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Abstract

Given a polynomial ring P over a field K, an element g ∈ P , and a K-subalgebra S of P , we deal
with the problem of saturating S with respect to g, i.e. computing Satg(S) = S[g, g−1] ∩ P . In
the general case we describe a procedure/algorithm to compute a set of generators for Satg(S)
which terminates if and only if it is finitely generated. Then we consider the more interesting case
when S is graded. In particular, if S is graded by a positive matrix W and g is an indeterminate,
we show that if we choose a term ordering σ of g-DegRev type compatible with W , then the two
operations of computing a σ-SAGBI basis of S and saturating S with respect to g commute.
This fact opens the doors to nice algorithms for the computation of Satg(S). In particular, under
special assumptions on the grading one can use the truncation of a σ-SAGBI basis and get the
desired result. Notably, this technique can be applied to the problem of directly computing some
U -invariants, classically called semi-invariants, even in the case that K is not the field of complex
numbers.
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1. Introduction

This paper has two main ancestors. Our attention to the problem discussed here was
drawn by a nice discussion with Claudio Procesi about the paper [7] where the following
claim is made: If we want to understand U -invariants from these formulas it is necessary
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to compute the intersection Sn = C[c2, . . . , cn][a0, a
−1
0 ]∩C[a0, . . . , an]. Here C denotes the

field of complex numbers, a0, . . . , an are indeterminates, and the formulas are expressions
of the ci given, for i = 1, . . . , 6, as follows:

c2 = −a
[2]
1 + a0a2

c3 = 2a
[3]
1 − a0a1a2 + a20a3

c4 = −3a
[4]
1 + a0a

[2]
1 a2 − a20a1a3 + a30a4

c5 = 4a
[5]
1 − a0a

[3]
1 a2 + a20a

[2]
1 a3 − a30a1a4 + a40a5

c6 = −5a
[6]
1 + a0a

[4]
1 a2 − a20a

[3]
1 a3 + a30a

[2]
1 a4 − a40a1a5 + a50a6

where α[i] means 1
i!α

i. In version 1 of [7] the theoretical background for this claim was fully
explained and in its Section 3.5 a sketch of an algorithm to compute Sn was illustrated. In
version 3 of [7] the authors dropped the section about the algorithm and wrote: A general
algorithm for these types of problems has been in fact developed by Bigatti-Robbiano in a
recent preprint, referring to the first arXiv version of this paper.

Why are the elements of Sn called U -invariants? A detailed explanation can be found
in [7]. For the sake of completeness, let us summarise it here.

Let C[x]≤n denote the vector space of polynomials in C[x] of degree ≤ n. The alge-
bra Sn of U -invariants of polynomials of degree n, is the subalgebra of the algebra of
polynomial functions on C[x]≤n which are invariant under the action of (C,+) defined
by p(x) → p(x + λ) for λ ∈ C. Now let HC[x, y]n denote the vector space of homoge-
neous polynomials in C[x, y] of degree n, and let U = {( 1 λ

0 1 )}, the unipotent subgroup
of SL(2,C). We can identify C[x]≤n with HC[x, y]n, and then the action of (C,+) can be
identified with the action of U on the algebra of polynomial functions on HC[x, y]n.

For example, let f(x) = a0
x2

2 + a1x+ a2 ∈ C[x]≤2 and compute f(x+ λ).

f(x+ λ) = a0
(x+λ)2

2 + a1(x + λ) + a2 = a0
x2

2 + (a0λ+ a1)x+ (a0
λ2

2 + a1λ+ a0) .

Then consider c2 = −a
[2]
1 + a0a2 = −

a2

1

2 + a0a2 (as above), and compute the new c2

relative to the coefficients of f(x + λ). We get − (a0λ+a1)
2

2 + a0(a0
λ2

2 + a1λ+ a2) which
is equal to c2 for every λ ∈ C, proving that c2 is a U -invariant.

The first motivation for our investigation is that the problem of computing a set of
generators of Sn = C[c2, . . . , cn][a0, a

−1
0 ] ∩ C[a0, . . . , an] can be viewed as a special case

of the following task.

Problem 1.1. Given a field K, a polynomial ring P = K[a0, a1, . . . , an], and polynomials
g1, . . . , gr ∈ P , let S denote the subalgebra K[g1, . . . , gr] of P , and let g ∈ P\{0}. The
problem is to compute generators of the K-algebra S[g, g−1] ∩ P .

The second motivation for taking on this challenge is the evidence of the analogy
with the standard problem in computer algebra of computing the saturation of an ideal.
The analogy is clearly explained by recalling that the saturation of an ideal I ⊆ P with
respect to g is the ideal IP [g−1] ∩ P . How to compute the saturation of an ideal with
respect to an element in P and also with respect to another ideal is well-understood and
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its solutions are described in the literature (see for instance [8, Section 3.5.B] and [9,
Sections 4.3 and 4.4]) and implemented in most computer algebra systems.

On the other hand, the main problem formulated above has not received the same
attention. In this paper we describe a solution if the algebra Satg(S) = S[g, g−1] ∩ P
is finitely generated. As suggested by Gregor Kemper, a similar description is contained
in [4, Semi-algorithm 4.10.16].

Then we present algorithms removing redundant generators of Satg(S) . A strategy is
to use elimination techniques, another strategy is to make a good use of SAGBI bases. The
acronym SAGBI stands for “Subalgebra Analog to Gröbner Bases for Ideals”. The theory
of SAGBI bases was introduced by Robbiano and Sweedler in [11] and independently
by Kapur and Madlener in [6]. Since then many improvements and applications were
discovered (see for instance [3]). A more modern approach is contained in [9, Section
6.6], and [14, Chapter 11], and a nice survey is described in [2]. In [13] there are results
somehow related to this paper.

In the case Satg(S) is not finitely generated, the algorithms turns out to be merely
procedures providing a sequence of algebras ever closer to Satg(S). We show that this
phenomenon can happen (see Examples 3.14 and 5.3), which is not a surprise, since
there are even examples of finitely generated subalgebras of a polynomial ring whose
intersection is not finitely generated (see for instance [10]).

We observe that our solutions do not require any assumption about the base field K,
and do not need that the polynomials g1, . . . gr are homogeneous. However, if they are
homogeneous we have better results in Sections 5, 6, 7, which make a clever use of SAGBI
bases and are the core of our paper.

Now we give a more precise description of the content of the paper. The general setting
is as follows. We are given a field K, a polynomial ring P over K, a K-subalgebra S of P ,
and an element g ∈ P\{0}.

In Section 2 we introduce the notion of the saturation Satg(S) of S with respect to g.
The main point is that if g ∈ S, then Satg(S) = S : g∞ (see Definition 2.1), as shown
in Proposition 2.4. Using this fact we can rephrase the main problem addressed in this
paper (see Problem 1.1).

Section 3 provides a first solution. After recalling standard results in computer alge-
bra (see Propositions 3.2 and 3.3) we prove Theorem 3.4 which shows how to add new
elements to S in order to get closer to Satg(S). With the help of this result we prove
Theorem 3.10 and Corollary 3.11. They provide the building blocks for Algorithm 3.12
which solves the problem if Satg(S) is finitely generated. If not, the algorithm does not
terminate producing an infinite sequence of subalgebras ever closer to Satg(S). A case of
Satg(S) not being a finitely generated K-algebra is shown in Example 3.14.

Algorithm 3.12 is largely inspired by the suggestion contained in [7] and similar to [4,
Semi-algorithm 4.10.16].

At this point we describe methods for rewriting the computed generators of Satg(S).
The first part of Section 4 recalls different procedures to reduce elements in a subalgebra
and the second part generalises these techniques to combine reduction and saturation.

As anticipated, our problem shows different features when the subalgebra S is graded.
Section 5 marks the beginning of the most original part of the paper by showing some
good aspects of this setting. Nevertheless, even in the graded case there are examples of
subalgebras whose saturation is not finitely generated (see Example 5.3).
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After the first glimpse provided in the previous section into the theory of SAGBI bases,
its full strength comes alive in the case of a graded subalgebra.

The first benefit from the assumption that our subalgebra S is positively graded is
described in Section 6 where we show how to make a good use of a truncated SAGBI
basis for minimalizing the generators of S (see Algorithm 6.2).

Then we come to the main novelties contained in Section 7. Given a grading defined
by a positive matrix W and an indeterminate, say a0, there are special term orderings
called of a0-DegRev type compatible with W (see Definition 7.1). If σ is one of these,
its full power is shown in Theorem 7.2 which essentially says that the two operations
of computing a σ-SAGBI basis of S and saturating S commute. Using this fact, if the
subalgebra S has a finite σ-SAGBI basis, then the problem of saturating S with respect
to a0 is essentially solved, and not only we get a set of generators of Sata0

(S) but also
its σ-SAGBI basis. Procedure 7.5 captures this idea, and some examples show its good
behaviour (see for instance Examples 7.9 and 7.10). However, the reason why we said
essentially is that currently we can only conjecture that the procedure is indeed an
algorithm, i.e. terminates, whenever Sata0

(S) is finitely generated.
Finally, in Section 8 we come back to the beginning of the story and use our methods

to compute U -invariants via the computation of the algebras Sn. The ideas developed
in Section 7 frequently collide with the fact that computing a SAGBI basis can be very
expensive. In many cases it is even not clear if it is finite or not. So, what about computing
a truncated SAGBI basis, as described in Section 6? The problem is that the saturation
of a polynomial with respect to a0 lowers its degree unless deg(a0) = 0, and unfortunately
this condition cannot be paired with a term ordering of a0-DegRev type. However, if the
subalgebra S is graded also with respect to another grading with deg(a0) > 0, we are in
business. And this is the case of U -invariants. Given a multi-grading of this special type
and a term ordering of a0-DegRev type compatible with it we have the nice Algorithm 8.4.
The algebras S3 and S4 can be easily computed, and indeed we compute even a SAGBI
basis of them together with a minimal set of generators. But when we come to S5 and S6

we need a bit of extra information which comes from the classical work, namely that the
maximum weighted degree is 45 for both. The weighted degree is such that deg(a0) = 0, so
it suffices to use Algorithm 8.4, truncating the computation in weighted degree 45. Once
the truncated SAGBI basis is computed, we can use Algorithm 6.2 to get a minimal
set of generators. To see some information about the computation of S5 and S6 see
Examples 8.8 and 8.9.

All the examples described in the paper were computed on a MacBook Pro 2.9GHz
Intel Core i7, using our implementation in CoCoA5. Unless explicitly stated otherwise,
we use the definitions and notation given in [8] and [9].
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2. Basic Results

In this section we recall some basic definitions and results. In particular, we define the
weak saturation and the saturation of a subalgebra of P with respect to an element, which
allows us to rewrite the main problem described in the introduction (see Problem 1.1).

In the following we let K be a field, let a0, a1, . . . , an be indeterminates, and let
P = K[a0, a1, . . . , an]. The word term is a synonym of power product while the word
monomial indicates a power product multiplied by a coefficient. Consequently, if σ is a
term ordering and f is a polynomial, the symbols LTσ(f), LMσ(f), LCσ(f) denote the
leading term, the leading monomial, and the leading coefficient of f , so that we have
LMσ(f) = LCσ(f) · LTσ(f). For the ideal generated by elements g1, . . . , gr we use the
notation 〈g1, . . . , gr〉.

For a polynomial f ∈ P we write f : g∞ to denote the saturation of f with respect

to g, i.e. the polynomial f/gi, where gi is the highest power of g which divides f . Given
a subset T ⊆ P , the K-subalgebra of P generated by T is denoted by K[T ].

We recall some definitions and properties from the context of ideals. Let I be an ideal
in P , and g 6= 0 in P . We first recall the colon ideal, defined as I : g = {f ∈ P | g f ∈ I}.
Notice that we naturally have that I : g is an ideal, and I ⊆ I : g.

Then, we recall the saturation of I with respect to the element g, defined as
I : g∞ =

⋃
i∈N

I : gi, and we also have I : g∞ = IPg ∩ P = IP [g−1] ∩ P .
Next, we generalize the definitions above to the context of subalgebras, and we point

out some properties which do not extend to this setting.

Definition 2.1. Let S be a K-subalgebra of the polynomial ring P , and let g 6= 0 in P .
(a) The subalgebra S[g−1] ∩ P is called the weak saturation of S with respect

to g and denoted by wSatg(S).
(b) The subalgebra S[g, g−1] ∩ P is called the saturation of S with respect to g

and denoted by Satg(S).
(c) We denote the set {f ∈ P | gi f ∈ S} by S : gi and the set

⋃
i∈N

S : gi by S : g∞.

Remark 2.2. Notice that S ⊆ S : g if and only if g ∈ S. Thus, only in this case S : gi is
an ascending chain of sets for increasing j ∈ N. We also observe that S = S : g0 ⊆ S : g∞.

The following example shows that in general S : g and S : g∞ are not subalgebras.

Example 2.3. Let P = Q[a0, a1] and S = Q[a0a1] ⊆ P . Trivially, a1 is in S : a0, but its
square a21 is not in S : a0 because a0a

2
1 6∈ S.

Now consider S = Q[a20a1] ⊆ P . Then a0a1 ∈ S : a0, and a1 ∈ S : a20, thus they are in
S :a∞0 , but their sum a0a1+ a1 is not in S : a∞0 because ad0(a0a1+ a1) 6∈ S for any d ∈ N.

Next, we prove that if g ∈ S then S : g∞ is a K-subalgebra of P , and S : g∞ is indeed
the saturation of S with respect to g.

Proposition 2.4. Let S be a K-subalgebra of P , and g 6= 0 in P .
(a) We have S : g∞ ⊆ wSatg(S).
(b) We have wSatg(wSatg(S)) = wSatg(S).
(c) If A is a K-subalgebra of P with S ⊆ A ⊆ wSatg(S), then wSatg(A) = wSatg(S).
(d) If g ∈ S we have S : g∞ = wSatg(S) = Satg(S).

5



Proof. To prove claim (a) we observe that for f ∈ S : g∞ there exists r such that grf ∈ S

hence f = grf(g−1)r ∈ S[g−1] ∩ P .

To prove claim (b) it is clearly enough to show wSatg(wSatg(S)) ⊆ wSatg(S). Let

f =
∑d

i=0 fig
−i with f ∈ P and fi ∈ wSatg(S) for i = 0, . . . , d. Then we have the

equalities fi =
∑δi

ji=0 sjig
−ji with fi ∈ P for i = 0, . . . , δi and sji ∈ S for i = 0, . . . , d,

ji = 0, . . . , δi. Hence we have f =
∑

i=0,...,d
ji=0,...,δi

sjig
−i−ji , which shows that f ∈ wSatg(S).

Let us prove claim (c). From the assumption S ⊆ A ⊆ wSatg(S) we get the chain of

inclusions wSatg(S) ⊆ wSatg(A) ⊆ wSatg(wSatg(S)), and the conclusion follows from

claim (b).

Finally, we prove claim (d). The second equality is obvious, and from (a) we get

the inclusion S : g∞ ⊆ wSatg(S). To conclude the proof, we need to show the inclusion

Satg(S) ⊆ S : g∞. An element f ∈ S[g−1] ∩ P can be viewed as polynomial in g−1 with

coefficients si ∈ S, hence it can be written as f =
∑d

i=0 sig
−i = (

∑d
i=0 sig

d−i)/gd. The

assumption g ∈ S implies that fgd =
∑d

i=0 sig
d−i ∈ S, hence f ∈ S : g∞. ✷

Example 2.3 shows that without the assumption g ∈ S, the set S : g∞ need not be a

K-algebra, hence the inclusion in item (a) may be strict.

Under the light of these definitions and properties, we rephrase the problem stated in

the introduction (see Problem 1.1) with the extra assumption that g ∈ S \ {0}.

Problem 2.5. Given a field K, a polynomial ring P = K[a0, a1, . . . , an], and polynomials

g1, . . . , gr ∈ P , let S denote the subalgebra K[g1, . . . , gr] of P , and let g ∈ S \ {0}. The

problem is to compute a set of generators of S : g∞.

The assumption that g is an element of S can be weakened as shown by the following

proposition.

Proposition 2.6. Let S be a K-subalgebra of P , let g ∈ P\{0}, and let f(z) ∈ K[z]\K.

If f(g) ∈ S then wSatg(S) = Satg(S[g]) = S[g] : g∞.

Proof. The second equality trivially follows from Proposition 2.4.(d) because g ∈ S[g].

Let us prove wSatg(S) = Satg(S[g]) using induction on deg(f(z)). If deg(f(z)) = 1,

i.e. f(z) = c1z + c0, clearly g = (c1)
−1 · (f(g) − c0) ∈ S, hence the claim follows from

Proposition 2.4.(d). Then assume that if a K-subalgebra A of P contains f(g) with

deg(f(z)) < d then wSatg(A) = Satg(A[g]).

Now, we let f(g) ∈ S with deg(f(z)) = d, i.e. f(z) =
∑d

i=0 ciz
i with cd 6= 0, and we

let f̃(z) =
∑d

i=1 ciz
i−1, thus g · f̃(g) = f(g)−c0 ∈ S, in other words, f̃(g) ∈ S : g∞. Then,

by Proposition 2.4.(a) it follows that f̃(g) ∈ wSatg(S), therefore we define A = S[f̃(g)]

and we have S ⊆ A ⊆ wSatg(S). Consequently, by Proposition 2.4.(c),

wSatg(A) = wSatg(S) (∗)

On the other hand, from deg(f̃(z)) = d − 1 and the inductive assumption we get the

equalities wSatg(A) = Satg(A[g]). From the obvious equality A[g] = S[f̃(g)][g] = S[g] we

get wSatg(A) = Satg(S[g]) which, combined with (∗), concludes the proof. ✷
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3. The General Case

In this section we tackle Problem 2.5. We start with the following theorem which
shows how to add new generators to a subalgebra of P in order to get closer to its
saturation. The theorem uses generators of Relg(g1, . . . , gr) (see Definition 3.1) which
can be effectively computed according to Proposition 3.2.

3.1. Ideal of Relations and Subalgebra Membership

The following K-algebra homomorphisms will be used systematically throughout the
paper. Let S = K[g1, . . . , gr] ⊆ P = K[a0, . . . , an] and let g ∈ P . We will use the
homomorphism ev: K[x1, . . . , xr] −→ P , defined by ev(xi) = gi, and the canonical
homomorphism πg: P −→ P/〈g〉. The fundamental notion of an ideal of relations is
recalled.

Definition 3.1. The kernel of the composition πg ◦ ev is called the ideal of relations

of g1, . . . , gr modulo g and is denoted by Relg(g1, . . . , gr).

In the following proposition we show how to compute Relg(g1, . . . , gr) using an elim-
ination ideal. We recall the following propositions using new indeterminates y1, . . . , ym
to emphasize that they are quite general.

Proposition 3.2 (Computing Relg).
Let g, g1, . . . , gr ∈ K[y1, . . . , ym]. Then let Q = K[x1, . . . , xr, y1, . . . , ym], and define the
ideal J = 〈g, x1 − g1, . . . , xr − gr〉 ⊆ Q.
(a) We have the equality Relg(g1, . . . , gr) = J ∩K[x1, . . . , xr].
(b) Let G be the reduced σ-Gröbner basis of J where σ is an elimination ordering for

{y1, . . . , ym}. Then we have Relg(g1, . . . , gr) = 〈G ∩K[x1, . . . , xr]〉.

Proof. See [8, Proposition 3.6.2]. ✷

We will also need to test subalgebra membership. A method for checking it is recalled
here.

Proposition 3.3 (Subalgebra Membership Test).
Let g1, . . . , gr ∈ K[y1, . . . , ym]. Then let Q = K[x1, . . . , xr, y1, . . . , ym], and define the
ideal J = 〈x1 − g1, . . . , xr − gr〉 ⊆ Q. Finally, let S = K[g1, . . . , gr] ⊆ K[y1, . . . , ym].

Then a polynomial f ∈ K[y1, . . . , ym] is such that f ∈ S if and only if we have
NFσ,J(f) ∈ K[x1, . . . , xr] where σ is an elimination ordering for {y1, . . . , ym}. In this
case, if we let h = NFσ,J(f), then f = h(g1, . . . , gr) is an explicit representation of f as
an element of S.

Proof. See [8, Corollary 3.6.7]. ✷

We are ready to prove the first theorem of this paper.

Theorem 3.4. Let g1, . . . , gr ∈ P = K[a0, a1, . . . , an], let S = K[g1, . . . , gr], and let
g ∈ S\{0}. Then let {H1, . . . , Ht} be a set of generators of the ideal Relg(g1, . . . , gr),

and finally let h̃i=Hi(g1, . . . , gr)/g and hi=Hi(g1, . . . , gr) :g
∞ for i = 1, . . . , t. We have

S ⊆ K[S :g] = K[g1, . . . , gr, h̃1, . . . , h̃t] ⊆ K[g1, . . . , gr, h1, . . . , ht] ⊆ S :g∞
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Proof. The first inclusion follows from Remark 2.2.

Now we prove the inclusion K[S :g] ⊆ K[g1, . . . , gr, h̃1, . . . , h̃t]. If f ∈ S :g we deduce

that gf ∈ K[g1, . . . , gr], hence there is a polynomial F ∈ K[x1, . . . , xr] such that we have

gf = F (g1, . . . , gr). This means that F (x1, . . . , xr) ∈ Relg(g1, . . . , gr), thus F may be

written as
∑t

j=1 BjHj which implies F (g1, . . . , gr)=
∑t

j=1 Bj(g1, . . . , gr)Hj(g1, . . . , gr)=∑t
j=1 Bj(g1, . . . , gr)gh̃j , and hence we have gf=F (g1, . . . , gr)=

∑t
j=1 Bj(g1, . . . , gr)gh̃j .

From this relation we deduce the equality f =
∑t

j=1 Bj(g1, . . . , gr)h̃j .

Next we prove that K[g1, . . . , gr, h̃1, . . . , h̃t] ⊆ K[S :g]. Firstly, g gi ∈ S for every

i = 1, . . . , r since g ∈ S. Moreover, we have gh̃i = Hi(g1, . . . , gr) ∈ S, hence also

h̃i ∈ S :g for i = 1, . . . t. Thus the inclusion is proved which concludes the proof of the

equality K[S :g] = K[g1, . . . , gr, h̃1, . . . , h̃t].

The inclusion K[g1, . . . , gr, h̃1, . . . , h̃t] ⊆ K[g1, . . . , gr, h1, . . . , ht] follows again from

the assumption that g ∈ S, and the last inclusion of the claim is clear since S :g∞ is a

K-algebra by Proposition 2.4.(b). ✷

The following example shows that if g /∈ S then S ⊆ K[S :g] may not hold, and

K[S :g] may not be a finitely generated K-algebra.

Example 3.5. Let P = K[a0, a1], and let g = a0.

(a) Let S = K[a1]. Then S : a0 = {0}, hence K[S : a0] = K.

(b) Let S= K[a0a1]. Then K[S : a0] = K[a1, a0a
2
1, a

2
0a

3
1, . . . , a

i
0a

i+1
1 , . . . ] ( K[a1, a0a1],

and S 6⊂ K[S : a0] since a0a1 /∈ K[S : a0].

A straightforward consequence of Theorem 3.4 is an interesting independence of the

set of generators of the ideal Relg(g1, . . . , gr).

Corollary 3.6. With the same assumptions of the theorem, let {H ′
1,. . . ,H

′
u} be another

set of generators of Relg(g1,. . . ,gr), and let h̃′
i = H ′

i(g1,. . .gr)/a0 for i = 1, . . . , u. Then

we have K[g1, . . . , gr, h̃1, . . . , h̃t] = K[g1, . . . , gr, h̃′
1, . . . , h̃

′
u].

Proof. The claim follows immediately from the theorem since both algebras are equal to

the K-algebra K[S :g]. ✷

This independence does not hold if we substitute h̃i with hi for i = 1, . . . , t, and

likewise h̃′
i with h′

i for i = 1, . . . , u, as the following example shows. Please note that in

all examples using g = a0 we identify K[a0, a1, . . . , an]/〈a0〉 with K[a1, . . . , an].

Example 3.7. Let P = Q[a0, a1, a2], let g1 = a21 − a20a2, g2 = a1a2 − a0, g3 = a22,

g4 = a1a
2
2, g = a0, and S = Q[g1, g2, g3, g4,g]. Then we have πg(g1) = a21, πg(g2) = a1a2,

πg(g3) = a22, πg(g4) = a1a
2
2.

If we let I = Relg(g1, . . . , g4,g) ⊆ Q[x1, x2, x3, x4, x5] we get I = 〈H1, H2, H3〉 where

H1 = x2
2 − x1x3, H2 = x1x

2
3 − x2

4, H3 = x5. Then it is also true that I = 〈H1, H
′
2, H3〉

where H ′
2 = H2 + x3H1 = x2

2x3 − x2
4.
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Let h̃i = Hi(g1, g2, g3, g4,g)/g and let hi = Hi(g1, g2, g3, g4,g) :g
∞ for i = 1, 2, 3.

Similarly, let h̃′
2 = H ′

2(g1, g2, g3, g4,g)/g, and h′
2 = H ′

2(g1, g2, g3, g4,g) :g
∞. We have

h̃1 = H1(g1, g2, g3, g4,g)/g = −2a1a2 + a0(a
3
2 + 1) h1 = H1(g1, g2, g3, g4,g) :g

∞ = h̃1

h̃2 = H2(g1, g2, g3, g4,g)/g = −a0a
5
2 h2 = H2(g1, g2, g3, g4,g) :g

∞=−a52

h̃′
2 = H ′

2(g1, g2, g3, g4,g)/g = −2a1a
3
2 + a0a

2
2 h′

2 = H ′
2(g1, g2, g3, g4,g) :g

∞ = h̃′
2

h̃3 = H3(g1, g2, g3, g4,g)/g = g/g = 1 h3 = H3(g1, g2, g3, g4,g) :g
∞ = 1

According to Corollary 3.6 and these equalities we have

Q[g1, g2, g3, g4,g, h1, h
′
2] = Q[g1, g2, g3, g4,g, h1, h̃2] (∗)

Let us check it using Proposition 3.3. On the polynomial ring Q[x1, . . . , x7, a0, a1, a2] we
introduce a term ordering σ of elimination for {a0, a1, a2}, and we let

J1 = 〈g, x1 − g1, x2 − g2, x3 − g3, x4 − g4, x5 − g, x6 − h1, x7 − h′
2〉

J2 = 〈g, x1 − g1, x2 − g2, x3 − g3, x4 − g4, x5 − g, x6 − h1, x7 − h̃2〉

We get NFσ,J1
(h̃2) = −x3x6 + x7 which means that h̃2 = −g3h1 + h′

2 and hence we

deduce that h̃2 ∈ Q[g1, g2, g3, g4,g, h1, h
′
2]. We get NFσ,J2

(h′
2) = x3x6 + x7 which means

that h′
2 = g3h1 + h̃2 and hence we deduce that h′

2 ∈ Q[a0, g1, g2, g3, g4, h1, h̃2].
Finally, we claim that

Q[g1, g2, g3, g4,g, h1, h
′
2] ( Q[g1, g2, g3, g4,g, h1, h2]

The inclusion Q[g1, g2, g3, g4,g, h1, h
′
2] ⊆ Q[g1, g2, g3, g4,g, h1, h2] follows from (∗) since

clearly Q[g1, g2, g3, g4,g, h1, h̃2] ⊆ Q[g1, g2, g3, g4,g, h1, h2]. Finally, to check the claim we

show that h2 /∈ Q[g1, g2, g3, g4,g, h1, h
′
2 ]. To do this we compute NFσ,J1

(h2) = −x2
3a2,

and the conclusion follows from Proposition 3.3.

3.2. The general Algorithm

Theorem 3.4 motivates the following definition.

Definition 3.8. Given a subalgebra S = K[g1, . . . , gr] of P , and g ∈ S\{0}, we denote
by Eg(S) the algebra K[g1, . . . , gr, h1, . . . , ht] as described in Theorem 3.4. Then we let
E0

g
(S) = S, and recursively Ei

g(S)= Eg(E
i−1
g

(S)) for i > 0.

Remark 3.9. We observe that there is an abuse of notation since Eg(S) depends on
the set of generators of S, as shown in Example 3.7. Moreover, we notice that the last
inclusion of Theorem 3.4 can be read as Eg(S) ⊆ S :g∞.

We are ready to prove some fundamental results for our algorithm.

Theorem 3.10. Let P = K[a0, a1, . . . , an], let g1, . . . , gr ∈ P , let S = K[g1, . . . , gr], and
g ∈ S\{0}. Then let A be a finitely generated K-subalgebra of P such that S ⊆ A ⊆ S :g∞.
(a) We have K[S :gi] ⊆ Ei

g(S) ⊆ S :g∞ for every i ≥ 0.

(b) We have S = E0
g(S) ⊆ E1

g(S) ⊆ · · · ⊆ Ei
g(S) ⊆ S :g∞ for every i ≥ 0.
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(c) We have A :g∞ = S :g∞.

(d) If A = Eg(A) then A = S :g∞.

Proof. For claim (a) we have to prove two inclusions. For the first inclusion it suffices to

show S :gi ⊆ Ei
g(S) for i > 0. From Theorem 3.4 and Remark 3.9 we get S :g ⊆ E1

g(S).

By induction we may assume that S :gi−1 ⊆ Ei−1
g (S) and let f ∈ P be such that gif ∈ S.

Then gf ∈ S :gi−1 ⊆ Ei−1
g (S) by induction, and hence f ∈ Ei−1

g (S) :g ⊆ Ei
g(S) by

Theorem 3.4 applied to the subalgebra Ei−1
g (S).

The second inclusion of claim (a) is true for i = 0. By induction we may assume that

Ei−1
g (S) ⊆ S :g∞. Let f ∈ Ei

g(S). Since Ei
g(S) = Eg(E

i−1
g (S)) there exists s such that

gsf ∈ Ei−1
g (S) ⊆ S :g∞. Consequently, there exists t such that gs+tf ∈ S, and hence

we get f ∈ S :g∞.

Claim (b) follows from the definition of Ei
g(S) and claim (a).

Claim (c) follows from Proposition 2.4.(c),(d).

To prove claim (d) it suffices to show the inclusion S :g∞ ⊆ A. So let f ∈ S :g∞

which means that there exists i ∈ N such that gif ∈ S. If i = 0 we have f ∈ S ⊆ A.

Using induction on i we may assume that gi−1f ∈ S implies f ∈ A. From gif ∈ S

we deduce gi−1(gf) ∈ S, hence by induction we get gf ∈ A. Consequently, we get

f ∈ A :g ⊆ Eg(A) by Theorem 3.4. By assumption we have Eg(A) = A hence f ∈ A and

the proof is complete. ✷

From this theorem we deduce the following result.

Corollary 3.11. Let K be a field, let P =K[a0, a1, . . . , an], let S=K[g1, . . . , gr] ⊆ P ,

and let g ∈ S\{0}. The following conditions are equivalent.

(a) The algebra S :g∞ is finitely generated.

(b) There exists i such that Ei
g(S) = Ei+1

g (S).

Moreover, if the two equivalent conditions are satisfied, then S :g∞ = Ei
g(S).

Proof. To show the implication (a)⇒(b) we assume that S :g∞ = K[h1, . . . , hs] and let

m = maxsi=1{i | g
ihj ∈ S for j = 1, . . . , s}. We deduce that K[h1, . . . , hs] ⊆ K[S :gm].

By Theorem 3.10.(a) we have K[S :gm] ⊆ Em
g (S), hence

S :g∞ = K[h1, . . . , hs] ⊆ K[S :gm] ⊆ Em
g (S) ⊆ Em+1

g (S) ⊆ S :g∞

which implies the equality Em
g (S) = Em+1

g (S).

To show that (b)⇒(a) it suffices to prove that S :g∞ = Ei
g(S) since Ei

g(S) is finitely

generated by definition. We have the equality Ei
g(S) = Eg(E

i
g(S)) by assumption, and

hence Ei
g(S) = S :g∞ by Theorem 3.10.(d). ✷

We are ready to describe an algorithm to compute a set of generators for S :g∞,

if it is finitely generated. If it is not, this procedure does not terminate, producing an

infinite sequence of subalgebras ever closer to S :g∞. Instances of S :g∞ being not finitely

generated are Example 3.14 and Example 5.3. A similar algorithm/procedure is contained

in [4, Semi-algorithm 4.10.16]. In our case we can claim that it is an algorithm since we

assume that S : g is finitely generated.
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Algorithm 3.12. SubalgebraSaturation

notation: P = K[a0, . . . , an] is a polynomial ring.

Input S = K[g1, . . . , gr] ⊆ P , and g ∈ S\{0} such that S :g∞ is finitely generated.

1 Let S′ = S

2 Main Loop:

2.1 call g′1, . . . , g
′
s the non-constant generators of S′

2.2 compute {H1, . . . , Ht}, a set of generators of the ideal Relg(g
′
1, . . . , g

′
s)

2.3 for j = 1, . . . , t, let hj = Hj(g
′
1, . . . , g

′
s) :g

∞

2.4 if h1, . . . , ht ∈ S′, i.e. if Eg(S
′) = S′, then return S′

2.5 redefine S′ as K[g′1, . . . , g
′
s, h1, . . . , ht]

Output S :g∞

Proof. Since S :g∞ is finitely generated, correctness and termination follow immediately
from Corollary 3.11. ✷

Remark 3.13. When g is indeed in the list G of the generators of the subalgebra S,
say in position i, then xi is in Relg(G). Then hi = 1 which trivially belongs to S. In the
following examples we will use this fact sistematically.

The following example shows that the procedure may not terminate, and S : a∞0 needs
not be a finitely generated K-algebra.

Example 3.14. Let P = Q[a0, a1, a2], let g = a0, g2 = a1 − a0a
2
1, g3 = a2, g4 = a1a2,

and let S = Q[g, g2, g3, g4]. Notice that P/〈g〉 ≃ Q[a1, a2]. Then we have πg(g2) = a1,
πg(g3) = a2, πg(g4) = a1a2, hence Relg(g, g2, g3, g4) = 〈x1, x4 − x2x3〉. First, from
H1 = x1 we have h1 = 1 ∈ S (as shown in Remark 3.13). Then, from H2 = x4 − x2x3

we have g4 − g2g3 = a0(a
2
1a2) hence h2 = a21a2. Therefore, after the first loop, Eg(S) =

Q[a0, a1−a0a
2
1, a2, a1a2, a

2
1a2 ]. Inductively, we may assume that

Ei
g(S) = Q[a0, a1−a0a

2
1, a2, a1a2, a

2
1a2, . . . , a

i+1
1 a2 ]

The only new relation in Relg(g, g2, g3, g4, a
2
1a2, . . . , a

i
1a2, a

i+1
1 a2) is x2xi+3 − xi+4 and

after the loop we get ai+2
1 a2. The procedure does not stop, nevertheless we can conclude

that

S : a∞0 = Q[a0, a1−a0a
2
1, a2, a1a2, a

2
1a2, . . . , a

i+1
1 a2, . . . ]

hence it is not finitely generated.

Let us see an example where the procedure stops, hence it computes S : a∞0 .

Example 3.15. Let P = Q[a0, a1, a2, a3], let g = a0, g2 = a21 − a0a2, g3 = a31 − a0a3,
and let S = Q[g, g2, g3]. We have πg(g2) = a21 and πg(g3) = a31, hence Relg(g, g2, g3) =
〈x1, x

2
3 − x3

2〉. We get g23 − g32 = 3a0a
4
1a2 − 2a0a

3
1a3 − 3a20a

2
1a

2
2 + a20a

2
3 + a30a

3
2, hence

g4 = a41a2−
2
3 a

3
1a3−a0a

2
1a

2
2+

1
3a0a

2
3+

1
3a

2
0a

3
2, and hence we deduce Eg(S) = K[g, g2, g3, g4],

and indeed we can check that g4 6∈ S. Moreover, we have πg(g4) = a41a2 −
2
3 a

3
1a3 and
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Relg(g, g2, g3, g4) = 〈x2
2−x3

1〉, so no new generator is created in Step 2.2 and the procedure
stops in Step 2.3. The conclusion is that S : a∞0 = K[g, g2, g3, g4].

Moreover, from the computation we deduce the equality a0g4 = 1
3 (g

2
3−g32) which gives

an explicit proof of the fact that g4 ∈ S : a∞0 .

Algorithm 3.12 comes as a direct application of the theory developed in Section 3, in
particular Corollary 3.11. It is useful to improve it by using suitable rewriting procedures
which we are going to describe in the next section.

4. Subalgebra Reduction, Interreduction, and Sat-Interreduction

We recall some definitions and facts from the theory of SAGBI bases. For a general
introduction to this topic see [9, Section 6.6]; here, we reshape its Definition 6.6.16 and
adapt it for our purposes.

Definition 4.1. Let P = K[a0, . . . , an] with term-ordering σ. Let G = {g1, . . . , gr},
where all gi’s are monic polynomials in P , and let h be a non-zero polynomial in P .
If LTσ(h) ∈ K[LTσ(g1), . . . ,LTσ(gr)], and we have LTσ(h) = LTσ(g1)

α1 · · ·LTσ(gr)
αr ,

then we let h′ = h− LCσ(h) · g
α1

1 · · · gαr

r and we say that the passage from h to h′ is an
SLT-reduction step for h.

The following is a running example for this section.

Example 4.2. Let P = Q[a0, a1, a2 ], with T(a0, a1, a2) ordered by σ, the term-ordering

defined by the matrix
(

1 1 1
−1 0 0
0 −1 0

)
. Then, let h = a1a

6
2 − 4a50a1a2 + 4a50a

2
1 + a60a2 + a70,

and
g1 = a0, g2 = a1a2 − a21, g3 = a22, g4 = a1a

2
2

We observe that all polynomials are monic and we have

LTσ(g1) = a0, LTσ(g2) = a1a2, LTσ(g3) = a22, LTσ(g4) = a1a
2
2, LTσ(h) = a1a

6
2,

We observe that LTσ(h) = LTσ(g3)
2 LTσ(g4). Hence we have an SLT-reduction step

h′ = h− g23g4 = −4a50a1a2 + 4a50a
2
1 + a60a2 + a70.

Note that an SLT-reduction step replaces LTσ(h) with σ-smaller terms. Therefore,
being σ a term ordering, a chain of LT-reduction steps must end in a finite number of
steps. This motivates the following definitions.

Definition 4.3. Let P = K[y1, . . . , ym], and let σ be a term ordering on T(y1, . . . , ym).
Then let G = {g1, . . . , gr}, where all gi’s are monic polynomials in P and let 0 6= h ∈ P .

(a) We say that h′ is an SLT-remainder for h and denote it by SRLT(h,G), if there is a
chain of SLT-reduction steps from h to h′, and LTσ(h

′) 6∈ K[LTσ(g1), . . . ,LTσ(gr)].
(b) Let h′ = SRLT(h,G). We may compute LMσ(h

′) − SRLT(h
′ − LMσ(h

′), G), and
repeat this process until we obtain a polynomial h′′ such that no power-product
in its support is in K[LTσ(g1), . . . ,LTσ(gr)]. We say that h′′ is an S-remainder

for h and denote it by SR(h,G).

Remark 4.4. Notice that, according to Definition 4.1, we may get different SRLT(h,G)
and SR(h,G), depending on the way of representing LTσ(h) = LTσ(g1)

α1 · · ·LTσ(gr)
αr .
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This definition is a natural generalization of the remainder of the division algorithm
in the context of polynomial ideal, but the difficult step here is to find the αi giving the

equality LTσ(h) = LTσ(g1)
α1 · · ·LTσ(gr)

αr .
There are two strategies for doing this: elimination and toric ideals.

Remark 4.5. As described in Proposition 3.3 we may determine an explicit repre-
sentation of LTσ(h) as an element of K[LTσ(g1), . . . ,LTσ(gr)] by defining the ideal

J = 〈x1 − LTσ(g1), . . . , xr − LTσ(gr)〉 in K[x1, . . . , xr, a0, . . . , an] and then computing
τ = NFσ,J(LT(h)). It is easy to show that τ is a power-product, and, if τ = xα1

1 · · ·xαr

r

we have the desired exponents. Otherwise, if some ai occurs in τ , we may conclude that

LTσ(h) 6∈ K[LTσ(g1), . . . ,LTσ(gr)], i.e. there is no SLT-reduction step for h.

The other strategy is by looking for a binomial x0 − τ in the kernel of the map
ϕ : K[x0, x1, . . . , xr] −→ P , defined by ϕ(x0) = LTσ(h) and ϕ(xi) = LTσ(gi).

Again this may be computed by mimicking Proposition 3.2, but much more effi-
ciently by computing the toric ideal Rel(LTσ(h), LTσ(g1), . . . , LTσ(gr)) as described for
instance in [1], and using the following proposition.

Proposition 4.6. Let t0, t1, . . . , tr be power-products in P and ϕ :K[x0, x1,. . . , xr] −→ P

be the K-algebra homomorphism defined by ϕ(xi) = ti for i = 0, . . . , r. Then the following
conditions are equivalent.
(a) We have t0 ∈ K[t1, . . . , tr].

(b) There exists a binomial b ∈ ker(ϕ) such that x0 ∈ Supp(b).
(c) Given a finite set B of binomial generators of ker(ϕ), there exists a binomial b ∈ B

such that x0 ∈ Supp(b). In this case, if b = ±(x0 − τ), then t0 = τ(t1, . . . , tr).

Proof. The implications (c) ⇒ (b) and (b) ⇒ (a) are clear.

Let us prove (a) ⇒ (c). The multi-homogeneity of K[t1, . . . , tr] implies that the only
way to have t0 ∈ K[t1, . . . , tr] is to have an equality of type t0 =

∏r
i=1 t

αi

i . This im-
plies (b), i.e. x0 −

∏r
i=1 x

αi

i ∈ ker(ϕ). Given B = {b1, . . . , bt}, we get x0 −
∏r

i=1 x
αi

i =∑t
i=1 fibi with fi ∈ K[x0, . . . , xr]. By putting x1 = · · · = xr = 0 in this relation we see

that one of the bi has to be either of type ±(x0 −
∏r

i=1 x
βi

i ), or of type ±(1−
∏r

i=1 x
βi

i ).
The latter is excluded by the homogeneity of the generators of ker(ϕ), therefore the proof
is complete. ✷

Remark 4.7. There is an obvious but practically effective improvement of Proposi-

tion 4.6. Asking whether t0 ∈ K[t1, . . . , tr] is equivalent to asking whether t0 ∈ K[T ]
where T = {ti | ti divides t0}.

Example 4.8. (Example 4.2, continued)
Let P = Q[a0, a1, a2], σ, gi and h as in Example 4.2. After the first SLT-reduction step

we got h′ = h− g23g4 = −4a50a1a2 + 4a50a
2
1 + a60a2 + a70.

Now, LTσ(h
′) = a50a1a2 = LTσ(g1)

5 LTσ(g2) gives us a following SLT-reduction step:
h′′ = h′ + 4g51g2 = a60a2 + a70, whose leading term cannot be further reduced. Therefore

SRLT(h,G) = h′′ = a60a2 + a70.
Setting apart its leading monomial, we can now consider h̃ = h′′ − LMσ(h

′′), and we
see that h̃ = LTσ(g1)

7 = g71, therefore SRLT(h̃, G) = 0. In conclusion, SR(h,G) = a60a2.
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4.1. Interreduction and Sat-Interreduction

We recall from Definition 3.8 that Eg(A) is obtained by adding new generators to
those of the algebra A. Now we investigate on how, using S-remainders, we can find
a new set of generators for Eg(A) or, even better, a set of polynomials generating an
algebra B such that Eg(A) ⊆ B ⊆ A : a∞0

Proposition 4.9. Let P = K[a0, a1, . . . , an], with term ordering σ on Tn+1, and let
S=K[g1, . . . , gr], with gi ∈ P , and g ∈ S\{0}. Let g′i = SR(gi, {g1, . . . , ĝi, . . . , gr}), then

S ⊆ K[g1, . . . , g
′
i :g

∞, . . . gr] ⊆ S :g∞

Proof. From the definition of S-remainder it is clear that S = K[g1, . . . , g
′
i, . . . gr], Then

the assumption g ∈ S implies the inclusion K[g1, . . . , g
′
i, . . . gr] ⊆ K[g1, . . . , g

′
i :g

∞, . . . gr],
and the conclusion follows. ✷

Definition 4.10. Let P = K[a0, a1, . . . , an], with term ordering σ, and S = K[g1, . . . , gr],
where all gi’s are monic polynomials in P . Repeating the substitution described in Propo-
sition 4.9 until no more S-reductions and saturations are possible, we obtain a set of
sat-S-interreduced generators of a K-algebra A such that S ⊆ A ⊆ S : a∞0 .

We denote such A by SatSI(S), and again, as in Definition 3.8, there is an abuse of
notation since SatSI(S) depends on the set of generators of S and also on the steps of
reduction.

The following easy example illustrates this definition.

Example 4.11. Let P = K[a0, a1, a2] with DegRevLex. Let S = K[a0, a1, a0a
2
2−a1],

then SatSI(S) = K[a0, a1, a
2
2] = S : a∞0 .

In general, the set of interreduced generators is obtained after more than one iteration
through the generators.

Example 4.12. (Examples 4.2 and 4.8 continued)
As in Example 4.2. we let P = Q[a0, a1, a2 ], with T(a0, a1, a2) ordered by σ, the term-

ordering defined by the matrix
(

1 1 1
−1 0 0
0 −1 0

)
. Let g1 = a0, g2 = a1a2 − a21, g3 = a22,

g4 = a1a
2
2, let g5 = h = a1a

6
2−4a50a1a2+4a50a

2
1+a60a2+a70, and let A = K[g1, g2, g3, g4, g5].

Notice that LT(g1) < LT(g2) < LT(g3) < LT(g4) < LT(g5), thus gi may be reduced
only by the gj ’s with j < i. The only one which may be reduced is g5, and we computed
SR(h,G) = a60a2 (see Example 4.8), whose saturation is a2.

Then, we re-sort and re-number the gi’s:

g1 = a0, g2 = a2, g3 = a1a2 − a21, g4 = a22, g5 = a1a
2
2 .

Now, we see that g4 can be S-reduced to 0 using g2, and g5 can be S-reduced to a21a2
using g2g3. Re-sorting and re-numbering again, we have

g1 = a0, g2 = a2, g3 = a1a2 − a21, g4 = a21a2 .

In conclusion we have SatSI(A) = k[a0, a2, a1a2 − a21, a
2
1a2]. Moreover, it is easy to see

that SatSI(A) = A : a∞0 .
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As said, the process of sat-interreducing the generators of a subalgebra of P can
improve the subsequent steps of the computation of Relg. But we cannot hope that it
substitutes such computation, as the following example shows.

Example 4.13. Let P = Q[a0, a1, a2 ], with T(a0, a1, a2) ordered by σ, the term-ordering

defined by the matrix
(

1 1 1
−1 0 0
0 0 −1

)
. Let G = {g, g2, g3, g4} where g = a0, g2 = a1a2 −

a0a1 + a0a2, g3 = a21 − a22 + a0a1, g4 = a31 − a0a
2
2, and S = K[G].

Then Relg(G) = 〈x1, x
6
2 + 3x2

2x3x
2
4 + x3

3x
2
4 − x4

4〉
The second relation, evaluated in G, and a0-saturated gives h, and SR(h,G) : a∞0 =

SR(h,G) = a
5

1
a
6

2
− 6a

4

1
a
7

2
− a

3

1
a
8

2
+ 40a0a

4

1
a
6

2
− 2a0a

3

1
a
7

2
− 45a0a

2

1
a
8

2
− 40a0a1a

9

2
− 10a0a

10

2
+ 107a

2

0
a
5

1
a
4

2
+

484a
2

0
a
4

1
a
5

2
+441a

2

0
a
3

1
a
6

2
+38a

2

0
a
2

1
a
7

2
−101a

2

0
a1a

8

2
−40a

2

0
a
9

2
−808a

3

0
a
3

1
a
5

2
+615a

3

0
a
2

1
a
6

2
+116a

3

0
a1a

7

2
−39a

3

0
a
8

2
−3798a

4

0
a
4

1
a
3

2
+

4935a
4

0
a
3

1
a
4

2
−3846a

4

0
a
2

1
a
5

2
+304a

4

0
a1a

6

2
+82a

4

0
a
7

2
+23372a

5

0
a
2

1
a
4

2
−2720a

5

0
a1a

5

2
+90a

5

0
a
6

2
−50860a

6

0
a
3

1
a
2

2
+5256a

6

0
a
2

1
a
3

2
+

30105a6

0
a1a

4

2
− 166a6

0
a
5

2
+ 78690a7

0
a1a

3

2
+ 8438a7

0
a
4

2
− 228828a8

0
a
2

1
a2 + 63304a8

0
a1a

2

2
+ 77232a8

0
a
3

2
+ 258692a9

0
a
2

2
−

369708a10

0
a1 + 228828a10

0
a2 .

But SR(h,G) is indeed in S, being SR(h,G) = 228828g
9
g2+85356g

7
g
2

2
+14530g

5
g
3

2
+1492g

3
g
4

2
−

72gg
5

2
− 140880g

9
g3 − 58116g

7
g2g3 − 8051g

5
g
2

2
g3 + 38g

3
g
3

2
g3 + 151gg

4

2
g3 − 2592g

7
g
2

3
− 1576g

5
g2g

2

3
+ 1009g

3
g
2

2
g
2

3
−

180gg
3

2
g
2

3
+529g

5
g
3

3
− 492g

3
g2g

3

3
+99gg

2

2
g
3

3
+114g

3
g
4

3
− 46gg2g

4

3
+11gg

5

3
− 32456g

8
g4 − 4586g

6
g2g4 − 3263g

4
g
2

2
g4 +

740g
2
g
3

2
g4−1751g

6
g3g4+2196g

4
g2g3g4−654g

2
g
2

2
g3g4+18g

3

2
g3g4−424g

4
g
2

3
g4+232g

2
g2g

2

3
g4−3g

2

2
g
2

3
g4−50g

2
g
3

3
g4+

6g2g
3

3
g4 − g

4

3
g4 − 25g

5
g
2

4
+ 64g

3
g2g

2

4
− 22gg

2

2
g
2

4
− 27g

3
g3g

2

4
+ 22gg2g3g

2

4
− 8gg

2

3
g
2

4
+ 14g

2
g
3

4
− 6g2g

3

4
+ g3g

3

4
.

5. The Graded Case: Introduction

As mentioned in the introduction, the problem of computing the saturation of a sub-
algebra S of P can benefit from the fact that S is graded. In this section we prepare the
ground for new results related to our problem.

We introduce here the language of (multi or single) positive gradings. All our results
in this and the following section are valid for every positive grading and, in particular,
for every (single) grading defined by a row-matrix of positive weights.

We recall that a grading on P defined by a weight matrix W is called positive if no
column of W is zero and the first (from the top) non-zero element in each column is
positive. In this case, we shall also say that W is a positive matrix. For more on positive
gradings see [9, Chapter 4]. In this section we assume that P has a positive grading such
that our algebra S is generated by homogeneous elements.

From now on we consider P = K[a0, a1, . . . , an] with a positive (multi)grading de-
fined by W , and S = K[g1, . . . , gr] a W -graded K-subalgebra of P , generated by W -
homogeneous gi’s. It is easy to prove that there exist positive row-matrices W ′, so that
every W -homogeneous polynomial is also W ′-homogeneous. Therefore, alongside W we
can consider a (single)grading defined by such a W ′ which gives positive integer degree
to every non-constant polynomial in P . The following easy example illustrates this claim.

Example 5.1. Let P = Q[a0, a1] be graded by W =
(

1 0
−7 2

)
, and let W ′ = (1 2).

Notice that W ′ = 8(1 0) + (−7 2), thus every W -homogeneous element in P is also
W ′-homogeneous.

Suppose that we have a positive grading on P and that S is a K-subalgebra of P gen-
erated by homogeneous elements. Are there advantages depending on this assumption?
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Remark 5.2. Let S = K[g1, . . . , gr] subalgebra of P , with gi, non constant and ho-
mogeneous of degree di. Consider on the ring R = K[x1, . . . , xr] the grading defined
by the matrix W = (d1 . . . dr). Then, for every term ordering σ on P , the toric ideal
Rel(LTσ(g1), . . . ,LTσ(gs)) ⊆ R is homogeneous, and any homogeneous relation of degree
d in R evaluated in (g1, . . . , gr), gives a homogeneous polynomial of degree d in P .

In Example 3.14 the polynomial g1 = a1−a0a
2
1 is not homogeneous with respect to any

positive grading, and no term ordering σ is such that LTσ(πg(g1)) = a1. Example 3.14
was used to show that S : a∞0 needs not to be finitely generated. However, the following
example shows that S : a∞0 needs not be a finitely generated K-algebra even when S has
a positive grading. It is inspired by the similar Example 6.6.7 contained in [9, Section 6].

Example 5.3. Let P = Q[a0, a1, a2] be graded by W = ( 0 1 1
1 1 0 ).

Let G = {g, g2, g3, g4} ⊆ P and S = Q[G] where

g = a0, g2 = a1+a0a2, g3 = a1a2, g4 = a1a
2
2

From πg(g2) = a1, πg(g3) = g3, πg(g4) = g4, it follows that E0
g(S) = S and

Relg(G) = Rel(g, a1, a1a2, a1a
2
2) = 〈x1, x2x4 − x2

3〉. The first generator gives g,
and the second gives g2g4 − g23 = a0a1a

3
2 whose saturation is a1a

3
2. No sat-reduction is

possible hence we obtain G1 = G ∪ {a1a32}, and E1
g(S) = Q[G1].

By induction on i we assume that Gi = {a0, a1, a1a2, . . . , a1a
i+2
2 }, and Ei

g(S) = Q[Gi].

We prove that Ei+1
g (S) = Q[a0, a1, a1a2, . . . , a1a

i+3
2 ].

Induced by W , we have a grading on Q[x1, x2, . . . , xi+4] given by V =
(
0 1 2 ··· i+3
1 1 1 ··· 1

)

so that Relg(Gi) is V -homogenous, and we consider the term ordering σ defined by a
matrix whose first two lines are the lines of V , and the third line is (−1 0 · · · 0). Then
σ is degV -compatible.

It is well-known that toric ideals are generated by pure binomials (see [14]). We claim
that the binomials in the reduced σ-Gröbner basis Gσ of the ideal Relg(Gi) are quadratic,
i.e. of type xαxβ − xγxδ.

To prove this claim we assume by contradiction that there is a pure binomial b in Gσ

of type b = xα1
xα2

· · ·xαr
−xβ1

xβ2
· · ·xβs

with α1 ≤ α2 · · · ≤ αr and β1 ≤ β2 ≤ · · · ≤ βs

and r > 2. From the homogeneity with respect to the second line of V we deduce the
equality r = s. As b is σ-monic, LTσ(b) = xα1

xα2
· · ·xαr

, hence α1 < β1. Moreover,
from the homogeneity with respect to the first row of V we deduce

∑r
i=1 αi =

∑r
i=1 βi

hence we get the inequality αr ≥ α1 + 2. Now, H = xα1
xαr

− xα1+1xαr−1 ∈ Relg(Gi),
and, since LTσ(H) = xα1

xαr
divides LTσ(b) properly, we have a contradiction with the

assumption that b ∈ Gσ. Therefore, all binomials in Gσ are quadratic.
The next claim is that only a1a

i+3
2 is added to Ei

g(S) via the binomials in Relg(Gi).
The only quadratic binomials which produce non-zero polynomials are those involving
x2, and those not in Relg(Gi−1) must involve xi+4. Thus, using the same arguments as
above, we deduce that they are of type x2xi+4 − xaxb with 1 < a ≤ b < i + 4. The
corresponding evaluation gives a0aia

i+3
2 which sat-reduces to a1a

i+3
2 , and hence we have

Ei+1
g (S) = Q[a0, a1 + a0a2, a1a2, . . . , a1a

i+3
2 ] as claimed.

In conclusion, S : a∞0 = Q[a0, a1+a0a2, a1a
2
2, . . . , a1a

i
2, . . . ] is not finitely generated.

The following is a well-known fact which we recall here for the sake of completeness.
It states that the degrees of a minimal system of homogeneous generators of a graded
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K-subalgebra S of P is an invariant of S. For simplicity we state it here only in the
special case where the grading is given by a positive row-matrix.

Proposition 5.4. Let W be a positive row-matrix and let S be a W -graded finitely
generated K-subalgebra of P . Then let (g1, . . . , gr) be a minimal system of homogeneous
generators of S with di = degW (gi) and d1 ≤ · · · ≤ dr. If (h1, . . . , hs) is another minimal
system of homogeneous generators of S with δi = deg(hi) and δ1 ≤ · · · ≤ δs, then s = r
and di = δi for i = 1, . . . , r.

Proof. It suffices to show that in each degree d the number of elements of degree d in any
minimal system of generators of S is an invariant. Let K[S<d] be the algebra generated
by the elements of S of degree less than d, and let V = Sd ∩ K[S<d]. It is a K-vector
subspace of Sd and the number of minimal generators of degree d is dimK(Sd/V ). ✷

6. The Graded Case: Truncated SAGBI basis for Minimalization

Given homogeneous generators of a K-subalgebra S of P , the next question is how to
find a minimal system of homogeneous generators of S. The best tool for tackling this
problem is a truncated SAGBI basis of S. Let us see how. As mentioned, for a general
introduction to this topic see [9, Section 6.6]. In particular, consider [9, Tutorial 96].

Remark 6.1. Recall Remark 5.2. Starting with homogeneous generators, the computa-
tion of a SAGBI basis may proceed by increasing degrees: after all relations and generators
of degree ≤ d have been considered, the computation continues with relations and poly-
nomials of higher degrees. Thus, the following generators and relations, have degree > d,
and cannot affect, i.e. reduce, those, previously considered, of degree ≤ d.

One application of this approach is that one can determine whether an element of
degree d is in S by testing if it reduces to 0 or not with respect to a d-truncated

SAGBI basis of S, i.e. a SAGBI basis computed up to degree d.

With these facts we are ready to describe the algorithm for computing the minimal
generators. This algorithm is basically the same as the general algorithm for computing
a SAGBI basis, except for the considerations on the degree.

Algorithm 6.2. SubalgebraMinGens

notation: P = K[a0, . . . , an] is a polynomial ring graded by a positive row-matrix,
and let σ on Tn+1 be a degree-compatible term ordering.

Input S = K[g1, . . . , gr] ⊆ P with g1, . . . , gr homogeneous.

1 Initialise: Let G = {g1, . . . , gr}, D = max{deg(g) | g ∈ G}, SB = ∅, and MinGens = ∅.

2 Main Loop: for d from min{deg(g) | g ∈ G} to D

2.1 foreach g ∈ G of degree d

2.1.1 Compute h = SR(g, SB)

2.1.2 if h 6= 0 then
redefine SB as SB ∪{h}
redefine MinGens as MinGens ∪{h}
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2.2 if d = D then return MinGens

2.3 compute {H1, . . . , Ht}, the generators of degree d+ 1

of Rel(LTσ(g
′
1), . . . ,LTσ(g

′
s)), where g′1, . . . , g

′
s are the elements in SB

2.4 for j = 1, . . . , t, compute hj = SR(Hj(g
′
1, . . . , g

′
s), SB)

2.5 redefine SB as SB ∪{h1, . . . , ht}

2.6 interreduce SB

Output MinGens, a minimal system of generators of S.

Proof. Each iteration of the main loop has a fixed d and computes SB, a truncated

SAGBI basis of K[G≤d], where G≤d = {gi ∈ G | deg(gi) ≤ d}: in Step 2.1 it is truncated

to degree d, and in Steps 2.3-2.6 it is truncated to degree d+1, because it involves the

relations up to degree d+1. Having done that, in Step 2.1.1 of the next iteration, we use

SB to determine whether each generator of degree d+1 is in K[G≤d], and also if there is

a, necessarily linear, relation with the previously added generators of the same degree.

This procedure terminates because each iteration is finite, and there are at most D

iterations. ✷

In the following example we see the algorithm at work.

Example 6.3. We reconsider Example 4.13. The algebra S is standard graded and its

σ-SatSAGBI basis is {a0, g2, g3, g4, g5} where g5 = a62 − 8a0a
3
1a

2
2 − 6a0a

2
1a

3
2 +3a0a1a

4
2 +

6a20a1a
3
2 + 4a20a

4
2 − 6a30a

2
1a2 − 12a30a1a

2
2 + 12a30a

3
2 − a40a

2
2 − 9a50a1 + 6a50a2.

Using Algorithm 6.2 we get S : a∞0 = K[a0, g2, g3, g4], and indeed we can check that

g5 = 6a40g2 − 3a40g3 − 6a20g2g3 − 3a20g
2
3 + 4a30g4 − 3g22g3 − g33 − 6a0g2g4 + 3a0g3g4 + g24

7. The Graded Case: SAGBI basis for Saturation

We know that the main obstacle to the efficiency of Algorithm 3.12 is Step 2.2 which

requires the computation of elimination ideals as explained in Proposition 3.2. The first

observation is that if the input polynomials in Step 2.2 are homogeneous, then it is well-

known that the efficiency of the computation of the elimination ideal can be improved.

The second observation is related to a good use of the reduction described in Section 4.

In general, it is desirable to streamline πg(f) as much as possible to simplify the elimi-

nation process. On the other end, if the leading term of a polynomial g is divisible by a0,

then an S-remainder of a polynomial f divided by g in general does not “simplify” πg(f)

Consequently, to maximize the chance of getting S-remainders divisible by a0, our

strategy is to use a term ordering σ with the property that LTσ(g) = LTσ(πg(g)) for

every g ∈ P\{0}. These considerations motivate the following definition.

Definition 7.1. Let P = K[a0, a1, . . . , an], let W ∈ Matm,n+1(Z) be a positive matrix,

Then let degW be the positive grading on P defined by W . A term ordering σ on Tn+1

is said to be of a0-DegWRev type (or simply a0-DegRev type) is σ is compatible

with degW and if t, t′ ∈ Tn+1 are such that degW (t) = degW (t′) and loga0
(t) < loga0

(t′)

then t >σ t′.

18



We recall that a way to construct a term ordering σ of a0-DegRev type is to add to
the matrix W the row (−1, 0, . . . , 0), and then completing it to a non-singular matrix.
For further details about this notion see [9, Sections 4.2 and 4.4].

Now we come to the main point of this section. The most important feature of a pos-
itively graded finitely generated K-subalgebra S of P which contains an indeterminate,
say a0, is that the computation of S : a∞0 , and hence of Sata0

(S) by Proposition 2.4.(b),
can be essentially done by computing a suitable SAGBI basis of S. Let us explain how.

Here is the main result of this section.

Theorem 7.2. Let degW be the grading on P defined by a positive matrix W , and
let σ on Tn+1 be a term ordering of a0-DegRev type. Then let S be a finitely generated
W -graded K-subalgebra of P , let a0 ∈ S, and let SB be a σ-SAGBI basis of S. Then the
set {a0} ∪ {g : a∞0 | g ∈ SB} is a σ-SAGBI basis of Sata0

(S).

Proof. It is enough to show that if f ∈ Sata0
(S) is not divisible by a0, then LTσ(f) is a

power-product of elements in {LTσ(g : a
∞
0 ) | g ∈ SB}. From Proposition 2.4.(d) we have

Sata0
(S) = S : a∞0 , thus ad0f ∈ S for some d ∈ N. Therefore, there exist α1, . . . , αt ∈ N

and g1, . . . , gt ∈ SB such that LTσ(a
d
0f) = (LTσ(g1))

α1 · · · (LTσ(gt))
αt . The assumptions

on S and σ imply that a0 ∤ LTσ(f), and for i = 1, . . . , t, we have that a0 ∤ LTσ(gi : a
∞
0 )

and there exists ri ∈ N such that LTσ(gi) = ari0 LTσ(gi : a
∞
0 ). Thus, we have the equality

ad0 LTσ(f) = ar1α1

0 (LTσ(g1 : a
∞
0 ))α1 · · · artαt

0 (LTσ(gt : a
∞
0 ))αt

By setting a0 = 1 we get the desired conclusion. ✷

The following easy example shows that the assumption about the term ordering σ in
the above theorem is essential.

Example 7.3. Let P = Q[a0, a1, a2, a3] and let S = Q[g, g2, g3] where we have g = a0,
g2 = a0a2 − a21, g3 = a0a

2
3 − a31. If σ = DegLex, which is not of a0-DegRev type, then

LTσ(a0) = a0, LTσ(g2) = a0a2, and LTσ(g3) = a0a
2
3. The three power products are alge-

braically independent, hence SB = {a0, g2, g3} is a σ-SAGBI basis of S by [9, Proposition

6.6.11]. Instead, if σ is the term ordering defined by the matrix
(

1 1 1
−1 0 0
0 −1 0

)
, then S is

W -graded where W = (1 1 1), and σ is a term ordering of a0-DegRev type. Now we
have LTσ(a0) = a0, LTσ(g2) = a21, and LTσ(g3) = a31. The σ-SAGBI basis of S is SB =
{a0, g2, g3, g4} where g4 = a0a

4
1a2 −

2
3 a0a

3
1a

2
3 − a20a

2
1a

2
2 +

1
3a

2
0a

4
3 +

1
3a

3
0a

3
2. By saturating g4

we get g̃4 = g4 : a
∞
0 = a41a2−

2
3a

3
1a

2
3−a0a

2
1a

2
2+

1
3a0a

4
3+

1
3a

2
0a

3
2. Moreover, by Algorithm 6.2

we check that Sata0
(S) is minimally generated by (a0, g2, g3, g̃4).

The following example illustrates a subtlety of the theorem. It happens that while the
SAGBI basis of S is infinite, the SAGBI basis of Sata0

(S) is finite.

Example 7.4. Let P = Q[a0, a1, a2] be graded by the matrix W =
(

1 1 1
−1 0 0

)
and let

S = Q[g, g2, g3, g4, g5] where we have g = a0, g2 = a0a1, g3 = a1 + a2, g4 = a1a2,
g5 = a1a

2
2. If σ is a term ordering compatible with W , the σ-SAGBI basis of S is not

finite. It is

{a0, a1 + a2, a0a2, a1a2, a0a
2
2, a1a

2
2, . . . , a0a

i
2, a1a

i
2, . . . }

while the σ-SAGBI basis of Sata0
(S) is finite. It is

{a0, a1 + a2, a2}.
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The following procedure combines the saturation of the elements of a σ-SAGBI basis,

as described in Theorem 7.2, within the iterations of the SAGBI basis computation. It

is a procedure because termination is not guaranteed, but if it terminates the output is

correct.

Procedure 7.5. SatSAGBI

notation: P = K[a0, . . . , an] is a polynomial ring graded by a positive matrix, and let σ

on Tn+1 be a term ordering of a0-DegRev type.

Input S = K[g1, . . . , gr] ⊆ P , with g1, . . . , gr homogeneous.

1 Let G = {g1, . . . , gr}

2 Main Loop:

2.1 compute G′ = {g′1, . . . , g
′
s} the sat-interreduction of G.

2.2 compute {H1, . . . , Ht}, a set of generators of Rel(LTσ(g
′
1), . . . ,LTσ(g

′
s))

2.3 for j = 1, . . . , t, let hj = SR(Hj(g
′
1, . . . , g

′
s), G

′) : a∞0
2.4 if h1 = · · · = ht = 0 then return {a0} ∪ G′

2.5 redefine G as G′ ∪ {h1, . . . , ht}

Output {a0} ∪G′ , a σ-SAGBI basis of S :a∞0

Proof. The definition of G′ in Step 2.1, and redefinition of G in Step 2.5 correspond to

the definition of new subalgebras S′ = K[G′] and S′′ = K[G′∪{h1, . . . , ht}] which satisfy

S ⊆ S′ ⊆ S′′ ⊆ S : a∞0 , thus all algebras defined in this procedure have saturation S : a∞0 ,

by Theorem 3.10.(c).

Each iteration of Step 2.1 is equivalent to restarting the computation of a σ-SAGBI

basis of K[G′], where all the elements in G′ are a0-saturated.

If the procedure stops in Step 2.4, then {a0} ∪ G′ is a σ-SAGBI basis of the algebra

A = K[{a0} ∪G′] and therefore, by Theorem 7.2, A = A : a∞0 .

In conclusion, if it terminates, the output is the σ-SAGBI basis of S : a∞0 . ✷

Is this procedure the definitive solution of our problem? The answer is yes and no.

The following example provides a negative answer by showing that for some input this

procedure cannot terminate because there is no finite SAGBI basis.

Example 7.6. Let P = Q[a0, a1, a2] and let S = Q[g, g2, g3, g4] where we have g = a0,

g2 = a1+a2, g3 = a1a2, g4 = a1a
2
2. Since g2, g3, g4 do not involve a0, it is clear that

S = S : a∞0 . On the other hand, whatever term ordering we choose, the SAGBI basis and

the SatSAGBI basis of S are infinite (see [9, Example 6.6.7]).

However, the computation of Example 7.4 immediately terminates when we add the

generator a2 = a0a2 : a
∞
0 , and also terminates for many other examples we computed,

leading us to formulate the following conjecture.
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Conjecture 7.7. If there is a finite σ-SAGBI basis of S : a∞0 , Procedure 7.5 terminates

in a finite number of iterations, hence it is an algorithm.

Remark 7.8. The delicate point in proving this conjecture is that Steps 2.1 and 2.5

might produce a sequence of algebras ever closer to Satg(S), but never getting to it.

The positive side is that the computation using SAGBI bases provides not only a set of

generators of the saturation of S but also a SAGBI basis of it. Secondly the computation

of a SAGBI basis needs to determine relations only among power-products, thus may use

toric ideals whose computation is considerably faster than the computation via general

elimination needed for determining Relg.

Let us show an example where the above procedure works very well.

Example 7.9. We let P = Q[a0, a1, a2] graded by the matrix W = (1, 1, 1) and use
a term ordering of a0-DegRev type. Then let g = a0, g2 = a21 − a22 + a0a2, g3 =
a1a2−a22+a0a1, g4 = a31, g5 = a42 . We want to saturate the algebra S = Q[g, g2, g3, g4, g5]
with respect to g. Using Algorithm 7.5, we get a SAGBI basis of Satg(S) which consists
of 12 polynomials. Using Algorithm 6.2 we get a minimal set of generators of Satg(S).
The result is Satg(S) = Q[g, g2, g3, g4, g5, g6, g7, g8] where

g6 = a3
1a

2
2 −

23

15
a2
1a

3
2 −

11

45
a1a

4
2 +

44

45
a5
2 −

5

18
a0a1a

3
2 +

6

5
a2
0a

2
1a2 −

23

30
a2
0a1a

2
2 +

5

6
a2
0a

3
2 −

1

5
a3
0a

2
2

+ 11

15
a4
0a1 −

1

2
a4
0a2

g7 = a7
2 −

295

2
a2
0a

2
1a

3
2 −

65

6
a2
0a1a

4
2 +

119

6
a2
0a

5
2 +

1217

12
a3
0a1a

3
2 − 30a4

0a
2
1a2 +

319

4
a4
0a1a

2
2 −

275

4
a4
0a

3
2

−42a5
0a

2
2 +

65

2
a6
0a1 +

219

4
a6
0a2

g8 = a1a
6
2 −

576

5
a2
0a

2
1a

3
2 −

179

30
a2
0a1a

4
2 +

193

15
a2
0a

5
2 +

214

3
a3
0a1a

3
2 −

54

5
a4
0a

2
1a2 +

262

5
a4
0a1a

2
2

−60a4
0a

3
2 −

126

5
a5
0a

2
2 +

239

10
a6
0a1 + 39a6

0a2

In this case the computation takes a few seconds. We could also use Algorithm 3.12 to

compute Satg(S), but generally it gives neither a minimal set of generators, nor a SAGBI

basis of it.

In the following example the performance of Procedure 7.5 is far superior.

Example 7.10. We let P = Q[a0, a1, a2, a3] graded by the matrix W = (1, 1, 1, 1) and
use a term ordering of a0-DegRev type. Then let g = a0, g2 = a21−a0a3, g3 = a1a2+a0a1,
g4 = a23, g5 = a22, g6 = a31−a32. We want to saturate the algebra S = Q[g, g2, g3, g4, g5, g6]
with respect to g. Using Procedure 7.5, we get a SAGBI basis of Satg(S) which consists
of 21 polynomials. Using Algorithm 6.2 we get a minimal set of generators for Satg(S).
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The result is Satg(S) = Q[g, g2, g3, g4, g5, g6, g7, . . . , g15] where

g7 = a2
1a2 +

1

2
a2
2a3 +

1

2
a2
0a3

g8 = a4
1a3 − a1a

3
2a3 − a0a1a

2
2a3 +

2

3
a2
0a

3
2 − a2

0a1a2a3 −
2

3
a2
0a

3
3 − a3

0a1a3

g9 = a3
2a

3
3 − a0a1a

3
2a3 +

1

4
a0a

2
2a

3
3 − a2

0a1a
2
2a3 +

1

2
a3
0a

3
2 −

3

4
a3
0a1a2a3 +

3

4
a3
0a

3
3 −

3

4
a4
0a1a3

g10 = a1a
4
2a3 + a0a1a

3
2a3

g11 = a4
1a2a3 +

4

3
a0a1a

3
2a3 +

2

3
a0a

2
2a

3
3 +

4

3
a2
0a1a

2
2a3 −

2

3
a3
0a

3
2 + a3

0a1a2a3 + a4
0a1a3

g12 = a2
1a

2
2a

3
3 +

1

2
a3
2a

4
3 −

1

4
a0a

5
2a3 +

1

4
a0a

2
1a2a

3
3 +

9

8
a2
0a

3
1a2a3 −

1

8
a2
0a

4
2a3 −

3

4
a2
0a

2
1a

3
3

+ 9

8
a3
0a

3
1a3 +

1

2
a3
0a

3
2a3 +

3

8
a4
0a

2
2a3

g13 = a6
2a3 +

1

8
a3
2a

4
3 +

39

16
a0a

5
2a3 +

9

16
a0a

2
1a2a

3
3 −

135

32
a2
0a

3
1a2a3 +

15

32
a2
0a

4
2a3 +

9

16
a2
0a

2
1a

3
3

−
135

32
a3
0a

3
1a3 −

19

8
a3
0a

3
2a3 −

45

32
a4
0a

2
2a3

g14 = a1a
5
2a3 −

1

4
a4
2a

3
3 − a2

0a1a
3
2a3 −

1

2
a2
0a

2
2a

3
3 +

3

4
a4
0a

3
3

g15 = a2
1a

4
2a3 −

1

4
a1a

3
2a

3
3 −

1

4
a0a1a

2
2a

3
3 − 2a2

0a
2
1a

2
2a3 −

3

4
a2
0a1a2a

3
3 − a3

0a
2
1a2a3 −

3

4
a3
0a1a

3
3

The computation took about 75 seconds using Procedure 7.5 and Algorithm 6.2. We
tried to do the computation using Algorithm 3.12 and we did not succeed.

8. A Special Multigraded Case: Truncated SAGBI basis for Saturation

In general, the computation of S : a∞0 is very expensive. The performance of Algo-
rithm 3.12 is poor even for examples of moderate size. The performance of Procedure 7.5
is usually much better, but the computation of a SAGBI basis may be prohibitive as
well. However, there is a situation where it is possible to compute (S : a∞0 )≤d, in other
words a truncation of S : a∞0 at degree d. Let us see how.

In Section 7 we have already seen that the main requirement to compute the saturation
of S with respect to an indeterminate, is to compute an a0-saturated SAGBI basis of S
with respect to a term ordering of a0-DegRev type. Our question is: if the computation
of a saturating SAGBI basis is prohibitive, can we at least compute a truncation of a
saturating SAGBI basis at a given degree? The main obstacle is that when we saturate a
computed polynomial, we may lower its degree. If a0 is the chosen indeterminate, the only
possibility of keeping the degree fixed is when the input is homogeneous with respect to
a grading where deg(a0) = 0. This condition is clearly incompatible with a term ordering
of a0-DegRev type, unless the input is homogeneous also with respect to another grading
with deg(a0) > 0.

The following example shows that in many cases the computation of the saturation
may be too hard even when working over a small prime field.

Example 8.1. We let P = Z/(101)[a0, a1, a2, a3, a4] standard graded by the matrix
W = (1, 1, 1, 1, 1), and use a term ordering of a0-DegRev type. Then we let g = a0,
g2 = a21 − a22 + a0a3, g3 = a31 + a32 + a20a4, g4 = a33 − a0a

2
4, g5 = a34, and want to saturate

the algebra S = Z/(101)[g, g2, g3, g4, g5] with respect to g.
No matter which algorithm we use, there is no way. However, we observe that the

given polynomials are also homogeneous with respect to the grading given by (0 1 1 2 3)
and this observation suggests an interesting approach which we are going to explain. We
continue this discussion in Example 8.5.
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We start with the following easy lemma.

Lemma 8.2. Let P = K[a0, a1, . . . , an], let d1, . . . , dn ∈ N+, let P be (single) graded by
W = (0 d1 · · · dn), and let S ⊂ P be a finitely generated monomial K-algebra. Then let
d ∈ N+, and let Sd = {f ∈ P | f homogeneous of degree d}.
(a) The set Sd is a K[a0]-module.
(b) The K[a0]-module Sd is finitely generated, and there is a unique set of power prod-

ucts which minimally generate it.

Proof. Claim (a) follows from the fact that deg(a0) = 0. Let S ⊂ Pd denote the set
of power products of degree d in T(a1, . . . , an), and let t1, . . . , tr be the unique basis of
power products of Sd as a K-vector space. For each ti there is a minimum exponent ei
such that τi = aei0 ti ∈ Sd. It follows that Sd is minimally generated by {τ1, . . . , τr}. ✷

Proposition 8.3. Let P = K[a0 , a1, . . . , an], let d1, . . . , dn ∈ N+, p1, . . . , pn ∈ Z, let P
be graded by W whose first two rows are W1 = (0 d1 · · · dn), W2 = (1 p1 · · · pn), and let σ
be a term ordering on Tn+1 compatible with W and of a0-DegRev type. Then let S be a
finitely generated W -graded K-subalgebra of P , let a0 ∈ S, let SB be a σ-SAGBI basis
of S, let d ∈ N+, and let SB≤d = {g ∈ SB | g is W -homogeneous and degW1

(g) ≤ d}.
Then {a0} ∪ {g : a∞0 | g ∈ SB≤d} is a d-truncated σ-SAGBI basis of S.

Proof. Our assumptions are compatible with those of Theorem 7.2. When we compute a
σ-SAGBI basis of S we may proceed by increasing degrees as suggested by Remark 6.1.
We proceed using the degree degW1

. The merit is that the saturation of a polynomial does
not change degW1

. Then Lemma 8.2 shows that the computation of the σ-SAGBI basis
jumps over d and clearly it does not come back anymore. The conclusion follows. ✷

Algorithm 8.4. TruncSatSAGBI

notation: P = K[a0, . . . , an] is a polynomial ring graded by W whose first two rows are

W1 = (0 d1 · · · dn), W2 = (1 p1 · · · pn), with d1, . . . , dn ∈ N+, p1, . . . , pn ∈ Z.

Let σ be a term ordering on Tn+1 compatible with W and of a0-DegRev type.

Input S = K[g1, . . . , gr] ⊆ P , with gi W -homogeneous for i = 1, . . . , r.

1 Let G = {g1, . . . , gr}

2 Main Loop:

2.1 compute G′ = {g′1, . . . , g
′
s} the sat-interreduction of G.

2.2 compute {H1, . . . , Ht}, the subset of elements of W1-degree ≤ d in a set of
generators of Rel(LTσ(g

′
1), . . . ,LTσ(g

′
s))

2.3 for j = 1, . . . , t, let hj = SR(Hj(g
′
1, . . . , g

′
s), G

′) : a∞0
2.4 if h1 = · · · = ht = 0 then return G′

2.5 redefine G as G′ ∪ {h1, . . . , ht}

Output G′, a σ-SAGBI basis of S : a∞0 truncated at W1-degree d.

Proof. Correctness and termination follow immediately from Proposition 8.3. ✷

Let us go back to Example 8.1.
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Example 8.5. Using the data introduced in Example 8.1 we compute (S : a∞0 )≤30.

In less than a second we get (S : a∞0 )≤30 = (K[a0, g2, . . . , g6, g7])≤30 where g7 is a

polynomial of bi-degree (30, 29) with 767 terms and LT(g7) = a201 a82a3.
In about 23 seconds we compute (S : a∞0 )≤90 = (K[a0, g2, . . . , g6, g7, g8])≤90 where g8

is a polynomial of bi-degree (90, 86) with 19559 terms and LT(g8) = a519a
2
24a

2
3a4.

Then we try to compute (S : a∞0 )≤300 and after about 30 minutes we realise that the

algorithm gets a new polynomial with 516775 terms and leading term a1761 a732 a63a
3
4. At

this point we understand that the computation is not going to end in a reasonable amount

of time.

In conclusion, we are able to compute (S : a∞0 )≤90, but we are not even able to know

whether S : a∞0 is finitely generated or not.

8.1. Computing U -invariants

Unlike Example 8.5, there are cases where a bit of extra knowledge allows us to fully

compute the saturation of a subalgebra using the technique of truncation. And we go back
to the introduction where we started our discussion about the computation the classical

U -invariants, which gave us a first motivation of our work. Recall that the problem is

to compute the C-subalgebra Sn = C[c2, . . . , cn][a0, a
−1
0 ] ∩ C[a0, . . . , an] of C[a0, . . . , an]

where the polynomials ci’s are defined in the introduction.
First of all, it follows from Proposition 2.4.(d) that Sn = C[a0, c2, . . . , cn] : a

∞
0 . Then

we observe that a0, c2, . . . , cn are elements of the polynomial ring P = Q[a0, a1, . . . , , an],

hence all the computation of the SatSAGBI basis involves polynomials in P , so the

generators of Sn lie in P . To see more on this topic see [12].

The third remark is that a0, c2, . . . , cn are bi-homogeneous elements in P graded by
the positive matrix Wn = ( 0 1 ··· n

1 1 ··· 1 ).

Finally, classical results show that Sn is finitely generated and, for some n, compute

the bi-degrees of a minimal set of generators. Consequently, according to Proposition 8.3

we can compute Sn by truncating the SatSAGBI basis at the maximum weighted degree
given by the grading (0 1 · · · n), the first row of Wn. And this is what we are able to do

for the easy cases S3 and S4 and for the non-trivial cases S5 and S6. Our results agree

with the classical ones (see [5]). Our main contribution is that we are able to directly

compute the invariants.

Example 8.6. In a split second the computation of S3 yields the following result.

We have S3 = C[a0, 2g2, 3g3, g4] where g4 = a21a
2
2 − 2a31a3 −

8
3a0a

3
2 + 6a0a1a2a3 − 3a20a

2
3.

Example 8.7. In a split second the computation of S4 yields the following result.
We have S4 = C[a0, 2g2, 3g3, g4, g5] where g4 = a22 − 2a1a3 + 2a0a4 and

g5 = a32 − 3a1a2a3 + 3a21a4 +
9
2a0a

2
3 − 6a0a2a4.

Here we come to the non-trivial cases.

Example 8.8. It is known that the highest weighted degree of a generator in a set of min-

imal generators of S5 is 45. Therefore we compute a σ-SatSAGBI basis of Q[a0, c2, . . . , c5]

truncated in weighted degree 45, where σ is a term ordering a0-DegRev type compatible
with W .
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We need about 7 minutes to compute a set of 57 generators of the truncated SatSAGBI
basis and another 5 minutes to minimalize it. The conclusion is that we get 23 generators.
Their leading terms are

a0, a
2
1, a

3
1, a

2
2, a1a

2
2, a

3
2, a1a

3
2, a

2
1a

2
3, a

3
1a

2
3, a

2
2a

2
3, a1a

2
2a

2
3, a

3
2a

2
3, a1a

3
2a

2
3, a1a

2
2a

3
3, a

3
1a

4
3,

a42a
3
3a

5
2a

3
3, a

2
1a

2
2a

2
3a

2
4, a

2
1a

2
2a

5
3, a

2
1a

2
2a

7
3, a

2
1a

2
2a

8
3, a

2
1a

3
2a

8
3, a

2
1a

5
2a

11
3

Their bi-degrees are

(0, 1), (2, 2), (3, 3), (4, 2), (5, 3), (6, 3), (7, 4), (8, 4), (9, 5), (10, 4), (11, 5), (12, 5), (13, 6),

(14, 6), (15, 7), (17, 7), (19, 8), (20, 8), (21, 9), (27, 11), (30, 12), (32, 13), (45, 18)

The sizes of the supports of the 23 polynomials are

(1, 2, 3, 3, 5, 5, 9, 9, 13, 12, 17, 20, 29, 30, 36, 49, 65, 59, 93, 183, 247, 319, 848)

For the interested reader the following link provides the code we wrote and the actual
polynomials we computed
http://www.dima.unige.it/~bigatti/data/ComputingSaturationsOfSubalgebras/.

Example 8.9. It is known that the highest weighted degree of a generator in a set of min-
imal generators of S6 is 45. Therefore we compute a σ-SatSAGBI basis of Q[a0, c2, . . . , c6]
truncated in weighted degree 45, where σ is a term ordering a0-DegRev type compatible
with W .

We need about 2 hours and 15 minutes to compute a set of 83 generators of the
truncated SatSAGBI basis and another 1 hour and 40 minutes to minimalize it. The
conclusion is that we get 26 generators. Their leading terms are

a0, a
2
1, a

3
1, a

2
2, a1a

2
2, a

2
3, a

3
2, a1a

3
2, a2a

2
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2
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3
3, a

2
1a

3
3, a

2
2a

2
4, a

2
2a

3
3, a

3
2a

2
4, a1a

3
2a

2
4,

a32a
3
3, a

3
2a

3
4, a1a

2
2a

2
3a

2
4, a

4
2a

3
4, a

3
2a

3
3a

2
4, a1a

3
2a

2
3a

3
4, a

4
2a

3
3a

3
4, a

2
1a

2
2a

2
3a

2
4a

2
5, a

2
1a

2
2a

3
3a

5
4, a

2
1a

2
2a

5
3a

6
4

Their bi-degrees are

(0, 1), (2, 2), (3, 3), (4, 2), (5, 3), (6, 2), (6, 3), (7, 4), (8, 3), (9, 4), (10, 4), (11, 5),

(12, 4), (13, 5), (14, 5), (15, 6), (15, 6), (18, 6), (19, 7), (20, 7), (23, 8), (25, 9), (29, 10),

(30, 10), (35, 12), (45, 15)

The sizes of the supports of the 26 polynomials are

1, 2, 3, 3, 5, 4, 6, 9, 8, 13, 12, 20, 16, 28, 29, 42, 47, 52, 77, 85, 135, 196, 312,

246, 586, 1370

As in Example 8.8, the following link provides the code and the polynomials
http://www.dima.unige.it/~bigatti/data/ComputingSaturationsOfSubalgebras/.

9. Conclusions

In this paper we deal with the problem of saturating S with respect to g, and we
denote the resulting K-algebra by Satg(S). Here S is a finitely generated K-subalgebra
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of a polynomial ring P = K[a0, a1, . . . , an] with K being any field. It turns out that
Satg(S) = S : g∞ if g ∈ S which we always assume throughout this paper. After several
preparatory results we get Algorithm 3.12 which solves the problem if Satg(S) is a finitely
generated K-algebra. If not, the algorithm is simply a procedure which allows us to get
closer and closer to the saturation. As said in the introduction, [4] contains a similar
result (see [4, Semi-algorithm 4.10.16]).

Then we introduce techniques coming from the theory of SAGBI bases which show
their power mainly in the case that S is graded. We describe an algorithm which allows
to minimalize a given set of homogeneous generators of a K-subalgebra of P (see Al-
gorithm 6.2). Then Theorem 7.2 illustrates a nice interplay between saturating S with
respect to an indeterminate and computing a special SAGBI basis of S. The first output
of this theorem is Procedure 7.5 whose power is illustrated by some interesting exam-
ples. We prove that Procedure 7.5 is correct and conjecture that it terminates whenever
Satg(S) is a finitely generated K-algebra (see Conjecture 7.7).

The final part of the paper is dedicated to find a direct attack to the problem of
computing the algebras Sn of U -invariants, a classical problem which goes back to the
nineteenth century. We succeed up to degree 6, we do it without the assumption that
K = C, and we are able to compute not only a minimal set of U -invariants, but also a
truncated SAGBI basis of the corresponding algebra.

If g /∈ S we denote S[g−1] ∩ P by weak saturation of S with respect to g. It turns out
that this algebra is very different from S : g∞ which, in general, is not even an algebra.
The problem of computing S[g−1] ∩ P if g /∈ S can be inspiration for future research.
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