
Delft University of Technology
Software Engineering Research Group

Technical Report Series

A Component- and Push-based
Architectural Style for Ajax Applications

Ali Mesbah and Arie van Deursen

Report TUD-SERG-2008-013

SERG

TUD-SERG-2008-013

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Journal of Systems and Software (JSS), Elsevier, 2008.

c© copyright 2008, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

A Component- and Push-based

Architectural Style for Ajax Applications 1

Ali Mesbah a Arie van Deursen b

aDelft University of Technology
Software Engineering Research Group

The Netherlands
bDelft University of Technology & CWI
Software Engineering Research Group

The Netherlands

Abstract

A new breed of web application, dubbed Ajax, is emerging in response to a limited
degree of interactivity in large-grain stateless Web interactions. At the heart of this
new approach lies a single page interaction model that facilitates rich interactivity.
Also push-based solutions from the distributed systems are being adopted on the
web for Ajax applications. The field is, however, characterized by the lack of a
coherent and precisely described set of architectural concepts. As a consequence,
it is rather difficult to understand, assess, and compare the existing approaches.
We have studied and experimented with several Ajax frameworks trying to un-
derstand their architectural properties. In this paper, we summarize four of these
frameworks and examine their properties and introduce the Spiar architectural
style which captures the essence of Ajax applications. We describe the guiding
software engineering principles and the constraints chosen to induce the desired
properties. The style emphasizes user interface component development, intermedi-
ary delta-communication between client/server components, and push-based event
notification of state changes through the components, to improve a number of prop-
erties such as user interactivity, user-perceived latency, data coherence, and ease of
development. In addition, we use the concepts and principles to discuss various open
issues in Ajax frameworks and application development.

Key words: Ajax, web architectural style, web engineering, single page interface,
rich internet application

Email addresses: A.Mesbah@tudelft.nl (Ali Mesbah),
Arie.vanDeursen@tudelft.nl (Arie van Deursen).
1 This is a substantially revised and extended version of our paper ‘An Architectural

Preprint submitted to Elsevier 1 April 2008

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 1

1 Introduction

Over the course of the past decade, the move from desktop applications to-
wards web applications has gained much attention and acceptance. Within
this movement, however, a great deal of user interactiveness has been lost.
Classical web applications are based on a multi page interface model, in which
interactions are based on a page-sequence paradigm. While simple and ele-
gant in design for exchanging documents, this model has many limitations
for developing modern web applications with user friendly human-computer
interaction.

Recently, there has been a shift in the direction of web development towards
the new generation of Web 2.0 applications. A new breed of web application,
dubbed Ajax (Asynchronous JavaScript And XML) [25], has been emerging
in response to the limited degree of interactivity in large-grain stateless web
interactions. Ajax utilizes a set of existing web technologies, previously known
as Dynamic HTML (DHTML) and remote scripting [15], to provide a more
interactive web-based user interface.

At the heart of this new approach lies a single page interface model that
facilitates rich interactivity. In this model, changes are made to individual
user interface components contained in a web page, as opposed to (refreshing)
the entire page.

Another recent development, under the same umbrella, is applying the push-
based concepts from the distributed systems to the web [29]. For applications
that require real-time event notifications, the client-initiated pull model is very
inefficient and might lead to network congestion. The push-based style, where
the server broadcasts the state changes to the clients asynchronously every
time its state changes, is emerging as an alternative on the web, which is
known as Comet [44] or Reverse Ajax [16]. Each of these options has its
own architectural trade-offs.

Thanks to the momentum of Ajax, the technology has attracted a strong in-
terest in the web application development community. After the name Ajax

was coined in February 2005 [25], numerous frameworks 2 and libraries have
appeared, many web applications have adopted one or more of the ideas un-
derpinning Ajax, and an overwhelming number of articles in developer sites
and professional magazines have appeared.

Style for Ajax’ which appeared in the Proceedings of the 6th Working IEEE/IFIP
Conference on Software Architecture (WICSA), 2007 [33].
2 At the time of writing more than 150 frameworks are listed at http://

ajaxpatterns.org/Frameworks.

2

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

2 TUD-SERG-2008-013

Adopting Ajax-based techniques is a serious option not only for newly devel-
oped applications, but also for ajaxifying [34] existing web sites if their user
friendliness is inadequate.

A software engineer considering adopting Ajax, however, is faced with a num-
ber of challenges. What are the fundamental architectural trade-offs between
designing a legacy web application and an Ajax web application? How would
introducing a push-based style affect the scalability of web applications? What
are the different characteristics of Ajax frameworks? What do these frame-
works hide? Is there enough support for designing such applications? What
problems can one expect during the development phase? Will there be some
sort of convergence between the many different technologies? Which architec-
tural elements will remain, and which ones will be replaced by more elegant or
more powerful solutions? Addressing these questions calls for a more abstract
perspective on Ajax web applications. However, despite all the attention the
technology is receiving in the web community, there is a lack of a coherent
and precisely described set of architectural formalisms for Ajax enabled web
applications. In this paper we explore whether concepts and principles as de-
veloped in the software architecture research community can be of help to
answer such questions.

To gain an abstract perspective, we have studied a number of Ajax frame-
works, abstracted their features, and documented their common architectural
elements and desired properties. In particular, we propose Spiar, the Sin-
gle Page Internet Application aRchitectural style, which emphasizes user in-
terface component-based development, intermediary delta-communication be-
tween client/server components, and push-based event notification of state
changes through the components, to improve a number of properties such as
user interactivity, user-perceived latency, data coherence, and ease of devel-
opment. The style can be used when high user interaction and responsiveness
are desired in web applications.

One of the challenges of proposing an architectural style is the difficulty of
evaluating the success of the style. As also observed by Fielding [20], the
success of an architecture is ultimately determined by the question whether
a system built using the style actually meets the stated requirements. Since
this is impossible to determine in advance, we will evaluate our style in the
following ways:

(1) We investigate how well existing Ajax frameworks such as GWT or
Echo2 are covered by the style;

(2) We discuss how a number of typical Ajax architectures (client-centric,
server centric, push-based) are covered by the style;

(3) We show how the style can be used to discuss various tradeoffs in the
design of Ajax applications, related to, architectural properties such as

3

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 3

scalability and adaptability.

This paper is organized as follows. We start out, in Section 2 by exploring
Ajax, studying four frameworks (Google’s GWT, Backbase, Echo2, and the
push-based Dojo/Cometd framework) that have made substantially different
design choices. Then, in Section 3, we survey existing architectural styles (such
as the Representational State Transfer architectural style Rest on which the
World Wide Web is based [21]), and analyze their suitability for characteriz-
ing Ajax. In Sections 4–7, we introduce Spiar, describing the architectural
properties, elements, views of this style, and the constraints. Given Spiar, in
Section 8 we use its concepts and principles to discuss various open issues in
Ajax frameworks and application development and evaluate the style itself.
We conclude with a summary of related work, contributions, and an outlook
to future work.

2 Ajax Technology

2.1 Ajax

The ability to update a Web page incrementally has been around for several
years but it was not until recently when the Ajax acronym was coined that
the approach gained wide appeal.

Ajax is actually the name given to a set of modern web application devel-
opment technologies, previously known as Dynamic HTML (DHTML) and
emphremote scripting, to provide a more interactive web-based user interface.

As defined originally by Garrett [25], Ajax incorporates standards-based pre-
sentation using XHTML and CSS, dynamic display and interaction using the
Document Object Model, data interchange and manipulation, asynchronous
data retrieval using XMLHttpRequest, and JavaScript binding everything to-
gether. This definition, however, merely focuses on the client side of the web
application spectrum. As we will see in this paper, the use of Ajax has im-
portant server side implications as well.

Ajax represents an approach to web application development utilizing a com-
bination of established web technologies. It is the combination of these tech-
nologies that makes Ajax useful on the Web.

Rather than the classical model of ‘request-wait-response’ to the server and
reloading the entire page for each user action, Ajax allows the interaction
with the server to take place asynchronously in the background to update

4

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

4 TUD-SERG-2008-013

portions of the page. This behind the scenes approach can provide a much
more responsive and faster experience on the Web.

Even before the term Ajax was coined, its power was becoming evident by
web applications such as Google Suggest, Google Docs or Google Map. Other
well known examples are Gmail, the recent version of Yahoo! Mail, Flickr and
Digg. For more technical details of Ajax we refer to [1, 15].

2.2 Reverse Ajax: Comet

The traditional web model requires all communication between the browser
and the web server to be initiated by the client, i.e., the end user clicks on a
button or link and thereby requests a new page from the server. Thus, once a
complete response is returned, there is no further way for the server to send
data back to the client browser. In this scheme, each interaction between the
client and the server is independent of the other interactions. No ‘permanent’
connection is established between the client and the server maintains no state
information about the clients. request and the server returns a response for
this particular request. This scheme helps scalability, but precludes servers
from sending asynchronous notifications. There are many use cases where it is
important to update the client user interface in response to server-side changes.
Examples include:

• An auction web site, where the users need to be averted that another bidder
has made a higher bid. In a site such as eBay, the user has to continuously
press the ‘refresh’ button of his or her browser, to see if somebody has made
a higher bid.

• A stock ticker, where stock prices are updated,
• A chat application, where new sent messages are delivered to all the sub-

scribers,
• A news portal, where news items are pushed to the subscriber browser when

they are published.

With current web technologies, these types of applications requiring real-time
event notification and data delivery are mainly implemented using a pull style,
where the client actively requests the state changes using client-side timeouts.
The pull style has many drawbacks, such as the low level of coherence between
client and server side data, and increased network usage. If the updates are
not frequent, clients will make unnecessary requests. On the other hand, if the
clients pull infrequently, they might miss some valuable updates [9].

An alternative to such a pull style is the push-based style [26, 9], where the
server broadcasts the state changes to the clients asynchronously every time
its state changes. The concept of pushing or streaming web data by the server

5

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 5

was first introduced in 1992 by Netscape, under the name ‘dynamic document’
[38]. This method simply consists of streaming server data in the response of
a long- lived HTTP connection. Most web servers do some processing, send
back a response, and immediately exit. But in this pattern, the connection is
kept open by running a long loop. The server script uses event registration or
some other technique to detect any state changes. As soon as a state change
occurs, it streams the new data and flushes it, but does not actually close the
connection.

Comet [44] or Reverse Ajax [16] is the new name given to this style of
interaction on the web. Comet uses the XMLHttpRequest object to have
an open connection. This brings some flexibility regarding the length and
frequency of connections. After the initial request from the client, the server
does not close the connection, nor does it give a full response. As the new
data becomes available, the server returns it to the client using the existing
connection.

This new paradigm on the web introduces some potential architectural trade-
offs while having valuable benefits for the aforementioned use-cases.

2.3 Frameworks

Web application developers have struggled constantly with the limits of the
HTML page-sequence experience, and the complexities of client-side JavaScript
programming to add some degree of dynamism to the user interface. Issues re-
garding cross-browser compatibility are, for instance, known to everyone who
has built a real-world web application. The rich user interface (UI) experience
Ajax promises comes at the price of facing all such problems. Developers are
required to have advanced skills in a variety of Web technologies, if they are to
build robust Ajax applications. Also, much effort has to be spent on testing
these applications before going in production. This is where frameworks come
to the rescue. At least many of them claim to.

Because of the momentum Ajax has gained, a vast number of frameworks are
being developed. The importance of bringing order to this competitive chaotic
world becomes evident when we learn that ‘almost one new framework per day’
is being added to the list of known frameworks 3 .

We have studied and experimented with several Ajax frameworks trying to
understand their architectural properties. We summarize four of these frame-
works in this section. Our selection includes a widely used open source frame-
work called Echo2, the web framework offered by Google called GWT, the

3
http://ajaxpatterns.org/wiki/index.php?title=AJAXFrameworks

6

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

6 TUD-SERG-2008-013

commercial package delivered by Backbase and the Dojo/Cometd push-based
comet framework. All four frameworks are major players in the Ajax market,
and their underlying technologies differ substantially.

2.3.1 Echo2

Echo2 4 is an open-source Ajax framework which allows the developer to
create web applications using an object-oriented, UI component-based, and
event-driven paradigm for Web development. Its Java Application Framework
provides the APIs (for UI components, property objects, and event/listeners)
to represent and manage the state of an application and its user interface.

All functionality for rendering a component or for communicating with the
client browser is specifically assembled in a separate module called the Web
Rendering Engine. The engine consists of a server-side portion (written in
Java/J2EE) and a client-side portion (JavaScript). The client/server interac-
tion protocol is hidden behind this module and as such, it is entirely decoupled
from other modules. Echo2 has an Update Manager which is responsible for
tracking updates to the user interface component model, and for processing
input received from the rendering agent and communicating it to the compo-
nents.

The Echo2 Client Engine runs in the client browser and provides a remote
user interface to the server-side application. Its main activity is to synchronize
client/server state when user operations occur on the interface.

A ClientMessage in XML format is used to transfer the client state changes
to the server by explicitly stating the nature of the change and the component
ID affected. The server processes the ClientMessage, updating the component
model to reflect the user’s actions. Events are fired on interested listeners,
possibly resulting in further changes to the server-side state of the applica-
tion. The server responds by rendering a ServerMessage which is again an
XML message containing directives to perform partial updates to the DOM
representation on the client.

2.3.2 GWT

Google has a novel approach to implementing its Ajax framework, the Google
Web Toolkit (GWT) 5 . Just like Echo2, GWT facilitates the development of
UIs in a fashion similar to AWT or Swing and comes with a library of widgets
that can be used. The unique character of GWT lies in the way it renders

4 Echo2 2.0.0, www.nextapp.com/platform/echo2/echo/.
5 http://code.google.com/webtoolkit/

7

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 7

the client-side UI. Instead of keeping the UI components on the server and
communicating the state changes, GWT compiles all the Java UI components
to JavaScript code (compile-time). Within the components the developer is
allowed to use a subset of Java 1.4 API to implement needed functionality.

GWT uses a small generic client engine and, using the compiler, all the UI
functionality becomes available to the user on the client. This approach de-
creases round-trips to the server drastically. The server is only consulted if raw
data is needed to populate the client-side UI components. This is carried out
by making server calls to defined services in an RPC-based style. The services
(which are not the same as Web Services) are implemented in Java and data
is passed both ways over the network, in JSON format, using serialization
techniques.

2.3.3 Backbase

Backbase 6 is an Amsterdam-based company that provided one of the first
commercial Ajax frameworks. The framework is still in continuous develop-
ment, and in use by numerous customers world wide.

A key element of the Backbase framework is the Backbase Client Run-time
(BCR). This a standards-based Ajax engine written in JavaScript that runs
in the web browser. It can be programmed via a declarative user interface lan-
guage called XEL. XEL provides an application-level alternative to JavaScript
and manages asynchronous operations that might be tedious to program and
manage using JavaScript.

BCR’s main functionality is to:

• create a single page interface and manage the widget tree (view tree),
• interpret JavaScript as well as the XEL language,
• take care of the synchronization and state management with the server

by using delta-communication, and asynchronous interaction with the user
through the manipulation of the representational model.

The Backbase framework provides a markup language called Backbase Tag
Library (BTL). BTL offers a library of widgets, UI controls, a mechanism for
attaching actions to them, as well as facilities for connecting to the server
asynchronously.

The server side of the Backbase framework is formed by BJS, the Backbase Jsf

Server. It is built on top of JavaServer Faces (Jsf) 7 , the new J2EE presenta-

6
http://www.backbase.com

7 JavaServer Faces Specification v1.1, http://java.sun.com/j2ee/javaserverfaces/

8

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

8 TUD-SERG-2008-013

tion architecture. Jsf provides a user interface component-based framework
following the model-view-controller pattern. Backbase Jsf Server utilizes all
standard Jsf mechanisms such as validation, conversion and event processing
through the JSF life-cycle phases. The interaction in Jsf is, however, based
on the classical page sequence model, making integration in a single page
framework non trivial. Backbase extends the JSF request life-cycle to work
in a single-page interface environment. It also manages the server-side event
handlers and the server-side control tree.

Any Java class that offers getters and setters for its properties can be directly
assigned to a UI component property. Developers can use the components
declaratively (web-scripting) to build an Ajax application. The framework
renders each declared server-side UI component to a corresponding client-side
XEL UI component, and keeps track of changes on both component trees for
synchronization.

The state changes on the client are sent to the server on certain defined events.
Backbase uses DOM events to delegate user actions to BCR which handles
the events asynchronously. The events can initiate a client-side (local) change
in the representational model but at the same time these events can serve as
triggers for server-side event listeners. The server translates these state changes
and identifies the corresponding component(s) in the server component tree.
After the required action, the server renders the changes to be responded to
the engine, again in XEL format.

2.3.4 Dojo and Cometd

The final framework we consider is the combination of the client-side Dojo
and the server-side Cometd frameworks, which together support a push-based
client-server communication. The framework is based on the Bayeux protocol
which the Cometd group 8 has recently released, as a response to the lack of
communication standards. For more details see [9, 8].

The Bayeux message format is defined in JSON (JavaScript Object Nota-
tion) 9 which is a data-interchange format based on a subset of the JavaScript
Programming Language. The protocol has recently been implemented and in-
cluded in a number of web servers including Jetty 10 and IBM Websphere 11 .

The frameworks that implement Bayeux currently provide a connection type

8
http://www.cometd.com

9
http://www.json.org

10
http://www.mortbay.org

11
http://www-306.ibm.com/software/websphere/

9

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 9

called Long Polling for HTTP push. In Long Polling, the server holds on to
the client request, until data becomes available. If an event occurs, the server
sends the data to the client and the client has to reconnect. Otherwise, the
server holds on to the connection for a finite period of time, after which it asks
the client to reconnect again. If the data publish interval is low, the system
will act like a pure pull, because the clients will have to reconnect (make a
request) often. If the data publish interval is high, then the system will act
like a pure push.

Bayeux defines the following phases in order to establish a Comet connec-
tion. The client:

(1) performs a handshake with the server and receives a client ID,
(2) sends a connection request with its ID,
(3) subscribes to a channel and receives updates.

Bayeux is supported by the client-side Ajax framework called Dojo 12 . It is
currently written entirely in JavaScript and there are plans to adopt a markup
language in the near future. Dojo provides a number of ready-to-use UI widgets
which are prepackaged components of JavaScript code, as well as an abstracted
wrapper (dojo.io.bind) around various browsers’ implementations of the
XMLHttpRequest object to communicate with the server. Dojo facilitates the
dojo.io.cometd library, to make the connection handshake and subscribe to
a particular channel.

On the server-side, Bayeux is supported by Cometd 13 . This is an HTTP-
based event routing framework that implements the Comet style of interac-
tion. It is currently implemented as a module in Jetty.

2.4 Features

While different in many ways, these frameworks share some common architec-
tural characteristics. Generally, the goals of these frameworks can be summa-
rized as follows:

• Hide the complexity of developing Ajax applications - which is a tedious,
difficult, and error-prone task,

• Hide the incompatibilities between different web browsers and platforms,
• Hide the client/server communication complexities,
• All this to achieve rich interactivity and portability for end users, and ease

of development for developers.

12
http://dojotoolkit.org

13
http://www.cometd.com

10

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

10 TUD-SERG-2008-013

The frameworks achieve these goals by providing a library of user interface
components and a development environment to create reusable custom com-
ponents. The architectures have a well defined protocol for small interactions
among known client/server components. Data needed to be transferred over
the network is significantly reduced. This can result in faster response data
transfers. Their architecture takes advantage of client side processing resulting
in improved user interactivity, smaller number of round-trips, and a reduced
web server load.

The architectural decisions behind these frameworks change the way we de-
velop web applications. Instead of thinking in terms of sequences of Web pages,
Web developers can now program their applications in the more intuitive (sin-
gle page) component- and event-based fashion along the lines of, e.g., AWT
and Swing.

3 Architectural Styles

In this section, we first introduce the architectural terminology used in this
paper and explore whether styles and principles as developed in the software
architecture research community, and specifically those related to network-
based environments, can be of help in formalizing the architectural properties
of Ajax applications.

3.1 Terminology

In this paper we use the software architectural concepts and terminology as
used by Fielding [20] which in turn is based on the work of Perry and Wolf [42].
Thus, a software architecture is defined [42] as a configuration of architectural
elements — processing, connectors, and data — constrained in their relation-
ships in order to achieve a desired set of architectural properties.

An architectural style, in turn, [20] is a coordinated set of architectural con-
straints that restricts the roles of architectural elements and the allowed re-
lationships among those elements within any architecture that conforms to
that style. An architectural style constrains both the design elements and the
relationships among them [42] in such a way as to result in software systems
with certain desired properties. Clements et al.[14] define an architectural style
as a specialization of element and relation types, together with a set of con-
straints on how they can be used. A style can also be seen as an abstraction of
recurring composition and interaction characteristics in a set of architectures.

11

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 11

An architectural system can be composed of multiple styles and a style can
be a hybrid of other styles [45]. Styles can be seen as reusable [36] common
architectural patterns within different system architectures and hence the term
architectural pattern is also used to describe the same concept [4].

The benefits of using styles can be summarized as follows:

• Design reuse: well-understood solutions applied to new problems
• Code reuse: shared implementations of invariant aspects of a style
• Understandability and ease of communication: phrases such as ‘client-server’

or ‘Rest’ make use of a vocabulary conveying a wealth of implicit informa-
tion.

• Interoperability: supported by style standardization
• Specific trade-off analysis: enabled by the constrained design space
• Visualizations: specific depictions matching mental models

In our view, being able to understand the tradeoffs inherent in the architec-
tures [28] of Ajax systems is the essence of using architectural styles. An
architectural style enables us to pin-point relevant tradeoffs in different in-
stantiated architectures.

3.2 Existing Styles

Client/server [46], n-tier [51], and Mobile Code [12, 24], are all different network-
based architectural styles [20], which are relevant when considering the char-
acteristics of Ajax applications.

In addition, user interface applications generally make use of popular styles
such as Module/View/Controller [32] to describe large scale architecture and,
in more specific cases, styles like C2 [49] to rely on asynchronous notification
of state changes and request messages between independent components.

There are also a number of interactional styles, such as event observation
and notification [43], publish/subscribe [19], the component and communica-
tion model [26], and ARRESTED [31], which model the client/server push
paradigm for distributed systems.

In our view, the most complete and appropriate style for the Web, thus far,
is the REpresentational State Transfer (Rest) [21]. Rest emphasizes the ab-
straction of data and services as resources that can be requested by clients
using the resource’s name and address, specified as a Uniform Resource Loca-
tor (URL) [5]. The style inherits characteristics from a number of other styles
such as client/server, pipe-and-filter, and distributed objects.

12

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

12 TUD-SERG-2008-013

The style is a description of the main features of the Web architecture through
architectural constraints which have contributed significantly to the success
of the Web.

It revolves around five fundamental notions: a resource which can be anything
that has identity, e.g., a document or image, the representation of a resource
which is in the form of a media type, synchronous request-response interaction
over HTTP to obtain or modify representations, a web page as an instance of
the application state, and engines (e.g., browser, crawler) to move from one
state to the next.

Rest specifies a client-stateless-server architecture in which a series of proxies,
caches, and filters can be used and each request is independent of the previ-
ous ones, inducing the property of scalability. It also emphasizes a uniform
interface between components constraining information to be transferred in a
standardized form.

3.3 A Style for Ajax

Ajax applications can be seen as a hybrid of desktop and web applications,
inheriting characteristics from both worlds. Table 1 summarizes the differ-
ences between what Rest provides and what modern Ajax (with Comet)
applications demand. Ajax frameworks provide back-end services through UI
components to the client in an event-driven or push style. Such architectures
are not so easily captured in Rest, due to the following differences:

• While Rest is suited for large-grain hypermedia data transfers, because of
its uniform interface constraint it is not optimal for small data interactions
required in Ajax applications.

• Rest focuses on a hyper-linked resource-based interaction in which the
client requests a specific resource. In contrast, in Ajax applications the user
interacts with the system much like in a desktop application, requesting a
response to a specific action.

• All interactions for obtaining a resource’s representation are performed
through a synchronous request-response pair in Rest. Ajax applications,
however, require a model for asynchronous communication.

• Rest explicitly constrains the server to be stateless, i.e., each request from
the client must contain all the information necessary for the server to under-
stand the request. While this constraint can improve scalability, the tradeoffs
with respect to network performance and user interactivity are of greater
importance when designing an Ajax architecture.

• Rest is cache-based while Ajax facilitates real-time data retrieval.
• Every request must be initiated by a client, and every response must be

13

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 13

Table 1
What Rest provides versus what Ajax demands

Rest provides Ajax demands

Large-grain hypermedia data transfers Small data interactions

Resource-based UI component-based

Hyper-linked Action- Event-based

Synchronous request-response Asynchronous interaction

Stateless Stateful

Cache-based Real-time data retrieval

Poll-based Poll and Push

generated immediately; every request can only generate a single response
[31]. Comet requires a model which enables pushing data from the server
to the client.

These requirement mismatches call for a new architectural style capable of
meeting the desired properties.

4 Architectural Properties

The architectural properties of a software architecture include both the func-
tional properties achieved by the system and non-functional properties, often
referred to as quality attributes [4, 40]. The properties could also be seen
as requirements since architecting a system requires an understanding of its
requirements.

Below we discuss a number of architectural properties that relate to the essence
of Ajax. Other properties, such as extensibility or security, that may be de-
sirable for any system but are less directly affected by a decision to adopt
Ajax, are not taken into account. Note that some of the properties discussed
below are related to each other: for instance, user interactivity is influenced
by user-perceived latency, which in turn is affected by network performance.

4.1 User Interactivity

The Human-computer interaction literature defines interactivity as the degree
to which participants in a communication process have control over, and can
exchange roles in their mutual discourse. User interactivity is closely related

14

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

14 TUD-SERG-2008-013

to usability [22], the term used in software architecture literature. Teo et al.
[50] provide a thorough study of user interactivity on commercial web ap-
plications. Their results suggest that an increased level of interactivity has
positive effects on user’s perceived satisfaction, effectiveness, efficiency, value,
and overall attitude towards a Web site. Improving this property on the Web
has been the main motivating force behind the Ajax movement.

4.2 User-perceived Latency

User-perceived latency is defined as the period between the moment a user
issues a request and the first indication of a response from the system. Gener-
ally, there are two primary ways to improve user-perceived performance. First,
by reducing the round-trip time, defined as time elapsed for a message from
the browser to a server and back again, and second, by allowing the user to
interact asynchronously with the system. This is an important property in all
distributed applications with a front-end to the user.

4.3 Network Performance

Network performance is influenced by throughput which is the rate of data
transmitted on the network and bandwidth, i.e., a measure of the maximum
available throughput. Network performance can be improved by means of
reducing the amount and the granularity of transmitted data.

4.4 Simplicity

Simplicity or development effort is defined as the effort that is needed to
understand, design, implement, maintain and evolve a web application. It is
an important factor for the usage and acceptance of any new approach.

4.5 Scalability

In distributed environments scalability is defined by the degree of a systems
ability to handle a growing number of components. In Web engineering, a
system’s scalability is determined, for instance, by the degree to which a client
can be served by different servers without affecting the results. A scalable
Web architecture can be easily configured to serve a growing number of client
requests.

15

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 15

4.6 Portability

Software that can be used in different environments is said to be portable.
On the Web, being able to use the Web browser without the need for any
extra actions required from the user, e.g., downloading plug-ins, induces the
property of portability.

4.7 Visibility

Visibility [20] is determined by the degree to which an external mediator is able
to understand the interactions between two components, i.e., the easier it is for
the mediator to understand the interactions, the more visible the interaction
between the two components will be. Looking at the current implementations
of Ajax frameworks, visibility in the client/server interactions is low, as they
are based on proprietary protocols. Although a high level of visibility makes
the interaction more comprehensible, the corresponding high observability can
also have negative effects on security issues. Thus low visibility is not per se an
inferior characteristic, depending on the desired system property and tradeoffs
made.

4.8 Reliability

Reliability is defined as the continuity of correct service [2]. The success of
any software system depends greatly on its reliability. On the Internet, web
applications that depend on unreliable software and do not work well, will lose
customers [40]. Testing (test automation, unit and regression testing) resources
can improve the reliability level of an application. However, web applications
are generally known to be poorly tested compared to traditional desktop ap-
plications. In addition to the short time-to-market pressure, the multi-page
interaction style of the web makes it difficult to test. Adopting a single page
component-based style of web application development can improve the testa-
bility of the system and as a consequence its reliability.

4.9 Data Coherence

An important aspect of real-time event notification of web data that need
to be available and communicated to the user as soon as they happen, e.g.,
stock prices, is the maintenance of data coherence [6]. A piece of data is
defined as coherent, if the data on the server and the client is synchronized. In

16

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

16 TUD-SERG-2008-013

Server App.Client Browser

update

HTTP

Encoder

Decoder

Service
Provider

update
 C

 S

 update invoke update event

DOM
Ajax

Engine
Engine

UI

UI Comp.
event

update

Fig. 1. Processing View of a Spiar-based architecture.

web applications adhering to the HTTP protocol, clients need to frequently
pull the data based on a pre-defined interval. In contrast, servers that adopt
push capability maintain state information pertaining to clients and stream
the changes to users as they happen. These two techniques have different
properties with respect to the data coherence achieved [9].

4.10 Adaptability

Adaptability is defined as the ease with which a system or parts of the system
may be adapted to the changing environment. In web applications, an archi-
tecture that allows changes on the server to be propagated to the clients is
called adaptable. We use the notion of code mobility [24] to compare the dy-
namic behavior of different Ajax architectures in terms of changeability and
adaptability. Mobile code is, generally, software code obtained from remote
servers, transferred across a network, and then downloaded and executed on
the client without explicit installation or execution by the recipient.

5 SPIAR Architectural Elements

Following [20, 42], the key architectural elements of Spiar are divided into
three categories, namely processing (components), data, and connecting ele-
ments. An overview of the elements is shown in Figure 1. In this section we
explain the elements themselves, while in the next section we discuss their
interaction.

17

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 17

5.1 Processing Elements

The processing elements are defined as those components that supply the
transformation on the data elements.

The Client Browser offers support for a set of standards such as HTTP, HT-
ML, Cascading Style Sheets, JavaScript, and Document Object Model. It pro-
cesses the representational model of a web page to produce the user interface.
The user interaction can be based on a single page user interface model. All the
visual transitions and effects are presented to the user through this interface.
Just like a desktop client application, it consists of a single main page with
a set of identifiable widgets. The properties of widgets can be manipulated
individually while changes are made in-place without requiring a page refresh.

The Ajax Engine is a client engine that loads and runs in the client browser.
There is no need for a plug-in for the web application to function. However,
downloading the engine does introduce an initial latency for the user which
can be compensated by the smaller data transfers once the engine is in place.
The engine is responsible for the initialization and manipulation of the repre-
sentational model. As can be seen in Figure 1, the engine handles the events
initiated by the user, communicates with the server, and has the ability to
perform client-side processing.

The Server Application resides on the server and operates by accepting HTTP-
based requests from the network, and providing responses to the requester. All
server-side functionality resides in the server application processing element.

The Service Provider represents the logic engine of the server and processes
state changes and user requested actions. It is capable of accessing any re-
source (e.g., database, Web Services) needed to carry out its action. A Service
Provider’s functionality is invoked by event listeners, attached to components,
initiated by incoming requests.

The Delta Encoder/Decoder processes outgoing/incoming delta messages. It
is at this point that the communication protocol between the client and the
server is defined and hidden behind an interface. This element supports delta
communication between client and server which improves user-perceived la-
tency and network performance.

UI Components consist of a set of server-side UI components. The component
model on the server is capable of rendering the representational model on
the client. Each server-side component contains the data and behavior of that
part of the corresponding client-side widget which is relevant for state changes;
There are different approaches as when and how to render the client-side UI
code. GWT, for instance, renders the entire client-side UI code compile-time

18

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

18 TUD-SERG-2008-013

from the server-side Java components. Echo2 which has a real component-
based architecture, on the other hand, renders the components at run-time
and keeps a tree of components on both client and server side. These UI com-
ponents have event listeners that can be attached to client-side user initiated
events such as clicking on a button. This element enhances simplicity by pro-
viding off-the-shelf components to build web applications.

A Push Server resides as a separate module on the server application. This
processing element has the ability to keep an HTTP connection open to push
data from the server to the client. The Service Provider can publish new data
(state changes) to this element.

A Push Client element resides within the client. It can be a separate module,
or a part of the Ajax Engine. This element can subscribe to a particular
channel on the Push Server element and receive real-time publication data
from the server.

5.2 Data Elements

The data elements contain the information that is used and transformed by
the processing elements.

The Representation element consists of any media type just like in Rest.
HTML, CSS, and images are all members of this data element.

The Representational Model is a run-time abstraction of how a UI is repre-
sented on the client browser. The Document Object Model inside the browser
has gained a very important role in Ajax applications. It is through dynam-
ically manipulating this representational model that rich effects have been
made possible. Some frameworks such as Backbase use a domain-specific lan-
guage to declaratively define the structure and behavior of the representational
model. Others like GWT use a direct approach by utilizing JavaScript.

Delta communicating messages form the means of the delta communication
protocol between client and server. Spiar makes a distinction between the
client delta data (delta-client) and the server delta data (delta-server).
The former is created by the client to represent the client-side state changes
and the corresponding actions causing those changes, while the latter is the
response of the server as a result of those actions on the server components.
The delta communicating data are found in a variety of formats in the cur-
rent frameworks, e.g., XML, JavaScript Object Notation (JSON), or pure
JavaScript. The client delta messages contain the needed information for the
server to know for instance which action on which component has to be carried
out.

19

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 19

REQUEST (DELTA -CLIENT):

POST http: // demo.nextapp .com/Demo/app/Demo/app?serviceId =Echo. Synchronize

Content -Type: text/xml; charset =UTF -8

<client -message trans -id="1">

<message -part processor ="EchoAction ">

<action component -id="c_7" name="click"/>

</message -part >

</client -message >

RESPONSE (DELTA -SERVER):

<?xml version ="1.0 " encoding ="UTF -8"?>

<server -message

xmlns ="http: //www .nextapp .com/products /echo2/svrmsg / servermessage"

trans -id="2">

<message -part -group id="update ">

...

<message -part processor =" EchoDomUpdate. MessageProcessor">

<dom -add >

<content parent -id=" c_35_content">

<div id="c_36_cell_c_37" style ="padding:0px ;">

Welcome to the Echo2 Demonstration Application .

</div >

</content >

</dom -add >

</message -part>

...

</message -part -group >

</server -message >

Fig. 2. An example of Echo2 delta-communication.

As an example, Figure 2 illustrates delta-communication in Echo2. After
the user clicks on a component (button) with ID c 7, the client-side en-
gine detects this click event and creates the delta-client (in Echo2 called
client-message) and posts it to the server as shown in the REQUEST part
of Figure 2. The server then, using the information in the delta-client

which, in this case, is composed of the action, component ID, and the event
type, responds with a delta-server in XML format. As can be seen, the
delta-server tells the client-side engine exactly how to update the DOM
state with new style and textual content on a particular parent component
with ID c 35 content.

We distinguish between three types of code that can change the state of the
client: presentational code, functional code, and textual data.

Presentational code as its name suggests has influence on the visual style
and presentation of the application, e.g., CSS, or HTML. Textual data is
simply pure data. The functional code can be executed on the client, e.g.,
JavaScript code, or commands in XML format (e.g., dom-add in Figure 2).
The delta-server can be composed of any of these three types of code.
These three types of code can influence the Representational model (DOM) of
the client application which is the run-time abstraction of the presentational

20

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

20 TUD-SERG-2008-013

code, executed functional code and textual data.

GWT uses an RPC style of calling services in which the delta-server is
mainly composed of textual data, while in Backbase and Echo2 a component-
based approach is implemented to invoke event listeners, in a mixture of pre-
sentational and functional code.

5.3 Connecting Elements

The connecting elements serve as the glue that holds the components together
by enabling them to communicate.

Events form the basis of the interaction model in Spiar. An event is initiated
by each action of the user on the interface, which propagates to the engine.
Depending on the type of the event, a request to the server, or a partial update
of the interface might be needed. The event can be handled asynchronously,
if desired, in which case the control is immediately returned to the user.

On the server, the request initiated by an event invokes a service. The service
can be either invoked directly or through the corresponding UI component’s
event listeners.

Delta connectors are light-weight communication media connecting the engine
and the server using a request/response mechanism over HTTP.

Delta updates are used to update the representational model on the client
and the component model on the server to reflect the state changes. While a
delta update of the representational model results in a direct apparent result
on the user interface, an update of the component model invokes the appro-
priate listeners. These updates are usually through procedural invocations of
methods.

Channels are the connecting elements between the push consumer and pro-
ducer. A consumer (receiver) subscribes to a channel, through a handshake
procedure, and receives any information that is sent on the channel by the
producer (information source) as delta push server.

6 Architectural Views

Given the processing, data, and connecting elements, we can use different
architectural views to describe how the elements work together to form an
architecture. Here we make use of two processing views, which concentrate

21

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 21

Server App.Client Browser

update

HTTP

Encoder

Decoder
Service
Provider

invoke C

 S

 update event

DOM
Ajax

Engine
Engine

UI

event

update

Fig. 3. Processing View of an RPC-based GWT architecture.

on the data flow and some aspects of the connections among the processing
elements with respect to the data [20]. Such views fit in the Components
and Connectors viewtype as discussed by Clements et al.[14]. We discuss one
processing view for a pure component-based Ajax solution, one for an RPC-
based Ajax application, and one view for the push-based variant.

6.1 Ajax view

Figure 1 depicts the processing view of an Spiar-based architecture based
on run-time components rendering as in, e.g., Echo2. The view shows the
interaction of the different components some time after the initial page request
(the engine is running on the client).

User activity on the user interface fires off an event to indicate some kind of
component-defined action which is delegated to the Ajax engine. If a listener
on a server-side component has registered itself with the event, the engine
will make a delta-client message of the current state changes with the
corresponding events and send it to the server. On the server, the decoder
will convert the message, and identify and notify the relevant components
in the component tree. The changed components will ultimately invoke the
event listeners of the service provider. The service provider, after handling the
actions, will update the corresponding components with the new state which
will be rendered by the encoder. The rendered delta-server message is then
sent back to the engine which will be used to update the representational
model and eventually the interface. The engine has also the ability to update
the representational model directly after an event, if no round-trip to the
server is required.

The run-time processing view of the GWT framework is depicted in Figure 3.
As can be seen, GWT does not maintain a server-side component tree. Instead
the server-side UI components are transformed into client-side components at
compile-time. The client engine knows the set and location of all available com-

22

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

22 TUD-SERG-2008-013

Server App.Client Browser HTTP

Encoder

Decoder

Service
Provider

event update

DOM
Ajax

Engine
Engine

UI

UI Comp.

update

Push
Server

Push
Client

Source Update

Subscribe

Legend
Channel

data

event

update

 C

 S

update

Fig. 4. Processing View of a push-based Spiar architecture.

ponents at run-time. The RPC-based interaction with the server is however
still conducted in a delta-communication style. Here, the encoder and decoder
talk directly to the Service Provider without going through the server-side
component model.

Note that each framework uses a different set of Spiar’s architectural elements
to present the run-time architectural processing view. See also Section 8.1 for
a discussion on how each approach fits in Spiar.

6.2 Comet view

In the majority of the current Comet frameworks the data is pushed directly
to the client as shown in Figure 4. This direct approach is fine for imple-
mentations that are not component-based. However, for UI component-based
frameworks, if the push data is directly sent to the client, the client has to
handle this data itself and update its components locally. To notify UI com-
ponents on the server, the client has to send a client delta back to the server.
This is inefficient, since in many cases, the push server and the application
server are in the same machine or network. The Spiar architectural style
thus reveals an interesting tension between the UI component-based and the
push-based constraint.

A possible solution [8] would be to take a short-cut for this synchronization
process. Whenever an event arrives from the Service Provider (state change,
new data), instead of publishing the new data directly to the client, first the
state changes are announced to the UI Components for all the subscribed
clients. The changes are then passed through the encoder to the Push Server
and then passed as push delta-server to the push client.

23

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 23

Server App.Client Browser

update

HTTP

Encoder

Decoder

Service
Provider

 S update update

DOM
Ajax

Engine
Engine

UI

UI Comp.

update

Push
Server

Push
Client

Source Update

Subscribe

Legend

S

Channel

Fig. 5. Proposed push-based integration.

This approach makes sure that the state on the server is synchronized with
the state on the client for each notification. Figure 5 depicts our proposed
push-based view. The push client subscribes to a particular channel through
the push server, and the changes are passed, through the component model,
as push delta server, real-time to the client.

Note that the normal interaction of the client/server as depicted on Figure 1
can continue unhindered by the introduction of this push module. There are
two advantages of this solution. First of all, it allows ∆S to be sent directly
to the user in one step.

Second advantage is the simplicity for the application programmer. Without
this solution, the programmer has to write explicit JavaScript functions in
order to process the incoming push data. In the proposed solution, no such
function is needed, since the response will be in an expected ∆S format, which
will be processed by the Ajax Engine automatically.

7 Architectural Constraints

Architectural constraints can be used as restrictions on the roles of the archi-
tectural elements to induce the architectural properties desired of a system.
Table 2 presents an overview of the constraints and induced properties. A “+”
marks a direct positive effect, whereas a “–” indicates a direct negative effect.

Spiar rests upon the following constraints chosen to retain the properties
identified previously in this paper.

24

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

24 TUD-SERG-2008-013

7.1 Single Page Interface

Spiar is based on the client-server style which is presumably the best known
architecture for distributed applications, taking advantage of the separation
of concerns principle in a network environment. The main constraint that dis-
tinguishes this style from the traditional Web architecture is its emphasis on
a single page interface instead of the page-sequence model. This constraint in-
duces the property of user interactivity. User interactivity is improved because
the interaction is on a component level and the user does not have to wait for
the entire page to be rendered again as a result of each action. Figure 6 and
Figure 7 show the interaction style in a traditional web and in a single-page
client-centric Ajax application respectively.

7.2 Asynchronous Interaction

Ajax applications are designed to have a high user interactivity and a low
user-perceived latency. Asynchronous interaction allows the user to, subse-
quently, initiate a request to the server at any time, and receive the control
back from the client instantly. The requests are handled by the client at the
background and the interface is updated according to server responses. This
model of interaction is substantially different from the classic synchronous
request, wait for response, and continue model.

7.3 Delta-communication

Redundant data transfer which is mainly attributed to retransmissions of un-
changed pages is one of the limitations of classic web applications. Many tech-
niques such as caching, proxy servers and fragment-based resource change
estimation and reduction [7], have been adopted in order to reduce data re-
dundancy. Delta-encoding [35] uses caching techniques to reduce network traf-
fic. However, it does not reduce the computational load since the server still
needs to generate the entire page for each request [37].

Spiar goes one step further, and uses a delta-communication style of inter-
action. Here merely the state changes are interchanged between the client
and the server as opposed to the full-page retrieval approach in classic web
applications. Delta-communication is based on delta-encoding architectural
principles but is different: delta-communication does not rely on caching and
as a result, the client only needs to process the deltas. All Ajax frameworks
hide the delta-communication details from the developers.

25

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 25

Interaction possible

Client Server

Legend

Fig. 6. Traditional multi-page Web Interaction.

This constraint induces the properties of network performance directly and as
a consequence user-perceived latency and user interactivity. Network perfor-
mance is improved because there are less redundant data (merely the delta)
being transported. Data coherence is also improved because of the fine-grain
nature of the data which can be transferred to the user faster than when
dealing with data contained in large-grain web pages.

7.4 User Interface Component-based

Spiar relies on a single page user interface with components similar to that
of desktop applications, e.g., AWT’s UI component model. This model defines
the state and behavior of UI components and the way they can interact.

UI component programming improves simplicity because developers can use
reusable components to assemble a Web page either declaratively or program-
matically. User interactivity is improved because the user can interact with the
application on a component level, similar to desktop applications. In addition,
testing component-based software is inherently easier than testing traditional
page-based web applications, which induces the property of reliability.

Frameworks adhering to this constraint are very adaptable in terms of code
mobility since state changes in the three code types (5.2) can be propagated
to the client.

7.5 Web standards-based

Constraining the Web elements to a set of standardized formats is one way
of inducing portability on the Web. This constraint excludes approaches that
need extra functionality (e.g., plug-ins, virtual machine) to run on the Web
browser, such as Flash and Java applets, and makes the client cross-browser
compatible. This constraint limits the nature of the data elements to those that
are supported by web browsers. Also using web standards, web browsers that

26

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

26 TUD-SERG-2008-013

Single-page UI Ajax Engine

Client Server

Legend

Fig. 7. Client-centric Ajax Interaction.

Table 2
Constraints and induced properties

U
se

r
In

te
ra

ct
iv

it
y

U
se

r-
p
er

ce
iv

ed
L
a
te

n
cy

N
et

w
o
rk

P
er

fo
rm

a
n
ce

S
im

p
li
ci

ty

S
ca

la
b
il
it
y

P
o
rt

a
b
il
it
y

V
is

ib
il
it
y

D
a
ta

C
o
h
er

en
ce

R
el

ia
b
il
it
y

A
d
a
p
ta

b
il
it
y

Single-page Interface +

Asynchronous Interaction + +

Delta Communication + + + – – +

Client-side processing + + +

UI Component-based + + + +

Web standards-based + + +

Stateful + + + – –

Push-based Publish/Subscribe + + – – + +

abide by standards are easily supported and hence some degree of reliability
is induced [2].

7.6 Client-side Processing

Client-side processing improves user interactivity and user-perceived latency
through round-trip reduction. For instance, client-side form validation reduces
unnecessary server-side error reports and reentry messages. Additionally, some
server-side processing (e.g., sorting items) can be off-loaded to clients using
mobile code that will improve server performance and increase the availability
to more simultaneous connections. As a tradeoff, client performance can be-
come an issue if many widgets need processing resources on the client. GWT
takes advantage of client-side processing to the fullest, by generating all the
UI client-side code as JavaScript and run it on the client.

27

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 27

7.7 Stateful

A stateless server is one which treats each request as an independent trans-
action, unrelated to any previous request, i.e., each request must contain all
of the information necessary to understand it, and cannot take advantage of
any stored context on the server [21]. Even though the Web architecture and
HTTP are designed to be stateless, it is difficult to think of stateless Web
applications. Within a Web application, the order of interactions is relevant,
making interactions depend on each other, which requires an awareness of the
overall component topology. The statefulness is imitated by a combination of
HTTP, client-side cookies, and server-side session management.

Unlike Rest, Spiar does not constrain the nature of the state explicitly.
Nevertheless, since a stateless approach may decrease network performance (by
increasing the repetitive data), and because of the component-based nature of
the user interactions, a stateful solution might become favorable at the cost
of scalability and visibility.

7.8 Push-based Publish/Subscribe

The client-server interaction can be realized in both a push- or pull-based
style. In a push-based style [26], the server broadcasts the state changes to the
clients asynchronously every time its state changes. Event-based Integration
[3] and Asynchronous Rest [31] are event-based styles allowing asynchronous
notification of state changes by the server. This style of interaction has mainly
been supported in peer-to-peer architectural environments.

In a pull-based style, client components actively request state changes. Event-
driven [39] architectures are found in distributed applications that require
asynchronous communication, for instance, a desktop application, where user
initiated UI inputs serve as the events that activate a process.

Comet enables us to mimic a push-based publish/subscribe [19] style of in-
teraction on the web. This ability improves the network performance [10]
because unnecessary poll requests are avoided. User-perceived latency, and
adaptability are also improved by allowing a real-time event notification of
state changes to clients. The results of our empirical study [9] show that data
coherence is improved significantly by this constraint, but at the same time
the server application performance and reliability can be deteriorated and as
a result scalability negatively influenced.

28

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

28 TUD-SERG-2008-013

Table 3
Ajax configurations and properties.

U
se

r
In

te
ra

ct
iv

it
y

U
se

r-
p
er

ce
iv

ed
L
at

en
cy

N
et

w
or

k
P
er

fo
rm

an
ce

S
im

p
li
ci

ty

S
ca

la
b
il
it
y

P
or

ta
b
il
it
y

V
is

ib
il
it
y

D
at

a
C

oh
er

en
ce

R
el

ia
b
il
it
y

A
d
ap

ta
b
il
it
y

Rest-based Classic Web – – – + + + + – +− –

Client-centric Ajax + + – + –

ARPC Ajax + + + + – –

Push-based Ajax + + – – + +

Spiar-based Ajax + + + + +− + – + + +

8 Discussion and Evaluation

In this section we evaluate Spiar by investigating how well existing Ajax

frameworks and typical Ajax architectures are covered by the style, and dis-
cuss various decisions and tradeoffs in the design of Ajax applications in
terms of the architectural properties.

8.1 Retrofitting Frameworks onto Spiar

Each framework presented in Section 2 can be an architectural instance of
Spiar, even if not fully complying with all the architectural constraints of
Spiar. Echo2 is the best representative of Spiar because of its fully event-
driven and component-based architecture. The Jsf-based Backbase architec-
ture is also well covered by Spiar even though Jsf is not a real event-based
approach. GWT, on the other hand, is an interesting architecture. Although
the architecture uses UI components during the development phase, these com-
ponents are compiled to client-side code. GWT does not rely on a server-side
component-based architecture and hence, does not fully comply with Spiar.
None of these three frameworks has push-based elements. While the push-
based constraint is well represented in the Dojo and Cometd framework, the
component-based constraint is missing here.

Spiar abstracts and combines the component- and push-based styles of these
Ajax frameworks into a new style.

29

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 29

8.2 Typical Ajax Configurations

Many industrial frameworks have started supporting the Ajax style of inter-
action on the web. However, because of the multitude of these systems it is
difficult to capture their commonalities and draw sharp lines between their
main variations. Using Spiar as a reference point, commonalities and diver-
gences can be identified.

Table 3 shows a number of Ajax configurations along with the induced ar-
chitectural properties. The first entry is the Rest-based classic Web config-
uration. While simple and scalable in design, it has, a very low degree of
responsiveness, high user-perceived latency, and there is a huge amount of
redundant data transferred over the network.

The second configuration is the Client-centric Ajax. Most Ajax frameworks
started by focusing on the client-side features. Frameworks such as Dojo,
Ext 14 , and jQuery 15 all provide rich UI widgets on the client, facilitating
a client-centric style of interaction in which most of the functionality is off-
loaded to the browser. Generally, an interaction between components that
share the same location is considered to have a negligible cost when compared
to interaction that is carried out through a network [12]. This variant provides
a high degree of user interactivity and very low user-perceived latency. There
is, however, no support for adaptability as all the code is off-loaded to the
client and that makes this variant static in terms of code changes from the
server.

Frameworks such as GWT, DWR 16 , and JSON-RPC-Java 17 support the
Asynchronous Remote Procedure Call (ARPC) style of interaction. In this
configuration, all the presentational and functional code is off-loaded to the
browser and the server is only asynchronously contacted in case of a change in
terms of raw textual data. Low user-perceived latency, high user interactivity
and reduced server round-trips are the characteristics of this configuration.
Even though the textual data can be dynamically requested from the server,
there is a limited degree of adaptability for the presentational and functional
code.

The fourth configuration is a pure push-based interaction in which the state
changes are streamed to the client (by keeping a connection alive), without
any explicit request from the client. High level of data coherence and improved
network performance compared to the traditional pull style on the web are the

14
http://extjs.com

15
http://jquery.com

16
http://getahead.org/dwr

17
http://oss.metaparadigm.com/jsonrpc/

30

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

30 TUD-SERG-2008-013

main positive properties of this variant. High server load and scalability issues
are mainly due to the fact that the server has to maintain state information
about the clients and the corresponding connections.

For the sake of comparison, the last entry in Table 3 presents the component-
and push-based Spiar style itself.

8.3 Issues with push Ajax

Scalability is the main issue in a push model with a traditional server model.
Comet uses persistent connections, so a TCP connection between the server
and the client is kept alive until an explicit disconnect, timeout or network
error. So the server has to cope with many connections if the event occurs
infrequently, since it needs to have one or more threads for every client. This
will bring problems on scaling to thousands of simultaneous users. There is a
need for better event-based tools on the server. According to our latest find-
ings [10], push can handle a higher number of clients if new techniques, such
as the continuations [27] mechanism, are adopted by server applications. How-
ever, when the number of users increases, the reliability in receiving messages
decreases.

The results of our empirical study [9, 10] show that push provides high data
coherence and high network performance, but at the same time a Comet

server application consumes more CPU cycles as in pull.

A stateful server is more resistant to failures, because the server can save the
state at any given time and recreate it when a client comes back. A push
model, however, due to its list of subscribers is less resilient to failures. The
server has to keep the state, so when the state changes, it will broadcast the
necessary updates. The amount of state that needs to be maintained can be
large, especially for popular data items [6]. This extra cost of maintaining a
state and a list of subscribers will also have a negative effect on scalability.

These scalability issues are also inherited by Spiar as can be seen in Table 3.

8.4 Resource-based versus Component-based

The architecture of the World Wide Web [53] is based on resources identified
by Uniform Resource Identifiers (URI), and on the protocols that support
the interaction between agents and resources. Using a generic interface and
providing identification that is common across the Web for resources has been
one of the key success factors of the Web.

31

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 31

The nature of Web architecture which deals with Web pages as resources
causes redundant data transfers [7]. The delta-communication way of interac-
tion in Spiar is based on the component level and does not comply with the
Resource/URI constraint of the Web architecture. The question is whether
this choice is justifiable. To be able to answer this question we need to take a
look at the nature of interactions within single page applications: safe versus
unsafe interactions.

8.5 Safe versus Unsafe Interactions

Generally, client/server interactions in a Web application can be divided into
two categories of Safe and Unsafe interactions [52]. A safe interaction is one
where the user is not to be held accountable for the result of the interaction,
e.g., simple queries with GET, in which the state of the resources (on the server)
is not changed. An unsafe interaction is one where a user request has the
potential to change the state of the resources, such as a POST with parameters
to change the database.

The web architecture proposes to have unique resource-based addressing (URL)
for safe interactions, while the unsafe ones do not necessarily have to corre-
spond to one. One of the issues concerning Ajax applications is that browser
history and bookmarks of classic web applications are broken if not imple-
mented specifically. In Ajax applications, where interaction becomes more
and more desktop-like, where eventually Undo/Redo replaces Back/Forward,
the safe interactions can remain using specific addressing while the unsafe
ones (POST requests) can be carried out at the background. Both variants
use delta-communication, however, the safe interactions should have unique
addressing and the unsafe one do not necessarily correspond to any Rest-
based resource identified by a URL.

To provide the means of linking to the safe operations in Ajax, the URI’s frag-
ment identifier (the part after # in the URL) can be adopted. Interpretation
of the fragment identifier is then performed by the engine that dereferences a
URI to identify and represent a state of the application. Libraries such as the
jQuery history/remote plugin 18 or the Really Simple History 19 support ways
of programatically registering state changes with the browser history through
the fragment identifier.

18
http://stilbuero.de/jquery/history/

19
http://code.google.com/p/reallysimplehistory/

32

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

32 TUD-SERG-2008-013

8.6 Client- or server-side processing

Within the current frameworks it is not possible for developers to choose
whether some certain functionality should be processed on the client or on
the server. How the computation is distributed can be an important factor in
tuning a web application. Ajax frameworks architectures should provide the
means for the developer to decide if and to what extent computation should
be done on the client. Also adopting adaptive techniques to choose between
the server or client for processing purposes needs more attention.

8.7 Asynchronous Synchronization

The asynchronous interaction in Ajax applications may cause race conditions
if not implemented with care. The user can send a request to the server before
a previous one has been responded. In a server processor that handles the
requests in parallel, the second request can potentially be processed before
the first one. This behavior could have drastic effects on the synchronization
and state of the entire application. A possible solution would be handling
the event-triggered requests for each client sequentially at the cost of server
performance.

8.8 Communication Protocol

As we have seen, currently each Ajax framework has implemented its own
specific communication protocol. This makes the visibility of client/server in-
teractions poor as one must know the exact protocol to be able to make sense
of the delta messages. It also results in a low level of portability for these
applications. For a client to be able to communicate with an Ajax server,
again it needs to know the protocol of that server application. These two
properties can be improved by defining a standard protocol specification for
the communication by and for the Ajax community.

If we look at the current push approaches, we see different techniques on
achieving the push solution itself, but also different measures to deal with
portability. Without a standard here, it will be difficult for a mediator to
understand the interactions between system components, therefore the system
itself will be less visible. The definition and adoption of the Bayeux protocol
is a first attempt in the right direction which will improve both visibility and
portability.

33

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 33

UI

Widget View
<<build>>

deltaChange

deltaUpdate

viewChange

1..*

1..*

Web App
1

<<UI Component>>

Page

1..*

Server app Client Browser

Fig. 8. A single page web application composed of UI components.

8.9 Design Models

Figure 8 shows a meta-model of an Ajax web application. The UI is com-
posed of widgets of UI components. The client single page is built by the
server-side widgets. Delta changes as well as view changes occur on the widget
level. A view change, can be seen as navigating through the available widgets.
Ajax frameworks should provide clear navigational models for developers. Re-
search is needed to propose design models for Ajax developers by for instance
extending the UML language to model user interaction, navigation through
components, asynchronous/synchronous actions and client versus server side
processing.

8.10 Scope of Spiar

The essential requirements for an Ajax application are speed of execution and
improved user experience, small size of client/server data, and very specific in-
teraction behavior. Spiar is a coordinated set of architectural constraints that
attempts to minimize user-perceived latency and network usage, and improve
data coherence and ultimately user experience. Because of these properties,
the components of Ajax frameworks are tightly coupled. Loose coupling is
thus not a property included in Spiar. This inherent tight coupling also en-
compasses some scalability tradeoffs.

The style focuses on the front-end of the new breed of web applications, i.e., the
Service Provider is an abstract component that could be composed of middle
en back-end software. Service-oriented architecture solutions could therefore
easily be combined with Spiar, e.g., by replacing the Service Provider with a
SOAP server. Spiar elaborates only those parts of the architecture that are
considered indispensable for Ajax interaction.

34

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

34 TUD-SERG-2008-013

9 Related Work

While the attention for rich Internet applications in general and Ajax in
particular in professional magazines and Internet technology related web sites
has been overwhelming, few research papers have been published on the topic
so far.

A number of technical books have appeared on the subject of developing Ajax

applications. Asleson and Schutta [1], for instance, focus primarily on the client
side aspects of the technology and remain ‘pretty agnostic’ to the server side.
Crane et al.[15] provide an in-depth presentation of Ajax web programming
techniques and prescriptions for best practices with detailed discussions of
relevant design patterns. They also mention improved user experience and re-
duced network latency by introducing asynchronous interactions as the main
features of such applications. While these books focus mainly on the imple-
mentation issues, our work examines the architectural design decisions and
properties from an abstraction level by focusing on the interactions between
the different client/server components.

The push-based style has received extensive attention within the distributed
systems research community. However, most of the work focuses on clien-
t/server distributed systems and non-HTTP multimedia streaming or multi-
casting with a single publisher [23, 26]. The only work that currently focuses
on Ajax is the white-paper of Khare [29]. Khare discusses the limits of the
pull approach and proposes a push-based approach for Ajax. However, the
white-paper does not evaluate possible issues with this push approach, such as
scalability and performance. Their work on the mod pubsub event router over
HTTP [30] is highly related to the concepts of Ajax push implementations.

The page-sequence model of the traditional web architecture makes it difficult
to treat portions of web pages (fragments), independently. Fragment-based
research [7, 11, 13] aims at providing mechanisms to efficiently assemble a
web page from different parts to be able to cache the fragments. Recently
proposed approaches include several server-side and cache-side mechanisms.
Server-side techniques aim at reducing the load on the server by allowing reuse
of previously generated content to serve user requests. Cache-based techniques
attempt to reduce the latency by moving some functionality to the edge of the
network. These fragment-based techniques can improve network and server
performance, and user-perceived latency by allowing only the modified or
new fragments to be retrieved. Although the fragments can be retrieved in-
dependently, these techniques lack the user interface component interactivity
required in interactive applications. The UI component-based model of the
Spiar style in conjunction with its delta-communication provides a means
for a client/server interaction based on state changes that does not rely on

35

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 35

caching.

The Spiar style itself draws from many existing styles [31, 39, 46, 49] and
software fields [20, 35, 42], discussed and referenced in the paper. Our work
relates closely to the software engineering principles of the Rest style [21].
While Rest deals with the architecture of the Web [53] as a whole, Spiar

focuses on the specific architectural decisions of Ajax frameworks.

Parsons [41] provides an overview of the current state of the web by explor-
ing the evolving web architectural patterns. After the literature on the core
patterns of traditional web application architectures is presented, the paper
discusses some new emerging patterns, by focusing on the recent literature on
Web 2.0 in general and Ajax in particular.

On the architectural styles front the following styles can be summarized: Pace
[48] an event- based architectural style for trust management in decentralized
applications, TIGRA [17] a distributed system style for integrating front-office
systems with middle- and back-office applications, and Aura [47] an architec-
tural framework for user mobility in ubiquitous environments which uses mod-
els of user tasks as first class entities to set up, monitor and adapt computing
environments.

Khare and Taylor [31] also evaluate and extend Rest for decentralized set-
tings and represent an event-based architectural style called ARRESTED.
The asynchronous extension of Rest, called A+REST, permits a server to
broadcast notifications of its state changes to ‘watchers’.

Recently, Erenkrantz et al. [18] have re-evaluated the Rest style for new
emerging web architectures. They have also come to the conclusion that Rest

is silent on the area that Ajax expands. They recognize the importance of
the Ajax engine which is seen as the interpretation environment for delivered
content. They also notice, that Rest’s goal was to reduce server-side state
load, while Ajax reduces server-side computational load by adopting client-
side processing, and increases responsivity. Their new style extends Rest

and is called Computational Rest (CREST). CREST requires a transparent
exchange of computation so that the client no longer is seen as merely a
presentation agent for delivered content; ‘it is now an execution environment
explicitly supporting computation’. In other words, CREST much like Spiar

recognizes the significance of the Ajax engine as a processing component. On
the other hand, CREST ignores other important architectural characteristics
of Ajax applications, such as the the delta-communication and asynchronous
interaction covered in Spiar.

36

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

36 TUD-SERG-2008-013

10 Concluding Remarks

Ajax is a promising solution for the design and implementation of responsive
rich web applications, since it overcomes many of the limitations of the classical
client-server approach. However, most efforts in this field have been focused
on the implementation of different Ajax tools and frameworks, with little
attention to the formulation of a conceptual architecture for the technology.

In this paper we have discussed Spiar, an architectural style for Ajax. The
contributions of this paper are in two research fields: web application devel-
opment and software architecture

From a software architecture perspective, our contribution consists of the use
of concepts and methodologies obtained from software architecture research
in the setting of Ajax web applications. Our paper further illustrates how
the architectural concepts such as properties, constraints, and different types
of architectural elements can help to organize and understand a complex and
dynamic field such as single page Ajax development. In order to do this, our
paper builds upon the foundations offered by the Rest style, and offers a
further analysis of this style for the purpose of building web applications with
rich user interactivity.

From a web engineering perspective, our contribution consists of an evaluation
of different variants of Ajax client/server interactions, the Spiar style itself,
which captures the guiding software engineering principles that practitioners
can use when constructing and analyzing Ajax applications and evaluating
the tradeoffs of different properties of the architecture. We further propose a
component- push-based architecture capable of synchronizing the events both
on the server and the client efficiently.

The style is based on an analysis of various Ajax frameworks and configura-
tions, and we have used it to address various design tradeoffs and open issues
in Ajax applications.

Ajax development field is young, dynamic and changing rapidly. Certainly,
the work presented in this paper needs to be incrementally enriched and re-
vised, taking into account experiences, results, and innovations as they emerge
from the web community.

Future work encompasses the use of Spiar to analyze and influence Ajax

developments. One route we foresee is the extension of Spiar to incorporate
additional models for representing, e.g., navigation or UI components, thus
making it possible to adopt a model-driven approach to Ajax development.
At the time of writing, we are using Spiar in the context of enriching existing
web applications with Ajax capabilities.

37

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 37

Acknowledgments We thank Engin Bozdag (TU Delft) for his feedback on
our paper, particularly for his help on the push-based extension of the style.

References

[1] R. Asleson and N. T. Schutta. Foundations of Ajax. Apress, 2005.
[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts

and taxonomy of dependable and secure computing. IEEE Trans. on
Dependable and Secure Computing, 1(1):11–33, 2004.

[3] D. J. Barrett, L. A. Clarke, P. L. Tarr, and A. E. Wise. A framework
for event-based software integration. ACM Trans. Softw. Eng. Methodol.,
5(4):378–421, 1996.

[4] L. Bass, P. Clements, and R. Kazman. Software architecture in practice,
2nd ed. Addison-Wesley, 2003.

[5] T. Berners-Lee, L. Masinter, and M. McCahill. RFC 1738: Uniform Re-
source Locators (URL), 1994.

[6] M. Bhide, P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham,
and P. Shenoy. Adaptive push-pull: Disseminating dynamic web data.
IEEE Trans. Comput., 51(6):652–668, 2002.

[7] C. Bouras and A. Konidaris. Estimating and eliminating redundant data
transfers over the Web: a fragment based approach: Research articles.
Int. J. Commun. Syst., 18(2):119–142, 2005.

[8] E. Bozdag. Integration of HTTP push with a JSF Ajax framework. Mas-
ter’s thesis, Delft University of Technology, December 2007.

[9] E. Bozdag, A. Mesbah, and A. van Deursen. A comparison of push and
pull techniques for Ajax. In Proceedings of the 9th IEEE International
Symposium on Web Site Evolution (WSE’07), pages 15–22. IEEE Com-
puter Society, 2007.

[10] E. Bozdag, A. Mesbah, and A. van Deursen. Performance testing of data
delivery techniques for Ajax applications. Technical Report TUD-SERG-
2008-009, Delft University of Technology, 2008.

[11] D. Brodie, A. Gupta, and W. Shi. Accelerating dynamic web content
delivery using keyword-based fragment detection. J. Web Eng., 4(1):079–
099, 2005.

[12] A. Carzaniga, G. P. Picco, and G. Vigna. Designing distributed appli-
cations with mobile code paradigms. In ICSE ’97: 19th International
Conference on Software Engineering, pages 22–32. ACM Press, 1997.

[13] J. Challenger, P. Dantzig, A. Iyengar, and K. Witting. A Fragment-based
approach for efficiently creating dynamic Web content. ACM Trans. In-
ter. Tech., 5(2):359–389, 2005.

[14] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and R. Lit-
tle. Documenting Software Architectures: Views and Beyond. Pearson
Education, 2002.

38

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

38 TUD-SERG-2008-013

[15] D. Crane, E. Pascarello, and D. James. Ajax in Action. Manning Publi-
cations Co., 2005.

[16] Direct Web Remoting. Reverse Ajax documentation. http://getahead.
org/dwr/reverse-ajax, 2007.

[17] W. Emmerich, E. Ellmer, and H. Fieglein. TIGRA an architectural style
for enterprise application integration. In ICSE ’01: 23rd International
Conference on Software Engineering, pages 567–576. IEEE Computer So-
ciety, 2001.

[18] J. R. Erenkrantz, M. Gorlick, G. Suryanarayana, and R. N. Taylor. From
representations to computations: the evolution of web architectures. In
Proceedings of the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of
software engineering (ESEC-FSE’07), pages 255–264. ACM, 2007.

[19] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The
many faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131,
2003.

[20] R. Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, UC, Irvine, Information and Computer Science,
2000.

[21] R. Fielding and R. N. Taylor. Principled design of the modern Web
architecture. ACM Trans. Inter. Tech. (TOIT), 2(2):115–150, 2002.

[22] E. Folmer. Software Architecture analysis of Usability. PhD thesis, Univ.
of Groningen, Mathematics and Computer Science, 2005.

[23] M. Franklin and S. Zdonik. data in your face: push technology in per-
spective. In SIGMOD ’98: Proceedings of the 1998 ACM SIGMOD inter-
national conference on Management of data, pages 516–519. ACM Press,
1998.

[24] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding code mobility.
IEEE Trans. Softw. Eng., 24(5):342–361, 1998.

[25] J. Garrett. Ajax: A new approach to web applications. Adaptive
path, 2005. http://www.adaptivepath.com/publications/essays/

archives/000385.php.
[26] M. Hauswirth and M. Jazayeri. A component and communication model

for push systems. In 7th European Software Engineering Conference
(ESEC/FSE-7), pages 20–38. Springer-Verlag, 1999.

[27] Jetty. Jetty webserver documentation - continuations. Mortbay Con-
sulting, http://docs.codehaus.org/display/JETTY/Continuations,
2006.

[28] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Car-
riere. The architecture tradeoff analysis method. In 4th IEEE Interna-
tional Conference on Engineering of Complex Computer Systems, pages
68–78. IEEE Computer Society, 1998.

[29] R. Khare. Beyond Ajax: Accelerating web applications with Real-
Time event notification. http://www.knownow.com/products/docs/

whitepapers/KN-Beyond-AJAX.pdf, 2005.

39

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 39

[30] R. Khare, A. Rifkin, K. Sitaker, and B. Sittler. mod pubsub: an open-
source event router for Apache, 2002.

[31] R. Khare and R. N. Taylor. Extending the Representational State Trans-
fer (REST) architectural style for decentralized systems. In ICSE ’04:
26th International Conference on Software Engineering, pages 428–437.
IEEE Computer Society, 2004.

[32] G. E. Krasner and S. T. Pope. A cookbook for using the model-view
controller user interface paradigm in Smalltalk-80. Journal of Object
Oriented Program, 1(3):26–49, 1988.

[33] A. Mesbah and A. van Deursen. An architectural style for Ajax. In
Proceedings of the 6th Working IEEE/IFIP Conference on Software Ar-
chitecture (WICSA’07), pages 44–53. IEEE Computer Society, 2007.

[34] A. Mesbah and A. van Deursen. Migrating multi-page web applications
to single-page Ajax interfaces. In Proceedings of the 11th European Con-
ference on Software Maintenance and Reengineering (CSMR’07), pages
181–190. IEEE Computer Society, 2007.

[35] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy. Potential
benefits of delta encoding and data compression for HTTP. In ACM SIG-
COMM Conf. on Applications, technologies, architectures, and protocols
for computer communication, pages 181–194. ACM, 1997.

[36] R. T. Monroe and D. Garlan. Style-based reuse for software architectures.
In ICSR ’96: 4th International Conference on Software Reuse, pages 84–
93. IEEE Computer Society, 1996.

[37] M. Naaman, H. Garcia-Molina, and A. Paepcke. Evaluation of ESI and
class-based delta encoding. In 8th International Workshop Web content
caching and distribution, pages 323–343. Kluwer Academic Publishers,
2004.

[38] Netscape. An exploration of dynamic documents. http://wp.netscape.
com/assist/net sites/pushpull.html, 1996.

[39] W. M. Newman and R. F. Sproull. Principles of Interactive Computer
Graphics. McGraw-Hill, 1979. 2nd Edition.

[40] J. Offutt. Quality attributes of web software applications. IEEE Softw.,
19(2):25–32, 2002.

[41] D. Parsons. Evolving architectural patterns for web applications. In
Proceedings of the 11th Pacific Asia Conference on Information Systems
(PACIS), pages 120–126, 2007.

[42] D. E. Perry and A. L. Wolf. Foundations for the study of software archi-
tecture. SIGSOFT Softw. Eng. Notes, 17(4):40–52, 1992.

[43] D. S. Rosenblum and A. L. Wolf. A design framework for internet-scale
event observation and notification. In ESEC/FSE ’97: Proceedings of
the 6th European conference held jointly with the 5th ACM SIGSOFT
international symposium on Foundations of software engineering, pages
344–360. Springer-Verlag New York, Inc., 1997.

[44] A. Russell. Comet: Low latency data for the browser. http://alex.

dojotoolkit.org/?p=545, 2006.

40

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

40 TUD-SERG-2008-013

[45] M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[46] A. Sinha. Client-server computing. Communications of the ACM,
35(7):77–98, 1992.

[47] J. P. Sousa and D. Garlan. Aura: an architectural framework for user
mobility in ubiquitous computing environments. In WICSA 3: IFIP 17th
World Computer Congress - TC2 Stream / 3rd IEEE/IFIP Conference
on Software Architecture, pages 29–43. Kluwer, B.V., 2002.

[48] G. Suryanarayana, J. R. Erenkrantz, S. A. Hendrickson, and R. N. Taylor.
PACE: An architectural style for trust management in decentralized ap-
plications. In Proceedings of the 4th Working IEEE/IFIP Conference on
Software Architecture (WICSA’04), page 221. IEEE Computer Society,
2004.

[49] R. N. Taylor, N. Medvidovic, K. M. Anderson, J. E. J. Whitehead, J. E.
Robbins, K. A. Nies, P. Oreizy, and D. L. Dubrow. A component- and
message-based architectural style for GUI software. IEEE Trans. Softw.
Eng., 22(6):390–406, 1996.

[50] H.-H. Teo, L.-B. Oh, C. Liu, and K.-K. Wei. An empirical study of the
effects of interactivity on web user attitude. Int. J. Hum.-Comput. Stud.,
58(3):281–305, 2003.

[51] A. Umar. Object-oriented client/server Internet environments. Prentice
Hall Press, 1997.

[52] W3C. URIs, Addressability, and the use of HTTP GET and POST, Mar.
21 2004. W3C Tag Finding.

[53] W3C Technical Architecture Group. Architecture of the World Wide
Web, Volume One, Dec. 15, 2004. W3C Recommendation.

41

SERG Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications

TUD-SERG-2008-013 41

Mesbah and van Deursen – A Component- and Push-based Architectural Style for Ajax Applications SERG

42 TUD-SERG-2008-013

TUD-SERG-2008-013
ISSN 1872-5392 SERG

