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Abstract

Recently, a chaos-based image encryption algorithm using alternate structure (IEAS) was proposed.
This paper focuses on differential cryptanalysis of the algorithm and finds that some properties of
IEAS can support a differential attack to recover equivalent secret key with a little small number of
known plain-images. Detailed approaches of the cryptanalysis for cryptanalyzing IEAS of the lower
round number are presented and the breaking method can be extended to the case of higher round
number. Both theoretical analysis and experiment results are provided to support vulnerability
of IEAS against differential attack. In addition, some other security defects of IEAS, including
insensitivity with respect to changes of plain-images and insufficient size of key space, are also
reported.
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1. Introduction

Security of multimedia data including image and video become more and more important as
transmission of multimedia data occurs more and more frequently in the current digital world.
However, the big differences between multimedia data and text, such as bulk size of multimedia
data and strong redundancy existing in neighboring elements of its uncompressed version, make
the traditional text encryption algorithms like DES (Data Encryption Standard) can not protect
multimedia data efficiently. In addition, multimedia encryption has other special requirements, like
fast encryption speed and easy cascade with the whole system. So, designing specific multimedia
encryption algorithm become an urgent task. Meanwhile, chaos theory was developed in depth
in the 1960s. The most famous character of chaos is so-called “butterfly effect”, i.e., states of a
chaos system are very sensitive to changes of its initial conditions and control parameters. This
character is very similar to the confusion and diffusion property of a cryptosystem measuring
sensitivity of encryption results with respect to change of the secret key and the plaintext. The
subtle similarity inspired researchers design secure multimedia encryption algorithms by combing
chaos and cryptography.
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Due to simple syntax of uncompress image and easy extension of image encryption scheme to
other multimedia data, most chaos-based multimedia encryption scheme consider image data as
encryption object. In the past decade, hundreds of chaos-based image encryption schemes have
been proposed [1, 2]. In general, the usage of chaos in designing image encryption schemes can be
categorized as the following three classes:

• creating position permutation matrices [1, 3, 4, 5];

• generating pseudo-random bit sequence, which is then used to control combination and com-
position of some basic arithmetical operations like modulo addition and exclusive or operation
[6, 7, 8, 9, 10, 11, 12, 4].

• producing ciphertext directly when plain-bytes of image are converted to initial condition
and control parameters of a chaotic map [13, 14].

Some general rules about evaluating security of chaos-based encryption algorithms can be found
in [15].

In [16], a new image encryption algorithm using alternate structure (IEAS) based on the general
cat-map and OCML (One-way Coupled Map Lattice) was proposed, where the two maps are
used for realizing position permutation/diffusion and value substitution respectively. Essentially,
structure of IEAS belongs to Feistel networks, i.e., an iterated block cipher where the output
of the current round is determined by that of the previous one. This paper focuses on security
analysis of IEAS and founds that some properties of IEAS, existing when its integer parameter is
even, can be used to support a differential attack to recover equivalent secret key of IEAS with
a little number of known/chosen plain-images. The detailed approaches of the differential attack
are presented in detail when the round number of IEAS is less than or equal to four. In addition,
the cryptanalysis also find some other security defects of IEAS, like insensitivity with respect to
changes of plain-images and insufficiently large key space.

The rest of this paper is organized as follows. The next section introduces the image encryption
algorithm under study, IEAS, briefly. Section 3 present the comprehensive cryptanalysis on the
algorithm with some experiment results. The last section concludes the paper.

2. IEAS encryption algorithm

The plain-image encrypted by IEAS encryption algorithm is a gray-scale image of size N × 2N
(height×width), which can be denoted by an N × 2N matrix in domain Z256. The encryp-
tion algorithm divides the plain-image into two parts of the same size: L = [L(i, j)]N−1,N−1

i=0,j=0

and R = [R(i, j)]N−1,N−1
i=0,j=0 . The corresponding cipher-image is composed of two parts also: l =

[l(i, j)]N−1,N−1
i=0,j=0 and r = [r(i, j)]N−1,N−1

i=0,j=0 . With these notations, IEAS encryption algorithm can be

described as follows1.

• The secret key : the number of iteration round T and the initial condition K0 ∈ (0, 1) of the
chaotic Logistic map

f(x) = µ · x · (1− x).

1To make the presentation more concise and complete, some notations in the original paper [16] are modified, and
some details about the algorithm are also supplied or corrected under precondition that its security is not influenced.
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• The initialization procedures:

1) run the Logistic map iteratively with fixed control parameter, µ = 4, T +2 times from K0

to generate a chaotic sequence {xl}
T+1
l=0 . Then, a 32-bit integer sequence {Kl}

T+1
l=0 is obtained

from {xl}
T+1
l=0 as

Kl = ⌊xl · (2
32 − 1)⌋.

2) permute and expand the 32 binary bits of each element of {Kl}
T+1
l=0 by the look-up table

shown in Table 1 and get a 50-bit integer sequence {K∗

l }
T+1
l=0 .

Table 1: The Expansion Permutation Table.

32 1 2 3 4 5 4 5 6 7

8 9 8 9 10 11 12 13 14 15

16 17 16 17 15 16 17 18 19 20

21 20 21 22 23 24 25 24 25 26

27 28 29 28 29 30 31 32 1 31

3) generate T permutation matrixes P0 ∼ PT−1, whose every entry represents its sole location
in the permuted version of the object to be permuted, as follows. For l = 0 ∼ T − 1,
i = 0 ∼ N − 1, j = 0 ∼ N − 1, do

Pl(i, j) = Cl ·

(
i
j

)
mod N, (1)

where Cl is the t-th element in the matrix set

{(
1 a
b ab+ 1

)
,

(
ab+ 1 a

b 1

)
,

(
a 1

ab− 1 b

)
,

(
a ab− 1
1 b

)}
, (2)

t =
∑1

k=0K
∗

l,k · 2
k, a =

∑7
k=0K

∗

l,k+2 · 2
k, b =

∑7
k=0K

∗

l,k+10 · 2
k, K∗

l =
∑49

k=0K
∗

l,k · 2
k.

4) produce T + 2 mask matrixes, V0 ∼ VT+1, of size N ×N with the following two steps.

– Utilize an OCML model to generate T + 2 pseudo-random number matrixes of size
N ×N , W0 ∼ WT+1. For i = 0 ∼ N − 1, j = 0 ∼ N − 1, do

Wl(i, j) = (1− ε) · f(Wl(i, j − 1)) + ε · f(Wl(i− 1, j − 1)),

where ε = 0.875, and the boundary conditions, Wl(−1,−1) ∼ Wl(−1, N − 1) and
Wl(0,−1) ∼ Wl(N − 2,−1), are assigned by the chaotic states obtained by iterating
the Logistic map 2N times from initial condition (

∑31
k=0K

∗

l,k+18 · 2
k)/232.

– Discretize W0 ∼ WT+1 into V0 ∼ VT+1. For i = 0 ∼ N − 1, j = 0 ∼ N − 1, do

Vl(i, j) = ⌊Wl(i, j) · 256⌋.

• The encryption procedure is composed of T rounds of five main steps. Let Ll and Rl denote
the left half part and the right half part of intermediate data obtained in the l-th round of
encryption, respectively. The schematic structure of IEAS is shown in Fig. 1. Set l = 0,
Ll = L and Rl = R, IEAS runs with the following five steps repeatedly.
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– Step (a) mask substitution on the left half part in the current round : let l = l + 1, and
do

Rl(i, j) = Vl−1(i, j) ⊕Ll−1(i, j) (3)

for i = 0 ∼ N − 1, j = 0 ∼ N − 1.

– Step (b) permutation on the right half part in the next round : for i = 0 ∼ N − 1,
j = 0 ∼ N − 1, do

R̃l(i, j) = Rl(Pl−1(i, j)).

For simplicity, Rl(Pl−1) denotes this operation in remainder of this paper.

– Step (c) substitution on the permuted right part : for k = 1 ∼ N2 − 1, do

Ll(i, j) = Rl−1(i, j) ⊕ g
(
R̃l(i, j), R̃l(i

′, j′)
)
, (4)

where Ll(0, 0) = Rl−1(0, 0) ⊕ R̃l(0, 0), i = ⌊k/N⌋, j = mod(k,N), i′ = ⌊k − 1/N⌋,
j′ = mod(k − 1, N), and

g(x, y) = (x+A ∗ y) mod 256. (5)

– Step (d) repetition: repeat Step (a) through Step (c) T − 1 times.

– Step (e) final mask substitution: generate the two half parts of cipher-image as follows:
do

r = VT ⊕LT (6)

and
l = VT+1 ⊕RT , (7)

where the exclusive or operation between two matrixes is calculated element-wise, the
same hereinafter.

• The decryption procedure is similar to the encryption process except the following simple
modifications: 1) the Step (e) is performed first; 2) the different rounds of encryption are
exerted in a reverse order.

3. Differential cryptanalysis

Task of differential cryptanalysis is to get information of (equivalent) secret key of an encryption
algorithm by observing how differences in an input can affect the resultant ones at the output.
Generally, the difference is defined with respect to exclusive or (XOR) operation. In the following,
some properties of IEAS are introduced first, which works as basis for differential attack on IEAS
under different round numbers.
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Figure 1: Schematic structure of IEAS.

3.1. Some properties of IEAS

Property 1. Given two matrix entries (i1, j1) and (i2, j2) in Rl, and let (̃i1, j̃1) and (̃i2, j̃2) denote
the corresponding locations in R̃l. If the two original entries satisfy

gcd(∆, N) = 1, (8)

one has

Cl =

(
s u
v t

)
,

where




s
u
v
t


 =




∆−1(̃i1j2 − ĩ2j1)

∆−1(̃i2i1 − ĩ1i2)

∆−1(j̃1j2 − j̃2j1)

∆−1(j̃2i1 − j̃1i2)


 mod N,

∆ = i1j2 − i2j1, and ∆ ·∆−1 = 1 mod N .

Proof. Obviously, (i1, j1), (i2, j2), (̃i1, j̃1), and (̃i2, j̃2) satisfy

(
si1 + uj1
si2 + uj2

)
mod N =

(
ĩ1
ĩ2

)
,
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which means (
i1 j1
i2 j2

)
·

(
s

u

)
=

(
ĩ1 +K1N

ĩ2 +K2N

)
,

where K1,K2 ∈ Z.
Use the Gaussian elimination method, one can get

(
i1 j1
0 i1j2 − i2j1

)
·

(
s

u

)
=

(
ĩ1 +K1N

i1ĩ2 − i2 ĩ1 +N(K2i1 −K1i2)

)
.

According to the Cramer’s rule, the above equation have one and only one solution when gcd(∆, N) =
1. Thus,

s = ∆−1(̃i1j2 − ĩ2j1) mod N,

u = ∆−1(̃i2i1 − ĩ1i2) mod N.

The value of v, t can be obtained similarly.

Property 2. If 2n (1 ≤ n ≤ 7) divides variable A in Eq. (5), then the substitution function g(x, y)
has no influence on the n least significant bits of x, i.e., Eq. (4) becomes

Ll,k(i, j) = Rl−1,k(i, j) ⊕ R̃l,k(i, j),

where k ∈ {1, · · · , n}, Ll,k, Rl−1,k and R̃l,k are the k-th least significant bit plane of Ll, Rl−1, and

R̃l, respectively.

Proof. This property can be easily proved by calculating

g(x, y) = x+A ·
7∑

i=0

yi2
i mod 256

= x+ (A/2n) ·

7∑

i=n

yi2
i mod 256.

Let L
′

l, R
′

l(Pl−1) and R
′

l−1 denote differential of two versions of Ll, Rl(Pl−1) and Rl−1, re-
spectively. Observe the structure of intermediate data under different rounds shown in Fig. 2, we
can get the following property.

Property 3. If 2n (1 ≤ n ≤ 7) divides variable A in Eq. (5), one has

{
R

′

l = L
′

l−1,

L
′

l,k = R
′

l−1,k ⊕R
′

l,k(Pl−1),

where k ∈ {1, · · · , n}, L
′

l,k, R
′

l−1,k and R
′

l,k(Pl−1) are the k-th least significant bit plane of L′

l,
R

′

l−1 and R
′

l(Pl−1), respectively.
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Proof. This property can be easily proved with mathematical induction on l (1 ≤ l ≤ T ). When
l = 1,

R
′

1 = R1 ⊕R
∗

1

= (L0 ⊕ V0)⊕ (L∗

0 ⊕ V0)

= L
′

0,

L
′

1,k = (R0,k ⊕R1,k(P0))⊕ (R∗

0,k ⊕R
∗

1,k(P0))

= R
′

0,k ⊕R
′

1,k(P0).

So, the property holds for l = 1. Assume that the property is true for l = n (n < T ), we prove the
case for l = n+ 1.

R
′

n+1 = (Ln ⊕ Vn)⊕ (L∗

n ⊕ Vn)

= L
′

n,

L
′

n+1,k = (Rn,k ⊕Rn+1,k(Pn))⊕ (R∗

n,k ⊕R
∗

n+1,k(Pn))

= R
′

n,k ⊕R
′

n+1,k(Pn).

This completes the mathematical induction.

0,kL′

⊕

⊕

⊕

Differential of plain-image

0,kR′

1,kL′ 1,kR′

2, 1( )kR P′

2,kL′ 2,kR′

1,T kL −′ 1,T kR −′

,T kL′ ,T kR′

1, 0( )kR P′

, 1( )T k TPR −′

ipher-imageDifferential of c

Figure 2: Schematic structure of differential of intermediate data under different rounds.
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3.2. Breaking IEAS when the number of iteration round is equal to one

Given two known/chosen plain-images, [L0,R0] and [L∗

0,R
∗

0], and the corresponding cipher-
images, [l, r] and [l∗, r∗], one has {

L
′

0 = L0 ⊕L
∗

0,

R
′

0 = R0 ⊕R
∗

0,

and {
L

′

1 = r ⊕ r
∗,

R
′

1 = l⊕ l
∗.

From Property 3, one can get

{
R

′

1 = L
′

0,

R
′

1,k(P0) = L
′

1,k ⊕R
′

0,k,
(9)

where k ∈ {1, · · · , n}, 2n (1 ≤ n ≤ 7) divides the parameter A in Eq. (5). Comparing {R′

1,k}
n
k=1

and {R′

1,k(P0)}
n
k=1, one may find two pairs of entries in R

′

1 and R
′

1(P0) whose locations satisfying
condition (8). Then, the transformation matrix C0, generating the associated permutation matrix
P0, can be solved according to Property 1. In case the search of the required entries failed, one can
resort to observing more known plain-images or constructing special differential images from more
chosen plain-images [5]. As shown in [5], ⌈2 log2(N)⌉ chosen binary plain-images are enough to
break any position permutation-only encryption algorithm exerting on binary plain-images of size
N ×N . Due to similarity, we do not mention the problem about determining permutation matrix
with more known/chosen plain-images in the remainder of this paper. Once C0 is determined, the
associated matrix P0 can be obtained from it easily.

Referring to Eq. (3) and Eq. (7), one can get

V2 ⊕ V0 = L0 ⊕ l. (10)

Combining Eq. (6) and Eq. (4) yields

rk = V1,k ⊕R0,k ⊕R1,k(P0), (11)

where rk is the k-th least significant bit plane of r. As the exclusive or operation is linear with
respect to position permutation, one can get

R1,k(P0) = V0,k(P0)⊕L0,k(P0)

from Eq. (3). Substitute R1,k(P0) obtained in the above equation into Eq. (11), one can further
get

V1,k ⊕ V0,k(P0) = rk ⊕R0,k ⊕L0,k(P0). (12)

Since neither of Eq. (10) and Eq. (12) has any special requirement on the pair of plain-image
and corresponding cipher-image, some parts of any other cipher-image encrypted with the same
secret key, [l⋆, r⋆], can be recovered by calculating

{
L

⋆
0 = l

⋆ ⊕M1,

R
⋆
0,k = r

⋆
k ⊕L

⋆
0,k(P0)⊕N1,k,

8



where {
M1 = L0 ⊕ l,

N1,k = rk ⊕R0,k ⊕L0,k(P0).

Now, one can see that M1, {N1,k}
n
k=1 and P0 can work together to recover the whole left half part

of l⋆, and the n least significant bit planes of the right part of r⋆, {R⋆
0,k}

n
k=1.

To verify the above analysis, some experiments on some plain-images of size 256×512 are made.
With secret key K0 = 1234567/(232 − 1), T = 1 and parameter A = 64, two known plain-images,
cropped version of two standard images, “Lenna” and “Baboon”, and the corresponding cipher-
images are shown in Figs. 3a), b), d), e), respectively. The obtained information about the secret
key is used to decrypt another cipher-image shown in Fig. 3c), and result is shown in Fig. 3f). The
whole left half part and the 6 least significant bit planes of the right half part of the recovered
image shown in Fig. 3f) are identical with counterpart of the corresponding plain-image, which
agree with the expected result well.

a) b) c)

d) e) f)

Figure 3: Differential attack on IEAS when T = 1: a) the first known plain-image; b) the second known plain-image;
c) cipher-image of plain-image “Airplane”; d) cipher-image of Fig. 3a); e) cipher-image of Fig. 3b); f) the recovered
plain-image of Fig. 3c).

3.3. Breaking IEAS when the number of iteration round is equal to two

In this case, the differential of ciphertext is
{

L
′

2 = r ⊕ r
∗,

R
′

2 = l ⊕ l
∗.

(13)

From Property 3, one has {
R

′

1 = L
′

0,

R
′

1,k(P0) = R
′

2,k ⊕R
′

0,k,

where R
′

2,k is the k-th least significant bit plane of R
′

2. Then, the transformation matrix C0,
generating the associated permutation matrix P0, can be recovered by comparing {R′

1,k}
n
k=1 and

{R′

1,k(P0)}
n
k=1.

Still from Property 3, one has

R
′

2,k(P1) = L
′

2,k ⊕R
′

1,k

= L
′

2,k ⊕L
′

0,k.

9



Similarly, one can get the transform matrix C1, then permutation matrix P1, by comparing
{R′

2,k}
n
k=1 and {R′

2,k(P1)}
n
k=1.

Referring to Eq. (7), one has

lk = V3,k ⊕R2,k, (14)

where lk is the k-th least significant bit plane of l. Combining Eq. (3), Eq. (4) and Eq. (6) yields

rk = V2,k ⊕L2,k

= V2,k ⊕R1,k ⊕R2,k(P1)

= V2,k ⊕ V0,k ⊕L0,k ⊕R2,k(P1).

Substitute R2,k obtained in Eq. (14) into the above equation, one has

V3,k(P1)⊕ V2,k ⊕ V0,k = lk(P1)⊕ rk ⊕L0,k. (15)

Combine Eq. (3) and Property 2, one can get

R2,k = V1,k ⊕L1,k

= V1,k ⊕R0,k ⊕R1,k(P0)

= V1,k ⊕R0,k ⊕ V0,k(P0)⊕L0,k(P0), (16)

then Eq. (14) becomes

V3,k ⊕ V1,k ⊕ V0,k(P0) = lk ⊕L0,k(P0)⊕R0,k. (17)

Since both Eq. (15) and Eq. (17) always hold for any pair of plain-image and cipher-image
encrypted with the same secret key, it can be easily verified that

{
L

⋆
0,k = l

⋆
k(P1)⊕ r

⋆
k ⊕M2,k,

R
⋆
0,k = l

⋆
k ⊕L

⋆
0,k(P0)⊕N2,k,

where {
M2,k = lk(P1)⊕ rk ⊕L0,k,

N2,k = lk ⊕L0,k(P0)⊕R0,k.

The above equations mean that M2,k, N2,k and {Pl}
1
l=0 can work together to recover the k-th least

significant bit plane of any other cipher-image encrypted with the same secret key, [L⋆
0,k,R

⋆
0,k], for

k = 1 ∼ n.
To verify the above analysis, some experiments are made. With secret key K0 = 1234567/(232−

1), T = 2 and parameter A = 64, encryption results of the two known-images shown in Figs. 3a)
and b) are shown in Figs. 4a) and b), respectively. The information about equivalent secret key
obtained from the two pairs of plain-images and cipher-images is used decrypt another cipher-image
shown in Fig. 4c) and the result is shown in Fig. 4d). It is counted that the 6 least significant
bit planes of the image shown in Fig. 4d) are identical with the counterparts of the corresponding
plain-image.

10



a) b)

c) d)

Figure 4: Differential attack on IEAS when T = 2: a) cipher-image of Fig. 3a); b) cipher-image of Fig. 3b); c)
cipher-image of plain-image “Airplane”; d) the recovered plain-image of Fig. 4c).

3.4. Breaking IEAS when the round number is equal to three

In this sub-section we discuss how to break the version of IEAS of three rounds with no less
than three chosen plain-images.

In this case, the differential of ciphertext is

{
L

′

3 = r ⊕ r
∗,

R
′

3 = l⊕ l
∗.

According to Property 3, one has

L
′

3,k = R
′

3,k(P2)⊕R
′

2,k

= R
′

3,k(P2)⊕R
′

0,k ⊕R
′

1,k(P0)

= R
′

3,k(P2)⊕R
′

0,k ⊕L
′

0,k(P0). (18)

If L′

0,k is chosen as a binary matrix of fixed value, which makes

L
′

0,k(P0) ≡ L
′

0,k, (19)

R
′

3,k(P2) can be obtained from Eq. (18). With the same method mentioned above, P2 can be
recovered by comparing {R′

3,k}
n
k=1 and {R′

3,k(P2)}
n
k=1.

As for the differential image satisfying Eq. (19), one also has

R
′

2,k = R
′

3,k(P2)⊕L
′

3,k

= R
′

0,k ⊕L
′

0,k(P0)

= R
′

0,k ⊕L
′

0,k. (20)

Note that

R
′

3,k = L
′

2,k

= R
′

1,k ⊕R
′

2,k(P1).

11



Substitute Eq. (20) into the above equation, one can get

R
′

3,k = R
′

1,k ⊕R
′

0,k(P1)⊕L
′

0,k(P1)

= L
′

0,k ⊕R
′

0,k(P1)⊕L
′

0,k

= R
′

0,k(P1).

Then, R′

0,k(P1) can be obtained from the above equation, and P1 can be recovered by comparing
{R′

0,k}
n
k=1 and {R′

0,k(P1)}
n
k=1.

Once P2 is recovered, L′

0,k(P0) can be obtained from Eq. (18). Then, P0 can be recovered
by comparing {L′

0,k}
n
k=1 and {L′

0,k(P0)}
n
k=1. As mentioned before, one and even more pairs of

plaintext and the corresponding ciphertexts are required to find two pairs of entries in L
′

0,k and
L

′

0,k(P0) whose locations satisfying condition (8).
From Eq. (7), one has

lk = V4,k ⊕R3,k, (21)

where R3,k is the k-th least significant bit plane of R3. Combine Eq. (3), Eq. (4) and Eq. (6), one
can get

rk = V3,k ⊕L3,k

= V3,k ⊕R2,k ⊕R3,k(P2)

= V3,k ⊕ V1,k ⊕L1,k ⊕R3,k(P2)

= V3,k ⊕ V1,k ⊕R0,k ⊕R1,k(P0)⊕R3,k(P2)

= V3,k ⊕ V1,k ⊕R0,k ⊕ V0,k(P0)⊕L0,k(P0)⊕R3,k(P2).

Substitute R3,k obtained in Eq. (21) into the above equation and get

V4,k(P2)⊕ V3,k ⊕ V1,k ⊕ V0,k(P0) = lk(P2)⊕ rk ⊕R0,k ⊕L0,k(P0). (22)

Referring to Eq. (3) and Eq. (16), one has

R3,k = V2,k ⊕L2,k

= V2,k ⊕R1,k ⊕R2(P1)

= V2,k ⊕ V0,k ⊕L0,k ⊕ V1,k(P1)⊕R0,k(P1)⊕ V0,k(P0P1)⊕L0,k(P0P1), (23)

then Eq. (21) can be rewritten as

lk = V4,k ⊕ V2,k ⊕ V0,k ⊕L0,k ⊕ V1,k(P1)⊕R0,k(P1)⊕ V0,k(P0P1)⊕L0,k(P0P1).

Substitute L0,k(P0) obtained in Eq. (22) into the above equation, and get

V4,k(P2P1)⊕ V3,k(P1)⊕ V4,k ⊕ V2,k ⊕ V0,k = lk(P2P1)⊕ rk(P1)⊕ lk ⊕L0,k. (24)

Since both Eq. (22) and Eq. (24) hold for any pair of plain-image and its corresponding cipher-
image, it can be easily verified that

{
L

⋆
0,k = l

⋆
k(P2P1)⊕ r

⋆
k(P1)⊕ l

⋆
k ⊕M3,k,

R
⋆
0,k = l

⋆
k(P2)⊕ r

⋆
k ⊕L

⋆
0,k(P0)⊕N3,k,

12



where {
M3,k = lk(P2P1)⊕ rk(P1)⊕ lk ⊕L0,k,

N3,k = lk(P2)⊕ rk ⊕R0,k ⊕L0,k(P0).

The above equations mean that M3,k, N3,k and {Pl}
2
l=0 can work together to recover the k-th least

significant bit plane of any other cipher-image encrypted with the same secret key, [L⋆
0,k,R

⋆
0,k], for

k = 1 ∼ n.
To verify the above analysis, some similar experiments are made with K0 = 1234567/(232 − 1),

T = 3 and A = 64. First, a chosen plain-image is composed by combining the left half part of
Fig. 3a) and the right half part of Fig. 3b), which makes the special differential files satisfying
Eq. (19) can be generated. Then, the three plain-images shown in Figs. 3a), b), Fig. 5a) and
a plain-image “Airplane” are encrypted with the same secret key, and the results are shown in
Figs. 5b), c), d), e), respectively. With the three pairs of plain-images and cipher-images, some
information about the secret key is obtained to decrypt the cipher-image shown in Fig. 5e) and the
result is shown in Fig. 5f). It is counted that the 6 least significant bit planes of the image shown
in Fig. 5f) are identical with the counterparts of the corresponding plain-image also.

a) b)

c) d)

e) f)

Figure 5: Differential attack on IEAS when T = 3: a) the constructed plain-image; b) cipher-image of Fig. 3a); c)
cipher-image of Fig. 3b); d) cipher-image of Fig. 5a); e) cipher-image of the plain-image “Airplane”; f) the recovered
plain-image of Fig. 5e).

3.5. Breaking IEAS of higher rounds (T ≥ 4)

It is not hard to notice that there are some general approaches to breaking IEAS of different
rounds. Here, we take breaking the version of IEAS under four rounds as an example to illustrate
how to implement differential attack on IEAS in a general way.

• Step 1) breaking position permutation:

13



According to Property 3, one has

L
′

4,k = R
′

4,k(P3)⊕R
′

3,k

= L
′

3,k(P3)⊕L
′

2,k

= R
′

2,k(P3)⊕L
′

2,k(P2P3)⊕R
′

2,k(P1)⊕R
′

1,k

= R
′

0,k(P3)⊕L
′

0,k(P0P3)⊕L
′

0,k(P2P3)⊕L
′

1,k(P1P2P3)

⊕R
′

0,k(P1)⊕L
′

0,k(P0P1)⊕L
′

0,k, (25)

and L
′

1,k = R
′

0,k ⊕R
′

1,k(P0), where R
′

4,k is the k-th least significant bit plane of R′

4. Then,
the problem become how to recover the permutation matrixes generated by Eq. (1) by con-
structing some special differential plain-images.

– Determining P1 and P3 by choosing special R′

0,k

If L′

0,k is chosen of fixed value zero, one can get L′

1,k = R
′

0,k. Substitute it into Eq. (25),
one has

L
′

4,k = R
′

0,k(P1)⊕R
′

0,k(P3)⊕R
′

0,k(P1P2P3). (26)

Assume a special differential image satisfy L
′

0,k(i, j) ≡ 0 and R
′

0,k(i, j) = 0 except that

{
R

′

0,k(i1, j1) = α1,

R
′

0,k(i2, j2) = β1,
(27)

where gcd(i1j2− i2j1, N) = 1 and α1 6= β1. Observe Eq. (26), one can see that one pixel
of R′

0,k can influence at most three pixels of L′

4,k. So, one can get
(3
1

)
·
(3−1

1

)
= 6 possible

values of (C1,C3,C1C2C3) by referring to Property 1. When condition of Proposition 1
exist, the matrix (C1C2C3) can be recognized by checking which matrix whose elements
are all greater than one2. Since multiplication of two different matrixes of set (2) is not
commutative when (a + b) 6= 0, C1 and C3 can be confirmed by checking whether
(C−1

1 (C1C2C3)C
−1
3 ) has the form of the matrixes of set (2). Finally, the corresponding

associated matrixes P1 and P3 can be obtained.

Proposition 1. When a, b 6∈ {0, 1}, there is no 1’s in the product of any three matrixes
(including the same matrixes) of set (2).

Proof. When a, b 6∈ {0, 1}, every element of the four matrixes in set (2) is greater than
or equal to one. According to multiplication rule of matrix, it can easily conclude that
the proposition held.

– Determining P0 and P2 by choosing special L′

0,k

If R′

0,k is chosen of fixed value zero, it is easy to get

R
′

4,k = L
′

0,k(P0)⊕L
′

0,k(P2)⊕L
′

0,k(P0P1P2).

2To simply analysis, the cases when a, b ∈ {0, 1} and elements of multiplication of three matrixes of set (2) are
happen to be (1 mod N) are not discussed here.
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Construct another special differential image satisfying R
′

0,k(i, j) ≡ 0 and L
′

0,k(i, j) = 0
except that {

L
′

0,k(i1, j1) = α2,

L
′

0,k(i2, j2) = β2,
(28)

where gcd(i1j2 − i2j1, N) = 1 and α2 6= β2. Then one can use the same method
mentioned above to get the permutation matrixes P0 and P2.

• Step 2) breaking value substitution:

From Eq. (7) and Property 3, one can get

lk = V5,k ⊕R4,k (29)

and

rk = V4,k ⊕L4,k

= V4,k ⊕R3,k ⊕R4,k(P3)

= V4,k ⊕ V2,k ⊕L2,k ⊕R4,k(P3)

= V4,k ⊕ V2,k ⊕R1,k ⊕R2,k(P1)⊕R4,k(P3)

= V4,k ⊕ V2,k ⊕ V0,k ⊕L0,k ⊕ V1,k(P1)⊕L1,k(P1)⊕R4,k(P3)

= V4,k ⊕ V2,k ⊕ V0,k ⊕L0,k ⊕ V1,k(P1)⊕R0,k(P1)⊕R1,k(P0P1)⊕R4,k(P3)

= V4,k ⊕ V2,k ⊕ V0,k ⊕L0,k ⊕ V1,k(P1)⊕R0,k(P1)

⊕ V0,k(P0P1)⊕L0,k(P0P1)⊕R4,k(P3).

Substitute R4,k obtained in Eq. (29) into the above equation, one has

V5,k(P3)⊕ V4,k ⊕ V2,k ⊕ V0,k ⊕ V1,k(P1)⊕ V0,k(P0P1)

= lk(P3)⊕ rk ⊕L0,k ⊕R0,k(P1)⊕L0,k(P0P1). (30)

Referring to Eq. (23) and Eq. (16), one can get

R4,k = V3,k ⊕L3,k

= V3,k ⊕R2,k ⊕R3,k(P2)

= V3,k ⊕ V1,k ⊕R0,k ⊕ V0,k(P0)⊕L0,k(P0)⊕R3,k(P2)

= V3,k ⊕ V1,k ⊕R0,k ⊕ V0,k(P0)⊕L0,k(P0)⊕ V2,k(P2)⊕ V0,k(P2)

⊕L0,k(P2)⊕ V1,k(P1P2)⊕R0(P1P2)⊕ V0(P0P1P2)⊕L0(P0P1P2).

Hence Eq. (29) become

V5,k ⊕ V3,k ⊕ V1,k ⊕ V0,k(P0)⊕ V2,k(P2)⊕ V0,k(P2)⊕ V1,k(P1P2)⊕ V0(P0P1P2)

= lk ⊕R0,k ⊕L0,k(P0)⊕L0,k(P2)⊕R0(P1P2)⊕L0(P0P1P2). (31)

Substitute L0,k(P0P1) obtained in Eq. (30) into Eq. (31) yields

V5,k(P3P2)⊕ V4,k(P2)⊕ V5,k ⊕ V3,k ⊕ V1,k ⊕ V0,k(P0)

= lk(P3P2)⊕ rk(P2)⊕ lk ⊕R0,k ⊕L0,k(P0). (32)
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Substitute L0,k(P0) obtained in Eq. (32) into Eq. (30), one can get

V5,k(P3P2P1)⊕ V4,k(P2P1)⊕ V5,k(P1)⊕ V3,k(P1)⊕ V5,k(P3)⊕ V4,k ⊕ V2,k ⊕ V0,k

= lk(P3P2P1)⊕ rk(P2P1)⊕ lk(P1)⊕ lk(P3)⊕ rk ⊕L0,k. (33)

• Step 3) decrypting another cipher-image encrypted with the same secret key :

Since both Eq. (32) and Eq. (33) exist for any pair of plain-image and its corresponding
cipher-image, so one can get

{
L

⋆
0,k = l

⋆
k(P3P2P1)⊕ l

⋆
k(P1)⊕ l

⋆
k(P3)⊕ r

⋆
k(P2P1)⊕ r

⋆
k ⊕M4,k,

R
⋆
0,k = l

⋆
k(P3P2)⊕ l

⋆
k ⊕ r

⋆
k(P2)⊕L

⋆
0,k(P0)⊕N4,k

where {
M4,k = lk(P3P2P1)⊕ rk(P2P1)⊕ lk(P1)⊕ lk(P3)⊕ rk ⊕L0,k,

N4,k = lk(P3P2)⊕ rk(P2)⊕ lk ⊕R0,k ⊕L0,k(P0).

The above equation means that {M4,k}
n
k=1, {N4,k}

n
k=1, and {Pl}

3
l=0 can work together to re-

cover the n least significant bit planes of the right part of l⋆ and r
⋆, {L⋆

0,k}
n
k=1 and {R⋆

0,k}
n
k=1.

To verify the above analysis, experiments are made with K0 = 1234567/(232 − 1), T = 4, and
A = 64 or 128. First, two special known-images are generated by modifying the image shown
in Fig. 3a) to make the differential images satisfy condition (28). Due to similarity of the two
constructed plain-image, only one of them is shown in Fig. 6a). Similarly, the other two special
known-image are constructed by modifying the image shown in Fig. 3a). The encryption result
of the plain-image “Airplane” is shown in Fig. 6b). With the five chosen plain-images, some
information about the secret key is obtained to decrypt the cipher-image shown in Fig. 6b) and the
result is shown in Fig. 6c). When only A is changed as 128, the recover image of the corresponding
cipher-image of the plain-image “Airplane” is shown in Fig. 6d) Once again, the experiment results
demonstrate that the breaking performance is mainly by the integer n in Property 2.

a) b)

c) d)

Figure 6: Differential attack on IEAS when T = 4: a) chosen plain-image; b) cipher-image of plain-image “Airplane”;
c) the recovered plain-image with A = 64; d) the recovered plain-image with A = 128.
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4. Some other security defects of IEAS

To make cryptanalysis on IEAS more complete, some other security defects of IEAS are given
in this section.

• The key space of IEAS is not big enough

In [16, Sec. 4], it is claimed that key space of IEAS is 232(T+2) since PRNS {Kl}
T+1
l=0 has

32(T + 2) bits. However, this it not true since {Kl}
T+1
l=0 is generated by the Logistic map

under initial condition K0, who has only n0 unknown bits, where n0 is precision length of
computer. In fact, permutation matrixes {Pl}

T−1
l=0 and mask matrixes {Vl}

T+1
l=0 can compose

an equivalent secret key of IEAS, and {Pl}
T−1
l=0 has only 4T possible cases. Since generation

of {Pl}
T−1
l=0 is also controlled by {Kl}

T+1
l=0 , we can conclude that the real key space of IEAS

is only 2n0 · T = 2n0T . In [16], n0 = 32, so the key space of IEAS is less than 23216 = 236

considering T ≤ 16. Even computation precision of 64 bits is used, the key space is only 268,
which is lower than expected size of a secure cipher, 2128, much.

• Insufficient sensitivity with respect to change of plain-image

As well known in cryptography, sensitivity of ciphertext with respect to changes of plaintext is
a very important property measuring a secure encryption scheme. This property is especially
important for secure image encryption schemes since a plain-image and its watermarked
version are often encrypted in the same time. In [16, Sec. 4.2], it was claimed that IEAS
satisfy the property well. However, IEAS fail to do it much due to the following points.

– The sole nonlinear operation is only used to expand PRBS, and no nonlinear operation,
like S-box, is involved of handling plain-image;

– There is no any operation generating carry bit toward lower level in the whole scheme, so
a bit of plain-image can only influence the bits at higher bit planes in the cipher-image;

– If 2n (1 ≤ n ≤ 7) divides variable A in Eq. (5), any change of the bits in the k-th bit
plane of plain-image will only affect the bits in the same bit plane of cipher-image for
k = 1 ∼ n.

• Superior performance of IEAS is questionable

The cryptanalysis presented in the above section is based on the precondition of Property 2,
namely 2n (1 ≤ n ≤ 7) divides variable A in Eq. (5). This means that IEAS would become
robust against the proposed attack if A is odd. Under this condition, Property 2 is still exist
with some probability. So, the proposed attack maybe still valid with a little higher com-
plexity. To show inferior performance of IEAS is undoubted in any cases, IEAS is compared
with its analogue, DES. The encryption complexity of DES on 128 plain-bits and the widely
recognized robustness of DES against differential attack under some rounds are shown in Ta-
ble 2 [17, 18]. In contrast, encryption complexity of IEAS on the same data and robustness
against differential attack are shown in Table 2 also. Although the details deriving attack
complexity of IEAS of round number is larger than four are not given here, one can conclude
confidently that IEAS is much weaker than DES now.
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Table 2: Comparison between IEAS and DES in terms of complexity of encrypting 128 plain-bits and robustness
against differential attack, where CP and KP denote chosen plaintexts and known plaintexts, respectively.

Round
Number

Complexity Attack

DES IEAS
Data Success Rate

DES IEAS DES IEAS

1 O(29) O(212) O(1)CP 2CP 100% 100%

2 O(210) O(213) O(1)CP 2CP 100% 100%

3 O(210) O(213) O(1)CP 3CP 100% 100%

4 O(211) O(214) 24CP 5CP 100% 100%

12 O(212) O(215) 244KP 14KP 10% 100%

13 O(212) O(215) 245KP 14KP 10% 100%

16 O(213) O(216) 250KP 14KP 51.3% 100%

5. Conclusion

The security of an image encryption algorithm called IEAS, a block cipher composing of multiple
rounds, was studied comprehensively in this paper. Some properties of IEAS are derived to support
differential attack on it when its key parameter is even. The detailed approaches for breaking IEAS,
when round number is less than five, are presented and can be easily extended to break the version
of IEAS of higher rounds. In addition, it is found that encryption results of IEAS is not sensitive
with respect to changes of plain-image and its key space is not big enough. Cryptanalysis of IEAS
shown in this paper and comparison between IEAS and DES demonstrate IEAS is not attractive
secure image encryption scheme and should not be used in applications requiring high level of
security.
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