
Customized Benchmark Generation Using MDA

Liming Zhu1,2, Yan Liu1, Ian Gorton1, Ngoc Bao Bui3

1Empirical Software Engineering Program, National ICT Australia Ltd.
2School of Computer Science and Engineering, University of New South Wales, Australia

{Liming.Zhu, Jenny.Liu, Ian.Gorton}@nicta.com.au.au
3Faculty of Information Technology, University of Technology Sydney, Australia

NgocBao.Bui@student.uts.edu.au

Abstract

This paper describes an approach for generating

customized benchmark applications from a software
architecture description using a Model Driven
Architecture (MDA) approach. The benchmark
generation and performance data capture tool
implementation is based on widely used open source
MDA frameworks. The business logic of the benchmark
application is modeled in UML and generated by taking
advantage of the existing generation “cartridges” so that
the current component technology can be exploited in the
benchmark. This greatly reduces the effort and expertise
needed for benchmarking with complex component
technology. We have also extended the MDA framework
to model and generate a load testing suite and automatic
performance measurement infrastructure. The approach
complements current model-based performance
prediction and analysis methods by generating the
benchmark application from the same application
architecture that the performance models are derived
from. This provides the potential for tightly integrating
runtime performance measurement with model-based
prediction either for model validation or improving model
prediction accuracy. We illustrate the approach using a
case study based on EJB component technology.

1. Introduction

Software component technologies such as Enterprise
Java Beans (EJBs) and .NET have proven successful in
the construction of enterprise-scale systems [15].
However, it remains a challenging software engineering
problem to ensure that an application architecture can
meet specified performance requirements.

Various performance analysis models with prediction
capabilities have been proposed to evaluate architecture
designs during early phases of the application
development cycle [8]. Utilizing these models requires

two distinct activities be carried out by the application
architect. The first requires the development of specific
analytical models based on the application design. The
second must obtain parameter values for performance
model using measurements or simulation. Both these
activities require significant additional effort and specific
expertise in performance engineering methods. Hence,
they are key inhibitors that have prevented performance
engineering techniques from achieving wide-spread
adoption in practice [8].

With the growing interest in Model Driven
Architecture (MDA) [2] technologies, attempts to
integrate performance analysis with MDA and UML have
been made, aiming to reduce the performance modeling
effort required. The OMG’s MDA standard defines a
way of transforming business domain models into
Platform Independent Models (PIM) and then Platform
Specific Models (PSM), and eventually to executable
code. PSMs can also include a performance analysis
model specific to a performance engineering method.
Consequently, recent work has attempted model
transformation from UML design models to method-
specific performance analysis models. A more
comprehensive and elaborate theoretical basis has been
discussed in [22]. This work has, to a large extent,
improved on the earlier manually-oriented activities
related to deriving analytical models from application
designs.

Parameter values in these performance analysis models
also depend on the underlying component framework
used to implement the application. One method to obtain
and tune these parameters is to run a benchmark
application on the component framework. This approach
has proven to be useful [11, 12, 17] with component-
based technologies. An effective benchmark suite
includes a core benchmark application, a load testing
suite and performance monitoring utilities.

There are existing industry benchmark standards and
suites (e.g. [6]), but these are not broadly suitable for

performance modeling for a number of reasons. First,
they are mainly designed for server vendors to showcase
and improve their products, rather than reflecting a
specific application’s performance characteristics.
Second, these benchmark suites tend to be expensive to
acquire and complex to use.

On the other hand, implementing a custom benchmark
suite for a component platform from scratch is also costly
and tedious. This is largely due to the complexity of
modern component containers and the ad hoc ways they
adopt for conducting performance measurement. A
benchmark implementation usually requires a large
amount of container and infrastructure related plumbing,
even for a relatively simple benchmark design.
Interestingly, this characteristic is particularly amenable
to MDA-based code generation, which is efficient at
generating repetitive but complicated infrastructure code.
However, one capability that current MDA code
generation frameworks lack is that they do not provide
solutions to generation of a load testing suite.

The aim of our work is to automate the generation of
complete benchmark suites from a design description.
The input is a UML-based set of design diagrams for the
benchmark application, along with a load testing client
modeled in the UML 2.0 Testing Profile [4]. The output is
a deployable benchmark suite including generated
configurations for monitoring/profiling utilities. The
target platform is server-side component platforms,
currently the Java 2 Enterprise Edition (J2EE) component
framework. Executing the generated benchmark
application produces performance data in an analysis
friendly format, along with automatically generated
performance graphs. This approach has a number of
benefits:
• The generated benchmark suite is based on a design that

closely corresponds to the application of interest, and
hence it captures the unique characteristics of the
application. This should lead to the benchmark
producing more representative measures of the eventual
application.

• Model driven code generation hides the complexities of
the benchmark implementation from architects, and
helps them focus on analyzing the benchmark results
that are automatically produced.

• The approach derives the benchmark application from
the same application model that the performance
analysis model is derived. This makes it possible to use
the performance measurement data for analytical model
validation and tuning model parameter values. This
essentially complements the performance analysis
framework proposed in [22].

• Following MDA standards and using existing open
source MDA frameworks significantly reduces the
learning curve of the approach. It also takes advantage

of existing code generation “cartridges” exploiting the
latest component technologies. The wide range of
interoperable UML modeling tools (due to the
MDA/UML compatibility standard) also makes the
approach more amenable to adoption in practice.

The paper discusses related work on performance
analysis with MDA and benchmark suite generation. We
then introduce our approach in section 3. A case study
based on EJB component technology is presented in
section 4. We briefly discuss the approach in section 5
then conclude our paper in section 6.

2. Related Work
2.1 Performance Analysis with MDA

It has been argued that the MDA approach is a suitable
for facilitating performance analysis of large scale
enterprise system [23] since it “permits natural and
economical modeling of design and analysis domains and
relationships between them, supporting both manual and
automatic analysis.” Some researchers have used MDA
in performance analysis [19, 21, 24, 25], and typically
focus on deriving analytical models from UML design
models. A UML design model with appropriate profiles
applied can be transformed into a specific analytical
technique based model for further analysis. Most of these
model transformations are based on XSLT. The mapping
and transformation information is tangled within the
XML query and transformation language which has
limitations for representing and validating mapping
relationships [9].

A more comprehensive framework has been proposed
in [22]. It advocates representing analytical performance
models in UML using profiles. Thus, deriving analytical
models from design models equates to standard model
transformation in MDA. This has various standardization,
validation and tooling advantages over the using of plain
XSLT to transform designs into proprietary models.

Analytical model-based performance analysis can not
work without data to populate the model parameters.
Populating parameters must utilize techniques such as
simulation, estimation based on experience or historical
data, and all these require an in-depth understanding of
the behavior of the actual system components. These
techniques for parameter population encounter difficulties
if applications use complex commercial black box
components – this is common for most component-based
applications running on commercial application servers.

In such applications, measurements in the form of
benchmarking [6] and prototyping [14] are used to obtain
valuable information for architects. Comprehensive
prototyping can however be expensive. Industry standard
benchmark results can be used, but the results are specific
to the benchmark application itself, making it difficult to
sensibly infer performance characteristics of the

application under design. Combining model based
analysis with small scale benchmarking has been
introduced to solve this problem [17]. This approach can
work on different levels. Benchmarking and prototyping
results can be combined with model-based estimation as a
way of building confidence in performance predictions
and ruling out potential inaccuracy. Benchmarking and
prototyping data can also be directly fed into a
performance model for more accurate prediction. Some
recent research results have produced positive results
[18].

We argue that deriving a benchmark application from
the same application design as the performance models
are derived has great potential for validating and
calibrating performance prediction models. That is one of
the motivations of our approach on customized
benchmark generation using MDA.

2.2 Benchmark Generation

There are a large number of code generation
techniques and generator frameworks [9] that can be used
in benchmark suite generation. We choose a model driven
approach because code can be generated from designs
directly. The semantic links between our generated
benchmark suite code and performance analysis models
then exists since they derive from the same application
design model. Some pioneering work has been done on
generating benchmark and prototyping applications using
models, as in [13, 14] [16, 20]. However, these have
several limitations:
• The code generators for the chosen technologies are

built from scratch by the researchers. They do not utilize
any extensible generator frameworks, or draw upon the
vast pool of exiting code generation “cartridges” for
latest technologies that are maintained by an active
community. Any change to the chosen target technology
or the introduction of a new technology requires
significant extra work from the researchers.

• These methods do not follow the MDA standards.
Existing industry experience on UML and code
generation is therefore not leveraged. This makes the
code generation tasks for performance engineering an
additional activity for developers to carry out, rather
than a step in an incremental development process. Not
following MDA may also compromise tool
interoperability and semantic model traceability between
derived models.

• The load testing part of the benchmark suite can not be
comprehensively modeled compared to using the UML
2.0 testing profile. The latter distinguishes different
testing elements (e.g. test context, test cases, data pool,
data partition) within a testing environment. This makes
load test suite modeling more modular, reusable and
modifiable.

Our approach directly addresses these limitations, as
the remainder of the paper explains.

2.3 Performance Measurement

Performance measurement for a benchmark suite
includes end to end response time, throughput
measurement and application server related performance
measurement. For end to end performance data, the
application needs to be instrumented or a profiler used.
Both take significant software engineering effort. In our
approach, the load testing suite is modeled in the UML
2.0 testing profile. Deployable implementation and
performance data collecting utilities are automatically
generated. Executing the program causes performance
data to be collected as part of the test execution, with
performance data displayed in generated graphs.

Server-side component performance related data can
typically only be obtained using the particular component
container’s management tools. These are currently mostly
proprietary. However, this is changing as component
containers expose performance related information
through programmatically accessible management
components. For example, in J2EE, JMX-based (Java
Management Extension) resource monitoring is becoming
widely used and standardized. In our approach, we
exploit this new capability with the J2EE WebLogic
application server. We use either configuration files or
scripts generated from UML design models using MDA
to monitor application server related performance data.

3. Customized Benchmark Generation using
MDA

The overall structure of the benchmark generation
system and related process workflow is presented in the
boxed area in Figure 1. It also shows on the left side of
the diagram the relationship with model-based
performance prediction.

An application design in UML must be transformed
manually or with tool assistance into a customized
benchmark UML design model. This design usually
represents the core characteristics of the application that
are deemed by the architect to be the most performance
critical. The criteria for this transformation are beyond the
scope of this paper, as they depend on specific needs and
characteristics of the project and performance analysis
techniques. The benchmark UML design model is then
annotated with UML profiles for code generation, and a
load testing client is modeled using the UML 2.0 Testing
Profile. This UML model is then exported using XMI –
this becomes an input to the AndroMDA tool framework.
We have extended the AndroMDA framework with a new
cartridge to generate a load testing suite and associated
performance monitoring functionality. A cartridge is a
collection of meta-model definitions (XML files), code

generation handlers (code libraries) and templates. It can
process model elements that have specified stereotypes
and tagged values or model elements that meet certain
conditions. Along with exploiting existing cartridges, a
complete deployable customized benchmark suite can be
generated that has the capability for extensive
performance measurements. The same application design
can also be transformed into an analytical performance

model. The measurements obtained by the benchmark
suite can be integrated with the performance model and
used to validate or improve its results. Semantic mappings
and explicit model transformation rules provided by the
MDA approach make such integration straightforward
and systematic. This step is beyond the scope of this
paper.

Existing profiles
(EJB, WS and etc)

Application
Design (UML)

(Optional)
Benchmark app core

Design (UML)

Core
Benchmark

UML 2.0 testing
profile tailored for

performance testing

Performance
Analysis Model

Model Transformation

MeaurementPrediction

Manual Abstraction

Tool Aided

AndroMDA
Framework

XMI output

Load
Testing
Suite

Monitoring
Config files/scripts

JMX
monitoring

Po
te

nt
ial

 In
te

gr
at

ion

Validating or Providing Parameters

A new cartridge for
the UML 2.0 testing

profile

Existing cartridges
(EJB, WS and etc)

Our Extensions Machine Generated Existing Facilities
Figure 1. Model Driven Benchmark Suite Generation

3.1 Development Environment

We use an open source extensible framework,
AndroMDA [1], for MDA based code generation. The
reasons for this are twofold:
• The success of any code generation framework depends

on the range of generation capabilities available, along
with the extensibility of the framework itself.
AndroMDA satisfies both of these requirements.
Existing cartridges are maintained by a community of
active developers. It also has no intrinsic limitations on
extending it to platforms other than the current J2EE and
web (service) platforms.

• For a model driven approach to generate deployable
components, some implementation details need to be
captured at the model level. This makes abstract
modeling harder and models cluttered, as models should
be a reasonable abstraction devoid of as many details as
possible. AndroMDA separates UML and generated
code from manually provided business logic in different

directories. This allows us to have both code generation
capability and abstract modeling at the same time.

We consequently extended AndroMDA to support a
subset of the UML 2.0 Testing Profile for load test suite
generation. Based on the extended AndroMDA, benchmark
designers can model their own benchmark application along
with a load testing suite in UML. AndroMDA takes XMI
outputs representing the UML design and generates
deployable code using available code generation cartridges
and our cartridge extensions.

3.2 Benchmark Application Generation

The core benchmark application generation simply
exploits MDA development techniques using
AndroMDA. The principle behind AndroMDA is to
generate as much code as possible from marked PIMs.
PIMs are modeled in a UML profile with platform
independent stereotypes like “Entity”, “Service” and any
necessary persistence information. PIMs can also be
annotated with platform specific tagged values.

After modeling, AndroMDA generates all necessary
source files including business method interfaces and
implementation skeletons. The implementation skeletons
are stored in a separate directory so future code re-
generation will not override the skeletons.

Modeling and generating the benchmark application is
not therefore a distinct engineering step from normal
development activities. It can be considered as one of the
steps in an incremental development process instead of a
throw away performance prototyping activity. One PIM
model can also be used to generate different deployable
applications for different platforms with little
modification. This can greatly reduce the cost and
consequently the hurdle of performing performance
engineering in practice.

3.2 Load Test Generation

We model the load testing behavior using the UML 2.0
Testing profile [4]. This profile is an OMG standard,
representing a comprehensive superset of existing testing
widely used frameworks such as JUnit. Currently however,
there is no test generator available based on the UML testing
profile. The Eclipse Hyades project [5], which will
eventually fully support it in terms of modeling (not
automatic generation), remains in a nascent state. To develop
a full test generation framework according to the profile is a
major effort, and beyond our available resources. Hence we
focused merely on modeling load tests using a subset of the
profile and producing a default implementation of the model
including both test logic and test data.

To this end, we have implemented the following
stereotypes in the UML 2.0 Testing Profile through
extending AndroMDA:
• SUT (System under Test): This represents the

application to be tested. It consists of one or more
objects. The SUT is exercised via its public interface by
Test Components. In our approach, the SUT is the entry
point for the system (e.g. a remote session bean in J2EE)
which will be exercised for load testing purposes only.

• Test Context: This is a collection of test cases. In our
approach, it consists of load test cases with a default
implementation of loadTestAll(), which exercises all the
business methods on the SUT.

• Test Component: Test components are classes of a test
system. A test component has a set of interfaces via
which it communicates with the SUT. Since we provide
a default implementation of load test cases, users do not
have to model their own Test Components. These Test
Components are manifested as default method
implementations within the loadTestAll() method. Users
can choose to model their own Test Components, which
will be treated as any normal class communicating with
the SUT.

• Data Pool: A data pool is a collection of explicit values
that are used by a test context or test components during

testing. We use a data pool to model the load testing
data used when calling each method on SUT. The
system will automatically generate random test data
based on the data type and range specified. The data
pool can also be used to specify the transaction
percentage mix for all business methods by using tagged
values associated with the stereotype. These
configuration capabilities allow users to accurately and
easily model the anticipated work load.

• Data Partition: Data partitions are logic values for a
method parameter used in testing. It typically defines an
equivalence class for a set of values. We use a Data
Partition to partition the Data Pool into specific sections
for load testing. A Data Pool is general enough for
other testing purposes, including functional testing.

• Test Case: A test case is a specification of one or more
test cases for the system. It includes what to test with
which inputs, and the results expected under various
conditions. Test cases are modeled within a Test
Context that consists of multiple test cases. In our
approach, a loadTestAll() test case is implemented by
default. It exercises all public methods on the SUT using
randomly generated data modeled in a Data Pool and a
selected Data Partition.

Figure 2 illustrates the subset of the UML 2.0 Testing
Profile modeled in MagicDraw 8.0 as metafacade
extensions in AndroMDA. They all extend the existing
AndroMDA metafacade to take advantage of the
underlying framework. Each metafacade also includes a
set of tagged values associated with it to specify detailed
configurations. (We omit the details of these extensions
for clarity). The UML model can be exported as a profile
which can be later used in a load testing suite modeled
along with the benchmark application business logic.

Figure 2. Extending AndroMDA to support UML 2.0
Testing Profile

The AndroMDA extension for load test modeling and

generation results in a new cartridge that can be put into
the AndroMDA cartridge repository. It works with all
other existing server-side generation cartridges. Our

cartridge includes some supporting facilities and a library
of handlers for code generation written in Java. This
facilitates the reuse of existing cartridges and framework
facilities. It also enables template writers to access
metafacades in templates using tags. The separation of
OO based metamodeling with template based code
generation provides the flexibility and ease of use.

We provide a complete template for generating a
default implementation of the loadTestAll() test case with
randomly generated data based on a data pool model. A
database seeder is also generated to repopulate the
database before a new test. These capabilities greatly
reduce the extra effort involved in using the suite in load
testing activities, in which performance testing is the main
interests of the software engineer.

3.3 Performance Data Collection

In the above two sections, we have explained how we
have used MDA principles to generate a suite including a
core benchmark application and a load testing suite. We
also need to collect performance data for either informal
analysis or to feed in to a performance analysis model.
The data we need falls into two categories, namely:
Application related profiling information:

This includes end to end timings for requests and
counts on method calls, CPU workload and memory
status, garbage collection counts and so on. Much of this
data must be obtained through running a profiler and
system utilities. In our default load testing
implementation, the end to end response time distribution,
average response time and throughput are automatically
recorded on the client side. A response time distribution
graph for each run is also automatically generated. This
data is crucial for performance analysis, and is easy to
obtain if the default implementation is used. Users can
also use any profiler to obtain similar information.
Application server (middleware) related information

This includes health indicators of the application
server itself and component related information that may
have performance implications. For example, in EJB, the
component pool, runtime cache status and data source
pool can be inspected. This information is typically
collected through a container-proprietary user interface
and with logging and export functions, and the effort
required varies immensely between different EJB
platform implementations.

As mentioned in section 2.3, several J2EE containers
have recently exposed container related information using
JMX MBeans for both API based and scripting access.

With the help of JMX based container monitoring, we
can automate the container performance monitoring using
script and configuration file generation. The generation
templates only need to be written once for each container
and can be reused for different application designs.

In our approach, two styles of accessing the
information are available:
• We can use the JMX Java API to query the MBeans

directly. A generic MBean information query and
collection program runs independently of the benchmark
application, and reads a generated configuration file.
The configuration file includes the name of the MBean
providing the performance information, methods to be
called and all necessary parameters. The data collecting
program is J2EE container specific and needs to be
developed once for each container. With MDA, this
requires a generation template. The configuration file
can then be automatically generated from the UML
model for different application designs. Figure 3 is a
snippet of such a generation template.

• A more convenient solution is to leverage the scripting
shell provided by some J2EE containers. In this case, no
JMX-based data collection program is involved. All that
needs to be generated is appropriate scripts for
collecting the measurement of interests. For example,
third party applications like wlshell [3] for Weblogic
JMX and the newly integrated WLST [7] for Weblogic
9.0 provide a scripting shell for accessing the
information in MBeans. Figure 4 is an example of the
generated scripts for collecting EJBPoolRuntime
performance information.

We provide both shell script and configuration file
generation templates for the Weblogic platform. We
assume by default the target of the performance
measurement will be all the beans in the container and
business methods supported. Architects can tailor this by
commenting out unwanted parts in the generated files.

Figure 3. A snippet of configuration generation
template

 Figure 4. JMX-based server side monitoring using
scripts

 # methods for Session and MDB Pool
<XDtMethod:forAllMethods>
<XDtMethod:methodName/>:<XDtMethod:methodNameWithout
Prefix/>
</XDtMethod:forAllMethods>
</XDtClass:forAllClass>
…
<XDtEjbSession:forAllBeans>
EjbPoolRuntime:<XDtEjbSession:concreteFullClassName/>
</XDtEjbSession:forAllBeans>

#Get Runtime info for Session Bean and MDB
ls /EJBPoolRuntime
ejbpool = $LAST
for $ejb in $ejbpool do
 sb1 = get /EJBPoolRuntime/$ejb/AccessTotalCount
 sb2 = get /EJBPoolRuntime/$ejb/IdleBeansCount
 sb3 = get /EJBPoolRuntime/$ejb/BeansInUseCurrentCount
end

4. Case Study
We use the Stock-Online system [10] as a case study

to illustrate our approach. The Stock-Online system is a
proven benchmark for evaluating various middleware
platforms. The original system was developed for
different J2EE platforms. Due to platform differences,
there was significant effort involved in implementing the
same design for different platforms, and keeping the
benchmark application in line with component technology
advancements required significant ongoing effort. Hence,
it makes sense to use Stock-Online as a case study to
demonstrate the amount of effort that can be saved
utilizing MDA development and code generation.

The case study’s aim is to generate the Stock-Online
system, including a load testing suite, purely from UML
models. To this end, two variations are generated, for the
WebLogic and JBoss platforms respectively, both using
the same Oracle database backend.

4.1. Benchmark Application Modeling

The server side logic is modeled using the UML and
AndroMDA profiles shown in Figure 5. Domain
components corresponding to persistent entities are
marked using the stereotype <<Entity>>. Components
which act as business process facades are marked using
the stereotype <<Service>>. There are also tagged values
associated with each stereotype for component attributes
such as persistence, remote/local interface and other
configuration settings. Dependencies among <<Entity>>
and <<Service>> elements are marked using
<<EntityRef>> if a reference exists between them. All of
these values are J2EE platform independent.

Figure 5. Stock-Online benchmark application server
side modelling

We omit these tagged values in the presentation to

reduce cluttering. In this case study, we do not use any
platform specific features, so no platform specific
annotations need to be included on the UML model.
Hence the same design model is used for the both target
platforms.

4.2 Modeling Load Testing Suite

The load testing suite for Stock-Online is modeled
using a subset of the UML 2.0 Testing Profile with
support from our extension to AndroMDA. The load
testing suite model for Stock-Online is shown in Figure 6.

Figure 6. Stock-Online benchmark load test model

Figure 7. Transaction type and percentage mix
modeled using <<Data Pool>>

The load testing entry point is the Broker bean. It is the
front end component of the system under test, which is
marked using <<SUT>>. ClientDemo is the
<<TestContext>> which consists of test cases. Only the
default loadTestAll() test case is included with its default
implementation to be generated. For simplification, all the
test data is modeled in TrxnData from which
<<DataPartition>> LoadTestingTrxnData is derived. In
more complicated situations, several test data classes may
exist. In <<DataPool>> TranDeck, we can also indicate

the transaction mix percentage as tagged values shown in
Figure 7. For example, queryStock represents 34.9% of all
transactions and getHolding represents 11.7%. This data
will be used in randomly generating test data which
simulates the real work load.

We then export both the core benchmark application
and load testing suite UML diagrams into XMI
compatible formats. Since we are not using any
application server specific modeling information in our
model, the exported UML model will be used for both
WebLogic and JBoss code generation.

4.3 Customized Benchmark Generation,
Deployment and Execution

By running the AndroMDA wizard, two EJB project
directory structures are generated for WebLogic and
JBoss respectively. It consists of a MDA directory for
storing the exported UML model, and directories for
storing source code and the future deployable application.
Project property files for specifying dependencies on the
targeted platforms and other deployment configurations
are also generated. We then copy the exported UML
model into the designated MDA directory and run the
code generation engine.

Source code is generated based on the UML model.
For the client side, the complete load testing suite is
generated without the need for further modification. The
load testing logic and random test data is derived from the
load testing UML model and method signatures of the
server-side component interface.

The server-side component code is generated
following EJB best practices, including value objects.
Business logic inside each component method needs to be
manually added by placing implementation code into a
separate directory. This prevents overriding manual
modification by subsequent code generation iterations. It
also separates the implementation from the specifications
(interfaces) which derive from the UML design. After
adding the server side business logic code, the
AndroMDA framework generates the deployable
package. The generated application is almost a carbon
copy of the manually written Stock-Online system
[10].The application is then deployed in the following
environment:
Table 1. Hardware and Software Configuration

Machine Hardware Software
Client Pentium 4 CPU 2.80

GHz, 512M RAM Windows XP, JDK1.4

Application
and database
server

Xeon Dual Processors,
2.66 GHz,
HyperThreading
enabled, 2G RAM

WindowsXP Prof.
JDK1.4 with settings –
hotspot, –Xms512m and –
Xmx1024m,
Oracle 9i and thin JDBC
driver

4.4 Performance Output
The benchmark test workload, defined by the number

of concurrent requests, is specified in the workload
generator. We then run load tests and obtain the following
performance results automatically:
• Response time distributions in both log files and chart

based graphs
• Average response time for each request
• Application throughput in terms of transactions per sec.

Figure 8 shows example outputs of response time
distribution chart for two application servers under a
workload of 100 concurrent clients.

Figure 8. Samples of response time distribution on
two application servers

By utilizing the JMX-based monitoring and data
collection techniques described in section 3.3, many
server side internal parameters can be obtained. For
example, Figure 9 shows the performance parameters
automatically collected from benchmark execution for
100 clients on WebLogic application server with 20
server threads and 20 database connections.

The performance data collected in this example is the
same as we have been collecting in conducting various
empirical studies on evaluating architecture candidates
and platforms. Interested readers can refer to [17] for the
details of the type of data collected and how to interpret
the data for performance comparisons. Using the

technology described in this paper, we now have a tool
for automatically generating the core application and load
testing components of benchmarks following MDA, and
efficiently capturing the performance data.

• JDBC Connection Pool

PrepareStatement cache hit ratio = 99.999%
Current # of active connections = 19
of pending requests = 0
Average # of active connections = 12
Maximal # of active connections = 20

• Application Server Worker Thread Pool
Current # of idle threads = 0
Current # of pending requests = 79
of requests completed = 43,000

• Entity Bean Cache
Cache hit ratio = 69%

Figure 9. Parameters collected based on automatically
generated JMX monitoring configurations

5. Discussions
5.1 Evaluation

It took considerable effort to develop the original
Stock-Online application for different middleware
platforms, conduct load testing and collect performance
data. Using our extended framework, one student, the
main developer of the AndroMDA extension but with no
experience with J2EE, took one week to model the system
and conduct the load tests on WebLogic. It took her
another half day to deploy the system on JBoss and
conduct the same load testing. We realize that this effort
comparison it is anecdotal, and we do not have accurate
effort data from the original development team. It is also
easier to develop the same application the second time.
However, it is preliminary evidence that the effort spent
on the basic plumbing code and load test suite has been
absorbed by cartridge developers and code generation.
Hence we believe the productivity savings afforded by
this approach are potentially considerable. We are
planning to conduct a thorough investigation on this.

In our case study, we are not using any platform
specific features so one single UML model is used for
both the JBoss and WebLogic platforms. If platform
specific features are involved, the model has to be marked
with platform specific information using tagged values.
The additional complexity of using the platform specific
features is also hidden by the code generation cartridges.

Making changes to the design to generate a new
version of the benchmark is also simpler. If new business
components and methods are introduced, new
implementation code needs to be added to the generated
skeleton. Otherwise, changing design elements like
stateful/stateless beans or remote/local interfaces are
simply a matter of changing the UML model. All the
changes will be propagated in the source code and
deployment information.

Generating a benchmark application is essentially not
different from generating any software application. A
benchmark application usually either captures the
performance critical parts of the full application or acts as
a way of exercising off-the-shelf component framework
services which you are interested in. By unifying
benchmark related performance work with normal
application development in a single consistent
environment, we facilitate incremental design and
development. This helps to incorporate performance
engineering tasks into the SDLC with minimal cost.

5.2 Limitations

There are still several limitations of this approach:
• AndroMDA is generic enough to support platforms

other than the existing J2EE and web (service)
platforms. Still, the existing cartridges are limited to
these two different type of platforms. The lack of .NET
platform support has limited us from applying our
approach to a wider collection of platforms. However,
new third party vendors such as ArcStyler have
successfully provided MDA support for .NET. On the
other hand, Microsoft will integrate model based
modeling in its new Visual Studio, along with potential
interoperability with UML. Another possibility therefore
is that a UML model can be transformed into models
usable in Visual Studio for code generation.

• The default implementation of the load testing suite is
still relatively simple. It covers only successful testing
scenario generation. In real applications, performance of
exception handling and transaction rollback is also a
major concern. Currently, users have to implement such
scenarios manually. We are considering integrating
these both a modeling level and in the default
implementation in future versions. We will also take
advantage of some other interesting concepts in UML
2.0 Testing Profile such as Arbiter and Verdict
stereotypes for determining the success of the test run.

6. Conclusion and Future Work

This paper has presented an approach to generate
customized benchmark application based on the J2EE
platform using MDA. An implementation of this
approach based on extending the open source MDA
framework has been described and demonstrated.

A benchmark design is modeled with platform
independent models in UML. A corresponding load
testing suite is modeled following a subset of the UML
2.0 Testing Profile. Deployable code is then generated for
both the core benchmark design and its associated load
testing suite. The core application is generated by taking
advantage of existing code generation cartridges
maintained by the open source community. The load

testing suite generator has been developed by the authors,
and fully integrates with the core application generation.
A case study using EJB component technology and the
Stock-Online benchmark suite is demonstrates the tools
and the generated outputs from load tests.

This approach has several significant advantages over
proprietary model-based CASE tool environments for
benchmark generation. Using MDA and exiting open
source MDA frameworks reduces the learning curve and
training effort required, and improves model traceability
and tool interoperability. A default implementation and
test data generation saves a large amount of effort for
normal load testing. The approach also complements
existing model-based performance prediction methods by
providing the potential to use the benchmark results for
calibrating and validating analytical performance models.
The semantic traceability achieved through MDA makes
this integration easier, and this remains a major objective
of our future work.

7. Acknowledgments

National ICT Australia is funded through the
Australian Government's Backing Australia's Ability
initiative, in part through the Australian Research
Council.

8. References
[1] "AndroMDA, v3.0M3", http://andromda.org/.

[2] "Model Driven Architecture", http://www.omg.org/mda/.

[3] "wlshell, v.2.0.2", http://www.wlshell.net/.

[4] "UML 2.0 Testing Profile Specification",
http://www.omg.org/cgi-bin/doc?ptc/2004-04-02.

[5] "Eclipse Hyades", http://www.eclipse.org/hyades/.

[6] "ECperf, v1.1", http://java.sun.com/j2ee/ecperf/index.jsp.

[7] "WebLogic Scripting Tool (WLST)", http://e-
docs.bea.com/wls/docs90/config_scripting/index.html.

[8] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni,
"Model-based performance prediction in software development:
a survey," Software Engineering, IEEE Transactions on, vol. 30
(5), pp. 295-310, 2004.

[9] K. Czarnecki and S. Helsen, "Classification of Model
Transformation Approaches," in Proceedings of the OOPSLA'03
Workshop on Generative Techniques in the Context of Model-
Driven Architectures, 2003.

[10] I. Gorton, Enterprise Transaction Processing Systems:
Putting the CORBA OTS, Encina++ and OrbixOTM to Work:
Addison-Wesley, 2000.

[11] I. Gorton and A. Liu, "Evaluating the performance of EJB
components," Internet Computing, IEEE, vol. 7 (3), pp. 18-23,
2003.

[12] I. Gorton, A. Liu, and P. Brebner, "Rigorous evaluation of
COTS middleware technology," Computer, vol. 36 (3), pp. 50-
55, 2003.

[13] J. Grundy, Y. Cai, and A. Liu, "Generation of distributed
system test-beds from high-level software architecture
descriptions," in Proceedings of the 16th Annual International
Conference on Automated Software Engineering (ASE), 2001.

[14] J. Grundy, Z. Wei, R. Nicolescu, and Y. Cai, "An
environment for automated performance evaluation of J2EE and
ASP.NET thin-client architectures," in Proceedings of the
Australian Software Engineering Conference (ASWEC), 2004.

[15] G. T. Heineman and W. T. Councill, Component-based
software engineering: putting the pieces together. Boston:
Addison-Wesley, 2001.

[16] Y. Liu, I. Gorton, A. Liu, N. Jiang, and S. Chen, "Design a
Test Suite for Empirically-based Middleware Performance
Prediction," in Proceedings of the TOOLS Pacific, 2002.

[17] Y. Liu, "Performance Prediction of Component-based
System," in School of Information Technologies. PHD
Dissertation: University of Sydney, 2004.

[18] Y. Liu and I. Gorton, "Accuracy of Performance Prediction
for EJB applications: A statistical analysis," in Proceedings of
the Software Engineering for Middleware (SEM), 2004.

[19] A. D. Marco and P. Inverardi, "Compositional Generation
of Software Architecture Performance QN Models," in
Proceedings of the 4th Working IEEE / IFIP Conference on
Software Architecture (WICSA), 2004.

[20] M. J. Rutherford and A. L. Wolf, "A case for test-code
generation in model-driven systems," in Proceedings of the The
second international conference on Generative programming
and component engineering, Erfurt, Germany, 2003.

[21] M. J. Rutherford and A. L. Wolf, "Integrating a
Performance Analysis Kit into Model-Driven Development," in
Proceedings of the The 5th GPCE Young Researchers
Workshop 2003, Erfurt, Germany, 2003.

[22] J. Skene and W. Emmerich, "Model Driven Performance
Analysis of Enterprise Information Systems1," Electronic Notes
in Theoretical Computer Science, vol. 82 (6), pp. 1-11, 2003.

[23] J. Skene and W. Emmerich, "A model-driven approach to
non-functional analysis of software architectures," in
Proceedings of the 18th IEEE International Conference on
Automated Software Engineering (ASE), 2003.

[24] T. Weis, A. Ulbrich, K. Geihs, and C. Becker, "Quality of
service in middleware and applications: a model-driven
approach," in Proceedings of the Eighth IEEE International
Enterprise Distributed Object Computing Conference(EDOC),
2004.

[25] C. Yilmaz, A. M. Memon, A. A. Porter, A. S. Krishna, D.
C. Schmidt, A. Gokhale, and B. Natarajan, "Preserving
distributed systems critical properties: a model-driven
approach," Software, IEEE, vol. 21 (6), pp. 32-40, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

