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Abstract

We present a new formula for the Cauchy index of a rational function on an interval using

subresultant polynomials. There is no condition on the endpoints of the interval and the formula

also involves in some cases less subresultant polynomials.
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1 Introduction

Let (R,≤) be a real closed field and P,Q ∈ R[X] with P 6= 0. Already considered by Sturm and

Cauchy ([8, 4]), the Cauchy index of the rational function
Q

P
is the integer number which counts its

number of jumps from −∞ to +∞ minus its number of jumps from +∞ to −∞. This value plays

an important role in many algorithms in real algebraic geometry ([2, 3, 6]). For instance, the Tarski

query of Q for P , defined as

TaQ(Q,P ) = #
{
x ∈ R | P (x) = 0, Q(x) > 0

}
− #

{
x ∈ R | P (x) = 0, Q(x) < 0

}
,

is equal to the Cauchy index of the rational function
P ′Q

P
(see, for instance, [3, Proposition 2.57]).

Tarski queries are used to solve the sign determination problem, which consists in listing the signs

of a list of polynomials in R[X] evaluated at the roots in R of another polynomial in R[X] (see [3,

∗Partially supported by the Argentinian grants UBACYT 20020160100039BA and PIP 11220130100527CO CONICET
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Section 10.3]). In particular, the number of real roots of a polynomial P ∈ R[X] \ {0} coincides with

the Tarski query TaQ(1, P ) and is equal to the Cauchy index of the rational function
P ′

P
. We can also

mention the role of the Cauchy index for complex roots counting (see [4, 5, 7]). For more information

and references to the history of the Cauchy index see [5].

1.1 Cauchy index

Let P,Q ∈ R[X] with P 6= 0. The usual definition of the Cauchy index of
Q

P
is made directly on

intervals whose endpoints are not roots of P . In this paper we use the extended definition of the

Cauchy index introduced in [5, Section 3], which is made first locally at elements in R, and then on

intervals without restriction.

Definition 1 Let x ∈ R and P,Q ∈ R[X], P 6= 0.

• If Q 6= 0, the rational function
Q

P
can be written uniquely as

Q

P
= (X − x)m

Q̃

P̃

with m ∈ Z, P̃ , Q̃ ∈ R[X], P̃ monic, P̃ and Q̃ coprime and P̃ (x) 6= 0, Q̃(x) 6= 0. For ε ∈ {+,−},

define

Indεx

(Q
P

)
=





1
2 · sign

(Q̃(x)

P̃ (x)

)
if ε = + and m < 0,

1
2 · (−1)m · sign

(Q̃(x)

P̃ (x)

)
if ε = − and m < 0.

In all other cases, define

Indεx

(Q
P

)
= 0

• The Cauchy index of
Q

P
at x is

Indx

(Q
P

)
= Ind+x

(Q
P

)
− Ind−x

(Q
P

)
.

Said in other terms, when x is a pole of
Q

P
, we have that Ind+x

(Q
P

)
is one half of the sign of

Q

P
to the

right of x, and Ind−x

(Q
P

)
is one half of the sign of

Q

P
to the left of x. Then, the Cauchy index of

Q

P
at

x, Indx

(Q
P

)
, is simply the difference between them. We illustrate this notion considering the graph

of the function
Q

P
around x in each different case.
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x x x x

Indx

(Q
P

)
= 0 Indx

(Q
P

)
= 1 Indx

(Q
P

)
= −1 Indx

(Q
P

)
= 0

Definition 2 Let a, b ∈ R with a < b and P,Q ∈ R[X] with P 6= 0. If Q 6= 0, the Cauchy index of
Q

P
on [a, b] is

Indba

(Q
P

)
= Ind+a

(Q
P

)
+

∑

x∈(a,b)

Indx

(Q
P

)
− Ind−b

(Q
P

)
,

where the sum is well-defined since only roots x of P in (a, b) contribute.

Similarly, if Q 6= 0, the Cauchy index of
Q

P
on R is

IndR

(Q
P

)
=

∑

x∈R

Indx

(Q
P

)

where, again, the sum is well-defined since only roots x of P in R contribute.

If Q = 0, both the Cauchy index of
Q

P
on [a, b] and the Cauchy index of

Q

P
on R are defined as 0.

In the following picture we consider again the graph of the function
Q

P
, this time in [a, b].

a b a b

Indba

(Q
P

)
= 1 + 0 + 1 = 2 Indba

(Q
P

)
= −1− 1−

1

2
= −

5

2

Note that with this extended definition of the Cauchy index, the Cauchy index of a rational function

on an interval belongs to 1
2Z and it is not necessarily an integer number.
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1.2 Sturm sequences and Cauchy index

Definition 3 Let P,Q ∈ R[X], P 6= 0. Define S0 = P and, if Q 6= 0,

S1 = Q,

S2 = −Rem(S0, S1),

...

Si+1 = −Rem(Si−1, Si),

...

Ss+1 = −Rem(Ss−1, Ss) = 0,

with S1, S2, . . . , Ss 6= 0, where Rem is the remainder in the euclidean division in R[X] of the first

polynomial by the second polynomial.

The Sturm sequence of P and Q 6= 0 is (S0, . . . , Ss) and the Sturm sequence of P and 0 is S0, with

s = 0. We denote by (d0, . . . , ds) the degrees of (S0, . . . , Ss).

Example 4 Let α, β ∈ R and P = X5 + αX + β ∈ R[X]. If α 6= 0 and 256α5 + 3125β4 6= 0, the

Sturm sequence of P and P ′ is (S0, S1, S2, S3) with

S0 = P = X5 + αX + β,

S1 = P ′ = 5X4 + α,

S2 = −4α
5 X − β

S3 = −(256α5+3125β4)
256α4 .

In this case, d0 = 5, d1 = 4, d2 = 1, d3 = 0.

Extending the classical results by Sturm ([8]) and recent results by [5], we now explain that the Sturm

sequence of P and Q gives a formula for the general definition of the Cauchy index on an interval [a, b]

under no assumptions on a and b. To do so, it is first needed to extend the notion of sign of a rational

function to degenerate cases.

Definition 5 Let P,Q ∈ R[X] \ {0}. Using the same notation as in Definition 1, we define

sign
(Q
P
, x

)
=





sign
(
Q̃(x)P̃ (x)

)
∈ {−1, 1} if m = 0,

0 otherwise .

We define also sign
(Q
P
, x

)
= 0 if Q = 0.

In other words, if x is a pole of
Q

P
, the sign of

Q

P
at x is 0; otherwise, it is simply the sign of the

continuous extension of
Q

P
at x. Notice that if Q 6= 0, sign

(Q
P
, x

)
= sign

(P
Q
, x

)
.
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We now state the general result relating the Cauchy index and the Sturm sequence, which will be

proved at the end of Section 4.

Theorem 6 Let a, b ∈ R with a < b and P,Q ∈ R[X], P 6= 0, degQ = q < degP = p. If (S0, . . . , Ss)

is the Sturm sequence of P and Q, then

Indba

(Q
P

)
=

1

2

∑

0≤i≤s−1

(
sign

(Si+1

Si
, b
)
− sign

(Si+1

Si
, a
))

.

Adding the condition that a and b are not common roots of P and Q, from Theorem 6 a sign-variation-

counting formula for the Cauchy index is obtained.

Definition 7 Let x ∈ R and P,Q ∈ R[X], we define the sign variation of (P,Q) at x by

Varx(P,Q) =
1

2

∣∣∣sign(P (x)) − sign(Q(x))
∣∣∣.

If a, b ∈ R with a < b, we denote by Varba(P,Q) the sign variation of (P,Q) at a minus the sign

variation of (P,Q) at b; namely,

Varba(P,Q) = Vara(P,Q)−Varb(P,Q).

Note that for x ∈ R,

Varx(P,Q) =





0 if P (x) and Q(x) have same sign,

1 if P (x) and Q(x) have opposite non-zero sign,
1
2 if exactly one of P (x) and Q(x) has zero sign.

Moreover, if x is not a common root of P and Q, then

sign
(Q
P
, x

)
= 1− 2Varx(P,Q). (1)

The following result then follows clearly from Theorem 6.

Theorem 8 Let a, b ∈ R with a < b and P,Q ∈ R[X], P 6= 0, degQ = q < degP = p. If a and b are

not common roots of P and Q and (S0, . . . , Ss) is the Sturm sequence of P and Q, then

Indba

(Q
P

)
=

∑

0≤i≤s−1

Varba(Si, Si+1).

Theorem 8 is a generalization of the classical Sturm theorem [8, 3], since a or b can be root of P or Q

(but not of both).
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1.3 Subresultant polynomials

Subresultant polynomials are polynomials which are proportional to the ones in the Sturm sequence,

but enjoy better properties since their coefficients belong to the ring generated by the coefficients of

P and Q. We include definitions and properties concerning subresultant polynomials. We refer the

reader to [3] for proofs and details.

Let D be a domain and let ff(D) be its fraction field.

Definition 9 Let P = apX
p + · · · + a0, Q = bqX

q + · · · + b0 ∈ D[X] \ {0} with degP = p ≥ 1 and

degQ = q < p. For 0 ≤ j ≤ q, the j-th subresultant polynomial of P and Q, sResPj(P,Q) ∈ D[X] is

det




ap ap−1 . . . Xq−j−1P

0 ap ap−1 . . . Xq−j−2P

. . .
. . .

. . .
...

0 ap ap−1 . . . P

0 bq bq−1 . . . Q

. .
.

. .
.

. .
. ...

. .
.

. .
.

. .
. ...

0 bq bq−1 . . . Xp−j−2Q

bq bq−1 . . . Xp−j−1Q




︸ ︷︷ ︸

∈ D[X].

p+ q − 2j

By convention, we extend this definition with

sResPp(P,Q) = P ∈ D[X],

sResPp−1(P,Q) = Q ∈ D[X],

sResPj(P,Q) = 0 ∈ D[X] for q < j < p− 1.

We also define sResPp(P, 0) = P, sResPj(P, 0) = 0, j = 0, . . . , p− 1.

Note that in the matrix above, all the entries in the first p + q − 2j − 1 columns are elements in D,

and all the entries in the last column are elements in D[X]. Doing column operations, it is easy to

prove that for 0 ≤ j ≤ p,

deg sResPj(P,Q) ≤ j.

Note also that in the case q = p− 1, we have given two definitions for sResPq(P,Q), both equal to Q

so that there is no ambiguity.

Definition 10 Let P,Q ∈ D[X] \ {0} with degP = p ≥ 1 and degQ = q < p.
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• For 0 ≤ j ≤ q, the j-th subresultant coefficient of P and Q, sResj(P,Q) ∈ D is the coefficient

of Xj in sResPj(P,Q). By convention, we extend this definition with

sResp(P,Q) = 1 ∈ D (even if P is not monic),

sResj(P,Q) = 0 ∈ D for q < j ≤ p− 1.

• For 0 ≤ j ≤ p, sResPj(P,Q) is said to be

– defective if deg sResPj(P,Q) < j or, equivalently, if sResj(P,Q) = 0,

– non-defective if deg sResPj(P,Q) = j or, equivalently, if sResj(P,Q) 6= 0.

We refer the reader to [1, Chapitre 9] for another definition of subresultant polynomials and coefficients,

which differs possibly in a sign.

We illustrate Definitions 9 and 10 with the following example.

Example 11 Let α, β ∈ R and P = X5 + αX + β ∈ R[X], then P ′ = 5X4 +α as in Example 4. We

have sResP5(P,P
′) = P, sResP4(P,P

′) = P ′

sResP3(P,P
′) = det




1 0 X5 + αX + β

0 5 5X4 + α

5 0 5X5 + αX


 = −5(4αX + 5β)

sResP2(P,P
′) = det




1 0 0 0 X6 + αX2 + βX1

0 1 0 0 X5 + αX + β

0 0 5 0 5X4 + α

0 5 0 0 5X5 + αX1

5 0 0 0 5X6 + αX2




= 0,

sResP1(P,P
′) = det




1 0 0 0 α β X7 + αX3 + βX2

0 1 0 0 0 α X6 + αX2 + βX1

0 0 1 0 0 0 X5 + αX + β

0 0 0 5 0 0 5X4 + α

0 0 5 0 0 0 5X5 + αX1

0 5 0 0 0 α 5X6 + αX2

5 0 0 0 α 0 5X7 + αX3




= 80α2(4αX + 5β),

sResP0(P,P
′) = det




1 0 0 0 α β 0 0 X8 + αX4 + βX3

0 1 0 0 0 α β 0 X7 + αX3 + βX2

0 0 1 0 0 0 α β X6 + αX2 + βX1

0 0 0 1 0 0 0 α X5 + αX + β

0 0 0 0 5 0 0 0 5X4 + α

0 0 0 5 0 0 0 α 5X5 + αX1

0 0 5 0 0 0 α 0 5X6 + αX2

0 5 0 0 0 α 0 0 5X7 + αX3

5 0 0 0 α 0 0 0 5X8 + αX4




= 256α5 + 3125β4.
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Note that sResP5(P,P
′) and sResP4(P,P

′) are non-defective while sResP3(P,P
′) and sResP2(P,P

′)

are defective. Finally, sResP1(P,P
′) is defective if and only if α = 0, and sResP0(P,P

′) is defective

if and only if 256α5 + 3125β4 = 0.

The following Structure Theorem is a key result in the theory of subresultants, stating the connection

between subresultants and remainders. To state it, we need to introduce a notation.

Notation 12 For n ∈ Z, we denote ǫn = (−1)
1
2
n(n−1).

Note that ǫn = 1 if the remainder of n in the division by 4 is 0 or 1 and ǫn = −1 if the remainder of

n in the division by 4 is 2 or 3; this implies that for k ∈ Z

ǫ2k+n = (−1)kǫn = ǫ2kǫn. (2)

Theorem 13 (Structure Theorem of Subresultants) Let P,Q ∈ D[X] \ {0} with degP = p ≥ 1

and degQ = q < p. Let (d0, . . . , ds) be the sequence of degrees of the Sturm sequence of P and Q in

decreasing order and let d−1 = p+ 1 (note that d0 = p and d1 = q).

• For 1 ≤ i ≤ s,

sResPdi−1−2(P,Q) = · · · = sResPdi+1(P,Q) = 0 ∈ D[X]

and sResPdi−1−1(P,Q) and sResPdi(P,Q) are proportional. More precisely, for 1 ≤ i ≤ s, denote

Ti = sResPdi−1−1(P,Q) ∈ D[X],

ti = lc(Ti) ∈ D

(note that T1 = Q), and extend this notation with T0 = P and t0 = 1 ∈ D (even if P is not

monic). Then

sResdi(P,Q) · Ti = ti · sResPdi(P,Q) ∈ D[X]

with

sResdi(P,Q) = ǫdi−1−di ·
t
di−1−di
i

sResdi−1
(P,Q)di−1−di−1

∈ D. (3)

This implies deg Ti = di ≤ di−1 − 1.

• For 1 ≤ i ≤ s− 1,

ti−1 · sResdi−1
(P,Q) · Ti+1 = −Rem (ti · sResdi(P,Q) · Ti−1, Ti) ∈ D[X] (4)

(where Rem is the remainder in the euclidean division in ff(D)[X] of the first polynomial by the

second polynomial) and the quotient belongs to D[X].

• Both Ts ∈ D[X] and sResPds(P,Q) ∈ D[X] are greatest common divisors of P and Q in ff(D)[X]

and they divide sResPj(P,Q) for 0 ≤ j ≤ p. In addition, if ds > 0 then

sResPds−1(P,Q) = · · · = sResP0(P,Q) = 0 ∈ D[X].

8



Proof: See [3, Chapter 8]. �

Note that Theorem 13 (Structure Theorem of Subresultants) gives a method for computing the sub-

resultant polynomials using remainders which is more efficient than using their definition as deter-

minants. However we are not concerned with subresultant polynomials computations in the current

paper. We are only concerned with a formula for the Cauchy index using the subresultant polynomials.

Theorem 13 (Structure Theorem of Subresultants) can be illustrated by the following picture.

T0 = P = sResPd0
(P,Q) = sResPp(P,Q)

T1 = Q = sResPd0−1(P,Q) = sResPp−1(P,Q)

0
...

0
sResPd1

(P,Q) = sResPq(P,Q)

T2 = sResPd1−1(P,Q) = sResPq−1(P,Q)

0
...
...

0
sResPd2

(P,Q)
...
...

Ts = sResPds−1−1(P,Q)

0
...
...

0
sResPds

(P,Q)

0
...

0

As a corollary to Theorem 13, all subresultant polynomials are either 0 or proportional to polynomials

in the Sturm sequence. More precisely, for 1 ≤ i ≤ s, the subresultant polynomial Ti is proportional

to Si in the Sturm sequence.

Remark 14 In the case where all the subsresultant polynomials are non-defective, there are no pairs

of proportional polynomials in the sequence of subresultant polynomials, the degrees of the polynomials

Si in the Sturm sequence decrease one by one, and the coefficient of proportionality between Ti and Si

is a square (see [3, Corollary 8.37]).

Example 15 (Continuation of Example 4 and Example 11) Let us take as before P = X5 +

αX + β and suppose α 6= 0 and 256α5 + 3125β4 6= 0.

9



Looking at Example 11, we observe that, as expected given the Structure Theorem, the degrees of

the non-defective subresultant polynomials are d0 = 5, d1 = 4, d2 = 1, d3 = 0, i.e. the degrees

of the polynomials in the Sturm sequence given in Example 4. Moreover sResP2(P,P
′) = 0, while

sResP3(P,P
′) is proportional to sResP1(P,P

′) and, also, to S2 given in Example 4.

Using the notation from Theorem 13, we have

T0 = sResP5(P,P
′) = P = X5 + αX + β, t0 = 1,

T1 = sResP4(P,P
′) = P ′ = 5X4 + α, t1 = 5,

T2 = sResP3(P,P
′) = −20αX − 25β, t2 = −20α,

T3 = sResP0(P,P
′) = 256α5 + 3125β4, t3 = 256α5 + 3125β4.

1.4 Main results

In order to state our results we introduce the following notation.

Notation 16 Using the notation from Theorem 13, for 0 ≤ i ≤ s, let

p(i) = max{j | 0 ≤ j ≤ i, dj−1 − dj is odd}

(p(i) is well-defined since d−1 − d0 = (p + 1)− p = 1 is odd).

We are ready now to state our main result, which is a new formula for Indba

(Q
P

)
using only the

polynomials Ti in the sequence of the subresultant polynomials.

Theorem 17 Let a, b ∈ R with a < b and P,Q ∈ R[X] \ {0} with degP = p ≥ 1 and degQ = q < p.

Then

Indba

(Q
P

)
=

1

2

∑

0≤i≤s−1

ǫdp(i)−1−di · sign(tp(i)) · sign(ti) ·

(
sign

(Ti+1

Ti
, b
)
− sign

(Ti+1

Ti
, a
))

.

As we will see in Section 2, the main advantage of the formula in Theorem 17 in comparison with

previously known related formulas is that there is no assumption on the endpoints a and b of the

interval, and, more importantly, potentially less subresultant polynomials (i.e. only te Ti) are involved.

If we add the condition that a and b are no roots of P and Q, from Theorem 17 we obtain a sign-

variation-counting formula.

Theorem 18 Let a, b ∈ R with a < b and P,Q ∈ R[X] \ {0} with degP = p ≥ 1 and degQ = q < p.

If a and b are not common roots of P and Q, then

Indba

(Q
P

)
=

∑

0≤i≤s−1

ǫdp(i)−1−di · sign(tp(i)) · sign(ti) ·Var
b
a(Ti, Ti+1).

10



Finally, for the Cauchy index on R, we obtain the following result.

Theorem 19 Let P,Q ∈ R[X] \ {0} with degP = p ≥ 1 and degQ = q < p. If the leading coefficient

of P is positive or if d0 − d1 = p− q is even, then

IndR

(Q
P

)
=

∑

0≤i≤s−1,

di−di+1odd

ǫdp(i)−1−di · sign(tp(i)) · sign(ti+1).

If the leading coefficient of P is negative and d0 − d1 = p− q is odd, then

IndR

(Q
P

)
= −sign(t1) +

∑

1≤i≤s−1,

di−di+1odd

ǫdp(i)−1−di · sign(tp(i)) · sign(ti+1).

Example 20 (Continuation of Examples 4, 11 and 15) Following Notation 16, for 0 ≤ i ≤ 3

we have p(i) = i. Therefore, by Theorem 19, when we fix (α, β) ∈ R2 with α 6= 0 and 256α3+3125β4 6=

0, the number of roots of P in R is given by

IndR

(P ′

P

)
= 1− sign(α) + sign(α) · sign(256α5 + 3125β4).

The rest of the paper is organized as follows. In Section 2 we comment the differences between our

results and previously known related formulas. In Section 3 we review some useful properties of

Cauchy index. In Section 4, we recall the notion of (σ, τ)-chain and their connection with Cauchy

index. Finally, in Section 5 we prove Theorem 17 using (σ, τ)-chains, and Theorems 18 and 19 as

consequences of Theorem 17.

2 Comparison with previous Cauchy index formulas using subresul-

tants

There is a previously known formula for the Cauchy index Indba

(Q
P

)
by means of subresultant poly-

nomials which is as follows (see [3, Chapter 9]).

Definition 21 Let s be a finite sequence of n elements in R of type

s = (sn, 0, . . . , 0︸ ︷︷ ︸
n−m−1

, 0, . . .s′0, . . .︸ ︷︷ ︸
m elements

, )

with sn 6= 0 and s′ a finite sequence of m elements in R with 0 ≤ m ≤ n − 1, which is either empty

(this is, m = 0) or s′ = (sm, . . . , s1) with sm 6= 0. The modified number of sign variations in s is

defined inductively as follows

MVar(s) =





0 if s′ = ∅,

MVar(s′) + 1 if snsm < 0,

MVar(s′) + 2 if snsm > 0 and n−m = 3,

MVar(s′) if snsm > 0 and n−m 6= 3.

11



In other words, the usual definition of the number of sign variations is modified by counting two sign

variations for the groups: +, 0, 0,+ and −, 0, 0,−. If there are no zeros in the sequence s, MVar(s) is

just the classical number of sign variations in the sequence.

Let P be a sequence (P0, P1, . . . , Pd) of polynomials in R[X] and let x be an element of R which is not

a root of the gcd of (P0, P1, . . . , Pd), which we call gcd(P). Then MVar(P;x), the modified number

of sign variations of P at x, is the number defined as follows:

- delete from P those polynomials that are identically 0 to obtain the sequence of polynomials

Q = (Q0, · · · , Qs) in D[X],

- define MVar(P;x) as MVar(Q0(x), · · · , Qs(x)).

Let a and b be elements of R which are not roots of gcd(P). The difference between the number of

modified sign variations in P at a and b is denoted by

MVar(P; a, b) = MVar(P; a) −MVar(P; b).

Denoting by SResP(P,Q) the list of subresultant polynomials of P and Q, the following result is

known (see [3, Chapter 9]).

Proposition 22 Let a, b ∈ R with a < b and P,Q ∈ R[X]\{0} with degP = p ≥ 1 and degQ = q < p.

If a and b are not roots of P , then

Indba

(Q
P

)
= MVar(SResP(P,Q); a, b).

Our new formula for Indba

(Q
P

)
given in Theorem 17 improves on the one from Proposition 22 in several

aspects:

a.i) Theorem 17 is general, there are no restrictions on a and b.

a.ii) More importantly, there are cases when less subresultant polynomials are involved in this new

formula. The Structure Theorem of Subresultants (Theorem 13 ) states that in the subresultant

polynomial sequence, some polynomials appear only once and other polynomials appear exactly

twice (up to scalar multiples). In addition, if a polynomial appears twice, its first appearance,

Ti, is defined as the polynomial determinant of a matrix of smaller size (in comparison with

its second appearance), so that it is more suitable in computations. Our formula involves only

the Ti, i.e. the first appearance( up to scalar multiples) of each polynomial in the subresultant

polynomial sequence.

In the special case when a and b are not common roots of P and Q, Theorem 18 gives a sign-variation-

counting formula which improves on the one from Proposition 22 since:

12



b.i) Theorem 18 imposes less restrictions on a and b.

b.ii) As in a.ii).

b.iii) The formula is more natural, since the sign-variation counting in Theorem 18 is local and needs

only to consider the sign of two consecutive elements, contrarily to the modified number of sign

variations which is very counter-intuitive.

Last but not least, the proofs of our results are also less technically involved than the proof of Propo-

sition 22, which is cumbersome (see the proof in [3, Chapter 9]).

Note that, in the particular case where all subresultant polynomials are non-defective, both the for-

mulas in Theorem 18 and in Proposition 22 become

Indba

(Q
P

)
=

∑

0≤j≤p−1

Varba(sResPj, sResPj+1)

(see [3, Chapters 2 and 9]), but the new formula extends the previous one to the case whera a and b

are not common roots of P and Q.

There is also a previously known formula for the Cauchy index IndR

(Q
P

)
by means of subresultant

coefficients which we introduce below (see [3, Chapter 4]).

Proposition 23 Using the notation from Theorem 13, for 0 ≤ i ≤ s, let si = sResdi(P,Q) be the

leading coefficient of the non-defective subresultant polynomial sResPdi(P,Q) (which is proportional

to Ti). Then

IndR

(Q
P

)
=

∑

0≤i≤s−1,

di−di+1odd

ǫdi−di+1
· sign(si) · sign(si+1).

Even in this special case, the new formula for Indba

(Q
P

)
given in Theorem 19 improves on the one

from Proposition 23. As before, the main difference between the two formulas is that the ti are, in

the defective cases, defined as determinants of matrices of smaller sizes than the si and therefore is

more suitable in computations. On the other hand, one advantage of Proposition 23 is that it can be

proved directly, using only subresultant coefficients and does not use the definition of the subresultant

polynomials and the Structure Theorem of subresultants (see [3, Chapter 4]).

3 Properties of Cauchy index

In this section we include some useful properties of Cauchy index.

Lemma 24 Let a, b ∈ R with a < b, P,Q ∈ R[X] \ {0} and c ∈ R \ {0}. Then

Indba

(c ·Q
P

)
= sign(c) · Indba

(Q
P

)
.

13



Proof: Follows immediately from the definition of Cauchy index. �

Lemma 25 Let a, b ∈ R with a < b, P,Q,R ∈ R[X] \ {0} and T ∈ R[X] such that

Q = PT +R.

Then

Indba

(Q
P

)
= Indba

(R
P

)
.

Proof: For each x ∈ [a, b], we first note that if

Q

P
= (X − x)m

Q̃

P̃

with m ∈ Z, P̃ (x) 6= 0, Q̃(x) 6= 0 and m < 0, then defining

R̃ = Q̃− (X − x)−mP̃ T,

we have
R

P
= (X − x)m

R̃

P̃

with P̃ (x) 6= 0 and R̃(x) = Q̃(x) 6= 0. This proves that Indεx

(Q
P

)
= Indεx

(R
P

)
for every ε ∈ {−1, 1}.

The claim follows from the definition of the Cauchy index. �

The following property is known as the inversion formula.

Proposition 26 Let a, b ∈ R with a < b and P,Q ∈ R[X] \ {0}. Then

Indba

(Q
P

)
+ Indba

(P
Q

)
=

1

2
sign

(Q
P
, b
)
−

1

2
sign

(Q
P
, a
)
.

Proof: See [5, Theorem 3.9]. �

4 (σ, τ)-chains and Cauchy index

The notion of (σ, τ)-chain was introduced in [7]. Here, we need to introduce a slight variation of this

notion.

Definition 27 Let n ∈ Z≥1 and σ, τ ∈ {−1, 1}n−1 with σ = (σ1, . . . , σn−1) and τ = (τ1, . . . , τn−1). A

sequence of polynomials (P0, . . . , Pn) in R[X] is a special (σ, τ)-chain if for 1 ≤ i ≤ n− 1 there exist

ai, ci ∈ R \ {0} and Bi ∈ R[X] such that

1. aiPi+1 +BiPi + ciPi−1 = 0,

14



2. sign(ai) = σi,

3. sign(ci) = τi.

As in [7], note that for n = 1, taking {−1, 1}0 = {•}, any sequence (P0, P1) in R[X] is a special

(•, •)-chain.

Note also that Sturm sequences are always special (1, . . . , 1), (1, . . . , 1) chains.

Example 28 (Continuation of Examples 4, 11, 15 and 20) Taking σ = (1, 1) and τ = (1, 1),

then (S0, S1, S2, S3) is a special (σ, τ)-chain, with

a1 = 1,

B1 = −X
5 ,

c1 = 1,

a2 = 1,

B2 = 25(64X3α3−80X2α2β+100Xαβ2−125β3)
256α4 ,

c2 = 1.

Taking now σ = (1, 1) and τ = (1,−1), then (T0, T1, T2, T3) is a special (σ, τ)-chain, with

a1 = 1,

B1 = −5X,

c1 = 25,

a2 = 25,

B2 = −25(64X3α3 − 80X2α2β + 100Xαβ2 − 125β3),

c2 = −6400α4.

We will see in Section 5 how to produce special (σ, τ)-chains using Theorem 13 (Structure Theorem

of Subresultants).

We introduce some more useful definition.

Definition 29 Let a, b ∈ R, n ∈ Z≥1, (P0, . . . , Pn) in R[X] \ {0} and σ, τ ∈ {−1, 1}n−1. We define

θ(σ, τ)0 = 1, for 1 ≤ i ≤ n− 1,

θ(σ, τ)i =
∏

1≤j≤i

σjτj

and

W (σ, τ)ba(P0, . . . , Pn) =
1

2

∑

0≤i≤n−1

θ(σ, τ)i ·

(
sign

(Pi+1

Pi
, b
)
− sign

(Pi+1

Pi
, a
))

.
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Using the ideas of the proof of [5, Theorem 3.11], we obtain the following result for special (σ, τ)-chains.

Note that no assumption on a and b is made.

Proposition 30 Let a, b ∈ R with a < b, n ∈ Z≥1 and σ, τ ∈ {−1, 1}n−1. If (P0, . . . , Pn) in R[X]\{0}

is a special (σ, τ)-chain then

Indba

(P1

P0

)
+ θ(σ, τ)n−1 · Ind

b
a

(Pn−1

Pn

)
= W (σ, τ)ba(P0, . . . , Pn).

Proof: We proceed by induction in n. If n = 1, the result follows from Proposition 26 (Inversion

Formula).

Suppose now that n ≥ 2. Taking a1, B1, c1 as in Definition 27, by Lemmas 24 and 25 we have

Indba

(P0

P1

)
+ σ1 · τ1 · Ind

b
a

(P2

P1

)

= Indba

(−a1P2 −B1P1

c1P1

)
+ σ1 · τ1 · Ind

b
a

(P2

P1

)

= −sign(a1) · sign(c1) · Ind
b
a

(P2

P1

)
+ σ1 · τ1 · Ind

b
a

(P2

P1

)

= 0.

We consider σ′ = (σ2, . . . , σn−1), τ
′ = (τ2, . . . , τn−1) and we apply the inductive hypothesis to the

special (σ′, τ ′)-chain (P1, . . . , Pn). For 1 ≤ i ≤ n − 1 we have that θ(σ, τ)i = σ1 · τ1 · θ(σ′, τ ′)i−1.

Finally, using Proposition 26 (Inversion Formula) and the inductive hypothesis,

Indba

(P1

P0

)
+ θ(σ, τ)n−1 · Ind

b
a

(Pn−1

Pn

)

= Indba

(P1

P0

)
+ Indba

(P0

P1

)
+ σ1 · τ1 · Ind

b
a

(P2

P1

)
+ σ1 · τ1 · θ(σ

′, τ ′)n−2 · Ind
b
a

(Pn−1

Pn

)

= −
1

2
sign

(P1

P0
, a
)
+

1

2
sign

(P1

P0
, b
)
+ σ1 · τ1 ·W (σ′, τ ′)ba(P1, . . . , Pn)

= W (σ, τ)ba(P0, . . . , Pn)

as we wanted to prove. �

Corollary 31 Let a, b ∈ R with a < b, n ∈ Z≥1 and σ, τ ∈ {−1, 1}n−1. If (P0, . . . , Pn) in R[X] \ {0}

is a special (σ, τ)-chain and Pn divides Pn−1, then

Indba

(P1

P0

)
= W (σ, τ)ba(P0, . . . , Pn).

As mentioned in the Introduction, Theorem 6 can be deduced from Corollary 31.

Proof of Theorem 6 : Theorem 6 is a special case of Corollary 31 taking σ = (1, . . . , 1) and τ =

(1, . . . , 1), since the Sturm sequence is a special ((1, . . . , 1), (1, . . . , 1))-chain and Ss divides Ss−1. �
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5 Proof of the main results

We fix the notation we will use from this point.

Notation 32 Let P,Q ∈ R[X] \ {0} with degP = p ≥ 1 and degQ = q < p. Let (d0, . . . , ds) be the

sequence of degrees of the non-defective subresultant polynomials of P and Q in decreasing order and

let d−1 = p+ 1.

• Using the notation from Theorem 13, for 1 ≤ i ≤ s− 1, let

ai = ti−1 · sResdi−1
(P,Q) ∈ R,

Bi = −Quot (ti · sResdi(P,Q) · Ti−1, Ti) ∈ R[X],

ci = ti · sResdi(P,Q) ∈ R.

• For 1 ≤ i ≤ s− 1, let
σi = sign(ai) ∈ {−1, 1},

τi = sign(ci) ∈ {−1, 1},

and let σ = (σ1, . . . , σs−1) and τ = (τ1, . . . , τs−1).

Lemma 33 (T0, . . . , Ts) is a special (σ, τ)-chain. In addition, Ts divides all its elements.

Proof: Recall that T0 = P and T1 = Q. Also, by the Structure Theorem of Subresultants (Theorem

13), we have that for 1 ≤ i ≤ s− 1,

aiTi+1 +BiTi + ciTi−1 = 0.

The claim follows from the definition of σ, τ . �

The following lemma explores the relation between the signs of the leading coefficients of the subre-

sultants polynomials.

Lemma 34 Let P,Q ∈ R[X] \ {0} with degP = p ≥ 1 and degQ = q < p. Following Notation 12

and 16, for 0 ≤ i ≤ s,

sign(sResdi(P,Q)) = ǫdp(i)−1−di · sign(tp(i)).

Proof: For i = 0 the result is clear. For 1 ≤ i ≤ s, by the Structure Theorem of Subresultants

(Theorem 13),

sign(sResdi(P,Q)) = ǫdi−1−di · sign(ti)
di−1−di · sign(sResdi−1

(P,Q))di−1−di−1.
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We proceed then by induction on i− p(i). If i = p(i), then di−1 − di is odd and

sign(sResdi(P,Q)) = ǫdp(i)−1−di · sign(tp(i)).

If i > p(i), then di−1 − di is even, p(i) = p(i − 1) and i − 1 − p(i − 1) < i − p(i); therefore by the

inductive hypothesis,

sign(sResdi(P,Q)) = ǫdi−1−di · sign(sResdi−1
(P,Q)) = ǫdi−1−di · ǫdp(i−1)−1−di−1

· sign(tp(i−1)) =

= ǫdi−1−di · ǫdp(i)−1−di−1
· sign(tp(i)) = ǫdp(i)−1−di · sign(tp(i))

using equation (2). �

Now we are ready to prove Theorem 17.

Proof of Theorem 17: By Corollary 31, since (T0, . . . , Ts) is a special (σ, τ)-chain and Ts divides Ts−1,

Indba

(Q
P

)
= W (σ, τ)ba(T0, . . . , Ts) =

1

2

∑

0≤i≤s−1

θ(σ, τ)i ·

(
sign

(Ti+1

Ti
, b
)
− sign

(Ti+1

Ti
, a
))

.

So, we only need to prove that for 0 ≤ i ≤ s− 1,

θ(σ, τ)i = ǫdp(i)−1−di · sign(tp(i)) · sign(ti).

Indeed, using Lemma 34,

θ(σ, τ)i =
∏

1≤j≤i

σj · τj

=
∏

1≤j≤i

sign(tj−1) · sign(sResdj−1
(P,Q)) · sign(tj) · sign(sResdj (P,Q))

= sign(sResdi(P,Q)) · sign(ti)

= ǫdp(i)−1−di · sign(tp(i)) · sign(ti)

and we are done. �

From Theorem 17, we can easily deduce Theorem 18 as follows.

Proof of Theorem 18: Theorem 13 implies that, if for some 0 ≤ i ≤ s−1, two consecutive polynomials

Ti and Ti+1 in the sequence (T0, . . . , Ts) have a common root x, then every polynomial in this sequence

has x as a root. So, suppose now that a and b are not common roots of T0 = P and T1 = Q, therefore

they are not common roots of Ti and Ti+1 for any 0 ≤ i ≤ s− 1.

The proof is finished using the formula from Theorem 17 for the Cauchy index Indba

(Q
P

)
and the

identity (1). �
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Finally, we prove Theorem 19.

Proof or Theorem 19: We introduce the notation

Var+∞(P,Q) = 1
2

∣∣∣sign(lc(P ))− sign(lc(Q))
∣∣∣,

Var−∞(P,Q) = 1
2

∣∣∣(−1)deg(P )sign(lc(P ))− (−1)deg(Q)sign(lc(Q))
∣∣∣,

Var+∞
−∞(P,Q) = Var−∞(P,Q)−Var+∞(P,Q).

Note that, if deg(P ) − deg(Q) is even, then Var+∞
−∞(P,Q) = 0, and if deg(P ) − deg(Q) is odd, then

Var+∞
−∞(P,Q) = sign(lc(P )) · sign(lc(Q)).

Choosing r ∈ R big enough and applying Theorem 18,

IndR

(Q
P

)
= Indr−r

(Q
P

)

=
∑

0≤i≤s−1

ǫdp(i)−1−di · sign(tp(i)) · sign(ti) ·Var
r
−r(Ti, Ti+1)

=
∑

0≤i≤s−1

ǫdp(i)−1−di · sign(tp(i)) · sign(ti) ·Var
+∞
−∞(Ti, Ti+1)

=
∑

0≤i≤s−1,

di−di+1odd

ǫdp(i)−1−di · sign(tp(i)) · sign(ti) · sign(lc(Ti)) · sign(lc(Ti+1)).

From this identity the result can be easily proved, taking into account that for i ≥ 1, ti = lc(Ti), but

there is an ad-hoc definition of t0 = 1 (and not as the leading coefficient of T0 = P ). �
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