
Teaching cloud computing: a software engineering
perspective
Ian Sommerville, School of Computer Science, St Andrews University, Scotland.

When a new area of a discipline emerges, university teachers are faced with the problem of
when (and if) this should be introduced into their courses. They have to ask two questions:
firstly, is this something that is attracting a lot of publicity but which will have little long-term
impact and secondly, what are the essential elements of this topic, which should be part of an
enduring course. Cloud computing is no exception here although I think that it is fair to say
that the first question has already been answered. Cloud computing is not going to go away
and we certainly do have a responsibility to include this in our courses.

We have already seen a number of cloud computing courses being offered and even some
Master’s degrees. Lee Gillam’s course at Surrey University was one of the earliest and he has
written some reflections on this course1. His course is a general introductory course in cloud
computing that starts by introducing the notions of software, platform and infrastructure as a
service. It covers relevant cloud protocols such as SOAP and REST and discusses the map-
reduce computational model and its instantiation in Hadoop. The course makes comparisons
with grid and peer to peer computing and discusses service-level agreements, cloud
economics and security.

In this article, I want to avoid simply listing what I think should be included in a cloud
computing course. Rather, I want to look at the topic of teaching cloud computing from a
more abstract perspective and discuss the issues and problems of teaching this subject. In line
with the theme of this issue, I will look at this from a software engineering rather than a
business or information systems perspective – teaching cloud computing in these areas would
be rather different from what I discuss here.

When considering issues of teaching, I find it helpful to consider topics from three
perspectives:

1. Sensitisation Telling students about something and how it is used. Essentially, the aim
here is to ensure that they are not surprised when they encounter this when they leave
university. There is no expectation that students will have practical skills or theoretical
knowledge. Typically, sensitization is the first stage of introducing a new topic into the
curriculum.

2. Practice At this stage, students are given some tuition in the practical elements of a
topic – so, in cloud computing, they may be asked to provision some servers on a cloud
service such as AWS or Microsoft Azure. Practice is usually the next stage after
sensitization.

3. Principles At this stage, we are trying to abstract the fundamental principles of a topic
and present these to students. An understanding of these principles means that students

1 Lee Gillam, Bin Li and John O’Loughlin. “Teaching Clouds: Lessons Taught and Lessons Learnt “.
In Cloud Computing for Teaching and Learning: Strategies for Design and Implementation. Ed. Lee
Chao. IGI Global, 2012.

have general rather than specific knowledge which can then be applied to
understanding new systems and services.

The time at which coverage of a topic is included in a course very much depends on the
underlying course philosophy. Some courses are very practically oriented so will introduce
cloud computing practice at an early stage; other courses are more theoretical and will delay
the introduction of practical work until there is a firm body of principles on which this can be
based.

For cloud computing, for sure we have reached the stage of sensitization and I believe that
something on this topic should be included in all courses. All computer science and software
engineering students are already cloud users, even if they don’t understand this explicitly, so
it makes sense to introduce the cloud early in the course. In my university, this is in first year
where students have a short three hour introduction to cloud computing plus coursework that
requires them to do further reading in the area.

The introduction covers the development and evolution of cloud computing, including a
discussion of how services such as iTunes are based on a cloud framework. We then briefly
discuss some of the technical background – virtualization and the notions of infrastructure,
platform and software as a service. Coursework requires them to do further reading around
issues such as reliability, security and privacy. We do not, at this stage, introduce cloud-based
practical work.

This is the easy bit of teaching cloud computing. The next stage is to make a decision on
whether there are significant educational benefits of introducing a practical course in cloud
computing. In my view, there is very little educational merit in teaching students how to
provision servers in an IaaS service, such as Amazon Web Services. There is a lot of detailed
specific knowledge here but this is not readily transferable to other providers and, for sure, it
will become redundant very quickly as companies such as Rightscale introduce new cloud
management tools.

However, the value of using IaaS in a software engineering course is that it makes it
technically very simple to support server-based project work, which without the cloud, may
have required access to dedicated hardware. Servers can be set up for individual students and
student groups for the duration of the project without incurring capital costs for hardware
which has a relatively low level of utilization. As part of a project introduction, it may well be
appropriate to spend a few hours introducing this topic and helping students navigate through
the large volume of tutorial material that is available.

The problems here are likely to be managerial rather than technical. The charging system
used by cloud providers is usually based on a credit card and staff involved in teaching may
not be authorized to use university credit cards. If students are allowed to provision servers
themselves, they may unwittingly set up expensive server types or leave servers running when
they are not required. These result in additional costs and the cost risk may not be seen as
acceptable by the institution.

Where practical work becomes much more interesting (I think) is when we consider PaaS and
student programming assignments are based on a cloud platform such as Google’s App
Engine. This allows us to introduce some of the fundamental differences between general
programming and programming the cloud such as managing scaleability, multi-tenancy and
schema-free databases.

The problem that many universities face here is the amount of time they have available in
their courses. PaaS interfaces are quite complex and involve new concepts for students so a
significant time has to be spent introducing these and dealing with the details of a specific
interface. The concepts are certainly transferable across providers but there is always the
danger that students will become immersed in the detail of one PaaS platform without
understanding the generalities of what they are doing.

It is when we reach the final stage – that of principles, where I think syllabus design becomes
particularly difficult. What are the fundamental enduring principles of cloud computing that
are distinct from more general principles of distributed computing? Is the cloud simply a
special case of a distributed computing system? Many academics will argue that this is the
case but I believe the key distinction that we get from considering cloud computing in its own
right is that it allows us to address issues of scale.

Teaching about scale has been a perennial problem in software engineering. As a discipline,
this has evolved to address these problems and discusses the methods and tools to support the
creation of large, complex systems. Yet, by and large, students never get any experience of
large systems and so often fail to appreciate the value of software engineering methods.
Whilst the cloud does not help with illustrating the socio-technical problems that arise with
large systems, it does provide a vehicle for experimentation with the technical issues of very
large-scale systems.

This is now possible because governments are starting to release large-scale data sets of
public information. For example, in the UK, the government has released more than 8000
data sets2 including data on health, science environment, crime and education. This presents
us with an unprecedented opportunity to educate students in how to use the cloud for large-
scale data processing.

A course on cloud software engineering should be a senior or a graduate course - the key
topics and principles that might be covered are:

1. The map-reduce paradigm for independent computation. Using Hadoop to write map-
reduce programs. Issues and problems with this approach and, in particular, the
problems of using it with transactional systems and relational databases.

2. Schema-free databases and their use. A discussion of the problems with map-reduce
leads naturally to this topic. Areas where schema-free databases are appropriate and
applications for which they are inappropriate.

3. Service-oriented computing. Arguably, this is really part of a more general distributed
computing course but services and cloud computing have become synonymous. Topics
covered here should include RESTful and ‘big web services’, decomposing a system
into services,

4. Multi-tenancy. This leads naturally from a discussion of service-oriented systems and
how services are evolving and should focus on service design so that single instances
of the service are shared with data from multiple customers being held in the same
database.

5. Security and compliance. This is a topic that has to be included although it is quite
difficult to approach it from a principled perspective. Many of the issues of cloud
security are simply general security issues which are equally applicable to self-hosted
systems. Compliance requirements are very significant indeed but vary significantly
from one country to another.

6. Design for resilience. Many people make the assumption that all you have to do is to
set up a system in the cloud and everything else is done for you by the cloud provider.
Nothing could be further from the truth and it is important to discuss how to design
cloud-based systems with redundancy within and across cloud providers so that they
can tolerate and quickly recover from provider failures.

Ideally, students would come to this course having gained some practical experience of cloud
programming using some PaaS system. Realistically, however, the pressure on practical work
in computer science and software engineering courses is such that this is probably an
unrealistic pre-requisite and the practical work associated with the course would have to

2 http://data.gov.uk

cover the fundamentals of PaaS before moving on to programming with Hadoop and service
implementation. I don’t think it matters much which PaaS platform is used and the choice
may be governed by the other material in the course (e.g. if students have experience of .Net,
then Microsoft Azure is the logical choice; if they have experience of Python, Google App
Engine is most appropriate, etc.).

I do not advocate the teaching of topics such as service-level agreements, cloud economics,
public versus private clouds, etc. These may be appropriate in a cloud computing for business
course but there are few principles embodied in these topics and the associated knowledge
will become out of date very quickly.

The most significant barrier to the introduction of high-quality cloud computing courses at the
moment is the current skill base of university staff. The majority of faculty members were
appointed before cloud computing became available and have little personal research or
teaching experience in this area. Faculty are increasingly pressurized to focus on research
achievement and it is very difficult for them to find time to explore new areas for their
teaching. Even when there are a few faculty with experience and interest in this area it is
sometimes difficult to get new courses approved simply because the majority of staff do not
understand how the work relates to computer science or software engineering as they see it.

In conclusion, at one level, the cloud is nothing new for software engineering. The
fundamental issues of managing problem and solution complexity remain the same and it will
always be very difficult for students to understand and appreciate these. However, the cloud
means that we can at least partially address the problems of teaching about scale and we do
have a responsibility to ensure that our students are aware of and can make use of modern
techniques of system implementation. What is important here is that we think carefully about
the material to be included in courses so that it is principled, with lasting value and is not
simply an ephemeral reflection of the features that are currently available from some cloud
provider.

Finally, let me say a word on the introduction of degrees and Masters courses on cloud
computing. I think that these are a cynical re-badging of existing courses in the hope of
attracting students to a high-profile topic. There is simply not enough fundamental material
at the moment (and I suspect that there may never be) to justify a degree course in this topic
in its own right.

Teaching materials

All of the major cloud providers are interested in having their systems covered in university
courses and provide free teaching materials. Examples of material that is available include:

Windows Azure Training Kit.
http://www.microsoft.com/en-gb/download/details.aspx?id=8396

Amazon Web Services tutorials.
http://aws.amazon.com/articles/

Google App Engine.
http://developers.google.com/appengine/docs/

IBM Cloud computing.
http://www.ibm.com/developerworks/university/teachingtopics/cloud_computing.html

