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1. Introduction

In future technologies of embedded systems an increasing
amount of applications (e.g. 3D games, video-players) coming from
the general-purpose domain, having large run-time memory man-
agement requirements, need to be mapped onto an extremely
compact device. However, embedded systems struggle to execute
these complex applications because they come from desktop sys-
tems, holding very different restrictions regarding memory usage
features, and more concretely not concerned with an efficient use
of the dynamic memory. In fact, a desktop computer typically in-
cludes today between 512 and 1024 MB of RAM memory at least,
as opposed to the 32 or 64 MB present in modern embedded sys-
tems. Therefore, one of the main tasks of the porting process of
multimedia applications onto embedded multimedia systems is
the optimization of the dynamic memory subsystem.

In modern dynamic applications, dynamic data is stored in enti-
ties called containers, like arrays, lists or trees, which can adapt
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dynamically to the amount of memory used by each application
(Wood, 1993). In multimedia applications sequences are the most
used containers. This category includes arrays and lists. Since there
are several implementations (called dynamic data types — DDTs) of
these containers, as we show in Section 3.1, choosing an improper
DDT will have significant negative impact on the dynamic memory
subsystem of the embedded system (Bartzas et al., 2006) as in STL
(SGI, 2006).

As a single application can host a number of different contain-
ers, to optimize the use of dynamic memory, the designer must
choose the best among a number of possible DDT implementations
(James and Mansfield, 1999; Wood, 1993), according to the specific
restrictions of typical embedded design metrics, such as, perfor-
mance, memory footprint and energy consumption. This task is
typically performed using a pseudo-exhaustive evaluation of the
design space of DDT implementations (i.e. multiple executions)
for the application to attain the Pareto front ( Daylight et al.,
2004). That search would try to cover all the possible optimal
implementation points for the aforementioned required design
metrics. This exhaustive construction of the Pareto front is a very
time-consuming, sometimes even unaffordable, process. Moreover,
due to the inter-dependencies between DDTs, namely, that one
DDT implementation behavior may affect the performance or
memory footprint of another one (Daylight et al., 2004), the refine-
ment process must explore the whole range of possible combina-
tions of the different DDT implementations. Thus, the number of
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experiments to be carried out typically becomes unaffordable even
for a small number of DDTs. For instance, in the case of an embed-
ded application including 10 different DDTs that need to be ex-
plored for 10 basic relevant implementations of DDTs for
multimedia applications (as proposed in Atienza et al. (2004), Bart-
zas et al. (2006), Leeman (2003)), the number of experiments (i.e.
multiple runs of the application) that need to be performed is
10'%; testing all these combinations manually is not feasible. This
paper presents a novel, automated, optimization approach for the
DDTs of multimedia applications. It relies on the definition and
the analytical pre-characterization of the possible elementary
DDT blocks, which are subsequently used in a genetic algorithm
(GA) of typevector evaluated genetic algorithm (VEGA) (David Schaf-
fer, 1985) to model the existing inter-dependencies of using differ-
ent DDTs implementations. Then, this modeling of inter-
dependencies can be seen as a constraint set. The latter can be used
to prune the design space. This paper is organized as follows: in
Section 2, we review related work on DDTs design and optimiza-
tion. In Section 3, we present our multi-objective optimization
framework. In Section 4, we present our experimental results with
real-life multimedia embedded applications and compare with
state-of-the-art optimization heuristics to optimize DDT applica-
tions. Finally, in Section 5, we summarize the contributions of
the paper and present future research directions.

2. Related work

It is widely accepted that forthcoming multimedia applications
will require dynamic memory in embedded systems due to their
dynamic behavior (e.g. the number of objects rendered on the
screen while playing can significantly vary). Therefore, important
research work has been started already through the optimization
of dynamic data storage for embedded systems (Daylight et al.,
2004; Jerraya and Wolf, 2005).

Regarding DDT refinement, the Standard Template C++ Library
(STL) (SGI, 2006) or other proposed template libraries (C++ Stan-
dardisation Committee, 1998) provide many basic data structures
to help designers develop new algorithms without being worried
about complex DDT implementation issues. However, these li-
braries usually provide interfaces to simple DDT implementations
and the construction of complex ones is a responsibility of the
developer. Furthermore, these libraries focus exclusively on perfor-
mance. They can be considered as acceptable general-purpose
solutions, but are not suitable for new generation embedded de-
vices, where performance, energy consumption and memory foot-
print must be optimized together.

For embedded software, suitable access methods, power-aware
DDT transformations and pruning strategies based on heuristics
have been proposed for multimedia systems (Daylight et al.,
2004; Wuytack et al., 1996). However, these approaches require
the development of efficient pruning cost functions and fully man-
ual optimizations. Otherwise, they are not able to capture the eval-
uation of inter-dependencies of multiple DDTs implementations
operating together, as the proposed methodology using evolution-
ary computation achieves. Also, several transformations have been
proposed that optimize local loops in embedded programs at com-
pile time (Muchnick, 1997). Nevertheless, they are not suitable for
exploration of complex DDTs employed in modern multimedia
applications, because they handle only very simple data structures
(e.g. arrays or pointer arrays), and mostly focus on performance.

In addition, according to the characteristics of certain parts of
multimedia applications, several transformations for DDTs and de-
sign methodologies (Smailagic et al., 1995; Benini and De Micheli,
2000; Catthoor et al., 2002) have been proposed for static data pro-
filing and optimization considering static memory access patterns

to physical memories. In this context, the use of GA-based optimi-
zation has been applied to solve linear and non-linear problems by
exploring all regions of the state space in parallel (Coello et al.,
2002). Thus, it is possible to perform optimizations in non-convex
regular functions, and also to select the order of algorithmic trans-
formations in concrete types of source codes (Michalewicz, 1996;
Houck et al., 1995; Osyczka, 1985). However, such techniques are
not applicable in DDT implementations, due to the initially unpre-
dictable nature of the data to be stored at compile-time, as does the
optimization methodology that we present in this work.

Furthermore, in the available literature there has been an
exhaustive cover of data structures characterization in terms of
complexity (Cormen et al., 2001) of their operations. Although this
approach is useful for a high level estimation of the DDT’s perfor-
mance, it cannot be used for a fine tuning process. For instance,
random access for both singly and doubly linked lists is of O(n)
complexity. For large number of elements, however, a doubly
linked list gives half the accesses in comparison to singly linked
list. The latter makes clear the need for an analytical approach,
rather than using standard complexity analysis. Furthermore, none
of these approaches studies DDTs in regard to their behavior. For
instance, no discern of sequential vs random access has been made.
In that sense, the author of Leeman (2003) presents an analytical
characterization of a set of basic DDTs for random access. Although
these models are close to our approach, the models used in our
work are more realistic and accurate (especially in implementation
variations that use roving pointers). Furthermore, the formal as-
pect of the extraction process for these models is presented here
in a more complete way.

Recently, in the workshop paper (Atienza and Baloukas, 2007)
we have shown the possible advantage of a simple implementation
of a GA to perform DDT exploration. However, the application of
our approach was limited to two applications and the complete
automation flow was not proposed as we do in this paper. In this
paper, we include another major application, which is a physics en-
gine for elastic and deformable bodies. That said, we have two ma-
jor case studies and one minor to demonstrate that both can
benefit from our approach. Furthermore, we enhanced our auto-
mation tools. The genetic exploration now runs in seconds, simpli-
fying the exploration process. Moreover, the exploration speed is
now compared to additional heuristic-based optimization meth-
ods. Finally, the whole framework is presented here in much more
detail than in Atienza and Baloukas (2007), to show all the innova-
tive aspects of this work.

3. DDTs global optimization flow

The proposed optimization framework uses three different
phases to perform the automatic exploration of DDT implementa-
tions using evolutionary computation:

e Phase 1: pre-characterization. All DDTs are modeled (Section 3.1)
in terms of average number of random and sequential accesses,
and average size for a given number of elements. This phase
happens only once. The models are required by the multi-objec-
tive evolutionary algorithm to analytically calculate the perfor-
mance of each DDT implementation, for various cost factors, ie
execution time, memory footprint and energy consumption.

e Phase 2: profiling. Here, the initial profiling of the iterator-based
access methods to the different DDTs used in the application
(Section 3.2) takes place. A detailed report is produced, which
comprises all the accesses to the DDTs done by the application.
This report, along with the analytical models and the platform
description are fed to our multi-objective evolutionary algo-
rithm during the third phase.
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e Phase 3: evaluation. Exploiting the characteristics of the final
platform, we perform an exploration of the design space of DDTs
implementation using multi-objective evolutionary computa-
tion (Section 3.3).

Fig. 1 shows an overview of the different phases (in light gray)
and the inputs (in dark gray) required to perform the overall DDTs
optimization.

3.1. Phase 1 - analytical modeling of DDT implementations

A DDT is a software abstraction by means of which we can
manipulate and access data (Wood, 1993). The implementation of
a DDT has two main components: First, it has storage aspects that
determine how data memory is allocated and freed at run-time
and how this memory is tracked; Second, it includes an access com-
ponent, which can refer to two different basic access patterns:
sequential or iterator-based and random access. In our case, after
studying current state of the art multimedia applications like 3D vi-
deo games and physics engines, we have classified the DDT imple-
mentations in basic and multi-layer implementations relevant for
embedded multimedia applications, as proposed in Daylight et al.
(2004), and Atienza et al. (2004). Trees, hash tables, graphs, all uti-
lize these structures and build upon them a more complex access
pattern. That said, if we can analytically characterize the basic DDTs
then multi-layer implementations consisting of various combina-
tions of these DDTSs can be analytically characterized too. For exam-
ple, a singly linked list of arrays combines a singly linked list (SLL)
and a array (AR) DDT. The analytical model of singly linked list with
arrays [SLL(AR)] is a combination of the analytical models of the
two basic DDTs. This allows our tools to synthesize and test analyt-
ically all possible combinations of basic DDTs in multi-layered
implementations providing more solutions to the designer.

The basic DDTs are the following ones:

e Array (AR): is a set of sequentially indexed elements of size sr.
Each element of the array is a record of the application.

o Single linked list (SLL): is a single linked list of pointers to objects
of type T. Each element of the list is connected with the next ele-
ment through a pointer of size s,,.

e Double linked list (DLL): is a double linked list of pointers to
objects of type T. Each element of the list is connected with
the next and the previous element with two separate pointers
(of size sy).

In addition, we have included in our exploration the fundamen-
tal variations of these basic DDTs regarding their key value, for

embedded multimedia applications (Daylight et al., 2004; Wuytack
et al.,, 1996), namely:

e Pointer (P): in the pointer variation of each basic DDT, the record
of the application is stored outside the DDT and is accessed via a
pointer. This leads to a smaller DDT size, but also to an extra
memory access to reach the actual data. All DDTs used in our
exploration comply to this variation except the simple array.

e Roving pointer (0): the roving pointer is an auxiliary pointer (of
size s, ) useful to access a particular element of a list with less
accesses in case of iterator-based access patterns. For instance,
for a single linked list, if you access element n + 1 immediately
after element n, your average access count is 1+ 1 instead of
n/2 +1 (see Fig. 2).

In the rest of the paper the fundamental variations to basic
DDTs are represented as in the following examples:

e SLLO: a singly linked list with roving pointer.

e ARP: a simple array of pointers to the actual data.

e SLL(AR): a two-level DDT comprising a singly linked list of
arrays. Each element of the SLL is an array, which holds the
actual data.

Additionally, all variables used in this section are presented in
Table 1.

In the following sections, we describe the extraction of the ana-
lytical models for both sequential and random access patterns.

3.1.1. Sequential access models extraction

Sequential access is the case where several consecutive ele-
ments of a DDT are traversed one after another. In modern applica-
tions this traversal is done using iterator structures. Thus, it is
logical to assume a loop like the one below to represent sequential
access.

for (Iterator& i = DDT. Newlterator(); i. IsDone(); i++) { i:}

Using our profiling tool we logged the accesses made by each
operation (Newlterator, IsDone and operator++) running a single
iteration. In Table 2, we show the number of accesses for each
operation individually. A distinction is made between read and
write accesses. This separation is necessary for the energy model,
as reads and writes have different energy consumption.

p 0
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Application
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Phase 3
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Fig. 1. Overview of the DDTs optimization flow.
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Fig. 2. A singly linked list with roving pointer — SLLO. R is the last accessed element and the one pointed by the roving pointer.

Table 1

Definition of variables used in this section

Variable Definition

NA; Number of accesses required to retrieve one value with a random access
pattern

NAs Number of accesses required to access all the values in a DDT with a
sequential access pattern

Sav Average memory footprint used by the DDT

Ne Number of valid or initialized elements in the DDT

N, Number of reserved or allocated positions to store elements in the DDT

St Width of a word on the architecture

St The size of one element of type T

Table 2

Sequential access models

5
Implementation Operator IsDone() Operator++

AR 4 x Ne(4 read) 3 x Ne(3 read) 2 x Ne(1 read, 1 write)
ARP 5 x Ne(5 read) 3 x Ne(3 read) 2 x Ne(1 read, 1 write)
SLL 3 x Ne(3 read) 1 x Ne(1 read) 3 x Ne(2 read, 1 write)
DLL 3 x Ne(3 read) 1 x Ne(1 read) 3 x Ne(2 read, 1 write)
SLLO 3 x Ne(3 read) 4 x N(4 read) 3 x Ne(2 read, 1 write)
DLLO 3 x Ne(3 read) 4 x Ne(4 read) 3 x Ne(2 read, 1 write)

The table shows the number of accesses needed by each of the three operations
considered in a sequential access mode. The accesses are separated in read and
write accesses.

3.1.2. Random access models extraction

In this section, the mathematical formula of the random access
model for one of the DDTs used in our exploration is presented, as
an example of the model extraction process. We are interested in
the average number of memory accesses to reach an arbitrary ele-
ment n, which in general is defined as

N
average = ZP(n)n, where N is the number of elements in the list

n=1
(1)

where P(n) is the probability to access element n. In our case, the
P(n) is considered uniform, meaning that each element has the
same probability of being requested by the application.

R is the element pointed by the roving pointer and also the last
accessed element during a previous search. The presence of the rov-
ing pointer changes the way elements are accessed in comparison to
simple SLL. Here, if the requested element is after the roving poin-
ter, then the traversal will begin from element R. Otherwise, the list
will be traversed from the beginning. Thus, our list is split in two
parts, one with size R and another with size N — R. Eq. (1) becomes

R 1 N-R 1
SLLOean = <—> n+ (—) n
2 )2 (w
(N-R(1+N-R) R(+R)
2N 2N

Because of the fact that the roving pointer can point to any element,
we can extract the mean forR=1to N

N
(N-R1+N-R) R(1+R 1 1 N
SLLOm n— |: + =—ts+5 (3)
e ; 2N 2N 6N 3
SLLOmean = g for large N (4)

Different DDT implementations offer different trade-offs between
memory use, performance and energy consumption. These trade-
offs are shown in the analytical characterization of the basic DDTs
used in our exploration, presented in Table 3. The analytical models
of multi-layered DDT implementations are a combination of these
models presented in Table 3 for basic implementations.

3.2. Phase 2 - profiling of iterator-based access methods

To enable the exploration of different DDT implementations, it
is first necessary to understand how the different DDTs are being
used in each studied application. Since the target applications are
dynamic, hence the use of DDTs, it is necessary to profile them. It
is also necessary that this profiling happens not at the memory le-
vel, but at the interface level to get an accurate view of the behav-
ior of each DDT implementation. Available profilers do not provide
information on the behavior of DDTs. That said, current solutions
cannot discern a sequential kind of access to the elements of DDTs,
from a random one. Knowing the behavior of each DDT is critical in
choosing the right implementation for it. Some DDTs may have
large variations in the number of hosted objects, while others focus
more on accessing those objects in different ways. In the context of
this work, we have expanded our profiling library (Poucet et al.,
2006) with several higher level profiling information to identify
the accesses at this level.

As a first extension to our profiling tool, we have re-imple-
mented a sequence type, vector, fully compatible to the one de-
fined by STL (SGI, 2006). The reason to stick to a commonly used
interface, is that limited changes are required in the source code
to profile an application and furthermore, they can be performed
automatically. Most importantly, this is done without requiring a

Table 3
Analytical characterization of basic DDT implementations in the exploration

DDT Sequential accesses Random accesses Average aize (Sav)
implem. (NAs) (NA;)

AR 9N, 2 19sy + N; x st

ARP 10 x N, 3 19sw + Na(St + Sw)
SLL 7 x Ne Mt 19sw + Ne(2Sw + St)
DLL 7 x Ne Net+1 195w + Ne(3sw + S1)
SLLO 10 x Ne N1 20w + Ne(25w + St)
DLLO 10 x Ne M1 20sw + Ne(3sw + S1)

Ne is the number of valid or initialized elements in the DDT, N, is the total number
of reserved or allocated positions that can be used to store elements in the DDT, sy,
is the width of a word on the architecture and st the size of one element of type T.
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modification of the remainder of the application where the DDT is
actually being accessed. The new vector includes directives that
log all the different semantical operations. In particular, each func-
tion call is logged along with all accesses made to any internal vari-
ables that the type uses. That way we can have a clear view of each
DDT'’s behavior at runtime.

Furthermore, a careful analysis of the sequence interface indi-
cates that not only operations of the DDT, but also the iterator
operations used to access the stored elements (Catthoor et al.,
2002; James and Mansfield, 1999) must be logged. To enable us
to couple the logging of memory accesses to specific DDTs, it is
necessary to know at each point in time, from the profiling infor-
mation, which container uses which memory segments. Therefore,
the constructor, destructor, copy constructor and swap operation
are logged as separate packets of our profiling tool, thereby giving
a mapping between the addresses that a vector owns and the ad-
dresses that an iterator accesses. Other similar operations are the
accessing of an element, the addition of an element, the removal
of an element and the clearing of the container. Since it is possible
to obtain references to an element in a container, we do not need to
distinguish between read and write operations.

3.3. Phase 3 - multi-objective optimization of DDTs

GAs (Mitchell, 1996; Coello et al., 2002) are stochastic optimiza-
tion heuristics where the exploration of the solution space of a cer-
tain problem is carried out by imitating the population genetics
stated in Darwin’s theory of evolution. Selection, crossover and
mutation operators, derived directly from natural evolution mech-
anisms, are applied to a population of solutions, thus favoring the
birth and survival of the best solutions. GAs have been successfully
applied to many NP-hard combinatorial optimization problems
and work by encoding potential solutions (individuals) to a prob-
lem by bit strings (chromosomes), and by combining their codes
and, hence, their properties. In order to apply GAs to a problem,
a genetic representation of each individual has first to be found
(Coello et al., 2002; Atienza and Baloukas, 2007). Furthermore, an
initial population has to be created, as well as defining a cost func-
tion to measure the fitness of each solution.

As a second step we need to design the genetic operators that
will allow us to produce a new population of DDT solutions from
a previous one, by capturing the inter-dependencies of the differ-
ent DDT implementations working concurrently. Then, by itera-
tively applying the genetic operators to the current population,
the fitness of the best individuals in the population converges to
targeted solutions, according to the metric/s to be optimized and
the weight of each of these metrics. For an overview of GAs the
reader is referred to (Mitchell, 1996).

3.3.1. Fitness function

The objective of our algorithm is to obtain a multi-layer DDT
representation for each container in the original application that
optimize energy, memory use and performance. Such complex
DDT is formed by a combination of up to three levels of the basic
DDTs proposed in Section 3.1. To this end, we must evaluate the
candidate solution by means of a fitness function. Table 4 presents
all the variables used in this section.

After profiling the real application, the information required for
the analytical characterization of the DDT implementations consid-
ered is available (see Section 3.1 for more details). Thus, for each
individual available in a certain generation we can compute the
performance (Perf related to the number of accesses to layers of
the memory hierarchy), memory footprint (AvMem in Bytes) and
energy values (Energy in nJ). Note that all the parameters, such
as N; and N,, are obtained by profiling the application using our
vector DDT, which can be modeled as a AR. This means that N,

Table 4

Definition of variables used in this section

Variable Definition

N; Number of read accesses to a DDT

Ny Number of write accesses to a DDT

Nran Number of random accesses to a DDT

Niw Number of read/write accesses to the L1 data cache memory
Npa Number of misses in the data cache

e Average cycle time that an access to the main memory requires
NA Cycle time cost of creating/destructing the DDT

Epa Energy consumed per access to main memory

Erw Energy consumed per access to cache memory

Eest Static energy consumed by the main memory

and N,, must be scaled in terms of the DDTs proposed by the GA
and using Tables 3 and 2.

Therefore, the fitness process starts with the decoding of the
individuals. Next, for each possible container (and its valid multi-
layer DDTs proposed by our algorithm) we compute the following
equations:

Perf = (NA + (NA; * Nan)) * (N; + Nyy)

+ (Npa/4) #* Tamem + (NAcq % 2) (5)
AvMem = S, (6)
Energy = (Npa * Epa) + (Nrw * Erw) + (Sav * Eest) (7)

In our work, we consider that each cache line contains four blocks,
thus, the amount of misses is divided by this constant. NAy has to
be included twice since in our modeling all the containers are cre-
ated at the beginning and deleted at the end. Also, regarding the en-
ergy calculations, we consider in this work in-place sharing, as the
containers lifetimes are short. Moreover, we consider a basic mem-
ory hierarchy that consists of a main shared memory and a L1 data
cache. Note that according to our empirical validation with several
multimedia applications (Poucet et al., 2006), we assume in our en-
ergy calculations an average miss rate of the cache memory below
5% of the overall memory accesses. However, this value is user-con-
figurable in our VEGA-based exploration process and even addi-
tional multi-level cache miss rate effects can be configured. In
addition, it is possible to introduce some constraints and weights
for the metrics to be optimized. For example, we can fix maximum
values of performance, memory use and energy if the final embed-
ded system requires it.

Other memory hierarchies could be modeled as well by modify-
ing the previous equations. First of all, it must be made clear that
the equations to calculate performance and energy are based on
the fact that only one processor is accessing the bus to get the
information of the data structure (i.e. conflicts are not being mod-
eled). Thus, as long as the modeling refers to accesses without con-
flicts in the bus or memory hierarchy, they are valid, indistinctly of
having one or multiple processors. In this case, if we have multiple
levels of caches for a certain processor, the memory hierarchy can
be easily modeled by extending the formulas with multiple Npa1,
Njpa2, etc. modeling the number of misses in each layer of the mem-
ory hierarchy, the respective Niwi, N2, etc. for the number of
reads in each layer, and Tamem1, Tamem2, €tc. for the average cycle
time to access each cache level (in the case of only L1, it was as-
sumed that it would have an access time of 1 clock cycle and there-
fore it is not included in the equations).

Furthermore, in the case of several parallel L1 caches, they could
be modeled with a number of extra coefficients/terms representing
the extra access time penalty due to conflicts in the bus or to the
external main memory (or any additional shared level). Moreover,
if the data of the DDTs can be shared between different processors,
the equations and modeling have to be completely rethought, as
they would need to model the effects of caches from different cores
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competing for shared dynamic data stored in the DDTs (e.g. con-
tention mechanisms, starvation, etc.) and other issues like false
data sharing between multiple cache lines of different processors.

3.3.2. Multi-objective algorithm

Multi-objective optimization could be defined in our case as the
problem of finding a vector of decision variables which meets a set
of constraints. Then this vector of decision variables is used to opti-
mize a vector function whose elements represent the objective
functions. These functions form a mathematical description of per-
formance criteria which are usually in conflict with each other.
Hence, the term optimize means finding such a solution, which
would give acceptable values to all the objective functions (energy,
performance and memory in our problem) for the designer (Osycz-
ka, 1985). The notion of acceptable values is defined by the weight
that the designer gives to each optimization metric, enabling linear
combinations of the aforementioned metrics in our case and creat-
ing Pareto curves of solutions. In order to find these Pareto curves
for problems of great difficulty, many multi-objective evolutionary
algorithms have been developed. They can be classified into two
broad categories: non-elitist and elitist also called first and second
generation multi-objective evolutionary algorithms (Coello et al.,
2002). In the elitist approach, GAs store in an external set the best
solutions of each generation. This set will then be a part of the next
generation. Thus, the best individuals in each generation are al-
ways preserved, and this helps the algorithm to get close to its
POF. Algorithms such as PESA-II, MOMGA-II, NSGA-II and SPEA2
are examples of this category (Coello et al., 2002). In contrast,
the non-elitist approach does not guarantee preserving the set of
best individuals for the next generation. Examples of this category
include MOGA, HLGA, NPGA and VEGA (Coello et al., 2002).

Since our design framework is independent of the GA utilized,
we selected VEGA as one of the quicker and simpler GAs imple-
mentations. It has been demonstrated to be very efficient (David
Schaffer, 1985). The main idea of VEGA is an extension of the sim-
ple genetic algorithm, which was called vector evaluated genetic
algorithm (VEGA). The algorithm differs from the first one only in
the way the selection is performed. This operator was modified
in such a way that after every generation a certain number of
sub-populations are obtained. Hence, VEGA generates a set of pos-
sible solutions with different trade-offs among the objectives and
this set of solutions is found using the Pareto dominance concept
(David Schaffer, 1985). The basic principle states that a given solu-
tion x1 dominates another solution x2 if and only if:

- Solution x1 is not worse than solution x2 in any of the objec-
tives; and

- Solution x1 is strictly better than solution x2 in at least one of
the objectives.

As a consequence of its basic principle, VEGA-based algorithms
generate solutions that are locally non-dominated, but not neces-

sarily globally non-dominated. In fact, VEGA presents the so-called
speciation problem (Coello et al., 2002; David Schaffer, 1985) (i.e.
we could have the evolution of solutions within the population
which excel on different objectives). Thus, as shown in Fig. 3, for
our problem with three objectives and a population size of M indi-
viduals, three sub-populations of size M/3 each are selected. These
sub-populations are shuffled to obtain a new population of size M,
where we then apply the GA operators (crossover and mutation) to
refine further the solution. Regarding crossover operator, a uniform
crosspoint function is used to select randomly the crossover point
for each pair of chromosomes of two genetic populations, called
one-point crossover. A single crossover point on both parents’
chromosome strings is selected. All data beyond that point in
either chromosome string is swapped between the two parent
chromosomes. The resulting chromosomes are the children. With
respect to mutation operator, it is used to maintain genetic diver-
sity from one generation of a population of chromosomes to the
next. It is analogous to biological mutation. The classic example
of a mutation operator involves a probability that an arbitrary bit
in a genetic sequence will be changed from its original state. The
method applied involves generating a random variable for each
bit in a sequence. This random variable tells whether or not a par-
ticular bit will be modified.

This process is repeated until no improvement occurs in any of
the possible combinations generated in the last generation and in
any of the target metrics. At this point, a Pareto front of optimal
solutions for the different optimization metrics can be generated
(see Section 4 for some examples). After different tests performed
in an initial validation phase to select the optimal values, we have
fixed the parameters of the genetic algorithm to the values indi-
cated in Table 5, where N represents the number of containers
logged in the original application.

3.3.3. Genetic representation

In order to apply a GA correctly we need to define a genetic rep-
resentation of the design space of all possible DDT implementa-
tions alternatives. Moreover, to be able to apply the VEGA
optimization process and cover all possible inter-dependencies of
DDT implementations for different dynamic containers of an appli-
cation, we must guarantee that all the chromosomes represent real
and feasible solutions to the problem and ensure that the search
space is covered in a continuous and optimal way (Atienza and
Baloukas, 2007; David Schaffer, 1985). To this end, we define the

Table 5

Parameters for VEGA

Parameter Value
Population size 10x N
Max. number of generations 120 x N
Probability of crossover 0.80
Probability of mutation 0.01

Crossover 1 Mutation

Generation i
Individual 1 Energy
Selection Shuffling
> Memory >
Individual M

Generation i +1

Fig. 3. VEGA-based design space exploration method.
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Table 6

Example of a 48-bit chromosome

Container 1

0-2 3-7 8-10 11-15 16-18 19-23 Bit
DDT{} Naf} DDT{} Naf} DDT(} Naf} Field
Container 2

24-26 27-31 32-36 37-39 40-44 45-47 Bit
DDT{? Naf? DDT$ Na3 DDT{2 Naf2 Field

implementation of the containers of a program by storing the fol-
lowing information on each chromosome, as shown in Table 6:

e Level 1 DDT (0 < DDTy; < 7): this field represents one of the six
different possibilities using the previous DDTs analytically char-
acterized (Table 3), as Daylight et al. (2004) has proposed for
multimedia applications. Therefore, using a binary encoding
we need 3 bits. Note that we must guarantee that at least one
level of DDTs is selected, i.e. (000 < DDTy; < 111).

o Initial size of level 1 (0 < Naj; < Nve): this field represents the
initial number of elements for the DDT of level 1. The number
of bits for this chromosome depends on the average number of
elements logged in the profiling report, i.e. 2™ > Nve, where
n, is the number of bits for this field.

e Level 2 DDT (0 < DDT; < 7): this field represents the DDT
selected for the second level, no DDT included (DDTy, = 0). As
in the previous level, we need 3 bits.

e Maximum size of level 2 (0 < Naj; < Nve): It represents the
maximum number of elements that a DDT of level 2 may con-
tain. The number of bits for this chromosome are the same as
in the Na]_1 field.

e Level 3 DDT (0 < DDTy3 < 7): this field represents the DDT
selected for the third level. As in the second and first levels,
we need 3 bits.

e Maximum size of level 3 (0 < Na;3 < Nve): this field represents
the maximum number of elements that a DDT of level 3 may
contain.

Although ny, is calculated automatically by our application, it
can be set manually. However, if n,, is set to a large value, the algo-
rithm will select just one level of arrays: AR DDTs. This is because
our array is the dynamic data type with the best performance,
memory footprint and energy consumption when its size is a
constant.

Consequently, using this chromosome structure we need
9+ 3.n, bits to represent the solution proposed for each con-
tainer. So, if an application has N containers, each chromosome
has to be constituted of (9 + 3n,)N bits (genes). For instance, in
the case of an application that uses two dynamic containers and
32 elements each on average (n, = 5), a potential solution would
be represented by a 48-bit chromosome (see Table 6).

We applied a repair algorithm to handle constraint violations. If
no DDT is selected for level 2 (DDT;, = 0), our algorithm removes
the DDT from level 3 (DDT;3 =0) and updates Naj,i=1,2,3
accordingly. In addition, the total number of elements stored
(Ne) must satisfy that Ne = ]'[?ZlNaLiVNaL,-;éO.

Our current implementation of the exploration framework is
able to explore applications with up to 40 containers at the same
time, which can cover all the real-life embedded multimedia appli-
cations we are aware of.

4. Experimental results

In this section we evaluate the proposed optimization frame-
work for three 3D applications. A 3D environment builder (Sim-
blob), a racing simulator (Vdrift) and a 3D physics engine for

elastic and deformable bodies (University of Maryland). Each one
of these applications is initially profiled automatically two times
using our extended profiler tool (Poucet et al., 2006). This tool pro-
vides a profiling report, which includes all the accesses made to
every container during the execution of the application. Finally,
the actual GA-based exploration is driven by the profiling report,
the analytical characterization of DDTs, as well as any platform
description that may be targeted.

In the first set of experiments, we have used our methodology
to explore the optimized configuration of DDTs for all applications.
In fact, our GA-based method uses multiple generations of possible
solutions to find the correct combination of different DDT imple-
mentations for each container in the three applications. This is a
very time-consuming process for a designer to manually tune since
there is a large set of different combinations of DDTs implementa-
tions (three levels for six DDTs reaches 6> = 216 possibilities for
each container, without taking into account the initial and maxi-
mum sizes of different levels). Furthermore, in order to have com-
parative view of how our solution behaves against standard DDT
implementation, we implemented and tested each one of the 6
variations presented in Table 3. Then, the output of our methodol-
ogy is compared with the case where every container in an appli-
cation is implemented using a particular DDT, for example all
containers implemented as SLL. Finally, we compare our optimized
results with the evaluation of the original application.

The configuration used in the experimental process is presented
in Table 7, while the L1 cache model used is described in Shivaku-
mar and Jouppi (2001).

The three applications used in the exploration process are rep-
resentative multimedia applications with heavy use of data struc-
tures. Table 8 presents the characteristics of these applications in
terms of number of containers, the access pattern utilized by those
containers and the type of the original container (from the C++
standard template library). As can be seen, there is enough vari-
ability in the applications to demonstrate the applicability and use-
fulness of our approach.

In the sections below, the results of the optimization process
are presented for each of the three applications. In all case studies,
VEGA will always keep 50 individuals for each iteration of the pro-
cess. We used two profilings of each application.

4.1. Simblob

SimBlob is a project to develop simulations that focus on inter-
action with the environment. The user can create a variety of nat-
ural elements like mountains, lakes, forests, etc. that have their
own impact in the simulation environment. SimBlob uses the
OpenGL and GLUT graphics libraries to render the objects on the

Table 7
Hardware configuration for experimental results

Speed Energy Type Latency Bandwidth Size
(MHz) (mW) (ns) (MB/s) (MB)
Memory 100 19.5 Embedded 19.5 50 16
DRAM
Processor 100 168 N/A N/A N/A N/A

Table 8
Characteristics of the benchmarks used in the exploration process

Application Number of containers Access pattern Original container
Simblob 1 Sequential Vector

Vdrift 37 Sequential/random  Vector, list
Physics engine 11 Sequential/random Vector
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screen. There is one container of sequence type inside the code that
holds water source objects. For each water source created a new
instance is placed inside the sequence container. During the execu-
tion the water sources list is traversed using an iterator, implying a
sequential access pattern most of the time. This fact favors simple
implementations like SLL and DLL. Indeed the Pareto optimal DDTs
for this application are a singly linked list and a doubly linked list
as came out from our exhaustive exploration.

Fig. 4 depicts the Pareto front for this application and both pro-
filing reports. Results are quite similar. One of the Pareto points
operates the embedded system in high performance mode (low
number of accesses, thus higher speed) but gives a large memory
footprint and has higher energy consumption. The other optimizes
the system for low memory footprint and power consumption, but
it loses in terms of performance (high number of accesses). As it
was mentioned above, the Pareto optimal DDTs may be calculated
for SimBlob (SLL and DLL). In this application, the corresponding
DDTs to the Pareto front represented in Fig. 4 are precisely a singly
linked list and a doubly linked list. Our genetic algorithm reached
its best population after 17 generations.

Then, in Fig. 5 we present how the other DDT implementations
and the original application performed in comparison with the GA
output, where the minimal objectives found by VEGA are pre-
sented for both profiling reports. All the three objectives have been
normalized to the AR DDT and represented in logarithmic scale. It
is clear that VEGA selected the best implementations that manages
to minimize all three design metrics, namely memory footprint,
memory accesses and energy consumption. The relatively less en-
ergy consumption and memory accesses compensate for the
slightly higher memory footprint than using ARP or the original
application.

Finally, note that although SimBlob is the simplest among the
three presented real-life applications, it already shows how the de-
signer can benefit from our GA-based exploration methodology.
Design time can be saved by using directly a singly or doubly
linked list instead of any other DDT implementation.

4.2, Vdrift

Vdrift is an open source racing simulator that uses STL vector
(SGI, 2006) to handle its dynamic behavior. The application uses
very realistic physics to simulate the car’s behavior and also in-
cludes a full 3D environment for interaction. Vdrift uses 37 dy-
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namic DDTs to hold its dynamic data that are all sequences.
The objects put inside the containers vary from wheel objects
to float numbers required by the game’s physics. During the
game, some containers get accessed sequentially, while others ex-
hibit a random access pattern. This means that the applications
requests regard objects, which are not successive in the list struc-
ture, requiring complex data structures to cope with this access
pattern.

After 500 generations we reached the best population. Fig. 6
represents the Pareto front, in other words the optimum operation
states of the embedded system. Due to the large number of DDTs,
the Pareto front is wider than the one for Simblob, offering more
solutions to the designer.

In the case of Vdrift the output of our exploration method for
both profiling reports is a combination of AR, SLL, DLL, AR(SLLO)
and AR(DLLO). For comparison reasons we present Fig. 7 to illus-
trate the optimization process that our methodology performs. In
this test, the set of containers was successively implemented using
SLL, DLL, etc., and finally the original application. Thus, in the end,
compared to the combination proposed by our framework. The fig-
ure shows clearly the achieved level of optimization and final gains
after applying the proposed optimization flow. Note that the sec-
ond profiling report consume less energy in the case of sequential
data structures.Since the profiling report is much bigger, the capac-
ity of the array is overloaded and as a consequence, arrays needs
more energy (there was more cache misses, creation and destruc-
tions) than a sequential data structure.

Vdrift is a typical real life example, where the designer has to
choose a DDT implementation based only on his experience, due
to the large number of possible solutions that prohibit any explo-
ration effort. Instead, using the proposed methodology, the de-
signer can achieve an optimized combination of DDT
implementations with a very limited effort.

4.3. Physics engine

The last tested application is a physics engine for elastic and
deformable bodies (University of Maryland). The purpose of this
project is to create a 3D engine that displays the interaction of
non-rigid bodies. Every object is modeled as a set of points con-
nected by springs of given elasticity factor. The model uses spring
forces and damping to give elasticity to the objects. Object colli-
sions are determined using our collision detection engine. After
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Fig. 4. 3D Pareto fronts (memory footprint, memory accesses and energy consumption) of combined DDTs implementation solutions for SimBlob obtained using the proposed

evolutionary-based optimization framework and two profiling reports (a and b).
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collision occurs the response is calculated using physics laws. This
physics engine has 11 containers, but creates more objects than the
previous applications. This gives much more space for optimiza-
tion, as dynamic structures are now called to host a large number
of objects. A simple variation in their design can make a significant
difference optimizing design metrics.

In the physics engine case our genetic algorithm reached its
best population after 614 generations. Fig. 8 depicts the Pareto-
front obtained. Thus, various trade-offs are provided to the de-
signer in the multi-objective space (i.e. energy, memory footprint
and memory accesses) using our methodology.

Finally, as an overview of the behavior of our solutions against
standard solutions and the original application, we present Fig. 9
that shows the total number of accesses, memory footprint, and
energy consumption for both profiling reports. It can be seen
how in the second profiling report sequential DDTs give more ben-
efits than arrays, because as the time of execution increases, the
initial capacity of the arrays becomes obsolete and they must be
destroyed and recreated. In this case the output of our exploration
method for both profiling reports is a combination of SLL, DLL,
SLL(AR) and DLL(AR).

The obtained results illustrate that in real-life applications like
3D games, physics engines and 3D environment creation programs,
the solutions found by our multi-objective GA-based exploration

for memory footprint,memory accesses and energy consumption
are the best possible DDT implementations, in comparison with
other possible manual solutions. In such solutions that are also
based on STL, the 37 containers of Vdrift, 11 containers for physics
engine and one container of Simblob are implemented using vari-
ations of one DDT implementation, mainly for simplification pur-
poses on handling DDT's.

4.4. Comparison of exploration speed

In a second set of experiments we have compared the explora-
tion speed of our GA-based optimization methodology for DDTs in
comparison to different alternative exploratory methods. The re-
sults obtained for all applications for the different tested explora-
tion methods are shown in Table 9. First, we have compared our
approach with an almost exhaustive exploration. We assume that
a designer starts with all DDTs implementations presented in Sec-
tion 3.1 already available. Also, the optimization targets a subset of
all the containers of the application. It is important to stress, how-
ever, that it is unmanageable for the designer to get a totally com-
plete exploration of all the possible DDT implementation
combinations using the traditional way for real-life complex appli-
cations. Considering the physics engine case, for example, even if
we needed only 1 s for each combination’s run, we would need
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(6*)° s to run all the simulations, which is nearly 3.24 x 10'® years
(without taking into account the number of elements for each le-
vel). Moreover, if we add the compilation time for each different

combination the situation gets even worse. The figures in Table 9
represent an exhaustive exploration of a subset of all the DDTs in
the tested applications, simplified to one level of DDTs. Second,
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as Table 9 depicts, we have also compared our algorithm with Breadth-first, depth-first and branch and bound algorithms
state-of-the-art pruning and optimization methods for DDT imple- were implemented in two phases. In a first phase, we obtain up
mentations presented in Leeman (2003), Wuytack et al. (1996). to three levels of DDTs minimizing a simplified model of the
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Table 9

Exploration time to minimize memory accesses or memory footprint of DDT
implementations for Simblob, Vdrift and physics engine using different exhaustive
exploration and heuristic-based optimization methods versus the proposed multi-
objective GA-based approach

DDTs optimization methods Simblob Vdrift Physics
Exhaustive exploration 1h 9 days 41 days
Breadth-first exploration 14s 3 days 5 days
Depth-first exploration 13s 25 min 2h
Branch and bound exploration 14s 7 min 32 min
GA-based proposed method 9s 59s 210s

1.56 x gains 7.12 x gains 9.14 x gains

weighted sum of three objectives (memory accesses, memory foot-
print and energy consumption). In a second phase we explore the
initial and maximum size for all the three levels. Thus, these algo-
rithms, as well as the exhaustive approach, explore solutions only
in single-objective space. Our GA-based framework is able to ex-
plore solutions in a multi-objective space, directly offering a com-
plete pareto front of multi-layer DDTs. This corresponds to
different optimal choices for the operation of an embedded system,
so that the designer can select the best for his design constraints.
Moreover, these Pareto fronts are crucial for use in dynamically
varying situations where different working points have to be se-
lected (and traversed) during the application life time (Yang
et al., 2001). In such dynamically varying contexts, the conven-
tional solution with only a single working point would become
highly suboptimal.

Because of the differences in the mathematical model, we com-
pared execution times instead of fitness values. The results in Table
9 outline that the exploration process with our method is orders of
magnitude faster than the optimization process performed using
directly the implementations of DDTs, namely 9 s versus 1 hour
in the case of Simblob, 59 s instead of 9 days in the case of Vdrift
and 210 s versus 41 days for the physics engine. In addition, and
more importantly, the proposed GA-based method finds the opti-
mal solutions of DDT implementations faster than the compared
state-of-the-art DDTs optimization methods using different heuris-
tics, achieving speed-ups of 1.56x for SimBlob, 7.12x for Vdrift,
and 9.14x for physics engine respectively. The main reasons for
these improvements are initially the use of only an initial profiling
phase to characterize the dynamic behavior of the application for
all possible DDTs. The other reason is the effective use of the VEGA
exploration method in combination with our analytical models of
DDT implementations to study the inter-dependencies of variables
in the application. Hence, we can prune the design space in a more
effective way than other heuristics. As a consequence, in a limited
number of generations of possible sets of DDT implementations
solutions, our GA-based optimization method can converge to an
optimal solution according to the concrete user-defined con-
straints (i.e. memory footprint, memory accesses and/or energy
consumption).

5. Conclusions

New embedded devices have increased their capabilities and
now complex applications can be ported to them. Such applica-
tions include intensive dynamic memory requirements that must
be heavily optimized for an efficient mapping on embedded de-
vices. To efficiently use dynamic memory in this applications,
designers need to select suitable complex DDT implementations
(dynamic arrays, linked lists, etc.) for the variables used in the run-
ning applications with respect to their specific embedded systems
requirements (e.g. performance, memory footprint or energy
consumption).

In this paper, we have presented a new multi-objective optimi-
zation method based on evolutionary computation that can be
used to optimize the complex DDTs implementations from multi-
media applications. This method largely simplifies the exploration
effort of multi-layered DDTs for developers and enables the refine-
ment of DDT implementations in an automated way. As a result,
the proposed approach leads to important savings in overall sys-
tem integration time for dynamic applications. In the same time
it achieves optimal implementations of DDT structures with re-
spect to key designer’s metrics. Moreover, our experimental results
with three real-life multimedia embedded applications show that
the presented optimization approach significantly reduces the
exploration time up to 9.14x with respect to state-of-the-art
methods to optimize DDTs implementations while still achieving
complete Pareto fronts of solutions for the considered applications.

The results obtained so far have outlined other interesting future
research lines in the area of DDT implementation optimizations
using multi-objective evolutionary computation. Initially, analyti-
cal models for more and more complex DDTs can be extracted
and added in our model to allow exploration of applications utiliz-
ing tree structures. Furthermore, the study of the possible benefits
of more complex and parallel GAs in the efficient exploration of the
design space of DDT implementations, is very challenging. Also, for
practical reasons in large multimedia embedded applications with
many dynamic variables, the evaluation of the influence of more
complex memory hierarchies in the suitable pruning process of
individuals is a key research problem to be considered.
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