
ar
X

iv
:2

10
6.

05
77

7v
1 

 [
m

at
h.

G
R

] 
 1

0 
Ju

n 
20

21

Homogeneous spaces of real simple Lie groups with

proper actions of non virtually abelian discrete

subgroups: a calculational approach

Maciej Bocheński, Piotr Jastrzȩbski and Aleksy Tralle
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Abstract

Let G be a simple non-compact linear connected Lie group and H ⊂ G
be a closed non-compact semisimple subgroup. We are intersted in finding
classes of homogeneous spaces G/H admitting proper actions of discrete non-
virtually abelian subgroups Γ ⊂ G. We develop an algorithm for finding such
homogeneous spaces. As a testing example we obtain a list of all non-compact
homogeneous spaces G/H admitting proper action of a discrete and non vir-
tually abelian subgroup Γ ⊂ G in the case when G has rank at most 8, and H
is a maximal proper semisimple subgroup.
Keywords: proper actions, semisimple algebras, Clifford-Klein forms.

AMS Subject Classification: 57S30, 17B20, 22F30, 22E40, 65-05, 65F

1 Introduction

A group is called non-virtually abelian if it has no finite index abelian sub-
groups. Let G be a real simple linear non-compact Lie group and let H ⊂ G
be a proper closed non-compact semisimple subgroup. In this paper we are
interested in a problem of finding homogeneous spaces G/H, which admit a
proper action of non virtually abelian discrete subgroups Γ ⊂ G. We create
a procedure of generating some homogeneous spaces with the aformentioned
property. As a testing example, we give a complete list of non-compact ho-
mogeneous spaces G/H which admit a proper action of a discrete subgroup
Γ ⊂ G which is non-virtually abelian when H is a maximal proper semisimple
subgroup and the rank of G is ≤ 8.
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Let us recall the definition of a proper group action. Let L be a locally com-
pact topological group acting continuously on a locally Hausdorff topological
space X. This action is proper if for every compact subset S ⊂ X the set

LS := {g ∈ L|g · S ∩ S 6= ∅}

is compact.
If there exists a discrete Γ ⊂ G acting properly on G/H, we say that G/H

admits a Clifford-Klein form. If Γ\G/H is compact, we say that G/H admits
a compact Clifford-Klein form. The problem of finding an appropriate discrete
subgroup is straightforward when H is compact. In this case any torsion-free
discrete subgroup of G acts properly on G/H. On the other hand if H is
non-compact then it may happen that no infinite discrete subgroup of G acts
properly on G/H. In more detail, if rankRG = rankRH then only finite groups
can act properly on G/H (this is the Calabi-Markus phenomenon [14], [16]).
Moreover there are spaces which only admit a proper action of virtually abelian
discrete subgroups (see [1]), for instance SL(2n+1,R)/SL(2n,R). Benoist [1]
has found a criterion of the existence of a proper actions of a non-virtually
abelian discrete subgroup of G on G/H expressed in terms of the Lie algebra
data. This criterion yielded explicit examples of G/H which admit and which
do not admit such actions. Using the results of Benoist and T. Kobayashi, and
a classification of nilpotent orbits, Okuda [17] classified irreducible symmetric
spaces admitting proper action of non-virtually abelian discrete subgroups.
Motivated by these results, the first and the third named author of this article
proposed in [3] a definition of an a-hyperbolic rank of a reductive real Lie
group. Using the a-hyperbolic ranks one can formulate conditions (similar
to the Calabi-Markus phenomenon) under which the space G/H admits, or
does not admit proper actions of non-virtually abelian discrete subgroups ([3],
Theorem 2). In [7] other examples of homogeneous spaces G/H admitting
proper actions of non-virtually abelian discrete subgroups were given.

As explained in [15], Section 3.8, in general the smaller the non-compact
part of H, the more possibilities for discrete subgroups Γ ⊂ G proper actions
on G/H exist. Therefore in this paper we investigate the extreme case, that is,
when H is a maximal proper subgroup of G. One expects that in this situation
the existence of an appropriate Γ is the most difficult to obtain.

Since the problem of finding discrete subgroups of G acting properly on
G/H is difficult, it is tempting to take another route in a more algorithmic
fashion. T. Kobayashi found a criterion of properness of the action of reductive
Lie subgroup L ⊂ G on a homogeneous space G/H expressed in purely Lie-
theoretic terms [16]. We present this result as Theorem 1. Note that if Γ
is a lattice in L, then it also acts properly on G/H. However, the problem

2



of classifying triples (G,H,L) satisfying the criterion [16] is far from being
solved, although there are numerous examples of both types, satisfying and
not satisfying it. Since a general description of such triples (G,H,L) is not
well understood, it is natural to take up a computer aided investigation of
various aspects of proper actions of Lie groups on homogeneous spaces. In
this direction we developed several numerical procedures. For example, in [4]
we proved that there are no compact Clifford-Klein forms of exceptional Lie
groups. In [6] we proposed an algorithm for checking an obstruction to the
existence of compact Clifford-Klein forms. Looking at the problem from this
angle we keep in mind that there are algorithms for various calculations in
semisimple Lie algebras designed by de Graaf et. al., which yield methods
of construction of semisimple subalgebras in simple complex Lie algebras [10],
in real Lie algebras [13], calculations with the real Weyl groups [12], and the
classification of real semisimple subalgebras in simple real Lie algebras of rank
≤ 8 [11]. It should be mentioned that these algorithms were implemented (see
packages [20] and [22]). In this article we develop an algorithm which checks
the Kobayashi’s criterion for the case when the real rank of L is 1 and g, l are
split Lie algebras (Theorem 5). We apply our algorithms to the database [11]
and obtain the complete description of homogeneous spaces G/H of simple real
linear Lie group G of rank ≤ 8 determined by maximal semisimple subgroups
H in G (Theorem 6) such that G/H admits proper action of a discrete non-
virtually abelian subgroup of G. We implement our algorithms using packages
[20],[21] and [22].
Acknowledgment. We thank Willem de Graaf for discussions and answering
our questions. The first named author acknowledges the support of the Na-
tional Science Center, Poland (grant NCN no. 2018/31/D/ST1/00083). The
third named author was supported by National Science Center, Poland (grant
2018/31/B/ST1/00053).

2 Preliminaries

Our basic references for the Lie theory are [18] and [19]. We consider real and
complex Lie algebras and we write gc for a complex Lie algebra and g for the
real form of gc. We say that h is a maximal subalgebra in g if hc is maximal
and proper in gc (with respect to inclusion). In general, it may happen that
there is a subalgebra h ⊂ g which is maximal in g but hc is not maximal
in gc. Therefore, we restrict ourselves to a smaller class of inclusions of Lie
algebras. Now we just fix some notation used throughout the article and recall
the notion of the Satake diagram. Let g be a semisimple real Lie algebra. There
is a Cartan decomposition g = k⊕ p and the corresponding Cartan involution
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θ. Fix a split Cartan subalgebra j = t ⊕ a, a ⊂ p being a maximal abelian
subalgebra in p. Then jc is a Cartan subalgebra in gc. Take a root system
∆ = ∆(gc, jc) with respect to jc and define

∆0 = {α ∈ ∆ |α|a = 0}.

Put ∆1 = ∆ \∆0 and choose a set of simple roots Π in ∆. Put Π0 = Π ∩∆0

and Π1 = ∆1 ∩Π. Define an involution σ∗ : j∗ → j∗ by the formula (σ∗µ)(x) =
µ(σ(x)). One can show that σ∗ determines an involution σ̃ on Π1. Then one
defines the Satake diagram as follows: one takes the Dynkin diagram for gc

and paints vertices from Π0 in black and from Π1 in white. Then one joins
by arrow white vertices transformed into each other by σ̃. Recall that Satake
diagrams classify semisimple real Lie algebras up to isomorphism. The list of
all Satake diagrams of real simple Lie algebras can be found in [19].

Definition 1. A weighted Dynkin diagram of a vector x ∈ jc is a map ψx :
Π → R defined by ψx(α) = α(x) for any α ∈ Π.

We say that g is split, if its Satake diagram coincides with the Dynkin diagram
(thus, there are no black nodes). For example, sl(n,R) is split.

Definition 2. We say that a weighted Dynkin diagram ψx matches the Satake
diagram of g if all black nodes have weights equal to 0 in ψx and every two
nodes joined by an arrow have the same weights.

2.1 Proper actions and the a-hyperbolic rank

We begin with two tools which often detect the existence or non-existence of
proper actions of reductive subgroups on a homogeneous space G/H . The first
one is Kobayashi’s criterion of properness [16], the second is an a-hyperbolic
rank [3]. Passing to the conjugates if necessary, we assume that there exists a
Cartan involution θ of g such that θ(h) = h and θ(l) = l. We get the following
Cartan decompositions

g = k+ p, h = kh + ph, l = kl + pl.

Let a, ah, al be maximal abelian subspaces in p, ph, pl, respectively. We may
assume that ah, al ⊂ a. Also denote by W (a) the little Weyl group of g.

Theorem 1 ([16], Theorem 4.1). The action of L on a homogeneous space
G/H is proper if and only if

W (a)al ∩ ah = {0}.
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Corollary 1 (The Calabi-Markus phenomenon, [16], Corollary 4.4). If

rankR(g) = rankR(h),

then only finite subgroups of G act properly on G/H.

There is one more tool of checking if G/H admits or does not admit proper
actions of non-virtually abelian discrete subgroups. It does not depend on the
embedding h →֒ g. Let Σ+ be the set of positive restricted roots of g with
respect to a. Let w0 ∈W (gc) denote the longest element in the Weyl group of
gc. It determines an involutive automorphism ι of the Cartan subalgebra of g
given by the formula X → −(w0X). Let a+ denote the subset

a+ = {H ∈ a |α(H) ≥ 0, ∀α ∈ Σ+}.

Consider the convex cone

b+ = {H ∈ a+ | ι(H) = H}.

Definition 3. An a-hyperbolic rank of g is defined as

ranka−hyp g = dim b+.

Theorem 2 ( [3], Theorem 8). Under the assumptions of Theorem 1
1. If ranka-hyp g = ranka-hyp h then G/H does not admit proper actions of

non virtually abelian discrete subgroups.
2. If ranka-hyp g > rankR h then G/H admits a proper action of a subgroup

L ⊂ G locally isomorphic to sl(2,R).

The a-hyperbolic rank of simple real Lie algebras can be calculated using the
data in Table 1. Table 1 can also be used to calculate the a-hyperbolic rank of
a reductive real Lie algebra since the following holds:

• the a-hyperbolic rank of a semisimple Lie algebra equals the sum of a-
hyperbolic ranks of all its simple parts.

• the a-hyperbolic rank of a reductive Lie algebra equals the a-hyperbolic
rank of its derived subalgebra.

A triple (h, e, f) of vectors in g is called an sl(2,R)-triple if

[h, e] = 2e, [h, f ] = −2f, and [e, f ] = h.

IfG is non-compact, there exists a homomorphism of Lie groups ν : SL(2,R) →
G, determined by

dν

(

1 0
0 −1

)

= h, dν

(

0 1
0 0

)

= e, dν

(

0 0
1 0

)

= f.

The same definition applied to sl(2,C) yields an sl(2,C)-triple in a complex
semisimple Lie algebra gc.
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a-hyperbolic ranks of simple Lie algebras

g ranka−hyp(g) rankR(g)
sl(2k,R), sl(2k,C) k 2k-1

k ≥ 2

sl(2k + 1,R), sl(2k + 1,C) k 2k
k ≥ 1

su∗(4k) k 2k-1
k ≥ 2

su∗(4k + 2) k 2k
k ≥ 1

so(2k + 1, 2k + 1) 2k 2k+1
k ≥ 2

eI
6

4 6

eIV
6

1 2
so(4k + 2,C) 2k 2k+1

k ≥ 2

eC
6

4 6

Table 1: The table contains all simple real Lie algebras g, for which

rankR(g) 6= ranka−hyp(g)

2.2 Presentation of the little Weyl group

It is convenient for us to follow [9], although there are other sources of the
material presented here. In this section G denotes a reductive algebraic group
over an arbitrary field k of characteristic not 2, θ denotes an involution in
Aut(G), and

K = Gθ = {g ∈ G | θ(g) = g}.

Let g denote the Lie algebra of G. The involution θ ∈ Aut(G) induces an
involution in Aut(g), which is denoted by the same letter. We get a decompo-
sition

g = gθ ⊕ p = k⊕ p,

k = gθ = {θ(A) = A, |A ∈ g}, p = {A ∈ g | θ(A) = −A}.

For a toral subalgebra t ⊂ g one defines the set of roots Φ(t) in a standard way,
as well as the root decomposition

g = g0 ⊕
∑

α∈Φ(t)

gα, g0 = Zg(t).

If t is a maximal toral subalgebra, then Φ(t) is a (reduced) root system. In
general, if t is not maximal, this is not the case. However, if a ⊂ p is a maximal
toral subalgebra in p, Φ(a) is a root system as well. In this section we always
assume the following:
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• t is a maximal toral subalgebra of g, such that a ⊂ t, where a ⊂ p is a
maximal toral subalgebra in p;

• Φ(t), Φ(a) denote the root systems determined by t and a, respectively.

Proposition 1 ([9], Lemma 1). In the above notation:
1. t is θ-stable,
2. t = t+ ⊕ t−, where t± = {x ∈ t | θ(x) = ±x},
3. t− = a, t+ ⊂ k.

Thus, Φ(t) and Φ(a) are root systems. The relation between them is described
in [9] as follows. Let

R(t) = Zspan(Φ(t)).

Note that θ acts on t, and, therefore, on R(t). Introduce the following notation:
• ∆(t) is a basis of Φ(t) and ∆(a) s a basis of Φ(a),
• Φ0 = {α ∈ Φ(t) |α|a = 0},
• X0(θ) = {χ ∈ R(t) | θ(χ) = χ}, and Φ0(θ) = Φ(t) ∩X0(θ)

Proposition 2 ([9], Lemma 5). In the above notation,
1. Φ0 and X0 are θ-stable,
2. Φ0(θ) is a closed subsystem of Φ(t),
3. Φ0 = Φ0(θ).

For a subset S ⊂ Φ(t) denote by W (S) the subgroup of the Weyl group
W (Φ(t)) generated by reflections sα, α ∈ S. Introduce the following subgroups
of W (Φ(t)):

W0(θ) =W (Φ0), W1(θ) = {w ∈W (Φ(t)) |w(X0(θ)) = X0(θ)}.

Theorem 3 ([9], Proposition 1). In the notation above

W (a) =W1(θ)/W0(θ).

We will follow the usual terminology and call W (a) the little Weyl group. Thus,
Theorem 3 describes the relation between the little Weyl group and the Weyl
group of g (which is W (Φ)).

Now let k = R and assume g is a non-compact semisimple real Lie algebra.
Let gc be the complexification of g. Consider a Cartan decomposition g = k⊕p

and the corresponding Cartan involution θ. Choose a maximal split abelian
subspace a ⊂ p. Let W (a) be the little Weyl group. Extend θ onto gc by
linearity. Then

• gc = kc ⊕ pc, kc = (gc)θ, pc = (gc)−,
• one can choose a Cartan subalgebra of gc in the form

tc = tc+ ⊕ ac

7



• tc(R) = (it+)⊕ a

On the other hand, considering gc and θ ∈ Aut(gc) one can obtain Φ(gc), Φ(ac)
and the Weyl group W (ac).

Lemma 1. W (ac) ∼=W (a).

Proof. This follows from the explicit construction of the real root system Φ(a)
in [19], p. 155. The set of roots Φ(a) are constructed in the same way as the
set of roots Φ(ac) in [9]. Both sets are obtained as projections of tc(R)∗ onto
a∗.

2.3 Weighted Dynkin diagrams of nilpotent orbits

Given an sl(2,C)-triple we may assume that h is in the closed positive Weyl
chamber of gc.

Definition 4. The weighted Dynkin diagram of the triple (h, e, f) is the weighted
Dynkin diagram ψh.

Theorem 4 ([17], Proposition 7.8). The complex adjoint orbit through e meets
g if and only if the weighted Dynkin diagram of (h, e, f) matches the Satake
diagram of g.

2.4 De Graaf-Marrani database and algorithms

In [11] the database of all real forms of embeddings of maximal reductive sub-
algebras of the complex simple Lie algebras of rank up to 8 was created. We
refer to this article for the details of the algorithms and implementations. Here
we only make several remarks showing how to use the database. We say that
a pair of real Lie algebras (g, h) is a real form of an embedding of complex
reductive Lie algbras gc, hc, if hc ⊂ gc and h ⊂ g. Note that it is possible to
get a maximal real semisimple subalgebra h in g without hc being maximal
in gc, so only the real forms of embeddings of maximal complex semisimple
subalgebras are considered. Algorithms which create the database distinguish
between regular and non-regular subalgebras as follows.

• A subalgebra hc ⊂ gc is called regular, if there exists a Cartan subalgebra
tc ⊂ gc such that [tc, hc] ⊂ hc.

• A subalgebra hc ⊂ gc is R-subalgebra, if it is contained in a proper regular
subalgebra in gc,

• A subalgebra hc ⊂ gc is called S-subalgebra, if it it is not an R-subalgebra.
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Algorithms of creating the database are based on the following description of
the real forms of complex embeddings hc ⊂ gc. A real form g is given by three
maps τ, σ, θ : gc → gc where

• τ, σ are anti-involutions, θ is an involution,
• θ = τσ = στ,
• (gc)τ is compact, (gc)σ = g,
• θ is a Cartan involution,
• θ leaves u = (gc)τ invariant with the eigenspaces u1 ⊕ u−1 and

k = u1, p = u−1.

The algorithm for enumerating regular subalgebras is given in [11] (Section 4.1).
The real S-subalgebras are classified in a different manner. Let Gc denote the
adjoint group of gc. Denote by G the group of all g ∈ Gc preserving g, and by
G0 the identity component of G. There is no direct way to list all S-subalgebras
up to conjugacy in G0. Therefore, the algorithms are based on the following
approach. Let ε : hc →֒ gc be an embedding of semisimple complex Lie algebras
and let g be a real form of gc. Find (up to isomorphism) the real forms of g of
gc such that ε(h) ⊂ g. Since any two real forms g and g′ of gc are isomorphic if
and only if they are conjugate by an automorphism ϕ ∈ Aut(gc) [19], we may
replace the given embedding by ϕ◦ ε. The algorithm is based on the following.

Proposition 3 ([11], Proposition 4.1). Let g ⊂ gc be a real form of gc such
that ε(h) ⊂ g. Then there are a compact real form u of gc, with conjugation
τ : gc → gc and an involution θ of gc such that

1. ε(uh) ⊂ u,
2. εθh = θεh,
3. θτ = τθ,
4. there is a Cartan decomposition g = k ⊕ p such that the restriction of θ

onto gis the corresponding Cartan involution and u = k⊕ ip.
Conversely, if u ⊂ g is a compact real form with corresponding conjugation
τ and involution θ such that (1), (2), (3) hold, then θ leaves u invariant and
setting k = u1, p = iu−1 we get that g = k⊕ p is a real form gc with ε(h) ⊂ g.

Now the algorithms and implemetations in [11] are as follows. Fix a compact
real form u of gc and replace ε by ϕε for a ϕ ∈ Aut(gc) to get ε(u) ⊂ u.
Construct the space

A = {A ∈ End(gc) |A(ad(εθ(y))) = (ad ε(y))A ∀y ∈ gc}.

If θ is an involution of gc, then εθh = θε if and only of θ ∈ A and

θ(adx)θ = ad θ(x), ∀x ∈ gc.
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Hence A contains θ. The conditions on θ given by Proposition 3 are translated
to polynomial equations on the coefficients of θ with respect to a basis of A.
These polynomial equations are solved by the technique of the Gröbner bases.
The details are given in [10] and [11].

3 Homogeneous spaces determined by maxi-

mal subgroups and proper actions of non-virtually

abelian discrete subgroups

3.1 General procedures

Theorem 5. Let G/H be a homogeneous space of simple real Lie group G.
Assume that g and h are split real forms of simple complex Lie algebras gc and
hc. The following procedure decides whether G/H admits a proper action of a
Lie group L locally isomorphic to SL(2,R).

1. List all the non-trivial weighted Dynkin diagrams of gc corresponding to
sl(2,C)-triples . Obtain the set WDD of such diagrams;

2. compute the Weyl group W (gc);
3. determine H ∈ ac given by the weights of the weighted Dynkin diagram in

WDD;
4. check if there exists a weighted Dynkin diagram in WDD for which Wh∩

ach = {0}.

Proof. The proof follows from Theorem 1 and Lemma 1, together with an
observation that since g is split, any sl(2,C)-orbit in gc meets g. One takes
into consideration that W (ac) = W (gc). Indeed, one needs to check that
W (a)(al) ∩ ah = {0}, which is equivalent to W (ac)(acl )∩ ach = {0}. In our case
lc is generated by sl(2,C)-triple (h, e, f), and therefore acl = 〈h〉, where h is
determined by the weighted Dynkin diagram. This follows from Theorem 4,
since in the split case the set of the weighted Dynkin diagrams WDD coincides
with the set of the weighted Dynkin diagrams matching the Satake diagram.
Therefore, any sl(2,C)-orbit meets g, and h ∈ a ⊂ ac.

Remark 1. It is conceivable, that one could generalize this procedure to the
non-split cases by applying more general algorithms developed in [9], however,
it does not seem straightforward.
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3.2 Proper actions of non-virtually abelian discrete

subgroups on homogeneous spaces of small rank

Theorem 6. Let G/H be a homogeneous space of an absolutely simple real Lie
group of rank G ≤ 8 over a maximal semisimple subgroup. Then G/H admits
proper actions of a non-virtually abelian discrete subgroup of G if and only of
ranka−hyp g > rankR h or G/H is determined by one of the following pairs of
(g, h) (with the inclusion h →֒ g classified up to conjugation):

(sl(6,R), sl(2,R)⊕ sl(3,R)),

(sl(6,R), sl(4,R)),

(e6(6), sl(3,R)⊕ g2(2)),

(sl(8,R), sl(2,R)⊕ sl(4,R)),

(sl(9,R), sl(3,R)⊕ sl(3,R)).

Proof. The proof follows from the classification given in [11], Theorem 2, Theo-
rem 5 and the computer implementation of two procedures. The first one checks
the conditions on the properness given by Theorem 2 for any pair (g, h) in the
database given in [11]. We have four types of pairs: L0 (rankR g = rankR h), L1

(ranka−hyp g = ranka−hyp h), L2 (ranka−hyp g > rankR h)) and L3, the remain-
ing cases. At the beginning, we remove all pairs of type L0, because in this
case only finite subgroup can act properly on G/H (the Calabi-Markus phe-
nomenon). Next we remove all pairs of type L1, since they do not admit proper
actions of non-virtually abelian discrete subgroups by Theorem 2. We store all
pairs (g, h) of type L2 , because they correspond to homogeneous spaces ad-
mitting proper actions of non-virtually abelian discrete subgroups. Next, we
consider pairs of type L3 and observe that all such pairs are split. Therefore,
we are able to apply the procedure given by Theorem 5. We keep in mind that
we are dealing with the complexifications of the pairs (g, h), and, therefore,
may assume that ach ⊂ ac and acl ⊂ ac for representatives of the database [11]
(see remarks below).

3.3 Remarks on Theorem 6

Note that the condition ranka−hyp g > rankR h does not tell us, what is Γ acting
properly on G/H. We only know that some Γ does exist. On the other hand,
the class L3 consists of homogeneous spaces which admit a proper L-action,
where L is locally isomorphic to SL(2,R). It is worth noting that it is a difficult
open problem to decide if there exists Γ which is not a discrete subgroup of
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SL(2,R) and which acts properly on G/H. Actually there are two examples of
homogeneous spaces G/H which admit a proper action of a discrete subgroup
Γ ⊂ G, but do not admit a proper action of L locally isomorphic SL(2,R) [2].

It should be stressed, that the condition ranka−hyp g > rankR h can be
checked in a straightforward manner using Table 1. Since the de Graaf-Marrani
database contains 134 tables of various pairs (g, h) it does not seem reasonable
to reproduce the whole class L2. One can use Table 1 and properties of the
a-hyperbolic rank, or use our plugins with additional functions calculating the
a-hyperbolic ranks and real ranks (see Section 4).

In general, working with the database [11] we should keep in mind the
following difficulty. The tables in [11] are created by presenting members of
conjugacy classes of subalgebras h →֒ g. Therefore, it may happen, that the
representative in the table does not satisfy the requirement ah ⊂ a (and this is
indeed the case, with some exceptions).

4 Implementation

The procedure of obtaining lists of pairs of types L0 − L3 from the database
in [11] is straightforward. Therefore we describe the implementation of the
algorithm which checks if a given split pair (g, h) corresponds to a homogeneous
space admitting a proper action of a subgroup L locally isomorphic to SL(2,R).
Obviously if a homogeneous space G/H admits a proper action of L it also
admits a proper action of a non-virtually abelian discrete subgroup (one can
take a co-compact lattice of L, for instance).
We have implemented the above procedures in the computer algebra system
GAP [20] and the following two plugins: SLA [22], CoReLG [21]. We have
also updated a special plugin CKForms [5]. In version 2.0 there are additional
functions that implement a-hyperbolic rank (AHypRank). The final database
of pairs is based on the data from the CoReLG [21] plugin extended with
calculations on ranks.
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4.1 Algorithm for checking the Kobayashi criterion

Algorithm 1: CheckProperSL2RAction(g, h)

/* g - non-compact real simple Lie algebra, h - maximal proper subalgebra.

Return true, when corresponding G/H admits a proper action of a subgroup

L ⊂ G locally isomorphic to sl(2,R) and return false - otherwise. */

1 begin

2 let jh be Cartan subalgebra of hc;
3 let W be Weyl group gc represented by r × r-matrix (r = rank gc);
4 set Ch - the basis vectors of jh in Chevalley basis of gc;
5 set Orb - the set of nilpotent orbits of gc;
6 forall o ∈ Orb do

7 set ho as vector H from (h, e, f)-SL2-triple for o;
8 if each vector from Wh0 is linearly independent with Ch then

9 return true

10 end

11 end

12 return false;

13 end

The keyword "return" in the above terminates the algorithm.
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[4] M. Bocheński, P. Jastrzȩbski, A. Tralle, Non-existence of standard com-
pact Clifford-Klein forms of homogeneous spaces of exceptional Lie groups,
Math. Comp. 89 (2020), 1487-1499.
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