end in a finite number of
steps. This motivates the following definitions.

Definition 4.3. Let P = K[y1,...,Ym], and let o be a term ordering on T(y1, ..., ¥m)-
Then let G = {¢1,...,9r}, where all g;’s are monic polynomials in P and let 0 £ h € P.
(a) We say that ' is an Spr-remainder for i and denote it by SRy (h, G), if there is a
chain of Syr-reduction steps from h to h’, and LT, (k') € K[LT,(g1),- ., LT+ (gr)]-
(b) Let ' = SRy (h, G). We may compute LM, (h') — SRyr(h' — LM, (K'), G), and
repeat this process until we obtain a polynomial A" such that no power-product
in its support is in K[LT,(g1),...,LT+(g.)]. We say that h” is an S-remainder

for h and denote it by SR(h,G).

Remark 4.4. Notice that, according to Definition 4.1, we may get different SRyr(h, G)
and SR(h,G), depending on the way of representing LT, (h) = LT, (g1)** - - - LT (g ).
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This definition is a natural generalization of the remainder of the division algorithm
in the context of polynomial ideal, but the difficult step here is to find the «; giving the
equality LT, (h) = LT, (g1)** - - - LT (g, ).

There are two strategies for doing this: elimination and toric ideals.

Remark 4.5. As described in Proposition 3.3 we may determine an explicit repre-
sentation of LT, (h) as an element of K[LT,(g1),...,LT+(g.)] by defining the ideal
J = {x1 — LTs(qn),...,2r — LTs(g,)) in K[z1,...,2,a0,...,a,] and then computing
7 = NF, s(LT(h)). It is easy to show that 7 is a power-product, and, if 7 = z{* -- - 2&"
we have the desired exponents. Otherwise, if some a; occurs in 7, we may conclude that

LT, (h) € K[LT;(g1),--.,LTs(gr)], i-e. there is no Spr-reduction step for h.

The other strategy is by looking for a binomial xzy — 7 in the kernel of the map
¢ : K[zg,21,...,2,] — P, defined by p(z9) = LT,(h) and ¢(x;) = LT, (g;)-

Again this may be computed by mimicking Proposition 3.2, but much more effi-
ciently by computing the toric ideal Rel(LT,(h), LT4(g1), --.., LT+ (gr)) as described for
instance in [1], and using the following proposition.

Proposition 4.6. Lettg,t1,...,t, be power-products in P and ¢: K [xg, 21,...,2,] — P
be the K -algebra homomorphism defined by p(xz;) = t; fori=0,...,r. Then the following
conditions are equivalent.
(a) We have ty € K[t1,...,t,].
(b) There exists a binomial b € ker(p) such that xo € Supp(b).
(c) Given a finite set B of binomial generators of ker(p), there exists a binomial b € B
such that o € Supp(b). In this case, if b= +(xo — 7), then to = 7(t1,...,t;).

Proof. The implications (c) = (b) and (b) = (a) are clear.
Let us prove (a) = (c¢). The multi-homogeneity of K|[t1,...,t,] implies that the only
way to have to € K|ty,...,t,] is to have an equality of type to = [[;_, t;*. This im-

i=1"1
plies (b), i.e. zo — [[i_; 23" € ker(yp). Given B = {b1,...,bi}, we get zo — [[}_, 28" =
Zf.:l fib; with f; € K[z, ...,z,]. By putting 1 = --- = x,, = 0 in this relation we see
that one of the b; has to be either of type £ (xo — [[1_, 7*), or of type (1 — [[_, z7").

The latter is excluded by the homogeneity of the generators of ker(i), therefore the proof
is complete. O

Remark 4.7. There is an obvious but practically effective improvement of Proposi-
tion 4.6. Asking whether tg € KJt1,...,¢,] is equivalent to asking whether t; € K[T
where T = {t; | t; divides tp}.

Example 4.8. (Example 4.2, continued)
Let P = Q[aop, a1, az], o, g; and h as in Example 4.2. After the first Syr-reduction step
we got h' = h — g2g4 = —4adaias + 4aja? + aSasz + af).

Now, LT, (I') = ajaias = LT,(g1)° LT, (g2) gives us a following Spr-reduction step:
h" = h' +4g}g2 = aaz + af, whose leading term cannot be further reduced. Therefore
SRLT(h, G) =h" = (18(12 + (1(7).

Setting apart its leading monomial, we can now consider h = h” — LM, (h"), and we
see that h = LT,(g1)" = g7, therefore SRyx(h, G) = 0. In conclusion, SR(h, G) = aSas.
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4.1.  Interreduction and Sat-Interreduction

We recall from Definition 3.8 that Eg(A) is obtained by adding new generators to
those of the algebra A. Now we investigate on how, using S-remainders, we can find
a new set of generators for Eg(A) or, even better, a set of polynomials generating an
algebra B such that Eg(A) C B C A:af°

Proposition 4.9. Let P = Klag,a1,...,ay,], with term ordering o on T" 1, and let
S=Klg1,-..,9r], withg; € P, and g € S\{0}. Let g, = SR(9i,{91,---,Gir---:9r}), then

S C Klgr,..,9;:8%,...9;] € S:g>

Proof. From the definition of S-remainder it is clear that S = K{g1,...,4.,...gr], Then
the assumption g € S implies the inclusion Kg1,...,9},...9-] C K[g1,.-.,9;:8°,... 9],
and the conclusion follows. 0O

Definition 4.10. Let P= KJag, a1, ..., a,|, with term ordering o, and S = Kl¢1, . .., gr],
where all g;’s are monic polynomials in P. Repeating the substitution described in Propo-
sition 4.9 until no more S-reductions and saturations are possible, we obtain a set of
sat-S-interreduced generators of a K-algebra A such that S C A C S:af°.

We denote such A by SatSZ(S), and again, as in Definition 3.8, there is an abuse of
notation since SatSZ(S) depends on the set of generators of S and also on the steps of
reduction.

The following easy example illustrates this definition.

Example 4.11. Let P = K|ag, a1, az] with DegRevLex. Let S = Klag, a1, aga3—ai],
then SatSZ(S) = K|ag, a1, a3] = S:al.

In general, the set of interreduced generators is obtained after more than one iteration
through the generators.

Example 4.12. (Examples 4.2 and 4.8 continued)
As in Example 4.2. we let P = Q|ao, a1, az], with T(ag, a1,as) ordered by o, the term-

111
ordering defined by the matrix (7(1) 7(1) 8). Let g1 = ag, g2 = a1as — af, gs = a%,
gs = ara3, let g5 = h = aya§—4a5ara2+4aja? +afas+af, and let A = K|g1, g2, 93, g4, g5

Notice that LT(g1) < LT(g2) < LT(g3) < LT(ga) < LT(g5), thus g; may be reduced
only by the g;’s with j < 7. The only one which may be reduced is g5, and we computed
SR(h,G) = alaa (see Example 4.8), whose saturation is as.

Then, we re-sort and re-number the g;’s:

g1 =ao, g2 =02, ¢g3=0a102— af, g4 = CL%, g5 = a1a§ .
Now, we see that g4 can be S-reduced to 0 using go, and g5 can be S-reduced to a3az
using g2g3. Re-sorting and re-numbering again, we have
g1 = ao, g2 =02, ¢g3=a102— 0%7 g4 = a%az .

In conclusion we have SatSZ(A) = klag, a2, a1az —a?, atas]. Moreover, it is easy to see
that SatSZ(A) = A:a.
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As said, the process of sat-interreducing the generators of a subalgebra of P can
improve the subsequent steps of the computation of Relg. But we cannot hope that it
substitutes such computation, as the following example shows.

Example 4.13. Let P = QJag, a1, az2], with T(ag, a1, a2) ordered by o, the term-ordering
defined by the matrix ( 7(%) é _(i) ) Let G = {g, g2, 93,94} where g = ag, g2 = a1az —
apai + agaz, gz = a3 — a3 + apa1, g4 = a3 — apa3, and S = K|[G].

Then Relg(G) = (w1, 25 + 3z3z323 + 2323 — 2})

The second relation, evaluated in G, and ag-saturated gives h, and SR(h,G):af° =
SR(h, G) - a‘;’ag - 6a‘lla; — a?ag + 40(100,4110,3 — Za[)a?ag — 450,0(1%(1% — 4Oa0a1a3 — 10a0a§0 + 1070,3(1‘;’1142L +
484aata5+441a2aSaS+38a2alal —101ada1af—40a3a3 —808a3a%al+615a3aTal+116a]a1a]—39a8al —3798agaTad +
4935aga3a) —3846a3a?ad +304ada1a§ +82a8al +23372a5 afal — 27200} a1 a3 +90afal — 50860aS afa? + 525605 aad +
30105a$aiaj — 166alal + 78690afaial + 8438a7ad — 228828aSaZay + 63304adaial + 77232a5a3 + 258692a9a2 —
369708a%aq + 2288284 ay .

But SR(h, G) is indeed in S, being SR(h, G) = 228828g° g, + 8535687 62 + 145308 g3 + 1492g° g3 —
72gg5 — 140880g° g3 — 5811687 g2 g3 — 8051g° g2 g3 + 38g> g5 g3 + 151gg5 g5 — 2592g” g2 — 1576g° g2 g2 + 1009g3 9292 —
180gg3 g3 + 529g° g5 — 492g> g2 g5 + 9989295 + 114g° g5 — 46gg2 93 + 11gg5 — 32456g% g4 — 4586g% 9294 — 3263g g3 g4 +
740g2 g3 g4 — 1751g% g5 94 +2196g g2 9394 — 6542 92 g3 94 + 1895 9394 —424g* 92 94 +232g2 g2 92 94 — 392 92 g4 — 508 g5 g4 +

6929594 — 9394 — 25g° 92 + 64g3 9297 — 22g92g7 — 27g3 9397 + 228929397 — 889292 + 14g2gs — 69295 + 9395 -

5. The Graded Case: Introduction

As mentioned in the introduction, the problem of computing the saturation of a sub-
algebra S of P can benefit from the fact that S is graded. In this section we prepare the
ground for new results related to our problem.

We introduce here the language of (multi or single) positive gradings. All our results
in this and the following section are valid for every positive grading and, in particular,
for every (single) grading defined by a row-matrix of positive weights.

We recall that a grading on P defined by a weight matrix W is called positive if no
column of W is zero and the first (from the top) non-zero element in each column is
positive. In this case, we shall also say that W is a positive matrix. For more on positive
gradings see [9, Chapter 4]. In this section we assume that P has a positive grading such
that our algebra S is generated by homogeneous elements.

From now on we consider P = Klag,a1,...,a,] with a positive (multi)grading de-
fined by W, and S = Klq,...,gr] a W-graded K-subalgebra of P, generated by W-
homogeneous g;’s. It is easy to prove that there exist positive row-matrices W’, so that
every W-homogeneous polynomial is also W’-homogeneous. Therefore, alongside W we
can consider a (single)grading defined by such a W’ which gives positive integer degree
to every non-constant polynomial in P. The following easy example illustrates this claim.

Example 5.1. Let P = Qag,a1] be graded by W = (_% 9), and let W’ = (1 2).
Notice that W’ = 8(1 0) + (=7 2), thus every W-homogeneous element in P is also
W/'-homogeneous.

Suppose that we have a positive grading on P and that S is a K-subalgebra of P gen-
erated by homogeneous elements. Are there advantages depending on this assumption?
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Remark 5.2. Let S = Klgi,...,gr] subalgebra of P, with g;, non constant and ho-
mogeneous of degree d;. Consider on the ring R = KJz1,...,z,] the grading defined
by the matrix W = (d; ... d,). Then, for every term ordering o on P, the toric ideal
Rel(LTy(g1),.--,LT»(gs)) € R is homogeneous, and any homogeneous relation of degree
d in R evaluated in (g1,...,¢,), gives a homogeneous polynomial of degree d in P.

In Example 3.14 the polynomial g1 = a3 —aga? is not homogeneous with respect to any

positive grading, and no term ordering o is such that LT, (mg(g1)) = a1. Example 3.14
was used to show that S':ag® needs not to be finitely generated. However, the following
example shows that S': af° needs not be a finitely generated K-algebra even when S has
a positive grading. It is inspired by the similar Example 6.6.7 contained in [9, Section 6].

Example 5.3. Let P = Q[ag, a1, as] be graded by W = (91 ).
Let G = {g, 92, 93,94} C P and S = Q[G] where

2
g =ao, ¢g2=aitapaz, g3z =aidz, G4 = ai103

From mg(g2) = a1, mg(gs) = g3, mg(ga) = ga, it follows that EQ(S) = S and
Relg(G) = Rel(g, a1, ajaz, a1a3) = (x1, wowy — x3). The first generator gives g,
and the second gives gags — g3 = apa1a3 whose saturation is aja3. No sat-reduction is
possible hence we obtain G1 = G'U {a1a3}, and E§(S) = Q[G1].

By induction on ¢ we assume that G; = {ag, a1, a1a2, ..., a1a§+2}, and Eé(S’) = Q[G;].
We prove that Eé"’l(S’) = Q[ag, a1, aaz, . . .,arast?].

Induced by W, we have a grading on Q[z1, a2, ..., zi44] given by V = (912 13)
so that Relg(G;) is V-homogenous, and we consider the term ordering o defined by a
matrix whose first two lines are the lines of V, and the third line is (=1 0 --- 0). Then
o is degy,-compatible.

It is well-known that toric ideals are generated by pure binomials (see [14]). We claim
that the binomials in the reduced o-Grébner basis G, of the ideal Relg(G;) are quadratic,
i.e. of type zoxg — T4 T5.

To prove this claim we assume by contradiction that there is a pure binomial b in G,
of type b = o, Tay " Ta, — 28,28, - X, With oy < ag - <apand S < Pa < -+ < fs
and r > 2. From the homogeneity with respect to the second line of V' we deduce the
equality »r = s. As b is o-monic, LT, (b) = %o, Ta, ' - Za,, hence a; < 1. Moreover,
from the homogeneity with respect to the first row of V' we deduce Y, _, a; = >.\_, i
hence we get the inequality o, > a1 + 2. Now, H = 24, %o, — Ta1+1%a,—1 € Relg(Gi),
and, since LT, (H) = x4, x4, divides LT, (b) properly, we have a contradiction with the
assumption that b € G,. Therefore, all binomials in G, are quadratic.

The next claim is that only a;at® is added to EY(S) via the binomials in Relg(G}).
The only quadratic binomials which produce non-zero polynomials are those involving
x2, and those not in Relg(G;_1) must involve z;;4. Thus, using the same arguments as
above, we deduce that they are of type xox;44 — zoxp with 1 < a < b < i+ 4. The

corresponding evaluation gives aoai(ﬂ;‘?’ which sat-reduces to aq a12+3, and hence we have
EiT(S) = Qlag, a1 + apaz, araz, . . . ,a1a5] as claimed.
In conclusion, S:af® = Qlag, a1+agaz, aias,...,aiab,...] is not finitely generated.

The following is a well-known fact which we recall here for the sake of completeness.
It states that the degrees of a minimal system of homogeneous generators of a graded
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K-subalgebra S of P is an invariant of S. For simplicity we state it here only in the
special case where the grading is given by a positive row-matrix.

Proposition 5.4. Let W be a positive row-matrix and let S be a W-graded finitely
generated K -subalgebra of P. Then let (g1,...,gr) be a minimal system of homogeneous
generators of S with d; = degy,(g;) and dy < --- < d,. If (h1,..., hs) is another minimal
system of homogeneous generators of S with §; = deg(h;) and 6; < --- < s, then s =r
and d; = 6; fori=1,...,r.

Proof. 1t suffices to show that in each degree d the number of elements of degree d in any
minimal system of generators of S is an invariant. Let K[S<4] be the algebra generated
by the elements of S of degree less than d, and let V = S; N K[S<4]. It is a K-vector
subspace of S4 and the number of minimal generators of degree d is dimg (Sqz/V). O

6. The Graded Case: Truncated SAGBI basis for Minimalization

Given homogeneous generators of a K-subalgebra S of P, the next question is how to
find a minimal system of homogeneous generators of S. The best tool for tackling this
problem is a truncated SAGBI basis of S. Let us see how. As mentioned, for a general
introduction to this topic see [9, Section 6.6]. In particular, consider [9, Tutorial 96].

Remark 6.1. Recall Remark 5.2. Starting with homogeneous generators, the computa-
tion of a SAGBI basis may proceed by increasing degrees: after all relations and generators
of degree < d have been considered, the computation continues with relations and poly-
nomials of higher degrees. Thus, the following generators and relations, have degree > d,
and cannot affect, i.e. reduce, those, previously considered, of degree < d.

One application of this approach is that one can determine whether an element of
degree d is in S by testing if it reduces to 0 or not with respect to a d-truncated
SAGBI basis of S, i.e. a SAGBI basis computed up to degree d.

With these facts we are ready to describe the algorithm for computing the minimal
generators. This algorithm is basically the same as the general algorithm for computing
a SAGBI basis, except for the considerations on the degree.

Algorithm 6.2. SUBALGEBRAMINGENS

notation: P = K|ag,...,a,] is a polynomial ring graded by a positive row-matrix,
and let o on T"*! be a degree-compatible term ordering.
Input S =Kigq,...,9-] C P with ¢1,..., g, homogeneous.
1 Initialise: Let G = {¢1,...,9,}, D = max{deg(g) | ¢ € G}, SB = 0, and MinGens = §.
2 Main Loop: for d from min{deg(g) | g € G} to D
2.1 foreach g € G of degree d
2.1.1 Compute h = SR(g, SB)
2.1.2 if h # 0 then
redefine SB as SB U{h}
redefine MinGens as MinGens U{h}
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2.2 if d = D then return MinGens
2.3 compute {Hy,..., H:}, the generators of degree d + 1
of Rel(LT,(g1),--.,LT5(g%)), where ¢,...,g. are the elements in SB
2.4 for j =1,...,t, compute h; = SR(H,(g1,--.,9,), SB)
2.5 redefine SB as SB U{hq,...,h}
2.6 interreduce SB
Output MinGens, a minimal system of generators of S.

Proof. Each iteration of the main loop has a fixed d and computes SB, a truncated
SAGBI basis of K[G<4], where G<q4 = {g; € G | deg(g;) < d}: in Step 2.1 it is truncated
to degree d, and in Steps 2.3-2.6 it is truncated to degree d+1, because it involves the
relations up to degree d+1. Having done that, in Step 2.1.1 of the next iteration, we use
SB to determine whether each generator of degree d+1 is in K[G<4], and also if there is
a, necessarily linear, relation with the previously added generators of the same degree.

This procedure terminates because each iteration is finite, and there are at most D
iterations. O

In the following example we see the algorithm at work.

Example 6.3. We reconsider Example 4.13. The algebra S is standard graded and its
o-SatSAGBI basis is {ao, g2, g3, 94, g5} Where g5 = a§ — 8agata? — 6aga?a3 + 3aparal +
Ga%al ag + 4a%a‘21 — 6a8a%a2 — 12a8a1 a% + 12a8a% — a%a% — 9a8a1 + 6a8a2.

Using Algorithm 6.2 we get S:al® = Klao, 92, g3, g4], and indeed we can check that

g5 = 6agg2 — 3aggs — 6aggags — 3adgs + 4ajgs — 39593 — g5 — 6aogaga + 3aogsga + g3

7. The Graded Case: SAGBI basis for Saturation

We know that the main obstacle to the efficiency of Algorithm 3.12 is Step 2.2 which
requires the computation of elimination ideals as explained in Proposition 3.2. The first
observation is that if the input polynomials in Step 2.2 are homogeneous, then it is well-
known that the efficiency of the computation of the elimination ideal can be improved.

The second observation is related to a good use of the reduction described in Section 4.
In general, it is desirable to streamline 7g(f) as much as possible to simplify the elimi-
nation process. On the other end, if the leading term of a polynomial g is divisible by ag,
then an S-remainder of a polynomial f divided by g in general does not “simplify” mg(f)

Consequently, to maximize the chance of getting S-remainders divisible by ag, our
strategy is to use a term ordering o with the property that LT,(g) = LT,(mg(g)) for
every g € P\{0}. These considerations motivate the following definition.

Definition 7.1. Let P = Klag, a1, ..., ay], let W € Mat,, ,4+1(Z) be a positive matrix,
Then let degy, be the positive grading on P defined by W. A term ordering o on T"*!
is said to be of ap-Degw Rev type (or simply ag-DegRev type) is o is compatible
with degy, and if ¢,¢' € T"! are such that degy, (t) = degy, (t') and log, (t) < log, (')
then t >, t'.
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We recall that a way to construct a term ordering o of ap-DegRev type is to add to
the matrix W the row (—1,0,...,0), and then completing it to a non-singular matrix.
For further details about this notion see [9, Sections 4.2 and 4.4].

Now we come to the main point of this section. The most important feature of a pos-
itively graded finitely generated K-subalgebra S of P which contains an indeterminate,
say ap, is that the computation of S: af°, and hence of Sat,,(S) by Proposition 2.4.(b),
can be essentially done by computing a suitable SAGBI basis of S. Let us explain how.

Here is the main result of this section.

Theorem 7.2. Let degy, be the grading on P defined by a positive matrizc W, and
let 0 on Tt be a term ordering of ag-DegRev type. Then let S be a finitely generated
W -graded K -subalgebra of P, let ag € S, and let SB be a 0-SAGBI basis of S. Then the
set {ap} U{g:ad | g € SB} is a 0-SAGBI basis of Sate,(S).

Proof. 1t is enough to show that if f € Satg,(S) is not divisible by ag, then LT, (f) is a
power-product of elements in {LT,(g:ay°) | g € SB}. From Proposition 2.4.(d) we have
Sata, (S) = S:af°, thus adf € S for some d € N. Therefore, there exist aq,...,; € N
and g1,...,9: € SB such that LT, (adf) = (LT, (g1))* - -- (LT, (g¢))®*. The assumptions
on S and o imply that ag { LT,(f), and for i = 1,...,t, we have that ag { LT (g; : ad®)
and there exists r; € N such that LT, (g;) = ai’ LT (g; : af°). Thus, we have the equality

a§ LTy (f) = ag'®* (LT4(g1:a3°)*" -+ ag"® (LTo(ge : ag"))™
By setting ag = 1 we get the desired conclusion. O

The following easy example shows that the assumption about the term ordering ¢ in
the above theorem is essential.

Example 7.3. Let P = Q[ag, a1,a2,a3] and let S = QIg, g2, g3] where we have g = ay,
g2 = apaz — a3, g3 = apa3 — a3. If o = DegLex, which is not of ap-DegRev type, then
LT, (ag) = ag, LT,(g2) = agaz, and LT, (g3) = apa?. The three power products are alge-
braically independent, hence SB = {ag, g2, g3} is a 0-SAGBI basis of S by [9, Proposition
111
6.6.11]. Instead, if o is the term ordering defined by the matrix (*é _? 8), then S is
W-graded where W = (1 1 1), and o is a term ordering of ag-DegRev type. Now we
have LT, (ag) = ao, LT, (g2) = a2, and LT, (g3) = a$. The 0-SAGBI basis of S is SB =
{ao, g2, g3, 94} Where g4 = agatas — %aoa?ag —a3alal + %a%aé + %agag. By saturating g4

we get g4 = g4:af’ = atag— %a?a% —apata3+ %aoaé + %a%a%. Moreover, by Algorithm 6.2

we check that Sat,,(S) is minimally generated by (ao, g2, g3, G4)-

The following example illustrates a subtlety of the theorem. It happens that while the
SAGBI basis of S is infinite, the SAGBI basis of Sat,, (S) is finite.

Example 7.4. Let P = Q[ao,a1,a2] be graded by the matrix W = (_{§§) and let

S = Qlg, g2, 93, 91, g5] where we have g = ao, g2 = aoai, g3 = a1 + az, g4 = aaz,
g5 = aja3. If o is a term ordering compatible with W, the o-SAGBI basis of S is not
finite. It is

{ao, a1 + as, apas, ajaz, apas, aias,...,apah, ajay, ...}
while the 0-SAGBI basis of Sat,(S) is finite. It is

{ao, a1 + a2, a2}.
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The following procedure combines the saturation of the elements of a c-SAGBI basis,
as described in Theorem 7.2, within the iterations of the SAGBI basis computation. It
is a procedure because termination is not guaranteed, but if it terminates the output is
correct.

Procedure 7.5. SATSAGBI

notation: P = K]lao,...,ay] is a polynomial ring graded by a positive matrix, and let o
on T"*! be a term ordering of ag-DegRev type.

Input S=Klgq,...,9-] C P, with ¢1,..., g, homogeneous.

1 Let G={g1,.-.,9:}

2 Main Loop:
2.1 compute G' = {gi,...,g.} the sat-interreduction of G.
2.2 compute {Hi,..., H}, a set of generators of Rel(LT,(g1),-..,LT+(g%))
2.3 for j=1,...,t,let h; = SR(H;(¢},...,9.), G'):a
2.4 if hy =--- = hy = 0 then return {ao} U G’
2.5 redefine G as G' U {hy,..., hs}

Output {ao} UG’ , a 0-SAGBI basis of S:af°

Proof. The definition of G’ in Step 2.1, and redefinition of G in Step 2.5 correspond to
the definition of new subalgebras S’ = K[G'] and S” = K[G'U{h,..., h:}] which satisfy
S C S CS8"CS:af°, thus all algebras defined in this procedure have saturation S: a°,
by Theorem 3.10.(c).

Each iteration of Step 2.1 is equivalent to restarting the computation of a 0-SAGBI
basis of K[G’], where all the elements in G’ are ap-saturated.

If the procedure stops in Step 2.4, then {ap} U G’ is a 0-SAGBI basis of the algebra
A = K[{ap} UG’'] and therefore, by Theorem 7.2, A = A:af°.

In conclusion, if it terminates, the output is the 0-SAGBI basis of S:af°. O

Is this procedure the definitive solution of our problem? The answer is yes and no.
The following example provides a negative answer by showing that for some input this
procedure cannot terminate because there is no finite SAGBI basis.

Example 7.6. Let P = Q|ag, a1,as] and let S = Q[g, g2, g3, g4] where we have g = aq,
ge = aij+ag, gs = aiaz, g4 = alag. Since g2, g3, 94 do not involve ag, it is clear that
S = S:af°. On the other hand, whatever term ordering we choose, the SAGBI basis and
the SatSAGBI basis of S are infinite (see [9, Example 6.6.7]).

However, the computation of Example 7.4 immediately terminates when we add the
generator as = apasz:af’, and also terminates for many other examples we computed,
leading us to formulate the following conjecture.
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Conjecture 7.7. If there is a finite 0-SAGBI basis of S:ay°, Procedure 7.5 terminates

in a finite number of iterations, hence it is an algorithm.

Remark 7.8. The delicate point in proving this conjecture is that Steps 2.1 and 2.5

might produce a sequence of algebras ever closer to Saty(S), but never getting to it.

The positive side is that the computation using SAGBI bases provides not only a set of
generators of the saturation of S but also a SAGBI basis of it. Secondly the computation
of a SAGBI basis needs to determine relations only among power-products, thus may use
toric ideals whose computation is considerably faster than the computation via general
elimination needed for determining Relg.

Let us show an example where the above procedure works very well.

Example 7.9. We let P = Q|ao, a1, az] graded by the matrix W = (1,1,1) and use
a term ordering of ag-DegRev type. Then let g = ag, g2 = a? — a3 + apaz, g3 =
ajas—a3+aoa =a}, g5 = a3 . We want to saturate the algebra S = Q| ]

1a2 —a3Tapa1, g4 1 95 2 g g,92, 93,94, 95
with respect to g. Using Algorithm 7.5, we get a SAGBI basis of Satg(S) which consists
of 12 polynomials. Using Algorithm 6.2 we get a minimal set of generators of Satg(.S).

The result is Satg(S) = Q[g, g2 93, 94, 95, 96, g7, gg] Where

3.2 23 2.3 11 4, 44 5 5 3,6 22 23 2 2 5,23 1 32
ge = ajas 5 109 — 4—5a1a2 + Rag — 1&8@0&1012 + gaoalag — %aoalag + %G/Oag — gaoag
11,4 1.4
—|—15 apa1 — 5 apa2
7 295,22 3 65 119 1217 319 2 275 4 3
gr = az — =2 agaja; — ?"aoa as + —aoa + 1217 0301 a3 — 30adalas + —aoa az — = apas

—42a3d? + —a0a1 + waGag

_ 6 _ 576 3 179 2 193 214 .3 3 54 4 4 92
gs = araz — % adaal — 3o apal as + I adal + =tapara; — % agalay
4.3 126 .5 2 | 239
—60a0a2 — Taaag + o aoal + 390400,2

In this case the computation takes a few seconds. We could also use Algorithm 3.12 to
compute Sat,(.5), but generally it gives neither a minimal set of generators, nor a SAGBI

basis of it.

In the following example the performance of Procedure 7.5 is far superior.

Example 7.10. We let P = Q|ag, a1, as, as] graded by the matrix W = (1,1,1,1) and
use a term ordering of aO—DegRev type. Then let g = ag, g2 = a?—apas, g3 = ajas+apas,
gs = a3, gs = a3, g¢ = a3 —a3. We want to saturate the algebra S = Q[g, g2, g3, 94, g5, 9o
with respect to g. Using Procedure 7.5, we get a SAGBI basis of Sat,(S) which consists
of 21 polynomials. Using Algorithm 6. 2 we get a minimal set of generators for Satg(S).
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The result is Satg(s) = Q[g=g2ag3ag47957967977 .. 7915] Where

2 1.2 1,2
g7 = ajaz + 50203 + 50003
_ 4 3 2 2 2 3 2 2.2 3 3
gs = aiasz — a1a4>a3 — apai1azas + 3apa3 — @pa1a2a3 — 30pa3 — Gga1a3
3 3 3 1 2 3 2 2 1.3.3_ 33 3 .33 3.4
go = Q303 — Apa1Q2a3 + 700a303 — ApG163a3 + 5apA3 — 7ApG10203 + 7apA3 — 70pA1a43

_ 4 3
gio = @1a2a3 + apa1a3as3

4 4 3 2 2.3, 4.2 2 2 3.3 3 4
g11 = aja2a3 + 300010303 + 3a0aza3 + 300010203 — 5apaA2 + agaiaz2a3 + agalas

_ 2,23 1.3 4 1 5 1 2 .3, 9 23 1,24 3,22 3
gi12 = ajazaz + ;axaz — Zaoagag + 7@oajazaz + g apajazas — 5apA2a3 — 7G5A103

3 3 1,33 4.2
+§a0a1a3 + 3apaza3 + %a0a2a3

_ 6 1.3 .4, 39 5 9 2 3 _ 135 2 3 15 2 4 9 2.2 3
g13 = aza3 + gazas + ﬁaoaﬁag + {ga0aiaza3 — 35 apa162a3 + 35 a4pa2a3 + 7500a103

135 3 3 19 3.3 45 4 2
— 35 apa1a3 — T apaxa3 — 33 0pasas3

— 5 1 .43 2 3 1.2 2 3 3,43

gi4 = a1 aﬁas — Zagag — Qpai1asa3 — 50100/2013 + Zaoa3
2 4 1 3.3 1 2 3 2.2 2 3,2 3 3 .2 3,3 3
gis = ajasa3 — Zalagag) — Za0a1a2a3 — 2(10(11(12(13 — Zaoalazag) — Qpaia2a3 — Zaoalag

The computation took about 75 seconds using Procedure 7.5 and Algorithm 6.2. We
tried to do the computation using Algorithm 3.12 and we did not succeed.

8. A Special Multigraded Case: Truncated SAGBI basis for Saturation

In general, the computation of S:af° is very expensive. The performance of Algo-
rithm 3.12 is poor even for examples of moderate size. The performance of Procedure 7.5
is usually much better, but the computation of a SAGBI basis may be prohibitive as
well. However, there is a situation where it is possible to compute (S:ag°)<q, in other
words a truncation of S:ag° at degree d. Let us see how.

In Section 7 we have already seen that the main requirement to compute the saturation
of S with respect to an indeterminate, is to compute an ag-saturated SAGBI basis of .S
with respect to a term ordering of ag-DegRev type. Our question is: if the computation
of a saturating SAGBI basis is prohibitive, can we at least compute a truncation of a
saturating SAGBI basis at a given degree? The main obstacle is that when we saturate a
computed polynomial, we may lower its degree. If ag is the chosen indeterminate, the only
possibility of keeping the degree fixed is when the input is homogeneous with respect to
a grading where deg(ag) = 0. This condition is clearly incompatible with a term ordering
of ap-DegRev type, unless the input is homogeneous also with respect to another grading
with deg(ag) > 0.

The following example shows that in many cases the computation of the saturation
may be too hard even when working over a small prime field.

Example 8.1. We let P = Z/(101)[ag, a1, az, as,aq] standard graded by the matrix
W = (1,1,1,1,1), and use a term ordering of ap-DegRev type. Then we let g = ay,
g2 = a% - a% +apaz, gz = a? + a% + aga4, ga = ag — aoaﬁ, gs = ai’, and want to saturate
the algebra S = Z/(101)[g, g2, g3, g4, g5] with respect to g.

No matter which algorithm we use, there is no way. However, we observe that the
given polynomials are also homogeneous with respect to the grading given by (011 2 3)
and this observation suggests an interesting approach which we are going to explain. We

continue this discussion in Example 8.5.
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We start with the following easy lemma.

Lemma 8.2. Let P = Klag,a1,...,a,), let dy,...,d, € Ny, let P be (single) graded by
W =(0dy--dy), and let S C P be a finitely generated monomial K-algebra. Then let
d e Ny, and let Sq = {f € P | f homogeneous of degree d}.
(a) The set Sq is a K|ag]-module.
(b) The K[agl-module Sy is finitely generated, and there is a unique set of power prod-
ucts which minimally generate it.

Proof. Claim (a) follows from the fact that deg(ag) = 0. Let S C Py denote the set
of power products of degree d in T(aq,...,a,), and let ¢,...,t, be the unique basis of
power products of Sy as a K-vector space. For each ¢; there is a minimum exponent e;
such that 7; = aj't; € Sq. It follows that Sy is minimally generated by {r,...,7.}. O

Proposition 8.3. Let P = K|ag,a1,...,ay), let di,...,d, € Ny, p1,...,pn € Z, let P

be graded by W whose first two rows are Wy = (0 dy--- dp), Wa= (1 p1--- ppn), and let o

be a term ordering on T"! compatible with W and of ag-DegRev type. Then let S be a

finitely generated W -graded K -subalgebra of P, let ag € S, let SB be a 0-SAGBI basis

of S, let d € Ny, and let SB<q = {g € SB | g is W-homogeneous and degyy,, (9) < d}.
Then {ap} U{g:ay’ | g € SB<a} is a d-truncated o-SAGBI basis of S.

Proof. Our assumptions are compatible with those of Theorem 7.2. When we compute a
o0-SAGBI basis of S we may proceed by increasing degrees as suggested by Remark 6.1.
We proceed using the degree degyy, . The merit is that the saturation of a polynomial does
not change degyy, . Then Lemma 8.2 shows that the computation of the o-SAGBI basis
jumps over d and clearly it does not come back anymore. The conclusion follows. O

Algorithm 8.4. TRUNCSATSAGBI

notation: P = K]lao,...,ay] is a polynomial ring graded by W whose first two rows are
Wy = (O dy--- dn), Wy = (1p1pn)7 Withdl,...,dn €N+,p1,...,pn € 7.
Let o be a term ordering on T"*! compatible with W and of ag-DegRev type.
Input S =Klgi,...,9-] C P, with g; W-homogeneous for i = 1,...,r.
1 Let G={g1,..., 9}
2 Main Loop:
2.1 compute G' = {gi,...,g.} the sat-interreduction of G.
2.2 compute {Hiy,..., H;}, the subset of elements of Wi-degree < d in a set of
generators of Rel(LT,(g7),...,LT4(g%))
2.3 for j=1,...,t,let h; = SR(H;(¢,...,9.), G'):a
2.4 if hy =--- = hy = 0 then return G’
2.5 redefine G as G' U {h1,...,h}
Output G’, a 0-SAGBI basis of S:ad° truncated at Wi-degree d.

Proof. Correctness and termination follow immediately from Proposition 8.3. O

Let us go back to Example 8.1.
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Example 8.5. Using the data introduced in Example 8.1 we compute (S : ag°)<s0.

In less than a second we get (S:aj°)<s0 = (Klao,92,---,36,97])<30 where g7 is a
polynomial of bi-degree (30,29) with 767 terms and LT(g7) = a3’a5as.
In about 23 seconds we compute (S:ai°)<g0 = (KJao, g2, - - -, g6, g7, gs]) <90 Where gs

is a polynomial of bi-degree (90,86) with 19559 terms and LT(gs) = a$9a34a3ays.

Then we try to compute (S:ad®)<s00 and after about 30 minutes we realise that the
algorithm gets a new polynomial with 516775 terms and leading term ai™®al®aSaj. At
this point we understand that the computation is not going to end in a reasonable amount
of time.

In conclusion, we are able to compute (S: ad®)<go, but we are not even able to know
whether S:af° is finitely generated or not.

8.1.  Computing U -invariants

Unlike Example 8.5, there are cases where a bit of extra knowledge allows us to fully
compute the saturation of a subalgebra using the technique of truncation. And we go back
to the introduction where we started our discussion about the computation the classical
U-invariants, which gave us a first motivation of our work. Recall that the problem is
to compute the C-subalgebra S,, = Clea, . . ., ¢a][ao, ag *] N Clao, - . . , an] of Clag, . . ., an)
where the polynomials ¢;’s are defined in the introduction.

First of all, it follows from Proposition 2.4.(d) that S,, = Clag, c2,. .., ¢y : a3®. Then
we observe that ag, ca, ..., ¢, are elements of the polynomial ring P = Q[ag, a1, .. ., ,an],
hence all the computation of the SatSAGBI basis involves polynomials in P, so the
generators of S, lie in P. To see more on this topic see [12].

The third remark is that ag, co, ..., c, are bi-homogeneous elements in P graded by
the positive matrix W, = (91 7).

Finally, classical results show that .S, is finitely generated and, for some n, compute
the bi-degrees of a minimal set of generators. Consequently, according to Proposition 8.3
we can compute S, by truncating the SatSAGBI basis at the maximum weighted degree
given by the grading (0 1 --- n), the first row of W,,. And this is what we are able to do
for the easy cases S3 and S4 and for the non-trivial cases S5 and Sg. Our results agree
with the classical ones (see [5]). Our main contribution is that we are able to directly
compute the invariants.

Example 8.6. In a split second the computation of S35 yields the following result.

We have S3 = Clag, 292, 393, ga] where g4 = a?a3 — 2a3a3 — %aoag + 6agaiazas — 3ata3.

Example 8.7. In a split second the computation of Sy yields the following result.
We have Sy = Clag, 292, 393, g4, g5) where g4 = a3 — 2a1a3 + 2apas and
gs = ag — 3aiasasz + 3a%a4 + %aoag — 6agasay.

Here we come to the non-trivial cases.

Example 8.8. It is known that the highest weighted degree of a generator in a set of min-
imal generators of Sy is 45. Therefore we compute a o-SatSAGBI basis of Q|ag, o, . . . , ¢5)
truncated in weighted degree 45, where o is a term ordering ag-DegRev type compatible
with W.
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We need about 7 minutes to compute a set of 57 generators of the truncated SatSAGBI
basis and another 5 minutes to minimalize it. The conclusion is that we get 23 generators.
Their leading terms are

2 3 2 2 3 3 2.2 39 292 2.2 3.2 3.2 2.3 3.4
ap, aiy, ay, a3, a1a;z, a3, a105, ajaz, ajasz, axas, 14543, A543, A10503, 4104503, 4103,
4353 2929292 225 2927 92928 2338 95]1]
axA3a50a3, 103030y, A1A303, 10303, A103a03, 410903, A71A203
Their bi-degrees are

0,1), (2,2), (3,3),(4,2), (5,3), (6,3), (7,4), (8,4), (9,5), (10,4), (11,5), (12,5), (13,6),
(14,6), (15,7), (17,7), (19,8), (20,8), (21,9), (27,11), (30,12), (32,13), (45, 18)

The sizes of the supports of the 23 polynomials are

(1, 2, 3,3,5,5,9,9, 13, 12, 17, 20, 29, 30, 36, 49, 65, 59, 93, 183, 247, 319, 84)

For the interested reader the following link provides the code we wrote and the actual
polynomials we computed
http://www.dima.unige.it/"bigatti/data/ComputingSaturationsOfSubalgebras/.

Example 8.9. It is known that the highest weighted degree of a generator in a set of min-
imal generators of Sg is 45. Therefore we compute a o-SatSAGBI basis of Q|ag, ¢, . . . , cg)
truncated in weighted degree 45, where o is a term ordering ag-DegRev type compatible
with W.

We need about 2 hours and 15 minutes to compute a set of 83 generators of the
truncated SatSAGBI basis and another 1 hour and 40 minutes to minimalize it. The
conclusion is that we get 26 generators. Their leading terms are

ag, a3, a3, a3, a1a3, a3, a3, a1a3, axa3, ajasai, ara3, aa3, a3a?, a3al, a3a3, aaia?,
ajal, adal, a1a3a3a?, ajal, ajaial, a1adaial, ajaial, a?a3a3ala?, a2a3aial, ala3a3al
Their bi-degrees are
(0,1), (2,2), (3,3), (4,2), (5,3), (6,2), (6,3), (7,4), (8,3), (9,4), (10,4), (11,5),
(12,4), (13,5), (14,5), (15,6), (15,6), (18,6), (19,7), (20,7), (23,8), (25,9), (29, 10),
(30,10), (35,12), (45,15)
The sizes of the supports of the 26 polynomials are
1,2, 3, 3,5,4,6,9, 8 13, 12, 20, 16, 28, 29, 42, 47, 52, 77, 85, 135, 196, 312,
246, 586, 1370

As in Example 8.8, the following link provides the code and the polynomials
http://www.dima.unige.it/"bigatti/data/ComputingSaturationsOfSubalgebras/.

9. Conclusions

In this paper we deal with the problem of saturating S with respect to g, and we
denote the resulting K-algebra by Sat,(S). Here S is a finitely generated K-subalgebra

25



of a polynomial ring P = Klag,a1,...,a,] with K being any field. It turns out that
Saty(S) =5 : g if g € S which we always assume throughout this paper. After several
preparatory results we get Algorithm 3.12 which solves the problem if Saty (.5) is a finitely
generated K-algebra. If not, the algorithm is simply a procedure which allows us to get
closer and closer to the saturation. As said in the introduction, [4] contains a similar
result (see [4, Semi-algorithm 4.10.16]).

Then we introduce techniques coming from the theory of SAGBI bases which show
their power mainly in the case that S is graded. We describe an algorithm which allows
to minimalize a given set of homogeneous generators of a K-subalgebra of P (see Al-
gorithm 6.2). Then Theorem 7.2 illustrates a nice interplay between saturating S with
respect to an indeterminate and computing a special SAGBI basis of S. The first output
of this theorem is Procedure 7.5 whose power is illustrated by some interesting exam-
ples. We prove that Procedure 7.5 is correct and conjecture that it terminates whenever
Saty(S) is a finitely generated K-algebra (see Conjecture 7.7).

The final part of the paper is dedicated to find a direct attack to the problem of
computing the algebras S, of U-invariants, a classical problem which goes back to the
nineteenth century. We succeed up to degree 6, we do it without the assumption that
K = C, and we are able to compute not only a minimal set of U-invariants, but also a
truncated SAGBI basis of the corresponding algebra.

If g ¢ S we denote S[g~!] N P by weak saturation of S with respect to g. It turns out
that this algebra is very different from S : g® which, in general, is not even an algebra.
The problem of computing S[g~!] N P if g ¢ S can be inspiration for future research.
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