Accepted Manuscript
¥

The Journal of
Systems an

i

Title: “Leagile” Software Development: An Experience
Report Analysis of the Application of Lean Approaches in
Agile Software Development

suor. Xt Vo i Contey 3o (AU

PII: S0164-1212(12)00040-4
DOI: doi:10.1016/j.jss.2012.01.061
Reference: JSS 8878

To appear in:

Received date: 1-9-2011
Revised date: 27-1-2012
Accepted date: 31-1-2012

Please cite this article as: Wang, X., Conboy, K., Cawley, O., “Leagile” Software
Development: An Experience Report Analysis of the Application of Lean Approaches
in Agile Software Development, The Journal of Systems and Software (2010),
doi:10.1016/j.jss.2012.01.061

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

dx.doi.org/doi:10.1016/j.jss.2012.01.061
dx.doi.org/10.1016/j.jss.2012.01.061

*Manuscript

“Leagile” Software Development: An Experience Report Analysis of the Application
of Lean Approaches in Agile Software Development

Xiaofeng Wang
Free University of Bozen/Bolzano
Italy
xiaofeng.wang@unibz.it

Kieran Conboy

School of Information Systems, Technology and Management, UNSW
Sydney 2052 Australia
k.conboy@unsw.edu.au

Oisin Cawley

Lero, the Irish Software Engineering Research Centre
Ireland
oisin.cawley@lero.ie

Corresponding author: Xiaofeng Wang

xiaofeng.wang@unibz.it
Tel: +39 0471 016 181
Postal Address: Dominikanerplatz 3 piazza Domenicani, 1-39100 Bozen/Bolzano, Italy

Page 1 of 27

http://ees.elsevier.com/jss/viewRCResults.aspx?pdf=1&docID=5492&rev=2&fileID=104244&msid={074A5E8D-D76A-47BF-AF9D-943310397D72}

“Leagile” Software Development: An Experience Report Analysis of the Application
of Lean Approaches in Agile Software Development

Abstract - In recent years there has been a noticeable shift in attention from those who use agile software development toward lean
software development, often labelled as a shift “from agile to lean”. However, the reality may not be as simple or linear as this label
implies. To provide a better understanding of lean software development approaches and how they are applied in agile software
development, we have examined 30 experience reports published in past agile software conferences in which experiences of
applying lean approaches in agile software development were reported. The analysis identified six types of lean application. The
results of our study show that lean can be applied in agile processes in different manners for different purposes. Lean concepts,
principles and practices are most often used for continuous agile process improvement, with the most recent introduction being the
kanban approach, introducing a continuous, flow-based substitute to time-boxed agile processes.

Keywords: agile software development, lean software development, Scrum, leagile, kanban, experience report, software engineering

1 INTRODUCTION

Agile methods have become highly prevalent since the Agile Manifesto! emerged in early 2001 as a
response to the inefficiency of existing software development methods in rapidly changing environments
(Highsmith, 2002). In agile literature, agile methods generally denote a family of methods under the
umbrella of the Agile Alliance, including: eXtreme Programming (XP, Beck, 1999), Scrum (Schwaber
and Beedle, 2002), Dynamic Systems Development Method (DSDM, http://www.dsdm.org), Crystal
Methods (Cockburn, 2001), Feature-Driven Development (FDD, Coad and Palmer, 2002), Lean
Development (Charette, 2003) and Adaptive Software Development (ASD, Highsmith, 2002). Although
differing in specific techniques, these methods have much in common, including short iterative life
cycles, quick and frequent feedback from customers, and constant learning. Among them, Scrum and
XP/Scrum hybrid are by far the most widely adopted in the past decade (\ersionOne, 2010).

In recent years however the agile community has started to look toward lean software development
approaches, in addition to agile methods such as XP and Scrum. Emerging lean conferences (e.g. Lean
Software and Systems Consortium conference series, Lean Enterprise Software and Systems conference)
show that lean adoption is spreading. Lean approaches are claimed to be “the next wave of software
process”2. Even though originally lean software development was viewed as just another agile method
(Highsmith, 2002; Dyba and Dingsgyr, 2009), there is an increasing focus on lean and it is viewed as
being a method category in itself rather than an instance of agile methods (Hibbs et al., 2009). More and
more people advocate “from agile to lean” (Hiranabe, 2008), and the application of lean approaches in
agile software development. Some claim that lean software development provides the theory behind agile
practices (Poppendieck and Poppendieck, 2003; 2006). Others argue that lean is a necessary progression
for organisations planning to scale up agility from the project or team level to the organisational level,
which agile methods fail to address satisfyingly (Smits, 2007). “Scrumban” is a term coined for a
software production model based on Scrum and kanban (Ladas, 2009). It is believed to be especially
suited for maintenance projects or projects with frequent and unexpected user stories or programming
errors. In such cases the time-boxed sprints of the Scrum model are of no appreciable use, but Scrum’s
daily meetings and other practices can be applied, depending on the team and the situation at hand. Using
these methods, the team’s workflow is directed in a way that allows for minimum earliest completion
time for each user story or programming error, but on the other hand ensures each team member is
constantly employed (Ladas, 2009).

! http://www.agilealliance.org
2 http://atlanta2010.leanssc.org/

Page 2 of 27

Despite the shifting focus of practice from agile software development represented by Scrum and XP
to lean software development, few studies have been conducted that can offer a good understanding of
the application of lean approaches in agile software development, due to the fact that lean in software
development is a nascent research area yet to be explored. Naylor et al. (1999) coin the term “leagility”
whereby principles were established for combining both lean and agile in a supply chain strategy. We
borrow the term and use “leagile” software development to denote the software development processes
that include both agile and lean elements.

The purposes of our study, consequently, are 1) to provide a better understanding of the application
strategies of lean approaches in agile software development, and 2) to demonstrate how these strategies
are being implemented in practice. To achieve these goals, we have conducted a secondary data analysis
of a set of experience reports in which the real world application of lean approaches in agile software
development is evidenced. These experience reports were published in the past Agile and XP conference
series. Patterns of lean application in agile software development that recurred in these experience reports
were identified. The results are intended to be useful for both research and practice.

The remaining part of the paper is organized as follows. Section 2 introduces basic lean concepts and
lean principles and practices for software development. This is followed by a section that reviews the
relevant literature on the application of lean approaches in agile software development. Section 4
describes the research approach employed. Then the findings are reported in the next section, and further
reflected upon in the discussion section. The paper ends with concluding remarks.

2 Lean Sortware DEVELOPMENT

It is well acknowledged that the terms ‘agile’ and ‘lean’ are poorly defined in the software
development literature, and the use of these terms is often poorly considered, multi-dimensional,
ambiguous and inconsistent (Conboy, 2009). For the purpose of our study, however, we need to make it
as explicit as possible what we mean by lean software development. Corresponding to relatively well-
accepted agile values, principles and practices, we consider that lean software development also involve
three main elements: lean concepts, lean principles and lean practices.

2.1 Lean Concepts

Leanness, like agility, is not a term unique to software development. It has a much older origin rooted
in other disciplines, with most literature tracing the origins back to the Toyota Production System (TPS)
in the 1950s (Ohno, 1988). However, it did not make a significant impact in the mainstream literature
until MIT’s (Massachusetts Institute of Technology) five-year study of the automotive industry identified
lean as a source of huge productivity differences between the US and Japan (Womack et al., 1990).

Lean thinking is a way of thinking that enables organizations to “specify value, line up value-creating
actions in the best sequence, conduct these activities without interruption whenever someone requests
them, and perform them more and more effectively” (Womack and Jones, 1996). Five inherently
interlinked guiding lean concepts underpin lean thinking:

e \Value: It is defined by the customer and it is paramount to have a clear understanding of what

that is;

e Value Stream: A map that identifies every step in the process and categorises each step in terms

of the value it adds;

e Flow: It is important that the production process flows continuously;

e Pull: Customer orders pull product, ensuring nothing is built before it is needed;

e Perfection: Striving for perfection in the process by continuously identifying and removing

waste.

Page 3 of 27

2.2 Lean Principles

The primary focus and guiding principle of lean is the identification and elimination of waste from the
process with respect to customer value. In Japanese this waste is referred to as muda, although other
terms such as mura (unevenness), and muri (overburden) are also used. Lean thinking classifies work into
three categories: value-adding activities, required non-value adding activities, and non-value adding
activities. By mapping out the process using a value stream map, those process steps which do not
contribute to creating value can be identified and eliminated. It is worth noting that the concept of waste
can be quite broad and context dependent. In the domain of software development, the types of waste can
be interpreted as: extra features, waiting, task switching, extra processes, partially done work, movement,
defects and unused employee creativity (Poppendieck and Poppendieck, 2003, Hibbs et al., 2009).

The contemporary understanding of lean software development is largely driven by practitioners
writings (e.g., Poppendieck and Poppendieck, 2003; 2006; Hibbs et al., 2009; Reinertsen, 2009;
Anderson, 2010). Maintaining the core intent of lean, different lean principles for software development
have been proposed and are constantly evolving. Table 1 lists several sets of lean principles better known
in agile community. These sets of lean principles overlap to large extent which reflects the core and
essence of lean approaches.

Le.an .Software Deve_lopment The Principles of Prpduct The Kanban Principles
Principles (Poppendieck and | Development Flow (Reinertsen,
Poppendieck, 2003)? 2009) (Anderson, 2010)
e Eliminate waste e Use an economic view e Visualize the workflow
e Build quality in e Manage queues e Limit WIP
o Create knowledge o Exploit variability e Manage flow
o Defer commitment e Reduce batch size e Make process policies
o Deliver fast e Apply WIP (Work in explicit
e Respect people Progress) constraints e Improve collaboratively
e Optimise the whole e Control flow under (using models & the
uncertainty scientific method)
e Use fast feedback
e Decentralise control

Table 1: Lean principles relevant to software development

It is worth noting that the kanban approach is the most recent addition to the agile and lean software
development affray. Again, it gets its name from the world of lean manufacturing. A kanban system is “a
production control system for just-in-time production and making full use of workers’ capabilities”
(Sugimori et al., 1977). The core objective of the kanban system is to minimise the amount of WIP.
Excess WIP is one form of waste from a lean perspective. Work should be “pulled” through the system as
it is needed, as opposed to “pushing” it through. Only when a downstream process is ready and needs to
do some more work does it pull work from an upstream process. The signalling between upstream and
downstream processes is typically done via some sort of coloured card which physically travels between
processes. The aim is to keep the process flowing at an even but continuous rate. This is achieved by
controlling the number of kanban cards which are in circulation within the process.

3 These seven principles have been rephrased and rearranged by The Poppendiecks. The newest version can be seen at
http://www.poppendieck.com/.

Page 4 of 27

2.3 Lean Practices

Some lean software development practices have already been well established in agile methods, and
regarded as agile practices as well, even though they have origins that can be traced back to pre-agile
days. For example, back in the 1970s, Michael Fagan, while working for IBM, formalised the practice of
code reviews in a technique known as Fagan’s Inspections: “Because errors were identified and corrected
in groups [early in the process] rather than found one-by-one during subsequent work and handled at the
higher cost incumbent in later rework, the overall amount of error rework was minimized, even within the
coding operation” (Fagan, 1976, p.187). Code inspections support one of the cornerstones of what lean
software development is founded on, finding and fixing defects early in the development process.

In order to help categorise the empirical data in terms of lean approaches, we generated a list of what
we considered to be lean specific practices relevant to software development, as shown in Table 2. Due to
the overlapping nature of lean and agile practices, we limited the practices to those we found were less
represented in the agile literature but were recurring themes within a lean context. This categorisation was
somewhat subjective. However, the final list was agreed by consensus among the researchers and offers a
good starting point for cataloguing lean practices.

Lean Software Development Practices

e Address bottlenecks (Liker, 2003; Goldratt, 1992, 1997; Middleton et al., 2005; Poppendieck and
Poppendieck, 2003)
0 Cumulative Flow Diagram (CFD)
Avoid too much local optimisation (Poppendieck and Poppendieck, 2003)
Defer decision making (Thimbleby, 1988; Poppendieck and Poppendieck, 2003)
Develop appropriate incentives/rewards (Ambler and Kroll, 2007)
Hansei: relentless self-reflection, to acknowledge one’s own mistaes and to commit to making
improvements (Liker and Hoseus, 2008).
o Heijunka: workload levelling, production smoothing. It aims at reducing muda (Liker, 2003;
Middleton et al., 2005).
e Hide individual performance (Poppendieck and Poppendieck, 2003)
o Jidoka: intelligent automation, automation with a human touch. People should not serve
machines but vice versa (Liker, 2003; Liker and Hoseus).
o Kaikaku: radical improvement within a limited time (Womack and Jones, 1996).
o Kaizen: continuous improvement to establish a smoother flow (Liker, 2003; Hibbs et al., 2009;
Joyce and Schechter, 2004).
o Kano Analysis: link voice of the customer to requirements (Middleton et al., 2005; Raffo et al.,
2010).
o Make everything transparent (Womack and Jones, 1996):
0 Make project status highly visible
o Visualise all work items
e Measure and manage (Anderson and Garber, 2007)
o Employ queuing theory (Reinertsen, 1997; Goldratt, 1997, 1992) but measure the right
things (Reinertsen, 1997)
0 First-In-First-Out (FIFO) queue
Move variability downstream (Poppendieck and Poppendieck, 2003)
Plan-Do-Check-Act (PDCA) cycle (Deming, 1986)
Poka-Yoke: defect detection and prevention (Robinson, 1997).
Pragmatic governance (enable first, manage/control second) (Ambler and Kroll, 2007)
Pull the andon cord: promote a “safe to failure” environment and instil a “stop the line” mentality

Page 5 of 27

(Poppendieck and Poppendieck, 2003; Womack et al., 2007)
e Quality Function Deployment: transform the voice of the customer into engineering
characteristics and appropriate test methods (Raffo et al., 2010).
o Reduce slack (Middleton, 2001)
¢ Root cause analysis
0 The 5 whys? (Womack et al., 1990)
e Use pull systems
0 Kanban board, Limitied WIP, CONWIP (Sugimori et al., 1977; Bradley, 2007; Kniberg
and Skarin, 2010)
0 Batch control processing (Bradley, 2007), Minimal Marketable Feature (MMF)
o \Value Stream Mapping: analyse and design the workflow required to bring a software or service
to a customer (Womack and Jones, 1996; Liker, 2003; Poppendieck and Poppendieck, 2003;
Mujtaba et al., 2010).

Table 2: Lean practices relevant to software development

3 AprLicaTiON oF LEaN APPROACHES IN AGILE SOFTWARE DEVELOPMENT

Agile and lean are seen as just two different names for the same thing in some software literature. In
the study reported in Jalali and Wohlin (2010), for example, no meaningful distinction is made between
the two. This study conducted a literature review of agile practices used in global software engineering.
The fact that the search string “agile and lean” was used to denote agile practices indicates a lack of
distinction between the two. Barton (2009) claims that many organizations that have modified their
software development system based on Scrum consider their work to be a lean implementation. Barton
argues that even in its simplest state, Scrum uses a lean ‘pull’ technique to smooth the flow through the
system and prevent overloading. Scrum also implements a process for eliminating muda, or waste. If no
distinction is made between agile and lean, the application of lean in agile context, if happens, is
generally a non-purposeful act of the adopting organisation.

Most literature, however, does consider the differences between agile and lean approaches, thus
motivating an analysis of their relationship and a study that analyses the purposeful application of lean
approaches in agile software development. Agile methods are believed to be tactical in nature, and
therefore the major changes required to become agile must be initiated from the top of the organisation.
Organisational strategy becomes the context within which agile processes can operate effectively.
Without this strategic piece, agile development is “shunted aside by the organisational forces that seek
equilibrium” (Highsmith, 2002). Dall'Agnol et al. (2003) also suggest that agile and lean address a
different audience. They believe that XP describes a set of practices primarily designed for use by
developers. It is aiming to ease the tension often exhibited between developer and customer due to
conflicting aims. Instead, lean management is applied from an upper management perspective, with the
objective being the optimisation of activity across the whole entire organisation. Therefore lean
management is a top-down approach. Smits (2007) claims that “experience gathered during large scale
implementation of agile concepts in software development projects teaches us that the currently popular
agile software development methods (like Scrum) do not scale to program, product and organisation level
without change. The fundamentals for changes to these methods are found in lean principles, or: “the
future of agile methods is found in its origins.” This claim is echoed by industry practitioners (reported in
Serignese (2011)) who believe that “lean is both the precursor and future of agile”. Similarly, Hibbs et al.
(2009) view agile methods as mostly concerned with the specific practice of developing software and the
project management that surrounds that software development. They do not generally concern themselves
with the surrounding business context in which the software development is taking place. Instead, lean

Page 6 of 27

principles can be applied to any scope, from the specific practice of developing software to the entire
enterprise where software development is just one small part.

Poppendieck and Poppendieck (2003, 2006) focus more on the application of lean in software
development activities. They claim that lean thinking is principles that guide ideas and insights about
software development discipline. Principles are viewed as underlying truths that do not change over time
or space, while practices are the application of principles to a particular situation and should differ from
one environment to the next and change as a situation evolves. They believe that lean development
further expands the theoretical foundations of agile software development by applying well-known and
accepted lean principles to software development. Consequently they suggest use lean thinking as
guiding principles to develop and adapt agile practices. Morien (2005) also sees that agile project
management has roots in the lean thinking which provides strength and credibility to the concept and
practice of agile project management. Along the same line, the study of Perera and Fernando (2007)
attempts to identify possible improvable parts in agile software development processes, and explores how
lean practices could be used to improve them. A hypothesis “agile software process’s development can be
improved using lean practice techniques” is proposed in their study. They conducted a controlled
experiment with university student projects to test the hypothesis and obtained positive evidences to
support it. They conclude that applying lean techniques help stabilise the agile development phase
especially in later stages of the phase. Instead, Ambler (2009) proposes a governance framework built
upon the lean principles that is claimed to enable agility at scale. Lean governance practices such as
aligning the team structure with the architecture, risk-based milestones, and staged program delivery
address complexities inherent in large or distributed teams. Other practices such as continuous project
monitoring, integrated lifecycle environment, and embedded compliance help to address the additional
complexity of regulated environments.

Table 3 is a summary of the possible applications of lean approaches in agile software development
suggested in the reviewed literature. The limited yet increasing literature on lean software development
depicts a fragmented picture of the strategies of lean application in agile software development. The
empirical evidences of such applications and their implementation are yet to be collected in a systematic
manner. Our study is one of the earliest attempts to address this knowledge gap.

Types of lean application in agile software development

Non-purposeful combination of agile and lean in software development
processes

Lean approaches are applied to the business
areas related to software development

Lean approaches are applied to software
development processes directly

Purposeful application of lean
approaches in agile software
development

Table 3: The application of lean approaches in agile software development

4 REesSeARCH APPROACH

To explore how lean approaches have been applied in agile software development, we have conducted
a secondary data analysis of the real world cases that contain the evidences of lean application in agile
software development. Secondary data analysis is the analysis of data that was either collected by
individuals other than the researchers that conduct the study, or for some other purpose than the one
currently being considered, or often a combination of the two. The sources of secondary data include
newspapers, census data, maps, etc. The advantage of using secondary data is that the data collection

Page 7 of 27

process can be unobtrusive, fast and inexpensive, even though it needs to be cautioned that there are
issues related to data quality control, accuracy of data, etc., which need the attention of the researchers.
Secondary data analysis is frequently used in social science research. If it is undertaken with care and
diligence, it can provide a cost-effective way of gaining a broad understanding of research questions. It is
also often considered a starting point for other research methods, helpful in designing subsequent primary
research and can provide a baseline with which to compare the primary data analysis results (Boslaugh,
2007). Given the exploratory nature and early stage of our study, we consider secondary data analysis a
feasible way to build initial understanding of the phenomenon under the study.

Agile development has been the subject of several conferences, and some of these conferences have
published experience reports which share industry experiences of agile software development. To obtain
the secondary data needed for this study, we collected the experience reports that have been published in
the agile related conferences from 2000 to 2011 (including the XP Conference series, Agile Conference
series and XP/Agile Universe series) and that are publicly available online (Agile 2010 experience reports
and the proceedings of XP 2000, XP 2001, XP2002 and XP Universe 2001 are not publicly available
online). For each experience report, we conducted a full-text search for any lean concept, principle or
practice as defined in Section 2. If an experience report contained one or more lean keywords, we then
read through the report to decide: i) if it has an agile software development context, and ii) if it contains
explicit evidences of applying one or more lean concepts, lean principles and/or lean practices in the agile
context. In total 30 experience reports satisfy the selection criteria and have been included in the
secondary data analysis (see the Appendix for a list of these experience reports). Table 4 shows the source
conferences and number of the selected experience reports per conference.

Conference | T coected
Agile 2004 2
Agile 2006 4
Agile 2007 3
Agile 2008 5
Agile 2009 4
XP 2010 3
Agile 2011 8
XP 2011 1
Total 30

Table 4: The source conferences and the numbers of the selected experience reports

The 30 selected experience reports focus on different aspects of software development. The angles and
detail levels of the description of lean application vary from one experience report to another. This
diversity posed a challenge to qualitatively analyse these 30 experience reports at the same depth and in a
unified manner. We started with the initial classification scheme of lean application in agile software
development presented in Table 3. Combined with our understanding of lean approaches, it acted as a
sense-making and categorisation device for the identification of patterns of lean application in agile
software development. Meanwhile, we used an open coding process and allowed more detailed patterns
emerge from the collected data which enriched and extended the initial classification scheme. Some

Page 8 of 27

initial insights gained through analysing a subset of the reports has been reported in Wang (2011). The
following section describes the findings of the analysis of all 30 experience reports.

5 FinDINGs

The 28 organisations reported in the 30 experience reports (3 experience reports regard the same
company) range from small and medium to large and multi-national. They operate in diverse business
domains, such as software engineering, telecommunication, finance, healthcare and public administration.
Lean approaches have been applied to various agile projects of these organisations, in various manners
and to various degrees. In some companies, lean application is limited to a single, or several agile teams
or projects. In others instead, it is a company-wide endeavor. Table 5 shows the six categories of lean
application in agile software development identified based on the analysis of the 30 experience reports.
The distribution of the experience reports per application type is shown in Figure 1.

synchronised manner

Type of lean application Type code
Non-purposeful combination of agile and lean in software development A
processes
Lean approaches | Agile within, lean out-reach: using lean
are applied to the | approaches to interact with neighbouring
business areas business units while keeping agile B
related to software | development processes internally
development
Purposeful Lean facilitating agile adoption before or c
application of during the transition process
lean o o .
aooroaches in Lean W|th|q agile: using various lean D
PP Lean approaches | elements to improve agile processes
agile software are applied to : _
development | software From agile to lean: comprehensive
development application of lean approaches to transform E
processes directly | adile processes
Synchronising agile and lean: agile team
and lean team work in parallel in a F

Table 5: The six categories of lean application in agile software development

Number of experience reports

13
0
‘ s o
4
4
o -
A B € D E F

Type of lean application

Figure 1: The distribution of the selected experience reports per lean application type

Page 9 of 27

A more detailed distribution of the experience reports per type per year is shown in Table 6.

A B C D E F
2004 [ER2] [ER1]
2005
2006 [ER5] | [ER3] | [ER®6]
[ER4]
2007 [ER7] | [ERS]
[ER9]
2008 | [ER13] | [ER12] [ER10]
[ER14] [ER11]
2009 [ER17] | [ER15] | [ER18]
[ER16]
2010 [ER19] | [ER20]
[ER21]
2011 [ER24] | [ER28] | [ER22] | [ER29] | [ER30]
[ER23]
[ER25]
[ER26]
[ER27]

Table 6: The distribution of the selected experience reports per application type per year

It can be seen that Type D, using lean to improve agile processes, is the most common and frequently
appearing lean application type over the past years, with almost a half of the selected experience reports
containing the relevant evidences. Another observation is that, Type E seems to be an emerging trend of
lean application in the last several years. In the following sub-sections we present in more depth what the
six categories of lean application mean and how various lean concepts, principles and practices have been
applied in the cases reported in the experience reports.

A: Non-purposeful combination of agile and lean

The reporter of [ER13] presented the agile practices that he practiced in a project where he worked as
a technical lead (The company’s name was not revealed in the report). The practices in his armory
included both agile practices (Keep/Problem/Try Retrospective, Estimate Retrospectives, Iteration
Planning, etc.) and lean practice (Task Kanban). Evidently he was practicing a combined approach of
agile and lean practices, even though he regarded them as agile practices in general. In this report lean
and agile practices were presented in parallel and no specific distinction between the two was made.
Therefore it is a case of non-purposeful combination of agile and lean practices. It is interesting to
mention that the Japanese background of the development team might be an explanation of the natural
and implicit adoption of lean practices.

B: Agile within, lean out-reach

Five experience reports are grouped under this category. Table 7 lists the cases contained in these
reports.

Experience | Organisation
report No. Name

[ER5] Medtronic Inc. |Medical device Concept: Value
Principle: Eliminate waste

Business Domain Lean Elements Applied

Page 10 of 27

Experience | - Organisation Business Domain Lean Elements Applied
report No. Name
[ER12] Ericsson Telecommunication Principle: Build quality in
[ER2] Cyrus Agile software Concept: Flow
Innovation development consulting Principle: Eliminate waste
group Practice: Avoid too much local optimization,
Value stream mapping
[ER14] DTE Energy Gas and electric utility Lean concepts™
services Practice: PDCA cycle
[ER24] Exilesoft Software development Principle: Limit WIP
Practice: Kanban board

* Which specific lean concepts were applied is not explained in the report.
Table 7: The cases in the “agile within, lean out-reach” category

In the Cardiac Rhythm Disease Management of Medtronic Inc., when the software group adopted
agile development, they quickly realized that not only were they learning something new, but they also
needed to learn how to communicate it with other business units ([ER5]). Lean concepts and principles
became a convenient choice as a communication tool with the product development organisation since
the product development organisation had already implemented a lean initiative. Therefore when
communicating with product development organisation, the software group emphasized the principle of
eliminating waste, meanwhile implemented customised agile practices like the Customer Role, Stories,
Sprint Planning and Release Planning to put focus on value-added activities.

The experience of Ericsson R&D in the Netherlands suggests that agile software development should
be implemented as a broader “lean” initiative (JER12]), which can create involvement of neighbouring
units, for example, service and delivery units, product management, market units and customers. This
foundation would be an incentive for neighbouring units to cooperate and optimize as a whole, and the
resistance to collaborate with agile development would be reduced effectively. Their experience also
suggests that lean can help align management quickly:

“In a bottom-up approach line and project management have limited involvement. However,
line and project managers are a key in making the change stick, helping people resolve
impediments and conflicts, building a learning organization and, above all, showing what is
meant with Agile and lean ways of working. Speaking the same language and agreeing on
principles like ‘build quality in’ and many more is highly needed for successful cross unit
cooperation.” ([ER12, p.158])

An interesting case was reported in [ER2] where a company applied lean thinking and systems
thinking on the customer business process in order to understand what features the developers should
develop that really delivered business values. Cyrus Innovation is a consulting group in New York City
specializing in agile software development, usability design and operational consulting. One of their
customers — a restaurant chain - needed to improve aspects of their operations that were breaking due to
their rapid growth. Their main objective was reducing operating expenses by cutting down on the food
product wasted each day. Cyrus Innovation used XP for development and strongly believed in the power
of agile development; however they saw that agile alone was insufficient to make every software project
successful:

“XP customer will tend to drive development without regard to how features impact the
business system from a throughput perspective.... If business managers do not adopt analytic
techniques that are more synergistic with XP, the developers themselves simply become a local

Page 11 of 27

optimization of the software development process. As a result, XP by itself cannot drive overall

system improvement and thus by itself cannot make a company sustainable.” ([ER2, p.81])

Projects must be coupled with a complimentary approach to strategy in order to achieve the overall
business goals. Rather than accepting whatever the customer demanded to deliver, the project team used
lean thinking and techniques, including eliminating waste, value stream mapping, flow, and theory of
constraints, to better understand what really delivered business value to the customer. Then the
development team used agile development to build quality software that effectively contributed to overall
business success.

In DTE Energy, a Fortune 300 company, agile software development and project management
encountered the legacy mindset and culture of portfolio management ([ER14]), which meant that the
annual budgeting cycle drove a mindset that scope, budget, and schedule must be established up front,
often many months before project work began. Success meant delivering on that scope within the budget
and schedule commitments. As the IT teams successfully applied agile methods at the project level, they
began to address their approach for managing portfolios of projects to increase the amount of value they
delivered with their business partners. Lean training was organised for the leadership team, and potential
applicable lean techniques identified. They also introduced lean terminology and concepts to help better
understand the constraints and how they could reorganize the way they prioritized their commitments and
funded their work. As the way forward, one overarching strategy in their IT was to leverage an existing
corporate system which is a combination of lean and Six Sigma thinking, seeing, and doing tools and
techniques based upon the Plan-Do-Check-Act (PDCA) cycle.

Similarly Exilesoft, an offshore software development company in Sri Lanka which caters to the
Scandinavian and Australian markets, applied lean to its Human Resource (HR) department ([ER24]).
With the rapid change from a traditional project culture to an agile one and the speedy growth of the
project organisation, supporting functionalities such as HR and operations were stressed out and a high
degree of negative stress and frustration was created throughout the company:

“... software companies adapt agile concepts for their development teams rapidly. However,

the lack of understanding of such concepts by other facilitating entities of the organization, such

as HR department, may create complexities and slow down the expected return of such agile

transformation by its production staff.”” ([ER24, p.166])

Based on the believe that employing the same agile concepts within the HR department would also
deliver positive results and that having one work culture across the organisation would remove many
challenges faced by the company, the senior management group launched an initiative to introduce agile
concepts to its HR department. However, due to the nature of the work in HR, feasibility of implementing
Scrum was rejected, including the concepts of time boxing, scheduled releases, story point estimation,
sprint burn down, etc. Instead, kanban was seen a better fit for the HR department. Kanban supported
everyday planning required for HR functions. It did not demand story point estimation/relative
estimation, and allowed to monitor cycle time and set limit to work-in-process, which solved one of the
biggest issues in the HR department, preventing it from committing to work on various tasks which
would exceed their capacity.

In brief, the five cases show that the agile teams have used purposefully lean approaches to involve
and interact with their surrounding environments while keeping the agile processes internally. They have
demonstrated lean approaches, especially the lean concepts and principles, could help agile teams to
better collaborate with different stakeholders of software development, including neighboring business
units and customers, and extending agile mindsets and practices to non development, organizational level
activities.

Page 12 of 27

In the following sub-sections we show how lean approaches have been used purposefully in software
development activities directly and demonstrated their effectiveness as software development approaches.

C: Lean facilitating agile adoption

Six experience reports contain evidences that lean concepts and principles have been utilized to
facilitate agile adoption, either before or during agile transition initiatives. Table 8 shows the profiles of
the six cases.

Experience Organisation Business Domain Lean Elements Applied
report No. Name
[ER3] Capital One Financial service Principle: Eliminate waste,
Practice: Value stream mapping, Root-
cause analysis
[ER9] Systematic Software systems Principle: Build quality in, Create
knowledge, Deliver fast
[ER4] (not revealed) Automotive engineering | Concept: Self funding transformation®,
consultancy and software | cost accounting™
[ER7] Salesforce.com |Enterprise software Principle: Respect people, Deliver fast
[ER17] SEP Software solution for Practice: Kanban board
regulated industry
[ER28] Cisco Voice Voice technology and Concept: Value, Flow
Technology Group |service Principle: Principles of product flow**
Practice: Kanban board

* Considered lean elements in the report but not included in our definition.
** Which specific principles were applied is not explained in the report.

Table 8: The cases in the “lean facilitating agile adoption” category

Capital One, a large Fortune 500 financial services company used the lens of lean to evaluate the
current delivery process and streamline the business values prior to agile transition ([ER3]). Lean
principle, eliminate waste, and practices including value stream mapping, root-cause analysis (5-whys)
were applied to analyse the processes of a product or service type before Scrum was chosen as the
adopted agile method. According to the experience of the company, lean principles and practices could
help in achieving a smoother transition and would increase the likelihood of a successful agile pilot with
tangible business metrics.

The experience of Capital One is echoed by that of Systematic, an independent software systems
company ([ER9]). Systematic made a strategic decision to use lean as the dominant paradigm for further
improvements after achieving CMMI (Capability Maturity Model Integration) Level 5. The company
identified Lean Software Development of Poppendieck and Poppendieck (2003) as the lean dialect most
relevant to Systematic. The analysis of systematic improvement opportunities and lean causal
dependencies led to the decision to seek improvements based on the lean principles of build integrity in,
amplify learning and deliver fast. These lean thinking tools gave inspiration to consider Scrum and early
testing.

[ER4] describes an interesting experience of the bottom-up, self-funded agile adoption in an
engineering consultancy and software company that is involved in the automotive industry “where
analogous concepts under the umbrella term “lean’ are part of the landscape” and some of the companies
they do business with were the originators of lean. Therefore it is natural that the driving force behind a

Page 13 of 27

lot of what they did came from an awareness of lean. According to the report, a self funding
transformation is one of the key concepts they “stole” from lean. Another concept that they borrowed
from lean is that of cost accounting, viewing your software team as a fixed cost overhead. In addition,
what inspired them to bootstrap agile practices themselves include also the “inspect and adapt” cycle.
Therefore, the success of this self-funded agile adoption can be attributed to the guidance of both lean and
agile concepts.

In contrast to the bottom-up, self-funded agile adoption described in [ER4], Salesforce.com took a
completely different approach ([ER7]). Salesforce.com has completed an agile transformation of a two
hundred person team within a three-month timeframe. During this large and fast “big-bang” agile rollout,
lean principles, such as empowered teams and delivering customer value early, were used as key
communication tools to communicate the value of changing current behavior. If the teams were feeling
that something was not working the way it should be, they could refer back to the values and reject
anything they thought did not correlate with their core values. Lean principles help agile behaviors to
stick.

This claim can be supported by the experience of SEP ([ER17]). SEP is a privately held software
engineering company with more than 70 employees. It offers full lifecycle software solutions to clients in
the medical, aerospace, healthcare and national defense markets. In the process of adopting one of the
agile methods, Feature Driven Development, SEP found that it failed to have the desired lasting impact
across the entire organization. However, things changed when a kanban system was implemented later on
alongside the agile practices. Kanban provided a more effective vehicle to introduce agile practices and
principles in the company. The culture on project teams began to change as they learned the system. And
more importantly, the attitudes of team members changed. The implementation of kanban helped the agile
mindsets to stick in the company.

The agile transition in Cisco Voice Technology Group (VTG) was also a top-down organisational wide
initiative ([ER28]). VTG is a global organization with three business units, with a total of about 2,500
people within the larger Cisco Systems, Inc. When Scrum was to be implemented in the organisation, it
was realised that, even though “... it is often suggested to implement Scrum by using Scrum: create a
backlog of process changes, prioritize, and start implementing™, the kanban approach was found more
appropriate to implement Scrum in VTG:

“we had a vision and model we wanted to implement, we had a backlog of steps to take, and
when problems occurred, we would prioritize the issue, put it on the backlog, and address it when

it became the highest priority. Sometimes that meant addressing an issue immediately.” ([ER28,

p.274])

An important lesson learned by VTG was that implementing agile methods into an organization was
“interrupt-driven, not plan driven. We had some interesting hurdles to clear, but once taken they became
a strong driver in the change process.”" Other lean concepts, such as value and flow, and the principles of
product development flow, also inspired and helped the different organisational units, including the
executives, to comprehend the nature of the agile transition happening in the organisation.

As shown in these six cases, regardless the agile adoption style (top-down organizational undertaking
or grass-root, bottom-up initiative) or applied before or during agile adoption, lean concepts, principles
and practices can smooth the agile transformation process and help agile mindsets to be institutionalised
in adopting organizations.

D: Lean within agile

Using various lean elements to improve agile processes is a pattern that appears repeatedly in 13 out of
30 experience reports analysed. Table 9 is a list of the 13 cases.

Page 14 of 27

Experience Organisation Business Domain Lean Elements Applied
report No. Name
[ER1] Government of a|Public administration Principle: Reduce batch size
major California
county
[ER16] Canonical Open source solution, Concept: Value stream
collaborative software Practice: Address bottlenecks, Kaizen
systems
[ER6] Wireless Data |Services to mobile Principle: Eliminate waste
Services Global |companies
[ERS8] Sabre Airline Product development for Principle: Eliminate waste,
Solutions airline industry Practice: Value stream mapping
[ER10] British Telecom |Telecommunication Principle: Eliminate waste
[ER11] (not revealed) |(not revealed) Principle: Eliminate waste
[ER19] ASR Insurance |Insurance Principle:Visualize the workflow, Limit
WIP, Manage flow
Practice: Kanban board
[ER23] Fundamo Mobile financial services Practice: Kanban board, CFD
products
[ER27] SumTotal Des |Learning management Practice: Value stream mapping, FIFO
Moines system queue
[ER26] (not revealed) |Financial service Practice: Visualise all work items, Root
cause analysis, Kaizen
[ER22] (not revealed) | Telecommunication Practice: Use pull systems, Kanban
board, Value stream mapping, Kaizen, Pull
the andon cord
[ER15, ER25] | Systematic Software systems Practice: Kaizen, PDCA cycle, Root
cause analysis, Jidoka

Table 9: The cases in the “lean within agile” category

Lean concepts and principles have been used as thinking tools to make sense and guide the use and
adaptation of agile practices in [ER1]. The Government Workflow Project, a project initiated by the
government of a major California county to automate the workflow of key business processes in the
criminal justice system, has adopted agile practices incrementally. The project team ended up performing
more up-front analysis and using small batch size for estimations as a response to frustrating velocity
fluctuations and inconsistent completion of features. Initially the team had doubts that performing
additional up-front analysis was against agile principles. However, “in retrospect, the team realized this
practice implements the ‘smaller batch size’ principle of Lean Software Development, and in fact
increased their agility”. Notice that lean was used as a sense making tool retrospectively after a practice
was adapted. More lean principles have been applied in a distributed team of 35 developers spanning 5
continents in Canonical ([ER16]). The lean principles that play an important role in the experience of this
highly distributed agile team include end-to-end view of the process, removing bottlenecks in the process,
and Kaizen where process improvement experiments are encouraged.

One of the lean principles, eliminating waste, is a recurred theme in [ER6, ER8, ER10, ER11]. In
Wireless Data Services Global, a service provider to wireless companies and mobile phone

Page 15 of 27

manufacturers, the development teams “have experienced tremendous positive effects from utilizing
Extreme Programming practices on development teams”. However, they “have yet to find the agile path
to regularly providing positive business value” ([ER6, p.175]). Over the time, they have found a family of
four agile practices that merged the XP principles of implementing the “highest value features first”, and
“don’t do anything extra”, with lean principles such as “eliminate waste” to address the highlighted
issues. The four practices - Value-based Investment Decisions, High Confidence Stories First,
Incremental Story Delivery, and Story Ownership - embody both agile and lean principles and are
believed to be most effective when applied together. In [ER8], Sabre Airline Solutions, a company
developing products for the airline industry, encountered agile plateau effect. In the effort of overcoming
the plateau, the company chose to apply lean concepts, such as seeing waste and value chain mapping, to
brainstorm the ways to improve quality, and develop quality improvement goals and action plans
accordingly. [ER10] examines the use and adaptation of the “product owner team” practice in BT, British
Telecom. Product owner team is used to manage the details of what should be built in a project
implementing an up to 24Mbps service over the 21CN network. The lean principle of eliminating waste
and the seven types of waste help the company to “break the silo mentality and simplify the delivery by
reducing the work in progress and developing collaborative teams focused on customers’ prioritized
needs”. It is believed that the project was successful due to ““the collaborative efforts of the core team to
eliminate waste — applying one of the core principles of lean”. Similarly, in a mission-critical
commercial-off-the-shelf upgrade project described in [ER11], lean thinking, especially eliminating
waste, is used as the guidance to the improvement of the manual testing process which is crucial to the
project.

Kanban is another frequently used approach to improve agile processes. [ER19] reports the projects in
the IT department of ASR Insurance, one of the top 3 insurance companies in the Netherlands. While
most projects that used Scrum were successful, other Scrum teams were having some difficulties. The
major reason was that these projects most of the time were involved in operations work or small
maintenance. The work was hard to distribute properly over sprints and often needed to be changed more
frequently than the 2-week sprints allowed. What the client wanted was more flexibility and more control
over the immediate results. The company wanted to keep the agile mindset and at the same time do
something more appropriate for maintenance and operations so that they too can cooperate with the rest
of the IT departments and projects. Kanban technique was adopted, together with the underlying
principles - make work visible, limit work in progress and help work to flow. As a result, much better
understanding and cooperation between developers from different technologies as well as with the testers
was observed, even though the team encountered different team and organisational challenges.

A similar story is recounted in [ER23]. Fundamo is a provider in mobile financial services products.
The Product and Technology teams faced heavy support tasks for multiple customers. Scrum was used for
the development work, while kanban was used for support. The teams started with a simple basic kanban
board and allowed the board to emerge and add complexity when necessary since “a less formal process
and kanban board, less reluctance to change”. However they did use a CFD (Cumulative Flow Diagram)
from day one and recorded the number of issues in each column at the same time each day after daily
meeting. This diagram helped measure cycle time and make predictions around their defect fix rate. They
also tried to achieve a better balance between demand and throughput by closely collaborating with
Professional Service teams at weekly prioritisation meetings where they reviewed the current outstanding
issues and agreed on what they would tackle next. The meeting drove the issues that they added to the
kanban board. At the end, the kanban board advanced significantly with more columns, buffer areas and
WIP limits. Kanban allowed for issues to be added to the work queue at any time rather than on a fixed
cadence as in Scrum, and for releases to be decoupled from the sprint cadence so the teams have

Page 16 of 27

flexibility to release a patch at any point rather than at the end of the fixed-length sprint. Kanban also
provided a mechanism to quantitatively measure the effects of any changes in the process so that they are
able to quantify both their demand and throughput and ensure these stay balanced by changing explicit
policies.

Metrics were also carefully implemented in [ER27] where the application of lean helped to better
manage defect resolution process of SumTotal Des Moines, a Learning Management System provider
that uses a Software as a Service (SaaS) approach to delivering its product to customers. The company
has various issues with their defect resolution process. Defects were not getting resolved for a long time
which upset the customers. The process did not lend to efficient use of expensive developer time of the
production support team. With the help of the customer support team, the production support team was
able to expose waste by creating a value stream map of the old process. The exercise revealed that a
defect took roughly 4 days to fix but spent 100 days waiting. To address these issues, a new main queue
was used, which was a First-In-First-Out (FIFO) queue. A process to keep track of each defect as it
flowed through the development process was established:

"Each time a new defect was picked from the new FIFO queue, a developer pair was
responsible for creating a card and placing it on the board within the In Progress column. As
defects flowed out of In Progress into QA, the pair would move the card. Each day after stand up
the team lead would take count of the number of defects in each category and mark them in a
spreadsheet.” ([ER27, p.271])

In this process, the most important metric to collect was current lead time; e.g. how long until a defect
is fixed, which provided predictability to the customer support team. Each day the team lead would count
the number of defects in six categories: Backlog, In Progress, Blocked, In QA, Release Ready, and In
Production. These numbers helped the production team determine their cycle times and lead times for
defects while their CFD helped them visualize their defect flow.

Technical debt is a serious issue faced by many agile teams, which seems to accumulate with the
progress of iterations. [ER26] shows how a very large Fortune 200 financial services company, who had
some successful pilots using agile and was in the midst of a company roll out, started to address this issue
by making technical debt visible through so called “code Christmas trees” located in the walkway of the
company. It evoked conversations and discussions among developers and whoever is interested. To avoid
punitive uses of the information revealed by the code Christmas trees, root cause analysis techniques like
fish bone diagrams and 5 whys analysis were applied. The teams never stopped with a single individual
when searching for the cause of problems. Meanwhile, the company kept experimenting with new
adaptations of their trees since it was believed that “it is easy to overlook big, visible problems over time
when they do not change materially.”

Continuous improvement was the central theme of [ER22]. FFM (Field Force Management) project of
one of the biggest international telecom companies had been facing several challenges, including no
scope defined, no measurement of the team capability, "push scheduling” mentality was pervasive, the
trust of business stakeholders in the team was minimal, and most team members were junior with little
experience and exposure to agile methods. While the team started to use agile requirements analysis, they
set up a kanban board to track each story as it flowed through the work flow. From the very beginning,
they instilled the "Pull Scheduling" concept into the team, which managed the queue of items that should
happen next; the team usually pulled an item off the top of the queue when planning work. The team
pulled stories from the list in each iteration based on team capacity and capability. Continuous
improvement opportunities were identified through the application of value stream mapping, which
revealed that there was too much waste in the deployment process flow. Team dependences, or
segregation of cross functional teams, were identified as a cause. With team dependencies, it would be

Page 17 of 27

very difficult to deliver even a small feature set since it required a large amount of communication and
coordination among teams. The team had also learnt the importance to pull the "Andon™ cord to "stop-
the-line" if a true iterative iteration (in which the development team produce a releasable application)
could not be achieved.

Continuous improvement was also at the heart of Systematic's experience. The result of the pilots in
Systematic reported in [ER9] confirmed the general idea of using lean mindset as source for identification
of new improvements. Actually that was what happened in Systematic later on, which is the main subject
of another two experience reports about the same company ([ER15, ER25]). Viewing lean as a “Scrum
Troubleshooter”, Systematic used PDCA cycle with an A3 problem solving technique and the 5 why root
cause analysis, to identify problems and opportunities for organisational wide improvement. Senior
management involvement is significant in this case:

"Many of the adjustments implemented are characterized by being desired but beyond the
control of the projects. Had the projects driven these improvements on their own, they might have
discarded the ideas for adjustments because of the need to involve senior management or VP’s in
the decision. When the problem solving is initiated by senior management, the negative impact of
the problem is viewed both from the project perspective and also from the business unit or
company perspective. In this larger problems build high management larger perspective
commitment, because the impact of the problem and the benefit of the solution is visible in a
larger scale." ([ER25, p.174])

However, Systematic's most important learning from the improvements during the past five years was
the lean concept of Jidoka - respect that those who do a particular part of work, are those who are best
qualified to improve how this work is done. Make people responsible for solving their own problems and
ensure that management supports it.

As shown in these 13 cases, continuous improvement, or Kaizen, is at the core of this type of lean
application. Agile methods also advocate continuous improvement, but do not answer how it can be
implemented. Lean approaches, instead, offer specific directions (eliminating waste in software
development processes, focusing on flow, etc.) and specific practices (kanban, value stream mapping,
root cause analysis, etc.) to improve agile processes continuously.

E: From agile to lean

Four experience reports contain the lean application cases that can be classified in this category. They
are published recently (within 2009 to 2011). Table 10 is the profiles of these cases.

Experience | Organisation Business Domain Lean Elements Applied
report No. Name
[ER29] Yahoo! Internet services Concept: Flow
Principle: Eliminate waste, Reduce batch size
Practice: MMF
[ER18] Inkubook Online photobook Concept: Pull
Practice: Kanban board, Limited WIP, MMF
[ER20] Codeweavers |Financial and Concept: Flow
insurance web services | Practice: Value stream mapping, Kanban board,
Limited WIP, CONWIP, MMF

Page 18 of 27

Experience | Organisation

report No. Name Business Domain Lean Elements Applied
[ER21] (not revealed) |(not revealed) Concept: Value
Principle: Manage flow, Limit WIP, Visualize the
workflow

Practice: Kaizen, Visualize all work items,
Same-size work items*
* Considered lean elements in the report but not included in our definition.

Table 10: The cases in the “from agile to lean” category

Yahoo! runs websites visited by hundreds of millions of users a day. Hundreds of development teams
at Yahoo! rely on one another for code and services. Many of these teams have been using Scrum,
including Yahoo! Sports team ([ER29]). Yahoo! Sports team used a lot of code written by other teams.
Team interdependency was a commonplace. It was said that “the worst customer for a Scrum team is
another Scrum team”. Different Scrum teams had different sprint lengths, velocities and priorities. Often
Scrum teams did not want to be distracted during their sprint. However, sometimes a sporting event
would occur before another team could commit to resolving a dependency, which forced the Sports team
to find a solution themselves. Due to the intense release schedule, the high demands of the product, and
the many dependencies on other teams, the Sports team realised that they could not operate as usual.
Among the transformational events that enabled the team to keep pace with the demands of the online
sports world while maintaining team cohesion, motivation and high quality, an important one was daily
release. Before the 2010 World Cup, the Sports team was deploying large feature releases that occurred at
least every two week sprint. However, as the World cup event was set to begin, it became apparent that
there would always be something that had to be delivered daily. What enabled the team to achieve such
an aggressive cadence, among other themes, was the concentration of the team efforts on two lean
elements: a better flow and smaller pieces of code. The team reviewed the timing of specific handoffs
between teams everyday and made changes frequently to reduce the waste. They also focused on build
automation as well as test automation by having the developers and testers share test development
responsibility and do their work in parallel. Over time the team got better at identifying the MMF
(Minimal Marketable Feature) and delivering smaller increments of code to production to a small subset
of users.

Inkubook is an emerging player in the online photobook industry. The journey of the Inkubook team to
improve their software development process is documented in [ER18]. The team initially adopted Scrum
“by the book”. However, they entered into a chaotic no process stage when the mandate arrived that a
product would be delivered in sixty days. When the schedule slowed down again, in order to avoid
burnout and staff turnover, the team moved back to Scrum, but this time it was really a “flow-based,
iterationless version” of Scrum. After three months of being in the same “sprint”, the team recognized
that flow was working well for getting things done and therefore they abandoned estimates, implicitly
organizing around a WIP limit of two MMFs. Finally, after several more months passed, the team
accepted that they were using a work-limited, pull-based kanban approach and updated the usage and
terminology to reflect that fact. According to the team, “the use of a kanban implementation survived a
round of layoffs, an extreme change in team and management composition, and is still being used today”.

A similar case is reported in [ER20]. The title “From Chaos to Kanban, via Scrum” illustrates the
evolutionary path of the software development team in Codeweavers. The company is a UK business of
approximately 20 people, delivering motor finance and insurance web services. The team comprises 8-10
co-located developers. Using simple inspect-and-adapt cycle to adopt one practice a time, the team

Page 19 of 27

adopted Scrum practices first to tackle the chaos, then used value stream mapping and adopted kanban
board to have a better visibility of upstream and downstream activities other than work in progress on the
story board. Step by step following the kanban adoption, the team introduced limit to WIP, fine tuned it
while the team began batching tasks into MMFs. Along the way, the team also adopted automated
regression test and adapted stand-up meeting to hold it twice per day to ensure tasks were worked on as
things developed. At the end, the development process assembles more a flow-like lean process rather
than a time-boxed Scrum process. Meanwhile, as the focus on flow and throughput became more deeply
ingrained in the development team, the developers' view of the value stream gradually increased, from
focusing only on the "in development™ column to downstream to ensure the code developed was accepted
and deployed to customers. Later still they looked further down-stream, helping customers to adopt the
new services, and upstream, helping the business to decide what was needed and how to prioritise it. The
focus was expanding even further into the company's sales and marketing functions.

If the transition of Yahoo! Sports team, Inkubook and Codeweavers from agile to lean was an
incremental or unplanned process, the experience documented in [ER21] was a more systemic move. The
software development team (not named in the report) had run a Scrum-based development process for
several years. The practices included continuous integration, automated, nightly build and deployment to
QA servers, and suites of automated unit and integration tests. In spite of the processes and practices in
place, the team was still challenged by the issues such as frequent mid-iteration changes and non
correlated work items. That is the reason why the team decided to embark on a lean journey. After careful
research, the team arrived at a set of core concepts for their flow-based development: schedule individual
value-adding work items, define a workflow, limit work in process, same-size work items, establish
holistic key performance indicators, visualize all the work and the entire workflow, and improve
relentlessly. The team found that “it was fully possible to run agile software development without time-
boxes by using a continuously updated work item priority queue instead”. The team’s experience shows
that WIP limit is a good control variable compared to controlling capacity and scope of work under high
variability, and a single WIP limit (CONWIP) works well for the team.

The four cases in this category demonstrate that a comprehensive application of lean approaches can
transform agile processes. Starting with the application of lean techniques to improve agile processes,
these organizations ended up in a situation in which lean processes become dominant and agile practices
play the supporting role.

F: Synchronising agile and lean

[ER30] reports an interesting case of one agile team and one kanban team working in parallel in a
synchronised manner to address different aspects of the same development process. Much like most
systems development teams, the teams in WMS, specialised in interactive entertainment, were constantly
working to balance large scale system feature upgrades that make up about 60% of the work with small-
scale changes and bugs that cover the remainder of developers’ time. Over the time two coordinated
agile/kanban teams were formed. The agile team run in a typical agile fashion. They were responsible for
all large-scale projects that affect the system including any architectural roadmap work that may lead to
structural changes to the software as a whole. The kanban team instead were responsible for all small
feature requests along with bugs. The team used a kanban board to manage the development process only,
starting from the currently selected top 5 priority items and spanning all the way to a deployed queue.
They maintained a cycle time and lead time metric integrated with the story point system of the company.
WMS's experience shows that:

“... running both [agile and kanban] processes in synchronization, and not blending them, has
been highly valuable for our organization. ... The random interruptions and fire fighting of
supporting a product in the field always seems to cause disruptions to lterative teams. By adding

Page 20 of 27

a synchronized Kanban team alongside an lterative team we have been able to even out our
iterations and create a productive and healthy work environment where we are able to meet our
customers’ needs.” ([ER30, p.268])

6 Discussion

As shown in the findings section, there can be various ways to apply different lean concepts, principles
and practices in agile software development. Apart from one experience report that describes non-
purposeful combination of agile and lean practices, 29 out of 30 experience reports demonstrate the
application of lean approaches in agile software development with specific objectives and strategies. The
five strategies identified are: agile within, lean out-reach; lean facilitating agile adoption; lean within
agile; from agile to lean; and synchronising agile and lean. With the first two and the last strategies, even
though lean approaches are used to facilitate agile process implementation and effective use within larger
organisational contexts, agile processes remain relatively “pure” or intact. In contrast, the strategies of
“lean within agile” and “from agile to lean” result in processes that blend both agile and lean elements, to
various degrees.

Among these five strategies, the most common one is where different lean elements are used to
improve existing agile software development processes, evidenced by 13 out of the 30 selected
experience reports. As claimed in Poppendieck and Poppendieck (2003), lean concepts and principles
have often been used as thinking or sense making tools to guide the practice of agile software
development. The commonly cited lean concept and principle in these reports are value and eliminate
waste. It can be argued that these two lean elements provide both target and route for continuous agile
process improvement. Another discernible pattern across these 13 experience reports is that, in the past,
lean had been used more as a thinking tool but in a less conscious manner; whereas in more recent years,
the trend has been to adopt more and more concrete lean practices, as a conscious choice of the adopting
organizations.

The kanban approach is also at the core of the strategy “from agile to lean”. 3 out of the 4 experience
reports in this category can be seen as detailed demonstrations of how kanban transforms agile processes.
Although the kanban approach shares similarities to agile approaches, such as a prioritised feature list, it’s
primary concern is to limit work in progress (WIP). However, there is a second significant difference
between it and agile methods. The concept of a time-boxed (fixed duration) iteration is no longer used.
Instead, the kanban board is used to set clearly visible limits to the number of tasks allowed to be in
progress at any given time. There is no fixed number for each WIP limit but by measuring the lead time
of individual tasks, the WIP limits and process itself can be optimised (Kniberg and Skarin, 2010).
Kanban software development pursues the concept of continuous flow or what (Hiranabe, 2008) refers to
as “Sustaining Kanban”.

What has been seen through the experience reports analysis is that the kanban approach suits
particularly well to software maintenance or support type activities where uncertainty is higher than in
normal development activities and change is more frequent than that allowed by agile iterations. Another
point worth making is that, when an agile adopting organisation is mature enough in using agile and
especially lean practices, they have a tendency to move away from time-boxed agile processes to more
flow-based lean processes, as several experience reports have shown ([ER18, ER20, ER21]). It is also
interesting to note that these experience reports were recently published (2009 and 2010). This, together
with recently practitioners-authored kanban books/articles, might indicate that moving from time-boxed
agile processes to flow-based lean processes is a recent tendency in agile software development.

It is also worth noting that the lean concepts, principles and especially lean practices applied in the 30
experience reports are only a subset of what are defined in the relevant literature (as described in Section
2). Some lean elements, such as the principle of waste elimination and the practicing of kanban, were

Page 21 of 27

found to be more often applied than others. It might be an indication that these elements complement
agile processes therefore are a better fit within an agile context.

Last but not least, even though the six types of lean application were presented as distinctive, unrelated
categories, and each experience report was classified under one category only according to its primary
focus, it does not mean that organisations can or do use lean in one manner only. The case of Systematic,
the subject of three experience reports ([ER9] in 2007, [ER15] in 2009 and [ER25] in 2011) is a good
example of an organisation applying lean in different manners to suit different needs at different stages of
agile maturity. Firstly the company used lean as a facilitating tool for a smooth Scrum adoption, then
applied a lean mindset and analysis techniques as sources for continuous agile process improvement.

7 CoNcLUsION

The recent focus shift from agile methods such as XP and Scrum to a lean approach in software
development has been noticeable and evokes the interests of both research and practice alike. The
objective of our study has been to investigate how lean approaches have been applied in agile software
development. To explore this phenomenon, we have conducted a secondary data analysis of 30
experience reports containing real-world experiences of the application of lean approaches in agile
software development. We have identified six types of lean application in these experience reports and
categorized them in a more systemic way.

The findings of the study enrich our understanding of how lean can be applied in agile software
development. Since the research on the broad topic of lean software development is considered a nascent
area (Dingsgyr et al., 2008), we believe our study is an important addition to this branch of research in
general, and on the topic of combining agile to lean in specific. The definition of lean approaches in
software development in terms of lean concepts, principles and practices brings certain extent of clarity to
the understanding of lean software development. It contributes to a better conceptual basis for further
studies on lean software development. The lean application types we identified can serve as a thematic
map for the researchers who intend to conduct more in-depth study of the phenomenon of what is termed
as “leagile software development” in this paper. A significant area for further research could be to provide
operational guidance to help developers (i) map the various potential “leagile processes” to their own
context and (ii) implement the selected process combination.

The practical implication of our study is that it reveals different strategies to apply lean concepts,
principles and practices in agile software development. There is no one-type-fits-all solution. Each
organization should reflect on its own development context, project objectives, and constraints as well as
reflect on the various aspects of agile and lean before embarking on the journey of “leagile software
development”. The potential strategies summarised in this study could provide them with some promising
directions to explore. However, how to effectively tailor these strategies to suit the specific situation and
needs of the organisation is a challenge yet to be addressed and therefore worth further studying.

One limitation of the research is that, since “agile” and “lean” are very broad and often poorly defined
terms, their interpretations in the experience reports are often vague and the terms can mean different
things in different reports. Future research could examine agile and lean at the more detailed and
operational practice level, comparing the commonality and contradiction of agile versus lean practices. A
detailed analysis of practice level comparisons was not possible in this study as not all experience reports
provided the required level of detail.

Another limitation of our study is related to the secondary data analysis method we applied, which
leads to the weak basis of the data source. It must be noted that researchers using secondary data must be
aware of issues related to data quality and accuracy. Since the collected experience reports represented
secondary data, we had no control on the quality of data and especially the level of details we desired.
The 30 experience reports included in the analysis therefore were not equally informative and

Page 22 of 27

illuminative. In addition, the organisations covered in these reports vary in terms of sizes and business
domains they operate, which may pose potential threat to the validity of the findings reported in this
study. One potential avenue for future research would be to conduct primary case studies which allow to
design a better sampling strategy, to collect more specific and in-depth data, and to explore the issues,
challenges and opportunities associated with the application of lean in agile software development.

APrPENDIX: THE LisT oF ExperiENCE RePORTS INCLUDED IN THE SECONDARY DATA ANALYSIS

[ER1] Hodgetts, P., 2004. Refactoring the Development Process: Experiences with the Incremental
Adoption of Agile Practices. Agile Development Conference, pp.106-113.

[ER2] Rand, C. & Eckfeldt, B., 2004. Aligning Strategic Planning with Agile Development: Extending
Agile Thinking to Business Improvement. Agile Development Conference, pp.78-82.

[ER3] Parnell-Klabo, E., 2006. Introducing Lean Principles with Agile Practices at a Fortune 500
Company. Agile 2006 (Agile’06), pp.232-242.

[ER4] Poon, D., 2006. A Self Funding Agile Transformation. Agile 2006 (Agile’06), pp.342-350.

[ER5] Weyrauch, K., 2006. What Are We Arguing About? A Framework for Defining Agile in our
Organization. Agile 2006 (Agile’06), pp.213-220.

[ER6] Yap, M., 2006. Value Based Extreme Programming. Agile 2006 (Agile’06), pp.175-184.

[ER7] Fry, C. & Greene, S., 2007. Large Scale Agile Transformation in an On-Demand World. Agile
2007 (Agile 2007), pp.136-142.

[ER8] Packlick, J., 2007. The Agile Maturity Map A Goal Oriented Approach to Agile Improvement.
Agile 2007 (Agile 2007), pp.266-271.

[ER9] Sutherland, J., Jakobsen, C.R. & Johnson, K., 2007. Scrum and CMMI Level 5: The Magic Potion
for Code Warriors. Agile 2007 (Agile 2007), pp.272-278.

[ER10] Croix, A.D.S. & Easton, A., 2008. The Product Owner Team. Agile 2008 Conference, pp.274-279.

[ER11] Geras, A., 2008. Leading Manual Test Efforts with Agile Methods. Agile 2008 Conference,
pp.245-251.

[ER12] Goos, J. & Melisse, A., 2008. An Ericsson Example of Enterprise Class Agility. Agile 2008
Conference, pp.154-159.

[ER13] Kinoshita, F., 2008. Practices of an Agile Team. Agile 2008 Conference, pp.373-377.

[ER14] Thomas, J.C. & Baker, S.W., 2008. Establishing an Agile Portfolio to Align IT Investments with
Business Needs. Agile 2008 Conference, pp.252-258.

[ER15] Jakobsen, Carsten Ruseng & Sutherland, Jeff, 2009. Scrum and CMMI Going from Good to
Great. Agile 2009 Conference, pp.333-337.

[ER16] Lacoste, F.J., 2009. Killing the Gatekeeper: Introducing a Continuous Integration System. Agile
2009 Conference. pp.387-392.

[ER17] Shinkle, C.M., 2009. Applying the Dreyfus Model of Skill Acquisition to the Adoption of Kanban
Systems at Software Engineering Professionals (SEP). Agile 2009 Conference. pp.186-191.

[ER18] Willeke, E.R., 2009. The Inkubook Experience: A Tale of Five Processes. Agile 2009 Conference,
pp.156-161.

[ER19] Maassen, O. & Sonnevelt, J., 2010. Kanban at an Insurance Company (Are You Sure ?). In
Proceedings of the 11th International Conference on Agile Software Development, (XP2010).
Trondheim: Springer Verlag, pp.297-306.

[ER20] Rutherford, K. et al., 2010. From Chaos to Kanban, via Scrum. In Proceedings of the 1lth
International Conference on Agile Software Development, (XP2010). Trondheim: Springer Verlag.
pp.344-352.

Page 23 of 27

[ER21] Birkeland, J.O., 2010. From a Timebox Tangle to a More Flexible Flow. In Proceedings of the
11th International Conference on Agile Software Development, (XP2010). Trondheim, Norway:
Springer Verlag, pp. 325-334.

[ER22] Zang, J.J., 2011. A Never Ending Battle for Continuous Improvement. In Proceedings of the 12th
International Conference on Agile Processes in Software Engineering and Extreme Programming.
pp. 282-289.

[ER23] Greaves, K., 2011. Taming the Customer Support Queue. Agile 2011 Conference. Salt Lake City,
UT: IEEE Comput. Soc. pp.154-160.

[ER24] Wijewardena, T., 2011. Do you dare to ask your HR Manager to practice KANBAN ? Agile 2011
Conference. Salt Lake City, UT: IEEE Comput. Soc, pp. 161-167.

[ER25] Jakobsen, C. R. & Poppendieck, T., 2011. Lean as a Scrum Troubleshooter. Agile 2011
Conference. Salt Lake City, UT: IEEE Comput. Soc. pp.168-174.

[ER26] Kaiser, M. & Royse, G., 2011. Selling the Investment to Pay Down Technical Debt The Code
Christmas Tree. Agile 2011 Conference. Salt Lake City, UT: IEEE Comput. Soc. pp.175-180.

[ER27] Prior, M., 2011. “ You want to do what ?”” Breaking the Rules to Increase Customer Satisfaction.
Agile 2011 Conference. Salt Lake City, UT: IEEE Comput. Soc. pp.269-273.

[ER28] Smits, H. & Rilliet, K., 2011. Agile Experience Report Transition & Complexity at Cisco Voice
Technology Group. Agile 2011 Conference. Salt Lake City, UT: IEEE Comput. Soc. pp.274-278.
[ER29] Nottonson, K., 2011. Yahoo ! Sports: Sprint 100 & Beyond. Agile 2011 Conference. Salt Lake

City, UT: IEEE Comput. Soc. pp.252-255.

[ER30] Polk, R., 2011. Agile & Kanban In Coordination. Agile 2011 Conference. Salt Lake City, UT:

IEEE Comput. Soc. pp.263-268.

REFERENCES

Ambler, S. W., 2009. Scaling agile software development through lean governance, in: Proceedings of
Software Development Governance SDG’09 - ICSE'09 Workshop, Vancouver, Canada: IEEE
Computer Society.

Ambler, S. W., Kroll, P., 2007. Best practices for lean development governance [Online]. Available:
http://www.ibm.com/developerworks/rational/library/jun07/kroll/ [Accessed 01/09/2011].

Anderson, D. J., Garber, R., 2007. A Kanban System for Sustaining Engineering on Software Systems
[Online]. Available:
http://www.agilemanagement.net/index.php/blog/A_Kanban_System_for_Sustaining_Engineering
[Accessed 01/09/2011].

Anderson, D., 2010. Kanban - Successful Evolutionary Change for your Technology Business. Blue Hole
Press.

Barton, B., 2009. All-Out Organizational Scrum as an Innovation Value Chain, the 42nd Hawaii
International Conference on System Sciences, Waikoloa.

Beck, K., 1999. Extreme Programming Explained. Addison Wesley, Reading, MA.

Boslaugh, S., 2007. An Introduction to Secondary Data Analysis, in Secondary Data Sources for Public
Health: A Practical Guide, Cambridge University Press.

Bradley, R., 2007. Push to Pull: How Lean Concepts Improve a Data Migration. AGILE 2007, 13-17
Aug. 365-370.

Charette, R.N., 2003. Challenging the fundamental notions of software development, Cutter Consort Exe
Rep, 4(6).

Coad, P., Palmer, S., 2002. Feature-Driven Development. Prentice Hall, Englewood Cliffs, NJ.

Cockburn, A., 2001. Crystal Clear: A Human-Powered Software Development Methodology for Small
Teams. Addison-Wesley, Reading, MA.

Page 24 of 27

Conboy, K., 2009. Agility from First Principles: Reconstructing the Concept of Agility in Information
Systems Development. Information Systems Research. 20(3), 329-354.

Dall’Agnol, M., Janes, A., Succi, G., Zaninotto, E., 2003. Lean Management - A Metaphor for Extreme
Programming? in: Proceedings of the 4th International Conference XP2003, Genova, Italy, 26-32.

Deming, W. E., 1986. Out of the Crisis, MIT Center for Advanced Engineering Study.

Dingseyr, T., Dyba, T., Abrahamsson, P., 2008. A Preliminary Roadmap for Empirical Research on Agile
Software Development, in Proceedings of Agile 2008 Conference, Toronto, 83-94.

Dybd, T., Dingsayr, T., 2009. What Do We Know about Agile Software Development? IEEE Software,
26(5): 6-9.

Fagan, M. E., 1976. Design and code inspections to reduce errors in program development. IBM Syst. J.,
15, 182-211.

Goldratt, E. M., 1992. The Goal: A Process of Ongoing Improvement. North River Press.

Goldratt, E. M., 1997. Critical Chain. Aldershot : Gower.

Hibbs, C., Jewett, S., Sullivan, M., 2009. The Art of Lean Software Development: A Practical and
Incremental Approach, O’Reilly Media, Inc..

Highsmith, J., 2002. Agile software development ecosystems, Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc..

Hiranabe, K., 2008. Kanban Applied to Software Development: from Agile to Lean [Online]. Available:
http://www.infogq.com/articles/hiranabe-lean-agile-kanban [Accessed 01/09/2011].

Jalali, S., Wohlin, C., 2010. Agile Practices in Global Software Engineering - A Systematic Map, in:
Proceedings of the 5th International Conference on Global Software Engineering (ICGSE 2010),
IEEE Computer Society, 45-54.

Joyce, M., Schechter, B., 2004. The Lean Enterprise - A Management Philosophy at Lockheed Martin.
Defense Advanced Research Journal.

Kniberg, H., Skarin, M., 2010. Kanban and Scrum-Making the most of both. InfoQ.

Ladas, C., 2009. Scrumban - Essays on Kanban Systems for Lean Software Development, Modus
Cooperandi Press.

Liker, J., 2003. The Toyota Way. McGraw-Hill.

Liker, J. K., Hoseus, M., 2008. Toyota Culture: The heart and soul of the Toyota Way. McGraw-Hill, New
York, NY, USA.

Middleton, P., 2001. Lean Software Development: Two Case Studies. Software Quality Journal, 9, 241-
252.

Middleton, P., Flaxel, A., Cookson, A., 2005. Lean Software Management Case Study: Timberline Inc.
Extreme Programming and Agile Processes in Software Engineering.

Morien, R., 2005. Agile management and the toyota way for software project management, in:
Proceedings of the 3rd IEEE International Conference on Industrial Informatics, (INDIN ’05), Perth,
Western Australia: IEEE Computer Society, 516-522.

Mujtaba, S., Feldt, R., Petersen, K., 2010. Waste and Lead Time Reduction in a Software Product
Customization Process with Value Stream Maps. Software Engineering Conference (ASWEC),
2010 21st Australian, 6-9 April. 139-148.

Naylor, J., Naim, M., Danny, B., 1999. Leagility: Integrating the Lean and Agile Manufacturing Paradigm
in the Total Supply Chain. Engineering Costs and Production Economics. 62(1): 107-118.

Ohno, T., 1988. The Toyota Production System: Beyond Large Scale Production. Portland, OR,
Productivity Press.

Page 25 of 27

Perera, G.I1.U.S., Fernando, M.S.D., 2007. Enhanced agile software development - hybrid paradigm with
LEAN practice, in: Proceedings of 2nd International Conference on Industrial and Information
Systems (ICIIS 2007), Peradeniya, Sri Lanka: IEEE Computer Society, 239-244.

Poppendieck, M., Poppendieck, T., 2003. Lean software development: an agile toolkit, Addison Wesley
Professional.

Poppendieck, M., Poppendieck, T., 2006. Implementing Lean Software Development From Concept to
Cash, Addison Wesley Professional.

Raffo, D., Mehta, M., Anderson, D. J., Harmon, R., 2010. Integrating Lean principles with value based
software engineering, in: Technology Management for Global Economic Growth (PICMET 2010),
18-22 July. 1-10.

Reinertsen, D. G., 2009. The Principles of Product Development Flow: Second Generation Lean Product
Development. Celeritas Publishing.

Reinertsen, D., 1997. Managing the Design Factory : The Product Developer's Toolkit The Free Press.

Robinson, H., 1997. Using Poka-Yoke Techniques for Early Defect Detection. Sixth International
Conference on Software Testing Analysis and Review.

Schwaber, K., Beedle, A., 2002. Agile Software Development with SCRUM. Prentice-Hall, Upper Saddle
River, NJ.

Serignese, K., 2011. A sprinkle of agile, a dash of lean. SPTechWeb, 2011.

Smits, H., 2007. The Impact of Scaling on Planning Activities in an Agile Software Development Center,
in: Proceedings of the 40th Hawaii International Conference on System Sciences (HICSS’07),
Waikoloa.

Sugimori, Y., Kusunoki, K., Cho, F., Uchikawa, S., 1977. Toyota production system and Kanban system
Materialization of just-in-time and respect-for-human system. International Journal of Production
Research, 15, 553 — 564.

Thimbleby, H., 1988. Delaying commitment [programming strategy]. Software, IEEE, 5, 78-86.

VersionOne, 2010. 5th Annual State of Agile Development Survey, [Online]. Available:
http://www.versionone.com/pdf/2010_ State of Agile_Development_Survey Results.pdf [Accessed
01/09/2011]

Wang, X., 2011. The Combination of Agile and Lean in Software Development: An Experience Report
Analysis. In: Proceedings of Agile 2011 Conference. Salt Lake City, UT. IEEE Comput. Soc. 1-9.

Womack, J. P., Jones, D. T., 1996. Lean Thinking : Banish Waste and Create Wealth in Your Corporation.
Simon & Schuster.

Womack, J., Jones, D., ROQS, D., 1990. The Machine That Changed the World. NY, Rawson Associates.

BioGRrAPHIES

Xiaofeng Wang is a researcher in Free University of Bozen/Bolzano. Her research areas include
software development process, methods, agile software development, and complex adaptive systems
theory. Her doctoral study investigated the application of complex adaptive systems theory in the research
of agile software development. Her publications include several journal and conference papers in major
IS journal and conferences, including Information Systems Research (ISR), Journal of Information
Technology (JIT), the International Conference on Information Systems (ICIS) and the European
Conference on Information Systems (ECIS).

Kieran Conboy is an associate professor in Information Systems in UNSW, Australia. His doctoral
research focused on agile methods for systems development as well as agility across other disciplines.
Kieran’s other research interests include systems analysis and management accounting in systems

Page 26 of 27

development projects. Some of his research has been published in various journals and conferences such
as Information Systems Research (ISR), European Journal of Information Systems (EJIS), the
International Conference on Information Systems (ICIS). Prior to joining NUI Galway, Kieran was a
management consultant with Accenture, where he worked on a variety of projects across Europe and the
uU.S.

Oisin Cawley is currently a doctoral researcher with Lero - The Irish Software Engineering Research
Centre at the University of Limerick in Ireland. Previously he had been working for 17 years in software
development for mostly multinational companies, and has held many positions including Global Software
Development and Application Support Manager. He holds a BSc in Computer Science from University
College Dublin, Ireland and an MBA from Dublin City University, Ireland. He is a member of the Irish
Computer Society.

Page 27 of 27

