CONFIDDENT: A model-driven consistent and non-redundant
layer-3 firewall ACL design, development and maintenance
framework

S. Pozo *, R.M. Gasca, A.M. Reina-Quintero, A.J. Varela-Vaca

Department of Computer Languages and Systems, ETS Ingenieria Informdtica, University of Seville, Avda. Reina Mercedes S/N, 41012 Sevilla,

Spain

Keywords:
MDD
MDA
Firewall

Maintenance

Development

ABSTRACT

Design, development, and maintenance of firewall ACLs are very hard and error-prone tasks. Two of the reasons for these
difficulties are, on the one hand, the big gap that exists between the access control requirements and the complex and
heterogeneous firewall platforms and languages and, on the other hand, the absence of ACL design, development and
maintenance environments that integrate inconsis-tency and redundancy diagnosis. The use of modelling languages surely helps
but, although several ones have been proposed, none of them has been widely adopted by industry due to a combination of
factors: high complexity, unsupported firewall important features, no integrated model validation stages, etc. In this paper,
CONFIDDENT, a model-driven design, development and maintenance framework for layer-3 firewall ACLs is proposed. The
framework includes different modelling stages at different abstraction lev-els. In this way, non-experienced administrators can
use more abstract models while experienced ones can refine them to include platform-specific features. CONFIDDENT includes
different model diagnosis stages where the administrators can check the inconsistencies and redundancies of their models before

Diagnosis the automatic generation of the ACL to one of the many of the market-leader firewall platforms currently supported.

1. Introduction

A firewall is a network element that controls the traversal of
packets across different network segments. It is a mechanism to
enforce an access control policy, represented as an Access Con-
trol List (ACL), or rule set. Developing and managing firewall ACLs
are tedious, time-consuming and error-prone tasks for several rea-
sons (Chapple et al., 2009; Wool, 2004). Two of the most important
problems firewall administrators have to face are: (1) the high com-
plexity of firewall-specific ACL development and maintenance, and
(2) ACL inconsistencies (contradictions) and redundancies intro-
duced during these life-cycle tasks.

Networks have different access control requirements which
must be translated by a firewall administrator into firewall ACLs.
Firewall-specific languages are, in general, hard to learn, use and
understand. Each firewall platform has its own language, which has
to be known by the firewall administrator in order to implement
the access control requirements. Fig. 1 presents two fragments of
ACLs written in IPTables and Cisco PIX, respectively. They give an
idea of the complexity and differences between firewall languages.

* Corresponding author.
E-mail addresses: sergiopozo@us.es (S. Pozo), gasca@us.es (R.M. Gasca),
reinaqu@us.es (A.M. Reina-Quintero), ajvarela@us.es (A.J. Varela-Vaca).

Note that the number of rules in Firewall ACLs may range between
a few ones and 5000, with an average of about 800 (Taylor, 2005)
in new deployments in 2009. This average number of rules is dou-
bling every year (Chapple et al., 2009). Moreover, ACL maintenance
implies that about 10% of rules could change every month (Chapple
et al.,, 2009).

Besides that, inconsistencies and redundancies could be intro-
duced in ACL development and maintenance life-cycle stages, as
they are the two most frequent sources of faults in firewall ACLs
(Chapple et al., 2009; Wool, 2004). A firewall ACL with inconsis-
tent rules indicates, in general, that the firewall is accepting traffic
that should be denied or vice versa and represents severe secu-
rity problems such as unwanted accesses to services, denial of
service, overflows, etc. (Pozo et al., 2009b). ACL consistency is of
extreme importance in several contexts, such as highly sensitive
applications (e.g. health care). A firewall ACL with redundancies
implies matching engine performance degradation and firewall
platform memory waste. In a recent survey (Chapple et al., 2009)
91% of administrators answered that they felt that at least one fault
was introduced during their last ACL update, while half of them
answered that the ACLs they developed surely contained unde-
tected faults. In the same survey, administrators answered that they
do not have enough resources to manually diagnose and correct
these faults, and that they do not have found automated tools to
address these problems during ACL development life-cycle.

dx.doi.org/10.1016/j.jss.2011.09.008
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:sergiopozo@us.es
mailto:gasca@us.es
mailto:reinaqu@us.es
mailto:ajvarela@us.es
dx.doi.org/10.1016/j.jss.2011.09.008

-A FORWARD -i -s 192.168.1.0 -d 170.0.1.10 -p tcp -m tcp --sport any --dport 2! -p tcp -j ACCEPT
-A FORWARD -i -p tep -p tcp -j DROP

-A FORWARD -i -5 192.168.1.0 -d 170.0.1.10 -p udp -m udp --dport 53 -p udp -j ACCEPT

-A FORWARD -i -d 170.0.1.10 -p udp -m udp --dport 53 -p udp ~-j ACCEPT

-A FORWARD -i -5 192.168.2.0 -d 170.0.2.0 -p udp -p udp -j ACCEPT

-A FORWARD -i -p udp -p udp -j DROP

access-1ist acl-out permit gre host 192.168.201.25 host 192.168.201.5
access-list acl-out permit tcp host 192.168.201.25 host 192.168.201.5 eq 1723
static (inside,outside) 192.168.201.5 10.48.66.106 netmask 255.255.255.255 0 0
access-group acl-cut in interface outside

access-1ist acl-out permit udp host 192.168.201.25 host 192.168.201.5 eq 1701
static (inside,outside) 192.168.201.5 10.48.66.106 netmask 255.255.255.255 0 0
access-group acl-out in interface outside

Fig. 1. Example firewall ACLs: (1) IPTables; (2) Cisco PIX.

These faults have traditionally been addressed in two ways: (1)
using modelling languages which permit an abstraction from the
underlying firewall platform and language syntax, and (2) using
inconsistency and redundancy diagnosis algorithms over ACLs once
implemented or derived from high-level models. Although the use
of modelling languages surely helps, none of the proposed ones
in the research community has been widely adopted by industry
due to a combination of factors: they usually have a similar com-
plexity to firewall-specific languages, none of them support the
full set of firewall platforms important features, unsupported fire-
wall important features, no integrated model validation stages, etc.
Furthermore, models could also include inconsistencies and redun-
dancies, which must be diagnosed and corrected before automated
ACL generation and deployment. If not, diagnosis and correction of
faults must be done at later stages of the development process, los-
ing model traceability, increasing costs, and reducing the reliability
and robustness of the ACL (Douglas et al., 1996).

The tools and methods that aim to help administrators dur-
ing ACL development process should gain in functionality and
ease of use at rates to match the increase in firewall ACL devel-
opment complexity. In this paper CONFIDDENT, a CONsistent
and non-redundant Flrewall Design, DEvelopment, and maiNTe-
nance framework is proposed. In CONFIDDENT, simple and abstract
platform-independent ACL models (which might satisfy a large
base of inexperienced firewall administrators) can be combined
with more complex and less abstract platform-specific ACL models
(which can satisfy experienced administrators) through a series of
automatic model transformations. CONFIDDENT takes into account
inconsistencies and redundancies that can be introduced during
modelling stages and integrates different model verification stages.
Models can automatically be transformed to firewall-specific ACLs.
CONFIDDENT currently supports a wide range of firewall plat-
forms, which represent market-leaders: Linux [PTables, Cisco PIX,
FreeBSD IPFilter, FreeBSD IPFirewall, OpenBSD Packet Filter, and
Checkpoint.

To the best of our knowledge, this is the first published work that
addresses the design, development, and maintenance of consistent
and non-redundant firewall ACLs at the design stage using a model-
driven approach. With CONFIDDENT, it is possible to create tools
that effectively fill the gap between current modelling languages
and firewall-specific ACLs, providing firewall administrators with
tools that represent a real alternative for the whole life-cycle of ACL
management.

The paper is structured as follows: in Section 2, related works
are provided, with special focus on languages and modelling tools
for developing and managing abstract firewall ACLs. In Section 3
background and concepts on MDD paradigm and MDA view are
given. In this section CONFIDDENT architecture is also proposed.
In Section 4, CONFIDDENT platform-independent meta-model is
proposed with its specification and an example. A model diagno-
sis stage is included prior to the next modelling stage. In Section
5, IPTables firewall platform is described and a platform-specific
meta-model for it is proposed as a proof of concept. Then, a model
to model transformation specification is given in order to transform

the PIM to the PSM. Furthermore, another model verification stage
and a discussion about its necessity are included prior to the final
code generation stage of the process. In Section 6, a model to text
transformation into IPTables code is given with its specification. In
Section 7 we discuss and evaluate the results achieved. In Section
8, we make some concluding remarks and propose future works. In
Appendix I, AFPL DSML is showed (which is closely related with the
platform-independent meta-model). In Appendices Il and IV PIM
and PSM meta-classes descriptions are respectively presented. In
Appendix Il an example scenario is given and used for the exam-
ples of the paper. In Appendix V, the M2M transformation rules
between the PIM and IPTables PSM are given. In Appendix VI, a file
containing attribute default values is presented. Finally, Appendix
VII shows the M2T transformation rules for IPTables.

2. Related works

In Bartal et al. (2004) proposed an abstract language, Firmato,
a firewall domain-specific modelling language (DSML). Models,
which are based on a textual description of entity-relationship dia-
grams (ERDs), can be automatically transformed to firewall-specific
ACLs.However, the complexity of Firmato is very similar to firewall-
specific languages. Firmato has two major limitations: (1) it does
not support network address translation (NAT) and (2) it can only
represent knowledge in positive logic (allow rules). These two lim-
itations complicates the specification of exceptions (a rule with a
general allow action, immediately preceded by a more restrictive
rule with a deny action). This could result in the need of writ-
ing several rules to express one exception. However, as a lateral
effect, rules are always consistent (although not necessarily non-
redundant) and order-independent.

In Damianou et al. (2001) provided another abstract language,
Ponder, to model network policies (in general). A re-engineered
version, Ponder2, is also available. Network policies include a
superset of access control related concepts (for example, routing).
Neither Ponder nor Ponder2 can be automatically transformed to
firewall-specific ACLs. In theory, a language that can express any
network policy could also express a firewall ACL. However, the
complexity of Ponder2 surpasses the modelling needs for firewall
ACLs. Furthermore, firewall specific concepts such as NAT cannot
be modelled.

FLIP (Zhang et al., 2007) is a recently proposed firewall DSML.
Models can also be automatically transformed into several firewall-
specificlanguages, although no more information about this feature
is provided in the paper where it was presented. Their authors claim
that ACLs expressed in FLIP are always consistent. In fact, they are
because of one of its limitations: it does not support overlapping
rule selectors in different rules. Preventing the use of overlaps is
a major limitation, since it is impossible to express exceptions.
In addition, its syntax is even more complex than Firmato’s one.
However, due to this lack of expressiveness, FLIP ACLs are order-
independent. Finally, NAT is not supported in FLIP.

AFPL (Pozo et al., 2008, 2009c¢) is the most recent firewall DSML.
Contrarily to the other proposals, it has been designed after an
analysis of the features of six major firewall-specific languages in a
bottom-up process, supporting most of their features but with less
complexity. AFPL can model stateful and stateless rules (although
an administrator does not need to know these kind of details, since
complexity is hidden in the modelling language), positive and neg-
ative logic rules, filtering field overlapping, exceptions, and can be
automatically compiled to six market-leader firewall languages.

However, none of the reviewed modelling languages is exten-
sible by users, and no one integrates a fault diagnosis stage for
diagnosing inconsistencies and redundancies at the development
life-cycle.

Table 1
Survey of the main features of access control modelling languages.

Firmato FLIP AFPL Ponder2 SRML Rule-ML PCIM XACML

DSML v N v x X x X x

User extensible x x x x x J Partial J
Inconsistency diagnosis N/A N/A X X X X X X
Redundancy diagnosis N/A N/A x X x x x x
Stateful rules v J J N/A N/A N/A N/A N/A
NAT X X v N/A N/A N/A N/A N/A
Positive logic N N v N v Vv N v
Negative logic Partial N v v v N v N

Rule field overlap J x J J J J N v
User-controlled rule order N/A N/A v N X X N v
Relative complexity High High Low High Low Low Medium Medium
Transformation to Firewall-specific ACLs i J J X x x X x
Firewall-specific ACL import X X Pa X X X X X

Some organizations have proposed languages to model access
control policies as XML documents, such as XACML, PCIM, Rule-ML,
and SRML. However, none of these languages is specific enough for
firewall ACLs, resulting in a high complexity to model firewall con-
cepts, or in an impossibility to model them at all (this is the case
of NAT for all these modelling languages). UML also has been pro-
posed to model access control policies (Basin et al., 2006; Jiirjens,
2002). In general, these modelling languages are very generic and
are not intended for the area of any particular access control prob-
lem. Table 1 presents a survey of the most important features of
the reviewed languages (related to their ability to model firewall
ACLs). There are other good surveys of access control policy lan-
guages available in the bibliography (De Capitani Vimercati et al.,
2007; Ardagna et al., 2004; El-Atawy, 2006).

All of the reviewed modelling languages (domain-specific or
not) have many trade-offs that have motivated their existence.
However, if firewall ACL design, implementation and maintenance
are set as the objectives for their design, we think that the num-
ber and utility of available concepts that the modelling language
supports must be one of the most important considerations to
take during language design. A large number of available con-
cepts guarantee a high expressiveness, although the complexity
of the resulting language could rise to levels near to the ones of
firewall-specific languages. This is the case of many of the reviewed
languages, especially the DSML ones. Generic policy languages,
such as Ponder2 or XACML, aim to address this complexity issue
raising the abstraction level with a more general access control
model for representing any network policy. However, the reality is
that with these more general languages it is not possible to model
important features of firewall platforms, such as NAT.

With respect to commercial or Open Source ACL development
and maintenance tools and, to the best of our knowledge, the
most important ones are Firewall Builder, Cisco ASDM, Checkpoint
Blades Software, and LogLogic ChangeManager. Table 2 presents a
survey of the reviewed tools.

Firewall Builder (FWB, from now on) is an Open Source tool that
is able to model ACLs for different firewall platforms. An important
fact about FWB is that it hides platform-specific firewall details
with a graphical representation (FWB is not based on models). In
fact, the particular final firewall platform to which generate code
must be specified as the first step of the design process. If the plat-
form is changed during ACL development, information may be lost
if the new platform does not support the same features of the ini-
tial one. Models are not extensible by users, since a modification
in the model would also require GUI and compilers modification.
FWB allows the administrator to define objects to represent net-
work elements such as services, computers, network segments, etc.,
allowing the separation of logic from network topology. FWB allows
the importing of both, Cisco I0OS and IPTables ACLs. With regard to
fault diagnosis, FWB only supports a very primitive form of rule

shadowing detection. A rule is shadowed when there is another,
previous rule that covers the matching space of the second one,
and both have contradictory actions.

Cisco ASDM is a GUI provided by Cisco to their customers in
order to assist them in the process of network device configura-
tion. This tool supports the development of ACL for firewalls and
configuration files for other Cisco network devices. As with FWB,
it is not possible to model platform-specific details, but only hides
them with a GUL Contrarily to FWB, this is not important here, since
ASDM can only generate code for Cisco devices. For the same reason,
models are fixed and users are not allowed to modify them. Import-
ing Cisco devices configuration files is possible, as well as a direct
ACL deployment from the tool. It is also object-oriented, providing
separation between logic and network topology. Unfortunately this
tool does not provide any kind of fault diagnosis.

Checkpoint Blades Software (CBS, from now on) is the new
denomination of Checkpoint software. CBS is based on a modu-
lar design, where different modules support different devices (e.g.,
firewall ACL development and maintenance software, intrusion
detection systems signature development and maintenance soft-
ware, etc.). Since CBS is designed with only one platform in mind,
it shares the same features as Cisco ASDM, with the only difference
of firewall-specific ACL import, which CBS does not support, since
Checkpoint firewalls are always designed using a GUI.

Finally, LogLogic ChangeManager (CM, from now on) is a com-
mercial tool that is able to model ACLs for different firewall
platforms. This tool supports the development of firewall ACLs and
configuration files for other network devices. As with the other
tools, CM hides platform-specific firewall details with a graphical
representation. However, in contrast with FWB, the development
process is visual. Through this process, it is possible to effectively
abstract the administrator from some of the platform-specific fea-
tures. As with FWB, the firewall platform must be specified at the
first step of the development process, since each firewall platform
supports a different feature set. If the platform is changed during
ACL development, information may be lost if the new platform does
not support the same feature set of the initial one. Models are not
extensible by users. CM allows the administrator to define objects
to represent network elements such as services, computers, net-
work segments, etc. allowing a real separation from topology and
logic. CM also allows the importing of firewall-specific ACLs of the
supported platform. Finally, this tool does not provide any kind of
fault diagnosis.

Although AFPL supports most of the features of six market-
leader firewall platforms (Linux IPTables, Cisco PIX, FreeBSD
IPFilter, FreeBSD IPFirewall, OpenBSD Packet Filter, and Check-
point) and appears to be the most equilibrated DSML for firewalls
from the ease of use/modelling features perspective, it also suf-
fers from some drawbacks. Firstly, AFPL has been designed using
a bottom-up methodology (Pozo et al., 2008, 2009c). This implies

Table 2
Survey of high-level ACL design tools.

Firewall Builder Cisco ASDM Checkpoint Blades LogLogic ChangeManager
Focus is on syntax abstraction or in Syntax Syntax Syntax Hybrid
functionality abstraction

Topology/logic separation J J v i

Firewall-specific language import Partial N N/A N

Models are user-extensible x x x x

Able to model other devices such as IPS x J N i

Multi-vendor compilation x x N

Inconsistency or redundancy diagnosis Only shadowing x x x

FW platforms supported Cisco, IPTables, HP ProCurve, Cisco Checkpoint Cisco, Juniper, Checkpoint,

BSD PF, IPFW, IPFilter

Fortinet, IPTables

that when a new firewall platform is going to be supported, AFPL
must be revised in order to check if the feature set of the platform
can implement AFPL concepts. We think of this possibility as being
very difficult to happen, since the start-up point of AFPL was the
common set of features of six market-leader firewall platforms. For
the same reason, it is very difficult to extend or modify AFPL by
end users. Secondly, there are features supported in the considered
firewall platforms that are not present as concepts in AFPL. This
implies that experienced firewall administrators could need to use
real-world firewall features which cannot be modelled. As a lateral
effect, an import of an ACL which has not been modelled with AFPL
is only partially possible, in the worst case. However, this reduc-
tion in the available set of concepts in AFPL is the key to guarantee
that models can be transformed into any of the considered fire-
wall platforms. Finally, recall that the use of a modelling language
like AFPL does not guarantee that the resulting ACL is consistent
and non-redundant, although it usually minimizes these problems.
Although AFPL models can be diagnosed for inconsistencies and
redundancies using slightly adapted versions of existing algorithms
(Pozo et al., 2009a), it does not have fault diagnosis facilities which
can be used during design stages. We think that these drawbacks
may be enough to prevent firewall administrators from using AFPL
as a real alternative to firewall-specific languages or the available
development tools.

The reviewed development tools also have some important
drawbacks. Firstly, most of them are platform-specific, preventing
the use of ACL models. Secondly, although some multi-platform
tools exist, they do not abstract the firewall administrator from
the firewall platform features, but only from the syntax of the tar-
get firewall-specific language. In fact, destination platform must
be chosen as the first step of the modelling process. This implies
that the abstraction level is linked to the destination platform, and
thus it is relatively poor. In fact, models are not available to users
to be modified or extended. One major lateral effect of this lack of
abstraction is that each model is specific for a firewall platform, and
thus it cannot be reused for others. Another important lateral effect
is that models cannot be easily diagnosed for inconsistencies and
redundancies, since the available algorithms must be adapted for
each different firewall vendor and version.

Due to these drawbacks, we think that it is not possible to ful-
fil the modelling requirements of all firewall administrators and
all sceneries with only one modelling language or tool. In this
paper we propose CONFIDDENT, a multi-platform CONsistent and
non-redundant Flrewall Design, DEvelopment, and maiNTenance
framework. We propose to replace ad-hoc development methods
with well-grounded models that can represent the essential fea-
tures of the firewall platforms, and automatic reasoning processes
for the analysis of engineering decisions for those administra-
tors concerned with the efficient and timely production of quality
Firewall ACLs. The framework supports several user-selectable
abstraction levels for modelling, depending on user needs or
expertise, enabling automatic transformations through different

abstraction levels at any time. In CONFFIDENT, models can be
automatically transformed into firewall-specific ACLs for a wide
representative variety of firewall platforms. There have been other
proposals which use MDD as the basis for modelling networking
testbed configurations (Galan et al., 2010) but, to the best of our
knowledge, this is the first one to model firewall configurations
and ACLs.

3. CONFIDDENT specification and architecture

CONFIDDENT specification has been built using the founda-
tions of Model-Driven Development (MDD) paradigm, focusing on
a particular view, the OMG’s Model-Driven Architecture (MDA)
(OMG MDA, 2003). Although there are other views of MDD such as
Software Factories (Greenfield et al., 2004) and Model-Integrated
Computing (Sztipanovits and Karsai, 1997), the one provided by
MDA seems to be the most prevalent at present. Model-Driven
Architecture (MDA) development aims at generating systems from
high-level system models and requirements models, taking away
much of the concurrent manual changing of artefacts at the differ-
ent stages of software development. It promises better leverage on
building quality (i.e., stakeholder value) into the software products
and should support the measurement of software quality at differ-
ent stages of the development life cycle. The three primary goals of
MDA are portability, interoperability and reusability.

In MDA, models can be built at different abstraction levels. In this
context,amodel is an abstract representation of a system structure,
function or behaviour. Transformations are the way of obtaining
one model in one level (target model) from another model or set of
models from another level (source model). Models are specified
with concepts that are described in a meta-model, as a conse-
quence, it is said that a model has to conform to a meta-model. The
meta-model determines the constructs that can be used and the
rules that must be followed to build a model. Fig. 2 depicts the main
artefactsinvolved in a simple model transformation. The source and
target meta-models can be the same or not. If the resulting model of
the transformation (the target model) is expressed in the same lan-
guage than the source model, then source and target meta-models
have to be the same. Otherwise, they differ. Transformations are
described in a language that also has to conform to its own meta-
model. The artefact in charge of executing the transformation is
known as the transformation engine. Usually transformation defi-
nitions refer to meta-models instead of models. As a consequence,
the transformation engine needs the source model, the source
meta-model, the target meta-model and the transformation defini-
tion as input, and it will produce the target model that will conform
to the target meta-model. One transformation is considered to be
a model-to-model transformation (M2M) if it takes a set of models
as input and produces a set of models as output. However, if the
result is a set of textual artefacts or a code implementation, it is
called a model-to-text transformation (M2T).

Refers to

Source
Meta-model

Transformation
Meta-model

Transformation
definition

TRANSFORMATION

Conforms to

Refers to

Executed by

Target
Meta-model

Conforms to

Source Model

ENGINE

Target Model

Fig. 2. Artefacts involved in a simple transformation in MDA.

Simultaneously to the development of MDA, the Eclipse Open
Source community has been working on giving support to this OMG
framework with the Eclipse Modelling Framework (EMF; Budinsky
etal.,2003)(i.e., the meta-modelling framework), which nowadays
can be considered as the de facto standard. The Eclipse Modelling
Project (EMP)is the project devoted to the evolution and promotion
of model-based development technologies.

3.1. CONFIDDENT architecture

The CONFIDDENT framework consists in several modelling
stages, each with a different abstraction level (Fig. 3) and has been
heavily inspired by the MDA view.

The first stage consists on defining platform-independent mod-
els. These models conform to a platform-independent meta-model,
which represents the highest level of abstraction. Through this
meta-model it must be possible to model all concepts that are avail-
able as features in all of the supported firewall platforms. Because
of this, platform-independency is obtained at this modelling stage.

The second modelling stage is where the administrator selects
the target platform for the final ACL, and where platform-specific

Automatic
°))
Q8 IPTables Platform inconsistency and
&& A Specific Model (PSM) redundancy [FUElEsACE
= = diagnosis

Business Role

Other Platform
Specific Mode

details are modelled, if any, building a platform-specific model
(PSM). Several platform-specific meta-models (at least one for each
target platform) are also necessary at this modelling stage. Ideally,
an administrator must be able to model the full feature set of the
selected firewall platform by means of its meta-model, and thus the
meta-model must contain enough concepts to model the features.
However, this will surely result in a very complex meta-model
where some of its concepts may never be used by less experienced
administrators. To prevent this, CONFIDDENT uses modularized
platform-specific meta-models: a target platform meta-model is
built from small parts, where each of these parts defines a platform-
specific feature. The administrator is thus free to select the trade-off
between abstraction level/features available, and thus this mod-
elling stage can be understood as a variable abstraction level one.
Following this approach, existing platform-specific meta-models
can be extended or modified, and new ones can be created to ful-
fil any administrator needs. Even repositories of platform-specific
meta-models can be provided to CONFIDDENT users. In fact, if
the modelling of platform-specific features is not needed, the
administrator can avoid PSM modelling stage and enter the last
one.

Automatic
transformation

~

Automatic

Platform Automatic Automatic transformation
Independent inconsistency and Clsgq PIX Platform inconsistency and Cisco PIX ACL
Model (PIM) redundancy Specific Model (PSM) redundancy

diagnosis - diagnosis
Model correch; T Automatic

transformation

Other platform
ACL

Automatic
inconsistency and
redundancy
diagnosis

Is

:

Technical Role

Fig. 3. CONFIDDENT architecture.

Platform-Independent Meta-Model

- Filtering fields

- Network Address Translation fields

- Filtering field semantic

- Network Address Translation field semantic
- Actions

Fig. 4. CONFIDDENT platform-independent metal-model concepts.

The last modelling stage is where the firewall-specific ACL (i.e.
the implementation) is obtained through an automatic M2T trans-
formation by means of predefined transformation rules. Although
the implemented ACL can be modified by an administrator, it is not
recommended, since traceability with the models may be missed.
Furthermore in order to accomplish any modification, administra-
tors need to know the details of the particular firewall-specific
language and platform.

If during the modelling stages an inconsistency or redundancy
fault is found, then models must be corrected before entering the
following modelling stage.

Since there are at least two conceptually different abstraction
levels (PIM and PSM), firewall ACL concepts should be decomposed
in two disjoint sets. For the division, some design decisions must be
made since firewall platforms are very different from one vendor
to another, and even among the available Open Source platforms.
These differences range from different number, type, and syntax of
selectors (or filtering fields) that each platform’s filtering algorithm
can handle, to huge distinctions in rule-processing algorithms that
can affect the design of the ACL. In a previous analysis (Pozo et al.,
2008, 2009c) it was identified that the vast majority of filtering
concepts can be expressed with any of the most representative fire-
wall platforms (Linux IPTables, Cisco PIX, FreeBSD IPFilter, FreeBSD
[PFirewall, OpenBSD Packet Filter, and Checkpoint). These concepts
are the basis for the platform-independent meta-model in CON-
FIDDENT, since they completely fulfil the objectives at this first
abstraction level (Fig. 4).

Content Inspection Module

.. (concepts)

Packet Mangling M |

.. (concepts)

Malformed packets Module

.. (concepts)

T

Logging Module

- ... (concepts)

Other Modules

- ... (concepts)

However, there are filtering related concepts that are not going
to be included in the platform-independent meta-model. There are
basically two options for these concepts: to include them in another
(lower) level of the framework, or to completely remove them. If
they are removed, experienced administrators that may need to use
them must modify the automatically generated firewall-specific
ACL. However, if these concepts are introduced at the platform-
specific meta-model, experienced administrators can model the
necessary concepts without directly modifying the implemented
ACL. For this reason, we propose to consider these platform-specific
filtering-related features as modules that are part of the PSM for
each platform. Each of these modules can represent a disjoint set of
concepts. By the composition of these models the needed features
of the firewall platform can be modelled.

Again, there are other features not related with filtering that
also present in firewall platforms. These other features may also
be needed by administrators. These features may, for example, be
how to manage malformed packets, connection tracking issues,
if packet mangling is available the rules to configure platform
behaviour, how to manage content inspection, how to configure
logging, etc. In CONFIDDENT all of these features that are closely
related with firewall platforms must also be considered at platform-
specific meta-models. Each (disjoint) set of related features for a
firewall platform is considered also as a different module for the
platform meta-model. Thus platform-specific modelling is done
through module combination. This methodology results in a trade-
off between abstraction level and features available which the user
can decide.

Fig. 5 shows an example platform-specific meta-model for
a fictitious firewall platform. Transformations between differ-
ent firewall platform models, although possible through a M2M
transformation, may have loss of information, since different
platform-specific meta-models may represent a different set of
concepts for each platform.

Again, firewall platforms have other specific features related to
how each platform executes the ACL, and that administrators can-
not modify this behaviour during modelling stages. These features
are, for example, how each platform threats connection tracking
(that is, stateful or stateless connections), how rule processing is

\

Platform-Specific Meta-Model

- Management service port

- Management usernames and passwords

- Time slot for management

- Interfaces, types, IP (static or dynamic)

- ... (more concepts available from modules)

Fig. 5. CONFIDDENT platform-specific metal-model concepts (modular approach).

performed (forward, backward, with jumps), etc. For this reason,
these features do not need to be modelled and are only considered
during M2T transformation (to target firewall-specific ACL).

Following the methodology proposed in CONFIDDENT, the
platform-independent meta-model is kept as simple as possible,
serving for the vast majority of administrators, while the modular
approach for the platform-specific meta-models facilitates the use
of more specific features to more experienced ones with an adjusted
abstraction level. Note that if all features of a firewall platform
are available as modules for its PSM, a lossless inverse transfor-
mation (from a firewall-specific ACL implementation to models) is
also possible.

3.1.1. Model validation and diagnosis in CONFIDDENT

The use of the proposed architecture does not yet guarantee the
absence of faults in the models. Both model validation and diag-
nosis techniques are used in CONFIDDENT. Validation is to test if
the model is well constructed (i.e. testing if the model is correct or
not). Validations can be applied to different parts of the model, like
structure or semantics. Diagnosis is used to explain why a model
is not correct, and of course implies a validation stage. Like valida-
tions, diagnosis can be applied to different parts of the model, such
as structure or semantics. In addition to validations, it is possible
to look for explanations to different problems, like inconsistency
and redundancy, identifying which components of the model are
faulty. In complex, real world, problems it is usually a good idea to
give a minimal diagnosis (i.e. the fewer possible number of faulty
components). The Parsimony Principle says that the preference for
a diagnosis of a problem is to give the least complex explanation.
This is especially important for big models and in models with a lot
of inconsistencies, since not giving it could result in an overwhelm-
ing number of components to be corrected. In our problem, these
components are the modelled rules. The minimal diagnosis prob-
lem is an optimization problem which, unfortunately, is NP-hard
in many problem domains.

In CONFIDDENT, structural and semantic model validations
(at both PIM and PSM levels) are implemented as OCL con-
straints. However, model inconsistency and redundancy diagnosis
are implemented as an external library. This has been done in this
way because OCL is precisely a validation language. However, OCL
does not have primitives to solve optimization problems, which
are needed to solve inconsistency and redundancy diagnosis faults
with the best possible results (in terms of completeness, mini-
mality and performance). In fact, thanks to the high performance
of many of the available inconsistency and redundancy diagnosis
algorithms, the ACL model can be diagnosed on-line. However, we
think that is less intrusive from the modeller point of view, to run
the diagnosis when needed. In Pozo et al. (2009a) it was suggested
the possibility of using existing firewall-specific ACL inconsistency
and redundancy diagnosis algorithms over ACL models when the
ACL modelling language is sufficiently expressive. This possibil-
ity will be analysed in this paper during following sections, when
the platform-independent and platform-specific meta-models are
proposed.

ACL inconsistency and redundancy diagnosis is a very com-
plex problem that is receiving considerable attention from the
scientific community since 1999. During the first research years,
the main focus of these works was to define the problem and
to provide complete solutions to it (Hari et al., 2000; Eppstein
and Muthukrishnan, 2001; Al-Shaer and Hamed, 2004; Al-Shaer
et al., 2005; Hamed and Al-Shaer, 2006; Yuan et al., 2006; Garcia-
Alfaro et al., 2008). There were proposals that used logic languages
and constraint solvers. However, the performance of these solu-
tions was not appropriate for solving real-life problems. Later on,
the focus was in providing approximate solutions for the prob-
lem (Pozo et al., 2009d; Baboescu and Varguese, 2003). However,

experimental results showed that the variability of the problem
was too high to generalize an approximation algorithm. Finally,
in recent works (Pozo et al., 2009b, 2010) it has been described
an algorithm which can solve the problem in polynomial time and
space complexity. The algorithm is complete and minimal, and thus
it has enabled the solution of real-life problems. Even constraint
or SAT solvers performance is not usually on par with specialized
algorithms and data types for this problem.

The diagnosis stages can be used at each modelling stages, and
should always be used before automatic code generation. If faults
were diagnosed over the implemented firewall-specific ACL, map-
pings between ACL rules and models would be necessary in order
to trace back the ACL and make corrections to models. Then, models
must be transformed to firewall-specific ACL again, and diagnosis
algorithms must be re-run in order to know if the faults have been
corrected and to guarantee that new ones have not been introduced
during correction. Fault diagnosis and correction at the final stages
of any development process implies, in general, a lower quality
and of the generated code, and that a lot of budget will be spent on
these tasks (Douglas et al., 1996). Integrating fault diagnosis at the
modelling stages can reduce budget spent in this task and accel-
erate the development cycle, increasing overall ACL quality. This
is even more important in MDD methodologies, since models are
their core.

3.1.2. Modelling issues discussion

PSM modularization by features is not the only possibility to
address this problem. PIM modularization is also possible, as shown
in Galan et al. (2010). In fact, feature modularization is possible at
any abstraction level.

When the PIM is not modularized (the taken approach), then
it specifies a set of stable concepts that are shared over all the
supported platforms. Note that in order to obtain a stable PIM
meta-model, a sufficiently representative set of destination plat-
forms must be analysed first. We provide this analysis in previous
works, where different methodologies to design an abstract fire-
wall modelling language, AFPL, were discussed (Pozo et al., 2008,
2009c¢). Concepts that are tied to a particular platform or set of
platforms are specified at PSM level. However, due to the fact that
these concepts are tied to a particular platform, and in order to be
aligned with the MDA primary goals (portability, interoperability
and reusability), they have been represented as modules. This also
enables the user to select the exact number of concepts which he
or she needs to model, and thus to adjust the abstraction level to
its needs. In fact, users with different roles can act as modellers at
the different modelling stages of the framework. Deployment infor-
mation has not been considered in our work, but can be specified
at a second PSM modelling level or taken from a file during M2T
transformation. The main benefits of our approach are:

¢ The taken approach allows a refinement of the initial model (PIM)
by adding new concepts in a per-need basis, which effectively
results in a complete control over the complexity of the modelling
process. The new concepts modelled during refinements do not
intersect with previously modelled concepts, allowing an easy
concept composition. For this reason, once the PIM validity has
been tested, there is no need to do it again during subsequent
refinements. In fact, this separation of concepts allows the use of
different user-roles at each part of the modelling process: a more
business-oriented user specifies the PIM, and a firewall-specialist
models the PSM (if needed).

e The PIM meta-model is very stable. In fact, if the PIM is designed
with a bottom-up methodology, and only contains concepts that
are available in all platforms, any model specified at this level can
be transformed to any platform. If the features specified at PSM

are not needed by the user, the PIM can be directly transformed
to code, without user intervention at PSM level.

Modularization at PSM level does not limit that more features
can be added to the PIM (also as modules). For example, IPv6
addresses cannot be specified with our meta-model. However,
this feature is nowadays supported by most firewall vendors.
Thus an extension to the PIM can be specified. However, note
the following point.

The PSM meta-model is the one that contains most of the vari-
ability, since new platform versions periodically arise which add,
remove or modify existing features which could require the mod-
ification of the platform specific meta-model. Modularizing at
PSM level also provides portability, interoperability and reusabil-
ity advantages for coping with this variability even within the
same platform, since the platform specific concepts have been
isolated one from each other. It is easier and less prone to errors
the modification of one or more independent modules than the
modification of a meta-model of a full-fledged platform.

The modularization at PSM level does not limit the importing of
existing ACLs. The PSM can contain all the modules needed to
model all the features available for a given platform, and thus a
direct inverse transformation can be easily be done without user
intervention. This has been discussed in Section 5.4.

A diagnosis stage can be introduced at PIM modelling, since this
part of the full model is not going to be modified through the rest
of the modelling process. Of course another one may be neces-
sary at PSM modelling stage, since the semantic of the concepts
of each meta-model does not necessarily affect the consistency
and redundancy characteristics of the models: it is something
that will entirely depend on the set of concepts modelled by each
particular PSM.The main drawbacks of our approach are

The user may have to interact several times during the modelling
process. For us, this is not a problem, but an opportunity to allow
different user-roles interact at the different modelling stages

If a new platform is going to be supported, an analysis of the
PIM meta-model is needed in order to check if the features avail-
able in the new platform can be modelled by the existing PIM
concepts. If the modelling is not possible, it may be needed to
modify the PIM in addition to the PSM if the features fall within
the PIM ones in our conceptual separation. However, we think of
this possibility as being very difficult to happen, since the start-up
point of the proposed framework has been AFPL domain-specific
modelling language. AFPL was born from an analysis of the fea-
tures available in six market leader firewall platforms, and allows
the modelling of their common set of features (Eclipse Modeling
Project,2007; Wool, 2004). Anyway, if more concepts are needed,
they can always be added as modules in the PIM.

If the PIM is modularized instead of the PSM, it implies that

it is composed of different parts. One part represents the core of
concepts which enable the modelling of all the features that are
supported by all platforms considered as the real systems (i.e. the
common ones). Surely, this core is not going to have enough con-
cepts to model very specific features of these platforms, and thus
modules may be created in order to fulfil this modelling need. These
modules represent the concepts which enable the modelling of a
new set of features which are only available for certain platforms.
The PSM will then specify all the needed concepts to model the
deployment of the model. This approach (Galan et al., 2010) has
some important drawbacks over the taken one for our problem.
Since each approach is addressing MDD from a different angle, the
problems they solve are different in nature.

The PIM specifies concepts to model features which are not
necessarily available in all real platforms. During PIM to PSM
transformations what to do with this part of the model is not

an easy question to answer. It may be simply pruned in order to
enable the transformation without user intervention. However,
in some problem domains this may be unacceptable, as is the case
of our problem and in general in any problem related to software.
For example, removing a rule during a transformation because a
filtering selector is not available in the destination platform will
surely modify the semantic of the ACL. Because of this, the gener-
ated ACL will not conform to the model, which may imply security
faults such as accepting traffic that would be denied or vice versa.
Note that the semantic of firewall ACLs is not simply represented
by a set of unrelated rules, but by a set of related ones.
Inconsistency and redundancy diagnosis stages problems. Firstly,
platform-specific model may also contain inconsistencies and
redundancies (as the PIM). That is, if a meta-model specifies con-
cepts related to deployment features, do not necessarily imply
that the derived models are consistent. Again, this is something
that must be analysed in a per-meta-model basis. Secondly, if a
diagnosis stage has been introduced in the first modelling stage,
then the diagnosed model cannot be automatically modified for
two reasons: (1) the modification may change the semantic of the
model, and (2) it can introduce new inconsistencies and redun-
dancies that are not going to be detected at the first modelling
stage (i.e. a second diagnosis stage may be necessary, after the
transformations that may prune parts of the model).

The specification of concepts that are not available in all the sup-
ported platforms (present or future) at PIM level could cause
problems during M2T transformations. The PIM should only spec-
ify concepts which are platform-independent. All the concepts
that are specifically tied to a particular platform should be spec-
ified at PSM level. This decoupling can offer future benefits. For
example, different user roles can model different parts of the final
model. Note that the three primary goals of MDA (a view of MDD)
are portability, interoperability and reusability. In fact, if the PSM
is removed in our work or in the another proposal (Galan et al.,
2010), the MDA architecture has no benefit at all, since choosing
a declarative language also offers the benefit of separating the
model specification from the generated code.

However, this approach also has some benefits:

The whole set of concepts which are available as features in a
given platform are specified at PIM level, allowing a direct inverse
transformation from a configuration (or ACL in our problem)
without user intervention. If more features are needed, new mod-
ules are added. Migrations are not the focus of our work. However,
itis a very important topic for us, since it completes our work, and
is considered a topic for future research.

Since all the concepts are modelled at PIM level, consistency and
redundancy diagnosis could only be needed at this abstraction
level. However, the deployment model may also contain incon-
sistencies and redundancies. That is, the semantic of the concepts
of each meta-model does not necessarily affect the consistency
and redundancy characteristics of the models. This is the reason
why the diagnosis stage may or may not be necessary at PSM
level: again, it is something that will entirely depend on the set
of concepts modelled by each particular PSM.

3.1.3. Summary

In conclusion, we have addressed many of the drawbacks

that could prevent firewall administrators from using modelling
languages for the design and maintenance of firewall ACLs. CON-
FIDDENT sits in a niche of firewall modelling languages and tools
(Fig. 6). Note that with CONFIDDENT, we are also implicitly propos-
ing a development and maintenance methodology for firewall ACLs

Modelling Language

complexity
N I_______I______I_
I I I
I I Low-level I
) | Firmato (- |
High | FLIP | Firewall |
| | languages |
______ - __d______L
I I I
Ponder2 | | |
) onder. I I I
Mid PCIM | | |
I I I
______ | L
I ' I
SRML : :
Low Rule-ML CONFIDDENT |
XACML | |
I I
14
Small Mid Al

Fig. 6. CONFIDDENT positioning.

that overcomes the drawbacks of the reviewed modelling lan-
guages and tools.

4. CONFIDDENT PIM meta-model

In this section CONFIDDENT PIM meta-model (from now on,
PIM) is specified and described. This PIM is designed on the basis
of a previously proposed DSML language, AFPL (Pozo et al., 2008,
2009c). AFPL is the most recent firewall ACL DSML. AFPL can model
stateful and stateless rules (although an administrator does not need
to know these kind of details, since complexity is hidden in the
modelling language), positive and negative logic rules, filtering field
overlapping, exceptions, and can automatically be transformed to
six market-leader firewall languages. Table 3a presents AFPL mod-
elling concepts. AFPL RelaxNG Schema Definition is provided in
Appendix I. The design issues of this language have been described
in previous papers and will not be repeated here. We refer the
interested reader to the papers where the language was proposed.

When AFPL was first proposed, it was identified that the
most representative firewall platforms (Linux IPTables, Cisco PIX,
FreeBSD IPFilter, FreeBSD IPFirewall, OpenBSD Packet Filter, and
Checkpoint) can express a similar set of concepts related with
basic filtering. Since these concepts completely fulfil the abstrac-
tion objectives for CONFFIDENT at this first abstraction level (taken
from the previous section), we propose to directly use AFPL as the
PIM for CONFIDDENT. However, since the concepts managed by
AFPL are specified in the XML technological space, a transforma-
tion to modelware one is needed. Fig. 7 presents CONFIDDENT PIM
meta-model.

According to Kurtev et al. (2002), atechnological space is a work-
ing context with a set of associated concepts, body of knowledge,
tools, required skills, and possibilities. There are a few technologi-
cal spaces that have been well identified, such as XML, the grammar
technological space (also known as grammarware) or the meta-
model technological space (known as modelware).

The PIM is composed of a structure of meta-classes. The root
element is the Policy which represents the ACL concept. An instance
of the Policy meta-class is composed of one or more Rule meta-
classes and zero or more DstNATrule and/or SrcNATrule rules. Thus
AFPL (Pozo et al., 2009b) supports three kinds of rules: filtering
(also present in AFPL), SNAT, and DNAT. SNAT and DNAT are not
mandatory, but at least one filtering rule must be specified (in order
to set the policy default action).

Each instance of the Rule meta-class represents a condi-
tion/action rule of the ACL. A rule can be applied to a particular
interface of the firewall platform (interface attribute), and with
a particular direction of the flow of packets (direction attribute).
These two attributes of the Rule meta-class are optional, since if
no interfaces are defined, the rule is applied to all interfaces in
all directions (in and out). The comment attribute is also optional
and represents the documentation for a rule. Furthermore, the Rule
meta-class has an action attribute representing the action that the
firewall should take if a packet matches the condition part. Note
that there are three possible actions (allow, deny, reject). However,
from a semantic point of view, reject and deny actions represent the
same thing (i.e. to block a packet). The only difference is if with the
denied packet an ICMP error message must be sent to the origin
(reject) or not (deny).

The concepts regarding the condition part are represented in the
Matches meta-class, which is a component of the Rule meta-class.
Each Rule can have only one condition part and, for that reason, the
cardinality is one. The Matches meta-class has a set of attributes
representing the concepts available for filtering. These concepts
correspond to the fields which are considered during the filtering
process: source and destination IP addresses, source and destina-
tion ports, protocol, and ICMP type (only if protocol is ICMP). A
data type has been defined for each one of these attributes. The
data types restrict the values that attributes can have. Thus, for
example, the IpType constrains the valid String pattern to specify
an IPv4 address and an optional CIDR value (netmask). The data
types are depicted at the right part of Fig. 7 diagram (stereotyped
as «datatype»).

At the same level of Rule meta-class there are the DstNATrule
and SrcNATrule meta-classes. These meta-classes represent DNAT
and SNAT rules respectively. Note that NAT rules are optional. Fol-
lowing (Table 3c) description, a DNAT rule can be applied to an
interface. Note that no information regarding rule direction can
be modelled, since DNAT rules are always applied with incom-
ing direction. In the same way, a SNAT rule (Table 3b) can only be
applied with outgoing direction. Again, for both kind of rules, it is
possible to specify the characteristics of the packet being translated
using the NatOrigPacket meta-class, which has the same attributes
as the Matches meta-class, but with different cardinalities. How-
ever, translation information differs between SNAT and DNAT.

Table 3a
AFPL DSML (filtering).
Selector Obligation Dependencies Syntax
Source and destination IP address Mandatory - IP, CIDR Block, Identifier, Wildcard
Interface Optional - IP, Identifier, Wildcard
Interface direction Optional - In, Out, Wildcard
Protocol Mandatory - TCP, UDP, ICMP, Identifier, Number, Wildcard
Source and destination port Optional Only if protocol is TCP or UDP - Number, Interval [p1,p2], Identifier, Wildcard
ICMP type Optional Only if protocol is ICMP - Number, Identifier
Action Mandatory - Allow, Deny, Reject

RegEx: ((25[0-5]|2[0-4][0-9]|{01]%0-9]

irst filteri datatype
H poficy First hlteﬂns rules, then [0-017)\.(25{0-5]]2[0-4)[0-901170-9] < <w : ?‘D >>
Halonc eyl [0-817)\.(25(0-5][2(0-4][0-91[0LI70-9] : SlpType
[0-9]7)\.(25[0-5]|2[0-4)[0-9]j01]70-9) [< <javadass> > java.lang.string
{ [0-9]7)(/[0-3)2(0-91)7)({2-22-20-9)
srcnatrule <<datatype> >
P
dstnatrule RegEx: ([0-670-0)710-91710-9170-5) " Forme
0. (:10-617[0-917(0-17(0-9)7[0-S1 - [<javaclass > > javalang String
0.* e
ZA-Z])+
H Rule ! DstNATrule £ SreNATrule <;datatype>>
= comment : String © comment : String = comment : String P 5 ProtoType
RegEx: tepludplicmpl([a-zA-Z]) +(((0- |< <javaclass> > java.lang.String
2]7{0-9)?(0-8)
filter 11 dstnat srcnat <<datatype >
H Fil 7 1.1 RegEx: ([0-2)7(0-9]2(0-9))|([a-2A-Z])+ & IcmpType
Hiter = . = [< <javaclass> > java.lang.String
= interface : String £ DstNat H SrcNat
= direction : DirectionType = interface : String = interface : String .
T action : ActionType [r <<in:mgra:on>>
£ ActionType
= allow
matches original translatedSrc B
translatedDst original .
L1
H Matches . L 1= . v i lc <enumeration> >
< ipsrc: IpType E TNatPacketDst £ NatOrigPacket H TNatPacketSrc ¥ DirectionType
1 :
‘;" ipdst : IpType T ipdst : IpType = ipsrc:IpType T ipsrc:IpType =in
F protocol : ProtoType B pridst: PortTypa = ipdst :IpType - out
= prisrc: PortType = protocol : ProtoType - both

S prtdst: PortType
= icmptype : IcmpType

= prtsrc: PortType
© pridst: PortType
= icmptype : IcmpType

Fig. 7. CONFIDDENT PIM meta-model.

Table 3b

AFPL DSML (Source NAT).
Translated selector Obligation Syntax Comments
Source IP Address Mandatory - Host IP, If the interface

interface name
(identifier)

name is given, the
interface IP is used
(it could be a
dynamic link like
PPP)

Note that there is no way to explicitly represent rule prior-
ities. The reason is that a rule priority is implicitly represented
in the model using rule-order definition in the PIM. Although a
new attribute to represent the order could be added in the Rule
meta-class, we have preferred to use the implicit order to keep the
meta-model as simple as possible.

It is also worth noting that there is no information regarding
how state information is represented on a per-ACL basis. That is,
there is no way to model if the firewall is stateful or stateless with
this PIM. The reason is twofold. First, stateless firewalls are old
technology that is being abandoned in recent firewall platforms
(as is the case of Cisco PIX). Second, the only difference between
stateless and stateful firewall ACLs is that in the later ones infor-
mation regarding source ports of a connection do not have to
be explicitly represented in a rule using the source port selector,
since this information is automatically managed by firewall plat-
forms during ACL execution. However, stateful firewalls also allow
the specification of source port information in rules. In stateless

Table 3c

AFPL DSML (destination NAT).
Translated selector Obligation Dependencies Syntax
Destination IP address Mandatory - Host IP
Destination port Optional Destination - Number,

port must be
specified in the
original packet

Interval [p1,p2]

firewalls, this information must be explicitly specified in each rule
and, if not, no return connections will be allowed. Since the usage
of the source port at PIM modelling is optional, the meta-model
is state-agnostic, in the sense that it allows to represent both
kinds of firewall platforms (or configurations). Finally, this deci-
sion makes the PIM more consistent, since in CONFIDDENT, the PIM
should not model concepts regarding firewall platforms execution
details (Fig. 4).

A detailed description of the PIM meta-model, with attribute
cardinalities and attribute data types, is presented in Appendix II.

4.1. Example PIM instance

In Fig. 8 an example of an instantiated PIM is presented. This
model conforms to Fig. 7 meta-model, and models Appendix III
scenario. In this example, no information regarding interfaces has
been modelled for simplicity reasons (both interface and direction
are optional). As explained before, this PIM cannot represent other
characteristics than the ones needed to make filtering decisions
and NAT translations. However, this model could have (and if fact,
it has) inconsistency and redundancy faults. Thus, the use of fault
diagnosis algorithms is justified at this modelling stage.

4.2. PIM inconsistency and redundancy diagnosis stage

In Fig. 4 the concepts available at platform-independent mod-
elling stage were shown. These concepts are available in the major
firewall platforms and in all CONFIDDENT supported ones. The
available NAT types are also the ones supported in major firewall
platforms and in CONFIDDENT supported ones. However, apart
from the higher level of abstraction gained from this modelling
stage with respect to using firewall-specific languages, there is no
mechanism to avoid the introduction of faults in models. Because
of this, and in order to guarantee that the automatic transforma-
tion to the PSM is done from a fault-free model, a diagnosis stage is
necessary. Once the diagnosis has been run and if the model con-
tains faults, they must be corrected before the automatic PIM to
PSM transformation stage. If the diagnosis algorithms used are fast

: Policy

Gl : Rule = : Matches
comment =R1 — matches ipsrc = 192.168.1.5
action = deny ipdst = all
protocol = tcp
prisrc = all
pridst = 80
rule Rule
= : Filter : Matches
comment = =
e — matches [ipsrc = 192.168.1.0
I~ — ———ipdst =all
protocol = tcp
prtsre = all
rule G pridst = 80
rule Rule
comment = R12 _t Flter o _ Matches
action = deny -——Ea_is___ ipsrc = all
ipdst = all
protocol = udp

prisrc = all
pridst = all

Fig. 8. Example PIM instance from Appendix III scenario.

enough, the diagnosis stage can also be run interactively while the
model is being built, and faults can be given on a per-concept basis.
Furthermore, since modifications to the model during fault correc-
tion can introduce new faults, the diagnosis algorithms must be
re-run each time the instance is modified (interactively or when
modifications are finished).

Since the PIM meta-model has been derived from AFPL (no new
concept have been added), any of the fault diagnosis algorithms
available in the scientific community (Pozo et al., 2009a) which
can be applied to AFPL, can also be applied during CONFIDDENT
PIM modelling. To the best of our knowledge, all proposed incon-
sistency and redundancy diagnosis algorithms can be run for AFPL
models, since AFPL features the basic filtering selectors available
in all firewall platforms (Chapple et al., 2009). However, since the
diagnosis stage may also be run at the same time the model is built
(i.e. on-line), fast diagnosis algorithms are necessary.

To the best of our knowledge, Liu and Gouda (2008) redundancy
diagnosis algorithm, and Pozo et al. (2009b, 2010) inconsistency
diagnosis algorithm are the best proposals to solve these problems.
Both have been used in the proposed framework. The execution of
these fault diagnosis algorithms over Appendix III scenario return
the results presented in Table 4.

Model consistency and redundancy diagnosis have been imple-
mented in Java as a library. The model to be diagnosed is passed
to the library. The library takes the useful parts of the model for

Table 4
Fault diagnosis results over Appendix III scenario.

Diagnosed rule Fault type Other rules implied
in the same fault

R1 Inconsistency R2,R3

R4 Inconsistency R2,R3

R5 Inconsistency R6, R7

R8 Inconsistency R2, R3, R6, R7

R12 Inconsistency R9, R10, R11

R6 Redundancy R7

R9 Redundancy R10

diagnosis purposes, runs the diagnosis algorithms and returns a
minimal diagnosis. This result may be then interpreted by the mod-
elling language again in order to mark the diagnosis result over
the initial model. This part can be implemented using graphical
modelling languages like GMF.

5. CONFIDDENT Netfilter IPTables PSM meta-model. M2M
transformations

At this point, a PIM for CONFFIDENT has been specified, and
at least one PSM for each supported platform is still needed. In
this section a PSM meta-model specification for the IPTables fire-
wall platform (from now on, PSM) is proposed, along with its EMF
(Budinsky et al.,2003) implementation. The PSM has been designed
on the basis of an analysis of the [PTables platform-specific details.
Note that the proposed IPTables PSM specification is only one of
the multiple possibilities that exist to model the platform, and for
that reason should only be considered as a proof of concept. A set of
M2M transformations between the proposed PIM and the PSM are
also specified. The transformations have been implemented in ATL
(ATLAS, 2007). There are many model transformation languages
and approaches. In Czarnecki and Helsen (2006) a feature-based
survey of these approaches can be found, and ATL is one of the most
widely supported and extended. The possibility of PSM inconsisten-
cies is analysed, and another model verification stage is proposed
before the last stage of the modelling process is achieved (M2T
transformations). However, this diagnosis stage is not always nec-
essary as it depends on the possible relations between the PSM and
PIM meta-models, as will be explained below. An example over
previous section one is also given.

IPTables is an evolution of ipchains, the previous Linux Kernel
firewall. It is a command-line oriented platform. That is, its config-
uration and ACL must be written in a shell script, where commands
are introduced into a command interpreter (and to the kernel) one
by one. However, most recent versions incorporate a feature which
allows a file to be used as input and output to load and download,

respectively, an ACL to or from the kernel. IPTables distinguishes
among three types of traffic: incoming packets, which have as
destination the firewall platform (input traffic); outgoing packets
from the firewall platform (output traffic); and, finally, traffic that
traverses two firewall interfaces (forward traffic). Input traffic is
usually used for firewall maintenance purposes, while output traffic
is usually used when the firewall needs to access external services.
Forward traffic is the most common one, and it is used when a client
at one interface of the firewall needs to access a service offered by
a server at another interface.

[PTables defines a set of chains where rules are inserted and exe-
cuted. Chains are composed of lists of rules. The order in which
these rules are executed depends on the chains. That is, rules in
some chains are executed before rules in others. The ordering
between rules in the same chain is imposed by their position in
the ACL. The first rule is the one with the highest priority and it will
be matched at the first place (that is, a classical firewall execution
engine). Chains are grouped in tables, where each table is associ-
ated with a different type of packet processing. IPTables has three
pre-defined tables:

e Filter. This table contains three chains, each one associated to the
three types of standard traffic: input, output, and forward.

e NAT. This table contains the rules associated to the network
address translation protocol. This is one of the first tables that a
packet must traverse. It is composed of three chains: prerouting,
postrouting, and output. At each of these chains rules regarding
destination and source NAT operations are also executed.

e Mangle. This table contains rules that modify some parameters of
the packet header reaching the firewall, such as QoS. It is the first
table that a packet must traverse and has five predefined chains:
prerouting, input, forward, output, and postrouting.

All chains have at the same time input and output directions,
depending on the source or destination IP addresses of the rules. In
addition, IPTables allows the administrator to define its own chains
and tables, and to define jumps between chains as an action when
a packet matches a rule.

Once a packet arrives at an interface of the firewall, it must fol-
low the IPTables flow (Fig. 9). Firstly, the packet is processed at
the prerouting chain, where the firewall engine executes packet
mangling, if it is activated. The packet is also transformed using
destination NAT, if there is any rule in the NAT table that matches
the packet. Then, the packet is processed in the route chain, where
the engine decides (using routing information) if the packet must be
forwarded or otherwise directed to the firewall itself. If the packet is
to be forwarded, it is derived to the forward chain, where the match-
ing engine checks if there is a rule in the filter table that matches
the packet. If the packet is not allowed to pass, then it is dropped.
If the packet is allowed to pass, then the packet is processed at the
postrouting chain in order to match it in the NAT table (destination
NAT in this case). Finally, the packet leaves the firewall.

If the packet is directed to the firewall itself, it is processed at the
input chain, where the matching engine checks if the packet should
pass or not (using the filter table). Before matching, mangling is
executed if it is activated. If the packet is not allowed to pass, it is
dropped at this point. If the packet is allowed, it finally reaches the
firewall.

If the firewall itself sends a packet, it is processed at the out-
put chain, where mangling is executed if it is activated, and where
the matching engine checks if the packet can pass or not. If not,
processing stops here. If it is allowed to pass, then the packet is
processed at the postrouting chain in order to match it in the NAT
table (destination NAT in this case). Finally, the packet leaves the
firewall.

IPTables is one of the most versatile and complex firewall plat-
forms available in the Open Source community as well as in the
commercial one and in fact, its feature set can only be compared to
the ones provided by BSD firewall platforms. An analysis of IPTables
features related to all aspects of the platform has been presented
in a previous paper (Pozo et al., 2009¢c). However, a summary is
presented below.

¢ Filtering selectors. IPTables can filter packets according to TCP
Flags, TCP Options, MAC source address, Time To Live (TTL), Type
of Service (TOS), TCP Maximum Segment Size (TCPMSS), and of
course all the concepts available in the PIM specification. Even
the state of connections can be used to filter rules. Furthermore,
IPTables supports a richer syntax (more data types) for each of
the filtering selectors that can be modelled with the PIM.

NAT modes and selectors. IPTables supports two NAT modes.
These modes are exactly the same ones that can be modelled with
the PIM. However, IPTables has more transformation selectors
than the ones that can be modelled with the PIM. Furthermore,
[PTables supports a richer syntax for each of the NAT selectors
that can be modelled with the PIM.

Packet mangling. [PTables allows changing the TTL and TOS
header fields of TCP packets in the mangle table. Mangling is con-
sidered to be a filtering related feature, since mangling is applied
before the IPTables standard filtering tables. Mangling related
concepts are not available in the PIM.

Actions. IPTables actions are the same three ones that can be
modelled in the PIM. However, IPTables can use a special kind of
action in order to jump between tables. In fact, [IPTables users can
split an ACL into different tables and jump between them using
this special action. However, this action cannot be modelled with
the PIM.

Logging. IPTables allows different types of logging, on a per-rule,
and on a per-chain basis. In the first case, each time a rule marked
with logging is executed by the matching engine, it will be logged.
In the second case, logging is defined for one or more chains and
for one or both directions (in or out), logging all rules which are
executed in the chain for which logging has been defined. Note
that it is allowed to mix both kinds of logging. Logging related
concepts are not available in the PIM.

e Maximum rule hit frequency. In [PTables, the number of times
arule can be matched can be restricted. Different parameters can
be considered, such as a frequency limit (specified by an absolute
number and optionally a time measure), and a maximum burst
within a specified time interval. These concepts are not available
in the PIM.

Filtering of malformed packets. This feature allows to automat-
ically filter (deny or reject) packets with invalid values in their
header, such as invalid checksums. This concept is not available
in the PIM.

Rule processing order. [PTables processes rules in a forward-
checking way (that is, try first the first rule in the ACL). This is
also the way most firewall platforms process rules. This feature
cannot be controlled by the user, and for this reason cannot be
considered in the PIM and neither in the PSM.

5.1. IPTables PSM meta-model

Recall that CONFIDDENT PSM meta-modelling follows a modu-
lar methodology. Each (disjoint) set of related features for a firewall
platform is considered as a different module for the platform
meta-model, and thus platform-specific modelling is done through
module combination. This methodology results in a user-selectable
abstraction level/features available trade-off. For this reason, IPTa-
bles meta-model can be specified with all the modules needed to
model all the features the platform has, or only with some modules

filter

— — —
— d
\\

Mangle Mangle
NAT Filter

Mangle
Filter 5

NAT
posrouting

Fig. 9. IPTables platform packet flow diagram.

in order to be able to model only a reduced set of features. CONFID-
DENT imposes absolutely no constraints on the number of modules
that can be defined for the same target platform or the concepts
available at each of them, provided that they are accompanied by
its corresponding M2M and M2T transformations. In fact, this is one
of CONFFIDENT main strengths. Note that if all features of a firewall
platform are available as modules for its PSM, a full inverse trans-
formation (from a firewall-specific ACL implementation to models)
is also possible. In this paper, we have selected a few IPTables fea-
tures in order to specify some modules as a proof of concept. These
modelled features are chain information, logging and filtering of
malformed packets. Note that many of these platform-specific fea-
tures have arelation with the meta-classes that were defined in the
PIM (which are represented in the PIM module). However, there are
not relations between the concepts modelled at each of the mod-
ules. Fig. 12 depicts the proposed PSM meta-model for IPTables,
which has been structured in four modules.

¢ PIM module. This module models the full set of concepts that has
been modelled in the PIM.

¢ Firewall Configuration Module. This module models the con-
cepts related with the configuration of the firewall management
interface, as well as filtering-engine configuration features (like
the filtering of malformed packets).

¢ Chains Module. This module models the three chains of [PTables
platform.

¢ Logging Module. This module models the two different types of
logging and existing relations with chains, filtering rules and NAT
rules.

As with the PIM, the PSM is composed of a structure of related
meta-classes and data types (Fig. 10). The right part of the figure
represents the data types used in the meta-model. It is also impor-
tant to remember that data types have associated some regular
expressions that restrict the possible values each particular data
type can have. However, these constraints have been omitted in
Fig. 10 for readability reasons.

This PSM proposal includes all PIM meta-classes and attributes,
but also includes several new meta-classes and data types to model
the three platform-specific modules. The majority of these new
meta-classes have some kind of relation with the PIM ones, because
a platform-specific model of a firewall includes concepts that are
modifiers or to PIM ones (used to extend functionality).

The PSM is composed of by the four described modules. The
Firewall Configuration Module includes the concepts regarding
the firewall platform by means of the IP_Firewall meta-class,
which models the management IP address (ip attribute), if this
IP is static or obtained from a server o a dial-up interface (op
attribute), the interface identifier or name (interface attribute), and
the filtering-engine configuration features like the filtering of mal-
formed packets (filtermalformed attribute).

The Chains Module is composed by the Chains meta-class, and
more precisely by the Input, Output and Forward meta-classes. At
each of these chains it is possible to define the default action to
be taken by the firewall-engine for both directions (inflow and out-
flow) for chains. For each of these chains the logging information
is modelled by means of the Logging meta-class (Logging Module).
Its action attribute represents if the logs should be sent to kernel or
user space, and the prefix attribute represents a comment for each
log register.

The PIM module includes all meta-classes described in the pre-
vious section and models all concepts related to filtering and NAT.
However, single rules can also be associated with logging informa-
tion, using the same Logging Module meta-classes.

A detailed description of the proposed IPTables meta-model
with attribute cardinalities and attribute data types is given in
Appendix IV. Let us recall from the previous section that there
is no information regarding how state information is represented
on a per-ACL basis because the meta-models are state-agnostic.
Furthermore, as in the PIM meta-model rule priority is implicitly
represented in the model using rule-order definition in the PSM.

The selection of one or another feature from the firewall plat-
form to be included in the meta-model is related with the number
and complexity of modules that would be necessary. Since mod-
ules concepts are disjoint, in general there would be no relations
between PSM modules meta-classes. However, depending on the
features modelled these modules could have relations with the
part of the meta-model that comes from the PIM (i.e. the PIM
Module). In some cases, these relations are not going to affect the
concepts modelled at PIM level from their consistency point of
view. This is the case of the IPTables modules proposed in this
section. However, there may be other cases where the new con-
cepts could modify previously modelled concepts. This is the case
of modules that could model concepts like new actions for filter-
ing rules, new NAT modes and/or transformation selectors, packet
mangling, etc. In fact, the introduction of these new concepts must
allow the administrator to modify the concepts that were previ-
ously modelled at the PIM. However, the PIM was diagnosed for
inconsistencies and redundancies before entering PSM modelling
stage, and if it is modified at the PSM modelling stage, models must
be diagnosed again. For this reason, the selection of one or another
feature to be modelled in the PSM has important implications that
may affect the entire modelling process, including the diagnosis
stages.

Note that the selected features for the proposed IPTables PSM do
not affect the previously modelled part, since they do not affect the
filtering or NAT rules. A collateral effect of the platform-specific
features modelled in the proposed PSM is that the administrator
is not allowed to modify the concepts modelled in the PIM Mod-
ule, guaranteeing that new inconsistencies or redundancies are not
introduced at the platform-specific modelling stage. One way to
implement this is by means of an editor where these operations
are forbidden.

Firewall

Configuration

1 Frewal

T interface : String
Tip:lpType

7 op : OptionType

© fiematiormed : Sooiean

PIM

rule

1

H Policy

dstratrule

Fep Fraring nuies o

AT anes 64 any’

srenatrule

T ConATrie |

[g SreNaTrae]

. EET) | [
Chains [© commen-Suing | [®] © comment - Sting | comment - String |
1 [1 [1
input forward filter 11 dstnat renat
11 11 11
H Input H Qutput H Forward 2 | ‘ dD"'“'f { [;::_”“ |
7 inflow - ActionType inflow - ActionType 7 inflow - ActionTyps = i i | L —il] | [¢ <enumeratio._.. T
5 outflow : AtionType S outhiow : ActionType S outflow : ActionType L 2 LoggingType ¥ DiractionType
=g =
G Jd - \:,ma wranshatedSre = Uleg - out
—— = ransistedDst original -~ both
logging o - = 11 11 L <enumeratio <cenumerations >
i \ . e = h": T THawaces NatOnighacket T Thawaceeton 2 OptionType # AdionType
Logai 11 i o ipct - IpType T ipdit fpType = ipsrc pType T ipsrc: Type T T e
ogging H Logging Ppr m.’v'm'-,-m ? jpridst - PorType: © ipdst : lpType ~ DHCP = desy
.Ja:l:r_‘ LoggngType e o PortType p'm::::\l- r-jxoT,pa reiect
Bt I looging 3 pridst : PortType oo
¥ © icmprypa - komgType e s
| © iemptype - kempType

Tooging

Fig. 10. CONFIDDENT IPTables PSM meta-model proposal (does not include all IPTables platform features).

5.2. Model-to-model transformation

In this section, transformation rules between the PIM and the
proposed PSM are specified. Note that these rules are specific for
each PSM. The proposed PSM consists of two differentiated parts.
On one hand, the PSM models the concepts regarding the policy (as
it was modelled in the PIM), and on the other hand, the platform-
specific details, such as logging, firewall platform data, etc.

The concepts related to the policy remains with no modifica-
tions, since no new selectors have been considered in the PSM
meta-model. Note that the administrator is not allowed to mod-
ify this information in the PSM in order to preserve the consistency
and non-redundancy of the policy obtained from the PIM diagnosis
stage. This first part of the PSM is, in fact, a direct transformation
from the PIM.

The platform-specific details are generated in two stages.
The first one is automatic, and it consists in the generation of
the IP_Firewall and Chains meta-classes instantiated with their
attributes set to their default values. This decision of assign-
ing default values to attributes has been taken in order to help
less experienced administrators with the modelling. In fact, if no
platform-specific concepts are going to be modelled, the second
stage is completely transparent for them. The second stage is man-
ual, and is where experienced administrators can modify the values
of these default attributes. Even new instances of the meta-classes
can be introduced. Suppose, for example, that an administrator
wants to activate the logging option for some rules. In this case,
the administrator has to create instances of the meta-class Log-
ging, and assign them to the instances of the Rule or one of the two
NAT meta-classes for which logging must be activated.

An ATL implementation of the M2M transformation is given in
Appendix V. The M2M transformation is composed of several parts.
Although all of them are placed in the same file, we have preferred
to separate them in order to improve the readability of the code.

The pim2psm rule adds in the PSM model classes and attributes
initialized to their default values. Although, the default values can
be hardcoded directly into the transformation, the provided refer-
ence implementation in Appendix V makes use of the concept of
parameterization of the transformations. Hence, the transforma-
tion receives as input an external file (incorporated in the header
of the transformation as “parameters: XML”) where the default val-
ues of the transformation are specified. It is also possible to specify
the parameters in a full-fledged model and implement a merg-
ing operation with tools for merging models such as Atlas Model

Weaver (AMW) (Didonet Del Fabro et al., 2006) or Epsilon Merging
Language (Engel et al., 2006). However, we have preferred to use
an XML file, since for our problem model weaving is a too heavy
solution, in the sense that too many resources are needed for it.
The transformation rules read the these values using the statement
thisModule.getParameter(‘name’) where the ATL helper getParame-
ter read the parameter name from the external file. An example of
external file is given in Appendix VI. Using the parameterization of
the transformation makes the implementation more maintainable
since in the case of changing default values or adding new param-
eters, the transformation template will not need modifications.

Firstly, variables for assigning these default values are defined
at using section. At to section, IP_Firewall meta-class is instan-
tiated using the default values for its attributes. Next, Input,
Output, and Forward meta-classes attributes are also instantiated
to their default values, with logging activated. Next, Chains class is
instantiated with Next, Input and Output instances. Finally, Policy
meta-class is instantiated with IP_Firewall, Chains, Rules, DstNA-
Trule and SrcNATrule. The final section has some ATL-specific
checks for checking the values of optional attributes of classes, and
thus contains no modelling or transformation details.

The pim2psmRule rule defines how Rule meta-classes defined in
the PIM are transformed into the PSM ones. It takes Filter, DstNA-
Trule and SrcNATrule instances from the PIM and transforms their
attributes into the PSM ones. Note that as PSM attributes for the Fil-
ter meta-class are the same as in the PIM, this transformation rule
just makes a direct mapping from the PIM. This transformation rule
is also the responsible of setting the default values for the Logging
meta-class. The final section is responsible for checking optional
attributes, and has the same function as in previous rule.

The pim2psmfFilter and pim2psmMatches transformation rules
deal with the transformation details of the attributes of class Fil-
ter and Matches respectively. Both are direct mappings of PIM
attributes, and both have a final section with the same purpose
as in the previous transformation rules.

The pim2psmDstNatrule, pim2psmDstNat and
pim2psmTnatpacketdst rules are used to transform DNAT rules
from the PIM to the PSM. Again, they are a direct mapping from the
PIM values to the PSM. pim2psmDstNatrule transforms the com-
ment and calls pim2psmDstNat in order to transform DstNat class.
pim2psmDstNat transforms TNatPacketDst and NatOrigPacket
classes calling pim2psmTnatpacketdst and pim2psmNatorigpacket
transformation rules. Then, pim2psmTnatpacketdst rule transforms
TnatPacketDst class attributes. Finally, pim2psmNatorigpacket rule

: Policy

rule : Rule = : Matches
comment = R1 — matches ipsrc = 192,168, 1.5
action = deny ipdst = all
protocol = tcp
prtsrc = all
prtdst = 80
rule Rule
comment =R2 H____ﬁ"‘-—‘__\ Lm- " : : Matches
action = allow IR ipsrc = 192,168.1.0
———————ipdst =all
protocol = tcp
prisrc = all
rule prtdst = 80
rule Rule
comment =R 12 _: Filter
action = deny
matches
: : Matches
ip_firewall : IP Firewall ' —"
_ ipsrc =a
Chd dhm_ oo ipdst = all
interface = "ethd ST
filtermalformed = true SEoa s
prtdst = all
: Chains
: Input)
input - logging : Loaging
inflow = deny
outflow = allow action = log
prefix = "Prefix_input”
output et logging : Logging
inflow =deny —————— |
outflow = allow action = log =
prefix = "Prefix_output
forward : Forward loaging : Logging
inflow = deny action = log

outflow = allow prefix = Prefix_forward”

Fig. 11. Example PSM instance automatically obtained from Fig. 8 PIM instance.

transforms NatOrigPacket class attributes and is very similar to
pim2psmMatches rule. All described transformation rules have a
final section with the same purpose as in the previous ones. Finally,
pim2psmSrcNatrule, pim2psmSrcNat and pim2psmTnatpacketsrc
transformation rules do very similar transformations for SNAT and
they are not going to be described.

5.3. Example PSM instance

In Fig. 11 an example of the automatically generated
PSM instance is presented. This PSM instance conforms to the PSM

meta-model, and it is the result of the M2M transformation pre-
sented in Appendix IV. Note that this instance contains concepts
regarding the three modules available in the meta-model (Logging,
Chains and Firewall configuration).

Again, rule order is implicit in the model (the first rule is the one
specified first). This ordering will also be used for the M2T trans-
formation that will be introduced in the next section. Note that,
since this PSM has been automatically generated from the PIM, the
values of the meta-classes attributes have been set to their default
values. In addition, the information regarding individual logging
of rules has not been modelled since, as it was mentioned in the

previous subsection, this information must be directly modelled
by an administrator, if needed.

However, since the default values in the PSM can be manually
modified by an administrator, an analysis to know if new inconsis-
tencies can be introduced is necessary.

5.4. PSM inconsistency and redundancy diagnosis stage

In any part of our framework where the administrator can
interact with models, modifying their meta-classes and attributes,
inconsistencies and redundancies can be introduced. In general and
depending on each particular PSM, two possible types of faults can
be introduced at this modelling level. The first one appears when
the PSM modelling affects the concepts modelled at the previous
stage and that have been transformed into the PSM through a M2M
transformation. This is, if inconsistencies or redundancies can be
introduced between the values that can take the PSM meta-classes
that represent platform-specific features and values that can take
the meta-classes that represent the concepts that were modelled
at PIM stage. Surely this can be controlled in the automatic M2M
transformation if defaults values are used, but when the adminis-
trator can modify the default values, inconsistent and redundant
values may appear. The second type of fault appears when contra-
dictory or redundant values can be introduced between the values
that can take any of the PSM meta-classes that represent concepts
that were not available at PIM modelling stage. In this paper it is
assumed that M2M and MT2 transformations are trusted (that is,
they cannot introduce inconsistencies or redundancies).

With respect to the proposed IPTables PSM, the M2M trans-
formation is semi-automatic in the sense that the attributes and
meta-classes of the PSM are automatically set to their default
values, which the administrator can modify to fulfil its real require-
ments. An analysis of the meta-classes and valid attribute values of
the PSMis needed in order to know if new inconsistencies or redun-
dancies have been introduced when manual modifications have
been made to these attributes. This analysis is also valid in order to
testif any particular care may be taken for the M2M transformation
when setting the default values.

Since the administrator cannot modify the instances of any kind
of rule meta-classes at PSM modelling, then no new inconsistency
or redundancy faults regarding the policy model can be introduced.
Thus, no new consistency analysis of the PSM policy is needed for
this module. However, the rest of modules need an analysis.

¢ IP_Firewall. This meta-class models information regarding the
firewall configuration. The management IP address of the fire-
wall could be dynamic or static (op attribute). If a dynamic IP
is used, then the ip attribute must be empty, as it is set in the
automatic M2M transformation. These two attributes could be
mutually inconsistent, because setting an IP is inconsistent with
the value dynamic of the op attribute, and vice versa. For exam-
ple, the administrator can set an IP for the firewall and leave the
op attribute set to dynamic. This inconsistency is checked via an
OCL constraint at the PSM meta-model (Appendix 1V, IP_Firewall
meta-class, Constraint: “self.op =dhcp implies self.ip = null”).
Chain, Input, Output, Forward. These meta-classes model the
default policies for the three standard chains of IPTables. The
default policy is set with the inflow and outflow attributes using
the ActionType data type. Thus, no inconsistency or redundancy
faults are possible.

Logging. Logging information can be added to chains in order to
log each time the default rules are executed, or to single rules,
where a rule associated with a logging action is registered each
time it is executed. Since IPTables does allow the administrator
to mix logging actions for single rules and for the default action

PoLicy

IP_Firewall

Chains PART 1
Rule
DstNATrule PART 2

SrcNATrule

Fig. 12. IPTables transformation process parts.

in chains, it is not possible to introduce inconsistencies with the
Logging meta-class.

As can be observed from the analysis of the meta-classes,
attributes, and possible values of the proposed IPTables PSM meta-
model, the only inconsistency that can be introduced in the model is
related to the firewall IP address configuration information, which
can be identified directly in the PSM meta-model using an OCL con-
straint which prevents the introduction of the invalid value. For the
proposed PSM there are no possible cases, since the PIM Module
cannot be modified by the administrator, and is a direct transfor-
mation from the PIM model. One way to implement this is by means
of an editor where these operations are forbidden.

6. Automatic code generation. M2T transformation

In this section, a M2T transformation from the PSM to IPTables
SAVE format is described. The transformations have been imple-
mented in MOFScript (MOFS, 2007).

The proposed transformation for IPTables can be divided into
two different parts (Fig. 12). On the one hand, all PSM classes not
related to the filtering and NAT rules are transformed. On the other
hand, Filtering, NAT rules and their logging settings (on a per-rule
basis) are transformed. Note that the order in which information
appears in the output file depends entirely on the particular firewall
platform. The structure of an IPTables file imposes that in the first
place it should appear the information not related to filtering and
NAT rules, and then all the rules.

Transformations in MOFScript are composed of a set of transfor-
mation rules (the fullimplementationis presented in Appendix VII).
For the proposed M2T transformation, we have defined two rules,
corresponding to the two parts of the process mentioned above.
The main() rule is the transformation entry point. The first lines deal
with the header of the IPTables file, and they set the actions for the
three default chains (Input, Output, Forward) as they were defined
in the PSM (that is, with default values, or with values redefined by
the administrator). In this proof of concept, only the Forward chain
has been considered (the other chains are very similar). The default
action value for this chain is the same one as the action of the last fil-
tering rule. Next, the firewall engine is set to stateful by default. This
is also the way other firewall engines like Cisco PIX and Checkpoint
FW-1 work. Next, filtering rules are transformed to code through
the transformation rule generaterules(). If there were NAT rules in
the PSM, they must be transformed also at this point. Finally, a
footer instructing IPTables to commit changes and to execute the
ACL is written into the file, finishing the transformation.

For simplicity reasons, all rules are introduced into the forward
chain, but the use of other chains is straightforward (by checking
rules source and destination IP addresses). Next, the interface and
direction where to apply the rule are transformed. Next, transfor-
mations of source and destination IP addresses, as well as source
and destination ports are done, checking if they represent wildcards

file f("sample code.firewall")

f.println("# Generated by MOFScript in transformation
from model to text")
Foprintlni(iat)
f.println("*filter")
f.println("# CHAINS")
f.println (" :INPUT DROP [0:0]")
~ var defaultaction : String =
TR [psm.objectsOfType (psm.rule) .last () .action
: Fiter s e=TaTs var forward : String = ""
action =deny [~ \Dds'f=r"t if(defaultaction.equalsIgnoreCase("allow"))

otocol = tp

:Brc-aﬂ \\‘5‘\ forward = ":FORWARD ACCEPT [0:0]"

pridst = 80 \>\® i

— ¢ else
Filer — $ forward = ":FORWARD DROP [0:0]"
Tacton e alon |____™athes [iperc = 152.168.1.0 \‘S\\é

ipdst = al

| <2, f.println(forward)

prdst - 80 b "% f.println (" :OUTPUT DROP [0:0]")

N
KON
7] ’?//@ var numrules : Integer =
| : \1 psm.objectsOfType (psm. regla) .size()
! rule Rule :
e = Matches if (numrules > 0)

| matches ipsrc = all

action = deny
=al

pridst = all

Generated by MOFScript in

*filter

: INPUT DROP [0:0]
:FORWARD DROP [0:0]
:OUTPUT DROP [0:0]

-A FORWARD

-m state --state

{
f.println("# STATEFUL")
f.println("-A FORWARD -m state --state INVALID -j
DROP")
f.println("-A FORWARD -m state —-state
ESTABLISHED ,RELATED -j ACCEPT")

<« ndino

transformation from model to text

INVALID -j DROP

-A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

Fig. 13. [PTables file header generation (from main() transformation rule).

or not (value all for the attribute). If the protocol is ICMP, then the
ICMPType is also considered in the transformation. Finally, the rule
action along with logging information is considered together. At
this point, a call to generateForwardLogging() is done in order to
transform the default logging action of the forward chain.

6.1. Example

In this section we show how our M2T transformation is exe-
cuted on the PSM instance of Fig. 11. In the first part of the M2T
transformation, the headers of the IPTables file are generated. The
three typical chains in [PTables are Input, Output and Forward. By
default all chains have a drop action, but in case that a default action
has been specified in the Policy model, its action is taken. After that,
the firewall is configured in its stateful mode only if there is at least
one rule in the model. This has been set as an OCL constraint, and
translated into a simple if-statement (if (numrule >0, from Fig. 13)
when the number of rules in the model is greater than zero. An
example is presented in Fig. 13.

In the second part, the instances of the Rule meta-class are trans-
formed iterating over them. The method generaterules() is called for
each rule instance. The first instance of a rule in the PSM (the one
whose attribute comment is R1) has been taken as an example to
illustrate the code generation. The first lines of generaterules() copy

into a set of variables the information related to the rule instance
for its later processing. Each attribute value is filtered and analysed
to generate a correct sentence in IPTables format. The output text
is generated in a String variable which will be dumped over a text
file at the end of the transformation procedure.

In Fig. 14(a) and (b) a transformation for this first rule is showed.
In order to produce a human-readable code, it has been included a
comment before each rule in the file. The generated comment has
been obtained from the attribute comment. After that, all rules are
introduced in the FORWARD chain, as a consequence we have to add
“-A FORWARD?” to the sentence. Depending on the values stored in
the variables, different sentences will be formed. The direction vari-
able is filtered in order to check the direction of the packet, if the
interface attribute has been set. If the value is in a “-i” flag followed
by the value of the interface attribute is added to the file. The same
is done if the value is out, but with a “-0” flag. Otherwise, we have
to add both flags. The ipsrc and ipdst variables are checked for the
value all. If the variables do not have a value all, the IP information
needs to be included in the rule. For the source IP an “-s” followed by
the value of the ipsrc attribute is written to the file, and for the des-
tination IP a “-d” flag followed by the value of (the) ipdst (attribute).
The protocol variable is filtered to check if it is a TCP value or not.
In the case that it is working with a TPC protocol, we add a “-p” flag
followed by the protocol name. After that, it is necessary to check

the source port (prtsrc) and the destination port (dstprt). In both
cases, the associated flags are added to the output file in the right
format.

In Fig. 14(b) the action variable is transformed. In this case, the
treatment for the three cases: deny, allow and reject have not been
included in the example in order to improve legibility (Appendix
VII contains the full code), but only for the deny action (the case for
R1). The process is the same for allow and reject with the only dif-
ference being that the action is transformed to the output file. The
deny value must be transformed into a DROP action, allow value to
ACCEPT, and reject value to REJECT. Then it is necessary to check if
logging has been specified in the rule or not. In order to improve
legibility, rules in this example do not have their own logging infor-
mation. Instead, the logging specified in the chain where the rule
is associated to, is used. This is done by calling generateForward-
Logging(). The logging information included there is transformed
as the log part in the output file.

A complete output generated is presented here in Fig. 15. The
implicit rule order in the model has been used to generate the
ordering for the rules in the code. This file can be directly exe-
cuted in any IPTables firewall platform, with no user intervention
at code-level.

7. Discussion of results

One of the main aims of CONFIDDENT is to provide a model-
driven design and maintenance framework which can satisfy a wide
spectrum of firewall administrators. CONFIDDENT is based on sev-
eral modelling stages, each with a different abstraction level, and
has been heavily inspired by the MDA view of the Model-Driven
Engineering paradigm. Model-Driven Architecture (MDA) develop-
ment aims at generating systems from high-level system models
and requirements models, taking away much of the concurrent
manual changing of artefacts at the different stages of software
development. It promises better leverage on building quality (i.e.,
stakeholder value) into the software products and should sup-
port the measurement of software quality at different stages of
the development life cycle. The three primary goals of MDA are
portability, interoperability and reusability. The first stage consists
on defining platform-independent models. These models conform
to a platform-independent meta-model (this meta-model is fixed
in CONFIDDENT), which represents the highest level of abstrac-
tion. With this meta-model, an administrator is able to model the
vast majority of features of the market-leader firewall languages
supported in CONFIDDENT.

—em = output = cutput + "#Rule
output = output + "-A FORWARD "

:" + self.comment + "\n"

/ - ' if (direction.equalsIgnoreCase("in") && interface.size()>0)
-— output = output + "-i " + interface+ " "
/ else if (direction.equalsIgnoreCase("out") && interface.size()>0)
/’l ,ﬂ' output = output + "-o " + interfacet+ " "
/ else|
// if((not direction.equalsIgnoreCase("all")) && interface.size()>0)
’/’ output = output + "-i " + interface+ " -o "+ interface + " "

}

\ s T

{

}

else

{

\ \ [

if (protocol.equalsIgnoreCase ("tcp")

output = output + "
if (not prtsrec.equalsIgnoreCase("all"))

output = output + " -m tep --sport " + prtsre + " "
if (not prtdst.equalsIgnoreCase("all"))

if (not prtdst.equalsIgnoreCase("all"))

if (not protocol.equalsIgnoreCase ("all") &&
not protocol.equalsIgnoreCase("0"))

if (not ipsrec.equalsIgnoreCase("all"))
/ output = output + " -8 " + ipsrc + " "
if (not ipdst.equalsIgnoreCase("all"))
output = output + " -d " + ipdst + " "

or protocel.equalsIgnoreCase ("6"))

-p " + protocol + " "

output = output + " --dport " + prtdst + " "

output = output + " -m tecp --dport " + prtdst + "

output output + " -p " + protocol + " "
\ \ NN
: Rule \ ’\\ : Matches
: Filtel
comment =R1[™———— — matches N ipsrc = 192, 168.1.5
action = deny —|ipdst = all

protocol = tcp
prtsrc = all
pridst = 80

Fig. 14. (a, b) Rule R1 transformation example.

b : Rule : Matches
L : Filter "
comment =R1 — matches ipsrc = 192,168.1.5
action = deny ipdst = all
protocol = tcp
prisrc = all
: Logging / prtdst = 80
action = log /
prefix = "Prefix_forward”

I T mhw

\

 \

if (action.equalsIgnoreCase ("deny"
if (logaction.size()>0) {

"o

var logging : String = salida + "-j " + logaction.toUpper()
, I if (logprefix.size()>= 0)
logging = logging+" --log-prefix "+'"'+logprefix +'"'
I elze
\ logging = logging + "\n"
\ \ output = output + " -j DROP"
output = logging + output

Yelse{

logging actio output

}

psm.objectsCfType (psm.forward)->forEach

(£) {

output + f.generateForwardLogging()

output = output + " -j DROP "

~—
‘ psm. forward: :gene

var salida : Stri

~

if (loggingAction.
var logging :

if (loggingPref

logging

output = logg
}

result = output

}

#Rule :R1

-A FORWARD -s 192.168.1.5 -p tcp -m tcp --dport 80

var loggingAction :
var loggingPrefix :

rateForwardLogging () : String {
ng = "";

String
String

= self.logging.action

= self.logging.prefix

size()>0){

String = output + "-j " + loggingAction.toUpper ()
iz.size()>= 0)

logging + " —-log-prefix " + '"' + loggingPrefix + '™’

ing + output

indinc

-p tcp -j LOG --log-prefix "Forward prefix" -j DROP

Fig. 14. (Co

The second modelling stage is where the administrator selects
the target platform for the final ACL, and where platform-specific
details are modelled, if any, building a platform-specific model
(PSM). Several platform-specific meta-models (at least one for each
target platform) are also necessary at this modelling stage. Ideally,
an administrator must be able to model the full feature set of the
selected firewall platform by means of its meta-model, and thus the
meta-model must contain enough concepts to model the features.
However, this will surely result in a very complex meta-model
where some of its concepts may never be used by less experienced
administrators. To prevent this, CONFIDDENT uses modularized
platform-specific meta-models: a target platform meta-model is
built from small parts, where each of these parts defines a platform-
specific feature. The administrator is thus free to select the trade-off
between abstraction level/features available, and thus this mod-
elling stage can be understood as a variable abstraction level one.
Following this approach, existing platform-specific meta-models
can be extended or modified, and new ones can be created to

ntinued)

fulfil any administrator needs. Even repositories of platform-
specific meta-models can be provided to CONFIDDENT users.
However, the MT2 transformation has not modularized in the cur-
rent reference implementation, modifying the PSM to add new
modules will involve modifying the (monolithic) M2T transforma-
tion. In fact, the platform-specific modelling stage may completely
be transparent if the PIM fulfil administrators’ modelling needs.

The last modelling stage is where the firewall-specific ACL (i.e.
the implementation) is obtained through an automatic M2T trans-
formation by means of predefined transformation rules. Although
the implemented ACL can be modified by an administrator, it is not
recommended, since traceability with the models may be loosed.
Furthermore in order to accomplish any modification, administra-
tors need to know the details of the particular firewall-specific
language and platform.

With respect to the reviewed high-level languages and com-
mercial and Open Source ACL design tools, CONFIDDENT provides
abstraction in both platform functionality and language syntax. We

-p tep -j LOG --log-prefix
-p tep -j LOG --log-prefix

-p tep -j LOG --log-prefix "Forward prefix" -j ACCEPT

-p tep -j LOG --log-prefix "Forward prefix" -j DROP

-p tep -j LOG --log-prefix "Forward prefix" -j ACCEPT

-p udp -j LOG --log-prefix "Forward prefix" -j ACCEPT

-p udp -j LOG --log-prefix "Forward prefix" -j ACCEPT

Generated by MOFScript in transformation from model to text
Rfilter

:INPUT DROP [0:0]

:FORWARD DROP [0:0]

:OUTPUT DROP [0:0]

—-A FORWARD -m state --state INVALID -j DRCP

-A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

#Rule :R1

-A FORWARD -s 192.168.1.5 -p tcp -m tecp --dport 80

#Rule :R2

-A FORWARD -s 192.168.1.0 -p tcp -m tep --dport 80

#Rule :R3

-A FORWARD -d 170.0.1.10 -p tcp -m tcp --dport 80

#Rule :R4

-A FORWARD -s 192.168.1.0 -d 170.0.1.10 -p tep -m tecp —-dport 80
#Rule :R5

-A FORWARD -s 192.168.1.60 -p tcp -m tecp --dpoert 21

#Rule :R6

-A FORWARD -s 192.168.1.0 -p tcp -m tep --dport 21

#Rule :R7

-A FORWARD -s 192.168.1.0 -d 170.0.1.10 -p tcp -m tcp --sport any
#Rule :R8

-A FORWARD -p tcp -p tcp -j LOG --log-prefix "Forward prefix" -j DROP
#Rule :R9

-A FORWARD -s 192.168.1.0 -d 170.0.1.10 -p udp -m udp --dport 53
#Rule :R10

-A FORWARD -d 170.0.1.10 -p udp -m udp --dport 53

#Rule :R11

-A FORWARD -s 192.168.2.0 -d 170.0.2.0 -p udp

#Rule :R12

-A FORWARD -p udp -p udp -j LOG --log-prefix "Forward prefix" -j DROP
COMMIT

COMPLETED

"Forward prefix" -j DROP

"Forward prefix" -j ACCEPT

-p tep -j LOG --log-prefix "Forward prefix" -j DROP

--dport 21 -p tcp -j LOG --log-prefix "Forward prefix" -j ACCEPT

-p udp -j LOG --log-prefix "Forward prefix" -j ACCEPT

Fig. 15. Generated code for Appendix III scenario.

believe the CONFIDDENT PIM meta-model is the most complete
model of those reviewed. As we have explained in the paper, this
modelling stage would be enough for most ACL developments, and
the model obtained is valid for these six platforms. This contrasts
with the reviewed multi-vendor ACL developments tools, where
the target platform must be specified before ACL modelling. Fur-
thermore, in CONFIDDENT specific details for a particular target
platform can be modelled through a platform-specific meta-model.
These meta-models are designed in a modular way, assuring that
complexity is always adjusted to experience and modelling needs of
administrators. Even transformations between different platforms
PSM are possible (possibly with information loss). This also con-
trasts with multi-vendor design tools, where models are fixed and
no transformations are allowed between different platform mod-
els.

Through the use of complete meta-models for each of the sup-
ported firewall platforms, a direct import of firewall-specific ACLs
with no information loss is possible via an inverse transformation.
However, this is out of the scope of this paper.

However, the use of the proposed architecture does not yet
guarantee the absence of faults of the models. For this reason, CON-
FIDDENT includes one fault diagnosis stage at each modelling level.
Diagnosis can even be run interactively while modelling (even dur-
ing model maintenance) if algorithms are efficient enough. Due to
these stages, the administrator is able to correct these faults dur-
ing modelling, and not in the generated ACL, which contributes
to reduce the time and budget spent on this task. This feature is
not supported by any of the analysed high-level languages or ACL
design tools.

In summary (Table 5), CONFIDDENT provides both a new level
of administrator productivity and a new level of confidence on
the developed code. CONFIDDENT represents the first proposal
of abstraction to design and manage firewall ACLs which allows
administrators to work both on a platform independent model,
and on a platform specific model for a particular target firewall

platform, and where models are diagnosed for faults before enter-
ing in any new modelling stage.

8. Conclusions and future works

In this paper, two of the traditional firewall ACL problems
have been revisited: complexity of ACL design, development, and
maintenance, and ACL inconsistency and redundancy diagnosis.
Although several works listed in the bibliography deal with solu-
tions to these two problems, we found none of them completely
satisfactory. When languages have a large feature set, they are more
complex to be used than a firewall-specific one. When they have a
small feature set (and usually are more abstract and not firewall-
specific), some very specific and advanced features could be needed
by experienced administrators and not available in them. Further-
more, the use of models does not guarantee that the resulting
generated code is consistent and non-redundant.

The tools and methods that aim to help administrators dur-
ing ACL development process should gain in functionality and
ease of use at rates to match the increase in firewall ACL devel-
opment complexity. In this paper CONFIDDENT, a CONsistent
and non-redundant Flrewall Design, DEvelopment, and maiNTe-
nance framework has been proposed. In CONFIDDENT, simple and
abstract platform-independent ACL models (which might satisfy a
large base of inexperienced firewall administrators) can be com-
bined with more complex and less abstract platform-specific ACL
models (which can satisfy experienced administrators) through a
series of automatic model transformations. CONFIDDENT takes into
account inconsistencies and redundancies that can be introduced
during modelling stages and integrates different model verifica-
tion and diagnosis stages. Models can automatically be transformed
to firewall-specific ACLs. CONFIDDENT currently supports a wide
range of firewall platforms, which represent market-leaders: Linux
[PTables, Cisco PIX, FreeBSD IPFilter, FreeBSD IPFirewall, OpenBSD

Table 5
CONFIDDENT comparison with reviewed tools.

Firewall Builder Cisco ASDM Checkpoint Blades LogLogic CONFIDDENT
ChangeManager
Focus is on syntax abstraction or in Syntax Syntax Syntax Hybrid Both
functionality abstraction
Topology/logic separation Vv i Vv v Vv
Firewall-specific ACL import Partial v N/A v J
Models are user-extensible X x x x J
Able to model other devices such X i Vv v x
as IPS
Adjustable abstraction level x x x x J
Transformations possible between X X x X v
platform models
Multi-vendor compilation J x x J J
Integrated inconsistency and/or Only shadowing X x X J
redundancy diagnosis
FW platforms supported Cisco, IPTables, HP Cisco Checkpoint Cisco, Juniper, Cisco, IPTables, BSD
ProCurve, BSD PF, Checkpoint, PF, IPFW, IPFilter,
IPFW, IPFilter Fortinet, IPTables Checkpoint

Packet Filter, and Checkpoint and its reference implementation is
based in the Model-Driven Architecture.

To the best of our knowledge, this is the first published work that
addresses the design, development, and maintenance of consistent
and non-redundant firewall ACLs at the design stage using a model-
driven approach. With CONFIDDENT, it is possible to create tools
that effectively fill the gap between current modelling languages
and firewall-specific ACLs, providing firewall administrators with
tools that represent a real alternative for the whole life-cycle of ACL
management.

The present work can be extended in several ways. For exam-
ple, UML can be used as a modelling language to represent access
control requirements (the Computation Independent Model, CIM),
as well as the automatic transformation into the PIM. This will
add another, higher, abstraction level to the framework. This new
abstraction level could include risk information in order to auto-
matically generate specific parts of the model in order to assess the
protection of the higher risk assets. In addition, multiple firewalls
can also be considered in the meta-model, which would require
the specification of the network topology in order to assign spe-
cific rules to firewalls. At a lower level, optimizations can be made
in the M2T transformations in order to generate more efficient
code.

Acknowledgement

We would like to thank the anonymous reviewers for their con-
structive comments on the early version of this paper. This work
has been partially funded by Spanish Ministry of Science and Edu-
cation project under grant TIN2009-13714, and by FEDER (under
ERDF Program).

Appendix I. AFPL XSD

AFPL is composed of a policy, which consists of list of Con-
dition/Action rules. AFPL should have at least one filtering rule,
although NAT rules are always optional. This is because there is a
required rule at the end of firewall ACLs that represents the default
policy that should be taken if no other match is found in it.

Filtering rules are composed of the firewall interface on which
the rule is going to be applied and the direction of the flow of pack-
ets (interface and direction tags, which are optional), the condition
part (matches tag), the action to be taken when a packet matches the
rule, and finally a comment which represents the documentation
of the rule. The condition part of the rule uses the selectors pre-
sented in Table 3, which also have specific syntaxes. These selectors
are Source and Destination IP (mandatory), Source and Destination
Ports (only if protocol is TCP or UDP), Protocol (mandatory), ICMP
Type (only if protocol is ICMP), and finally interface and direction
(optional).

NAT rules are of two types: source NAT and destination NAT.
Each kind of rule (srcnatrule, dstnatrule) changes (translates) source
or destination TCP/IP headers respectively. Both NAT rules can
have a comment and an interface where the rule is applied (the
interface direction can be inferred automatically depending upon
the NAT mode). Again, both NAT rules need an original packet
(NatorigPacket) which has the same selectors as the ones used in
filtering rules) and a set of selectors to be translated. Note that this
set of translated selectors is the main difference between the two
NAT modes.

The presented XSD has been implemented in RelaxNG Compact,
which is a schema language based on XML. Currently, it is in the
final stage of standardization (ISO/IEC 19757-2).

#Firewall Policy Schema RelaxNG Compact version 11/4/08
#Abstract Firewall Policy Language
#vV2.11 (23/01/09)

#Each rule may be a Filter Rule or Nat Rule. At least one filter
#rule is mandatory

grammar {
start =
element policy {
element rule {
element filter { filterType },
element comment { text }?
b,
element srcnatrule {
element srcnat { srcNatType },
element comment { text }?
P,
element dstnatrule {
element dstnat { dstNatType },
element comment { text }?
}*

}

filterType =
element interface { text }?,
element direction { string "in"
element matches { matchesType },

| string "out" |

element action { string "allow" | string "deny" | string "reject" }
srcNatType =
element interface { text }?,

element original { natOrigPacket 1},
element translatedSrc { TnatPacketSrc }

dstNatType =
element interface { text }?,
element original { natOrigPacket },
element translatedDst { TnatPacketDst }

matchesType =
element ipsrc { ipType },
element ipdst { ipType },
element protocol { protoType },
element prtsrc { portType }?,
element prtdst { portType }?,

element icmptype { icmptType }?
natOrigPacket =

element ipsrc { ipType }?,

element ipdst { ipType }?,

protocol { protoType }?,
prtsrc { portType }?,
prtdst { portType }?,
icmptype { icmptType }°?

element
element
element
element

TnatPacketSrc =
element ipsrc { ipType }

TnatPacketDst =
element ipdst { ipType },
element prtdst { portType }?

string "both" }?,

ipType = xsd:string { pattern = " ((25[0-5]|2[0-4][0-9]|[01]2[0-9][0-9]1?)\.(25[0-5](2[0-4][0-9]][01]2[0-9][0-
912)\.(25[0-5]12[0-4][0-9]1|[01]1?[0-9][0-9]12)\.(25[0-5]112[0-4][0-9]1][01]12[0-9]1[0-9]2) (/[0-3]12[0-9])7?) | ([a-2zA-Z0-
91)+" }

protoType = xsd:string { pattern = "tcp|udpl|icmp| ([a-zA-Z])+]| ([0-2]12[0-9]12[0-9])" }

portType = xsd:string { pattern = " (([0-6]2[0-9]2[0-9]2[0-9]2[0-9]) (:[0-6]2[0-9]2[0-9]2[0-9]2[0-9])7?) | ([a-zA-
z])+" 1}

icmptType = xsd:string { pattern = " ([0-2]2[0-9]2[0-9]) | ([a-zA-Z])+" }

}

Appendix II. PIM description

In this appendix all the elements of CONFIDDENT PIM meta-
model are described by means of a template. There are three kinds
of templates: meta-classes, data types and enumeration templates.
Eachtemplateisdivided in different parts which represent the main
features of the element that is being described in the template.
Thus, a meta-class template is composed of four areas (description,
attributes, relations, and constraints), while data types and enu-
meration templates only have a description and a constraint area.
The description area contains a brief explanation of the element

purpose. The attributes area holds the set of attributes that have
been defined in a meta-class. Each attribute has a name, a cardinal-
ity, atype, and a brief explanation of its purpose. The relations area
includes the different relationships that a meta-class has. Each rela-
tion is specified by means of a name, its cardinality, the source and
target meta-classes, and a brief description. Finally, the constraints
area contains some constraints associated to the particular element
that is being modelled. In the meta-class templates, the constraints
are expressed in OCL, while in the data type templates, they are
specified by means of regular expressions. The different values
which an enumeration can have are also considered as a constraint

in the enumeration template, because they limit the set of pos-
sible values in an enumeration. It is interesting to highlight that
constraints have not been depicted in the graphical meta-model
(Fig. 7) for readability reasons.

It is necessary to clarify that MDA does not require the use of
UML to specify PIMs or PSMs, but it is just a recommendation.
When a developer has to define a meta-model, he has to choose
the meta-modelling technique: a UML-based profile (also named
lightweight extension) or a MOF-based meta-model (or heavy-
weight extension). There are different reasons for selecting one of
them (Desfray, 2000).

MetaClass Policy?

Description The ACL of a Firewall
Attributes

Relations rule [1..*]: (Policy — Rule)

Through this relation it is possible to obtain all the rules
associated to the policy
dstnatrule [0..”]: (Policy — DstNATRule)
Through this relation it is possible to obtain all the
destination NAT rules associated to the policy
srcnatrule [1..%]: (Policy — SrcNATRule)
Through this relation it is possible to obtain all the source
NAT rules associated to the policy

Constraints context Policy
inv:
(self.rules — size()>1)

2 Policy is declared as root of meta-model, hence this instance must appear only
once in the models.

MetaClass Rule

Description Condition/action rule

Attributes comment [0..1]: String
Documentation for a rule

Relations filter [1..1]: (Rule — Filter)

Through this relation it is possible to obtain the general
filtering parameters of a filtering rule
Constraints context Rule
inv:
(self.matches.size()=1)

MetaClass Filter
Description Models the general parameters of a filtering rule
Attributes interface [0..1]: String

Firewall interface where the rule is applied

direction [0..1]: Direction Type

Direction of packet flow

action [1..1]: Action Type

Action to be taken when a packet matches a condition

Relations matches [1..1]: (Filter — Matches)

It defines the match parameters of a rule
Constraints context Rule

inv:

(self.filter.size()=1)

MetaClass Matches
Description Models filtering parameters of a Rule
Attributes ipsrc [1..1]: IpType

IP source of a rule

ipdst [1..1]: IpType

IP destination of a rule

protocol [1..1]: ProtoType

Protocol of a rule

prtsrc [0..1]: PortType

Port source of a rule. Only if the protocol is TCP or UDP

prtdst [0..1]: PortType

Port destination of a rule. Only if the protocol is TCP or UDP

icmptype [0..1]: IcmType

Type of the ICMP protocol. Only if the protocol is ICMP
Constraints context Matches

inv:

(self.protocol = tcp or self.protocol = udp) implies

self.prtdst <>null

Xor

(self.protocol =icmp) implies self.icmptype < > null

MetaClass DstNATRule
Description Destination NAT rule
Attributes comment [0..1]: String
Documentation for a rule
Relations dstnat [1..1]: (DstNATRule — DstNat)
Through this relation it is possible to obtain the general
parameters of a destination NAT rule
MetaClass SrcNATRule
Description Source NAT rule
Attributes comment [0..1]: String
Documentation for a rule
Relations srcnat [1..1]: (SrcNATRule — SrcNat)
Through this relation it is possible to obtain the general
parameters of a source NAT rule
MetaClass DstNAT
Description Models general parameters of a destination NAT rule
Attributes interface [0..1]: String
Firewall interface where the rule is applied
Relations translatedDst [1..1]: (DstNAT — TNatPacketDst)
Through this relation it is possible to obtain the NAT rule
translation parameters
original [1..1]: (DstNAT — NatOrigPacket)
Through this relation it is possible to obtain the filtering
rule parameters associated to this NAT rule (i.e. the
original rule where the translation is applied)
Constraints context DstNAT
inv:
(self.dstnat.size()=1)
MetaClass SrcNAT
Description Models general parameters of a source NAT rule
Attributes interface [0..1]: String
Firewall interface where the rule is applied
Relations translatedSrc [1..1]: (SrcNAT — TNatPacketSrc)
Through this relation it is possible to obtain the NAT rule
translation parameters
original [1..1]: (SrcNAT — NatOrigPacket)
Through this relation it is possible to obtain the filtering
rule parameters associated to this NAT rule (i.e. the
original rule where the translation is applied)
Constraints context STcNAT
inv:
(self.srcnat.size()=1)
MetaClass TNatPacketDst
Description Models translation parameters of destination NAT rules
Attributes ipdst [1..1]: IpType
Translated destination IP address
prtdst [0..1]: PortType
Translated destination port
Constraints context TNatPacketDst
inv:
(self.tnatpacketdst.size()=1)
MetaClass TNatPacketSrc
Description Models translation parameters of source NAT rules
Attributes ipsrc [1..1]: IpType
Translated source IP address
Constraints context TNatPacketSrc
inv:
(self.tnatpacketsrc.size()=1)
MetaClass NatOrigPacket
Description Models filtering parameters of a NAT rule
Attributes ipsrc [1..1]: IpType

IP source of a rule

ipdst [1..1]: IpType

IP destination of a rule

protocol [1..1]: ProtoType

Protocol of a rule

prtsrc [0..1]: PortType

Port source of a rule. Only if the protocol is TCP or UDP
prtdst [0..1]: PortType

Port destination of a rule. Only if the protocol is TCP or UDP
icmptype [0..1]: IcmType

Type of the ICMP protocol. Only if the protocol is ICMP

MetaClass NatOrigPacket

Constraints context NatOrigPacket
inv:
(self.protocol = tcp or self.protocol = udp) implies
self.prtdst <>null
Xor
(self.protocol =icmp) implies self.icmptype < >null

DataType IpType

Description This data type models an IP address, The only constraint is
that it is defined by means of a regular expression that
limits the possible values that an IP address can have. An
example of valid IP is: 192.168.1.1/16

Constraints Regular expression: ((25[0-5]2[0-4][0-9]|[01]?[0-9][O-
9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[O-
4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[O-
9][0-9]?)(/[0-3]?[0-9])?)|([a-zA-Z0-9])+

DataType ProtoType

Description It models a protocol. Examples of valid protocols are: tcp,
udp, 80

Constraints Regular expression:
tepludplicmpi([a-zA-Z])+|([0-2]?[0-9]?[0-9])

DataType PortType

Description It models a port. Examples of ports are: 80, 80:65535, Port1

Constraints Regular expression: (([0-6]?[0-9]?[0-9]?[0-9]?[0-9])(:[O-
6]?[0-9]?[0-9]?[0-9]?[0-9])?)I([a-zA-Z])+

Enumeration DirectionType

Description It describes the possible direction of a packet when it is
crossing the Firewall interface

Constraints Enumeration:
o IN
« OUT
« BOTH

Enumeration ActionType

Description It describes the possible actions to execute when the
packet has been matched with a rule

Constraints Enumeration:
o ALLOW
e DENY
o REJECT

Appendix IIl. Example scenario

This example scenario consists in a single firewall connected
to three network segments. An example ACL for this firewall is
presented in the following table. Note that this ACL deliberately
contains faults (inconsistencies and redundancies).

INTERNET
172.0.0.0/24

FIREWALL

192.168.1.0/24

& &

192.168.1.5 192.168.1.60

192.168.2.0/24

Priority/ Protocol Source IP Src Destination ~ Dst Action
ID Port IP Port

R1 tep 192.168.1.5/32 any R] 80 deny
R2 tcp 192.168.1.*/24 any *xxX10 80 allow
R3 tcp *xxX0 any 172.0.1.10/32 80 allow
R4 tcp 192.168.1.*/24 any 172.0.1.10/32 80 deny
R5 tcp 192.168.1.60/32 any *xxX0 21 deny
R6 tep 192.168.1.*24 any R 1] 21 allow
R7 tcp 192.168.1.*/24 any 172.0.1.10/32 21 allow
R8 tcp *xxXI0 any *xxX0 any deny
R9 udp 192.168.1.*/24 any 172.0.1.10/32 53 allow
R10 udp **X2[0 any 172.0.1.10/32 53 allow
R11 udp 192.168.2.%/24 any 172.0.2.*/24 any allow
R12 udp *xxXI0 any *xxX10 any deny

The following table contains the results of a complete inconsis-
tency and redundancy diagnosis algorithm over the example ACL.
A complete taxonomy of faults is provided in Hamed and Al-Shaer
(2006).

Diagnosed rule Fault type Other rules implied in
the same fault

R1 Inconsistency R2,R3

R4 Inconsistency R2,R3

R5 Inconsistency R6, R7

R8 Inconsistency R2, R3, R6, R7

R12 Inconsistency R9, R10, R11

R6 Redundancy R7

R9 Redundancy R10

Appendix IV. IPTables PSM description

In this appendix the elements of the proposed IPTables PSM are
described. The templates used to describe the PSM elements are the
same as the previous appendix ones, so to have a complete descrip-
tion of the meaning of the different areas and kinds of templates,
take a look to the introduction paragraph given at it. As some meta-
classes, data types and enumerations are common to PIM and PSM,
in this appendix we only have included those elements that have
been modified for any relations or those ones that are completely
new.

MetaClass Policy
Description The ACL of a Firewall
Relations chains [1..1]: (Policy — Chains)
Models the chains of an IPTables Firewall
MetaClass Rule
Description Condition/action rule
Relations logging [0..1]: (Rule — Logging)
Logging associated to a filtering rule
MetaClass DstNATrule
Description Destination NAT rule
Relations logging [0..1]: (DstNATrule — Logging)
Logging associated to a Destination NAT rule
MetaClass SrcNATrule
Description Source NAT rule
Relations logging [0..1]: (SrcNATrule — Logging)
Logging associated to a Source NAT rule
MetaClass IP_Firewall
Description Firewall
configuration
concepts
Relations ipfirewall [1..1]:
(Policy — IP_Firewall)
This relation joins the
policy with the
configuration information
Attributes interface [1..1]: String Default value: “eth0”

The name of the firewall
administrative interface

MetaClass IP_Firewall MetaClass Forward
ip [1..1]: IpType Default value: (empty) Description ~ Default actions for
The IP address of the firewall packets that are
administrative interface, if it forwarded by the
has an static IP firewall (both
op [1..1]: OptionType Default value: DHCP directions)
It represents if the IP of the Relations logging [0..1]:
firewall is static or dynamic (Forward — Logging)
(obtained through DHCP or a If there is a relationship between
dial-up link). In the second Forward and Logging, it means that
case the attribute ip is the rules associated to the forward
ignored chain must be logged.
filterMalformed [0..1]: Default value: true Attributes inflow [1..1]: ActionType Default value: DENY
Boolean Action for input packets
If filtering (denying) of outflow [1..1]: ActionType Default value: ALLOW
malformed packets is Action for output packets
activated or not
Constraints context IP_Firewall
inv: MetaClass Logging
z:}??pp;ﬂ?ﬁp implies Description Logs sent to kernel or user space
Attributes action [1..1]: LoggingType Default value: LOG
MetaClass Chains Type of logging (user or kernel
Description .Composite of inpgt, output, forward ;l:_aeg;) [0..1]: String Default value:
Relations input [1..1]: (Chains — Input) Comment string used in the “User_prefix”
It represents the input chain
! output log
output [1..1]: (Chains — Output)
It represents the output chain
forward [1..1]: (Chains — Foryvard) Enumeration OptionType
It represents the forward chain
Description It represents how an IP interface is assigned
MetaClass Input Constraints Enumeration:
Description Default actions for o STATIC
packets directed to e DHCP
the firewall (both
directions)
Relations logging [0..1]: (Input — Logging) Enumeration LoggingType
If there is a relationship between Description Represents the logging types supported by IPtables
Input and Logging, it means that Constraints Enumeration:
the rules associated to the input « ULOG
chain must be logged. « LOG
Attributes inflow [1..1]: ActionType Default value: DENY
Action for input packets
outflow [1..1]: ActionType Default value: ALLOW
Action for output packets
MetaClass Output
Description Default actions for
packets leaving the
firewall (both
directions)
Relations logging [0..1]: (Output — Logging)
If there is a relationship between
Output and Logging, it means that
the rules associated to the output
chain must be logged.
Attributes inflow [1..1]: ActionType Default value: DENY

Action for input packets
outflow [1..1]: ActionType
Action for output packets

Default value: ALLOW

Appendix V. PIM to IPTables PSM M2M transformation (ATL)

uses XMLHelpers;
module pimnat2psmnatModule; -- Module Template
create OUT : psm from IN : pim, parameters : XML;

rule pim2psmRule {

from
r: pim!Rule
using{
-- Rule logging data
action: psm!LoggingType =
thisModule.getParameter ('log_action_rule');
prefix: String =
thisModule.getParameter ('prefix_log_rule');
}
to

s: psm!Rule (

Filter <- r.Filter
)
do{

if (r.comment.asSet () ->notEmpty ())
s.comment <- r.comment;
else
false;

if (r.dstnatrule.asSet () ->notEmpty ())
s.dstnatrule <- r.dstnatrule;
else
false;

if

r.srcnatrule.asSet () ->notEmpty ()
s.srcnatrule <- r.srcnatrule;

else

false;

rule pim2psmFilter{
from
r: pim!Filter
to
s: psm!Filter(
action <- r.action,
matches <- r.matches
)
do{
if (r.interface.asSet ()->notEmpty ())
s.interface <- r.interface;
else
false;

if(r.direction.asSet () ->notEmpty ())
s.direction <- r.direction;
else
false;

rule pim2psmMatches{
from
ml: pim!matches
to
m2: psm!matches (
ipdst <- ml.ipdst,
ipsrc <- ml.ipsrc,
protocol <- ml.protocol

)
do{
if (ml.prtsrc.asSet () ->notEmpty())
m2.prtsrc <- ml.prtsrc;
else
false;

if (ml.prtdst.asSet()->notEmpty())
m2.prtdst <- ml.prtdst;
cllEE
false;

if (ml.icmptype.asSet ()->notEmpty())
m2.icmptype <- ml.icmptype;
else
false;

rule pimnat2psm{

from
p: pim!Policy
using{
-- IP_Firewall data
inter: String = thisModule.getParameter ('interface');
-- If it is dhcp attribute is no used
ipfw: psm!IpType = thisModule.getParameter ('ip firewall');
op: psm!OptionType = thisModule.getParameter ('option');
fmf: Boolean = thisModule.getParameter ('fmf');
-- Chain logging data - Input
action_i: psm!LoggingType = thisModule.getParameter ('ioption');
prefix_: String = thisModule.getParameter ('ioption');
-- Chain logging data - Ouput
action o: psm!LoggingType = thisModule.getParameter ('ooption');
prefix o: String = thisModule.getParameter ('ooption');
-- Chain logging data - Fordward
action_f: psm!LoggingType = thisModule.getParameter ('ooption');
prefix f: String = thisModule.getParameter ('ooption');
-- Chain Action data - Input
iinflow: String = thisModule.getParameter ('iinflow');
ioutflow: String = thisModule.getParameter('ioutflow');
-- Chain Action data - Ouput
oinflow: psm!LoggingType = thisModule.getParameter ('oinflow') ;
ooutflow: String = thisModule.getParameter ('ooutflow') ;
-- Chain Action data - Fordward
finflow: psm!LoggingType = thisModule.getParameter ('finflow');
foutflow: String = thisModule.getParameter ('foutflow');
}
to
ip_fw: psm!IP Firewall (
interface <- inter,
op <- op
)y
lci: psm!Logging (
action <- action_ i,
prefix <- prefix i
)y
lco: psm!Logging (
action <- action_o,
prefix <- prefix o
)y
lcf: psm!Logging (
action <- action f,
prefix <- prefix f
)y
i: psm!Input (
inflow <- iinflow,
outflow <- ioutflow,
logging <- lci
)y
o: psm!Output (
inflow <- oinflow,
outflow <- ooutflow,
logging <- lco
)y
f: psm!Forward(
inflow <- finflow,
outflow <- foutflow,
logging <- lcf
)y
chains: psm!Chains (
input <- i,
output <- o,
forward <- f
)
pol: psm!Policy(
ip_firewall <- ip_fw,
chains <- chains,
rules <- psm!Rule->alllInstances(),
dstnatrule <- psm!DstNATrule->allInstances(),
srcnatrule <- psm!SrcNATrule->allInstances ()
)
do{
if (op = #DHCP)
true;
else
ip_fw.ip <- ipfw;
if (fmf = true or fmf = false)
ip_fw.filtermalformed <- fmf;
else
false;
¥
}
helper def : getParameter (name : String) : String =
XML!Element.allInstancesFrom('parameters')->select (e
e.name = 'param'
)=>select (e |
e.getAttrVal ('name') = name

)->first () .getAttrval ('value');

rule pim2psmDstNatrule{
from
ml: pim!dstnatrule

m2: psm!dstnatrule (
dstnat <- ml.dsnat

)

do{

f (ml.comment.asSet () ->notEmpty ())

m2.comment <- ml.comment;

else
false;

rule pim2psmDstNat{
from
ml: pim!dstnat

to

m2: psm!dstnat (

tnatpacketdst <- ml.tnatpacketdst,

natorigpacket <- ml.natorigpacket

)

do{

if (ml.interface.asSet () ->notEmpty())
m2.interface <- ml.interface;

else
false;

rule pim2psmTnatpacketdst{
from
ml: pim!tnatpacketdst

to

m2: psm!tnatpacketdst (
ipdst <- ml.ipdst

)

do{

if (ml.prtdst.asSet ()->notEmpty())
m2.prtdst <- ml.prtdst;

else
false;

rule pim2psmNatorigpacket {
from
ml: pim!natorigpacket

m2: psm!natorigpacket (
)
do{
if (ml.ipsrc.asSet()->notEmpty())
m2.ipsrc <- ml.ipsrc;
elee
false;

if (ml.ipdst.asSet()->notEmpty())
m2.ipdst <- ml.ipdst;

else
false;
if (ml.protocol.asSet ()->notEmpty())
m2.protocol <- ml.protocol;
else
false;
if (ml.prtsrc.asSet()->notEmpty())
m2.prtsrc <- ml.prtsrc;
else

false;

if (ml.prtdst.asSet ()->notEmpty())
m2.prtdst <- ml.prtdst;
else
false;

if (ml.icmptype.asSet ()->notEmpty())
m2.icmptype <- ml.icmptype;
else
false;

rule pim2psmSrcNatrule{

from

to

ml: pim!srcnatrule

m2: psm!srcnatrule (
srcnat <- ml.srcnat
)
do{
if (ml.comment.asSet () ->notEmpty())
m2.comment <- ml.comment;
else
false;

rule pim2psmSrcNat {

from

ml: pim!tnatpacketdst

m2: psm!tnatpacketdst (
tnatpacketsrc <- ml.tnatpacketsrc,
natorigpacket <- ml.natorigpacket
)
do{
if (ml.interface.asSet ()->notEmpty())
m2.interface <- ml.interface;
else
false;

rule pim2psmTnatpacketsrc{

from

ml: pim!tnatpacketsrc

m2: psm!tnatpacketsrc(
ipsrc <- ml.ipsrc

Appendix VI. External file example containing the
parameters of the ATL M2M transformation

<parameters>
<param interface" value="eth0"/>
<param name="ip firewall" value=""/>
<param name="option" value="#DHCP"/>
<param name="fmf" value="true"/>
<param name="log_action_rule" value="#LOG"/>

<param name="aioption" value="#LOG"/>

<param name="pioption" value="Prefix input"/>

<param name="aooption" value="#LOG"/>

<param name="pooption" value="Prefix output"/>

<param name=afoption" value="#LOG"/>

<param name="pfoption" value="Prefix forwardput"/>

<param name="iinflow" value="#ALLOW"/>

<param name="ioutflow" value="#DENY"/>

<param name="oinflow" value="#DENY"/>

<param name="ooutflow" value="#ALLOW"/>

<param name="finflow" value="#ALLOW"/>

<param name="foutflow" value="#DENY"/>
</parameters>

<param name="prefix log_rule" value="Prefix logging rules"/>

Appendix VII. IPTables to code M2T transformation (MOFScript)

Please note that the meta-class IP_Firewall has not been included in the transformation rules. The configuration of the platform depends
entirely on the version of the Linux Kernel and the distribution it is running on, and is out of the scope of this paper.

/**
* MOFScript model to Text transformation
* from PSM model to iptable-save code.
*/

texttransformation MultipleMetaModels (in psm:"psm") {
main () {

file f("sample_ code.firewall")

.println("# Generated by MOFScript in transformation from model to text")
.println(" ")

.println("*filter")

LDTANTLI (M \ D% koo Kok KKK KKK KKKk Kk Kk k1)

.println ("# CHAINS")

LDTANELR (M ** KX K kKKK X KR KA XK K A KKK KX R R K\ W)

.println(":INPUT DROP [0:0]")

Fh o Fh Eh Eh bR Eh

var defaultaction : String = psm.objectsOfType (psm.regla).last () .action

var direction : String = psm.objectsOfType (psm.regla).last().filter.direction
var ipsrc : String = psm.objectsOfType (psm.regla).last () .matches.ipsrc

var ipdst : String = psm.objectsOfType (psm.regla).last().matches.ipdst

var prtsrc : String = psm.objectsOfType (psm.regla).last () .matches.prtsrc

var prtdst : String = psm.objectsOfType (psm.regla).last () .matches.prtdst

var protocol : String = psm.objectsOfType (psm.regla).last () .matches.protocol

var forward : String = ""

if (direction.equalsIgnoreCase ("all") && ipsrc.equalsIgnoreCase("all") &&
ipdst.equalsIgnoreCase ("all") && prtsrc.equalsIgnoreCase("all") &&
prtdst.equalsIgnoreCase("all") && protocol.equalsIgnoreCase("all")) {

defaultaction = psm.objectsOfType (psm.regla) .last () .action
if (defaultaction.equalsIgnoreCase ("allow"))
forward = ":FORWARD ACCEPT [0:0]"
elise
forward = ":FORWARD DROP [0:0]"
} else
forward = ":FORWARD DROP [0:0]"

f.println(forward)
f.println(":O0UTPUT DROP [0:0]")

var numrules : Integer = psm.objectsOfType (psm.rules).size ()
if (numrules > 0)
{
£ DTARELI (" \ R4 5k %k ko ko ok Kk kK kKK I
f.println("# STATEFUL")
£ LDTANTLN ("% %k %k kA XKk KKK KKK KKK A X F K\)
f.println("-A FORWARD -m state --state INVALID -j DROP")
f.println("-A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT")

F.PrAntIn ("\Df* Rk kKRR KKk Kk ok kb ko k1T)
f.println ("# RULES")
FLPTANELR (MK k ok ko koo ko kKK Kk KRk x R\)

psm.objectsOfType (psm.rules)->forEach (r) {
r.generaterules ()
stdout.println (" ")

f.println ("\nCOMMIT")
f.println("# COMPLETED")

/* Method used to transform rules, hard-work*/
psm.rule::generaterules () {
file f("outputfile.firewall")

var output : String = ""

var direction : String = self.filter.direction
var interface: String = self.filter.interface
var action: String = self.filter.action

var logaction : String = self.logging.action
var logprefix :String = self.logging.prefix
var ipsrc : String = self.matches.ipsrc

var ipdst : String = self.matches.ipdst

var prtsrc : String = self.matches.prtsrc

var prtdst : String = self.matches.prtdst

var protocol : String = self.matches.protocol
var icmptype : String = self.matches.icmptype

output = output + "#Rule :" + self.comment + "\n"
output = output + "-A FORWARD "

if (direction.equalsIgnoreCase ("in") && interface.size() >0)
output = output + "-i " + interface+ " "

else if (direction.equalsIgnoreCase ("out") && interface.size() >0)
output = output + "-o " + interface+ " "

else{
if ((not direction.equalsIgnoreCase("all")) && interface.size() >0)
output = output + "-i " + interface+ " -o "+ interface + "

if (not ipsrc.equalsIgnoreCase ("all"))

output = output + " -s " + ipsrc + " "
if (not ipdst.equalsIgnoreCase ("all"))
output = output + " -d " + ipdst + " "

if (protocol.equalsIgnoreCase ("tcp") or protocol.equalsIgnoreCase ("6"))
{

output = output + " -p " + protocol + " "

if (not prtsrc.equalsIgnoreCase ("all")

{

output = output + " -m tcp --sport " + prtsrc + " "
if (not prtdst.equalsIgnoreCase ("all"))
output = output + " --dport " + prtdst + " "

else

if (not prtdst.equalsIgnoreCase ("all"))
output = output + " -m tcp --dport " + prtdst + " "

if (protocol.equalsIgnoreCase ("udp") or protocol.equalsIgnoreCase ("17"))
{

output = output + " -p " + protocol + " "

if (not prtsrc.equalsIgnoreCase ("all"))

{

output = output + " -m udp --sport " + prtsrc + " "
if (not prtdst.equalsIgnoreCase ("all"))
output = output + " --dport " + prtdst + " "

else

if (not prtdst.equalsIgnoreCase ("all")
output = output + " -m udp --dport " + prtdst + " "

if (protocol.equalsIgnoreCase ("icmp") or protocol.equalsIgnoreCase ("1"))
{

output = output + " -p " + protocol + " "
if (not icmptype.equalsIgnoreCase ("all"))
output = output + " -m icmp --icmp-type " + icmptype + " "
}
if (not protocol.equalsIgnoreCase ("all") && not protocol.equalsIgnoreCase ("0")

{

output = output + " -p " + protocol + " "

if (action.equalsIgnoreCase ("deny"))

{
if (logaction.size ()>0)

{
" + logaction.toUpper ()

var logging : String = output + "-j

if (logprefix.size ()>= 0)

logging = logging + " --log-prefix " + + logprefix
+omr 4 m\pe
else
logging = logging + "\n"
output = output + " -j DROP"

output = logging + output

else{
(psm. forward) ->forEach (f) {

psm.objectsOfType
output + f.generateForwardLogging ()

output =

}
output = output + " -j DROP "

if (action.equalsIgnoreCase ("reject"))

{
if (logaction.size ()>0)
{
var logging : String = output + "-j " + logaction.toUpper (

if (logprefix.size()>= 0)
'"' + logprefix

logging = logging + " --log-prefix " +
+ L] 4= "\n"
else
logging = logging + "\n"
output = output + " -j REJECT"

output = logging + output
}
else(

psm.objectsOfType
output =

(psm. forward) ->forEach (f) {
output + f.generateForwardLogging ()

}
output = output + " -j REJECT "

if (action.equalsIgnoreCase ("allow"))

{

if (logaction.size ()>0)

{
" + logaction.toUpper ()

var logging : String = output + "-j
if (logprefix.size()>= 0)
'"' + logprefix

logging = logging + " --log-prefix " +

+ L] + "\nll
else
logging = logging + "\n"
output = output + " -j ACCEPT"
output = logging + output
}
else(
psm.objectsOfType
output =

(psm. forward) ->forEach (f) ({
output + f.generateForwardLogging ()

}

output = output + " -j ACCEPT"

f.println (output)

psm.forward: :generateForwardLogging () :
var output String = "";

var loggingAction String = self.logging.action
var loggingPrefix String = self.logging.prefix

String {

if (loggingAction.size ()>0)
{
var logging :
if (loggingPrefix.size ()>= 0)

(RN

output = logging + output
}

result = output

String = output + "-j " + loggingAction.toUpper ()

logging = logging + " --log-prefix " + '"' + loggingPrefix +

References

Al-Shaer, E., Hamed, H., 2004. Modeling and management of firewall policies. IEEE
Transactions on Network and Service Management 1 (April (1)).

Al-Shaer, E., Hamed, H., Boutaba, R., Hasan, M., 2005. Conflict classification and
analysis of distributed firewall policies. IEEE Journal on Selected Areas in Com-
munications 23 (October (10)), 2069-2084.

Ardagna, C.A., Damiani, E., De Capitani di Vimercati, S., Samarati, P., 2004. XML-
based Access Control Languages, Elsevier Information Security Technical Report
(Online), pp. 35-46.

ATLAS Transformation Language, 2007. http://www.eclipse.org/m2m/atl/.

Baboescu, F., Varguese, G., 2003. Fast and scalable conflict detection for packet clas-
sifiers. Computers Networks 42 (6), 717-735.

Bartal, Y., Mayer, A., Nissim, K., Wool, A.,2004. Firmato: a novel firewall management
toolkit. ACM Transactions on Computer Systems 22 (4), 381-420.

Basin, D., Dorser, J., Lodderstedt, T., 2006. Model driven security: from UML models
to access control infrastructures. ACM Transactions on Software Engineering
and Methodology 15 (1), 39-91.

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J., 2003. Eclipse Modelling
Framework: A Developer’s Guide. Addison-Wesley.

Cisco Adaptive Security Device Manager. Available at: http://www.cisco.com/
en/US/products/ps6121/index.html.

Chapple, M., D’Arcy,]., Striegel, A., 2009. An analysis of firewall rulebase
(mis)management practices. Information Systems Security Association Journal
(February).

Checkpoint Software Blades. Available at: http://www.checkpoint.com/products/
softwareblades/architecture/index.html.

Checkpoint Software Technologies LTD. Available at: http://www.checkpoint.com/.

Cisco PIX Firewall Software. Available at: http://www.cisco.com/en/US/products/
sw/secursw/ps2120/index.html.

Czarnecki, K., Helsen, S., 2006. Feature-based survey of model transformation
approaches. IBM Systems Journal 45 (3).

Damianou, N., Dulay, N., Lupu, E., Sloman, M.,2001. The ponder specification lan-
guage. In: Workshop on Policies for Distributed Systems and Networks (POLICY).
HP Labs, Bristol, UK, pp. 29-31.

De Capitani di Vimercati, Foresti, S., Jajodia, S., Samarati, P., 2007. Access control
policies and languages. International Journal of Computational Science and Engi-
neering 3 (2).

Desfray, P., 2000. UML profiles versus metamodeling extensions. An ongoing debate.
In: COMOO, Proceedings of the First Workshop on UML in the COM Enterprise:
Modeling CORBA, Components, XML/XMI and Metadata.

Didonet Del Fabro, M., Bézivin,]., Valduriez, P., 2006. Weaving models with
the Eclipse AMW plugin. In: Eclipse Modeling Symposium, Eclipse Summit
Europe 2006, October 2006, http://www.eclipsecon.org/summiteurope2006/
presentations/ESE2006-EclipseModelingSymposium2_WeavingModels.pdf.

Douglas, P., Alliger, G., Goldberg, R., 1996. Client-server and object-oriented training.
IEEE Computer 9 (6), 80-84.

Eclipse Modeling Project, 2007. http://www.eclipse.org/modeling/.

Eclipse Modeling Framework. http://eclipse.org/emf].

El-Atawy, A., 2006. Survey on the Use of Formal Languages/Models for the Spec-
ification, Verification, and Enforcement of Security Policies, DePaul University
Technical Reports CTI 06-005.

Engel, K.D., Paige, R.F., Kolovos, D.S., 2006. Using a model merging language for rec-
onciling model versions. In: Rensink, A., Warmer, J. (Eds.), ECMDA-FA, Vol. 4066
of Lecture Notes in Computer Science. Springer, pp. 143-157.

Eppstein, D., Muthukrishnan, S.,2001. Internet packet filter management and rectan-
gle geometry. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), January 2001.

Firewall Builder. http://www.fwbuilder.org/.

FreeBSD FreeBSD IPFilter. Available at: http://coombs.anu.edu.au/~avalon/.

FreeBSD IPFirewall, Reference Manual. Available at: http://www.freebsd.org/doc/
en_US.IS08859-1/books/handbook/firewalls-ipfw.html.

Galan, F., Fernandez, D., Jorge, E. Lbépez de Vergara, R, 2010. Using a
model-driven architecture for technology-independent scenario configu-
ration in networking testbeds. IEEE Communications Magazine 48 (12),
132-141.

Garcia-Alfaro, J., Boulahia-Cuppens, N., Cuppens, F., 2008. Complete analysis of con-
figuration rules to guarantee reliable network security policies. International
Journal of Information Security 7 (2).

Greenfield, J., Short, K., Cook, S., Kent, S., 2004. Software Factories. Assembling
Applications with Patterns, Models, Frameworks and Tools. Wiley Publishing,
Inc.

Hamed, H., Al-Shaer, E., 2006. Taxonomy of conflicts in network security policies.
IEEE Communications Magazine 44 (3).

Hari, B., Suri, S., Parulkar, G., 2000. Detecting and resolving packet filter conflicts. In:
Proceedings of IEEE INFOCOM, March 2000.

Jurjens, J., 2002. UMLsec: extending UML for secure systems development. In:
5th International UML, Springer-Verlag LNCS 2460, Dresden, Germany, pp.
1-9.

Kurtev, L., Bézivin, J., Aksit, M., 2002. Technological spaces: an initial appraisal. In:
International Federated Conf. (DOA, ODBASE, CooplS), Industrial Track.

Liu, A.L, Gouda, M.G., 2008. Complete redundancy removal for packet classifiers in
TCAMs. IEEE Transactions on Parallel and Distributed Systems 24.

LogLogic Change Manager. Available at: http://www.loglogic.com/products/security-
change-management.

Moore, B., Ellesson, E., Strassner, J., Westerinen, A., 2001. Policy Core Information
Model (PCIM), IETF RFC 3060.

Netfilter IPTables. http://www.netfilter.org.

OASIS eXtensible Access Control Markup Language (XACML), http://www.oasis-
open.org/committees/xacml/.

OMG MDA Guide Version 1.0. Technical Report omg/2003-05-01. OMG, May 2003.

PacketFilter User Guide Reference. Available at: http://www.openbsd.org/faq/pf/.

Pozo, S., Ceballos, R., Gasca, R.M.,2008. AFPL: an abstract language model for fire-
wall ACLs. In: 8th International Conference on Computational Science and Its
Applications (ICCSA), Lecture Notes in Computer Science (LNCS), vol. 5073, Part
2. Springer-Verlag, Perugia, Italy.

Pozo, S., Ceballos, R., Gasca, R.M., 2009a. Model based development of firewall rule
sets: diagnosing model faults. Information and Software Technology Journal 51
(5),894-915.

Pozo, S., Varela-Vaca, AJ., Gasca, R.M., Ceballos, R.,2009b. Efficient algorithms and
abstract data types for local inconsistency isolation in firewall ACLs. In: 4th Inter-
national Conference on Security and Cryptography (SECRYPT). IEEE Computer
Society Press, Milan, Italy.

Pozo, S., Varela-Vaca, AJ., Gasca, R.M.,2009c. AFPL2: an abstract language for firewall
ACLs with NAT support. In: 2nd International Conference on Dependability and
Security in Complex and Critical Information Systems (DEPEND). IEEE Computer
Society Press, Athens, Greece.

Pozo, S., Ceballos, R., Gasca, R.M., 2009d. A heuristic process for local inconsistency
diagnosis in firewall rule sets. Journal of Networks 4 (8), 698-710.

Pozo, S., Varela-Vaca, AJ., Gasca, R.M., Quadratic, A., 2010. Complete, and minimal
consistency diagnosis process for firewall ACLs. In: Advanced Information Net-
working and Applications (AINA). IEEE Computer Society Press, Perth, Australia.

Rule Markup Language (RuleML). http://www.ruleml.org/.

2001. Simple Rule Markup Language (SRML): A General XML Rule Representation
for Forward-chaining Rules. IBM.

Sztipanovits, ., Karsai, G., 1997. Model-integrated computing. Computer 30 (October
(4)), 110.

Taylor, D.E., 2005. Survey and taxonomy of packet classification techniques. ACM
Computing Surveys 37 (3), 238-275.

The MOFScript Home Page, 2007. Available at: http://www.eclipse.org/
gmt/mofscript/.

Wool, A., 2004. A quantitative study of firewall configuration errors. [IEEE Computer
37 (6), 62-67.

http://www.eclipse.org/m2m/atl/
http://www.cisco.com/en/US/products/ps6121/index.html
http://www.checkpoint.com/products/softwareblades/architecture/index.html
http://www.checkpoint.com/
http://www.cisco.com/en/US/products/sw/secursw/ps2120/index.html
http://www.eclipse.org/modeling/
http://eclipse.org/emf/
http://www.fwbuilder.org/
http://coombs.anu.edu.au/~avalon/
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/firewalls-ipfw.html
http://www.loglogic.com/products/security-change-management
http://www.netfilter.org/
http://www.oasis-open.org/committees/xacml/
http://www.openbsd.org/faq/pf/
http://www.ruleml.org/
http://www.eclipse.org/gmt/mofscript/

Yuan, L., Mai, J., Su, Z., Chen, H., Chuah, C., Mohapatra, P.,2006. FIREMAN: a toolkit for
FIREwall Modelling and ANalysis. In: IEEE Symposium on Security and Privacy
(S&P). IEEE Computer Society Press, Oakland, CA, USA.

Zhang, B., Al-Shaer, E., Jagadeesan, R., Riely,]., Pitcher, C., 2007. Specifications of a
high-level conflict-free firewall policy language for multi-domain networks. In:
ACM Symposium on Access Control Models and Technologies (SACMAT), Sophia
Antipolis, France, pp. 185-194.

Sergio Pozo holds a PhD in Computer Engineering from the University of Seville,
in Spain, where he is a full-time Senior Lecturer with the Computer Languages
and Systems Department. He is part of the QUIVIR Research Group. His main
research interests are network and security devices and software modelling, model-
based diagnosis, auto-recovery, and applications of the model-driven development
paradigm to information security. More precisely, he is focused in firewall ACL
languages and models, inconsistency/redundancy/conformance diagnosis in fire-
wall ACLs. He is also reviewer and organizer of computer security conferences and
journals.

Rafael M. Gasca holds a PhD in Computer Science from the University of Seville,
in Spain, where he is a full-time Reader at the Computer Languages and Systems
Department since 1991. He is the head of the QUIVIR Research Group, where
has been the advisor of several fundamental research projects as well as applied

RD projects in cooperation with the industry. His main research interests are
domain-specific languages and models for computer security devices, techniques
for diagnosing security models faults (mainly inconsistency and redundancy), auto-
recovery techniques for diagnosed faults (autonomic computing), and applications
of the Model-Driven Paradigm to computer security. He is also a frequent reviewer
for security conferences and journals, and organizer of artificial intelligence and
model-based diagnosis conferences.

Antonia M. Reina Quintero holds an MSc in Computer Engineering from the Uni-
versity of Seville. She works as a full-time Lecturer at the Computer Languages and
Systems Department from the University of Seville since 2000, although she also has
worked as a computer engineer for a leading company in traffic control systems. Her
current research is focused on aspect-oriented programming, advanced separation
of concerns and Model-Driven Architecture applied to web-based systems.

AlJ. Varela-Vaca holds an MSc in Computer Engineering from the University of
Seville, in Spain. Currently, he holds a full-time research grant and works under
the supervision of R.M. Gasca and S. Pozo at the Computer Languages and Systems
Department. His main research interests are computer and network dependabil-
ity issues, and models for security. More precisely, he is focused in the application
of Model-Based Engineering paradigm to IT Security, and dependability issues in
business processes.

	CONFIDDENT: A model-driven consistent and non-redundant layer-3 firewall ACL design, development and maintenance framework
	1 Introduction
	2 Related works
	3 CONFIDDENT specification and architecture
	3.1 CONFIDDENT architecture
	3.1.1 Model validation and diagnosis in CONFIDDENT
	3.1.2 Modelling issues discussion
	3.1.3 Summary

	4 CONFIDDENT PIM meta-model
	4.1 Example PIM instance
	4.2 PIM inconsistency and redundancy diagnosis stage

	5 CONFIDDENT Netfilter IPTables PSM meta-model. M2M transformations
	5.1 IPTables PSM meta-model
	5.2 Model-to-model transformation
	5.3 Example PSM instance
	5.4 PSM inconsistency and redundancy diagnosis stage

	6 Automatic code generation. M2T transformation
	6.1 Example

	7 Discussion of results
	8 Conclusions and future works
	Acknowledgement
	Appendix I AFPL XSD
	Appendix II PIM description
	Appendix III Example scenario
	Appendix IV IPTables PSM description
	Appendix V PIM to IPTables PSM M2M transformation (ATL)
	Appendix VI External file example containing the parameters of the ATL M2M transformation
	Appendix VII IPTables to code M2T transformation (MOFScript)
	References

