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Abstract
Machine Learning algorithms have provided core functionality to many application domains -
such as bioinformatics, computational linguistics, etc. However, it is difficult to detect faults in
such applications because often there is no “test oracle” to verify the correctness of the computed
outputs. To help address the software quality, in this paper we present a technique for testing the
implementations of machine learning classification algorithms which support such applications.
Our approach is based on the technique “metamorphic testing”, which has been shown to be
effective to alleviate the oracle problem. Also presented include a case study on a real-world
machine learning application framework, and a discussion of how programmers implementing
machine learning algorithms can avoid the common pitfalls discovered in our study. We also
conduct mutation analysis and cross-validation, which reveal that our method has high
effectiveness in killing mutants, and that observing expected cross-validation result alone is not
sufficiently effective to detect faults in a supervised classification program. The effectiveness of
metamorphic testing is further confirmed by the detection of real faults in a popular open-source
classification program.

Keywords
Metamorphic Testing; Machine Learning; Test Oracle; Oracle Problem; Validation; Verification

☆A preliminary version of this paper was presented at the 9th International Conference on Quality Software (QSIC 2009) (Xie et al.,
2009).
© 2010 Elsevier Inc. All rights reserved.
*Corresponding author. Tel.: +61.3.9214.8678; fax: +61.3.9819.0823, xxie@groupwise.swin.edu.au(Xiaoyuan Xie).
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Syst Softw. Author manuscript; available in PMC 2012 April 1.

Published in final edited form as:
J Syst Softw. 2011 April 1; 84(4): 544–558. doi:10.1016/j.jss.2010.11.920.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



1. Introduction
Machine Learning algorithms have provided core functionality to many application domains
- such as bioinformatics, computational linguistics, etc. As these types of scientific
applications become more and more prevalent in society (Mitchell, 1983), ensuring their
quality becomes more and more crucial.

Quality assurance of such applications presents a challenge because conventional software
testing techniques are not always applicable. In particular, it may be difficult to detect subtle
errors, faults, defects or anomalies in many applications in these domains because it may be
either impossible or too expensive to verify the correctness of computed outputs, which is
referred to as the oracle problem (Weyuker, 1982).

The majority of the research effort in the domain of machine learning focuses on building
more accurate models that can better achieve the goal of automated learning from the real
world. However, to date very little work has been done on assuring the correctness of the
software applications that implement machine learning algorithms. Formal proofs of an
algorithm’s optimal quality do not guarantee that an application implements or uses the
algorithm correctly, and thus software testing is necessary.

To help address the quality of machine learning programs, this paper presents a technique
for testing implementations of the supervised classification algorithms which are used by
many machine learning programs. Our technique is based on an approach called
“metamorphic testing” (Chen et al., 1998), which uses properties of functions such that it is
possible to predict expected changes to the output for particular changes to the input.
Although the correct output cannot be known in advance, if the change is not as expected,
then a fault must exist.

In our approach, we first enumerate the metamorphic relations that classifiers would be
expected to demonstrate, then for a given implementation determine whether each relation is
a necessary property for the corresponding classifier algorithm. If it is, then failure to exhibit
the relation indicates a fault; if the relation is not a necessary property, then a deviation from
the “expected” behavior has been found. In other words, apart from verification, our
approach also supports validation.

In addition to presenting our technique, we describe a case study on a real-world machine
learning application framework, Weka (Witten and Frank, 2005), which is used as the
foundation for many computational science tools such as BioWeka (Gewehr et al., 2007) in
bioinformatics. Additionally a mutation analysis is conducted on Weka to investigate the
effectiveness of our method. We also discuss how our findings can be of use to other areas.

The rest of this paper is organized as follows. Section 2 provides background information
about machine learning and introduces the specific algorithms that are evaluated. Section 3
discusses the metamorphic testing approach and the specific metamorphic relations used for
testing machine learning classifiers. Section 4 presents the results of case studies
demonstrating that the approach can find faults in real-world machine learning applications.
Section 5 discusses empirical studies that use mutation analysis to systematically insert
faults into the source code, and measures the effectiveness of metamorphic testing. Section 6
presents related work, and Section 7 concludes.
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2. Background
In this section, we present some of the basics of machine learning and the two algorithms we
investigated (k-Nearest Neighbors and Naïve Bayes Classifier), as well as the terminology
used (Alpaydin, 2004). Readers familiar with machine learning may skip this section.

One complication in our work arose due to conflicting technical nomenclature: “testing”,
“regression”, “validation”, “model” and other relevant terms have very different meanings to
machine learning experts than they do to software engineers. Here we employ the terms
“testing”, “regression testing”, and “validation” as appropriate for a software engineering
audience, but we adopt the machine learning sense of “model”, as defined below.

2.1. Supervised Machine Learning Fundamentals
In general, input to a supervised machine learning classifier consists of a set of training
data that can be represented by two vectors of size k. One vector is for the k training
samples S = <s0, s1, ..., sk−1> and the other is for the corresponding class labels C = <c0,
c1, ..., ck−1>. Each sample s ∈ S is a vector of size m, which represents m attributes from
which to learn. Each label ci in C is an element of a finite set of class labels, that is, ci ∈ L =
{l0, l1, ..., ln−1}, where n is the number of possible class labels.

Figure 1 shows a small portion of a training data set that could be used by supervised
learning applications. The rows represent samples from which to learn, as comma-separated
attribute values; the last number in each row is the label.

Supervised machine learning classifiers consist of two phases. The first phase (called the
training phase) analyzes the training data; the result of this analysis is a model that
attempts to make generalizations about how the attributes relate to the label. In the second
phase (called the testing phase), the model is applied to another, previously unseen data set
(the testing data) where the labels are unknown. In a classification algorithm, the system
attempts to predict the label of each individual example. That is, the testing data input is an
unlabeled test case ts, and the aim is to determine its class label ct based on the data-label
relationship learned from the set of training samples S and the corresponding class labels C,
where ct ∈ L.

2.2. Algorithms Investigated
In this paper, we only study the k-Nearest Neighbors Classifier and the Naïve Bayes
Classifier, because of their popularity in the machine learning community. However, it
should be noted that the oracle problem description and techniques described below are not
specific to any particular algorithm, and as shown in our previous work (Chen et al., 2009;
Murphy et al., 2008), our results are applicable to the general case.

In k-Nearest Neighbors (kNN), for a training sample set S, suppose each sample has m
attributes, <att0, att1, ..., attm−1>, and there are n classes in S, {l0, l1, ..., ln−1}. The value of
the test case ts is <a0, a1, ..., am−1>. kNN computes the distance between each training
sample and the test case. Generally kNN uses the Euclidean Distance: for a sample si ∈ S,
suppose the value of each attribute is <sa0, sa1, ..., sam−1>, and the distance between si and
ts is as follows:
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After sorting all the distances, kNN selects the k nearest ones which are considered as the k
nearest neighbors. Then kNN calculates the proportion of each label in the k nearest
neighbors, and the label with the highest proportion is assigned as the label of the test case.

In the Naïve Bayes Classifier (NBC), for a training sample set S, suppose each sample has
m attributes, <att0, att1, ..., attm−1>, and there are n classes in S, {l0, l1, ..., ln−1}. The value
of the test case ts is <a0, a1, ..., am−1>. The label of ts is called lts, and is to be predicted by
NBC.

NBC computes the probability of lts to be of class lk, when each attribute value of ts is <a0,
a1, ..., am−1>. NBC assumes that attributes are conditionally independent with one another
given the class label, therefore we have the equation:

After computing the probability for each li ∈ {l0, l1, ..., ln−1}, NBC assigns the label lk with
the highest probability, as the label of test case ts.

Generally NBC uses a normal distribution to compute P(aj | lts = lk). Thus NBC trains the
training sample set to establish a distribution function for each element attj of vector <att0,
att1, ..., attm−1> in each li ∈{l0, l1, ..., ln−1}, that is, for all samples with label li ∈ {l0, l1, ...,
ln−1}, it calculates the mean value μ and mean square deviation σ of attj in all samples with
li. Then a probability density function is constructed for a normal distribution with μ and σ.

For test case ts with m attribute values <a0, a1, ..., am−1>, NBC computes the probability of
P(aj | lts = lk) using a small interval δ to calculate the integral area. With the above formulae
NBC can then compute the probability of lts belonging to each li and choose the label with
the highest probability as the classification of ts.

2.3. Oracle Problem in Supervised Machine Learning Classifiers
As described above, supervised machine learning classifiers “learn” knowledge from the
given “training data”, based on which they give prediction for the “test data”. For a
particular classifier, whose specification is fixed, the prediction result must be deterministic.
However the prediction always involves very complicated logical and computational
process, and brings difficulties in figuring out the expected result, for any arbitrary training
data and test data, unless we can repeat the whole process with a “perfect” version of the
program. Obviously such a “perfect” version never exists in the real-world. This makes the
supervised machine learning classifiers fall into the category of programs having the oracle
problem.

Usually testers for classifier software just utilize some special test cases which were
acquired from previous studies or domain knowledge, and seldomly conduct comprehensive
testing, due to the oracle problem. Such an approach is unsatisfactory because these
classifiers usually serve as the kernel and fundamental components in many applications.
For example, a popular tool called BioWeka (Gewehr et al., 2007) just adopts the algorithms
implemented in the famous machine learning algorithm package Weka (Witten and Frank,
2005), for further computation in bioinformatics. Consequently the quality of these machine
learning programs is very crucial.
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Therefore in this paper, we propose a method to test such programs, based on the technique
called metamorphic testing. We do not directly verify the correctness of each individual
testing result; instead we check whether they satisfy certain expected properties with respect
to multiple but related inputs.

3. Our Approach
Our approach is based on a testing technique called metamorphic testing (Chen et al., 1998).
In the rest of this section, we will first briefly summarize its concept, introduce some
guidelines in metamorphic relation (MR) selection, and then give the definitions to all the
MRs for the two target classifiers.

3.1. Metamorphic Testing
The oracle problem has been one of the biggest difficulties in software testing during the
past decades, and several attempts have been conducted to alleviate it. One attempt for
testing programs without a test oracle is to use a “pseudo-oracle” (Davis and Weyuker,
1981), in which multiple implementations of an algorithm process the same input and the
results are compared; if the results are not the same, then one or both of the implementations
contains a fault. This is not always feasible, though, since multiple implementations may not
exist, or they may have been created by the same developers, or by groups of developers
who are prone to making the same types of mistakes (Knight and Leveson, 1986).

However, even without multiple implementations, often these applications exhibit properties
such that if the input were modified in a certain way, it should be possible to predict some
characteristics of the new output, given the output of the original input. This approach is
known as metamorphic testing. Metamorphic testing can be implemented easily in practice.
The first step is to identify a set of properties (“metamorphic relations”, or MRs) that relate
multiple inputs and their outputs of the algorithm for the target program. Then, the source
test cases and their corresponding follow-up test cases are constructed based on these MRs.
We then execute all these test cases using the target program, and check whether the outputs
of the source and follow-up test cases satisfy their corresponding MRs.

A simple example to which metamorphic testing could be applied would be one that
calculates the standard deviation of a set of numbers. Certain transformations of the set
would be expected to produce the same result. For instance, permuting the order of the
elements should not affect the calculation; nor would multiplying each value by −1, since
the deviation from the mean would still be the same.

Furthermore, there are other transformations that will alter the output, but in a predictable
way. For instance, if each value in the set is multiplied by 2, then the standard deviation
should be twice as much as that of the original set, since the values on the number line are
just “stretched out” and their deviation from the mean becomes twice as great. Thus, given
one set of numbers (the source test cases), we can use these metamorphic relations to create
three more sets of follow-up test cases (one with the elements permuted, one with each
multiplied by −1, and another with each multiplied by 2); moreover, given the outputs of the
source test cases, we can predict the outputs of the follow-up test cases.

3.2. Guidelines for Defining Metamorphic Relations
It is obvious that metamorphic testing is simple in concept, easy to implement, automatable,
and independent of any particular programming language. In metamorphic testing, the most
crucial step is the identification of the MRs. In previous studies which focus on verification,
MRs are specifically enumerated for each individual algorithm under test. Actually we can
also harness the domain knowledge, as a form of MR repository. This knowledge can either
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be specific to a particular algorithm, or a general anticipation in that domain. The former can
be used to construct MRs which are necessary properties and can then be used for the
purpose of verification. And though the latter may not always be the necessary properties for
all peer algorithms, can still be used for the purpose of validation.

With respect to selecting a good MR, there are several principles that can be followed, from
both white-box and black-box perspectives, such as logical hierarchy, difference in
execution traces, user’s profiles, etc (Chen et al., 2004). For example, based on the principle
of “difference in execution traces”, we should select MRs with more differences between the
execution traces of source test cases and follow-up test cases. Here is an illustration. The
Shortest-Path program SP accepts 3 parameters as inputs: a given graph G, a starting node s,
and an ending node e. SP(G, s, e) returns the shortest path between s and e and | SP(G, s, e)|
denotes the length of SP(G, s, e). Let us consider the two following MRs. MR1 is | SP(G, s,
e)| = | SP(G, s, m)| + | SP(G, m, e)|, where m denotes a visited node between s and e returned
by SP(G, s, e); and MR2 is | SP(G, s, e)| = | SP(G, e, s)|. Apparently, these two MRs will
execute different path-pairs (source path and follow-up path), and a path pair with more
difference is preferred as a better MR. Of course in order to decide which MR will result in
more execution difference, we can just run the program and collect the real coverage
information. But we also can acquire this information simply by analysing the mechanism of
the algorithm, without any execution. Supposing the algorithm is a forward-search
algorithm, obviously MR2 is likely to be associated with more execution difference than
MR1. However if the algorithm is a 2-way search method, MR2 will not necessarily yield
more execution difference than MR1.

Apart from the above principles, there are also some other features that may affect the fault
detection ability of certain MR. One important feature is about the type of the relation
among the relevant outputs for an MR. Intuitively speaking, an equality relation is preferred
to a non-equality one. Here by “equality relation”, we mean in a metamorphic group, the
source and the follow-up outputs are expressed in an equality expression. This kind of
relation is preferred because an equality expression is tighter than a non-equality one.
Consequently an MR with equality relation is more easily violated than a non-equality
relation. Therefore in this study, we use MRs with such characteristics.

3.3. Metamorphic Relations for Supervised Classifiers
In previous work (Murphy et al., 2008), we broadly classified six types of metamorphic
relations (MRs) applicable to many different types of machine learning applications,
including both supervised and unsupervised machine learning. In this work, however, our
approach focuses on the supervised machine learning classifiers. According to the general
anticipated behaviors of these algorithms, we define our MRs formally as follows.

MR-0: Consistence with affine transformation—The result should be the same if we
apply the same arbitrary affine transformation function, f(x) = kx + b, (k ≠ 0) to the values of
any subset of attributes for each sample in the training data set S and the test case ts.

MR-1.1: Permutation of class labels—Assume that we have a class-label permutation
function Perm() to perform one-to-one mapping between a class label in the set of labels L
to another label in L. If the source case result is li, applying the permutation function to the
set of corresponding class labels C for the follow-up case, the result of the follow-up case
should be Perm(li).

MR-1.2: Permutation of the attribute—If we permute the m attributes of all the
samples and the test data, the output should remain unchanged.
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MR-2.1: Addition of uninformative attributes—An uninformative attribute is one that
is equally associated with each class label. For the source input, suppose we get the result ct
= li for the test case ts. In the follow-up input, we add an uninformative attribute to each
sample in S and respectively a new attribute in ts. The choice of the actual value to be added
here is not important as this attribute is equally associated with the class labels. The output
of the follow-up test case should still be li.

MR-2.2: Addition of informative attributes—For the source input, suppose we get the
result ct = li for the test case ts. In the follow-up input, we add an informative attribute to
each sample in S and ts such that this attribute is strongly associated with class li and equally
associated with all other classes. The output of the follow-up test case should still be li.

MR-3.1: Consistence with re-prediction—For the source input, suppose we get the
result ct = li for the test case ts. In the follow-up input, we can append ts and ct to the end of
S and C respectively. We call the new training dataset S’ and C’. We take S’, C’ and ts as the
input of the follow-up case, and the output should still be li.

MR-3.2: Additional training sample—For the source input, suppose we get the result ct
= li for the test case ts. In the follow-up input, we duplicate all samples in S with label li, as
well as their associated labels in C. The output of the follow-up test case should still be li.

MR-4.1: Addition of classes by duplicating samples—For the source input, suppose
we get the result ct = li for the test case ts. In the follow-up input, we duplicate all samples in
S and C that do not have label li and concatenate an arbitrary symbol “*” to the class labels
of the duplicated samples. That is, if the original training sample set S is associated with
class labels <A, B, C> and li is A, the set of classes in S in the follow-up input could be <A,
B, C, B*, C*>. The output of the follow-up test case should still be li. Another derivative of
this metamorphic relation is that duplicating all samples from any number of classes which
do not have label li should not change the result of the output of the follow- up test case.

MR-4.2: Addition of classes by re-labeling samples—For the source input, suppose
we get the result ct = li for the test case ts. In the follow-up input, we re-label some of the
samples in S with labels other than li, through concatenating an arbitrary symbol “*” to their
associated class labels in C. That is, if the original training set S is associated with class
labels <A, B, B, B, C, C, C> and c0 is A, the set of classes in S in the follow-up input may
become <A, B, B, B*, C, C*, C*>. The output of the follow-up test case should still be li.

MR-5.1: Removal of classes—For the source input, suppose we get the result ct = li for
the test case ts. In the follow-up input, we remove one entire class of samples in S of which
the label is not li. That is, if the original training sample set S is associated with class labels
<A, A, B, B, C, C> and li is A, the set of classes in S in the follow-up input may become <A,
A, B, B>. The output of the follow-up test case should still be li.

MR-5.2: Removal of samples—For the source input, suppose we get the result ct = li for
the test case ts. In the follow-up input, we remove part of some of the samples in S and C of
which the label is not li. That is, if the original training set S is associated with class labels
<A, A, B, B, C, C> and li is A, the set of classes in S in the follow-up input may become <A,
A, B, C>. The output of the follow-up test case should still be li.

3.4. Analysis of Relations for Classifiers
It can be seen from the above discussion that, for machine learning classifiers, the MRs can
be derived either from the specification of a particular algorithm under test, or from the
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users’ general expectation for the classifiers. Obviously the former group of properties,
which are necessary properties to the relevant algorithm, can be used for the purpose of
verification, that is, if the implementation does not exhibit this property, then there is a fault.
While the latter ones, which may not be necessary properties for all the classifiers, can still
be adopted to support validation, that is, whether the selected algorithm can satisfy the
user’s expected/potential requirements.

The discussion on the necessary properties for kNN and NBC will be detailed in Appendix
A. Here we are going to demonstrate some of the relations that are not necessary properties
for the algorithms being implemented, which can still be used for the purpose of validation.

For kNN, five of the metamorphic relations given above are not its necessary properties but
can be used for validation purposes instead. MR-1.1 (Permutation of class labels) is not a
necessary property because of tiebreaking between two labels for prediction that are equally
likely: permuting their order may change which one is chosen by the tiebreaker.

Additionally, MR-5.1 (Removal of classes) is not a necessary property. Suppose the
predicted label of the test case is li. MR-5.1 removes a whole class of samples without label
li. Consequently this will remove the same samples in the set of k nearest neighbors, and
thus some other samples will be included in the set of k nearest neighbors. These samples
may have any labels except the removed one, and so the likelihood of any label (except the
removed one) may increase. Therefore there are two situations: (1) If in the k nearest
neighbors of the source case, the proportion of li is not only the highest, but also higher than
50%, then in the follow-up prediction, no matter how the k nearest neighbors change, the
prediction will remain the same, because no matter which labels increase, the pro-portion of
li will still be higher than 50% as well. Thus the prediction remains li. Now consider
situation (2), in which in the k nearest neighbors of the source case, the proportion of li is the
highest but lower or equal to 50%. Since the number of each survived label may increase,
and the original proportion of li is lower or equal to 50%, it is possible that the proportion of
some other label increases and becomes higher than li: thus, the prediction changes.

Similarly MR-2.2 (Addition of informative attributes), MR-4.1 (Addition of classes by
duplicating samples), and MR-5.2 (Removal of samples) may not hold if the predicted label
has a likelihood of less than 50%.

For the NBC, three of the metamorphic relations are not considered necessary properties, but
can still be used for validation. They are MR-3.1 (Consistence with re-prediction), MR-4.2
(Addition of classes by re-labeling samples), and MR-5.2 (Removal of samples). We could
neither prove nor disprove MR-3.1 as a necessary property of NBC. Hence MR-3.1 is not
treated as a necessary property of NBC in this study. While for the other two MRs, since
both of them actually introduce noise to the data set, which could affect the result, we can
prove that they are not necessary properties.

4. Case Studies
To demonstrate the effectiveness of metamorphic verification and validation in machine
learning classifiers, we applied the approach to Weka 3.5.7 (Witten and Frank, 2005). Weka
is a popular open-source machine learning package that implements many common
algorithms for data preprocessing, classification, clustering, association rule mining,
attribute selection and visualization. Due to its large range of functionality, it is normally
used as a “workbench” for applying various machine learning algorithms. Furthermore,
Weka is widely used as the back-end machine learning engine for various applications in
computational science, such as BioWeka (Gewehr et al., 2007) for machine learning tasks in
bioinformatics.
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4.1. Experimental Setup
We adopted a random data model in our experiments as follows. In one source test suite,
there are x inputs. Each input_i has two parts: tr_i and t_i, in which tr_i represents the
training sample set, and t_i represents the test case. In each training sample set tr_i and test
case t_i, there are four attributes: <A0, A1, A2, A3>, and a class label L with three possible
nominal values {L0, L1, L2}. Since the two classifiers under investigation are specific to
numeric attributes, in order to conform to this, in our study we assign a numeric value within
a valid range [a, b] to each attribute, as well as a nominal value to the class label, for each
tr_i and t_i in the suite. All the assignments are random. Besides the number of samples in
tr_i is also randomly decided with a maximum of k.

This randomly generated data model does not encapsulate any domain knowledge, that is,
we do not use any meaningful, existing training data for testing: even though those data sets
are more predictable, they may not be sensitive to detecting faults. Random data may, in
fact, be more useful at revealing faults (Duran and Ntafos, 1984).

Based on each MR-j, x follow-up inputs are constructed from the x source inputs. After
conducting classification with both the source and the follow-up inputs, we compare their
results against each MR-j. A revealed violation in an MR implies either faults (verification),
or a deviation between the actual behaviors of the current algorithm and the users’ general
anticipation of a machine learning classifier (validation), which highlights that the current
algorithm may not be appropriate for use.

For each MR-j, we conducted several batches of experiments, and in each batch of
experiments we changed the value of x (size of source suite) and k (max number of training
samples). Intuitively the more inputs we tried (the higher is x), the more likely we are to
encounter violations. Also, we would expect that with fewer samples in the training data set
(the less is k), the less predictable the data are.

In our case study, we instantiate the random model with inputs number k from 20 to 300,
maximal number of training sample k from 20 to 50, and the valid value range [a, b] for
each atrribute of [1, 20].

4.2. Experimental Results and Findings
All the MRs that derived from the commonly expected behaviors of a machine learning
classifier in Section 3.3 are adopted in our experimental study, for both kNN and NBC.
Table 1 summarizes the experimental results. In this table, for each algorithm, MRs that are
its necessary properties are marked as NP, otherwise they are unmarked; VP indicates the
percentage of violations found in the corresponding MR. Obviously MRs marked with NP
are used for verification, and a non-zero VP indicates the existence of faults. On the other
hand, unmarked MRs are used for the purpose of validation, and a non-zero VP implies
faults or a deviation between the actual behaviors of this algorithm and the users’ general
anticipation on machine learning classifiers. Such deviation indicates that for users with the
anticipation described by the corresponding MR, the current algorithm is not an appropriate
one for use.

It can be seen from Table 1 that NBC of Weka has violations in some necessary properties,
indicating faults. For both kNN and NBC, metamorphic relations that could be used for
validation are also violated, perhaps not indicating an actual fault but showing that the
implementations could yield unexpected results and deviate from the behavior anticipated by
the users.
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4.2.1. k-Nearest Neighbors—None of the necessary properties of kNN were violated in
our experiment, but we did uncover violations in some of the other properties that are not
necessary properties to kNN. Although these violations are not necessarily indicative of
faults per se, they do demonstrate a deviation from what would normally be expected.
Followings are examples of such violations.

1. Calculating distribution: In the Weka implementation of kNN, a vector distance with
the length of numOfSamples is used to record the distance between each sample from the
training data and the test case to be classified. After determining the values in distance,
Weka sorts it in ascending order, to find the nearest k samples from the training data, and
then puts their corresponding labels into another vector k-Neighbor with the length of k.

Weka traverses k-Neighbor, computes the proportion of each label in it and records the
proportions into a vector distribution with the length of numOfClasses as follows: Each
element of vector distribution is initialized as 1/numOfSamples. It then traverses the array k-
Neighbor, and for each label in k-Neighbor, it adds the weight of its distribution value (in
our experiments, the weight is 1), that is, for each i, distribution[k-Neighbor[i].label] + 1.
Finally, Weka normalizes the whole distribution vector.

Figure 2 shows two data sets, with the training data on the left, and the test case to be
classified on the right. For the test case to be classified, the (unsorted) values in the vector
distance are <11.40, 7.35, 12.77, 10.63, 13, 4.24>, and the values in k-Neighbor are <1, 2,
0>, assuming k = 3. The vector distribution is initialized as <1/6, 1/6, 1/6, 1/6, 1/6, 1/6>.
After traversing the vector k-Neighbor, we get distribution = <1+1/6, 1+1/6, 1+1/6, 1/6, 1/6,
1/6> = <1.167, 1.167, 1.167, 0.167, 0.167, 0.167>. After the normalization, distribution =
<0.292, 0.292, 0.292, 0.042, 0.042, 0.042>.

The issue here, as revealed by MR-5.1 (Removal of classes), is that labels which never
existed in the training data samples have non-zero probability of being chosen in the vector
distribution. By common sense, one might expect that if a label did not occur in the training
data, there would be no reason to classify a test case with that label. However, by initializing
the distribution vector so that all labels are equally likely, even non-existent ones become
possible. Although this is not necessarily an incorrect implementation, it does deviate from
what one would normally expect.

2. Choosing labels with equal likelihood: Another issue is about the choice of the label
when there are multiple labels with the same probability. Our testing indicated that in some
cases, this method may lead to the violation in some MR transformations, particularly
MR-1.1 (Permutation of class labels), MR-2.2 (Addition of informative attributes), and
MR-4.1 (Addition of classes by duplicating samples).

Consider the same example in Figure 2. To perform the classification, Weka chooses the
first highest value in distribution, and assigns its label to the test case. For this example, l0,
l1, and l2 all have the same highest proportion in distribution, so based on the order of the
labels, the final prediction is l0, since it is first.

However, if the labels are permuted (as in MR-1.1, for instance), then another label with
equal probability might be chosen if it happens to be first. This is not a fault per se (after all,
if there are three equally-likely classifications and the function needs to return only one, it
must choose somehow) but rather it represents a deviation from expected behavior (that is,
the order of the data set shall not affect the computed outputs), which could have an effect
on an application expecting such a scenario.
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4.2.2. Naïve Bayes Classifier—Our investigation into NBC revealed violations in both
the necessary MRs indicating faults, and the MRs that are not necessary properties to NBC,
indicating faults or unexpected behaviors.

1. Loss of precision: Precision can be lost due to the treatment of continuous values. In a
pure mathematical model, a normal distribution is used for continuous values. Obviously it
is impossible to realize true continuity in a digital computer. To implement the integral
function, for instance, it is necessary to define a small interval δ to calculate the area. In
Weka, a variable called precision is used as the interval. The precision for attj is defined as
the average interval of all the values. For example, suppose there are 5 samples in the
training sample set, and the values of attj in the five samples are 2, 7, 7, 5, and 10
respectively. After sorting the values we have vector <2, 5, 7, 7, 10>. Thus precision =
[(5−2) + (7−5) + (10−7)] / (1 + 1 + 1) = 2.67.

However, Weka rounds all the values x in both the training samples and test case with
precision pr by using round(x / pr) * pr. These rounded values are used for the computation
of the mean value μ, mean square deviation σ, and the probability P(lts = lk | a0a1...am−1).
This manipulation means that Weka treats all the values within ((2k−1)* pr/2, (2k+1)* pr/2]
as k*pr, in which k is any integer.

This may lead to the loss of precision and hence may result in the violation of some MR
transformations, particularly MR-0 (Consistence with affine transformation) and 5.1
(Removal of classes). As a reminder, both of these are necessary properties.

There are also related problems of calculating integrals in Weka. A particular calculation
determines the integral of a certain function from negative infinity to t = x - μ / σ. When t >
0, a replacement is made so that the calculation becomes 1 minus the integral from t to
positive infinity. However, this may raise an issue because in Weka, all these values are of
the Java datatype “double”, which only has a maximum of 16 bits for the decimal fraction. It
is very common that the value of the integral is very small, thus after the subtraction by 1.0,
there may be a loss of precision. For example, if the integral I is evaluated to
0.0000000000000001, then 1.0 - I =0.9999999999999999. Since there are 16 bits of the
number 9, in Java the double value is treated as 1.0. This also contributed to the violation of
MR-0 (Consistence with affine transformation).

2. Calculating proportions of each label: In NBC, to compute the value of P(lts = lk |
a0a1...am−1), we need to calculate P(lk). Generally when the samples are equally weighted,
P(lk) = (number of samples with lk) / (number of all the samples). However, Weka uses
Laplace Accuracy by default, that is, P(lk) = (number of samples with lk + 1) / (number of all
the samples + number of classes).

For example, consider a training set with six classes and eight samples, with labels as
follows: <l0, l0, l1, l1, l1, l2, l3, l3>. Following the probability theory, the vector of
proportions for l0 to l5 is <2/8, 3/8, 1/8, 2/8, 0/8, 0/8> = <0.25, 0.375, 0.125, 0.25, 0, 0>.
However in Weka, using Laplace Accuracy, the vector of proportions for l0 to l5 becomes
<(2+1)/(8+6), (3+1)/(8+6), (1+1)/(8+6), (2+1)/(8+6), (0+1)/(8+6), (0+1)/(8+6)> = <0.214,
0.286, 0.143, 0.214, 0.071, 0.071>. This difference caused a violation of MR-2.1 (Addition
of uninformative attributes), which was also considered a necessary property.

3. Choosing labels: Finally, there are problems in the principle of “choosing the first label
with the highest possibility”, as seen above for kNN. Usually the probabilities are different
among different labels. However in Weka, since the non-existent labels in the training set
have non-zero probability, those non-existent labels may conceivably share the same highest
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probability. This caused a violation of MR-1.1 (Permutation of class labels), which was
considered a necessary property.

4.3. Discussion
4.3.1. Addressing Violations of Properties—Our experiments reported the violation
of four MRs in kNN; however, none of these were necessary properties and are mostly
related to the situation where the algorithm must return one result but more than one
“correct” answers are available. However, in NBC, we uncovered violations of some
necessary properties, which indicate faults. Our experience of this study shall be valuable to
those who are developing similar applications.

To address the issues in NBC related to the precision of floating point numbers, we suggest
using the BigDecimal class in Java rather than the “double” datatype. A BigDecimal
represents immutable arbitrary precision decimal numbers, and consists of an arbitrary
precision integer unscaled value and a 32-bit integer scale. If zero or positive, the scale is the
number of digits to the right of the decimal point. If negative, the unscaled value of the
number is multiplied by ten to the power of the negation of the scale. The value of the
number represented by the BigDecimal is therefore (unscaledValue * 10−scale). Thus, it can
help to avoid the loss of precision when doing “1.0 − x”.

The use of Laplace Accuracy also caused some violations in the NBC implementation. The
reason is as follows. Since Weka treats the label as a nominal attribute, the label will then be
processed by Laplace Accuracy as a nominal attribute in the training data set. However, the
label should not be treated in such a way. As noted, the side effect of using Laplace
Accuracy is that the labels that never show up in the training set also have non-zero
probability, and thus they may interfere with the prediction, especially when the size of the
training sample set is quite small. In some cases the predicted results are the non-existent
labels. We suggest that the label should be treated as a special-case nominal attribute, to
which the use of Laplace Accuracy should be disabled.

4.3.2. More General Applications—Our technique has been shown to be effective for
the two particular algorithms. More importantly, it is actually feasible for other areas of
machine learning.

First, our previous studies have shown the effectiveness of using MT for the purpose of
verification in some other types of machine learning areas (ranking, unsupervised learning,
etc.) (Murphy et al., 2008, 2009; Murphy and Kaiser, 2010).

Secondly, our technique actually introduces a general process to verify and validate a
machine learning algorithm, based on metamorphic testing. In this process, MRs are defined
based on the general domain knowledge, and can be adopted in any of the peer algorithms
for the same application domain. That is, if an MR can be proved as the necessary property
to a specific algorithm, it will serve for the purpose of verification, otherwise, for validation.
In particular, this study focuses on supervised classification algorithms, and the experience
from this study should be of broad applicability to many other algorithms in this field. The
kNN and NBC algorithms described in this paper are representatives of two major
algorithmic approaches to supervised classification: instance-based learning algorithms and
generative model-based algorithms, respectively. The list of MRs in Section 3.3 is just part
of the MR repository in the whole machine learning domain.

More importantly, the approach can be used to validate any application that relies on
machine learning techniques. For instance, bioinformatics tools such as Medusa
(Middendorf et al., 2005) use classification algorithms. If the underlying machine learning
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algorithms are not correctly implemented, or do not behave as the user expects, then the
overall application likewise will not perform as anticipated. As long as the user of the
software knows the expected metamorphic relations, then the approach is simple and
powerful to validate the implementation.

One emerging application of these supervised classifiers is in the area of clinical diagnosis
using a combination of systems-level biomolecular data (e.g., microarrays or sequencing
data) and conventional pathology tests (e.g., blood count, histological images, and clinical
symptoms). It has been demonstrated that a machine learning approach of multiple data
types can yield more objective and accurate diagnostic and prognostic information than
conventional clinical approaches alone. However, for clinical adoption of this approach,
these programs that implement machine learning algorithms must be rigorously verified and
validated for their correctness and reliability (Ho et al., 2010). A mis-diagnosis due to a
software fault can lead to serious, even fatal, consequences. Our case studies clearly
demonstrated the importance of rigorous and systematic testing of this type of machine
learning algorithm. Thus our proposed testing strategy based on metamorphic testing
becomes even more crucial to improve the quality of one of the most critical parts in these
kinds of applications.

5. Mutation Analysis
In the case study presented in Section 4, we applied the metamorphic relations in Section 3.3
to the kNN and NBC classifiers implemented in Weka-3.5.7. Through the violations of the
necessary properties of NBC, we discovered faults in its implementation. Even though these
real-world faults illustrate the effectiveness of our method in verification of programs that
do not have test oracles, they cannot empirically show how effective our method is. Thus, in
this section, we conduct further experiments with mutation analysis, aiming to investigate
the effectiveness of our method in verification.

5.1. Experimental Setup
To gain an understanding of how effective metamorphic testing is at detecting faults in
applications without test oracles, we use mutation analysis to systematically insert faults into
the applications of interest. Mutation analysis has been shown to be suitable for evaluation
of effectiveness, as experiments comparing mutants to real faults have suggested that
mutants are a good proxy for comparisons of testing techniques (Andrews et al., 2005).

5.1.1. Mutant Generation—In our mutation analysis, we applied MuJava (Ma et al.,
2005) to systematically generate mutants for Weka-3.5.7. MuJava is a powerful and
automatic mutation analysis system, which allows user to select related source files to be
mutated. Since Weka is large-scale software (the total source code is about 16.4M), and our
experiments only focused on certain major functions of kNN and NBC, in order to exclude
the equivalent mutants, we only selected files related to these two classifiers according to
their hierarchy structure. Table 2 lists all the selected files in our mutation analysis for both
kNN and NBC.

With respect to the types of faults, MuJava provides two levels of mutation operators:
method-level operators (also known as “traditional operators” that were originally designed
for structured programs (Offutt et al., 1996)) and “class-level operators” (particularly
designed for object-oriented programs) (Ma et al., 2005).

Usually MuJava can generate many more syntactically correct mutants using method-level
operators than using the class-level ones. Hence in our experiments, we targeted these
traditional method-level mutants, which may induce both intra-method and inter-method
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failures. For both kNN and NBC, we randomly selected 30 valid mutants generated by
MuJava, and the operators covered by these mutants are listed in Table 3.

5.1.2. Selection and Modification of MRs—Since the mutation analysis serves for the
purpose of verification, in this experiment, we need to adopt those MRs which are necessary
properties for the classifier. For each necessary MR, if we find violations in certain mutants,
we can declare that this mutant is killed by the MR, that is, the fault has been detected. The
goal of the experiment is to calculate what percentage of the mutants are killed by the MRs,
as a measure of the fault-detection effectiveness.

For kNN, apart from the necessary MRs, we also modify other MRs to make them become
necessary properties, to fit for our mutation analysis. As for NBC, we only select 8 MRs
from Section 3.3 that have been proved as necessary properties, and define a new MR (MR-
NBC) which is a necessary property of NBC, according to its specification. The definition of
MR-NBC, as well as the detailed discussion of the necessity for all MRs are presented in the
Appendix. Table 4 and Table 5 summarize the MRs used for kNN and NBC respectively in
the mutation analysis for verification.

5.2. Empirical Results and Analysis
5.2.1. Metamorphic Testing Results—In the mutation analysis, we adopted 300
randomly generated inputs as source test inputs. Each test input consists of one training
dataset and one test case, following the same model used in Section 4.

In the previous experimental study, we found some real faults in the source code of the NBC
classifier of Weka-3.5.7. Thus in the mutation analysis, in order to exclude the violations
that are due to these real faults, we eliminated the test inputs which violated MRs in the
original version of Weka-3.5.7. And we check the violated test pairs in mutants to make sure
that they are really due to the modification, instead of the real faults.

We applied MuJava to all the selected files in Table 2, and randomly selected 30 valid
mutants for both kNN and NBC. Obviously our method targets the non-crash failures. Hence
after excluding the mutants that cause runtime exceptions, we obtained 24 mutants for kNN
and 26 mutants for NBC.

Table 6 lists the results for all mutants that were killed by at least one MR in Table 4 for
kNN. Each cell except the last line of Table 6 records the percentage of violated input pairs
among all valid input pairs, for the relevant metamorphic relation and mutant version. The
last line records the total number of killed mutants of the corresponding MR.

It can be seen from Table 6 that our method is very effective in killing mutants: 19 out of 24
mutants have been killed by some of the current source inputs and their follow-up inputs
generated with these 11 metamorphic relations. After examining the five surviving mutants,
we discovered that three out of the five mutants are equivalent mutants with respect to the
current source inputs, the parameters in the command line, and all the 11 metamorphic
relations. The reason for the equivalent mutants is that Weka is a large-scale program; even
though we have selected the related program files for mutation analysis, we do not target all
the functionality in these files. The parameters we used in the command line and the
metamorphic relations that we have enumerated are only related to certain properties of the
target algorithm. Thus in the three mutants, the modified statements are not executed using
the current source inputs, the parameters in command line, and all the 11 metamorphic
relations. Hence the actual effectiveness is 90.5%(19 out of 21 mutants).
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The results in Table 6 also show that different metamorphic relations have different
performance in detecting program faults. Among all 11 MRs, MR-1.1 and MR-5.1 had the
highest killing rate (15 out of 21, 71.4%), while MR-0, MR-3.2 and MR-4.2 had the lowest
killing rate (0 out of 21).

We also inspected the average violation percentage of all MRs. Since we enumerated all the
metamorphic relations only by means of the background knowledge of the classifier without
referring to the source code of the Weka implementation, and we also generated all mutants
and test inputs randomly, our metamorphic relations are hence unbiased to any mutants
under investigation. In this way, the average violation percentage for the MRs over all
mutants (including all the survived mutants) can be used as an effectiveness measurement of
metamorphic testing, that is, how likely a test input pair (source test input and follow-up test
input) on average will reveal a violation. From Table 6, we can calculate that for kNN, the
average percentage is 4.2% for the 21 non-equivalent mutants.

Similarly, we investigated the effectiveness of each selected metamorphic relation in the
mutation analysis for NBC. The results are presented in Table 7, which lists all mutants
violating at least one MR in Table 5. Each cell except the last line records the percentage of
violated input pairs among all valid input pairs and the last line of the table records the total
number of killed mutants of the corresponding MR.

For NBC, our method demonstrates a very good performance: 20 out of 26 mutants have
been killed by some of the current source inputs and nine metamorphic relations. And
among the six surviving mutants, four are equivalent mutants with respect to the current
source inputs, the parameters in the command line, and all the nine metamorphic relations.
Hence the actual effectiveness is 20 out of 22 mutants (90.9%).

Different from kNN, where some MRs kill none or a small number of mutants, in NBC,
about half of the mutants are killed by any given MR. For example, MR-0, which kills no
mutants in kNN, can kill 18 mutants in NBC. And consequently in NBC, the average
violation percentage of the nine MRs is much higher than that in kNN. This average
percentage is 13.2% among all the 22 non-equivalent mutants.

5.2.2. Cross-validation Analysis—Apart from metamorphic testing, we also conducted
cross-validation on these mutants. In the machine learning community, cross-validation is
commonly used to assess how well the classification algorithms can model the classification
process. Normally its results are affected by three main factors: (1) the predictive power of
the underlying classification algorithm, (2) the correctness of the implementation of the
algorithm, and (3) the characteristic of the training dataset.

Cross-validation is primarily used to validate the appropriateness of the classification
algorithm to the given problem. Hence it is often implicitly assumed that the implementation
of the algorithm is correct. Since kNN and NBC are extensively used classification
algorithms, their predictive power is expected to be reliable. For example, given a
reasonable training dataset, they should perform well in cross-validation. For the training
dataset, we have used a range of simulated datasets, with which the predictive results of
cross-validation can be estimated beforehand for a reasonable classification algorithm.
Therefore in our experiments, for these two classifiers under investigation, a correct
implementation should perform consistently with the predicted results. Correspondingly an
unexpected performance of cross-validation is an alarm of software faults in their
implementation.
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We say that a mutant is being “killed” by the cross-validation strategy if the observed error-
rate patterns using the simulated datasets deviates significantly from our expected error-rate
patterns given the knowledge of data simulation process. And in our experiments, we did
find some mutants that “survive” the cross-validation procedure. This observation implies
that the systematic software testing is indispensable for these kinds of machine learning
applications. Furthermore, due to the frequent occurrence of the oracle problem in this
application domain, our proposed method becomes particularly critical.

In our experiments, we conducted k-fold cross-validation, which is a typical cross-validation
method. In k-fold cross-validation, the original sample set is randomly partitioned into k
subsets (k > 1). Among the k subsets, a single subset is retained as the validation data for
testing the classifier model, and the remaining subsets are used as training data. The cross-
validation process is then repeated k times. The k results from the k folds then can be
averaged or summarized (or otherwise combined) to produce a single estimation
(McLachlan et al., 2004). In cross-validation, a classifier is simply evaluated in terms of its
respective fraction of misclassified instances, noted as the error-rate. A lower error-rate
means a better performance of a classifier.

In the cross-validation analysis, we used some simulation datasets that contain signals that
allow samples from each class to be readily distinguishable from one another using any
reasonable classification algorithms. These simulated datasets have similar sizes and formats
as the randomly generated training sample sets used in the mutation analysis. They were
produced and used in another bioinformatics study (Ho et al., 2008) that simulates
microarray gene expression data containing realistic noise characteristics. All the samples in
the simulated datasets have five attributes. And each dataset contains 100 samples
comprising five classes (class 1, 2, ..., 5) of 20 samples each. The expression level of each
attribute in each sample is simulated by a normal distribution N(μc, σ) where μc is the mean
expression level characteristics to class c ∈ {1, 2, 3, 4, 5}. The same value is used for
variance (σ2 = 2) in all simulated datasets. Three different ways of the assignment of μc for
every class c (referred to as Rule-1, Rule-1.5 and Rule-2) are defined in our experiments,
which result in different amounts of signals for class discrimination. In Rule-1, the mean
expression value of successive class is different by a factor of one, that is, μ1 = μ2 =, …, = μ5
=1 for every attribute. Then all the samples drawn from all five classes would have the same
signal distribution, and therefore contain no discriminative attributes for classification.
While in Rule-1.5 and Rule-2, we simulated datasets for the case where the mean feature
values from successive classes differ by a factor of 1.5, and 2, respectively.

Actually for any correct implementation of the two classifiers under investigation, the error-
rate with these three groups of simulated dataset can be roughly estimated based on their
corresponding generation process. For a dataset generated by Rule-1 which contains no
signals for class discrimination, we expect to observe a cross-validation accuracy of about
1/5=20%, and thus a cross-validation error-rate of a Rule-1 dataset around 80%, because this
is the chance of observing a false positive in a five-class classification problem by a random
classifier (i.e., the worst possible classifier). While datasets generated by Rule-1.5 and
Rule-2 contain discriminatory signals, therefore a cross-validation analysis usually yields
very low error-rate for both of them. Furthermore, the error-rate for the Rule-2 dataset could
be even smaller than the Rule-1.5 dataset in most cases, because better class separation can
be obtained by Rule-2.

Accordingly, in our experiment, a mutant is said to have been “killed” by cross-validation if
the observed error-rate patterns using the simulated datasets deviate significantly from the
expected error-rate patterns (error-rate of Rule-1≃80%, and the error-rates of Rule-1.5 and
Rule-2 are progressively smaller).
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In our experiments we conducted 10-fold cross-validation for each simulated dataset, and
utilized 300 datasets simulated from each rule. Hence, we have a total of 900 datasets for the
cross-validation experiment. Table 8 presents the results for kNN, while Table 9 shows the
performance of NBC. In each table, we list both the original version and the mutants that
were killed by metamorphic testing. Each cell from column 2 to column 4 records the
average error-rate among all 300 datasets for the corresponding rule. The cell in the last
column, “Result”, indicates whether the corresponding mutant “is killed” or “survives” in
cross-validation, by using K for the killed mutant and S for the survival.

It can be seen from Tables 8 and 9 that, for both kNN and NBC, there are some survivals in
the cross-validation.

Obviously, in the original program version, the cross-validation performs within our
expectation, that is, the error-rate in Rule-1 is around 80%, and in Rule-1.5 and Rule-2, the
error-rates become progressively smaller. However there are also some mutants whose
error-rates of the three rules have the same expected trend as the original program version,
which are considered as survivals in our experiments. It can be seen that for kNN, there are 6
out of 19 (31.6%) of the mutants survive the cross-validation. And for NBC, using cross-
validation alone will miss 8 out of 20 (40.0%) of the mutants.

These experimental data reveal that there do exist some mutants that can achieve expected
performances in cross-validation, despite the fact that these mutants are faulty
implementations of the algorithms. Given the lack of systematic testing strategies for
machine learning algorithms, cross-validation has been commonly adopted as an informal
method for evaluating a supervised classifier algorithm for decades, even thought it was
never designed for the purpose of either verification or validation. Nevertheless, most
practitioners in the machine learning field have relied on the cross-validation method to
check the correctness of the implementation of the algorithm. In other words, our
observations imply that an additional way to verify the correctness of the implementation is
necessary. Because of the oracle problem, metamorphic testing becomes appealing and
suitable in testing these supervised machine learning programs. In fact, metamorphic testing
is very powerful in detecting faults even in mutants that cannot be readily identified by
cross-validation. For example, mutant v1 in the kNN experiment has an ASR mutant in the
EuclideanDistance.java file, line 182. The modification is:

result = diff * diff; //correct: result += diff * diff;

According to the cross-validation error-rates in our experiment (Table 8), this mutant would
likely not be detected since the error-rate patterns from the simulated data falls within the
expected range. On the other hand, metamorphic testing is able to kill this mutant. Table 6
shows that MR-1.1, MR-1.2, MR-2.1, MR-2.2, MR-5.1 and MR-5.2 all reveal this mutant.

As a result, our experiment shows that the cross-validation technique is not sufficiently
effective to detect faults in a supervised classification program. It is strongly recommended
to adopt MT as the supplement to this technique in order to provide more confidence of the
software quality.

6. Related Work
Machine learning has aroused the interest of more and more people in software engineering.
Currently there has been much work that applies machine learning techniques to software
engineering, in particular, to software testing (e.g., (Briand, 2008; Cheatham et al., 1995;
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Zhang and Tsai, 2003)). However we are not aware of any work in the reverse sense:
applying software testing techniques to machine learning applications, particularly to those
that have no reliable test oracle.

Despite the fact that the machine learning programs have been widely utilized, there is no
systematic testing method to guarantee their quality. Apart from the testing objective (Weka)
in this study, Orange (Demsar et al., 2004) is another famous framework that aids machine
learning developers. But the testing functionality provided by these two frameworks is only
focused on comparing the quality of the results, but not evaluating the correctness of the
implementations. Though there are repositories of reusable data sets being collected (e.g.,
the UCI Machine Learning Repository (Newman et al., 1998)) for the purpose of comparing
result quality, such as the accuracy of the prediction, they are not for testing. Furthermore
there are also many other applications which contain machine learning components, such as
some intrusion detection systems (Mell et al., 2003; Puketza et al., 2002), intrusion tolerant
systems (Madan et al., 2004), and other security systems (Balzarotti et al., 2008). However
testing in these systems has typically addressed quantitative measurements like overhead,
false alarm rates, or ability to detect zero-day attacks, rather than the detection of faults in
the implementation as studied in this paper.

On the other hand, applying metamorphic testing to situations in which there is no test
oracle was first suggested in (Chen et al., 1998) and is further discussed in (Chen et al.,
2002; Gotlieb and Botella, 2003; Guderlei and Mayer, 2007). Currently the studies in MT
include two main directions. The first one is to apply MT to verify software in various
application domains without a test oracle. Up to now the application domains in which MT
has been shown to be effective include service-oriented software (Chan et al., 2007),
context-sensitive middleware-based software (Tse et al., 2004), stochastic optimisation
algorithms (Yoo, 2010), feature models (Segura et al., 2010), bioinformatics (Chen et al.,
2009), etc. However none of these works has explicitly focused on the machine learning
area, which should be more complicated due to its nature of a discipline rather than a simple
group of peer algorithms. Actually, our previous studies provided several MRs to test some
machine learning applications (Murphy et al., 2008). But they only focused on the
verification with quite simple MRs. The study in this paper has provided a more
comprehensive MR repository. More importantly, we also extend the role of MT beyond the
verification, demonstrating that it can also be adopted for the purpose of validation.

The other research direction that has recently been explored is the integration of MT with
other testing and analysis techniques. One representative study in this direction is the
method called semi-proving, which integrates MT with symbolic execution, for program
proving, testing, and debugging (Chen et al., 2010). And another study is the proposal of a
novel concept, mice, which is based on the integration of metamorphic relation and program
slices, to support various software testing and analysis purposes, such as spectrum-based
fault localization (Xie et al., 2010).

7. Conclusion and Future Work
Our contribution in this study is a systematic approach, which enables users and
programmers to easily and effectively verify and validate the machine learning components
of their software. Neither sound knowledge nor experience of software testing is required in
our proposed method. This study has successfully demonstrated the feasibility of MT as a
verification and validation method for classification algorithms. The effectiveness of our
proposed method is demonstrated by its detection of real faults in a popular open-source
software, Weka, and by the technique of mutation analysis. Despite the fact that we use
simple MRs without referring to deep domain knowledge; our proposed method has
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demonstrated a high rate of effectiveness. Furthermore, we also demonstrate that cross-
validation alone is not sufficient to verify these classification algorithms.

Since our proposed method is basically a testing method, it inherits one limitation from
software testing, that is, if there is no violation revealed by any MR, we can neither conclude
the correctness nor the appropriateness of the algorithm under investigation. Actually this is
the common limitation for all the testing techniques, thus for any software with critical
safety requirements, a supplementary verification method should be adopted, apart from
using our method.

Similar to other applications of MT, the most important activity of our method is the
identification of MRs, as the effectiveness of our method is critically determined by the
choice of MR. Since this paper is focused on illustrating the applicability of our method with
sample MRs for representative classifiers, a more comprehensive investigation on the
performance of different MRs will be conducted in our future study.

Moreover as discussed in previous sections, our method has actually provided a general
process. In view of the simplicity in concept and easiness of automation, our method can be
easily adopted in various machine learning application domains, with a continually building
MR repository in the future.
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Appendix A
In the appendix, we discuss the necessity of MRs for both kNN and NBC.

Appendix A.1. Necessary MRs for k-Nearest Neighbors
In our previous study (Xie et al., 2009), we adopted a total of 11 MRs on kNN, and 6 of
them can be proved as necessary properties for kNN with any value of k.

1. MR-0: Consistence with affine transformation
Each value in the training sample set and in the test case is transformed in this way: kx+b (k
≠ 0). Thus, this MR does not change the distance between si and ts. The distance is:

Therefore MR-0 does not change the order in the k nearest neighbors and will still give the
same prediction.

2. MR-1.2: Permutation of the attribute
It can be seen from the formula for calculating the distance that the result is not related to
the order of the attributes. Thus, the permutation of the attributes will not affect the
prediction result.

3. MR-2.1: Addition of uninformative attributes
In this MR, we add a new attribute attm to both the samples and the test case and assign
them with the same value. Suppose the value of attm is a. It is obvious that MR-2.1 will not
change the distance between any sample si and test case ts. The new distance is:
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Therefore MR-2.1 does not change anything in the k nearest neighbors and will still give the
same prediction.

4. MR-3.1: Consistence with re-prediction
Suppose the label of a test case is li. We put the test case back into the training sample set,
and from the distance formula we can know that the distance between the new sample and
the test case is 0. Thus, the number of samples with label li in the k nearest neighbors
increases by 1, and obviously the proportion of samples with label li will increases.
Therefore, the follow-up prediction remains the same, li, as the source prediction.

5. MR-3.2: Additional training sample
Suppose the label of a test case is li. MR-3.2 duplicates the samples with label li in the
training sample set. These new samples have the same value as the old ones, thus the
number of samples with label li increases in the k nearest neighbors (maximum is being
doubled). Meanwhile, the samples with other labels are excluded from the k nearest
neighbors. Thus, the proportion of samples with label li increases (maximum is being
doubled). Therefore the follow-up prediction remains the same, li, as the source prediction.

6. MR-4.2: Addition of classes by re-labelling samples
Suppose the label of a test case is li. MR-4.2 renames parts of the samples, which have
labels other than li. This will not change the value of the distance between each sample and
test case. It just changes the label of the distance. Thus it changes the label in the k nearest
neighbors. This will not result in any changes in the number and proportion of samples with
label li. It only may decrease the number and the pro- portion of samples which have labels
other than li; therefore it will not affect the follow-up prediction.

The remaining MRs can be proved as not necessary properties for any k. Actually, those
MRs usually lead to changing the distance between the training samples and the test case,
thus the ranking of all distances and the proportion in the k nearest neighbors also change
correspondingly. However if we fix k as 1, these MRs all become necessary properties.

The reason is apparent. Since all the samples are sorted ascendingly by the distance to test
case (no duplicated samples in our experiments), when k = 1, the kNN classifier just picks
up the first sample, and makes its label as the predicted result. Even though the MRs may
change the distance between the samples and the test case, and consequently change the
ranking, they do not affect the top position of all the sorted distances. Thus if we assign k =
1, these MRs become necessary properties and can be adopted in our mutation analysis.

Appendix A.2. Necessary MRs for Naïve Bayes Classifier
For NBC, we adopted 12 MRs in our previous study, and 9 of them can be proved as
necessary properties.

1. MR-0: Consistence with affine transformation
To implement the calculation of an integral in a digital computer, it is necessary to define a
small interval δ to calculate the area. In Weka, they use a variable called Precision as the
interval. The Precision for attj is defined as the average interval of all the values. For
example, suppose there are five samples in the training sample set, and the values of attj in
the five samples are 2, 7, 7, 5, and 10. After sorting the values we have 2, 5, 7, 7, 10. Thus,
Precision = [(5–2) + (7–5) + (10-7)]/(1+1+1) = 2.67. If all the values are the same, Precision
(abbreviated pr) equals its default value, 0.01. In the computation, Weka rounds all the
values x in both the training samples and the test case with pr as rint(x/pr) * pr, in which rint
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is the function to round to the nearest integer. This manipulation means that Weka treats all
the values within ((2k-1)* pr/2, (2k+1)* pr/2] as k*pr, in which k is any integer. This
manipulation may lead to a loss of precision; however, it provides a mechanism to disperse
the continuous values in the mathematic model, in order to be make the model suitable for
computer implementation.

In Weka, the small interval δ is the magnitude of precision. According to formula for
calculating area, we have:

In MR-0, each value x in the training set and the test case are transformed in this way: ϕ=
k*x+b (k ≠ 0). According to the calculation of pr, pr’ is set to be k*pr + b. According to the
formula of mean value μ and mean square deviation σ, we have μ’ = k*μ + b, and σ’ = k*σ.
And the formula for probability is as follows:

by substituting σ′ with k * σ, and σ′ with k * μ + b, we have:

by substituting ϕ with k * x + b, we have:

It can be seen from the above formula that after the transformation, the probability will not
change, thus the prediction result will not change either.

2. MR-1.1: Permutation of class labels
This MR reflects a key property of mathematical function such as NBC that the output of the
classifier is deterministic, and is not affected by random permutation.

3. MR-1.2: Permutation of the attribute
It is known that in NBC, we assume all the attributes are independent, thus we have the
following formula:

Xie et al. Page 23

J Syst Softw. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Therefore, changing the attribute order will not affect the prediction result.

Actually, it can be concluded that all classifiers should have a consistent result in this MR,
assuming the attributes are independent to each other.

4. MR-2.1: Addition of uninformative attributes
In this MR, we add a new attribute attm with identical value to both the samples and the test
case. Suppose the value of attm is a. For each lk ∈ {l0, l1, ..., ln-1}, the probability P(lts = lk |
a0a1...am-1) can be re-written in the following way:

Since the new attribute attm has the same value a in all the samples, the mean value μ = a
and the mean square deviation σ = 0. Thus the P(attm = a | lts = lk) part is equal to 1 for all
the lk ∈{l0, l1, ..., ln-1}.

In Weka, since it is infeasible for computer to deal with the normal distribution with σ = 0,
they give σ a default minimum of pr/2*3. Thus for each lk ∈{l0, l1, ..., ln-1}, the numerator in
the formula above will be changed by multiplying a constant value P(attm = a | lts = lk),
which is a little less than 1.

It follows that the probability for each lk ∈{l0, l1, ..., ln-1} changes in the same way. Thus the
order of the probabilities will not change; consequently the prediction in the follow-up cases
will remain the same as the one in the source cases.

5. MR-2.2: Addition of informative attributes
In this MR, we add a new attribute attm to both the samples and the test case and assign the
samples having the same label with the same value; meanwhile, we assign the new
attribute’s value in the test case as the one of its predicted label. For example, suppose there
are three classes in the training samples, {l0, l1, l2}, and the predicted label of the test case is
l0. In the MR-2.2 transformation, we add a new attribute and make it different among
different classes, that is, for samples with l0, the attm = a; for samples with l1, the attm = b;
for samples with l2, the attm = c; and for the test case, the attm = a.

Since the denominator in the formula for each lk ∈{l0, l1, ..., ln-1} are the same, only the
numerator will affect the result.

For l0, the mean value of attm is μ = a; the mean square deviation of attm is σ= δ (since it is
hard to deal with a normal distribution with σ = 0, we assign a very small number to σ).

For l1, the mean value of attm is μ= b; the mean square deviation of attm is σ = δ.

For l2, the mean value of attm is μ = c; the mean square deviation of attm is σ = δ.
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Thus the numerator in the formula for l0 is multiplied by a value of P(attm = a | lts = l0),
which is quite close to 1. Also, the numerator in the formula for l1 is multiplied by a value of
P(attm = b | lts = l1), which is quite close to 0. Last, the numerator in the formula for l2 is
multiplied by a value of P(attm = c | lts = l2), which is quite close to 0.

Therefore the former highest possibility almost remains the same, while the other two
decrease dramatically. Consequently the follow-up prediction will remain the same as in the
source case.

6. MR-3.2: Additional training sample
Suppose the label of test case is li. MR-3.2 duplicates the samples with label li in the training
data set. Those new samples have the same value as the old ones, thus the mean value and
the mean square deviation of each attribute in li will not change. Meanwhile, the mean
square deviation of each attribute in other labels will not change either. The only change is
the proportion of each lk ∈{l0, l1, ..., ln-1}: P(lts = lk); that is, P(lts = li) increases, while P(lts
= lk) for the other labels decreases.

Therefore the probability of ts belonging to li increases, while the probability of ts being one
of the other labels decreases. The prediction is still li, as in the source case.

7. MR-4.1: Addition of classes by duplicating samples
Suppose we have labels {l0, l1, ..., ln-1}, the number of each distinct label li ∈{l0, l1, ..., ln-1}
in the training sample set is count[i], and its corresponding proportion is proportion[i]. For
each li ∈{l0, l1, ..., ln-1}, the mean value of attj is μij; the mean square deviation is σij.
Suppose the prediction in source case is lk. Thus in the MR-4.1 transformation, we duplicate
all samples with li ∈{l0, l1, ..., ln-1} (i ≠ k) and re- name them as li’. After duplication the μij
and σij for the original labels remain the same value as the ones in the source case. The only
change is the proportion[], which is as follows:

And for the new added label li’, their μ, σ and proportion[] values are all the same for li.
Therefore proportion[0] remains the highest value, and the prediction will not change in the
follow-up case.

8. MR-5.1: Removal of classes
This MR transformation only changes the proportion of each class, rather than changing the
distribution in each survived class. Suppose we have labels {l0, l1, ..., ln-1}, the number of
each distinct label li ∈{l0, l1, ..., ln-1} in the training sample set is count[i], and its
corresponding proportion is proportion[i]. For each li ∈{l0, l1, ..., ln-1}, the mean value of
attj is μij; the mean square deviation is σij. Suppose the prediction in the source case is l0,
and l2 is the label being removed. Thus, after transformation, the μ and σ for each survived
label remain the same as in the source case. The only change is the count[i] and the
proportion[i], which changes as follows:
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Figure 1.
Example of part of a data set used by supervised machine learning classifier algorithms
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Figure 2.
Sample data sets
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Table 1

Result of testing KNN and NBC

MR kNN NBC

NP VP NP VP

0 Y 0 Y 7.4%

1.1 15.9% Y 0.3%

1.2 Y 0 Y 0

2.1 Y 0 Y 0.6%

2.2 4.1% Y 0

3.1 Y 0 0

3.2 Y 0 Y 0

4.1 25.3% Y 0

4.2 Y 0 3.9%

5.1 5.9% Y 5.6%

5.2 2.8% 2.8%
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Table 2

Selected files for mutation analysis.

kNN NBC

weka.classifiers.lazy.IBk.java weka.classifiers.bayes.NaiveBayes.java

weka.core.Attribute.java weka.core.Attribute.java

weka.core.Instance.java weka.core.Instance.java

weka.core.Instances.java weka.core.Utils.java

weka.core.Utils.java weka.core.Statistics

weka.core.neighboursearch.LinearNNSearch.java weka.estimators.DiscreteEstimator.java

weka.core.neighboursearch.NearestNeighbourSearch.java weka.estimators.Estimator.java

weka.core.NormalizableDistance.java weka.estimators.KernelEstimator.java

weka.core.EuclideanDistance.java weka.estimators.NormalEstimator.java
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Table 3

Mutation operators covered by selected mutants.

Operator Description

AOR Arithmetic Operator Replacement

ROR Relational Operator Replacement

COR Conditional Operator Replacement

SOR Shift Operator Replacement

LOR Logical Operator Replacement

ASR Short-Cut Assignment Operator Replacement
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Table 4

Metamorphic relations for kNN used in mutation analysis.

k = 1 k = 3

MR-1.1 Permutation of class labels MR-0 Consistence with affine transformation

MR-2.2 Addition of informative attributes MR-1.2 Permutation of the attribute

MR-4.1 Addition of classes by duplicating samples MR-2.1 Addition of uninformative attributes

MR-5.1 Removal of classes MR-3.1 Consistence with re-prediction

MR-5.2 Removal of samples MR-3.2 Additional training sample

MR-4.2 Addition of classes by re-labeling samples
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Table 5

Metamorphic relations for NBC used in mutation analysis.

MR-0 Consistence with affine transformation

MR-1.1 Permutation of class labels

MR-1.2 Permutation of the attribute

MR-2.1 Addition of uninformative attributes

MR-2.2 Addition of informative attributes

MR-3.2 Additional training sample

MR-4.1 Addition of classes by duplicating samples

MR-5.1 Removal of classes

MR-NBC Consistence with value permutation
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Table 8

Cross-validation error-rate for kNN.

Mutants Rule-1 Rule-1.5 Rule-2 Result

original 80.1 4.0 0.1 -

v1 79.8 10.6 1.6 S

v2 80.1 4.0 0.1 S

v3 80.0 80.0 80.0 K

v5 80.1 6.8 0.2 S

v6 80.0 80.0 80.0 K

v7 79.7 5.8 1.2 S

v9 80.0 44.4 40.8 K

v10 80.1 100.0 100.0 K

v12 79.7 5.8 1.2 S

v13 80.1 5.7 0.2 S

v15 80.1 100.0 100.0 K

v16 80.0 80.0 80.0 K

v17 80.0 80.0 80.0 K

v18 80.0 80.0 80.0 K

v19 80.0 80.0 80.0 K

v20 80.2 80.0 80.0 K

v21 79.9 80.0 80.0 K

v22 100.0 100.0 100.0 K

v24 100.0 100.0 100.0 K
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Table 9

Cross-validation error-rate for NBC.

Mutants Rule-1 Rule-1.5 Rule-2 Result

original 80.1 3.4 0.1 -

v1 80.6 49.7 60.0 K

v2 80.0 3.4 0.1 S

v4 80.2 3.4 0.1 S

v5 80.0 80.0 80.0 K

v6 80.0 3.4 0.1 S

v7 80.0 80.0 80.0 K

v9 80.0 3.3 0.1 S

v11 80.0 3.4 0.1 S

v12 80.2 18.2 3.5 S

v15 100.0 100.0 100.0 K

v16 80.0 80.0 80.0 K

v17 80.2 81.1 91.2 K

v18 80.0 80.0 80.0 K

v19 80.0 80.0 80.0 K

v20 79.9 27.2 39.9 K

v21 80.0 80.0 5.4 K

v22 80.0 80.0 60.0 K

v24 80.0 3.4 0.1 S

v25 80.2 81.1 91.0 K

v26 80.0 3.4 0.1 S
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