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Abstract

With the increasing size and complexity of software in embedded systems, software has now become a primary threat for the reliabil-
ity. Several mature conventional reliability engineering techniques exist in literature but traditionally these have primarily addressed
failures in hardware components and usually assume the availability of a running system. Software architecture analysis methods aim
to analyze the quality of software-intensive system early at the software architecture design level and before a system is implemented.
We propose a Software Architecture Reliability Analysis Approach (SARAH) that benefits from mature reliability engineering tech-
niques and scenario-based software architecture analysis to provide an early software reliability analysis at the architecture design level.
SARAH defines the notion of failure scenario model that is based on the Failure Modes and Effects Analysis method (FMEA) in the
reliability engineering domain. The failure scenario model is applied to represent so-called failure scenarios that are utilized to derive
fault tree sets (FTS). Fault tree sets are utilized to provide a severity analysis for the overall software architecture and the individual
architectural elements. Despite conventional reliability analysis techniques which prioritize failures based on criteria such as safety con-
cerns, in SARAH failure scenarios are prioritized based on severity from the end-user perspective. SARAH results in a failure analysis
report that can be utilized to identify architectural tactics for improving the reliability of the software architecture. The approach is
illustrated using an industrial case for analyzing reliability of the software architecture of the next release of a Digital TV.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Three important trends can be observed in the develop-
ment of embedded systems. First, the demand for products
with more and more functionality has increased due to the
high industrial competition and the advances in hardware
and software technology. Second, the functionality pro-
vided by embedded systems is more and more shifting from
hardware to software. Third, embedded systems become
more and more open. Increasingly, the functionality is host
to multiple parties and is not solely developed by just one

manufacturer anymore. Furthermore, embedded systems
are integrated in networked environments that affect these
systems in ways that might not have been foreseen during
their construction.

These three trends complicate the design and implemen-
tation of embedded systems and as such put serious chal-
lenges on assuring the desired software quality factors
such as security, reliability, performance and availability.
Since embedded systems are now largely defined and con-
trolled by software, the required quality factors are likewise
more dependent on the quality of the adopted software and
to a lesser degree on the hardware.

An important quality factor in the development of
embedded systems is reliability. Given the above trends
of increased functionality, complexity and openness, it is
expected that the risk of failures in embedded systems
can increase to a mission critical level. Obviously, to mini-
mize this risk it is required that appropriate reliability
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analysis and design techniques are provided so that poten-
tial failures can be predicted in time and the system can be
designed to be recoverable from these failures.

Several useful conventional reliability engineering tech-
niques exist already in literature to analyze and design reli-
able systems. A comprehensive overview of these approaches
is, for example, given in Dugan (1996) and Avizienis et al.
(2001). From a close study to these approaches we can derive
two key observations. First of all, these conventional reli-
ability analysis techniques have primarily focused on failures
in hardware components and less on software components.
In fact this is not so strange because historically, software
formed only a small part of embedded systems and basically
hardware components defined the quality of the system. The
second observation shows that conventional reliability anal-
ysis techniques very often assume a completed running sys-
tem and do not focus on reliability analysis before the
system is actually implemented.

It is now widely recognized that reliability analysis
should not be limited to hardware components but should
also cover software components. In addition, there is an
increasing agreement that reliability analysis should not
just be performed at the code level but also earlier during
the development of the system. In this context, the system
that needs to be implemented is typically the next release of
a product in a given product line. The new release usually
includes an enhanced set of features or has improved qual-
ity. Thus, early analysis here should be interpreted as the
analysis of the next release of a system rather than the anal-
ysis of a system that will be developed completely from
scratch.

The early analysis of software quality has been in partic-
ular promoted in the software architecture analysis
domain. Because implementing the software architecture
is a costly process it is important to predict the quality of
the system and identify potential risks, before committing
enormous organizational resources (Dobrica and Niemela,
2002). Similarly, it is of importance to analyze the potential
failures that might reduce reliability at the architecture
design level before the system is implemented.

For providing an early reliability analysis that covers
software components, it is worthwhile to utilize both the
results from software architecture analysis and conven-
tional reliability analysis approaches.

Software architecture analysis (Clements et al., 2002)
usually includes static analysis of formal architectural
models (Medvidovic and Taylor, 2000) or scenario-based
architecture analysis methods as described in Dobrica
and Niemela (2002). Scenario-based analysis approaches
have been widely applied and validated over the past sev-
eral years. Several scenario-based architecture analysis
methods have been developed each focusing on particular
quality attributes (Dobrica and Niemela, 2002). In general,
scenario-based analysis methods take as input a model of
the architecture and measure the impact of the predefined
scenarios on it in order to identify the potential risks and
the sensitive points of the architecture. A scenario is gener-

ally considered to be a brief description of some anticipated
or desired use of the system (Clements et al., 2002). Hereby,
it is implicitly assumed that scenarios correspond to the
particular quality attributes that need to be analyzed.

In the conventional reliability analysis domain, a well-
known and established mature approach is the Failure
Mode and Effect Analysis (FMEA) method. The purpose
of FMEA is to identify possible failure modes of the system
components and evaluate their impact on the system per-
formance. FMEA is usually utilized together with fault tree
analysis (FTA) that is developed based on the results of the
FMEA. In FTA so-called fault trees define causal and log-
ical relationships between faults and their causes. Although
both FMEA and FTA are established techniques in reli-
ability engineering they have been basically used to analyze
failures of hardware components.

We propose the software architecture reliability analysis
(SARAH) approach that benefits from both reliability
engineering and scenario-based software architecture anal-
ysis to provide an early reliability analysis of next product
releases. SARAH defines the notion of failure scenario
model that is based on the FMEA and FTA. The failure
scenario model is applied to represent so-called failure sce-
narios that indicate potential failures in the software sys-
tem. These failure scenarios are utilized to derive a fault
tree set (FTS), which shows the causal and logical connec-
tions among the failures.

To a large extent SARAH integrates the best practices
of the conventional and stable reliability analysis tech-
niques with the scenario-based software architecture analy-
sis approaches. Besides this SARAH provides another
distinguishing property by focusing on user perceived reli-
ability. Conventional reliability analysis techniques priori-
tize failures usually based on criteria such as safety
concerns since safety critical systems (airplanes, nuclear
power plants, etc.) have been the main focus for reliability
analysis. However, we focus on the consumer electronics
domain in which safety is less/not an issue. Instead, user
perception of failures is adopted as the primary concern
to enhance reliability. The underlying assumption here is
that failures that are not perceived by the user are less
important and should be tolerated as much as possible.
In SARAH the focus on user perceived reliability manifests
itself in the prioritization and analysis of failure scenarios
based on a user perception model. As a result SARAH
aims to improve in particular the user-perceived reliability.

SARAH results in a failure analysis report that defines
the sensitive elements of the architecture and provides
information on the type of failures that might frequently
happening. The reliability analysis forms the key input to
identify architectural tactics (Bachman et al., 2003) for
adjusting the architecture and improving its reliability,
which forms the last phase in SARAH.

We thus provide a reliability analysis approach aimed
for analyzing the reliability of future releases before they
are developed with the basic focus on reliability from a user
perspective. SARAH is illustrated using an industrial case
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for analyzing user-perceived reliability of future releases of
Digital TVs. Besides presenting SARAH as an integrated
and novel software architecture reliability approach, an
additional goal of this paper is to present the results and
the experiences of applying this method within an indus-
trial context. As such while explaining the approach we will
also discuss our experience and obstacles in applying the
approach.

The remainder of this paper is organized as follows. In
Section 2, we present the industrial case in which Digital
TV architecture is introduced. This example will be used
throughout the paper to illustrate the steps of SARAH
and to discuss our experiences in the industrial context.
Sections 3–6 explain the steps of SARAH and apply this
to the reliability analysis of the software architecture of
the Digital TV. Section 3 presents the top-level process.
Section 4 presents the definition of the software architec-
ture and the scenarios from FMEA. Section 5 presents
the analysis of the architecture and the definition of the
failure analysis report. Section 6 discusses the identification
of architectural tactics and the refactoring of the architec-
ture based on the architectural analysis results. Section 7
discusses the lessons learned. Section 8 provides the related
work and finally Section 9 concludes the paper.

2. Industrial case: Digital TV (DTV) software architecture

At the Embedded Systems Institute (ESI), the TRA-
DER (Television Related Architecture and Design to
Enhance Reliability) project is carried out together with
NXP Semiconductors, Philips Consumer Electronics, and
several other academic and industrial partners (Trader pro-
ject web site, 2005). The objective of the project is to
develop methods and tools for ensuring reliability of digital
television (DTV) sets. Similar to the general trends that can
be observed for embedded systems, one can also observe
three important trends for the DTV. Firstly, the TV is
equipped with an increasing number of features after each
release. Secondly, functionality is shifting from hardware
to software implementations. The amount of software that
is embedded in the TV is dramatically increasing leading to
an increase in software complexity. Thirdly, the DTV will
become open and be integrated in networks and connected
to other devices.

Albeit reliability has always played a role in the design
of TV systems, this has become a key concern within the
current trends. To keep the reliability at least at the current
levels it is required that reliability analysis techniques need
to be enhanced. For a long period the reliability of the TV
has been basically addressed at hardware level using run-
time error handling techniques. However, in face of the
current developments it has now been recognized that the
error handling techniques in the TV system should also
cover software failures, and reliability analysis techniques
should be applied before the system has been implemented.
The latter is required to anticipate on potential failures that
cannot be solely addressed at the code level. Another

important observation in the design of embedded systems
and in particular the DTV is that it is not practically feasi-
ble to aim for a perfect system design that does not include
any failures at all. Instead, it is recognized that the system
can include some failures and the system needs to provide
fault tolerance for this by defining appropriate reliability
analysis and detection techniques. In the DTV design in
the TRADER project, failures that can be directly
observed by the user require a special attention. Failures
that are not directly perceived by the user can be tolerated
to some extent. Because TRADER aims to anticipate also
on failures in future releases it is important that reliability
analysis and detection techniques are defined at the design
level. From this perspective one of the key aims in TRA-
DER is the design of fault tolerant software architecture
with respect to the perception of TV users.

A conceptual architecture of DTV is depicted in Fig. 1,1

which will be referred to throughout the paper. The design
mainly comprises two layers. The bottom layer, namely the
streaming layer, involves modules taking part in streaming
of audio/video information. The upper layer consists of
applications, utilities and modules that control the stream-
ing process. In the following, we briefly explain some of the
important modules that are part of the architecture. For
brevity, the modules for decoding and processing audio/
video signals are not explained here.

Application Manager (AMR) initiates and controls exe-
cution of both resident and downloaded applications in
the system. It keeps track of application states, user modes
and redirects commands/information to specific applica-
tions or controllers accordingly.

Audio Controller (AC), controls audio features like vol-
ume level, bass and treble based on commands received
from AMR.

Command Handler (CH) interprets externally received
signals (i.e. through keypad or remote control) and sends
corresponding commands to AMR.

Communication Manager (CMR) employs protocols for
providing communication with external devices.

Conditional Access (CA) authorizes information that is
presented to the user.

Content Browser (CB) presents and provides navigation
of content residing in a connected external device.

Electronic Program Guide (EPG) presents and provides
navigation of electronic program guide regarding a channel.

Graphics Controller (GC) is responsible for generation of
graphical images corresponding to user interface elements.

Last State Manager (LSM) keeps track of last state of
user preferences such as volume level and selected program.

Program Installer (PI) searches and registers programs
together with channel information (i.e. frequency).

Program Manager (PM) tunes to a specific program
based on commands received from AMR.

1 Due to space limitation and confidentiality, we present a simplified
DTV architecture and a representative set of scenarios only.
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Teletext (TXT) handles acquisition, interpretation and
presentation of teletext pages.

Video Controller (VC) controls video features like scal-
ing of the video frames based on commands received from
AMR.

3. Top-level process of the analysis approach

For understanding and predicting quality requirements
of the architectural design Bachman et al. identify four
important requirements: (1) provide a specification of the

«subsystem»
Command Handler

«subsystem»
Application Manager

«subsystem»
Program Manager

«subsystem»
Program Installer

«subsystem»
Content Browser

«subsystem»
Teletext

«subsystem»
EPG

«subsystem»
Graphics Controller

«subsystem»
Last State Manager

«subsystem»
C/A

«subsystem»
Audio Controller

«subsystem»
Video Controller

«subsystem»
Tuner

«subsystem»
Video Processor

«subsystem»
Data Decoder & Interpreter

«subsystem»
Audio Process or

«subsystem»
Graphics

«subsystem»
Audio Out

«subsystem»
Video Ou t

«subsystem»
Communication Manager

Control Layer

Streaming Layer

Module Dependency (uses)KEY «subsystem»Layer

 
Fig. 1. Conceptual architecture of Digital TV.
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quality attribute requirements, (2) enumerate the architec-
tural decisions to achieve the quality requirements, (3) cou-
ple the architectural decisions to the quality attribute
requirements and finally (4) provide the means to compose
the architectural decisions into a design (Bachman et al.,
2003). SARAH is in alignment with these key assumptions.
The focus in SARAH is the specification of the reliability
quality attribute, the analysis of the architecture based on
the provided model and the identification of the architec-
tural tactics to adjust the architecture.

In SARAH, reliability is considered as the ability to
cope with failures. The notion of failure has been exten-
sively studied in the reliability engineering domain. Hereby,
a failure is generally defined as an event that occurs when
the delivered service of a system deviates from a correct ser-
vice (Avizienis et al., 2001). A correct service is delivered
when the service implements the system function. A service
failure may occur because it does not comply with the func-
tional specification, or because the specification did not
adequately describe the required system function. An error

is defined as the system state that is liable to lead to a fail-
ure and the cause of an error is called a fault (Avizienis
et al., 2001).

SARAH adopts the view of failures from the reliability
engineering domain. The steps of SARAH are presented as
a UML activity diagram in Fig. 2. The approach consists
of three basic processes: (1) Definition, (2) Analysis and
(3) Adjustment. In the definition process the software archi-
tecture, the failure domain model, the failure scenarios, the
fault trees and the severity values for failures are defined.
Based on this input, in the analysis process, an architectural
level analysis and an architectural element level analysis are

performed. The results are presented in the failure analysis
report. The failure analysis report is utilized in the adjust-

ment process to identify the architectural tactics and adapt
the software architecture. An architectural tactic is defined
as a characterization of architectural decisions that are
needed to achieve a desired quality attribute response
(Bachman et al., 2003). In SARAH we are mainly inter-
ested in identifying architectural tactics to enhance reliabil-
ity. In the following sections the main steps of the method
will be explained in detail using the industrial case study.

4. Definition of the software architecture and failure
scenarios

4.1. Describe the architecture

Similar to existing software architecture analysis meth-
ods SARAH starts with defining the software architecture.
The definition includes the architectural elements and their
relationships. Currently, the method itself does not pre-
sume to provide a particular architectural view (Clements
et al., 2002) but in our project we have basically applied
it to the module view. The architecture that we analyzed
is depicted in Fig. 1.

4.2. Develop failure scenarios

SARAH is a scenario-based architectural analysis
method, that is, scenarios are the basic means to analyze
the architecture. SARAH defines the concept of failure sce-

nario to analyze the architecture with respect to reliability.
Failure scenarios are potential failures that could occur due

AdjustmentAnalysisDefinition

Derive Fault Tree Set

Define Severity Values
in Fault Tree Set

Perform Architectural Level Analysis

Perform Architectural Element
Level Analysis

Provide Failure Analysis Report

Develop Failure Scenarios

Define Relevant
Failure Domain Model Derive Failure Scenarios

Specify Failure Scenarios

Define Architectural Element Spots

Identify Architectural Tactics

Apply Architectural Tactics

Describe the Architecture

Fig. 2. Activity diagram of the software architecture reliability analysis method.
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to internal or external causes within a given context. To
specify the failure scenarios in a uniform and consistent
manner a failure scenario template, as defined in Table 1
is adopted for specifying failure scenarios. The template
is inspired from FMEA (Dugan, 1996). FMEA is a well
known reliability analysis method for eliciting and evaluat-
ing potential risks of a system. In FMEA, five attributes of
a failure scenario are identified; failure id, related compo-
nent, failure cause, failure mode and failure effect. A failure

mode is defined as the manner in which the element fails. A
failure effect is the (undesirable) consequence of a failure
mode. For clarity in SARAH fault, error and failure are
used for the concepts failure cause, failure mode and failure

effect, respectively. In SARAH failure scenarios are derived
in two steps. First the relevant failure domain model is
defined, then failure scenarios are derived from this failure
domain. The following subsections describe these steps in
detail.

4.2.1. Define relevant failure domain model
The failure scenario template can be adopted to derive

scenarios in an ad hoc manner using free brainstorming
sessions. However, it is not trivial to define the fault, error,
or failure types. Hence, there is a high risk that several
potential and relevant failure scenarios are missed or that
other irrelevant failure scenarios are included. To define
the space of relevant failures SARAH defines relevant
domain model for faults, errors and failures using a system-
atic domain analysis process (Arrango, 1994). These
domain models provide a first scoping of the potential sce-
narios. In fact, several researchers have already focused on
modeling and classifying failures for embedded systems.
Avizienis et al. (2001), for example, provide a nice overview
of this related work and provide a comprehensive classifi-
cation of faults, errors and failures. The provided domain
classification by Avizienis et al., however, is rather broad,2

and one can assume that for a given reliability analysis pro-
ject not all the potential failures in this overall domain are
relevant. Therefore, the given domain is further scoped by
focusing only on the faults, errors and failures that are con-
sidered relevant for the actual project. Fig. 3, for example,

defines the derived domain model that is considered rele-
vant for the DTV project.

In Fig. 3a, a feature diagram of fault is presented, in
which faults are identified according to their source, dimen-
sion and persistence. In SARAH, failure scenarios are
defined per architectural element. For that reason, the
source of the fault can be either (1) internal to the element
in consideration, (2) caused by other element(s) of the sys-
tem or (3) caused by external entities with respect to the
system. Faults could be caused by software or hardware,
and be transient or persistent. In Fig. 3b, the relevant fea-
tures of an error are shown, which comprise the type of
error together with its detectability and reversibility proper-
ties. Fig. 3c defines the features for failure, which includes

Table 1
Template for defining failure scenarios

FID A numerical value to identify the failures (i.e. Failure ID)
AEID An acronym defining the architectural element for which the

failure scenario applies (i.e. Architectural Element ID)
Fault The cause of the failure defining both the description of the

cause and its features
Error Description of how the element fails or the state of the element

that leads to the failure together with its features
Failure The effect of the failure defining both the description of the effect

and its features

(a) Feature Diagram of Fault  

(b) Feature Diagram of Error 

(c) Feature Diagram of Failure 

Fault Dimension

Source

Persistence

internal (w.r.t. element)

external (w.r.t.  system)

hardware

software

permanent

transient

other element(s)

Error Detectability

Type

Reversibility

data corruption

wrong value

detectable

undetectable

irreversible

reversible

deadlock

out of resources

too early/late

wrong exec. path

Failure

Target

Type

user

other element(s)

timing

presentation quality

behavior

wrong value/presentation

Fig. 3. Failure domain model.

2 Due to space limitations we do not show this domain model and refer
the interested reader to the corresponding publication.
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the features type and target. The target of a failure can be
the user or other element(s) of the system.

The failure domain model of Fig. 3 has been derived
after a thorough domain analysis and in cooperation with
the domain experts in the project. In principle, for different
project requirements one may come up with a slightly dif-
ferent domain model, but as we will show in the next sec-
tions this does not impact the steps in the analysis
method itself. The key issue here is that failure scenarios
are defined based on the FMEA model, in which their
properties are represented by domain models that provide
the scope for the project requirements.

4.2.2. Define failure scenarios
The domain model defines a system-independent specifi-

cation of the space of failures that could occur. The num-
ber and type of failure scenarios is implicitly defined by
the failure domain model, which define the scope of the rel-
evant scenarios. In the fault domain model (feature dia-
gram in Fig. 3a), for example, we can define faults based
on three features, namely Source, Dimension and Persis-

tence. The feature Source can have three different values,
the features Dimension and Persistence 2 values. This
means that the fault model captures 3 � 2 � 2 = 12 differ-
ent faults. Similarly, from the error domain model we
can derive 6 � 2 � 2 = 24 different errors, and 4 � 2 = 8
different failures are captured by the failure domain model.
Since a scenario is a composition of selection of features
from the failure domain model, we can state that for the
given failure domain model in Fig. 3 in theory, 12 � 8 �
24 = 2304 failure scenarios can be defined. However, not
all the combinations instantiated from the failure domain
are possible in practice. For example, in case the error type
is ‘‘too late” then the error cannot be ‘‘reversible”. If the
failure type is ‘‘presentation quality” then the failure target
can only be ‘‘user”. To specify such kind of constraints for
the given model in Fig. 3 usually mutex and requires pred-
icates are used (Kang et al., 1990). For example, the given
two example constraints are specified as follows:

Error.type.too_late mutex

Error.type.reversibility.reversible

Failure.type.presentation_quality
requires

Failure.target.user

Once the failure domain model together with the neces-
sary constraints have been specified we can start defining
failure scenarios for the architectural elements. For each
architectural element we check the possible failure scenarios
and define an additional description of the specific fault,
error or failure. Table 2 provides, for example, a list of nine
selected failure scenarios that have been derived for the reli-
ability analysis of the DTV. In fact, for the example we have
utilized 44 failure scenarios but due to space limitations we
do not show these all. In Table 2 the five elements FID,

AEID, fault, error and failure are represented as columns
headings. Failure scenarios are represented in rows.

The failure ids represented by FID do not have a specific
ordering but are only used to identify the failure scenarios.
The column AEID includes acronyms of names of architec-
tural elements to which the identifiers refer. The type of the
architectural elements that are analyzed can vary depend-
ing on the architectural view utilized (Clements et al.,
2002). In case of a deployment view, for instance, the archi-
tectural elements that will be analyzed will be the nodes.
For component and connector view, the architectural ele-
ments will be components and connectors. In this paper,
we focused on module view of the architecture, where the
architectural elements are the implementation units (i.e.
modules). In principle if an architectural element is repre-
sented as a first-class entity in the model and it affects the
failure behavior, then it can be used in the analysis of
SARAH.

The columns fault, error and failure describe the specific
faults, errors and failures. Note that the separate features
of the corresponding domain models are represented as
keywords in the cells. For example, fault includes the fea-
tures source, dimension and persistence as defined in
Fig. 3a, and likewise these are represented as keywords.
Besides the different features, each column also includes
the keyword description, which is used to explain the
domain specific details of the failure scenarios. Typically
these descriptions are obtained from domain experts. The
columns fault and failure include the fields source and tar-

get respectively. Both of these refer to failure scenarios of
other architectural elements. For example, in failure sce-
nario F2, the fault source is defined as CMR (F5), indicat-
ing that the fault in F2 occurs due to a failure in CMR as
defined in F5. The source of the fault can be caused by a
combination of failures. This is expressed by logical con-
nectives. For example, the source of F1 is defined as CH
(F4) OR CMR (F6) indicating that F1 occurs due to a fail-
ure in CH as defined in F4 or due to a failure in CMR as
defined in F6.

4.3. Derive fault tree set from failure scenarios

A close analysis of the failure scenarios shows that they
are connected to each other. For example, the failure sce-
nario F1 is caused by the failure scenario F4 or F6. To make
all these connections explicit, in SARAH fault trees are
defined. A fault tree is a model for representing the
cause–effect relations of failures and faults. The root of a
fault tree represents a failure and the leaf nodes represent
faults. Since a failure can be logically caused by a set of
faults, the nodes of the fault tree are interconnected with
logical connectives. Typically, a given set of failure scenar-
ios leads to a set of fault trees, which are together defined
as a fault tree set (FTS). Formally, FTS is a graph
G(V,E) consisting of the set of fault trees. G has the follow-
ing properties:
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1. V = F [ A

2. F is the set of failure scenarios each of which is associ-
ated with an architectural element.

3. Fu� F is the set of failure scenarios comprising failures
that are perceived by the user (i.e. system failures). Ver-
tices residing in this set constitute root nodes of fault
trees.

4. A is the set of gates representing logical connectives.
5. "g 2 A,
� [a] outdegree (g) = 1 ^
� [b] indegree (g) P 1

6. A = AAND[ AOR such that,

� [a] AAND is the set of AND gates.
� [b] AOR is the set of OR gates.

7. E is the set of directed edges (u, v) where u, v 2 V.

For the example case, based on the failure scenarios in
Table 2 we can derive the FTS as depicted in Fig. 4.

Here, the FTS consists of three fault trees. On the left
the fault tree shows that F1 is caused by F4 or F6. The mid-
dle column indicates that failure scenario F3 is caused by F2

which is on its turn caused by F5. Finally, in the last col-
umn the fault tree shows that F8 is caused by both F7

and F9.

Table 2
Selected concrete failure scenarios derived from general scenarios for analysis of DTV architecture

FID AEID Fault Error Failure

F1 AMR Description: Reception of irrelevant
signals

Description: Working mode is changed when it is not
desired

Description: Switching to an undesired
mode

Source: CH (F4) OR CMR (F6) Type: Wrong path Type: Behavior
Dimension: Software Detectability: Undetectable Target: User
Persistence: Transient Reversibility: Reversible

F2 AMR Description: Cannot acquire
information

Description: Information can not be acquired from
the connected device

Description: Cannot provide
information

Source: CMR (F5) Type: Too early/late Type: Timing
Dimension: Software Detectability: Detectable Target: CB (F3)
Persistence: Transient Reversibility: Irreversible

F3 CB Description: Cannot acquire
information

Description: Information can not be presented due to
lack of information

Description: Cannot present content of the
connected device

Source: AMR (F2) Type: Too early/late Type: Behavior
Dimension: Software Detectability: Detectable Target: User
Persistence: Transient Reversibility: Irreversible

F4 CH Description: Software fault Description: Signals are interpreted in a wrong way Description: Provide irrelevant information
Source: Internal Type: Wrong value Type: Wrong value/presentation
Dimension: Software Detectability: Undetectable Target: AMR (F1)
Persistence: Permanent Reversibility: Reversible

F5 CMR Description: Protocol mismatch Description: Communication cannot be sustained
with the connected device

Description: Cannot provide
information

Source: External Type: Too early/late Type: Timing
Dimension: Software Detectability: Detectable Target: AMR (F2)
Persistence: Permanent Reversibility: Irreversible

F6 CMR Description: Software fault Description: Signals are interpreted in a wrong way Description: Provide irrelevant information
Source: Internal Type: Wrong value Type: Wrong value/presentation
Dimension: Software Detectability: Undetectable Target: AMR (F1)
Persistence: Permanent Reversibility: Reversible

F7 DDI Description: Reception of
out-of-spec signals

Description: Scaling information can not
be interpreted from meta-data

Description: Cannot provide
data

Source: External Type: Wrong value Type: Wrong value/presentation
Dimension: Software Detectability: Detectable Target: VP (F8)
Persistence: Transient Reversibility: Reversible

F8 VP Description: Inaccurate scaling ratio
information

Description: Video image cannot be scaled
appropriately

Description: Provide distorted
video image

Source: DDI (F7) and VC (F9) Type: Wrong value type: Presentation quality
Dimension: Software Detectability: Undetectable Target: User
Persistence: Transient Reversibility: Reversible

F9 VC Description: Software
fault

Description: Correct scaling ratio cannot be
calculated from the video signal

Description: Provide inaccurate
information

Source: Internal Type: Wrong value Type: Wrong value/presentation
Dimension: Software Detectability: Detectable Target: VP (F8)
Persistence: Permanent Reversibility: Reversible
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4.4. Define severity values in fault tree set

Usually, in FTA probability values are assigned to the
leaf nodes of a fault tree based on the frequency of fault
occurrences (Dugan, 1996). The probability of the root fail-
ure is then computed based on these probability values of
the lower level nodes. The fault tree is thus processed in
a bottom-up manner starting from the leaf nodes.

As we have indicated before we are focused on failure
analysis in the context of consumer electronics domain.
As such we need to analyze in particular those failures
which have the largest impact on the user perception. For
example, a complete black screen will have a larger impact
on the user than a temporary distortion in the image. These
different user perceptions on the failures have a clear
impact on the way how we process the fault trees. Before
computing the failure probabilities of the individual leaf
nodes, we first assign severity values to the root failures
based on their impact on the user. In our case the severity
values are based on the prioritization of the failure scenar-
ios as defined in Table 3.

The severity degrees range from 1 to 5 and are provided
by domain experts. For example, the severity values for
failures F1, F3 and F8 are depicted in Fig. 5. Here we can
see that F5 has been assigned the severity value 5 indicating
that it has a very high impact on the user perception. In
fact, the impact of a failure can differ from user to user.
In this paper, we consider the average user type. To define
user perceived failure severities, an elaborate user model
can be developed based on experiments with subjects from
different age groups and education levels. We consider the
user model as an external input and any such model can be
incorporated to the method.

The severity values of the root failures are used to deter-
mine the severity values of the other, lower nodes of the

FTS. These values are calculated based on the following
equation:

8u 2 F u; sðuÞ ¼ su

8f 2 F ^ f 62 F u;

sðf Þ ¼
X
8v s:t:
ðf ;vÞ2E

sðvÞ � P ðvjf Þ
ð1Þ

The first part of the equation defines the assignment of
severity values to the root failures (1). The second part
indicates the calculation of the severity values for the lower
nodes. Here, P(vjf) denotes the probability that the occur-
rence of f will cause the occurrence of v (Dugan, 1996). We
multiply this value with the severity of v to calculate the
severity of f. According to the probability theory,
P(vjf) = P(v \ f)/P(f). If v is an OR gate, then the output
of v will always occur whenever f occurs. That is,
P(v \ f) = P(f). As a result, P(v/f) = 1. If v is an AND gate,
Pðv \ f Þ ¼

Q
P ðxÞ for all vertices x that is connected to v.

To calculate P(vjf) we need to know P(x) for all x except
f. For example, F8 has been assigned the severity value 4.
Due to the use of AND gates F7 and F9 are assigned the
value s(F8) � P(F8jF7) = 4 � P(F9) and
s(F8) � P(F8jF9) = 4 � P(F7), respectively.

To define the final severity values obviously we need to
know the probability of each failure. In principle there are
three strategies that can be used to determine these
required probability values:

� Using Fixed values:

All probability values can be fixed to a certain value. An
example is to assume that each failure will have equal
weight and likewise the probabilities of individual failures
are basically defined by the AND and OR gates.

� What-if analysis

A range of probability values can be considered, where
fault probabilities are varied and their effect on the proba-
bility of user perceived failures are observed.

F6 F5F4

F3

F2

F1

F7 F9

F8

Fu: set of 
failure 
scenarios 
comprising 
failures that 
are perceived 
by the user.

Fig. 4. Fault trees derived from failure scenarios in Table 2.

Table 3
Prioritization of severity categories

Severity Type Annoyance description

1. Very low User hardly perceives failure
2. Low A failure is perceived but not really annoying
3. Moderate Annoying performance degradation is perceived
4. High User perceives serious loss of functions
5. Very high Basic user-perceived functions fail. System locks up

and does not respond

F8 F5F6

F3

F2

F1

3 5

3 3

5

5

F7 F9

F8

4

2 2

Fig. 5. Fault trees with severity values.
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� Measurement of actual failure rate

The actual failure rate can be measured based on histor-
ical data or execution probabilities of elements that are
obtained from scenario-based test runs (Yakoub et al.,
2004).

In SARAH all these three strategies can be used depend-
ing on the available knowledge on probabilities. In case the
probabilities are not known or they do not have a relevant
impact on the final outcome then fixed probability values
can be adopted. If probabilities are not equal or have differ-
ent impacts on the severity values then either the second or
third strategy can be used. In the second strategy, the what-
if analysis can be useful if no information is available on an
existing system. The measurement of actual failure rates is
usually the most accurate way to define the severity values.
However, the historical data can be missing or not accessi-
ble, and deriving execution probabilities is cumbersome.

To identify the appropriate strategy a preliminary sensi-

tivity analysis can be performed. In conventional FTA,
sensitivity analysis is based on cut-sets in a fault tree and
the probability values of fault occurrences (Dugan, 1996).
However, this analysis leads to complex formulas and it
requires that the probability values are known priori. In
our case we propose the following model for estimating
the sensitivity with respect to a fault probability even if
the probability values are not known

root 2 F u; node 2 F ;

8n 2 F ^ n 6¼ node ^ n 6¼ root; PðnÞ ¼ p;

P ðnodeÞ ¼ p0; P ðrootÞ ¼ f ðp0; pÞ;

sensitivityðnodeÞ ¼
Z 1

0

o

op0
P ðrootÞ

� �
dp

ð2Þ

The equation above, shows the calculation of the sensi-
tivity of a user perceived failure (P(root)) to the probability
of a node (P(node)) of the fault tree. Here, we assign p0 to
P(node) and fix the probability values of all the other nodes
to p. Thus P(root) turns out to be a function of p and p0.
For example, if we are interested in the sensitivity of
P(F8) to P(F9), P(F8) = P(F7) � P(F9) = p0 � p. Then, we
take a partial derivative of P(root) with respect to p0. This
gives the rate of change of P(root) with respect to p0 (P(F9)).
For our example, this will yield to o/op0P(F8) = p. Finally,
the result of the partial derivation is integrated with
respect to p for all possible probability values ([0–1]) to cal-
culate the overall impact. For the example case,R
ðo=op0PðF 8ÞÞdp ¼

R
pdp ¼ p2=2. So, the result of the inte-

gration from 0 to 1 will be 0.5. In fact, in this model we use
the basic sensitivity analysis approach, where we change a
parameter one at a time and fix the others (Yakoub et al.,
2004). Additionally, we use derivation to calculate the rate
of change and we use integration to take the range of prob-
ability values into account. The resulting formulas are sim-
ple enough to be computed with spreadsheets.

For the analysis presented in this paper, we skip the
sensitivity analysis and assume equal probabilities

(i.e. P(x) = p for all x), which simplifies the severity assign-
ment formula for AND gates as s(v) � P(vjf) = s(v) �
pINDEGREE(v)�1. Based on this assumption, the severity
calculation for intermediate failures is as shown in the
following equation:

s fð Þ ¼
X
8v s:t:
ðu;vÞ2E^

ðv2F_v2AORÞ

sðvÞ þ
X
8v s:t:
ðu;vÞ2E^
v2AAND

sðvÞ � pINDEGREEðvÞ�1 ð3Þ

In our analysis, we fixed the value of p to be 0.5. In case
of F7 and F9, for instance, the severity value is 4/2 because
F8 has the severity value of 4 and it is connected to an
AND gate with INDEGREE = 2. On the other hand, F1

has the assigned severity value of 3 and this is also assigned
to the failures F6 or F8 that are connected to F1 through an
OR gate. A failure scenario can be connected to multiple
gates and other failures, in which the severity value is
derived as the sum of the severity values calculated for all
these connections.

5. Analysis of software architecture

In our example case, we defined a total of 44 failure sce-
narios including the scenarios presented in Table 2. We
completed the definition process by deriving the corre-
sponding fault tree set and calculating severity values as
explained in Section 4. The results that were obtained dur-
ing the definition process are utilized by the analysis pro-
cess as described in the subsequent sections.

5.1. Perform architecture-level analysis

The first step of the analysis process is architecture-level
analysis in which we pinpoint critical elements of the archi-
tecture with respect to reliability. Here, we can consider
two types of critical elements 1) unreliable elements 2) sen-
sitive elements. Unreliable elements are the elements, which
are the sources of the majority of the failure scenarios (i.e.
root causes). Sensitive elements are the elements, which are
associated with the majority of the failure scenarios. These
include not only the failure scenarios caused by internal
faults but also the failure scenarios caused by other ele-
ments. In the architectural-level analysis step, we aim at
identifying sensitive elements with respect to the most crit-
ical failures from the user perception. In this context sensi-
tivity analysis actually precedes reliability analysis and as
such forms a starting point for tackling unreliable ele-
ments. Later, in the architectural element level analysis,
the fault, error types and the actual sources of their failures
(internal or other unreliable elements) are identified. Sensi-
tive elements provide a starting point for considering the
relevant fault tolerance techniques and the elements to
improve with respect to reliability (see Section 6). In this
way the effort that is provided for reliability analysis is
scoped with respect to failures that are directly perceivable
by the users.

B. Tekinerdogan et al. / The Journal of Systems and Software 81 (2008) 558–575 567



Author's personal copy

As a primary and straightforward means of comparison,
we consider the percentage of failures (PF) that are associ-
ated with elements. For each element c the value for PF is
calculated as follows:

PFc ¼
# of failures associated with c

# of failures
� 100 ð4Þ

This means that simply all the number of failures related
to an element are summed and divided by the total number
of failures (in this case 44). The results are shown in Fig. 6.
A first analysis of this figure already shows that the Appli-
cation Manager (AMR) and Teletext (TXT) modules have
to cope with a higher number of failures than other
modules.

This analysis treats all failures equally. To take the
severity of failures into account we define the Weighted
Percentage of Failures (WPF) as given in Eq. (3).

WPF c ¼

P
8u2F s:t:
AEIDðuÞ¼c

sðuÞ
P
8u2F

sðuÞ � 100 ð5Þ

For each element, we collect the set of failures associated
with them and we add up their severity values. After aver-
aging this value with respect to all failures and calculating
the percentage, we obtain the WPF value. The result of the
analysis is shown in Fig. 7.

Although weighted percentage presents different results
compared to the previous one, the Application Manager

(AMR) and Teletext (TXT) modules again appears to be
very critical.

From the project perspective it is not always possible to
focus on the total set of possible failures due to the related
cost for reliability. To optimize the cost usually one would
like to consider the failures that have the largest impact on
the system. For this, in SARAH the architectural elements
are ordered in ascending order with respect to their WPF
values. The elements are then categorized based on the
proximity of their WPF values. Accordingly, elements of
the same group have WPF values that are close to each
other. The results of this prioritization and grouping are
provided in Table 4, which also shows the sum of the
WPF values of elements for each group. Here we can see
that, for example, group 4 consists of two modules AMR
and TXT. The reason for this is that their WPF values
are the highest and close to each other. The sum of their
WPF values is 25 + 14 = 39%.

To highlight the difference in impact of the groups of
architectural elements we define a Pareto chart as presented
in Fig. 8.

In the Pareto chart, the groups of architectural elements
shown in Table 4 are ordered along the x-axis with respect
to the number of elements they include. The percentage of
elements that each group includes is depicted with bars.
The y-axis on the left hand shows the percentage values
from 0 to 100 and is used for scaling the percentages of
architectural elements whereas the y-axis on the right hand
side scales WPF values. The plotted line represents the
WPF value for each group. In the figure we can, for exam-
ple, see that group 4 (consisting of two elements) represents
10% of the all elements but has a WPF of 39%. The chart
helps us in this way to focus on the most important set of
elements which are associated with the majority of the user
perceived failures.

5.2. Perform architectural element level analysis

The architectural level analysis provides only a quantita-
tive analysis of the impact of failure scenarios on the given.
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Fig. 6. Percentage of failure scenarios impacting architectural elements.
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Fig. 7. Weighted percentage of failures impacting architectural elements.

Table 4
Architectural elements grouped based on WPF values.

Group # Modules WPF
(%)

1 AC, AO, AP, CA, G, GC, PI, LSM, T, VO, VC, VP 28
2 CB, CH, EPG, PM 18
3 DDI, CMR 15
4 AMR, TXT 39
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Fig. 8. Pareto chart showing the largest impact of the smallest set of
architectural elements.
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However, for failure management and recovery it is also
necessary to define the type of failures that might occur
in the identified sensitive elements. This is analyzed in the
architectural element level analysis in which the features
of faults, errors and failures that impact an element are
determined. For the example case, in the architectural-level
analysis it appeared that elements residing in the 4th group
(see Table 4) had to deal with largest set of failure scenar-
ios. Therefore, in architectural element level analysis, we
will focus on members of this group, namely Application

Manager and Teletext modules.
Following the derivation of the set of failure scenarios

impacting an element, we group them in accordance with
the features presented in Fig. 3. This grouping results in
the distribution of fault, error and failure categories of fail-
ure scenarios associated with the element.

For example, the results obtained for Application Man-
ager and Teletext modules are shown in Fig. 9a and
Fig. 9b, respectively. If we take a look at fault features pre-
sented on those figures for instance, we see that most of the
faults impacting Application Manager Module are caused
by other modules. On the other hand, Teletext Module
has internal faults as much as faults stemming from the
other modules. As such, distribution of features reveals
characteristics of faults, errors and failures associated with
individual elements of the architecture. This information is
later utilized for architectural adjustment (See Section 6).

5.3. Provide failure analysis report

SARAH defines a detailed description of the fault tree
sets, the failure scenarios, the architectural level analysis
and the architectural element level analysis. These are
described in the failure analysis report that summarizes
the previous analysis results and provides hints for recov-

ery. Sections comprised by the failure analysis report are
listed in Table 5, which are in accordance with the steps
of SARAH. The first section describes the project context,
information sources and specific considerations (e.g. cost-
effectiveness). The second section describes the software
architecture. The third section presents the domain model
of faults, errors and failures which include features of inter-
est to the project. The fourth section contains list of failure
scenarios annotated based on this domain model. The fifth
section depicts the fault tree set generated from the failure
scenarios together with the severity values assigned to each.
The sixth and seventh sections include analysis results as
presented in Sections 5.1 and 5.2 of this paper, respectively.
Additionally, the sixth section includes the distribution of
fault, error and failure features for all failure scenarios as
depicted in Fig. 10. Finally, the report includes a section
on first hints for architectural recovery as titled architec-

tural tactics (Bachman et al., 2003). This is explained in
the next section.

6. Architectural adjustment

The failure analysis report that is defined during the reli-
ability analysis forms an important input to the architec-

Fig. 9. Fault, error and failure features of failure scenarios associated with elements in 4th group of the Pareto chart.

Table 5
Sections of the failure analysis report

1. Introduction
2. Software architecture
3. Failure domain model
4. Failure scenarios
5. Fault tree set
6. Architecture level analysis
7. Architectural element level analysis
8. Architectural tactics
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tural adjustment. Hereby the architecture will be enhanced
to cope with the identified failures. This requires the fol-
lowing three steps: (1) defining the elements to which the
failure relates (2) identifying the architectural tactics and
(3) application of the architectural tactics.

6.1. Define architectural element spots

Architectural tactics have been introduced as a charac-
terization of architectural decisions that are used to sup-
port a desired quality attribute (Bachman et al., 2003). In
SARAH we apply the concept of architectural tactics to
derive architectural design decisions for supporting reliabil-
ity. The previous steps in SARAH result in a prioritization
of the most sensitive elements in the architecture together
with the corresponding failures that might occur. Thus,
SARAH prioritizes actually the design fragments (Bach-
man et al., 2003) to which the specific tactics will be applied
and to improve reliability. In general, for applying a recov-
ery technique to an element we need also to consider the
other elements coupled with it. This is because local treat-
ments of individual elements might directly impact the
dependent elements. For this reason, we define architec-

tural element spot for a given element as the set of elements
with which it interacts. This draws the boundaries of the
design fragment (Bachman et al., 2003) to which the design
decisions will be applied. The coupling can be statically
defined by analyzing the relations among the elements.
Table 6 shows architectural element spots for each element
in the example case. For example, Table 6 shows the ele-
ments that are in the architectural element spot of AMR
as AC, AO, CB, CH, CMR, DDI, EPG, GC, LSM, PI,
PM, TXT, VC and VO. These elements should be consid-
ered while incorporating mechanisms to AMR or any
refactoring action that includes alteration of AMR and
its interactions.

6.2. Identify architectural tactics

Once we have identified the sensitive elements, the ele-
ment spots and the potential set of failure scenarios, we
proceed with identifying the architectural tactics for reli-
ability. The number of reliability techniques in the litera-
ture is quite broad. In Avizienis et al. (2001), the means
of achieving reliability is categorized as fault forecasting,
fault removal, fault prevention and fault tolerance (See
Fig. 11). The analysis report of SARAH defines the poten-

tial set of failure scenarios for the analyzed system, which
can be considered as fault forecasting. Fault forecasting
supports the other means of reliability since it points out
potential faults that are needed to be tolerated, prevented
or removed. In SARAH, we particularly focus on fault tol-
erance techniques.

After identifying the sensitive elements we analyze the
fault and error features related to these sensitive elements
(Fig. 10). Faults can be either internal or external to the
sensitive element. If the source of the fault is internal this
means that the sensitive element itself is unreliable and as
such the fault tolerance techniques will be applied to the
sensitive element itself. However, if the source of the fault
is external, this means that the failures are caused by the
other elements that are unreliable. In that case, we might
need to consider applying fault tolerance techniques to
these unreliable elements instead. These unreliable elements
can be traced with the help of the architectural element
spot (Section 6.1) and fault tree set. In case faults are tran-

sient we might also apply fault tolerance techniques to the
sensitive elements although they are not the causes of the
failures. Examples of these fault tolerance techniques are
exception handling, restarting, check-pointing and roll-
back recovery (Huang and Kintala, 1995). If the faults

Fig. 10. Feature distribution of fault, error and failures for all failure scenarios.

Table 6
Architectural element spots

AEID Architectural element spot
AMR AC, AO, CB, CH, CMR, DDI, EPG, GC, LSM, PI, PM, TXT,

VC, VO
AC AMR, AP, LSM
AP AC, DDI
AO AMR, CA
CA AMR, PM, T, AO, VO
CB AMR, CMR
CH AMR
CMR AMR, CB
DDI AMR, AP, CA, EPG, TXT, VP
EPG AMR, DDI
G GC
GC AMR, G
LSM AMR, AC, PM, VC
PI AMR, PM
PM AMR, CA, LSMR, T
T CA, PM
TXT AMR, DDI
VC AMR, LSM, VP
VO AMR, CA
VP DDI, VC
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are internal and permanent, then one should apply design
diversity (e.g. recovery blocks, N-version programming
(McAllister and Vouk, 1996) on the sensitive element to
tolerate such faults.

In Fig. 11, some examples for fault tolerance techniques
have been given. Here, fault tolerance techniques are fur-
ther divided into detection, diagnosis and recovery steps.
Each technique provides a solution for a particular set of
problems. To make this explicit, each fault tolerance tech-
nique is tagged with the fault and error types that it aims to
detect and/or recover. As an example, in Fig. 11, watchdog

(Huang and Kintala, 1995) is applied to detect deadlock

errors for tolerating faults resulting in such errors. On
the other hand, N-version programming (McAllister and
Vouk, 1996) is used to both detect and recover from wrong

value errors that are caused by internal and persistent faults.
Fig. 11 provides only a part of the reliability techniques

as an example. Derivation of all fault tolerance tactics is
out-of-scope of this paper.

6.3. Apply architectural tactics

As the last step of architectural adjustment, selected
architectural tactics should be applied to adjust the archi-
tecture if necessary.

The possible set of architectural tactics is determined as
described in the previous section. Additionally, other crite-
ria need to be considered including cost and limitations
imposed by the system (resource constraints). For the given
case, Table 7 shows, for example, the potential means of
reliability that can be applied for AMR and TXT modules.
The last column of the table shows the selected candidate
techniques.

Although SARAH identifies tactics that could be
applied to enhance reliability it does not explicitly state

how to realize the selected tactics. Obviously, the realiza-
tion of an architectural tactic and measuring its properties
(reengineering and performance overhead, availability, per-
formability) for a system requires dedicated analysis and
additional research. To identify the appropriate techniques
we adopt the existing literature on the selected tactic. For
example, in Laprie et al. (1995) fault tolerance techniques
that are based on diversity (e.g. recovery blocks, N-version
programming) are evaluated with respect to dependability
and cost. In Candea et al. (2004) availability improvement
achieved by component-level restarts is evaluated in the
Internet services domain.

In our case, on-line monitoring was selected as a candi-
date error detection technique to be applied to the AMR
and TXT modules. Similar to other tactics it appears that
there are different ways to realize on-line monitoring as it
is described in literature. Schroeder, for example, provides
a classification of on-line monitoring and explains its char-
acteristics (Schroeder, 1995). Based on this classification
scheme we have defined one solution for on-line monitor-
ing. Hereby, the design is enhanced with on-line monitoring
facilities including sensing based on sampling, embedded
event interpretation, and explicit recovery action specifica-
tions (Schroeder, 1995).

Fault.Source = internal
Fault.Persistence = permanent

Error.Type = wrong value 

Means of Reliability

Error.Type = deadlock

Fault RemovalFault Forecasting Fault PreventionFault Tolerance

Error Detection Fault / Error 
Diagnosis

Error Recovery

watchdog 
Error.Type = deadlock OR out of resources
Fault.Persistence = transient

checkpoint & restart 

Error.Type = wrong value
OR wrong execution path

on-line monitoring

Error.Type = wrong value
Fault.Source = internal 
Fault.Persistence = permanent

N-version programming

N-version programming

Error

data corruption

wrong value
deadlock

Type wrong execution
path

Detectability

to be applied for 
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to be applied for sensitive 
and /or unreliable elements

to support
the other means
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Fig. 11. Partial categorization of means of reliability with corresponding fault and error features.

Table 7
Treatment approaches for sensitive components

AEID Potential means Selected means
AMR On-line monitoring, watchdog,

checkpoint & restart, resource
checks, interface checks

On-line monitoring,
interface checks

TXT On-line monitoring, watchdog, n-
version programming, checkpoint
& restart, resource checks,
interface checks

On-line monitoring,
checkpoint & restart,
resource checks
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7. Discussion

The method and its application provide new insight in
the scenario-based architecture analysis methods. A num-
ber of lessons can be learned from this study.

� Early reliability analysis

Similar to other software architecture analysis methods
based on our experiences with SARAH we can state that
early analysis of quality at the software architecture level
has a practical and important benefit (Dobrica and Niemel-
a, 2002). In our case the early analysis relates to the anal-
ysis of the next release of a system (e.g. Digital TV) in a
product line. Although, we did had access to the next
release implementation of the Digital TV the reliability
analysis with SARAH still provided useful insight in the
critical failures and elements of the current architecture.
For example, we were able to identify the critical modules
Application Manager, Teletext and also got an insight in
the failures, their causes and their effects. Without such
an analysis it would be hard to denote the critical modules
that have the risk to fail. For the next releases of the prod-
uct this information can be directly utilized in deciding for
the reliability techniques to be used in the architecture.

� Utilizing a quality model for deriving scenarios

The use of an explicit domain model for failures has
clearly several benefits. Actually, in the initial stages of
the project we first tried to directly collect failure scenarios
by interviewing several stakeholders. In our experience this
has clear limitations because (1) the set of failure scenarios
for a given architecture is in theory too large and (2) even
for the experts in the project it was hard to provide failure
scenarios. To provide a more systematic and stable
approach we have done a thorough analysis on failures
and defined a fault domain model that represents essen-
tially the reliability quality attribute. This model does not
only provide systematic means for deriving failure scenar-
ios but also defined the stopping criteria for defining failure
scenarios. Basically we have looked at all the elements of
the architecture, checked the failure domain and expressed
the failure scenarios using the failure scenario template that
we have presented in Section 4.2. During the whole process
we were supported by TV domain experts.

� Impact of project requirements and constraints

From the industrial project perspective it was not suffi-
cient to just define a failure domain model and derive the
scenarios from it. A key requirement of the industrial case
was to provide a reliability analysis that takes the user-per-
ception as the primary criteria. This requirement had a
direct impact on the way how we proceeded with the reli-
ability analysis. In principle, it meant that all the failures
that could be directly or indirectly perceived by the end-

user had to be prioritized before the other failures. In our
analysis this was realized by weighing the failures based
on their severities from the user-perspective. In fact, from
a broader sense, the focus on user-perceived failures could
just be considered an example. SARAH provides a frame-
work for reliability analysis and the method could be easily
adapted to highlight other types of properties such as for
example hardware/software failures.

� Calculation of probability values of failures

One of the key issues in the reliability analysis is the def-
inition of the probability values of the individual failures.
In Section 4.4 we have described three well-known strate-
gies that can be adopted to define the probability values.
In case more knowledge on probabilities is known in the
project the analysis will be more accurate accordingly. As
described in Section 4.4 SARAH does not adopt a particu-
lar strategy and can be used with any of these strategies.
We have illustrated the approach using fixed values.

� Inherent dependence on domain knowledge

Obviously, the set of selected failure scenarios and val-
ues assigned to their attributes (severity) directly affect
the results of the analysis. As it is the case with other sce-
nario-based analysis methods both the failure scenario elic-
itation and the prioritization are dependent on subjective
evaluations of the domain experts. To handle this inherent
problem in a satisfactory manner SARAH guides the sce-
nario elicitation by using the relevant failure domain model
as described in Section 4.2.1 and the use of failure scenario
template in Section 4.2. The initial assignment of severity
values for the user-perceived failures is defined by the
domain experts, but the independent calculation of the
severities for intermediate failures is defined by the method
itself as defined in Eq. (1) and (2) in Section 4.4.

� Extending the fault tree concept

In the reliability engineering community, fault trees have
been used for a long time in order to calculate the probabil-
ity that a system fails (Dugan, 1996). This information is
derived from the probabilities of fault occurrences by pro-
cessing the tree in a bottom-up manner. The system or sys-
tem state can be represented by a single fault tree where the
root node of the tree represents the failure of the system. In
this context, failure means a crash-down in which no more
functionality can be provided further. The fault tree can be
also processed in a top-down manner to find the root
causes of this failure. One of the contributions of this paper
from the reliability engineering perspective is the fault tree
set (FTS) concept, which is basically a set of fault trees.
The difference of FTS from a single fault tree is that an
intermediate failure can participate in multiple fault trees
and there exists multiple root nodes each of which repre-
sents a system failure perceived by the user. This refinement
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enables us to discriminate different types of system failures
(e.g. based on severity) and infer what kind of system fail-
ures that an intermediate failure can lead to.

� Architectural Tactics for reliability

After the identification of the sensitive architectural ele-
ments, the related element spots and the corresponding
failures in SARAH architectural tactics are defined. In
the current literature on software architecture design this
is not explicit and basically we had to rely on the tech-
niques that are defined by the reliability engineering com-
munity. We have modeled a selected set of fault tolerance
and fault prevention techniques and defined the relation
of these techniques with the faults and errors in the failure
domain model that had been defined before. In Bachman
et al. (2003) derive architectural tactics by first listing con-
crete scenarios, matching these with general scenarios and
deriving quality attribute frameworks. In a sense this could
be considered as a bottom-up approach. In SARAH the
approach is more top-down because it essentially starts at
the domain models of failures and recovery techniques
and then derives the appropriate matching. The concept
of architectural tactics as an appropriate architectural
design decision to enhance a particular quality attribute
of the architecture remains of course the same.

8. Related work

Balsamo et al. (2004) provide a nice survey on model-
based performance prediction methods. They classify the
various approaches with respect to the phase in which the
analysis is performed, the mapping between the software
model and performance model (syntactic, semantic, same
model) and the level of automation (low, medium, high).
According to their classification scheme, our approach can
be categorized as an early analysis approach that is applied
at the software architecture design phase. We make use of
multiple models which are semantically related. Failures
associated with architectural components are expressed with
a failure scenario model, from which the fault trees are
directly derived. The automation in our case is provided
by separate spreadsheets that define the failure scenarios
and automatically calculate the severity values in the fault
trees (after initial assignment of the user-perceived severi-
ties). This is a straightforward calculation and as such we
have not elaborated on this issue.

Several software architecture reliability evaluation
methods that employ quantitative models have been pro-
posed (Goseva–Popstojanova et al., 2001). Most of these
methods make use of variations of Markov models
(DTMC, CTMC) in order to model the software architec-
ture (Goseva–Popstojanova and Trived, 2001). These mod-
els are utilized to estimate the reliability of the system
based on the reliability of its components. To achieve the
same goal, the other approaches utilize scenarios (Zarras
and Issarny, 2000), optimization algorithms (Roshandel

and Medvidovic, 2004), dependency graphs and execution
traces (Yakoub et al., 2004). In our method, we aim at pin-
pointing the sensitive elements of a software architecture
with respect to reliability.

Application of FMEA to software has a long history
(Reifer, 1979). Both FMEA and FTA have taken place in
analysis of software systems and named as Software Fail-
ure Modes and Effects Analysis (SFMEA) and Software
Fault Tree Analysis (SFTA), respectively. In SFMEA, fail-
ure modes for software components are identified such as
computational, logic and data I/O. This classification resem-
bles the failure domain model of SARAH. However,
SARAH separates fault, error and failure concepts and
provides a more detailed categorization for each. Also,
note that the failure domain model can vary depending
on the project requirements and the system. In general,
efforts for applying reliability analysis to software mainly
focus on the safety-critical systems, whose failure may have
very serious consequences such as loss of human life and
large-scale environmental damage. In our case, we focus
on consumer electronics domain, where the systems are
usually not safety-critical. For this reason, instead of
safety, we take user-perception as the criteria to assign
severity to failures.

9. Conclusion

Given the trends of increased software functionality,
complexity and openness in embedded systems, it is expected
that the risk of failures in embedded systems can increase to
a mission critical level. To keep the current reliability levels,
appropriate reliability analysis and design techniques are
necessary so that potential failures can be predicted or cor-
rected in time. Moreover, because implementing the soft-
ware architecture is a costly process it is important to
predict the quality of the system as early as possible before
committing enormous organizational resources.

To meet these two goals we have introduced the soft-
ware architecture reliability analysis method (SARAH)
that has been developed within an industrial project on reli-
ability analysis of software architectures for embedded sys-
tems (Trader project web site, 2005). SARAH actually
integrates the best practices of conventional reliability
(Dugan, 1996) with current scenario-based architectural
analysis methods (Dobrica and Niemela, 2002). Conven-
tional reliability engineering includes mature failure analy-
sis and detection techniques. Software architecture analysis
methods provide useful techniques for early analysis of the
system at the architecture design level. The definition of
fault, error failure models, the failure scenarios, fault tree
set and the severity calculations are inspired from the reli-
ability engineering domain (Avizienis et al., 2001, 1996).
The overall scenario-based elicitation and prioritization is
inspired from the work on software architecture analysis
methods (Dobrica and Niemela, 2002). Despite most sce-
nario-based analysis methods which usually do not focus
on specific quality factors, SARAH is a specific purpose
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analysis method focusing on the reliability quality attri-
bute. Further, unlike conventional reliability analysis tech-
niques which tend to focus on safety requirements SARAH
prioritizes and analyses failures basically from the user per-
ception due to the requirements of consumer electronics
domain. To provide a reliability analysis based on user per-
ception we have extended the notion of fault trees and
refined the fault tree analysis approach. One of the critical
issues in the analysis is the definition of the probability val-
ues of failures. However, just like existing reliability analy-
sis approaches in the literature the accuracy of the analysis
depends on the available knowledge in the project.
SARAH does not adopt a fixed strategy but can be rather
considered as a general process in which different strategies
for defining probability values can be used.

SARAH has helped us to identify the sensitive modules
for the Digital TV and provided an important input for the
enhancement of the architecture. Besides of the outcome
the process of doing such an explicit analysis has provided
better insight in the potential risks of the system and clearly
supported the enhancement of the architecture.

Our future work includes the definition of a tool which
supports the reliability analysis process. In addition it is
planned to apply the approach for the reliability analysis
for different systems than DTV.

Acknowledgements

We thank the anonymous reviewers for their earlier
valuable feedback to improve this work. We thank mem-
bers of the TRADER project, for their feedback on this
work and their input about the TV domain knowledge
and reliability issues. Particularly, we would like to thank
Rob Golsteijn from NXP Semiconductors, Paul L. Jan-
son from Philips Research, Iulian Nitescu from Philips
TASS for their contribution in deriving the conceptual
architecture of DTV and possible failures. We also spe-
cially thank Christian Hofmann from University of
Twente, Pierre van de Laar, Teun Hendriks and Jozef
Hooman from ESI for reviewing and providing useful
feedback to this paper.

References

Arrango, G., 1994. Domain Analysis Methods. In: Schäfer, Prieto-Dı́az,
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