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Abstract

In this paper, we study unirational differential curves and the corresponding differential rational

parametrizations. We first investigate basic properties of proper differential rational parametriza-

tions for unirational differential curves. Then we show that the implicitization problem of proper

linear differential rational parametric equations can be solved by means of differential resultants.

Furthermore, for linear differential curves, we give an algorithm to determine whether an implic-

itly given linear differential curve is unirational and, in the affirmative case, to compute a proper

differential rational parametrization for the differential curve.

Keywords: Unirational differential curve, Proper differential rational parametrization,

Differential resultants, Implicitization

1. Introduction

The study of unirational varieties and the corresponding rational parametrizations is a ba-

sic topic in computational algebraic geometry. The central problem in this field is to determine

whether an algebraic variety is rationally parametrizable, and, for unirational varieties, to give

efficient algorithms to transform between the implicit representations and parametric represen-

tations. These problems have been fully explored for algebraic curves by Sendra, Winkler and

Pérez-Dı́az in their classic book [22] using symbolic computation methods. They are also well-

understood for algebraic surfaces [10, 21].

The differential implicitization and rational parametrization problems for differential alge-

braic varieties have similar importance, and thus the study of these problems is an active research

field in differential algebraic geometry. The differential implicitization of differential rational

parametric equations was first studied via the differential characteristic set method by Gao [7].

In the special case when given linear differential polynomial parametric equations, it was treated

via linear complete differential resultants [19, 20].

However, as far as we know, there are still no general results on the differential parametriza-

tion problem, that is, the problem of deciding whether an implicitly given differential algebraic

variety is differentially unirational, and of finding a differential rational parametrization in the

affirmative case. The work of Feng and Gao, on finding rational general solutions for a univari-

ate algebraic ODE f (y) = 0, is the first step in solving the rational parametrization problem for
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differential varieties [6]. Their work gives necessary and sufficient conditions for an ODE to have

a rational general solution, and a polynomial algorithm to compute the rational general solution

of a first order autonomous ODE if it exists. Then the subsequent work by Winkler and his coau-

thors extended the method to study rational general solutions for non-autonomous parametriz-

able first-order ODEs [15, 16], higher order ODEs [11] and even partial differential equations

[9]. While these are important contributions on the parametrization of zero-dimensional differ-

ential varieties in the one-dimensional space A1 [24], it seems that the rational parametrization

problem for differential varieties of positive differential dimension has not been studied.

In this paper, we study unirational ordinary differential curves and the corresponding differ-

ential rational parametrizations. A (plane) irreducible differential curve C is a one-dimensional

irreducible differential variety in A2. The differential characteristic set method guarantees the

unique existence of an irreducible differential polynomial A(x, y) ∈ F {x, y} such that C is the

general component of A(x, y) = 0; thus this differential curve is often represented by (C, A). If

(C, A) has a generic point of the form P(u) ∈ F 〈u〉2 with u a differential parameter, it is called a

unirational differential curve and P(u) is called a differential rational parametrization of C. P(u)

is called proper if it defines a differential birational map between A1 and C. The differential

Lüroth theorem guarantees that unirational differential curves always have proper differential

rational parametrizations [7].

For unirational differential curves, we first explore basic properties of proper differential

rational parametrizations. In particular, Theorem 3.7 gives the order property of properness

and Theorem 3.10 shows that proper parametrizations are unique up to Möbius transformations.

These results extend similar properties of proper parametrizations of algebraic curves to their

differential counterparts. For proper linear differential rational parametrizations, we give further

properties and show differential resultants can be used to compute the corresponding implicit

equations of proper linear differential rational parametric equations. This could be considered a

generalization of Rueda-Sendra’s work on implicitization of linear differential polynomial para-

metric equations via linear complete differential resultants [19].

Concerning the rational parametrizability problem, it is well known that an algebraic curve

is unirational if and only if its genus is equal to 0 [22, Theorem 4.63], so the determination of

unirationality of algebraic curves can be reduced to the computation of the genus of the curve.

Compared with the algebraic case, the rational parametrizability problem of differential curves

is much more complicated to deal with. More precisely, the problem can be stated as follows:

given an irreducible differential polynomial A(x, y), decide whether the differential curve (C, A) is

unirational, and if it is unirational, give efficient algorithms to compute a parametrization. In this

paper, we will start from the simplest nontrivial case by considering linear differential curves.

And for linear differential curves, we give an algorithm to determine whether the implicitly

given differential curve is unirational, and, in the affirmative case, to compute a proper linear

differential polynomial parametrization for the unirational linear differential curve.

This paper is organized as follows. In Section 2, we introduce some basic notions and no-

tation in differential algebra. In Section 3, we explore the basic properties of proper differential

rational parametrizations for unirational differential curves. In Section 4, further properties of

proper linear differential rational parametrizations are given, and in particular, the corresponding

implicit equations can be computed via the method of differential resultants. In Section 5, we

deal with the problem of algorithmically deciding whether an implicitly given linear differential

curve is unirational and computing a proper rational parametrization in the affirmative case. In

Section 6, we propose several problems for further study.
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2. Basic notions and notation

In the following, we will introduce the basic notions and notation to be used in this paper.

For more details about differential algebra, please refer to [18],[14],[23].

Let F be an ordinary differential field of characteristic 0 with derivation δ. For example,

F = Q(t) with δ = d
dt

. An element c ∈ F such that δ(c) = 0 is called a constant of F . The

set of all constants of F constitutes a differential subfield of F , called the field of constants of

F and denoted by CF . For an element a in F , we use a′, a′′, a(k) to indicate the derivatives

δ(a), δ2(a), δk(a) (k ≥ 3).

Let G be a differential extension field of F . A subset Σ ⊂ G is said to be differentially

dependent over F if the set Θ(Σ) := {δk(a) : a ∈ Σ, k ∈ N} is algebraically dependent over F .

Otherwise, Σ is said to be a family of differential indeterminates over F . If Σ = {α}, α is called

differentially algebraic or differentially transcendental over F respectively. Given S ⊂ G, we

denote respectively by F {S } = F [Θ(S )] and F 〈S 〉 = F
(

Θ(S )
)

the smallest differential subring

and differential subfield of G containing F and S .

Let E be a fixed universal differential extension field ofF [14, p. 134]. Let x, y, y1, . . . , yn be a

set of differential indeterminates overE. Consider the differential polynomial ringF {y1, . . . , yn} =

F [y
(k)

j
: j = 1, . . . , n; k ∈ N]. If n = 2, we usually use the notation F {x, y} instead. A differential

ideal in F {y1, . . . , yn} is an ordinary algebraic ideal closed under δ. A prime differential ideal is a

differential ideal which is prime as an ordinary ideal. For Σ ⊂ F {y1, . . . , yn}, the differential ideal

in F {y1, . . . , yn} generated by Σ is denoted by [Σ]. Let f ∈ F {y1, . . . , yn}. For each y j, the order

of f w.r.t. y j is defined to be the largest number k such that y
(k)

j
appears effectively in f , denoted

by ordy j
f , and in case y j and its derivatives don’t appear in f , we set ordy j

f = −∞. The order of

f is defined to be maxn
j=1
{ordy j

f }, denoted by ord( f ).

Let An(E) denote the n-dimensional differential affine space over E. Let Σ be a subset of

differential polynomials in F {y1, . . . , yn}. A point η = (η1, . . . , ηn) ∈ An(E) is called a differential

zero of Σ if f (η) = 0 for any f ∈ Σ. The set of differential zeros of Σ is denoted by V(Σ), which is

called a differential variety defined over F . For a differential variety V , we denote I(V) to be the

set of all differential polynomials in F {y1, . . . , yn} that vanish at every point of V . Clearly, I(V)

is a radical differential ideal in F {y1, . . . , yn}. A differential variety is said to be irreducible if it’s

not the union of two proper differential subvarieties. A point η ∈ An(E) is called a generic point

of a prime differential ideal P (or the corresponding variety V(P)) if I(η) = P. The differential

dimension of P or V(P) is defined to be the differential transcendence degree of F 〈η〉 over F [14,

pp.105-109].

A ranking R is a total ordering < on Θ(y) := {y
(k)

j
: j = 1, . . . , n; k ∈ N} such that for all

u, v ∈ Θ(y), we have u < δu and u < v ⇒ δu < δv. By convention, 1 < u for all u ∈ Θ(y). Let g

be a differential polynomial in F {y1, . . . , yn} and R a ranking endowed on it. The highest ranked

derivative w.r.t. R which appears in g is called the leader of g and is denoted by ug. Let d be the

degree of g in ug. Rewrite g as a univariate polynomial in ug, then,

g = Idud
g + Id−1ud−1

g + · · · + I0. (1)

The leading coefficient Id is called the initial of g and denote it by Ig. The partial derivative
∂g

∂ug

is called the separant of g and denoted by Sg. The rank of g is defined to be (ug, d). Let f and

g be differential polynomials and (ug, d) the rank of g. We say f is partially reduced w.r.t. g if

no proper derivative of ug appears in f , and f is reduced w.r.t. g if f is partially reduced w.r.t. g
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and degug
f < d. LetA be a set of differential polynomials. A is said to be an autoreduced set if

each element ofA is reduced w.r.t. every other one. Every autoreduced set is finite.

Let A = A1, A2, · · · , At be an autoreduced set, and f any differential polynomial. There

exists a reduction algorithm, called Ritt-Kolchin’s Remainder Algorithm, which reduces f to a

differential polynomial r such that r is reduced w.r.t. A. More precisely, there exist di, ei ∈ N
such that

t
∏

i=1

S
di

Ai
I
ei

Ai
· f ≡ r,mod [A]. (2)

This r is called the Ritt-Kolchin remainder of f w.r.t. A. Denote HA =
∏t

i=1 SAi
IAi

. The

saturation ideal ofA is defined as

sat(A) = [A] : H∞A = { f ∈ F {x, y} | ∃m ∈ N, such that Hm
A f ∈ [A]} (3)

Let S ⊂ F {y1, . . . , yn} be a differential polynomial set. An autoreduced set A contained in S is

said to be a characteristic set of S if S does not contain any nonzero element reduced w.r.t. A.

A characteristic set A of a differential ideal I reduces to zero all elements of I. If additionally

I is prime, A reduces to zero only the elements of I and I = sat(A) ([14, Lemma 2, p.167]).

The following result on Ritt’s general component theorem will often be used.

Lemma 2.1. [23, Theorem 11.2] Let A ∈ F {y1, . . . , yn}\F be an irreducible differential poly-

nomial and S A be the separant of A under some ranking. Then sat(A) = [A] : S∞
A

is a prime

differential ideal, called the general component of A and A is a characteristic set of sat(A) under

any ranking. In particular, if B ∈ sat(A) and ord(B) ≤ ord(A), then B is divisible by A.

We end this section by proving some technical results for later use. Let u ∈ E be differentially

transcendental over F . Let P,Q ∈ F {u} be nonzero. The fraction P/Q is called in reduced form

if gcd(P(u),Q(u)) = 1. Given R(u) ∈ F 〈u〉 with R(u) =
P(u)

Q(u)
in reduced form, the order of R(u)

is defined to be max{orduP, orduQ}, denoted by ordu(R(u)) or simply by ord(R(u)). Clearly, it is

well-defined.

Lemma 2.2. Let P(u),Q(u) ∈ F {u} with gcd(P,Q) = 1 and m = ord(
P(u)

Q(u)
) ≥ 0. Then we have

(1) For each s ∈ N>0, (P/Q)(s)
=

Ps

Qs+1 , where Ps is a differential polynomial of order m+ s and

linear in u(m+s);

(2) tr.deg
F 〈

P(u)

Q(u)
〉
F 〈u〉 = ord(

P(u)

Q(u)
).

Proof. (1) Show it by induction on s. For s = 1, (P/Q)′ =
P′Q−PQ′

Q2 and P1 = P′Q − PQ′ =

S PQ · u(ord(P)+1) − S QP · u(ord(Q)+1)
+ T with ord(T ) ≤ m. If ord(P) , ord(Q), clearly, rk(P1) =

(u(m+1), 1). Otherwise, since gcd(P,Q) = 1, S PQ − S QP , 0 and rk(P1) = (u(m+1), 1) follows.

Suppose it holds for s − 1. Then (P/Q)(s)
=
( Ps−1

Qs

)′
=

P′
s−1

Q−sPs−1Q′

Qs+1 . Let Ps = P′
s−1

Q − sPs−1Q′.

By the induction hypothesis, rk(Ps) = (u(m+s), 1).
(2) It is trivial for the case m = 0. Consider the case when m ≥ 1. Since u, u′, · · · , u(m) are al-

gebraically dependent over F 〈
P(u)

Q(u)
〉, tr.deg

F 〈
P(u)
Q(u)
〉
F 〈u〉 = tr.deg

F 〈
P(u)
Q(u)
〉
F 〈

P(u)

Q(u)
〉(u, u′, · · · , u(m−1)). If

u, u′, · · · , u(m−1) are algebraically dependent over F 〈
P(u)

Q(u)
〉, there exists s ∈ N such that u, u′, · · · ,
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u(m−1) are algebraically dependent over F
(

P(u)

Q(u)
, (

P(u)

Q(u)
)′, · · · , (

P(u)

Q(u)
)(s)
)

. Thus

tr.degF
(

u, u′, · · · , u(m−1),
P(u)

Q(u)
, (

P(u)

Q(u)
)
′

, · · · , (
P(u)

Q(u)
)(s)
)/

F

=tr.degF
( P(u)

Q(u)
, (

P(u)

Q(u)
)′, · · · , (

P(u)

Q(u)
)(s)
)/

F+

tr.degF
( P(u)

Q(u)
, (

P(u)

Q(u)
)′, · · · , (

P(u)

Q(u)
)(s)
)(

u, u′, · · · , u(m−1)
)/

F
( P(u)

Q(u)
, (

P(u)

Q(u)
)
′

, · · · , (
P(u)

Q(u)
)(s)
)

≤s + m.

So tr.degF (u, u′, · · · , u(m−1))(
P(u)

Q(u)
, (

P(u)

Q(u)
)′, · · · , (

P(u)

Q(u)
)(s))
/

F (u, u′, · · · , u(m−1)) ≤ s, contradicting

the fact that
P(u)

Q(u)
, (

P(u)

Q(u)
)′, · · · , (

P(u)

Q(u)
)(s) are algebraically independent over F (u, u′, · · · , u(m−1)).

Thus, tr.deg
F 〈

P(u)
Q(u)
〉
F 〈u〉 = m.

By the additivity property of transcendence degrees, Lemma 2.2 (2) implies that the order is

additive with respect to the composition of differential rational functions.

Corollary 2.3. Let R1,R2 ∈ F 〈u〉\F . Then ordu

(

R2(R1(u))
)

= orduR1 + orduR2 .

Proof. This follows by considering F 〈R2(R1(u))〉 ⊂ F 〈R1(u)〉 ⊂ F 〈u〉 and Lemma 2.2 (2).

The following result is an exercise from [14, p.159, Ex. 9] which will be used in Section 3.

Lemma 2.4. Let t, u ∈ E be differentially transcendental elements over F and F 〈t〉 = F 〈u〉.

Then there exist a, b, c, d ∈ F with ad − bc , 0 such that u = (at + b)/(ct + d).

Proof. Write u =
P(t)

Q(t)
with P,Q ∈ F {y} and gcd(P,Q) = 1. Observe that P(y) − uQ(y) is

irreducible in F 〈u〉{y}. Let J = sat(P − uQ) ⊂ F 〈u〉{y}. Fix a generic zero s of J , then

we have Q(s) , 0. Indeed, if Q(s) = 0, then Q(y) is divisible by P(y) − uQ(y) by Lemma

2.1, a contradiction. Thus, u is differentially algebraic over F 〈s〉. Therefore, s is differentially

transcendental over F . So there exists a differential isomorphism φ : F 〈s〉 � F 〈t〉 with φ(s) = t.

Since φ(u) = u, φ is a differential isomorphism over F 〈u〉. Thus, t is a generic zero of J . Since

t is also a generic zero of sat(y − t) ⊂ F 〈u〉{y}, J = sat(y − t). By Lemma 2.1, y − t is divisible

by P − uQ over F 〈u〉. So P(y),Q(y) ∈ F [y] are both of degree at most 1. Thus, there exist

a, b, c, d ∈ F such that P(y) = ay + b and Q(y) = cy + d with ad − bc , 0.

3. Unirational differential curves and proper differential rational parametrizations

In this section, we introduce the notions of unirational differential curves and proper diff-

ferential rational parametrizations, and investigate the basic properties for proper differential

rational parametrizations.

Definition 3.1. A differential curve (over F ) is a differential variety C ⊂ An(E) (over F ) which

has differential dimension 1. If additionallyC is irreducible,C is called an irreducible differential

curve. A differential curve C ⊂ A2 is called a plane differential curve.

Throughout the paper, we focus on the study of plane differential curves over the base differ-

ential field F , and so we always omit “plane” and “over F ” for convenience.

If C ⊂ A2 is an irreducible differential curve, then by the theory of differential characteristic

sets, there exists a unique irreducible differential polynomial A ∈ F {x, y} (up to an element in
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F ) such that C is the general component of A
(

that is, C = V
(

sat(A)
))

. We call C the differential

curve defined by A, and denote it by (C, A) for simplicity.

Definition 3.2. (Unirational differential curves) Let (C, A) be an irreducible differential curve.

We call C a unirational differential curve if C has a generic point of the form

P(u) =
( P1(u)

Q1(u)
,

P2(u)

Q2(u)

)

, (4)

where u ∈ E is differentially transcendental over F 〈x, y〉, Pi,Qi ∈ F {u}
1 and gcd(Pi,Qi) = 1 for

i = 1, 2. And we call (4) a differential rational parametrization of C or A.

Recall that the differential Lüroth theorem [18] tells us that any differential field K with

F ⊂ K ⊂ F 〈u〉 is generated by a single element. Combined with the differential Lüroth theorem,

we have the following equivalent definition for unirational differential curves in terms of the

language of differential fields.

Proposition 3.3. An irreducible differential curve C is unirational if and only if the differential

function field of C, F 〈C〉 = Frac(F {x, y}/I(C)), is differentially isomorphic to F 〈u〉 over F .

Proof. Let C be a unirational differential curve with a differential rational parametrization P(u).

By the differential Lüroth theorem [18], there exists R(u) ∈ F 〈u〉\F s.t. F 〈P(u)〉 = F 〈R(u)〉.

Then it is easy to verify that the parametrizationP(u) defines a differential isomorphism

ϕ :F 〈C〉 −→ F 〈R(u)〉

f (x, y) 7−→ f (P(u)).
(5)

Since R(u) is differentially transcendental over F , F 〈R(u)〉 is differentially isomorphic to F 〈u〉.

Therefore, F 〈C〉 is differentially isomorphic to F 〈u〉. Conversely, let ϕ : F 〈C〉 → F 〈u〉 be a

differential isomorphism. Let P(u) = (ϕ(x), ϕ(y)). Then P(u) < F 2 and I(P(u)) = I(C). Thus, C

is unirational with a differential rational parametrization P(u). .

For ease of notation, in this paper when we speak of a differential parametrization P(u) =

( P1

Q1
, P2

Q2
) ∈ F 〈u〉2, we always assume each Pi/Qi is in reduced form, that is, Pi,Qi ∈ F {u} and

gcd(Pi,Qi) = 1. And we define the order of P(u) to be max{ordu( P1

Q1
), ordu( P2

Q2
)}, denoted by

ord(P). The following result shows that differential parametrizations of a unirational differential

curve satisfy certain order property.

Proposition 3.4. Let (C, A) be a unirational differential curve with ordxA ≥ 0 and ordyA ≥ 0.

Suppose P(u) = (P1/Q1, P2/Q2) ∈ F 〈u〉2 is a differential rational parametrization of C. Then

ordxA + ordu(P1/Q1) = ordyA + ordu(P2/Q2).

In particular, ordxA ≤ ordu(P2/Q2) and ordyA ≤ ordu(P1/Q1).

Proof. Denote mi = ordu(Pi/Qi) for i = 1, 2. Then mi ≥ 0. Let s1 = ordxA and s2 = ordyA. The

fact I(P(u)) = sat(A) ⊂ F {x, y} implies that s1 and s2 are respectively the minimal indices ℓ1, ℓ2
such that

P1/Q1, (P1/Q1)′, . . . , (P1/Q1)(ℓ1), P2/Q2, (P2/Q2)′, . . . , (P2/Q2)(ℓ2) (6)

1Here we automatically have at least one Pi/Qi ∈ F 〈u〉\F .
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are algebraically dependent over F , or equivalently, in the module (ΩF 〈u〉/F , d) of Kahler dif-

ferentials, d(P1/Q1), d(P1/Q1)′, . . . , d(P1/Q1)(ℓ1), d(P2/Q2), d(P2/Q2)′, . . . , d(P2/Q2)(ℓ2) are lin-

early dependent over F 〈u〉 [12, p. 94]. By Lemma 2.2, each (Pi/Qi)
(k) is of order mi + k, so

d(Pi/Qi)
(k) is linear in d(u(mi+k)) for k > 0. Thus, m1 + s1 = m2 + s2 follows. Note that when

ℓ1 = m2 and ℓ2 = m1, the m1 +m2 + 2 elements in (6) are contained in F (u, u′, · · · , u(m1+m2)), and

thus are algebraically dependent over F . So ordxA ≤ m2 and ordyA ≤ m1.

Below we give some motivated examples and non-examples for unirational differential curves.

Example 3.5. (1) Let A = x′2 − 4xy2 ∈ Q(t){x, y} with δ = d
dt

. Then (C, A) is a unirational

differential curve with a differential rational parametrization P1 = (u2, u′). Note that

P2 = ((u′)2, u′′) is another parametrization of (C, A) and ord(P1) < ord(P2).

(2) Let A = y′ − x′ ∈ Q(t){x, y}. Then (C, A) is not unirational. Actually, if A = B(k) for

some B ∈ F {x, y}\F and k > 0, then (C, A) is not unirational. Or otherwise, there exists

P(u) ∈ F 〈u〉2 such that I(P(u)) = sat(A), which implies that b = B(P(u)) ∈ F 〈u〉 is

differentially algebraic over F and consequently, b ∈ F . Thus, B(x, y) − b ∈ sat(A). By

Lemma 2.1, B(x, y) − b is divisible by A, a contradiction to A = B(k).

From the above examples, we learn that not all differential curves are unirational and for a

unirational differential curve, its differential rational parametrizations are not unique. In fact,

if P1(u) is a differential rational parametrization of (C, A), then for any R(u) ∈ F 〈u〉\F , P2 =

P1

(

R(u)
)

is also a differential rational parametrization of (C, A), and thus C has infinitely many

differential rational parametrizations. These facts lead to the following two natural problems:

Problem 1. Given A ∈ F {x, y}, decide whether the differential curve (C, A) is unirational or not.

Problem 2. If (C, A) is unirational, find “optimal” differential rational parametrizations for it

w.r.t. some criteria, for instance, having minimal order and degree .

We first study Problem 2 in this section by introducing the notion of proper differential ratio-

nal parametrizations and give the main basic properties, while leaving Problem 1 to be considered

in Section 5.

Definition 3.6. Let C be a unirational differential curve with a differential rational parametriza-

tionP(u) =
(

P1(u)

Q1(u)
,

P2(u)

Q2(u)

)

. The parametrizationP(u) is said to be proper if F 〈
P1(u)

Q1(u)
,

P2(u)

Q2(u)
〉 = F 〈u〉.

Equivalently, the notion of properness can be stated by means of differentially birational maps

between C and A1. More precisely, let (C, A) be a unirational differential curve with a differential

rational parametrizationP(u) ∈ F 〈u〉2. This P(u) induces the differentially rational map

P : A1 −−→ C ⊂ A2

u 7−→ P(u).

Then the differential parametrization P(u) is proper if and only if the map P is differentially

birational, that is, P has an inverse differential rational map

U : C −−→ A1

(x, y) 7−→ U(x, y),

where U(x, y) ∈ F 〈x, y〉 and the denominator of U does not vanish identically on C. This U is

called the inversion of the proper differential rational parametrization P(u).
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In [7], Gao defined properness for differential rational parametric equations (DPREs) and

under his definition,
(

P1(u)

Q1(u)
,

P2(u)

Q2(u)

)

is called proper if for a generic zero (a1, a2) of C, there exists

a unique τ ∈ E such that ai = Pi(τ)/Qi(τ). By [7, Theorem 6.1], the equivalence of these

definitions can be easily seen.

At the same paper, Gao provided a method [7, Theorem 6.2] to find a proper re-parameterization

for any improper DPREs based on a constructive proof of differential Lüroth’s theorem([18]).

Given an arbitrary rational parametrization P(u) of a unirational differential curve C, Gao’s

method produces an algorithm to compute a proper differential rational parametrization for C

fromP(u), which in particular shows that each unirational differential curve has a proper rational

parametrization.

In the following we show that proper differential rational parametrizations possess essential

properties of the unirational differential curves. We first give the order property of proper differ-

ential rational parametrizations. Recall that the order of a reduced differential rational function

is equal to the maximum of the orders of its denominator and numerator.

Theorem 3.7. Let (C, A) be a unirational differential curve and
( P1(u)

Q1(u)
,

P2(u)

Q2(u)

)

be a proper differ-

ential rational parametrization of C. Then we have

ord
( P1(u)

Q1(u)

)

= ordyA, ord
( P2(u)

Q2(u)

)

= ordxA. (7)

Proof. For the special cases that either
P1(u)

Q1(u)
= a1 ∈ F or

P2(u)

Q2(u)
= a2 ∈ F , by Lemma 2.4 we

have either 1) A = x − a1 and P(u) = (a1,
α1u+β1

γ1u+ξ1
), or 2) A = y − a2 and P(u) = (

α2u+β2

γ2u+ξ2
, a2), for

some αi, βi, γi, ξi ∈ F with αiξi − βiγi , 0, where (7) holds. So it suffices to consider the case

that mi = ord(
Pi(u)

Qi(u)
) ≥ 0 for i = 1, 2.

By [13], the relative order of sat(A) w.r.t. the parametric set {x} is

ordxsat(A) = tr.deg
F 〈

P1(u)

Q1(u)
〉
F 〈

P1(u)

Q1(u)
,

P2(u)

Q2(u)
〉 = tr.deg

F 〈
P1(u)

Q1(u)
〉
F 〈u〉.

By Lemma 2.2, tr.deg
F 〈

P1(u)

Q1(u)
〉
F 〈u〉 = m1. Since A is a characteristic set of sat(A) w.r.t. the

elimination ranking: x < y, ordyA = ordx(sat(A)) = m1 ([5]). By Proposition 3.4, ordxA−ordyA =

m2 − m1, and thus ordxA = m2, ordyA = m1.

Remark 3.8. In the algebraic case, [22, Theorem 4.21] characterizes the properness of a

parametrization via the degree of the implicit equation of a unirational curve. That is, a parametriza-

tion P(t) of a unirational curve V( f ) is proper if and only if deg(P(t)) = max{degx f , degy f }.

However, in the differential case, we do not have such a characterization of properness via the

orders of the differential curves and the converse of Theorem 3.7 is not valid. For a non-example,

let A = y′ − xy ∈ F {x, y}. Clearly, P(u) = ( 2u′

u
, u2) is a differential rational parametrization of

(C, A) which satisfies (7). But F 〈P(u)〉 = F 〈u2〉 , F 〈u〉, so P(u) is not proper.

As a direct consequence of Theorem 3.7, we could show that an algebraic curve is unirational

in the algebraic sense if and only if it is unirational in the differential sense.

Corollary 3.9. Let (F , δ) be a differential field which is algebraically closed. Let A ∈ F [x, y]

be an irreducible polynomial. Then the differential curve (C, A) is unirational if and only if the

genus of the algebraic curve defined by A = 0 is 0.
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Proof. By [22, Theorem 4.63], an algebraic curve is rational if and only if its genus is 0. So

it suffices to show that if the differential curve (C, A) is unirational, then the algebraic curve

defined by A = 0 is rational in the algebraic sense. Indeed, if (C, A) is unirational with a proper

differential rational parametrization (
P1(u)

Q1(u)
,

P2(u)

Q2(u)
), by Theorem 3.7, ord(

Pi(u)

Qi(u)
) ≤ 0, which implies

that the algebraic curve A = 0 is rational.

Even if a unirational differential curve can have infinitely many proper differential rational

parametrizations, the following theorem shows that proper differential rational parametrizations

enjoy some “uniqueness” property up to the so-called Möbius transformations.

Theorem 3.10. If P1(u),P2(u) are two proper differential rational parametrizations of (C, A),

then there exist a, b, c, d ∈ F , s.t. P2(u) = P1( au+b
cu+d

). Conversely, given any proper parametriza-

tion P(u) of (C, A), P( au+b
cu+d

) is also a proper parametrization of (C, A) for ad − bc , 0.

Proof. Assume P1(u) =
( P1(u)

Q1(u)
,

P2(u)

Q2(u)

)

,P2(u) =
( P3(u)

Q3(u)
,

P4(u)

Q4(u)

)

. Since F 〈
P1(u)

Q1(u)
,

P2(u)

Q2(u)
〉 = F 〈u〉, there

exist M(x, y),N(x, y) ∈ F {x, y} s.t. u =
M(P1(u))

N(P1(u))
. Then,

Pi

(

M(P1(u))

N(P1(u))

)

Qi

(

M(P1(u))

N(P1(u))

) =
Pi(u)

Qi(u)
, i = 1, 2.

Let r(u) =
M(P2(u))

N(P2(u))
. Since I

(

P1(u)

Q1(u)
,

P2(u)

Q2(u)

)

= I
(

P3(u)

Q3(u)
,

P4(u)

Q4(u)

)

, we obtain
P3(u)

Q3(u)
=

P1(r(u))

Q1(r(u))
,

P4(u)

Q4(u)
=

P2(r(u))

Q2(r(u))
. Then F 〈u〉 = F 〈

P3(u)

Q3(u)
,

P4(u)

Q4(u)
〉 ⊂ F 〈r(u)〉, which implies F 〈u〉 = F 〈r(u)〉. By Lemma 2.4,

r(u) = au+b
cu+d

for some a, b, c, d ∈ F with ad − bc , 0. The converse part is easy to check.

Remark 3.11. Let (C, A) be a unirational differential curve. Theorem 3.10 and its proof imply

the following two facts about proper differential rational parametrizations.

1). Proper differential rational parametrizations of (C, A) are of the smallest order among all

its rational parametrizations. Indeed, letP(u) be any given differential rational parametriza-

tion of (C, A) andP1(u) a proper one, then by the proof of Theorem 3.10, there exists r(u) ∈

F 〈u〉 such that P(u) = P1(r(u)). Therefore, by corollary 2.3, ord(P1(u)) ≤ ord(P(u)).

2). Although the orders of proper differential rational parametrizations of (C, A) are the same,

their degrees can be distinct when ord(A) > 0. Take A = y′′ − x for a simple example.

Clearly, P(u) = (u′′, u) is a proper rational parametrization of (C, A) of degree 1 and

P(1/u) = (
−uu′′+2(u′)2

u3 , 1
u
) is another proper parametrization of degree 3. It is interesting to

estimate the lowest degree of proper parametrizations in terms of the numerical data of A.

We illustrate Theorem 3.7 and Theorem 3.10 by giving the following examples.

Example 3.12. (1) Let A = y′′x + (y′)2y − y′x′ ∈ Q{x, y}. Then P(u) = (uu′′, u′) is a proper

parametrization of (C, A). Note that ord(uu′′) = 2 = ordyA and ord(u′) = 1 = ordxA.

(2) Let A = y′ − x′ − x ∈ Q{x, y}. Then P1 = (u′, u + u′),P2 = (−u′

u2 ,
u−u′

u2 ) are two proper

parametrizations of (C, A). Here, P2(u) = P1( 1
u
). Note that ord(Pi) = ord(A) and

deg(P2) > deg(P1).
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4. Proper linear differential rational parametrizations and the implicitization problem

In this section, we first explore further properties for proper linear differential rational parametriza-

tions and then study the corresponding implicitization problem by using differential resultants.

Definition 4.1. P(u) =
( P1(u)

Q1(u)
,

P2(u)

Q2(u)

)

∈ F 〈u〉2\F 2 is called a linear differential rational parametriza-

tion if for i = 1, 2, Pi,Qi ∈ F {u} are of degree at most 1 and gcd(Pi,Qi) = 1.

Although the converse of Theorem 3.7 is not valid in general as explained in Remark 3.8,

when restricted to linear differential rational parametrizations, the next theorem shows that proper-

ness can be characterized via the orders of implicit equations of unirational differential curves.

Theorem 4.2. Let (C, A) be a unirational differential curve which has a linear differential ratio-

nal parametrization P(u) =
( P1(u)

Q1(u)
,

P2(u)

Q2(u)

)

. Then, P(u) is proper if and only if

ord
( P1(u)

Q1(u)

)

= ordyA, ord
( P2(u)

Q2(u)

)

= ordxA.

Proof. Suppose ord
( P1(u)

Q1(u)

)

= ordyA, ord
( P2(u)

Q2(u)

)

= ordxA. We need to show that P(u) is proper.

Let J = [Q1(u)x − P1(u),Q2(u)y − P2(u)] : (Q1Q2)∞. Then J is a prime differential ideal in

F {x, y, u}, and {Q1(u)x − P1(u),Q2(u)y − P2(u)} is its characteristic set w.r.t. the elimination

ranking u < x < y [18, p.107]. Now we compute a characteristic set B1(x, y), B2(x, y, u) of J

w.r.t. the elimination ranking x < y < u. Since Pi,Qi are of degree at most 1, by the zero-

decomposition theorem, B2(x, y, u) is a linear differential polynomial in u.

If P(u) is not proper, then s = orduB2(x, y, u) ≥ 1. Rewrite B2 in the form B2(x, y, u) =

Is(x, y)u(s)
+ · · · + I0(x, y)u + I(x, y), where Ii(x, y), I(x, y) ∈ F {x, y}. Let B̄(z) =

B2(
P1(u)

Q1(u)
,

P2 (u)

Q2(u)
,z)

Is(
P1(u)

Q1(u)
,

P2(u)

Q2(u)
)
∈

F 〈
P1(u)

Q1(u)
,

P2(u)

Q2(u)
〉{u}, then there exists a coefficient k0 of B̄(z) such that orduk0 ≥ 1. By the proof

of the differential Lüroth theorem ([13]), we obtain F 〈
P1(u)

Q1(u)
,

P2(u)

Q2(u)
〉 = F 〈k0〉. Thus, there ex-

ist P3(u),Q3(u), P4(u),Q4(u) ∈ F {u} such that
P3(k0)

Q3(k0)
=

P1(u)

Q1(u)
,

P4(k0)

Q4(k0)
=

P2(u)

Q2(u)
, and we have

(
P3(u)

Q3(u)
,

P4(u)

Q4(u)
) is a proper parametrization of (C, A) with ord(

P3(u)

Q3(u)
) ≤ ordyA − 1, ord(

P4(u)

Q4(u)
) ≤

ordxA−1, which contradicts theorem 3.7. Thus,P(u) should be proper. Combined with Theorem

3.7, P(u) is proper if and only if ord
( P1(u)

Q1(u)

)

= ordyA, ord
( P2(u)

Q2(u)

)

= ordxA.

In [19], the implicitization problem for linear differential polynomial parametric equations

was studied via linear complete differential resultants. In the following, we present results on

implicitization for linear differential rational parametrizations with the method of differential

resultants. Before that, we need a technical result.

Recall that the wronskian determinant of ξ1, . . . , ξn is

wr(ξ1, . . . , ξn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ξ1 δ(ξ1) · · · δn−1(ξ1)

ξ2 δ(ξ2) · · · δn−1(ξ2)

· · · · · · · · · · · ·

ξn δ(ξn) · · · δn−1(ξn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

It is well-known that wr(ξ1, . . . , ξn) = 0 gives a necessary and sufficient condition that ξ1, . . . , ξn
are linearly dependent over constants.
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Lemma 4.3. Let L = δn
+an−1δ

n−1
+· · ·+a0 ∈ F [δ]. Suppose L1 = δ

n1+bn1−1δ
n1−1
+· · ·+b0 ∈ G[δ]

is a right divisor of L over some differential extension field G of F . Then all the bi belong to a

finite differential algebraic extension field of F . In particular, tr.degF 〈b0, . . . , bn1−1〉/F < ∞.

Proof. Sol(L) = {y ∈ E | L(y) = 0} is a linear space of dimension n over CE, the field of constants

of E. Let ξ1, . . . , ξn be a basis of Sol(L). Then the an−1, . . . , a1, a0 satisfy the following linear

equations

δn(ξi) + an−1δ
n−1(ξi) + · · · + a0ξi = 0 (i = 1, . . . , n).

So we have




























ξ1 δ(ξ1) · · · δn−1(ξ1)

ξ2 δ(ξ2) · · · δn−1(ξ2)

· · · · · · · · · · · ·

ξn δ(ξn) · · · δn−1(ξn)































































a0

a1

...

an−1



































=



































−δn(ξ1)

−δn(ξ2)
...

−δn(ξn)



































.

Since ξ1, . . . , ξn are linearly independent over CE, the wronskian determinant wr(ξ1, . . . , ξn) is

nonzero. Thus, ai =
wri(ξ1 ,...,ξn)

wr(ξ1 ,...,ξn)
∈ F , where wri(ξ1, . . . , ξn) is obtained from wr(ξ1, . . . , ξn) by

replacing its (i + 1)-th column by (−δn(ξ1) − δn(ξ2) · · · − δn(ξn))T.

Since L1 is a right divisor of L, the solution space Sol(L1) (⊂ Sol(L)) of L1 in E is of dimen-

sion n1 and there exist ci j ∈ CE (i = 1, . . . , n1; j = 1, . . . , n) such that

ηi = ci1ξ1 + ci2ξ2 + · · · + cinξn, i = 1, . . . , n1

is a basis of Sol(L1). Similarly, we can recover the coefficients b j of L1 from the ηi’s following

the above steps. Thus, b j ∈ F (ci j)〈ξ1, . . . , ξn〉, which is a finitely generated differential algebraic

extension field of F .

Differential resultant for two univariate differential polynomials was first introduced by Ritt

[17]. Carrà-Ferro then proposed to use algebraic Macaulay resultants to compute differential

resultants for n+ 1 differential polynomials in n differential variables [2, 3], which is incomplete

in that under her method, even the differential resultant of two generic nonlinear univariate dif-

ferential polynomials is identically zero. The first rigorous definition of the differential resultant

for n + 1 differential polynomials in n differential variables was given in [8]. Although Ferro’s

matrix formulae do not work for the general case, these definitions for the differential resultant

of two linear univariate differential polynomials are equivalent. Now we recall the definition of

differential resultants for two linear univariate differential polynomials via the matrix formulae.

Definition 4.4. Let f1, f2 ∈ D{u} be linear differential polynomials of order m1,m2 over a differ-

ential domain D. Let PS =
{

f
(m2)

1
, f

(m2−1)

1
, · · · , f1, f

(m1)

2
, f

(m1−1)

2
, · · · , f2

}

and set L = m1 +m2 + 2.

Let M be the L × L matrix whose k-th row is the coefficient vector of the k-th polynomial in PS

w.r.t. u(m1+m2) > u(m1+m2−1) > · · · > u > 1 (i.e., the resultant matrix of PS w.r.t. u( j), j ≤ m1 + m2).

This M is called the differential resultant matrix of f1 and f2 w.r.t. u, and det(M) is defined to be

the differential resultant of f1, f2, denoted by δ-Res( f1, f2).

The following result shows that the differential resultant can be applied to compute the im-

plicit equation for proper linear differential rational parametric equations.

Theorem 4.5. Let P(u) = (
P1(u)

Q1(u)
,

P2(u)

Q2(u)
) be a linear differential rational parametrization with

mi = ord( Pi

Qi
) ≥ 0 for i = 1, 2. If P(u) is proper, then the differential resultant

R(x, y) := δ-Resu

(

xQ1(u) − P1(u), yQ2(u) − P2(u)
)

, 0.
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Furthermore, ordxR = m2, ordyR = m1 and R is linear in x(m2) and y(m1).

Proof. Let f1 = xQ1(u) − P1(u), f2 = yQ2(u) − P2(u) ∈ F {u, x, y}. Denote m = m1 + m2 + 2. Let

M ∈ F {x, y}m×m be the differential resultant matrix of f1, f2 w.r.t. u. Then R := δ-Res( f1, f2) =

det(M) ∈ F {x, y}. To show R , 0, it suffices to prove that coeff(det(M), x(m2)) , 0.

Note the fact that only f (m2) effectively involves x(m2) and f (m2) is linear in x(m2) with coeffi-

cient Q1(u). So coeff(det(M), x(m2)) = det(M1), where M1 ∈ F {x, y}
m×m be the resultant matrix

of Q1, f
(m2−1)

1
, . . . , f ′

1
, f1, f

(m1)

2
, . . . , f ′

2
, f2 w.r.t. the variables u(m1+m2), u(m1+m2−1), . . . , u′, u. For

j = 1, . . . ,m − 1, multiply the j-th column of M1 by u(m−1− j) and add it to the last column, then

compute det(M1) by the last column. So there exist ai, b j, a ∈ F {x, y} such that

det(M1) = a(x, y)Q1(u) +

m2−1
∑

i=0

ai(x, y) f
(i)

1
+

m1
∑

j=0

b j(x, y) f
( j)

2
. (8)

Clearly, a(x, y) = p(y) · det(M2) · (−1)m1+1, where p(y) = coeff( f2, u
(m2)) , 0 and M2 is the

submatrix obtained from M1 by removing the 1-th, the (m2 + 2)-th rows, and the 1-th, the m-th

columns. We claim that det(M2) , 0.

If mi = 0 for some i, then det(M2) = (coeff( fi, u))m−2
, 0. Now suppose m1,m2 > 0. Assume

P(u) = (
L11(u)+a11

L12(u)+a12
,

L21(u)+a21

L22(u)+a22
) where Li j ∈ F [δ], and for each i, Li1 and Li2 are not both equal to

zero. Clearly,

det(M2) = δ-Resh(xL12(u) − L11(u), yL22(u) − L21(u)).

By [4, Theorem 2], δ-Resh(xL12(u) − L11(u), yL22(u) − L21(u)) , 0 if and only if gcrd(xL12 −

L11, yL22 − L21) = 1 (over F 〈x, y〉). We now show gcrd(xL12 − L11, yL22 − L21) = 1. Suppose

the contrary, that is, gcrd(xL12 − L11, yL22 − L21) = D(δ) which is monic of degree greater than

0. By Lemma 4.3, D(δ) can not effectively involve x or y. For if not, suppose D(δ) effectively

involves x, which contradicts the fact that the coefficients of a monic right divisor of yL22 − L21

have finite transcendence degree over F 〈y〉 (x is differentially transcendental over F 〈y〉). So

D(δ) ∈ F [δ]. As a consequence, F 〈P(u)〉 ⊆ F 〈D(u)〉 $ F 〈u〉, contradicting the hypothesis that

P(u) is proper. Thus, gcrd(xL12 − L11, yL22 − L21) = 1 and det(M2) , 0 follows.

Since det(M2) , 0, a(x, y) = (−1)m1+1 p(y) · det(M2) , 0. Let A(x, y) ∈ F {x, y} be an

irreducible differential polynomial such that P(u) is the general component of A. Since P(u) is

proper, by Theorem 3.7, ordxA = m2 and ordyA = m1. The fact ordxdet(M2) < m2 implies that

ordxa(x, y) < m2. So a(P(u)) , 0. By (8), det(M1)
∣

∣

∣

(x,y)=P(u)
, 0 and thus coeff(R(x, y), x(m2)) =

det(M1) , 0. So R , 0, ordxR = m2 and R is linear in x(m2). Since R ∈ [ f1, f2]∩F {x, y} ⊂

I(P(u)) = sat(A), ordyR ≥ ordyA = m1. Since ordyR ≤ m1, ordyR = m1 and R is linear in y(m1).

This completes the proof.

By Theorem 4.5, the implicitization of a proper linear differential rational parametrization

can be reduced to the computation of the corresponding differential resultant.

Corollary 4.6. Let (C, A) be a unirational differential curve with a linear differential rational

parametrization P(u) =
( P1(u)

Q1(u)
,

P2(u)

Q2(u)

)

with mi = ord( Pi

Qi
) ≥ 0 for i = 1, 2. Suppose P(u) is proper.

Then A is the main irreducible factor of R = δ-Res
(

xQ1(u) − P1(u), yQ2(u) − P2(u)
)

. That is, if

R = AB, then ord(B) < ord(R). In particular,

degx(m2) A = 1 and degy(m1) A = 1.
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Another direct consequence of Theorem 4.5 gives a necessary condition for a unirational

differential curve to possess a proper linear differential rational parametrization.

Corollary 4.7. Suppose A ∈ F {x, y} defines a unirational differential curve. A necessary condi-

tion such that (C, A) has a proper linear differential rational parametrization is that A is quasi-

linear under any ranking.

In [19, Theorem 30], Rueda et al. proved that a linear differential polynomial parametrization

(P(u),Q(u)) ∈ F {u}2 is proper if and only if the differential resultant δ-Res(x−P(u), y−Q(u)) , 0.

However, this result is not valid for linear differential rational parametrizations. We give a non-

example as follows.

Example 4.8. Let P(u) = ( u′′+1
u
, u′′+1

u
). Obviously, P(u) is not proper. But the differential resul-

tant δ-Res
(

xu − u′′ − 1, yu − u′′ − 1
)

= (y − x)3
, 0. Note that ord((y − x)3) < ord(P(u)).

Below, we shall give a characterization of properness for linear differential rational parametriza-

tions with the use of differential resultant combined with the order property. Before that, we need

some preparations by studying a particular differential remainder sequence.

Given a linear differential rational parametrization P(u) =
( P1(u)

Q1(u)
,

P2(u)

Q2(u)

)

with gcd(Pi,Qi) = 1

and mi = ord(
Pi(u)

Qi(u)
) ≥ 0 for i = 1, 2. Without loss of generality, suppose m1 ≥ m2. Denote

f1(x, y, u) = P1(u) − xQ1(u), f2(x, y, u) = P2(u) − yQ2(u). (9)

Fix the elimination ranking R : x < y < u. Let f3(x, y, u) = δ-prem( f1, f2) be the Ritt-Kolchin

remainder of f1 with respect to f2 under R. Since f1 < sat( f2), f3 , 0, ordu f3 < m2 and

ordy f3 ≤ m1 − m2. And Q1 < sat( f2) implies ordx f3 = 0. If ordu f3 ≥ 0, let f4(x, y, u) = δ-

prem( f2, f3). Then, we have

ordu f4 < ordu f3, ordx f4 ≤ m2 − ordu f3. (10)

If ordu f4 ≥ 0, then let f5 = δ-prem( f3, f4). Continue the differential reduction process when

ordu fl−1 ≥ 0 until we get fl = δ-prem( fl−2, fl−1) ∈ F {x, y} for some l ∈ N. Then, we obtain a

sequence of differential remainders

f1(x, y, u), f2(x, y, u), f3(x, y, u), · · · , fl−1(x, y, u), fl(x, y). (11)

Lemma 4.9. The obtained sequence (11) satisfies the following properties:

1) For 2 ≤ i ≤ l − 1, ordu fi + ordx fi+1 ≤ m2 and ordu fi + ordy fi+1 ≤ m1.

2) For each i ≥ 2, fi has the following representation form

fi+1 =

m2−ordu fi
∑

k=0

Ai,k(x, y) f
(k)

1
+

m1−ordu fi
∑

j=0

Bi, j(x, y) f
( j)

2
(12)

where Ai,k, Bi, j ∈ F {x, y}, and B
i,m1−ordu fi

, 0, A
i,m2−ordu fi

, 0 are products of separants

of fk (k ≤ i).
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Proof. We shall show 1) and 2) by induction on i. First note that ordu f2 + ordx f3 = m2 and

ordu f2 + ordy f3 ≤ m1. By the differential reduction formula for f3 = δ-prem( f1, f2), there exist

a ∈ N and Ck∈ F {x, y} such that f3 = (S f2 )a f1 − (S f2 )a−1S f1 f
(m1−m2)

2
−
∑m1−m2−1

k=0
Ck f

(k)

2
. So both

1) and 2) holds for i = 2.

Now suppose 1) and 2) holds for i ≤ j (≥ 2). We consider the case for i = j + 1. Since

both f1 and f2 are linear differential polynomials in u, all the fi (i ≤ l − 1) are linear in u and

its derivatives and thus ordu fi < ordu fi−1. By the induction hypothesis, ordu f j + ordx f j+1 ≤

m2, and f j+1 has a representation form as (12) with B
j,m1−ordu f j

, 0 , A
j,m2−ordu f j

, 0. Since

f j+2 = δ-prem( f j, f j+1), f j+2 is a linear combination of f j and f j+1, f ′
j+1
, . . . , f

(s)

j+1
with coefficients

in F {x, y} and in particular the nonzero coefficient for f
(s)

j+1
is a product of separants of f j, f j+1

where s = ordu f j − ordu f j+1. Thus, f j+2 has a representation form as (12) with B
j+1,m1−ordu f j+1

,

0 , A
j+1,m2−ordu f j+1

, 0 being products of the separants of fk (k ≤ j + 1). And

ordx f j+2 ≤ max{ordx f j+1 + ordu f j − ordu f j+1, ordx f j}

≤ max{m2 − ordu f j + ordu f j − ordu f j+1,m2 − ordu f j−1}

≤ m2 − ordu f j+1.

So ordu f j+1 + ordx f j+2 ≤ m2. Similarly, ordu f j+1 + ordy f j+2 ≤ m1 can be shown. Thus, 1) and 2)

are proved by induction.

Now, we are ready to propose the main theorem.

Theorem 4.10. Let P(u) = (
P1(u)

Q1(u)
,

P2(u)

Q2(u)
) be a linear differential rational parametrization with

mi = ord(
Pi(u)

Qi(u)
) ≥ 0. Then P(u) is proper if and only if

R := δ-Res
(

xQ1(u) − P1(u), yQ2(u) − P2(u)
)

, 0 and ordxR = ord
( P2

Q2

)

, ordyR = ord
( P1

Q1

)

.

Proof. “⇒”: It follows from Theorem 4.5.

“⇐”: Without loss of generality, suppose m1 ≥ m2. If m2 = 0, then F 〈
P2(u)

Q2(u)
〉 = F 〈u〉 and thus

P(u) is proper. So we only need to consider the case when m2 ≥ 1.

Let f1 = xQ1(u) − P1(u), f2 = yQ2(u) − P2(u) ∈ F {u, x, y}. Fix the elimination ranking

R : x < y < u. Do the differential reduction process as in Lemma 4.9 under R and we consider

the obtained sequence

f1(x, y, u), f2(x, y, u), f3(x, y, u), · · · , fl−1(x, y, u), fl(x, y).

By Lemma 4.9, there exist a, ai, b j ∈ F {x, y} with a , 0 , b
m2−ordu fl−1

, 0 such that

fl(x, y) = a(x, y) f
(m1−ordu fl−1)

2
+

m1−ordu fl−1−1
∑

i=0

ai(x, y) f
(i)

2
+

m2−ordu fl−1
∑

j=0

b j(x, y) f
( j)

1
. (13)

(Claim A) fl and fl−1 satisfy the following properties:

1) fl(x, y) , 0, ordx fl = m2 and ordy fl = m1.

2) fl−1(x, y, u) = g(x, y)u + h(x, y),where g, h ∈ F {x, y}\{0}.
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We now proceed to prove Claim A. We first show that fl , 0 and ordu fl−1 = 0. Suppose the

contrary that fl = 0. Then by (13), f1, f ′
1
, · · · , f

(m2−ordu fl−1)

1
, f2, f ′

2
, · · · , f

(m1−ordu fl−1)

2
are linearly

dependent over F 〈x, y〉. As a consequence, f1, f ′
1
, · · · , f

(m2)

1
, f2, f ′

2
, · · · , f

(m1)

2
are linearly depen-

dent over F 〈x, y〉, which contradicts the fact that δ-Res( f1, f2) , 0. Thus fl(x, y) , 0. And by

(13), 1 can be written as a linear combination of f1, f ′
1
, · · · , f

(m2−ordu fl−1)

1
, f2, f ′

2
, · · · , f

(m1−ordu fl−1)

2

over F 〈x, y〉 with a nonzero coefficient for f
(m1−ordu fl−1)

2
. If ordu fl−1 > 0, then by differenti-

ating on the both sides of this identity form, we obtain that f1, f ′
1
, · · · , f

(m2)

1
, f2, f ′

2
, · · · , f

(m1)

2

are linearly dependent over F 〈x, y〉, which leads to a contradiction. So ordu fl−1 = 0 and

fl−1 = g(x, y)u + h(x, y) for some g, h ∈ F {x, y} with g , 0.

It remains to show that ordx fl = m2, ordy fl = m1 and h , 0. Denote m = m1 + m2 + 2. Let

M ∈ F 〈x, y〉m×m be the resultant matrix of f
(m2)

1
, . . . , f ′

1
, f1, f

(m1)

2
, . . . , f ′

2
, f2 w.r.t. the variables

u(m1+m2), u(m1+m2−1), . . . , u′, u. We perform row operations on M using the ai and b j in (13) as

follows. For i , m2 + 2, add a multiple ci of the i-row to the (m2 + 2)-th row of M successively

and denote the obtained matrix by M1, where for i = 1, . . . ,m2 + 1, ci = bm2+1−i/a; and for

i ≥ m2 + 3, ci = am1+m2+2−i/a. By (13), the (m2 + 2)-th row of M1 becomes (0 0 · · · 0 fl/a).

Thus,

δ-Res( f1, f2) = det(M) = det(M1) = (−1)m1c · fl/a · det(M2), (14)

where c , 0 is the coefficient of f
(m2)

1
in u(m1+m2), and M2 is the matrix obtained by deleting the

1-th row, the (m2 + 2)-row, the 1-th column and the last column. Obviously, ordxdet(M2) < m2

and ordxc ≤ 0. By Lemma 4.9, ordxa(x, y) < m2. Since ordxδ-Res( f1, f2) = ord( P2

Q2
) = m2, by

(14), we have ordx fl = m2. Similarly, ordy fl = m1 follows from the facts that ordydet(M2) < m1,

ordyc = −∞, ordya(x, y) < m1 and ordyδ-Res( f1, f2) = m1. We finish the proof of Claim A

by showing h , 0. If h = 0, then fl = gk fl−2(x, y, 0) for some k ∈ N and thus ordx fl ≤

max{ordxg, ordx fl−2} < m2 by Lemma 4.9, a contradiction. Thus h , 0 and Claim A is proved.

Since det(M) is linear in x(m2) and ordx fl = m2, by (14), fl is linear in x(m2). Recall that

ordx fl−1 < m2. Thus,A = fl, fl−1 constitutes an irreducible autoreduced set w.r.t. the elimination

ranking R1 : y < x < u, and P = sat(A) is a prime differential ideal with a characteristic set A

under R1. We shall show [ f1, f2] : (Q1Q2)∞ ⊂ P by proving i) f1, f2 ∈ P and ii) Q1,Q2 < P.

To show i), by Lemma 4.9, for each 1 ≤ i ≤ l − 1, ordx fi < m2 and thus the separant

S fi < P. By the reduction process, for each 1 ≤ i ≤ l − 2, there exists ki ∈ N such that

S
ki

fi+1
fi ≡ fi+2 mod [ fi+1]. Therefore, fl−2 ∈ P and consequently f2, f1 ∈ P.

To show ii), let M3 ∈ F {x, y}
m×m be the resultant matrix of Q1, f

(m2−1)

1
, . . . , f ′

1
, f1, f

(m1)

2
, . . . ,

f ′
2
, f2 w.r.t. u(m1+m2), . . . , u′, u. Then det(M3) = coeff(R, x(m2)) , 0, for R is linear in x(m2). There-

fore, Q1, f
(m2−1)

1
, . . . , f ′

1
, f1, f

(m1)

2
, . . . , f ′

2
, f2 are linearly independent over F (x[m2−1], y[m1]), and

SpanF (x[m2−1],y[m1])(Q1, f
(m2−1)

1
, . . . , f ′1 , f1, f

(m1)

2
, . . . , f ′2 , f2) = SpanF (x[m2−1],y[m1])(1, u, · · · , u

(m1+m2)).

The representation of 1 in terms of Q1, f
(m2−1)

1
, . . . , f2 yields a nonzero differential polynomial

G ∈ [Q1, f1, f2] ∩ F {x, y} with ordxG < m2. If Q1 ∈ P, then G ∈ P ∩ F {x, y} = sat( fl), which is

impossible. Thus, Q1 < P. Note that ∂2R

∂x(m2)∂y(m1) = det(M4) = 0, where M4 is the resultant matrix

of Q1, f
(m2−1)

1
, . . . , f ′

1
, f1,Q2, f

(m1−1)

2
. . . , f ′

2
, f2 w.r.t. u(m1+m2), . . . , u′, u. So by (14), if B is the

irreducible factor of fl effectively involving x(m2), then ordyB = m1 and B is linear in y(m1). Thus,

P ∩ F {x, y} = sat( fl) = sat(B) and B is a characteristic set of sat( fl) w.r.t. any ranking. Since

coeff(R, y(m1)) , 0, repeating the above procedures, we obtain some H ∈ [Q2, f1, f2] ∩ F {x, y}

with ordyH < m1, and consequently Q2 < P. Thus,
(

[ f1, f2] : (Q1Q2)∞
)

⊂ P.
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Suppose P(u) is a differential rational parametrization of A(x, y) ∈ F {x, y}. Then A ∈
(

[ f1, f2] : (Q1Q2)∞
)

∩F {x, y} ⊂ P ∩ F {x, y} = sat( fl). Since ordxA ≤ m2 by Proposition 3.4,

ordxA = m2 and ordyA = m1 − m2 + ordxA = m1 follows. By Theorem 4.2, P(u) is proper.

Applying Theorem 4.10, we can devise an algorithm to decide whether a given linear differ-

ential rational parametrization is proper or not and in the affirmative case, to compute the implicit

equation. Precisely, given the following linear differential rational parametric equations:























x =
P1(u)

Q1(u)

y =
P2(u)

Q2(u)

,

we first compute the differential resultant R = δ-Res(Q1(u)x − P1(u),Q2(u)y − P2(u)) w.r.t. u.

In the cases when (1) R = 0, or (2) R , 0 and (ordxR, ordyR) , (ord(
P2(u)

Q2(u)
), ord(

P1(u)

Q1(u)
), this

parametrization is not proper. Otherwise, R , 0, ordxR = ord(
P2(u)

Q2(u)
) and ordyR = ord(

P1(u)

Q1(u)
), then

this parametrization is proper and the implicit equation is the main factor of R.

The correctness of this algorithm is guaranteed by Theorem 4.10. To compute the differential

resultant R, we just need to compute the determinant of a matrix of size m1 + m2 + 2 with

mi = ord( Pi

Qi
). So the complexity of this algorithm is (m1 + m2 + 2)ω, which is much more

efficient than the implicitization algorithms using characteristic sets. Here, ω is the exponent of

matrix multiplication. However, we should point out that when the given paramatrization is not

proper, the current algorithm fails to compute the implicit equation while the characteristic set

method can always produce the implicit equation.

Remark 4.11. In this section, we are interested in proper linear differential rational parametriza-

tions. However, even if a uniration differential curve has a linear differential rational parametriza-

tion, it may happen that it does not have a proper linear differential rational parametrization.

For example, let A = (x′x + x3 − 2x2 − x)y′ + (xy + y2)x′′ + 3y2x′x + y2x3 − 2yx′2 + 6yx′x +

3yx′ + 4yx3
+ 3yx2 − 2xy − y + 5x3

+ 2x2. Then P(u) = ( u′′

u′+u′′′
, u′+2u′′

u(4) ) is a linear differential ra-

tional parametrization of (C, A) and Q(u) =
( u

u′+u2+1
, 2u+1

u′′+3uu′+u3

)

is a proper differential rational

parametrization of (C, A). By Theorem 3.10, any proper differential rational parametrization of

(C, A) is of degree greater than 1.

We conclude this section by giving a property of the inversion map of proper linear differen-

tial rational parametrization.

Corollary 4.12. Let (C, A) be a unirational differential curve with a proper linear differential

rational parametrization P(u) = (
P1(u)

Q1(u)
,

P2(u)

Q2(u)
). Let mi = ord( Pi

Qi
) ≥ 1 for i = 1, 2. SupposeU :

C −−→ A1 given by U(x, y) ∈ F 〈x, y〉 is the inversion of P(u). Then ordxU < m2, ordyU < m1.

Proof. By the proof of Theorem 4.10, fl−1 is linear in u with ordx fl−1 < m2 and ordy fl−1 < m1.

Thus, u ∈ F
( P1

Q1
, ( P1

Q1
)′, · · · , ( P1

Q1
)(m2−1), P2

Q2
, ( P2

Q2
)′, · · · , ( P2

Q2
)(m1−1)

)

.

5. Rational parametrization for linear differential curves

We now deal with the paramerization problem for differential curves, which asks for criteria

to decide algorithmically whether an implicitly given differential curve is unirational or not, and

in the affirmative case, to return a differential rational parametrization. In general, it is a very
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difficult problem. In this section, we start from the simplest nontrivial case by considering the

unirationality problem of linear differential curves.

Definition 5.1. Let (C, A(x, y)) be an irreducible differential curve. We call C a linear differential

curve if A is a linear differential polynomial in F {x, y}.

In the algebraic case, by Gaussian elimination, we know each linear variety is unirational

and has a polynomial parametric representation. However, in the differential case, even a linear

differential curve might not be unirational as shown in Example 3.5 (2).

Every linear differential polynomial A(x, y) ∈ F {x, y} is of the form

A = L1(x) + L2(y) + a

for some linear differential operators L1, L2 ∈ F [δ] where at least one Li is nonzero and a ∈

F . We shall show in Theorem 5.4 that a necessary and sufficient condition for A(x, y) to be

unirational is that the greatest common left divisor of L1, L2 is 1. Before that, we recall the

extended left Euclidean algorithm given by Bronstein et al. in [1, pp.14-15].

In general, F [δ] is a non-commutative domain and there exist the left and the right Euclidean

divisions in F [δ]. Given L1, L2 ∈ F [δ] with L2 , 0, by the left Euclidean division, we obtain

Q,R ∈ F [δ] with deg(R) < deg(L2) satisfying L1 = L2Q + R, where Q and R are called re-

spectively the left-quotient and the left-remainder of L1 w.r.t. L2, denoted by lquo(L1, L2) and

lrem(L1, L2). If R = 0, then L2 is called a left divisor of L1, and correspondingly, L1 is called

a right multiple of L2. A common left divisor of L1 and L2 with the highest degree is called a

greatest common left divisor of L1 and L2. There exists a unique, monic (i.e., reduced in Ore’s

sense), greatest common left divisor, denoted by gcld(L1, L2). A common right multiple of L1, L2

of minimal degree is called a least common right multiple. And we have analogous notions for

right Euclidean divisions. Below, we restate the extended left Euclidean algorithm ELE(L1, L2)

for later use and list its basic properties in Proposition 5.2, which were given in [1, pp.14-15].

Left Euclidean Algorithm: ELE(L1, L2)

Input: L1, L2 ∈ F [δ].

Output: The tuple (Rn−1, An, Bn, An−1, Bn−1) ∈ F [δ]5.

1. R0 := L1, A0 := 1, B0 := 0;

R1 := L2, A1 := 0, B1 := 1;

i := 1.

2. While Ri , 0 do

i := i + 1;

Qi−1 := lquo(Ri−2,Ri−1);

Ri := lrem(Ri−2,Ri−1);

Ai := Ai−2 − Ai−1Qi−1;

Bi := Bi−2 − Bi−1Qi−1.

3. n := i, and return (Rn−1, An, Bn, An−1, Bn−1).

Proposition 5.2. Let L1, L2 ∈ F [δ]. The algorithm ELE(L1, L2) can be used to compute a great-

est common left divisor and a least common right multiple of L1, L2 and the obtained sequences

Ai, Bi,Ri satisfy the following properties:

(1). Rn−1 is a greatest common left divisor of L1, L2;
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(2). L1An = −L2Bn is a least common right multiple of L1, L2;

(3). Ri = L1Ai + L2Bi for 0 ≤ i ≤ n;

(4). deg(Ai) = deg(L2) − deg(Ri−1), deg(Bi) = deg(L1) − deg(Ri−1) for 2 ≤ i ≤ n.

The following result given in [19] will be used to derive Theorem 5.4.

Lemma 5.3. [19, Theorem 30] Let L1, L2 ∈ F [δ]. Then F 〈L1(u), L2(u)〉 = F 〈u〉 if and only if

gcrd(L1, L2) = 1 (i.e., a greatest common right divisor of L1, L2 belongs to F \{0}).

Theorem 5.4. Let F = L1(x) + L2(y) + a ∈ F {x, y}\F with L1, L2 ∈ F [δ]. Then,

(C, F) is unirational if and only if gcld(L1, L2) = 1.

Furthermore, each unirational linear differential curve has a proper linear differential polyno-

mial parametrization.

Proof. For the necessity, suppose (C, F) is unirational. If gcld(L1, L2) , 1, then there exist

L ∈ F [δ]\F and L3, L4 ∈ F [δ] such that L1 = LL3, L2 = LL4. Then F = L(L3(x)+L4(y))+a with

ord(L3(x)+L4(y)) < ord(F). Since there exists P(u) ∈ F 〈u〉2 such that sat(F) = I(P(u)), we have

F(P(u)) = 0, which implies that L3(P(u))+ L4(P(u)) ∈ F . Thus, A := L3(x)+ L4(y)− b ∈ sat(F)

for some b ∈ F . Since ord(A) < ord(F), this leads to a contradiction. So gcld(L1, L2) = 1.

To show the sufficiency, suppose gcld(L1, L2) = 1. By performing the algorithm ELE(L1, L2),

we obtain Ai, Bi, Ri ∈ F [δ] satisfying the properties given in Proposition 5.2. In particular,

L1An = −L2Bn is a least common right multiple of L1 and L2. The fact that gcld(L1, L2) = 1

yields c := Rn−1 ∈ F \{0}, and consequently deg(An) = deg(L2), deg(Bn) = deg(L1). Let

P(u) =
(

An(u) + An−1(−a/c), Bn(u) + Bn−1(−a/c)
)

∈ F {u}2.

We shall show that P(u) is a proper linear differential polynomial parametrization of (C, F).

We first proveF 〈P(u)〉 = F 〈u〉. Since F 〈P(u)〉 = F 〈An(u), Bn(u)〉, by Lemma 5.3, it suffices

to prove that gcrd(An, Bn) = 1. If gcrd(An, Bn) , 1, there exists C(δ) ∈ F [δ]\F such that

An = C1(δ)C(δ), Bn = C2(δ)C(δ) for some C1,C2 ∈ F [δ]. Since L1An = −L2Bn, we obtain

L1C1 = −L2C2 is also a common right multiple of L1, L2, which contradicts the fact that L1An is

a least common right multiple of A, B. Therefore, F 〈P(u)〉 = F 〈u〉.

By Theorem 3.7, there exists an irreducible differential polynomial G(x, y) ∈ F {x, y} with

ordxG = deg(L1), ordyG = deg(L2) such that I(P(u)) = sat(G). Since L1An−1 + L2Bn−1 = c,

by acting this operator on −a/c, we have L1(An−1(−a
c

)) + L2(Bn−1(−a
c

)) = −a. So F(P(u)) =

L1(An(u)) + L2(Bn(u)) = (L1An + L2Bn)(u) = 0 and F ∈ sat(G) follows. Since ord(G) = ord(F)

and F is linear, F = eG for some e ∈ F and I(P(u)) = [F]. Thus, P(u) is a proper linear

differential polynomial parametrization of F and (C, F) is unirational. The later assertion follows

directly from the above proof.

By the proof of Theorem 5.4, we can devise an algorithm to determine whether an implicitly

given linear differential curve is unirational or not, and in the affirmative case, to construct a

proper linear differential polynomial parametrization for it.
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Algorithm Linear-Differential-Curve-Parametrization: LDCP(F)

Input: F = L1(x) + L2(y) + a ∈ F {x, y}\F with L1, L2 ∈ F [δ].

Output: A proper linear differential polynomial parametrization P(u) of (C, F), if it is

unirational; No, in the contrary case.

1. Perform ELE(L1, L2) = (Rn−1, An, Bn, An−1, Bn−1);

2. If Rn−1 < F , then return No;

3. Return P(u) =
(

An(u) + An−1(−a/Rn−1), Bn(u) + Bn−1(−a/Rn−1)
)

.

Below, we give examples to illustrate Theorem 5.4.

Example 5.5. (1) Let A = x′′−y′ ∈ Q{x, y}, then L1 = δ
2, L2 = δ and (C, A) is not unirational.

(2) Let A = y′ − x′ − x ∈ Q{x, y}, then L1 = −δ − 1, L2 = δ, (C, A) is unirational with a proper

parametrization (u′, u + u′).

(3) Let A = x′ + x + ty′ + (t + 1)y ∈ Q(t){x, y} with δ = d
dt

. For this example, L1 = δ + 1, L2 =

tδ + t + 1. Since gcld(L1, L2) = δ + 1, (C, A) isn’t unirational.

(4) Let A = tx′ + tx + y′ + y ∈ Q(t){x, y} with δ = d
dt

. Then (C, A) is unirational with a

proper parametrization (u′ + u,−tu′ + (1 − t)u). Here L1 = tδ + t, L2 = δ + 1. Note that

gcld(L1, L2) = 1 but gcrd(L1, L2) = δ + 1.

Given two differential polynomials A, B ∈ F {x, y}, we have shown in Example 3.5 2) that if

A is a proper derivative of B, then (C, A) is not differentially unirational. If additionally both A

and B are linear, we have a stronger result as follows.

Proposition 5.6. Let A, B be two linear differential polynomials in F {x, y}\F .

1). If A ∈ [B] with ord(A) > ord(B), then (C, A) is not differentially unirational.

2). Suppose A is differentially unirational. If [A] ⊆ [B], then [A] = [B].

Proof. Without loss of generality, suppose ord(A) = ordxA and set s = ordxA − ordxB. Suppose

A ∈ [B]. Since A, B are linear, there exists ai ∈ F with as , 0 such that

A = a0 · B + a1 · B
′
+ · · · + as · B

(s).

Clearly, the result 2) is a direct consequence of 1), so it suffices to show 1). If ord(A) > ord(B),

then s > 0 and a0+a1δ+· · ·+asδ
s is a common left divisor of L1, L2, where A = L1(x)+L2(y)+b ∈

F {x, y}. By Theorem 5.4, A is not differentially unirational.

Remark 5.7. Proposition 5.6 shows that given two linear differential curves C2 ⊆ C1, if C1 is

unirational, then C1 = C2. However, in general, the inclusion of unirational differential curves

doesn’t imply the equality. For example, let A = y′x− x′y+ xy2 and B = y, then (C2, B) $ (C1, A).

Note that (C1, A) and (C2, B) are unirational with prametrizations (u′, u′

u
) and (u, 0) respectively.

Now consider the implicitization of linear differential curves with given linear differential

polynomial parametrization equations. In [19, Sec. 8.1., Algorithm 2], an algorithm was devised

to compute the implicit equation of the linear differential curve using differential resultants. We

give an alternative method based on the differential remainder sequence introduced in (11).

19



Proposition 5.8. Let P(u) = (P1(u), P2(u)) ∈ (F {u}\F )2 be a linear differential polynomial

parametrization. Let f1 = x − P1(u), f2 = y − P2(u) ∈ F {u, x, y}. Suppose

f1(x, y, u), f2(x, y, u), · · · , fl−1(x, y, u), fl(x, y)

is the differential remainder sequence under the elimination ranking R : x < y < u obtained by

the differential reduction process as in Lemma 4.9. Then P(u) parametrizes (C, fl(x, y))

Proof. Let A(x, y) = 0 be the implicit equation of x = P1(u), y = P2(u). That is, A is linear

with I(P(u)) = [A(x, y)]. Since fi−2 ≡ fi mod [ fi−1] for i = 3, . . . , l, each fi ∈ [ f1, f2] and

f1, f2 ∈ [ fl, fl−1]. We first show that fl(x, y) , 0. Suppose the contrary, then f2, f1 ∈ [ fl−1]. Since

fl−1 ∈ [ f1, f2], we have ordx fl−1 ≥ 0 or ordy fl−1 ≥ 0, which contradicts the fact that f2, f1 ∈ [ fl−1].

So fl(x, y) , 0. Without loss of generality, suppose ord(P1) ≥ ord(P2). Two cases are considered:

• Case 1) l = 3. Here, f3(x, y) ∈ I(P(u)) = [A]. Since ordx f3 = 0 and ordxA ≥ 0, f3 = cA for

some c ∈ F and I(P(u)) = [ f3] follows.

• Case 2) l ≥ 4. Since ordy fi = ordu f1 − ordu fi−1 for i ≥ 3, ordy fi−1 < ordy fi for 4 ≤ i ≤ l.

Thus,A : fl(x, y), fl−1(x, y, u) is a characteristic set of the prime differential ideal [ fl, fl−1]

under R. Since f2, f1 ∈ [ fl, fl−1], A(x, y) ∈ [ f1, f2] ⊆ [ fl, fl−1]. Therefore, ordy fl ≤ ordyA.

Since fl ∈ I(P(u)) = [A], fl = cA for some c ∈ F and I(P(u)) = [ fl].

Thus, P(u) is a differential parametrization of the differential curve (C, fl).

Remark 5.9. Example 5.5 (1) shows that the linear differential curve C = V(x′′ − y′) ⊂ A2 is

not unirational. However, if we allow differential rational parametrizations involving arbitrary

constants as in [7, Example 1.2.], then C has a parametrization of the form x = u and y = u′ + c

where c is an arbitrary constant. It is also an interesting topic to study generalized “unirational”

differential curves with rational parametrizations involving arbitrary constants.

6. Problems for further study

There are several problems for further study. Given a linear differential rational parametriza-

tion P(u) = (
P1(u)

Q1(u)
,

P2(u)

Q2(u)
), Theorem 4.10 provides an algorithm to decide whether a given linear

differential rational parametrization is proper or not, and in the affirmative case, to compute the

implicit equation. It is interesting to see whether in general the differential resultant can be used

to compute the implicit equations of proper differential rational parametric equations.

The most important and unsolved problem is to give general methods to determine the ra-

tional parametrizability of nonlinear differential curves and if so, to develop efficient algorithms

to compute proper differential rational parametrizations. Motivated by the results for algebraic

curves, the determination problem may amount to define new differential invariants such as dif-

ferential genus for differential curves as proposed in [6] and [7].
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[22] J.R. Sendra, F. Winkler, S. Pérez-Dı́az. Rational Algebraic Curves: A Computer Algebra Approach. Springer Pub-

lishing Company, Incorporated, 2007.

[23] W.Y. Sit. The Ritt-Kolchin Theory for Differential Polynomials. In Differential Algebra and Related Topics, 1-70,

World Scientific, 2002.

[24] F. Winkler. The Algebro-Geometric Method for Solving Algebraic Differential Equations — A Survey. Journal of

Systems Science and Complexity, 32(1), 256-270, 2019.

21


	1 Introduction
	2 Basic notions and notation
	3 Unirational differential curves and proper differential rational parametrizations
	4 Proper linear differential rational parametrizations and the implicitization problem
	5 Rational parametrization for linear differential curves
	6 Problems for further study
	7 Acknowledgements

