Available online at www.sciencedirect.com
5 . \< The Journal of
ScienceDirect Systems and

Software

& :5 soeiies
ELSEVIER The Journal of Systems and Software 79 (2006) 1744-1753

www.elsevier.com/locate/jss

A faster exact schedulability analysis for fixed-priority scheduling

Wan-Chen Lu **, Jen-Wei Hsieh °, Wei-Kuan Shih ?, Tei-Wei Kuo °
& Department of Computer Science, National Tsing Hua University, 101, Kuang Fu Road, Hsinchu 300, Taiwan, ROC

® Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan, ROC

Received 11 July 2005; received in revised form 16 March 2006; accepted 18 March 2006
Available online 4 May 2006

Abstract

Real-time scheduling for task sets has been studied, and the corresponding schedulability analysis has been developed. Due to the
considerable overheads required to precisely analyze the schedulability of a task set (referred to as exact schedulability analysis), the
trade-off between precision and efficiency is widely studied. Many efficient but imprecise (i.e., sufficient but not necessary) analyses
are discussed in the literature. However, how to precisely and efficiently analyze the schedulability of task sets remains an important
issue. The Audsley’s Algorithm was shown to be effective in exact schedulability analysis for task sets under rate-monotonic scheduling
(one of the optimal fixed-priority scheduling algorithms). This paper focuses on reducing the runtime overhead of the Audsley’s Algo-
rithm. By properly partitioning a task set into two subsets and differently treating these two subsets during each iteration, the number of
iterations required for analyzing the schedulability of the task set can be significantly reduced. The capability of the proposed algorithm
was evaluated and compared to related works, which revealed up to a 55.5% saving in the runtime overhead for the Audsley’s Algorithm

when the system was under a heavy load.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Real-time systems; Schedulability analysis; Periodic tasks; Fixed-priority preemptive scheduling

1. Introduction

Real-time scheduling for task sets has been studied and
the corresponding schedulability analysis has been devel-
oped. Most of the real-time scheduling algorithms are
priority driven at the task-level and can be categorized into
fixed-priority and dynamic-priority scheduling algorithms.
For fixed-priority scheduling, priority of a task never
changes. For dynamic-priority scheduling, priority of a
task can vary with time. Tasks are composed of jobs; obvi-
ously, priorities of all jobs are fixed for fixed-priority tasks.
However, dynamic-priority scheduling can be further
divided at the job-level into fixed-priority job scheduling
and dynamic-priority job scheduling. Various optimal
algorithms for both fixed-priority and dynamic-priority
scheduling have been proposed: Rate Monotonic (RM)

" Corresponding author. Tel.: +886 3 5742808.
E-mail addresses: wlu@cs.nthu.edu.tw, wanchen@rtlab.cs.nthu.edu.tw
(W.-C. Lu).

0164-1212/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/.jss.2006.03.023

algorithm (Liu and Layland, 1973) and Deadline Mono-
tonic (DM) algorithm (Audsley et al., 1991) are well-known
optimal fixed-priority algorithms, while Earliest Deadline
First (EDF) algorithm (Liu and Layland, 1973) is an opti-
mal job-level fixed-priority scheduling, and Least Slack
Time First (LST) algorithm (Liu and Layland, 1973)
is an optimal job-level dynamic-priority scheduling.
Although dynamic-priority scheduling algorithms can
achieve a better system utilization, the implementation of
dynamic-priority scheduler is much more complex. Thus
fixed-priority scheduling algorithms are widely used in
modern real-time systems, since it can be easily imple-
mented on top of commercial kernels that provide a limited
number of priority levels (Bini and Buttazzo, 2002).
Schedulability analysis is used to verify whether every
task in a given task set can meet deadline when scheduled
according to the adopted scheduling algorithm. This paper
focuses on the schedulability analysis for a fixed-priority
scheduling algorithm due to its popularity in modern
real-time systems. In this paper, task sets are scheduled

mailto:wlu@cs.nthu.edu.tw
mailto:wanchen@rtlab.cs.nthu.edu.tw

W.-C. Lu et al. | The Journal of Systems and Software 79 (2006) 1744—-1753 1745

according to RM algorithm, one of the optimal fixed-prior-
ity scheduling algorithms. Schedulability analysis can be
categorized into three main classes according to their pre-
ciseness. Necessary but insufficient analysis is based on the
processor utilization factor: total utilization factor of a task
set shall never exceed one, or some tasks will miss their
deadlines (Liu and Layland, 1973). Though such an analy-
sis is simple and efficient, it is too optimistic to be helpful in
schedulability analysis. Sufficient but not necessary analysis
is more precise than the first (but still might provide a
false-negative) while more efficient than the third (Liu
and Layland, 1973; Han and Tyan, 1997; Bini et al.,
2001). Sufficient and necessary analysis, i.e., exact schedula-
bility analysis, provides an exact verification of task-set
schedulability, but it also introduces higher analysis over-
heads and is the least efficient but the most precise.

Efficient exact schedulability analysis is required by var-
ious service-critical systems, such as tele-medicine systems,
tele-conferencing systems, multimedia services with Qual-
ity-of-Service (QoS) requirements (Vin et al., 1994; Kuo
et al., 1997), and real-time traffic scheduling over networks
(Wong and Cheng, 1997; Miller and Cheng, 2000; Rao and
Cheng, 2000; Cheng and Rao, 2003). It is also important
for industry, e.g., HVE consumer products of Philips Inter-
national, Inc., mentioned in (Bril et al., 2003). Researchers
(Audsley et al., 1991; Bini and Buttazzo, 2002; Bril et al.,
2003) proposed ways to improve runtime of exact schedula-
bility analysis. In particular (Bini and Buttazzo (2002)) pro-
pose an adaptive schedulability-analysis framework that
can be tuned through a parameter to balance the runtime
and the preciseness. Based on a well-known exact schedula-
bility analysis proposed by Audsley et al. (1993), referred to
as the Audsley’s Algorithm, Bril et al. (2003) modified its
initial setup to jump-start the analysis process.

This paper focuses on reducing the runtime overhead of
the Audsley’s Algorithm. In contract to (Bril et al., 2003),
improvements are imposed throughout the analysis pro-
cess, not just confined to the initial setup. By properly par-
titioning a task set into two subsets and differently treating
these two subsets during each iteration, the number of iter-
ations required for analyzing the schedulability of the task
set can be significantly reduced. Although the proposed
algorithm does introduce additional cost in the partitioning
of tasks in each iteration and some temporary storage in
the partitioning procedure. The extra temporary storage
only costs few more variables. The capability of the pro-
posed method was evaluated and compared to the related
work (Audsley et al., 1993; Bril et al., 2003), which revealed
up to a 55.5% saving in the runtime overhead for the Auds-
ley’s Algorithm when the system was under a heavy load.

The rest of this paper is organized as follows. In Section
2, task model, basic concept of the exact schedulability anal-
ysis, and some terminologies are addressed. Section 3 pre-
sents a faster exact schedulability analysis for fixed-priority
scheduling and proves its correctness. Section 4 provides
the simulation results to evaluate the capability of the pro-
posed method. Section 5 is the conclusion and future work.

2. Task model and definitions

This paper focuses on exact schedulability analysis of
rate monotonic scheduling for periodic tasks over uni-pro-
cessor systems. A periodic task is usually characterized by
four parameters: release time, period, maximum computa-
tion time, and relative deadline. To concentrate on the pro-
posed method, the task model is simplified by assuming
that the first jobs of all tasks are released at the same time,
and the period is equal to the relative deadline for each
task. Since the schedulability analysis for tasks with arbi-
trary release times can be reduced to one for tasks with
the same release time, it is admissible to assume all tasks
are released simultaneously.

Definition 1 (Task model and task set). A periodic task t;
comprises an infinite sequence of jobs with regular release
times, where the task is a template of its corresponding jobs
and one job of the task arrives at the beginning of each
period. J;; denotes the jth job of the task 7, Let T,=
{t1 = (c1p1)s T2 = (C2.p2)s -+ s Tw = (Capa)} be a set of
periodic tasks, where ¢; is the maximum computation time,
and p; is the period of task 7;. The utilization of t;, referred
to as u;, is defined as c¢;/p;. All jobs are ready when they
arrive and should be finished before the arrival of next job.
Without loss of generality, p; < p» < -+ < p, is assumed.

As mentioned in Section 1, this paper focuses on
schedulability analysis for task sets under rate monotonic
scheduling. First, the concept of rate monotonic scheduling
is addressed.

Definition 2 (Feasible and schedulable). Suppose a task set
is scheduled by S scheduling algorithm, the schedule for the
task set is feasible if all the jobs in each task can meet their
corresponding deadlines under S scheduling. A task set is
schedulable if there exists a feasible schedule.

Definition 3 (Rate monotonic scheduling (Liu and Layland,
1973)). Rate monotonic (RM) algorithm is an optimal
fixed-priority scheduling algorithm, which means RM algo-
rithm can always generate a feasible schedule if a task set is
schedulable. Under RM scheduling, the individual task pri-
orities are assigned inversely proportional to their respec-
tive periods. In other words, a task with shorter period is
assigned with a higher priority (and can be scheduled
earlier).

Let T,,,_1={71,70, ..., Tu_1} = T, — {1,,} be a subset
of T,,. To analyze the schedulability of a task set 7, a
schedulability analysis is applied on 7; iteratively, for
i=1,...,n, to check whether the lowest-priority task in
T; is schedulable. For efficiency consideration, a sufficient
but not necessary analysis is usually applied first. When
the analysis reports that the task set might be unschedula-
ble, an exact schedulability analysis takes over the verifica-
tion process, since the report of the sufficient but not
necessary analysis might be a false negative. To facilitate
the discussion in the remainder of this paper, we assume

1746 W.-C. Lu et al. | The Journal of Systems and Software 79 (2006) 1744-1753

that tasks in 7),_; are all schedulable and confine our atten-
tion to verifying whether the lowest-priority task in 7, (i.e.,
7, under RM) is schedulable.

Lehoczky et al. developed an algorithm to precisely ana-
lyze whether a task set can be feasibly scheduled under RM
scheduling (Lehoczky et al., 1989). The basic idea of this
algorithm is to check if the demand (total computation
time demanded by the task set) is no larger than the supply
(available processing time) at some integer multiples of
task periods. Audsley et al. (1993) proposed an alternative
for exact schedulability analysis by constructing a schedule
and then observing whether the task set is schedulable.

Definition 4 (Audsley’s Algorithm (Audsley et al.,
1993)). Under the Audsley’s Algorithm, the worst-case

response time r; of each task 7; is derived by iteratively

calculating the formula r/*V =¢; + Z};ll {%ﬂ - ¢ until

D either converges to a real number (i.e., r;) or exceeds

the deadline of task 7;. A task is schedulable if its worst-case
response time is no larger than its deadline; otherwise, the
task is unschedulable. Note that tasks are sorted in a non-
decreasing priority order (according to Definitions 1 and 3)

and r0 =37 ¢;.

3. A faster exact schedulability analysis
3.1. Overview

This research is motivated by the needs in reducing the
runtime of exact schedulability analysis algorithms in a tool
design for hardware/software co-designs. Exact schedula-
bility analysis algorithms could be applied to many system
design tools, e.g., schedulability analyses in some electronic
design automation (EDA) tools (Richter et al., 2003; Pop
et al., 2000, 2004), where an exact schedulability analysis
algorithm might be executed once per iteration. The
improvement on the performance of exact schedulability
analysis algorithms could significantly improve the perfor-
mance of such tools. Note that although such tools are also
executed in an off-line fashion, the performance of the
exact schedulability analysis algorithms does have a scala-
bility problem when the number of tasks is large. The needs
are strong, especially when the design procedure of embed-
ded systems goes iteratively to seek a feasible solution.

The basic idea is to attempt a larger jump in the deriva-
tion of each subsequent time instant ', such that the num-
ber of iterations required by the Audsley’s Algorithm can
be reduced. It is of paramount importance that the extra
overhead introduced by such attempt should not be large,
or the proposed algorithm loses its mission. Section 3.3
proves that the time complexity of the proposed algorithm
in each iteration is O(n). The overall runtime overhead is
less than the Audsley’s Algorithm as well, as illustrated
in Section 4. To achieve this goal, the Audsley’s Algorithm
is modified accordingly, referred to as the Enhanced Auds-
ley’s Algorithm (EAA).

In the Audsley’s Algorithm, the next time instant " is
derived by calculating the total computation requirements
of all jobs that are ready before the current time instant
=D To have a larger jump in the derivation of ', the
EAA assumes that only a proportion a of processing time
is available for executing real-time tasks. For the rest of
the tasks, the reserved computation times are proportional
to their corresponding utilizations. To be more specific, sup-
pose task 7; is such a task, the total computation time assig-
ned to the jobs in 1; before time instant 7 is set to 7 - ¢;/p;,
which is less than the actual total computation requirements,
i.e., [¢/p;] - c;, of jobs in t; before time instant z.

The major modifications in the EAA are summarized as
follows:

(1) Partition the task set into two subsets: During each itera-
tion, all the tasks in the task set 7, are partitioned
into two sets, namely L and R (=7, — L). Note that
the partitions might differ in different iterations.

(2) Calculate the proportion of the available processing
time: Let o =1 -3 u;, where u; = ¢;/p;. The pro-
portion of the available processing time for L is
1 — o, while the remaining processing time is reserved
for tasks in R.

(3) Find the next time instant: The formula used to derive
the worst-case response time in the Audsley’s Algo-
rithm is modified to

A — ZT,ER |—”(17]>/pﬂ G _ ET,ER M”/Pi] G .
ZT/ELuj

o 1-—

The differences between the Audsley’s Algorithm and the
enhanced one can be illustrated by the following example:
given a task set 7= {7y = (1.5,2), 1o = (1.5,10)}, H9 s cal-
culated by 377, ¢; = 3. The next time instant ") determined
by the Audsley’s Algorithm would be 1.5+ [3/2]:
1.5=4.5. In the EAA, r? is also set as 3. By partitioning
T into L= {7,} and R= {1}, "V is derived as 1.5/a =
1.5/0.25 = 6, which is larger than the one derived by the
Audsley’s Algorithm. The technical issue is how to properly
partition a task set T'into L and R for the EAA such that the
jump in each derivation of " can be maximized. Section 4
discusses the impact of adopting different partition rules.

3.2. Enhanced Audsley’s algorithm (EAA)

Although the Audsley’s Algorithm has been shown to be
effective in the exact schedulability analysis for task sets
under rate-monotonic scheduling, the needs in reducing
its runtime is demanding. This section discusses in detail
the enhancement over the Audsley’s Algorithm. Listing 1
shows the pseudo-code of the EAA. Four input parameters
are provided (Step 1) where P[], C[], and U[] are arrays
used to store the periods, the maximum computation times,
and the corresponding utilizations of tasks in the task set,
and TaskNo records the number of tasks in the task set.
The EnhancedAA() declares six variables (Steps 2 and 3)

W.-C. Lu et al. | The Journal of Systems and Software 79 (2006) 1744—-1753 1747

where NextTimelnstant is used to keep the next time
instant #” in the /th iteration; tmpNextTimelInstant and
oldNextTimelnstant are temporal space for the possible
D and the derived r/~ Y, respectively; difffmp assists in
exclusively partitioning the task set into two subsets, and
M and UL are auxiliary for deriving r*.

Listing 1: pseudo-code of the EAA

1 int EnhancedAA(float P[], float C[], float U[],
int TaskNo) {

2 float NextTimelnstant = 0, tmpNextTimelnstant,
oldNextTimelnstant, diffJmp;
3 float M, UL;
4
5 for (int i = 0; i < TaskNo; i++) {
6 NextTimelnstant = NextTimelnstant + C[i];
7 }
8 diffJmp = NextTimelnstant;
9 do{
10 M=UL=0;
11 oldNextTimelnstant = NextTimelnstant;
12
13 for (i=0; i <TaskNo; i++) {
14 if (ceil(oldNextTimelnstant/P[i])*P[i]<
15 oldNextTimelnstant + Ratio*diffJmp) {
16 UL+ = UJi];
17 } else {
18 M+ = (ceil(oldNext Timelnstant/
PLD*CIi]):
19
20 }
21
22 tmpNextTimelnstant = (float)(M/(1.0 — UL));
23 if (tmpNextTimelnstant< = oldNextTimelnstant)
{
24 NextTimelnstant = 0;
25 for (i=0; i < TaskNo; i++) {
26 NextTimelnstant+ = (ceil(oldNextTimeln-
stant/P[i])s*C[i]);
27
28 } else {
29 NextTimelnstant = tmpNextTimelnstant;
30 }
31
32 diffJmp = NextTimelnstant — oldNextTimelnstant;
33 if (NextTimelnstant > P[TaskNo — 1]) {
34 return UNSCHEDULABLE;
35 }
36 if (NextTimelnstant == oldNextTimelnstant){
37 lastResponseTime = NextTimelnstant;
38 return SCHEDULABLE;
39 }

40 } while ((NextTimelnstant | = oldNextTimelnstant)
&&

41 (NextTimelnstant< = P[TaskNo — 1]));

42

Initially, #* is set as the summation of the maximum
computation times of all tasks since they are released
simultaneously (Steps 5-7); diffJmp keeps the difference
between the previous two valid jumps, and diffJmp is set
to "® when /=1 (Step 8). In Steps 9-40, the EAA analyzes
the schedulability of the task set by iteratively deriving the
next time point to find out the worst-case response time of
the task set. In the beginning of each iteration, M and UL
are initialized to 0, and the previously derived +/~V is
reserved in oldNextTimelnstant (Steps 10-11). In Steps
13-20, the task set is partitioned into two subsets L and
R. For each task, if the release time of its first newly arrived
job, i.e., [r”*”/p,-] - pi, 18 less than the threshold, i.e., F=D4
Ratio - diffJmp, the task belongs to L; otherwise, the task
belongs to R. A system defined parameter, Ratio, is a posi-
tive real number ranging from 0 to 1. When Ratio is set to
0, all the tasks belong to R, and the EAA operates totally
the same as the Audsley’s Algorithm. In Section 4, perfor-
mances with different settings of Ratio are demonstrated,
and a feasible setting is suggested. The contribution of each
task to r” is counted accordingly (Step 16 or 18).

The next time instant #” can then be determined (Steps
22-30). A possible next time instant is calculated (Step 22).
The newly calculated time instant might be no larger than
the previously derived one, i.e., =1 due to the task-set
partition scheme (Step 23). When such situation occurs,
all the tasks are put into R, and r” is re-calculated (Steps
24-27); otherwise, the value calculated in Step 22 is set as
the next time instant (Step 29). When) needs to be re-cal-
culated, the EAA is penalized by an extra iteration count.
After the next time instant) is determined, new difffmp
for the next iteration can be set (Step 32). Finally, the
schedulability of the task set is checked (Steps 33-39). If
r exceeds the deadline, UNSCHEDULABLE is returned.
If the next time instant converges (and does not exceed the
deadline), SCHEDULABLE is returned (Steps 36-39).
Otherwise, a new iteration is started (Steps 40 and 41).

The effectiveness and efficiency of the EAA are illus-
trated by two examples. Example 1 demonstrates the
details of the EAA. Example 2 reveals how the EAA can
achieve a large improvement in the number of iterations.

Example 1. Given a task set 75 = {t; = (2,4), 1, =(1,5),
13 = (3.3,15)}, the schedulability of T3 is analyzed by the
EAA. Suppose 7, and 1, have already been verified as
schedulable, and Ratio is set as 0.5, the operation of the
EAA is as follows: Initially, /) is set to 6.3 (= X7 jc;).
The release times of the newly arrived job for 74, 1,, and 13
are 8 (=[6.3/4] - 4), 10 (=[6.3/5] - 5), and 15 (=[6.3/15] -
15), respectively. Since the threshold is 9.45, T3 is
partitioned into L = {t;} and R = {1,,73}. The next time
instant " =(2+3.3)/(1 —0.5)=10.6 is then derived
accordingly. Table 1 shows the related information in
deriving the worst-case response time of J3;, in which the
third to the fifth columns indicate the release times of the
newly arrived job for 1q, 75, and 13, respectively. Note that
since ¥ is less than), it is re-calculated by putting all the

1748

W.-C. Lu et al. | The Journal of Systems and Software 79 (2006) 1744-1753

Table 1
The related information in deriving the worst-case response time of J3
Threshold T T T3 L R A0

=1 6.3+6.3-0.5=945 8 10 15 {t1} {15, 73} 10.6
=2 10.6 +(10.6 — 6.3)- 0.5 =12.75 12 15 15 {11} {15, 73} 12.6
1=3 12.6 +(12.6 — 10.6) - 0.5=13.6 16 15 15 0 {11,702, 73} 14.3
=4 143+ (14.3 — 12.6) - 0.5=15.15 16 15 15 {15,173} {t1} 13.79
I=5 N/A N/A N/A N/A 0 {11,712, 73} 14.3
=6 143+ (143 -14.3)-0.5=14.3 16 15 15 0 {t1,72,73} 14.3

tasks into R, and the EAA is penalized by an extra iteration
count. When a termination condition, i.e., > =19, is
satisfied, the derivation of the worst-case response time for
J3,1 1s accomplished. Since the worst-case response time of
J3,1 1s less than its corresponding deadline, T3 is reported as
“schedulable”.

The efficiency of the EAA (compared with the Audsley’s
Algorithm) can be illustrated by an example in flash-memory
storage systems. Flash-memory technology is becoming crit-
ical in building embedded systems applications because of its
shock-resistant, power economic, and nonvolatile nature.
Since flash memory is a write-once and bulk-erase medium,
a garbage-collection mechanism is required to provide appli-
cations a transparent storage service. For a time-critical sys-
tem, such as manufacturing systems, it is highly important to
predict the number of free pages reclaimed after each block
recycling so that the system will never be blocked for an
unpredictable duration of time because of garbage collec-
tion. In Chang et al. (2004), a garbage-collection mechanism
ismodelled as a periodic task to provide a guaranteed perfor-
mance for hard real-time systems. Note that the period of
such task is much larger compared with read/write tasks.

Example 2. For a flash-memory storage system applied in
database accesses, suppose its write task and read task can
be modelled as 7, =(1.6,2) and 7, =(0.76,4), and the
garbage-collection mechanism is modelled as a periodic
task 73 = (3,301) as well. The schedulability of such task
set T5= {11 =(1.6,2),7, =(0.76,4),73 =(3,301)} is ana-
lyzed. To be focused, assume 7, and 7, have been verified as
schedulable. Under the EAA, the derivation of the worst-
case response time for J3; is as follows: initially, % is set
to 5.36 (= Z?Zlc,). By partitioning T into L = {1, 1>}
and R = {13}, "'V =3/(1 —0.99) = 300 is obtained. Since
@, which is derived as 0 by partitioning T5 into L = {1y,
75,73} and R=0, is less than 'V, it is re-calculated by
putting all the tasks into R, and the EAA is penalized by an
extra iteration count. Finally, by partitioning L= § and
R = {11,15,13}, ' is equal to 300. Now that) is equal to
¥ and the worst-case response time of J3; is less than its
corresponding deadline, the termination condition is met
and the task set 75 is reported as “‘schedulable”. The
schedulability analysis for 73 under the EAA is finished in
four iterations. On the other hand, when the Audsley’s
Algorithm is applied, the number of required iterations
increases dramatically to 117.

3.3. Properties

This section explores the properties of the EAA from a
theoretical perspective. The correctness of the EAA is
proved by Lemmas 1, 2, and Theorem 1. It is of paramount
importance that the extra overhead introduced by the EAA
should not be large. Theorem 2 demonstrates that the time
complexity in each iteration is O(n).

Lemma 1. For every time instant r'” derived by the EAA
during the Ith iteration, the time interval (0, r(l)) has no idle
time.

Proof. This lemma will be proved by induction.

Induction basis. For /=0, r0 = ¢ It is obvious
that no idle time exists in (0,) ; ,¢;) because the first job of
each task 1, for i =1 to n, is ready for execution at time 0.

Induction hypothesis. Assume that the lemma is true for
the time instant #*; that is, no idle time exists in the time
interval (0,). It needs to be proved that the lemma is also
true for the time instant #<*1.

Induction step. The induction step is proved by a
contradiction. Suppose that an idle time occurred in (%,

r5*1D) . Since there is no idle time before the worst-case
response time derived by the Audsley’s Algorithm (denoted
by), ¢t must be the first idle time in (¥, (Hl))

9 < ¢ < 5D Without loss of generality, let #© =7 — s,
where ¢ > 0. According to the EAA, r*V is derived by

el t=8)/p) ¢/ (1= S cm). Because 0>,
the following inequalities can be derived:
2oerlt/pil ¢ Xarllt=2)/p;1 - ¢

) = >t

1 - ZrieLui - ZfiGLui
Z[t/pj]-cj+t-2u,->t (1)

T ER ;€L
D T/p) i+ > (t/p)-ci>t
T;ER T,€L

On the other hand, since ¢ is the worst-case response time
of J, derived by the Audsley’s Algorithm, the following
equation can be obtained:

Z [t/pi] - ek = Z[l‘/l’j] ¢t Z“/Pi] 6=t (2)

wely, T;ER ;€L

Based on (1) and (2), the following inequality is derived:

t= Zr,eR ft/pﬂ cC+ ZI,-EL [t/pi] - ci = Zr,eR [I/ij S Cit

W.-C. Lu et al. | The Journal of Systems and Software 79 (2006) 1744—-1753 1749

> e (t/p;) - ¢; > t, which is a contradiction. Thus, it can be

concluded that no idle time occurs in (#©, <),
According to the induction step, the induction is

completed, and hence the lemma is proved. [

Lemma 2. When the EAA reports that the task t, is “‘sched-
ulable, t,, is indeed schedulable.

Proof. The lemma is proved by a contradiction. Let r” be
the derived time instant when the EAA reports ‘““‘schedula-
ble” in the /th iteration, but there is no idle time in the time
interval (X, ¥7*) in the RM schedule. (Here r* means
some time instant later than r”.) According to the EAA,
the variable diffJmp approaches 0. When the value of diff-
Jmp is sufficiently small, the EAA will eventually put all the
tasks into R and leave L empty. As a result, the inequality

V(1+1) = E‘c,-eR((r(l)/pj—‘ : Cf) = Z‘;,-e(‘cl ,,,,, r,,)(|—r<l>/pj-| : C/) > r<l>
is obtained, which means at least one new job of some task is
ready at time r”. Therefore, if the while-loop in the EAA
executes one more time, a new time point that is larger than
or equal to """ is obtained. This is a contradiction to the

“schedulable” termination condition of the EAA. O

Theorem 1. Assume T,_, is schedulable. T, is schedulable if
and only if the EAA reports T, as “‘schedulable”.

Proof. (=) If T,, is schedulable, there would be an idle time
in the time interval (0,p,). According to Lemma 2, the
EAA will terminate and report “schedulable”.

(<) If T, is unschedulable, there would be no idle time
in the time interval (0,p,). According to Lemma 2, the
EAA cannot find an idle time. That is, the time instant will
keep increasing until exceeding p,,, and the EAA will report
T, as “‘unschedulable”. [

Theorem 2. The EAA requires O(n) time to find the next
time instant 1.

Proof. There are two parts for executing each iteration in
the EAA: (1) For each task in 7}, the EAA takes constant
time in determining to which subset (L or R) the task
belongs. Since there are n tasks in 7, it takes O(n) time
for the EAA to partition all tasks into L and R. (2) In
the /th iteration, the EAA takes O(n) time to calculate)
according to the partition result in (1). Based on the above,
the EAA has O(n) time complexity in each iteration. [

4. Performance evaluation
4.1. Metrics, experimental setup, and data sets

This section assesses the proposed idea (i.e., the EAA) in
relation to runtime speedup. The EAA is compared with
another related exact schedulability analysis algorithms,
i.e., the Audsley’s Algorithm (Audsley et al., 1993). Both
are then modified by the Initial Value Improvement

method proposed in Bril et al. (2003). These two compari-
sons are made in terms of the runtime overhead and the
number of required iterations needed for each algorithm,
where each iteration derives r” based on the result of /=1,

The primary performance metric is the Runtime Ratio
of the algorithms. Let x be the runtime for the EAA, and
let y be the runtime for the Audsley’s Algorithm. Both sim-
ulations are running schedulability analyses for 10,000 task
sets. The Runtime Ratio on runtime is defined as follows:
x/y. The Iteration Ratio on the number of required itera-
tions is defined in a similar way. The comparison is
repeated by modifying both algorithms by the Initial Value
Improvement method proposed in Bril et al. (2003).

The task sets for performance evaluation were generated
based on benchmarks and systems reported in Molini et al.
(1990), Kamenoff and Weiderman (1991), Locke et al.
(1991), Kim et al. (1996). A random number generator was
adopted to generate task sets: the number of tasks per task
set was randomly chosen between 10 and 30. The number
of fundamental frequencies was a real number within a range
[1/4,1] multiplied by the number of tasks in the task set.
Since a task set with a utilization factor of no more than
69% would be schedulable according to the Liu and Layland
bound (Liu and Layland, 1973), the data sets for the exper-
iments were generated with a utilization factor between 75%
and 100%. The experiments started with each task set with a
utilization factor equal to 75%, and were repeated for sets
with the utilization factor increasing in increments of 5%
until 100% is reached. The utilization factor of each task
was no more than 20% of the total utilization factor of its
task set. Each task was assigned fundamental frequencies
randomly, where the possibility of assigning i fundamental
frequencies to a task was (1/2)"~!. The period of each task
was derived by the multiplication of each of its assigned fun-
damental frequencies. A total of 10,000 task sets were tested
for each utilization factor.

4.2. Experimental results

Each exact schedulability analysis algorithm was evalu-
ated experimentally in the same way. The schedulability
of each task in a task set was verified in a non-increasing
order of task priority. The sufficient but not necessary anal-
ysis proposed by Liu and Layland (1973) was applied first
to verify the schedulability of tasks until some task failed
the verification. If the ith task failed the verification, the
schedulability of all the remaining tasks (with an index of
no less than i) were verified by exact schedulability analysis
algorithms in the experiments. Table 2 shows the average
percentage of tasks in a task set being verified by exact
schedulability analysis algorithms in the experiments.

4.2.1. EAA compared with the Audsley’s algorithm

Fig. 1 demonstrates the iteration overheads for the EAA
against the Audsley’s Algorithm. The performance differ-
ences of the EAA under different settings of the Ratio (as
indicated in the legend) are also illustrated. As mentioned

1750 W.-C. Lu et al. | The Journal of Systems and Software 79 (2006) 1744-1753

Table 2
The average percentage of tasks in a task set remaining to be verified

Utilization factor of task set
75% 80% 85% 90% 95%
14.42% 18.30% 21.59% 25.05% 28.36%

100%
31.68%

Average
percentage

in Section 3, different settings of Ratio result in different
task-set partitions, from which the value of #” derived in
the /th iteration varies. As shown in Fig. 1, a lower Itera-
tion Ratio over the number of required iterations was
achieved when the utilization factor of a task set was large.
This is because the EAA tends to jump farther in such
cases, compared with the Audsley’s Algorithm. The simula-
tion result shows that the performance improvement of the
Iteration Ratio is maximized when the value of Ratio in the
EAA was set to 0.2. The mean and standard derivation of
the number of iterations for the Audsley’s Algorithm and
the EAA (with Ratio = 0.2) are shown in Table 3.

Fig. 2 shows the Runtime Ratio for the EAA against the
Audsley’s Algorithm in terms of the runtime needed for
each algorithm. The measuring of runtime for each algo-
rithm was done by taking advantage of an Intel supported
instruction RDTSC, which can measure runtime in the unit
of CPU cycles (Intel, 1997). The EAA produces up to a
55.5% saving in the runtime overhead for the Audsley’s
Algorithm when the system was in a heavy load. (The Run-
time Ratio for the EAA against the Audsley’s Algorithm
ranged from 44.5% to 68% when the value of Ratio in

100 - B Ratio=0.1 M Ratio =0.2

90 - O Ratio = 0.4 @ Ratio = 0.8
~80r —
70t] -
260 f M
<
& 50}
=1
L40r
<
530f
— 20

10

0 1 1 1 1 1
75 80 85 90 95 100
Total Utilization (%)
Fig. 1. Comparison in the iteration ratio.
Table 3

100
92 [Ratio=0.1 M Ratio=0.2
80 | O Ratio = 0.4 O Ratio=0.8
70 _] M
60
50
40
30
20
10

0

Runtime Ratio (%)

80 85 90 95 100
Total Utilization (%)

Fig. 2. Runtime ratio comparison.

the EAA was set to 0.2.) Table 4 shows the mean and stan-
dard derivation of the runtime for the Audsley’s Algorithm
and the EAA (with Ratio = 0.2). Note that the unit of run-
time was a CPU cycle.

Based on Figs. 1 and 2, the EAA would significantly
outperform the Audsley’s Algorithm when the value of
Ratio in the EAA was small, e.g., 0.2. Table 5 shows the
performance of the EAA. Among 10,000 Task Sets, the
EAA (with Ratio = 0.2) outperformed the Audsley’s Algo-
rithm in most cases for both the number of iterations and
the runtime.

4.2.2. Initial value improvement
In Bril et al. (2003), Bril et al. modified the initial setup
for the Audsley’s Algorithm to jump-start the analysis pro-

cess: r? is set to max (c,-/ (1—2;.;11

which r,_; is the previously derived worst-case response
time for J,_;;. To complete the study of this paper, the
idea in Bril et al. (2003) is adopted in both the Audsley’s
Algorithm and the EAA. With the initial value improve-
ment, Fig. 3 demonstrates the iteration overheads for the
EAA against the Audsley’s Algorithm. The simulation
result shows that the performance improvement of the Iter-
ation Ratio is better when the value of Ratio set in the
EAA was small. The mean and standard derivation of
the number of iterations with initial value improvement
for both the Audsley’s Algorithm and the EAA (with
Ratio = 0.2) are shown in Table 6.

With the initial value improvement, Fig. 4 shows the
Runtime Ratio for the EAA against the Audsley’s Algo-
rithm in terms of the runtime needed for each algorithm.

uj)vrnfl‘i'ci , in

The mean and standard deviation of the number of iterations for the Audsley’s Algorithm and the EAA (with Ratio =0.2)

Utilization factor of task set

75% 80% 85% 90% 95% 100%
Audsley’s Algorithm Mean 48.66320 63.37820 79.31720 98.97070 125.86380 137.11110
Standard deviation 36.93568 34.94621 36.58553 39.43057 48.06183 58.91121
EAA Mean 32.34480 39.84970 47.59280 56.10830 65.90040 64.44790
Standard deviation 26.94133 24.46076 24.13280 24.00492 26.17973 28.21729

W.-C. Lu et al. | The Journal of Systems and Software 79 (2006) 1744-1753 1751

Table 4

The mean and standard deviation of runtime (in CPU cycles) of the Audsley’s Algorithm and the EAA (with Ratio =0.2)

Utilization factor of task set

75% 80% 85% 90% 95% 100%
Audsley’s Algorithm Mean 344,752.69 425,897.81 524,472.73 644,888.71 814,831.38 879,427.18
Standard deviation 350,480.30 341,917.86 400,578.73 456,076.75 528,122.48 590,828.24
EAA Mean 222,747.47 259,801.81 303,035.39 348,551.87 406,775.73 394,669.40
Standard deviation 247,988.65 232,609.10 241,294.58 236,444.57 289,069.98 303,109.62
Table 5
The efficiency of the EAA (with Ratio = 0.2)
Utilization factor of task set
75% 80% 85% 90% 95% 100%
Iteration EAA is better 9993 10,000 10,000 9999 10,000 9998
Equal 7 0 0 0 0 2
EAA is worse 0 0 0 1 0 0
Runtime EAA is better 9964 9986 9993 9991 9993 9982
EAA is worse 36 14 7 9 7 18

100 r @ Ratio = 0.1 W Ratio = 0.20 Ratio = 0.4 Ratio = 0.8

Nl
(=)

N X
(=)

D
(=)

Iteration Ratio (%)
— N W B W
SR=R=-R=R=)

=]

1 1 1 1 1 1

75 80 85 90 95 100
Total Utilization (%)

Fig. 3. Comparison in the iteration ratio with initial value improvement
for both algorithms.

According to the simulation results, the EAA with Initial
Value Improvement can speed up the schedulability analy-
sis significantly. For instance, the Runtime Ratio for the
EAA against the Audsley’s Algorithm ranged from 59%
to 66% when the value of Ratio in the EAA was set to
0.2. In other words, the EAA produces up to a 41% saving
in the runtime overhead for the Audsley’s Algorithm when
the system was in a heavy load. Table 7 shows the mean

100 ; -
@ Ratio=0.1 B Ratio=0.2

O Ratio=0.4 @O Ratio=0.8

Runtime Ratio (%)

80 85 90 95 100
Total Utilization (%)

Fig. 4. Comparison in the runtime ratio with initial value improvement
for both algorithms.

and standard derivation of the runtime with initial value
improvement for both the Audsley’s Algorithm and the
EAA (with Ratio =0.2). Note that the unit of runtime
was a CPU cycle.

Table 8 shows the performance of the EAA when
both algorithms were enhanced by the initial value
improvement. Among 10,000 Task Sets, the EAA (with

Table 6
The mean and standard deviation of the number of iterations with initial value improvement for both the Audsley’s Algorithm and the EAA (with
Ratio =0.2)
Utilization factor of task set
75% 80% 85% 90% 95% 100%
Audsley’s Algorithm Mean 40.16420 51.14560 62.59170 75.95960 92.68770 83.94700
Standard deviation 32.31783 30.99649 32.56320 35.02468 41.76408 43.51630
EAA Mean 31.46770 38.33050 45.44290 53.05790 61.60840 58.41560
Standard deviation 26.84397 24.31287 23.84215 23.56130 25.32597 26.61234

1752 W.-C. Lu et al. | The Journal of Systems and Software 79 (2006) 1744-1753

Table 7
The mean and standard deviation of runtime (CPU cycles) with initial value improvement for both the Audsley’s Algorithm and the EAA (with
Ratio =0.2)
Utilization factor of task set
75% 80% 85% 90% 95% 100%
Audsley’s Algorithm Mean 308,952.03 367,796.10 439,015.05 520,728.33 632,235.65 562,065.80
Standard deviation 407,847.57 321,222.50 342,499.34 369,328.82 460,239.15 454,742.28
EAA Mean 215,636.46 250,299.74 287,133.03 328,916.27 374,175.44 349,675.45
Standard deviation 245,590.66 288,908.25 232,272.77 273,497.80 250,466.09 275,220.50

Table 8

The efficiency of the EAA (with Ratio = 0.2) with initial value improvement for both algorithms

Utilization factor of task set

75% 80% 85% 90% 95% 100%
Iteration EAA is better 9283 9640 9803 9873 9923 9651
Equal 381 197 95 56 25 121
EAA is worse 336 163 102 71 52 228
Runtime EAA is better 9899 9962 9979 9981 9982 9945
EAA is worse 101 38 21 19 18 55

Ratio = 0.2) outperformed the Audsley’s Algorithm in
most cases in terms of the number of iterations and the
runtime.

5. Conclusion and future work

The goal of this research is to improve the performance
of the exact schedulability analysis, the Audsley’s Algo-
rithm. The basic idea is to create a larger jump in the der-
ivation of each subsequent time instant /", such that the
runtime overhead required by the Audsley’s Algorithm
can be much reduced. By properly partitioning a task set
into two subsets, L and R, and differently treating tasks
in L and R during each iteration, the number of iterations
required for analyzing the schedulability of the task set can
be reduced. The time complexity of the proposed algorithm
in each iteration has been proved to be O(n). Although the
proposed algorithm does introduce additional cost in the
partitioning of tasks in each iteration and some temporary
storage in the partitioning procedure. The extra temporary
storage only costs few more variables. The capability of the
proposed algorithm was evaluated and compared to the
related work (Audsley et al., 1993; Bril et al., 2003), which
revealed up to a 55.5% saving (Fig. 2 with Total Utiliza-
tion = 100% and Ratio =0.2) in the runtime overhead
for the Audsley’s Algorithm when the system was in a
heavy load. A minimum saving of 21.7% is provided
(Fig. 2 with Total Utilization = 75% and Ratio = 0.8).
Furthermore, EAA produces a maximum saving in itera-
tions of 50.7% (Fig. 1 with Total Utilization = 100% and
Ratio = 0.2) and a minimum saving in iterations of 6.1%
(Fig. 3 with Total Utilization = 75% and Ratio = 0.8).

For the future work, the EAA will be modified to be
capable of handling more general task models, e.g., allow-
ing resource accesses among tasks. For analyzing the
schedulability of a task set with synchronization require-

ments, the blocking time produced by priority inversion
must be taken into consideration. The EAA will also be
extended to the multiframe task model (Mok and Chen,
1996), in which the computation requirements of tasks in
consecutive periods are modelled as regular patterns.

References

Audsley, N.C., Burns, A., Richardson, M., Wellings, A. 1991. Hard real-
time scheduling: the deadline-monotonic approach. In: Proceedings of
the 8th IEEE Workshop on Real-Time Operating Systems and
Software, May, pp. 133-137.

Audsley, N.C., Burns, A., Richardson, M., Tindell, K., Wellings, A., 1993.
Applying new scheduling theory to static priority preemptive sched-
uling. Software Engineering Journal 8 (5), 284-292.

Bini, E., Buttazzo, G.C., 2002. The space of rate monotonic schedulability.
In: Proceedings of the 23rd IEEE Symposium on Real-Time Systems,
December, pp. 169-178.

Bini, E., Buttazzo, G.C., Buttazzo, G., 2001. A hyperbolic bound for the
rate monotonic algorithm. In: Proceedings of the 13th IEEE Euromi-
cro Conference on Real-Time Systems, June, pp. 59-66.

Bril, R.J., Verhaegh, W.F.J., Pol, E.J.D., 2003. Initial values for on-line
response time calculations. In: Proceedings of the 15th IEEE Euro-
micro Conference on Real-Time Systems, July, pp. 13-22.

Chang, L.P., Kuo, T.W., Lo, S.W., 2004. Real-time garbage collection for
flash memory storage systems of real-time embedded systems. ACM
Transactions on Embedded Computing Systems (TECS) 3 (4), 837-863.

Cheng, A.M.K., Rao, S., 2003. Real-time traffic scheduling and routing in
packet-switched networks using a least-laxity-first strategy. Journal of
VLSI Signal Processing.

Han, C.C., Tyan, H.Y., 1997. A better polynomial-time schedulability test
for real-time fixed priority scheduling algorithms. In: Proceedings of
the 18th IEEE Symposium on Real-Time Systems, pp. 36-45.

Intel, 1997. Using the RDTSC Instruction for Performance Monitoring.
Available from: <http://developer.intel.com/drg/pentiumII/appnotes/
RDTSCPMI.htm>.

Kuo, T.W., Lee, S.L., Lin, Y.S., Liu, Y.H., 1997. Providing video-on-
demand services on Windows NT. In: Proceedings of International
Symposium on Multimedia Information Processing.

Kim, N., Ryu, M., Hong, S., Saksena, M., Choi, C.H., Shin, H., 1996.
Visual assessment of a real-time system design: a case study on a CNC

http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.htm
http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.htm

W.-C. Lu et al. | The Journal of Systems and Software 79 (2006) 1744-1753 1753

controller. In: Proceedings of the 17th IEEE Symposium on Real-Time
Systems, pp. 300-310.

Kamenoff, N.I., Weiderman, N.H., 1991. Hartstone distributed bench-
mark: requirements and definitions. Proceedings of the IEEE Sympo-
sium on Real-Time Systems, 199-209.

Liu, C.L., Layland, J.W., 1973. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM 20 (1),
46-61.

Lehoczky, J.P., Sha, L., Ding, Y., 1989. The rate monotonic scheduling
algorithms: exact characterization and average behavior. In: Proceed-
ings of the 10th IEEE Symposium on Real-Time Systems, December,
pp. 166-171.

Locke, C.D., Vogel, D.R., Mesler, T.J., 1991. Building a predictable
avionics platform in Ada: a case study. In: Proceedings of the 12th
IEEE Symposium on Real-Time Systems, December, pp. 181-189.

Mok, A.K., Chen, D., 1996. A multiframe model for real-time tasks. In:
IEEE 17th Real-Time Systems Symposium, December, pp. 22-29.

Miller, L., Cheng, A.M.K., 2000. Admission of high priority real-time
calls in an ATM network via bandwidth reallocation and dynamic
rerouting of active channels. In: Proceedings of the 21st IEEE Real-
Time Systems Symposium.

Molini, J.J., Maimon, S.K., Watson, P.H., 1990. Real-time system
scenarios. In: Proceedings of the 12th IEEE Symposium on Real-
Time Systems, December, pp. 214-225.

Pop, P., Eles, P., Peng, Z., 2000. Bus access optimization for distributed
embedded systems based on schedulability analysis. DATE.

Pop, P., Eles, P., Peng, Z., 2004. Schedulability-driven communication
synthesis for time triggered embedded systems. Real-Time Systems 6
(3), 297-325.

Richter, K., Racu, R., Ernst, R., 2003. Scheduling analysis integration for
heterogeneous multiprocessor SoC. In: Proceedings of the 24th IEEE
International Real-Time Systems Symposium.

Rao, S., Cheng, A.M.K., 2000. Scheduling and Routing of Real-Time
Multimedia Traffic in Packet-Switched Networks. In: Proceedings of
the IEEE International Conference on Multimedia and Expo.

Vin, H.M., Goyal, P., Goyal, A., 1994. A statistical admission control
algorithms for multimedia servers. In: Proceedings of the ACM
International Conference on Multimedia.

Wong, C., Cheng, A.M.K., 1997. An Approach for imprecise transmission
of TIFF image files through congested real-time ATM networks. In:
Proceedings of the 22nd International Conference on Local Computer
Networks.

	A faster exact schedulability analysis for fixed-priority scheduling
	Introduction
	Task model and definitions
	A faster exact schedulability analysis
	Overview
	Enhanced Audsley rsquo s algorithm (EAA)
	Properties

	Performance evaluation
	Metrics, experimental setup, and data sets
	Experimental results
	EAA compared with the Audsley rsquo s algorithm
	Initial value improvement

	Conclusion and future work
	References

