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There are many challenges which face designers of complex system architectures, particularly
safety—critical or real-time systems. The introduction of Architecture Description Languages (ADLs) has
helped to meet these challenges by consolidating information about a system and providing a plat-
form for modelling and analysis capabilities. However, managing this wealth of information can still
be problematic, and evaluation of potential design decisions is still often performed manually. Auto-
matic architectural optimisation can be used to assist this decision process, enabling designers to rapidly
explore many different options and evaluate them according to specific criteria. In this paper, we present
a multi-objective optimisation approach based on EAST-ADL, an ADL in the automotive domain, with
the goal of combining the advantages of ADLs and architectural optimisation. The approach is designed
to be extensible and leverages the capabilities of EAST-ADL to provide support for evaluation according
to different factors, including dependability, timing/performance, and cost. The technique is applied to
an illustrative example system featuring both hardware and software perspectives, demonstrating the
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potential benefits of this concept to the design of embedded system architectures.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Achieving quality attributes such as dependability (e.g. mea-
sured in terms of reliability, availability, and safety) and
performance (e.g. measured in terms of throughput of information
and response times) in complex systems is a challenging task. It is
beneficial to consider these attributes throughout the whole design
process, factoring them into early decisions and thereby ensuring
that quality attributes are controlled from the early stages rather
than left to emerge (or not) at the end, when any required changes
would incur larger costs and delays. However, balancing the many
demands on the system design can be difficult, and the task of

Abbreviations: ADL, Architecture Description Language; COE, Central Opti-
misation Engine; FAA, Functional Analysis Architecture; FDA, Functional Design
Architecture; HDA, Hardware Design Architecture; OSDM, Optimisation Space Def-
inition Module; VRM, Variability Resolution Mechanism.
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exploring potentially huge design spaces for optimal configurations
that maximise quality (i.e., dependability and performance) and
minimise cost poses even more challenges.

Recent work on model-based development has looked into how
progressively refined models of requirements and design can be
used to drive the development and verification of complex sys-
tems. This work has resulted in methods like UML and SysML which
enable system modelling that encompasses description of struc-
ture, behaviour and allocation of functions to hardware resources.
More recently, ADLs such as AADL and the automotive EAST-
ADL have emerged as potential future standards for model-based
design of embedded systems in the transport and space indus-
tries.

Beyond modelling of nominal behaviour, these languages also
incorporate error modelling semantics that enable dependability
analysis. Early work has demonstrated that dependability anal-
ysis of EAST-ADL models is possible via HiP-HOPS (Chen et al.,
2008) while dependability analysis of AADL error models is possi-
ble via conversion to fault trees (Joshi et al., 2007) and Generalised
Stochastic Petri Nets (GSPN) (Feiler and Rugina, 2007). MARTE
(www.omgmarte.org) is another significant development, imple-
mented as a UML profile for the design of real-time embedded
systems, enabling prediction of other quality attributes, including
performance and schedulability.
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New ADLs are likely to influence the design of future dependable
systems. These languages can achieve transparency and con-
sistency in a model-based process but are not yet sufficiently
developed to guarantee effective assessment and satisfaction of
quality attributes. We can identify two challenges that need to be
tackled from the early stages of design:

(a) Ensuring effective prediction of quality attributes such as
dependability and performance, via use of advanced, scalable,
automated model-based analysis techniques.

(b) Enabling effective exploration of potentially huge design spaces
for design solutions that achieve better or optimal trade-offs
among dependability, performance and cost. We note that this
capability is particularly relevant where little prior design expe-
rience exists to guide engineers in the design of a system, e.g. in
case of innovative designs or when relatively immature tech-
nologies are employed.

1.1. Analysis of architectural models

Over the last fifteen years, in order to tackle the first of
these challenges, work on model-based dependability analysis has
resulted in new approaches that partly automate and thereby sim-
plify the synthesis of dependability evaluation models. In several
techniques, predictive system failure models such as fault trees
and FMEAs (Failure Modes and Effects Analysis) are constructed
from the topology of the system and component failure models
using a process of composition. In this approach, automation and
reuse of component failure models across applications become
possible to some extent. Compositionality and careful reuse are
expected to bring benefits in dependability analysis similar to those
introduced by reuse of trusted software components in software
engineering. Techniques that follow this approach include HiP-
HOPS (Papadopoulos et al.,2001), Component and State-Event Fault
Trees (Grunske et al., 2005) and the Failure Propagation and Trans-
formation Calculus (Wallace, 2005). Another body of research with
similar objectives has developed in the area of formal verification,
focusing on automated dependability analysis of systems repre-
sented as state automata (e.g. see work on Altarica (Bieber et al.,
2004) and FSAP-NuSMV (Bozzano and Villafiorita, 2007)). In these
approaches, model-checking is used to verify the satisfaction of
dependability requirements or detect violations of requirements
in normal or faulty conditions.

Tools have been developed to support these dependability and
performance evaluation techniques and complex case studies have
been reported that demonstrate benefits. However, relatively lit-
tle work has been applied in the context of model-based design
(especially in combination with ADLs). In the ATESST2 and MAE-
NAD EU projects, it has been demonstrated that scalable automated
dependability analysis can be achieved via harmonisation of EAST-
ADL with HiP-HOPS. This work has shown benefits from the ability
to produce complex fault trees and multiple failure FMEAs from
designs expressed in an ADL (Chen et al., 2008). However, there
is still scope for improvement in this work that could extend the
state-of-the-art in model-based dependability analysis. In princi-
ple, AADL models—effectively state automata showing transitions
from normal to degraded and failed states—can be converted to
GSPNs and then analysed for dependability (Feiler and Rugina,
2007). However, in this approach, it is not possible to perform qual-
itative analysis, i.e., establishment of direct causal relationships
between causes and effects of failure as in FMEA, which is impor-
tant when probabilistic data are not available, e.g. at early stages
of design. An alternative approach has been demonstrated in (Joshi
et al.,, 2007) via conversion of AADL error models to fault trees. The
main difficulty we have identified here is that the temporal seman-
tics of the AADL error model (a form of state machine) are lost in the

translation to combinatorial fault trees and this potentially causes
serious errors. To correct this conceptual flaw and enable true tem-
poral dependability analysis, we propose to enable analysis of AADL
error models via HiP-HOPS, where a recently integrated temporal
logic called Pandora can be used to achieve automated synthesis
and analysis of dynamic fault trees, making it possible to capture
the often significant effects of sequencing of faults. The problem
has been discussed in (Walker and Papadopoulos, 2009) and a gen-
eral solution was proposed; however, this solution still needs to be
adapted in the context of particular modelling languages.

Another issue, often ignored in modern dependability analysis
techniques, is that of separation of concerns in design. Most model-
based dependability analysis techniques assume that the model
of the system (whether in the form of a block diagram or a state
machine) is a functional model, effectively a joint representation
of hardware and software. However, this ignores the separation
of concerns that typically takes place in practical modelling, where
people tend to develop separate models for hardware and software
and link those models with allocation relationships. Such mod-
els are not directly analysable by the present state-of-the-art. In
HiP-HOPS, a concept has been developed that enables integrated
dependability analysis of designs that are represented in more than
one perspective (e.g. hardware, software, middleware) via assess-
ment of the fault propagation through allocation relationships.

In the context of timing analysis, many model-based approaches
have been recently developed for the automotive domain.
Projects such as ATESST and ATESST2 (www.atesst.org), TIMMO
(www.timmo.org), and EDONA (www.edona.fr) have been carried
out to provide concepts, tools and methodologies for the descrip-
tion of automotive architectures and timing properties.

Among the wide range of timing analyses, schedulability anal-
ysis (Selic, 2000) is considered a good candidate for analysing
timing properties at the design stage. A model-based framework
for schedulability analysis has been developed along these lines
in the context of the EDONA project. This framework enables
model-based schedulability analysis at the EAST-ADL design level.
The EAST-ADL design level includes functional architecture, hard-
ware architecture, and an allocation model stipulating the mapping
of functions to hardware nodes. The schedulability framework is
based on supplementing EAST-ADL with concepts from the mod-
elling language MARTE following the procedure presented by Anssi
et al. (2010). In this framework, schedulability analysis is per-
formed after a manual transformation of EAST-ADL models towards
a refined architecture: the MARTE task model. The manual trans-
formation establishes the mapping of functions on tasks (including
task priorities and periods). Then the framework provides an
automatic transformation of MARTE task models to an academic
scheduling analysis tool called MAST (http://mast.unican.es).

It should be noted that in the EDONA approach, schedula-
bility analysis verifies the task model, and does not directly
verify the design-level architecture.! Schedulability results there-
fore have to be manually ‘fed-back’ to the design level by
interpreting schedulability properties obtained from the MARTE
task model. Furthermore, extrapolating feedback to improve the
design-level architecture is cumbersome or even impossible for
non-schedulability experts. The reason for this lies in the fact that
schedulability results depend not only on design-level architec-
ture properties but also on the choices made during the refinement
towards the task model (e.g. priority assignment, task periods,
scheduling policy, etc.).

1 It is worth noting that EAST-ADL lacks implementation-like concepts, such as
the task concept, although other languages (e.g. AUTOSAR) can be used to overcome
this later in the system development process.
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The ATESST2 and MAENAD projects made improvements to
model-based timing analysis for EAST-ADL models in order to
produce automatic feedback on the EAST-ADL architecture. Sim-
ple feedback can be obtained by analysing architecture properties
which do not need refinement towards a task model, such as
resource utilisation, which can be computed only knowing the
allocation of functions/signals to hardware resources. For more
advanced indicators, such as response time analysis of function
activation chains that traverse several shared hardware resources,
full schedulability analysis is still needed, which necessitates
refinement towards a task model to configure schedulability analy-
sis tools. However, by applying controlled refinements, it is possible
to produce automatic feedback at design level. In this paper
we adopt one of these possible controlled refinements, which is
detailed in Section 2.4.

1.2. Optimisation of architectural models

Model-based analysis and verification technologies can enrich
a model-driven development process by answering important
questions regarding the quality of individual design proposals. In
complex distributed systems, however, rich functionalities and
their distribution across shared hardware and communication
channels allow a large number of configuration options at design
time and a large number of reconfiguration options at runtime. This
creates difficulties in design because, as potential design spaces
expand, their exploration for suitable or optimal designs becomes
increasingly difficult. When a number of different architectural
configurations can potentially deliver the functions of a system,
designers are faced with a difficult optimisation problem. Assuming
that it is technically and economically possible to fulfil all quality
requirements, they must find an architecture that entails minimal
development and other lifecycle costs. On the other hand, if fulfill-
ing or optimising all quality requirements is infeasible, then they
must find the architecture or architectures that achieve the best
possible tradeoffs among quality attributes and cost. The problem is
compounded by the fact that quality attributes are often conflicting,
e.g.improving safety often means not only increasing costs but also
reducing availability. The various formulations of the above repre-
sent hard, multi-objective optimisation problems that can only be
approached systematically with the aid of optimisation algorithms
that can efficiently search large potential design spaces.

Whilst many design problems can only be tackled effectively
by the human intellect, it is clear that, as potential design spaces
expand, their exploration for suitable or optimal designs (e.g. in
terms of quality and cost) becomes increasingly difficult, and some
automation is needed. Modelling languages and emerging ADLs
could therefore benefit from concepts and technological support
that enable this type of optimisation, while still benefiting from
the support for multiple analysis and evaluation functions that an
ADL offers.

Some work has recently been done in this field from the direc-
tion of safety and reliability analysis, though not in the context
of ADLs. Classical dependability models like Reliability Block Dia-
grams (RBDs) (Konak et al., 2006) and, more recently, advanced
compositional dependability analysis techniques such as HiP-HOPS
have been combined with meta-heuristics (Pareto-based Genetic
Algorithms) to assist in the automatic evolution of design models
that can meet dependability and cost requirements. HiP-HOPS has
contributed to this area by enabling the optimisation of systems
that have a networked architecture (i.e. they are not necessarily in
parallel/series configurations as in RBDs) and by overcoming the
traditional assumption made in RBDs that a component or system
either works or fails in a single failure mode (Papadopoulos and
Grante, 2005; Papadopoulos et al., 2011; Adachi et al., 2011).

Recent work that has focused on enabling multi-objective opti-
misation of software architectures has led to the development
of new tools that also offer a blend of analysis and optimisation
capabilities. One such tool is PerOpteryx, which is based on the
Palladio modelling environment (Martens et al., 2010; Koziolek and
Reussner, 2011). PerOpteryx allows for the automatic optimisation
of software architecture models, developed with Palladio using the
Palladio Component Model (PCM), on the basis of four main qual-
ity dimensions: cost, reliability, maintainability, and performance.
One particular advantage of PerOpteryx is its ability to take advan-
tage of domain specific knowledge, such as performance tactics, to
enhance the optimisation (Koziolek et al., 2011).

Another tool is AQOSA (Automated Quality-driven Optimisation
of Software Architecture), which uses model transformation tech-
nology to convert input models (e.g. from AADL or a general UML2
model) into an intermediate format (AQOSA-IR) that can be used
as the basis of the optimisation process (Etemaadi and Chaudron,
2012). Different candidates are provided by a repository of possi-
ble components, and a set of external objective function plugins
provides the evaluation that drives the process. AQOSA is designed
to be independent of any given domain specific language (DSL) or
ADL, but therefore relies on a correct model transformation to its
own intermediate model to perform the optimisation.

Finally, other work by Grunske et al. has shown the potential of
using various meta-heuristics for dependability versus cost optimi-
sation of architectural designs. This work has been applied to AADL
models and also looks at other optimisation approaches beyond
genetic algorithms, e.g. ant trail algorithms (Aleti et al., 2009a,b;
Meedeniya et al., 2010, 2011; Meedeniya and Grunske, 2010). An
introduction to the model-based optimisation field can also be
found in Grunske et al. (2007), and a wider survey of literature on
architectural optimisation techniques can be found in Aleti et al.
(2012).

All of the approaches mentioned above exploit meta-heuristics
to search a design space for optimal solutions. However, they oper-
ate on different models (EAST-ADL, PCM, AQOSA-IR etc.) and use
different means of defining the design space (e.g. variability mech-
anisms). They also address different objectives, which they define
in different ways, and use different techniques to evaluate those
objectives. The aim of this paper is to contribute to the state of
the art by developing an approach which brings a unique combi-
nation of objective evaluation techniques (e.g. HiP-HOPS, MAST)
derived from information obtained from the variability capabili-
ties and quality attributes provided by EAST-ADL. Therefore, while
there are both commonalities and differences across the opti-
misation approaches mentioned above, we believe our approach
offers a unique configuration that combines the benefits of exter-
nal analysis tools and the all-in-one modelling capabilities offered
by EAST-ADL.

1.3. Contributions of the paper

In this paper, we show how earlier work on design optimisation,
e.g. work developed in the context of HiP-HOPS, can be transferred
to model-based design—specifically in the context of the EAST-ADL
language. The novel contributions of the paper are:

¢ The development of a general method for automatic optimisa-
tion of EAST-ADL models via genetic algorithms. The method
so far enables evaluation of unavailability, simple cost metrics,
and schedulability of candidate designs to drive the optimisa-
tion, but could be extended in the future to other functional and
non-functional attributes as well.

e The use (in the context of optimisation) of advanced mecha-
nisms which allow adequate parameterisation of models and
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Fig. 1. The EAST-ADL abstraction levels (http://www.east-adl.info/).

expression of design variability in the language where the model
is expressed (i.e., EAST-ADL).
Applicability of the approach on architectural models which are
represented in multiple perspectives, i.e., separate hardware
and software design diagrams which are linked with allocations
of software to hardware. This is a non-trivial matter as most
approaches to dependability and optimisation assume a single
functional model of the system as basis for any analysis.

e The use of annotations of a core structural model to formalise
timing, cost, energy consumption, etc. for the purpose of architec-
ture evaluation as a part of optimisation. The modular approach
makes it possible to provide annotations consistent with vari-
ants, and corresponding to the input needs for fitness functions
of the intended optimisation. Whilst not all of these annotations
are currently exploited, the optimisation architecture described
in the paper is extensible and could tap further into the wealth
of design information captured within an EAST-ADL model.

In the next section, we shall describe EAST-ADL, its major fea-
tures, and its capabilities for linking with external analysis tools to
perform safety and timing analyses (amongst others). In Section 3,
we describe the multi-objective optimisation concept and the tool
architecture being developed to fulfil this concept, and in Section 4
we apply the approach to a simple example system to illustrate
many of the advances mentioned above (multiple perspectives,
variability representation, timing and dependability information
etc.). Finally we present our conclusions in Section 5.

2. Representing system architectures with EAST-ADL
2.1. Introduction to EAST-ADL

EAST-ADL is an Architecture Description Language (ADL)
initially defined in the European ITEA EAST-EEA project and subse-
quently refined and aligned with the more recent AUTOSAR auto-
motive standard (www.autosar.org). Currently, it is maintained and
evolved by the EAST-ADL Association (www.east-adl.info).

EAST-ADL s an approach for defining automotive electronic sys-
tems by way of a comprehensive information model that captures
engineering information in a standardised form. Aspects covered
include vehicle features, functions, requirements, variability, soft-
ware components, hardware components and communication.

As a guiding principle, EAST-ADL defines multiple abstraction
levels and distributes all development information across these lev-
els (see Fig. 1). Thus, software- and electronics-based functionality
of the vehicle is described at different levels of abstraction dur-
ing the development from early analysis to implementation. The
proposed abstraction levels are tailored to provide a separation of

concerns and an implicit style for using the modelling elements.
The embedded system is complete on each abstraction level, and
parts of the model are linked with various traceability relations.
This makes it possible to trace an entity from feature level down to
components in hardware and software.

The features in the main technical feature model at vehicle
level represent the major functionalities and characteristics of the
complete system, i.e., the entire vehicle from a top-level perspec-
tive, without exposing any realisation details. It is possible to
manage the content of each individual vehicle and entire prod-
uct lines in a systematic manner. In addition to this main feature
model with its technical perspective, other feature models may
be defined that provide views on the main feature model, e.g. a
customer/marketing-oriented view defining models and packages
of optional equipment.

A complete representation of the electronic functionality in an
abstract form is modelled in the Functional Analysis Architecture
(FAA). The purpose is to define and structure the system’s function-
ality from a problem domain perspective, similar to a traditional
functional analysis. Entities of the FAA, so-called analysis func-
tions, capture the principal interfaces and behaviour of the vehicle’s
subsystems.

The solution domain aspects are introduced while defining the
design level, which comprises the Functional Design Architec-
ture (FDA) and the Hardware Design Architecture (HDA). The FDA
defines a function architecture that takes into account hardware
allocation, efficiency, legacy and reuse, commercial-off-the-shelf
(COTS) availability, and other architectural qualities. The function
structure is such that one or more functions can be subsequently
realised by one or several AUTOSAR software components (SW-
C). The external interfaces of such components correspond to the
interfaces of the realised functions. On the other hand, the HDA
defines the execution environment in which the software will be
deployed. Its main entities are sensors, actuators, units of execu-
tion, their interfaces, and communication links between all these.
Finally, the allocation joins the FDA and HDA by defining for each
software entity in the FDA on which unit of execution, as defined
in the HDA, it will reside.

On the lowest, most concrete abstraction level, the imple-
mentation level, EAST-ADL does not provide its own modelling
entities; instead, this level is entirely defined by models from the
AUTOSAR standard. In this respect, EAST-ADL can be thought of
as an extension to AUTOSAR providing support for modelling on
higher abstraction levels during earlier development phases. How-
ever, traceability is supported from implementation level elements
(AUTOSAR) to FDA/HDA elements and, from there, further up to
vehicle level elements.

Verifying and validating a feature across all abstraction levels,
by using simulation or formal techniques, requires an environ-
ment model from the early stages of the design process. This “plant
model” captures the behaviour of the vehicle dynamics, driver, etc.
The core part of the environment model can be the same for all
abstraction levels, which means that, for the purpose of simula-
tion, both FAA and FDA/HDA are attached to the same environment
model.

2.2. Variability modelling in EAST-ADL

EAST-ADL provides extensive support for managing variabil-
ity, which is a key element of the EAST-ADL-based optimisation
approach presented in this article. First, variability modelling is
used to define the optimisation space (also referred to as the
“architectural degrees of freedom” in Aleti et al. (2012)) and then
configuration and variability resolution are applied to produce the
individual optimisation candidates to be evaluated with respect
to the optimisation objectives. Before going into more detail on


http://www.east-adl.info/
http://www.autosar.org/
http://www.east-adl.info/

M. Walker et al. / The Journal of Systems and Software 86 (2013) 2467-2487 2471

o
Customer Feature Model

Vehicle Level

EAA

FDA

(details omitted)

1
; i Optional Element
I

—

\N
Feature Model

\

\ Configuration Link

(details omitted)
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the optimisation approach in Section 3, we therefore describe the
EAST-ADL variability management concepts here.

Modelling of variability in EAST-ADL starts on the vehicle level,
where model range features and variability are represented. At this
point, the purpose of variability management is to provide a highly
abstract overview of the variability in the complete system together
with dependencies between these “variabilities”. A variability in
this sense is a certain aspect of the complete system that changes
from one variant of the complete system to another. In this abstract
overview, the idea is not to specify how the system varies with
respect to an individual variability but only that the system shows
such variability. For example, the front wiper may or may not have
an automatic mode. At vehicle level, the impact of this variability on
the design is not defined; only the fact that such variability exists is
defined by introducing an optional feature named “RainControlled-
Wiping”. This is subsequently validated and refined during analysis
and design.

One or more feature models may be defined on the vehicle level:
the core Technical Feature Model—the main feature model in an
EAST-ADL system model—is used to define the complete system’s
variability on a global level from a technical perspective, and one or
more optional Product Feature Models can be used to define views
on this technical variability which can be tailored to a particular
view-point or purpose, e.g. the marketing-oriented end customer
perspective. An example of this is shown at the top of Fig. 2.

While the details of how variability is actually realised in the sys-
tem are largely suppressed at the vehicle level, they are the focus of
attention when managing variability in the FAA, FDA and HDA. In
fact, a specific variability may lead to modifications in any develop-
ment artefact, such as requirements specifications and functional
models. Here, describing that a specific variability occurs is not suf-
ficient; it is necessary to describe how each variation affects and
modifies the corresponding artefact.

The purpose of feature modelling is to define the commonali-
ties and variabilities of the product variants within the scope of a
product line. Feature models are normally used on a high level of
abstraction, as described above for vehicle level variability. How-
ever, in EAST-ADL, they are also used on analysis and design levels
and acquire a much more concrete meaning there: they can be

attached to analysis and design functions and are then used to
expose the variability within this function only. Fig. 2 illustrates
this for the FAA: the top-level analysis function “Car” contains a
subfunction “WiperSystem” which in turn consists of the subfunc-
tion “RainSensor” and “WiperController”; all the analysis functions
“Car”, “WiperSystem” and “WiperController” have a feature model
attached.

In addition to their feature model, analysis and design functions
may contain variation points defining how the function’s struc-
ture varies from one system configuration to another. In EAST-ADL,
such structural variation can be represented by marking structural
entities—e.g. subfunctions, ports, connectors—as optional, which is
denoted graphically by a dashed line. Fig. 2 presents an example:
the “WiperSystem” has an optional subfunction “rs” of type “Rain-
Sensor”. All actual system variation on analysis and design level is
defined using this straightforward concept of optional structural
entities.

Configuration decision modelling is another key variability
management concept in EAST-ADL: the configuration of a tar-
get feature model FMr—i.e. the selection and deselection of its
features—is defined in terms of the configuration of another feature
model FMg, called source feature model. A configuration decision
model can thus be seen as a directed relation from FMs to FMt
that allows us to derive a configuration of FM from any given con-
figuration of FMs. In EAST-ADL, this mechanism is used to define
how a certain configuration on a higher level affects the binding
of variability on lower abstraction levels and in lower-level com-
ponents. Again, Fig. 2 provides an example: configuration links are
depicted as dashed arrows and are defined between all the feature
models; the one from the “Technical Feature Model” to the fea-
ture model attached to “Car”, for instance, defines how to configure
the “Car” analysis function depending on a given configuration of
the core technical feature model on vehicle level; note how this
configuration link crosses abstraction layers while the links from
the “Car” to the “WiperSystem” feature model crosses containment
hierarchies within the analysis architecture (the same applies to
the FDA and HDA, but this was omitted from the figure). Similarly,
configuration links are used to define how the structural variabil-
ity within analysis and design functions is resolved depending on



2472 M. Walker et al. / The Journal of Systems and Software 86 (2013) 2467-2487

a given configuration of the function’s feature model. For exam-
ple, the configuration link in the “WiperSystem” function of Fig. 2
states how the optional subfunction “rs” will be selected or dese-
lected depending on the configuration of the wiper system’s feature
model.

Variability management on analysis and design level is driven
by the variability identified on the vehicle level. This means that the
main driver for variability definition and also variability instantia-
tion is the vehicle-level feature model. Variability specification in
FAA and FDA/HDA essentially consists of the definition of varia-
tion points within the analysis and design functions (in the form of
optional subfunctions, connectors and ports). As mentioned above,
feature models can be attached to functions in order to expose
the variability within these functions and hide the actual structur-
ing, representation and binding of this function-internal variability.
This way, the benefits of information hiding can be applied to
the variability representation and variability binding within the
containment hierarchy of functions in the FAA and FDA/HDA of
EAST-ADL.

In summary, EAST-ADL provides the means to define variant-
rich systems and to organise this information such that an entire,
fully resolved system configuration can be derived automatically
from the configuration of a single feature model on vehicle level.
For the purpose of this article, this means that we can define the
optimisation space, i.e. the set of systems to be evaluated, by way
of EAST-ADL'’s variability modelling concepts and then produce
individual candidates within this optimisation space by applying
EAST-ADL’s configuration and variability resolution mechanisms.

2.3. Dependability analysis of EAST-ADL models with HiP-HOPS

EAST-ADL offers powerful fault modelling capabilities centred
on its ErrorModel concepts. The ErrorModel in EAST-ADL is a sepa-
rate modelling view, parallel to the nominal system models on each
level, and allows system designers to specify how the system ele-
ments can generate failures and how those failures can propagate
to other parts of the system.

As with other parts of EAST-ADL, the ErrorModel only stores
information; analysis capabilities have to be provided by an exter-
nal tool. As part of the ATESST2 and MAENAD projects, significant
effort has gone into enabling the HiP-HOPS (Hierarchically-
Performed Hazard Origin and Propagation studies) safety analysis
tool to analyse EAST-ADL models by means of model transfor-
mation technology. This has entailed some harmonisation of the
error modelling concepts in both EAST-ADL and HiP-HOPS and the
result is a powerful dependability analysis capability for EAST-ADL
models.

A HiP-HOPS analysis has three main stages:

e Fault modelling and failure annotation

e Synthesis of fault trees to model the propagation of failure
through the system

e Fault Tree Analysis (FTA) and synthesis of Failure Modes and
Effects Analysis (FMEA) tables

The first phase is manually performed and consists of annotat-
ing the elements of the system model (or in this case, the EAST-ADL
error model) with logical expressions that describe their local fail-
ure behaviour, i.e., what output failures they propagate (known as
output deviations) and how those output failures are caused by a
mixture of input faults and internal failure modes. In their basic
form, these expressions take the form of a failure class (e.g. commis-
sion, omission) and the name of the port and component where the
deviation occurs and combines them with logical operators such as
AND and OR. For example:

Omission-Actuator.out = Omission-Actuator.in OR
ActuatorStuck

indicates that an omission of the ‘out’ port of an actuator compo-
nent is caused by either a similar omission received at the ‘in’ port
of the Actuator or an internal failure mode called “ActuatorStuck”,
which may also have probabilistic failure data (e.g. failure rate,
repair rate, MTTF etc.) defined. Such expressions can take more
complex forms to express generalised patterns of component fail-
ure behaviour.

The second and third phases are conducted automatically by
HiP-HOPS. First, a network of interconnected fault trees is synthe-
sised by combining the logical expressions, thereby showing the
relationship between system hazards and combinations of individ-
ual component or function failures. In the third phase, the fault trees
are analysed using FTA reduction algorithms to obtain the minimal
causes of system failures together with estimates for the probabil-
ities of those failures. This information is used to construct FMEA
tables which show not only the effects of each individual failure
mode, but also the effects of multiple failure modes occurring in
conjunction.

2.3.1. Multi-perspective analysis in HiP-HOPS

One of the biggest differences between the HiP-HOPS error
model and the EAST-ADL approach is that EAST-ADL does not limit
the system modeller to a single architecture, as HiP-HOPS does. Not
only are the ErrorModel and nominal model separate, but EAST-
ADL provides multiple layers or levels of potential modelling as
well as different views or perspectives of a model. HiP-HOPS can be
applied to EAST-ADL models at both the analysis and design levels,
each of which may contain a number of different perspectives. For
example, at the analysis level, the primary modelling perspective
is the Functional Analysis Architecture (FAA), which provides an
abstract view of the functions of the system and which will have a
similarly abstract Error Model attached. Later, at the design level,
the model may be separated into the Functional Design Architec-
ture (FDA), which represents the concrete functional perspective,
and the Hardware Design Architecture (HDA), representing the
hardware perspective, and each of these may have a separate—but
interrelated—Error Model.

In HiP-HOPS, software and hardware are usually modelled
together as part of the same architecture, with software functions
being defined as subcomponents of hardware elements. This can
be emulated in EAST-ADL by combining everything into a single
perspective, but the advantages of having multiple perspectives
are then lost. Instead, in order to make it compatible with EAST-
ADL and to allow for the propagation of failures from software to
hardware or vice versa, HiP-HOPS has been extended with native
multi-perspective capabilities, as shown in Fig. 3.

In EAST-ADL, hardware and software entities can be in sepa-
rate architectures (e.g. HDA and FDA) and the relation from one
perspective to the other is accomplished by means of allocation
relationships, in which software functions are allocated to the hard-
ware components that execute them. Failures of the hardware
components will propagate to the software functions allocated to
them. HiP-HOPS now provides the same capabilities, and in addi-
tion to an output deviation being caused by an input deviation or
an internal failure mode, it may now also be caused by a failure
propagated from the component the current function is allocated
to. For example:

Omission-Function.out = Omission-Function.in OR
FromAllocation
(PowerFailure)
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Fig. 3. Multi-perspective modelling in HiP-HOPS.

This specifies that the omission of output from a software func-
tion is caused either by a lack of input or a particular failure (power
failure in this case) being propagated from the hardware compo-
nent that the function is allocated to.

Furthermore, in both EAST-ADL and now in HiP-HOPS, it is possi-
ble to define more than one possible allocation, e.g. using variability
constructs in EAST-ADL. This allows scope for potential optimisa-
tion of the model on the basis of changing the allocation of software
functions to different hardware components.

The introduction of multiple perspectives to HiP-HOPS has
necessitated a change to the semantics of common cause failures,
which HiP-HOPS previously treated as global failures. Whereas
before common cause failures (CCFs) were globally accessible
throughout the model, and could cause a failure of any compo-
nent, now CCFs are defined per modelling perspective, and thus a
CCF defined for the hardware perspective (e.g. flooding, fire) would
not be accessible from a function in the software perspective, for
instance.

For any rare cases where arbitrary cross-perspective propaga-
tion is required, HiP-HOPS provides a ‘Goto’ declaration. This allows
failures to propagate from one component in one perspective to
another component in a different perspective (or, for that matter,
in the same perspective), even if those components do not share an
allocation relationship.

Because these new connections (allocations and gotos) connect
to existing HiP-HOPS constructs (namely, output deviations and
the normal local failure logic), they fit relatively seamlessly into
the HiP-HOPS fault tree synthesis process. Once the fault trees are
generated, they can be analysed as normal without any further
distinction between one perspective and another.

This harmonisation of EAST-ADL and HiP-HOPS error modelling
concepts provides a powerful dependability analysis capability for
EAST-ADL models, allowing fault propagation to be traced across
several different modelling views. This also enables optimisation
of EAST-ADL models using dependability characteristics (e.g. safety,
unavailability) as objectives, as shown in Section 4.

2.4. Timing analysis of EAST-ADL models

EAST-ADL, and specifically its Timing Extension, provides a
rich set of concepts to support timing analysis. The term “tim-
ing analysis”, however, encompasses a wide range of analyses
applicable to different models (and levels of abstraction) pro-
duced during the development process. High-level analyses, such

as using model-checking for the verification of the timing prop-
erties of the functional model, can usually be employed from the
very beginning of the development process, as soon as functional
behaviours are defined. Conversely, low-level analyses, such as task
level schedulability analysis, compute timing properties of func-
tions when conceptually executed on detailed software/hardware
resource models. These resource models include information about
processor/bus schedulers and task/message configurations and are
in general produced at later stages of the development process.

In this paper we are primarily interested in the design level of
EAST-ADL, where the allocation of functions on hardware nodes
is defined and timing analysis can be applied in conjunction with
dependability analysis. Specifically, the design-level concepts used
by the analysis are:

(1) activation chains of functions, the rate of their activation, worst
case execution times of functions and end-to-end deadlines;

(2) the topology of the hardware network in terms of processors
and the buses that connect processors;

(3) the allocation of functions on processors.

These concepts come from EAST-ADL’s FunctionModelling,
HardwareModelling and Timing aspects, and are specified in the
FDA, the HDA, and the associated Timing View respectively.

Timing analysis at this stage aims to evaluate the impact that
hardware resources may have on the execution of functions,
although it makes use of more abstract resources than those used
by schedulability analysis (no tasks, schedulers, etc.). To give a sim-
ple example on the importance of evaluating the resource impact
on function execution, let us consider the architecture in Fig. 3.
In this example, Functions F1A and F1B do not have precedence
dependencies, so they can be logically executed in parallel. As a
comparison, assume that the two functions are allocated on the
same CPU, meaning that F1A and F1B are executed sequentially.
Now let us consider that Function F2 must produce a value for each
cycle of duration T (deadline). In each cycle F2 must consume at
least one value produced by F1A and one produced by F1B in the
same cycle. It is clear that if the two functions could be executed
in parallel and start at the beginning of the cycle, input values for
F2 will be available after max(C1, C2), where C1 and C2 are esti-
mated worst case execution times. On the other hand, in case of
sequential execution, the input values for F2 will be available only
after sum(C1, C2). These situations must be carefully analysed as
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Fig. 4. MARTE task model.

the effect of accessing hardware resources may lead to response
times violating deadlines.

To this end we propose an approach that provides a connec-
tion to the MAST analysis tool and gives automatic feedback to
the EAST-ADL model. As stated in Section 1.1, we need to solve
the mismatch between the schedulability analysis level (where the
MAST tool works) and the EAST-ADL design level. To this end, we
devised a controlled refinement towards a task model that ensures
the MAST results provide valuable insight into the EAST-ADL level.
It should be noted that this refinement may be embedded in a model
transformation that is transparent to the user.

The controlled refinement performs a 1:1 mapping of EAST-ADL
functions to MARTE tasks. A task must be configured in terms of
periods and priorities; the controlled refinement assigns to a task
the period of the function it is mapped to, and all priorities are
fixed to the same value. The effect of assigning the same level of
priorities for all the tasks (functions) allows for the computing of the
upper bound on worst case response times, i.e., any other priority
assignment will improve response times. This effect is explained
by the way in which response times are computed by MAST when
priorities are at the same level.

To clarify this point, consider the example in Fig. 3 again. Apply-
ing our controlled refinement to this model means obtaining a
MARTE model as shown in Fig. 4. Each function is here represented
by a task executing the function itself at the rate of 20 ms, expressed
by an external trigger. Priorities and allocations to CPUs are also
shown. The deadline of 20 ms for the entire cycle is also specified.

Once the EAST-ADL model is transformed into a MARTE model,
MAST can be applied to compute the response time. The response
time is obtained by considering worst case execution times and
the additional delay caused by sequencing F1A and F1B on CPU1
(for sake of simplicity we do not consider communication delays in
the example). In fixed-priority schemes, the additional delay due to
sequencing executions is called pre-emption time. Remember that
under ordinary circumstances, the highest priority task will access
the CPU first and lower priority tasks will access after higher prior-
ity tasks terminate their execution. The time spent by a task waiting
for higher priority tasks to execute is the pre-emption time. The
global pre-emption time is the sum of all pre-emption times for all
tasks. Obviously, to improve response time, the global pre-emption
time should be minimised.2 But what happens if priorities are set
to the same level, as in our case? MAST in this case considers that
each taskis pre-empted by all other tasks. In case of Fig. 4 the global
pre-emption time on CPU1 will be sum(C1, C2). Any other assign-
ment considering different levels of priority will give a lower value
for the global pre-emption time on CPU1 (C1 or C2).

2 It should be noted that the worst case, in which all the tasks are activated at
the same time, is assumed by the analysis, so that the pre-emption time is always
included in the response time.

The global pre-emption time could be decreased by reducing
the number of tasks. In the example, an alternative mapping with
the two functions on a single task would mean reducing the pre-
emption time on CPU1 to 0, as only one task runs in CPU1. Indeed,
the 1:1 mapping is another source of pessimism that gives us the
worst response time, independent of improvements that can be
achieved later by applying smarter refinements towards alternative
task models.

Once it has been established that the response time can only
be improved by subsequent refinements, it can be correctly inter-
preted in EAST-ADL as a sufficient condition. A response time that
meets deadlines at the task level implies that the EAST-ADL archi-
tecture can be considered valid. On the other hand, a negative result
does not necessarily imply a design error for schedulability. Expe-
rience suggests that this does not present a problem if the designer
is aware of this characteristic. Furthermore, a complementary and
less conservative analysis could be made where a perfect priority
assignment is assumed. This would serve to assess feasibility of the
architecture.

The response time computed with MAST under the proposed
controlled refinement allows us to compare different architectures
from a timing point of view, enabling architecture optimisation as
described in Section 4.

3. Optimisation of EAST-ADL architectures

Model-based systems analysis techniques allow a great deal of
information to be obtained about a system, including its depend-
ability and timing characteristics, amongst others. This is especially
true when these analysis techniques are combined with ADLs like
EAST-ADL, which serve to centralise all the knowledge about a par-
ticular system, since it is no longer necessary to produce a specific
error model tailored for a particular dependability analysis tool, or
a separate timing model solely for timing analysis etc.

However, as mentioned earlier, this wealth of information can
also be difficult to manage. Achieving a balance between the dif-
ferent attribute requirements during the development of complex
systems becomes problematic, both because there is a vast num-
ber of possible design alterations that could be made and because
the interrelationships between the attributes—and therefore the
effects of any alterations—are not necessarily clear. This is particu-
larly true when tradeoffs between multiple conflicting attributes
(like safety versus cost, or energy consumption versus perfor-
mance) are involved, as improving one attribute may lead to a
worsening of another.

The increasing automation of analysis techniques helps
overcome this to an extent, assuming the automated tools are com-
patible with the model in question. Such tools allow models to be
rapidly evaluated according to different criteria, enabling designers
to quickly see the effects of any changes to the design architec-
ture and informing design decisions as part of an iterative process.
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Even with this automation, evolving the design manually is still a
complex and time-consuming process, relying on manual experi-
mentation with different design options, and may still be difficult
to fulfil the competing requirements on the system—particularly
as the time and effort involved means that typically only a small
number of potential design options can be investigated in this way.

In such situations, automatic architectural optimisation can
potentially be applied. Automatic optimisation allows a much more
efficient search of the design space (the total set of possible design
variations), covering a much greater number of alternatives than
could be considered manually. However, to be effective, the opti-
misation must be guided in some way, which requires some form of
heuristic evaluation. It is here that the use of ADLs such as EAST-ADL
for representing the design model pays dividends, because such a
model contains all of the information necessary for analysis to take
place with respect to each system attribute being considered. For
example, if the objectives of the optimisation were to maximise
safety and performance while minimising cost and unavailability,
it has to be possible to evaluate each of the candidate designs being
explored according to those four characteristics by means of some
form of analysis. By making changes to the design model automat-
ically as part of the optimisation process and allowing the analysis
tools to access the same common model, it then becomes possible
to evaluate the new variant directly and seamlessly, facilitating a
rapid, efficient search of the design space.

3.1. Multi-objective optimisation

Taken together, the problem of optimising a large potential
design space to obtain one or more good solutions that feature
a desirable balance of attributes is known as a multi-objective
optimisation problem. There are a variety of different automated
algorithms that can be employed to solve such problems, but in
general they all aim to quickly find viable solutions (i.e., valid
design variants in this case) that offer optimal or near-optimal
attributes without needing to investigate all possible designs. It
should be noted that in a multi-objective optimisation problem,
there is not typically a single optimum solution, because the dif-
ferent objectives may be mutually exclusive; instead, the goal is
often to produce a set of ‘optimal’ solutions that feature a range of
attributes that balance the different objectives in different ways—in
other words, each providing a different tradeoff between the objec-
tives whilst still meeting any constraints.

These are known as the Pareto solutions and are based on the
concept of dominance. A dominant solution is one that is better
in at least one objective than every other solution yet found, and
no worse in the other objectives. The set of dominant solutions is
known as the Pareto set. When plotted on the graph, they tend to
form a curve known as the Pareto frontier, which shows the cur-
rent progress of the optimisation; new solutions beyond the Pareto
frontier are new optimal solutions and will dominate older solu-
tions, whereas solutions within the frontier are dominated and
non-optimal. This is shown in Fig. 5, where the Pareto frontier
consists of the solutions marked as black dots, whilst dominated
solutions are white dots.

In Fig. 5, solutions are shown as dots plotted against two axes,
each representing different objective attributes (e.g. unavailabil-
ity and cost). In this case, the goal is to minimise each attribute,
so lower values are better. Thus A dominates B because it has
lower values for each attribute; it is better in both respects. A also
dominates C, because although they have the same value for one
objective (e.g. unavailability), A has a lower value for the other (e.g.
it is cheaper). Conversely D is a non-dominated solution because it
is better than A in one objective but worse in another; for example,
D may be cheap but not very reliable, whereas A is more reliable
but also more expensive—both are equally valid solutions.
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Fig. 5. Pareto frontier.

Although there are many different multi-objective optimisa-
tion algorithms, e.g. tabu search (Kulturel-Konak et al., 2003), ant
colonies (Liang and Smith, 2004), and simulated annealing (Kim
et al., 2004), one of the most prominent approaches is the use of
genetic algorithms. The general principles will be briefly discussed
next.

3.1.1. Genetic algorithms (GAs)

Genetic algorithms are optimisation algorithms inspired by the
evolutionary processes found in nature. They have been identified
as a particularly effective method for solving combinatorial optimi-
sation problems (such as those discussed here) and they are capable
of navigating large, complex search spaces (Coit and Smith, 1996a).

The general process is as follows:

e A population (set) of individual candidate solutions is randomly
generated. Each individual is represented by a different encoding,
analogous to human genes, which encapsulates the way they can
vary from each other. The encoding can be thought of as the ‘DNA’
of each individual.
Genetic operators—crossover and mutation—are applied to the
population to obtain a new generation of child solutions, which
are added to the population (or, in some genetic algorithms,
become the sole new population). Crossover involves mixing the
genes of two random parent candidates to produce a child; muta-
tion involves randomly changing the genes of a candidate to
produce a new solution (or alter an existing candidate).

e This process of reproduction continues until the population
grows too large, at which point those with the least successful
genomes are discarded. This is established by evaluating the solu-
tions in the population according to the objective criteria (the
evaluation functions are known as fitness functions) and retain-
ing those with the best results—in other words, survival of the
fittest.

e After a set number of generations, the optimisation ceases, and
the current population should contain the best (i.e., optimal) solu-
tions discovered so far.

The nature of the problem domain and context has a large influ-
ence on the nature of the genetic algorithm, and consequently there
are many versions of genetic algorithms, each of which can be
customised further by means of different parameters. Generally,
however, they all share the same major features: a population of
individuals represented by some form of encoding, crossover and
mutation operators to produce new individuals, and some kind of
fitness function to evaluate the individuals.
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Encodings, which identify the characteristics of the individual
solutions, can take many different forms. One of the simplest is to
use a string of integers: each position of the string represents a
different characteristic, and the value at that position determines
the nature of the characteristic for that individual. For example,
a simple system of three components connected in series could
be represented by a string of three integers, and the value of
each integer indicates the version or manufacturer of each of the
three components. While simple, this type of encoding is also quite
limited, so other forms of encoding are possible, such as hierarchical
(i.e., tree-based) encodings which mimic the hierarchical structure
of the system architecture.

GAs also differ in how they handle multiple objectives (assuming
they do at all). One common approach is to combine the differ-
ent evaluations into a single value by applying a weighting to
each objective—in effect, converting a multiple-objective problem
into a single-objective problem. So for example, if the objectives
were safety, performance, and cost, each would be normalised
and weighted—e.g. 0.4x safety, 0.3x performance, 0.3x (inverse
of cost)—and the result of the formula used as the fitness for that
individual. However, this is not always desirable (since it can hide
useful tradeoffs) and the fitness weightings can be very difficult to
derive.

Another approach is the penalty-based GA approach. In this
approach, one objective is treated as the main objective and mini-
mised (or maximised)—e.g. cost—and other objectives are treated
as scaled, weighted constraints and applied as a penalty to the
main objective. For example, a maximum unavailability limit might
be set, and the more the design candidate exceeds the limit, the
more harshly the fitness is penalised. Thus even if two solutions
both achieve the same cost, the one that does not violate any
constraints—or which violates them by the smallest degree—is pre-
ferred by the algorithm. However, because successful exploration
of the design space often requires infeasible solutions (i.e., those
that break the constraints) to be explored too, a dynamic penalty
function can be employed that varies the penalty according to the
length of the optimisation run so far (e.g. applying light penalties
early in the process, to encourage more exploration, and gradu-
ally making them heavier as time goes on). This form of dynamic
penalty-based GA has been found to have superior performance
compared to either static versions or versions that only allow fea-
sible solutions to be part of the population (Coit and Smith, 1996b).

There are also true multi-objective approaches that evaluate
against multiple objectives at once and maintain a Pareto front
of optimal, non-dominated solutions. This allows a broader set of
solutions and generally results in a better coverage of the search
space (Salazar et al., 2006), albeit at the cost of higher com-
plexity. These types of algorithms are generally better suited to
multi-objective problems because they allow the various tradeoffs
between the objectives to be better represented, rather than being
biased towards one objective and using the others as constraints or
weighted penalties etc. There are many different multi-objective
GAs, including:

e PESA-II (Pareto Envelope-based Selection Algorithm 2) (Corne
et al.,, 2001), which seeks to maximise evenly distributed spread
in the Pareto set by including crowding in the selection criteria;
solutions that are found in less crowded regions of the search
space are preferred for selection to encourage the algorithm to
look at under-explored areas of the search space.

SPEA-II (Strength Pareto Evolutionary Algorithm 2) (Zitzler et al.,
2001). Unlike PESA-II, which adopts a “pure elitist” strategy that
allows no dominated solutions to be retained, SPEA-II does keep
some dominated solutions. The selection criteria are altered to
include a dominance strength (how many solutions it dominates)
and a density value (how close an individual is to other solutions).

Thus although dominated, crowded solutions are possible, non-
dominated, non-crowded solutions are preferred.

e NSGA-II (Non-Dominated Sorting Genetic Algorithm 2) (Deb
et al,, 2002). In NSGA-II, both non-dominated and dominated
solutions are kept in the same population, ranked according to
dominance (based on how many other solutions they dominate).
More dominating solutions are preferred during selection, and
crowding is used as a tie-breaker if two solutions have equal
dominance.

3.1.2. Chosen algorithm

After comparing the three algorithms above, the algorithm cho-
sen for use in the ATESST2 and MAENAD projects for the automatic
optimisation of EAST-ADL models is a variant of the NSGA-II genetic
algorithm, which was deemed to have a good balance of char-
acteristics. NSGA-II is also used as the basis of the PerOpteryx
optimisation engine (Koziolek et al.,, 2011) and is also used in
AQOSA (Etemaadi and Chaudron, 2012). NSGA-II offers reasonably
good performance, wide coverage of the design space, and (most
importantly) excellent support for multiple objectives (Parker,
2010). The algorithm is not guaranteed to find all Pareto optimal
solutions (though nor are any of the other algorithms, genetic or
otherwise), but it should still produce a set of superior solutions
much faster and more efficiently than could be performed manu-
ally.

The encoding used is a form of hierarchical, tree-based encoding,
where each tree node represents a different variability point for one
or more functions or components in the system architecture. If an
optional function is present and also has a choice of subfunctions
(or subcomponents), then the node will have corresponding child
nodes beneath it which can also be varied.

The different values of the encoding represent all possible
variations of the system architecture—in effect, the encoding
encapsulates the entire design space. It is defined in EAST-ADL by
means of the variability management mechanism, allowing more
complex configurations of features to be represented, including
dependencies between features (possibly hierarchical) and dupli-
cation of features. Variability is therefore used to represent the
possible options for architectural variation of the design by defining
the variation points of the design space; this notion of optimisation
space corresponds exactly to what is called a configuration space
in feature modelling terminology. Thus for example a critical com-
ponent can be defined with several implementations or perhaps an
alternative replicated subsystem specified (which provides addi-
tional redundancy, but increases cost); the optimisation algorithm
can then choose one of these options and evaluate the effects of
that option on the overall attributes of the system.

Optimisation variants can be defined in one of three main ways:

1. Substitution: A component/function (or subsystem) is substi-
tuted for another that has different objective attributes (e.g.
safety, cost, performance). A substitute must be functionally
equivalent, i.e., it must perform the same task and have a compat-
ible interface, but need not achieve the task in the same way or
make use of all connections (e.g. an electronic braking subsystem
may be replaced by a hydraulic version). Different substitutes
are often termed as different implementations of a function or
component.

2. Replication: To improve reliability, a critical component or model
element may be duplicated to achieve redundancy. Replicants
are usually connected in parallel to ensure that a failure of
one element does not lead to a failure of the whole subsys-
tem. Note that the replicants have to be defined in advance
as optional elements; the optimisation does not generate them
itself.
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Fig. 6. Different variation strategies.

3. Allocation: In systems with both hardware and software ele-
ments, there may be a choice of allocation strategy, e.g. in terms
of which software function is allocated to be executed on which
hardware platform. This allows timing performance as well as
reliability to be balanced over the available processing resources
of the system.

These different variations are illustrated in Fig. 6. Furthermore,
more complex optimisation is possible via a combination of two or
more of the above, e.g. replication that uses more than one imple-
mentation.

During the optimisation process, different variants can then be
chosen from amongst the predefined choices, and the variabil-
ity mechanisms ensure that the connections between the chosen
components are kept consistent. This enables relatively seamless
connections between different choices of functions/components in
the model and ensures that e.g. failures are propagated correctly
through the system model.

This variability-based approach is very flexible and allows com-
plex compositional variants to be modelled; for example, a single
component may be substituted for another component from a dif-
ferent manufacturer, or replaced by a replicated subsystem with
heterogeneous subcomponents. This allows more sophisticated
design patterns (such as voters and monitors etc.) to be evaluated
as part of the optimisation; furthermore, such configurations can
often be stored in a library and reused in other models.

3.2. EAST-ADL optimisation tool architecture

This section describes the EAST-ADL optimisation tool architec-
ture as currently being developed in the MAENAD project. The tool
architecture is designed to meld all of the various analysis and opti-
misation tools required, using the EAST-ADL system model as the
glue. A prototype optimisation environment has been developed
based on the EPM tool (based on the Eclipse framework), which
currently implements a core subset of EAST-ADL (Abele et al.,2012).

There are three main goals to be fulfilled by the tool architecture:

e Design space definition: In order for optimisation to take place, it
must be possible to define the design space by means of specifying
variability points in the model that the optimisation can later
choose and evaluate. This is primarily achieved through the use
of EAST-ADL’s variability management mechanism, which allows
alternative implementations and allocations to be specified. In
the tool architecture, this role is fulfilled by the EPM tool.

Rapid objective evaluation:For optimisation to be guided rather
than random, it must be possible to evaluate new solutions
to determine whether they are better or worse than previous
solutions. In a multi-objective problem, this means analysing
the solutions (in the form of design candidates) for each of the

objectives being evaluated. In this case, HiP-HOPS is the primary
tool to evaluate safety and reliability characteristics, cost (cur-
rently only a simplistic summation) is handled by a dedicated
plugin, and timing analysis capabilities are provided by the
MAST tool. Other plugins can be added as needed to evaluate
other objectives.

Efficient design space exploration: Finally, optimisation requires
that the design space be explored by means of an algorithm.
In this case, a variant on the NSGA-II genetic algorithm is used,
based on prototype optimisation technology in HiP-HOPS but
implemented as an EPM plugin instead. In combination with
the design space definition and analysis capabilities, it allows
automatic optimisation of an EAST-ADL architecture.

An additional crucial step is variability resolution. In order for a
design variant to be analysed and evaluated, the variability first has
to be ‘resolved’, i.e., to produce a model in which all of the variabil-
ity points have been selected or deselected to produce a particular
system configuration with a concrete set of objective attributes.

There are still certain issues and constraints to be dealt with.
For example, EAST-ADL does not require a one-to-one mapping
between its nominal and error model architectures, i.e., it does
not ordinarily require that each function has a corresponding error
model type; however, for the error model to be evaluated cor-
rectly when the nominal architecture changes, the optimisation
requires a one-to-one mapping to be applied. This is resolved by
explicitly defining the ErrorModel for each nominal model variant.
Furthermore, it is very important that the optimisation variabil-
ity ensures substitutability, i.e., that if the optimisation algorithm
selects a different option, the resulting system design remains valid
and sensible. This imposes two requirements on the variants: that
they share a compatible interface (i.e., they share at least a common
subset of ports and connections) and that they perform equivalent
functions. Otherwise, the optimisation algorithm may select a dif-
ferent option that leads to an invalid or nonsensical system design.
This is not necessarily a simple problem, especially in an ADL such
as EAST-ADL, where the error model, software, and hardware may
all be represented in separate model views and a change in one may
need to be reflected in the others. At the same time, this is a criterion
for validity of the model regardless of context: it is not only optimi-
sation which requires that a valid timing model (or error model or
any other model) must emerge together with the core architecture
as aresult of changes to the variability; this is a general issue in any
variability resolution process.

The tool architecture itselfis shown in Fig. 7. This diagram shows
the flow of operations in the optimisation process. The initial EAST-
ADL model (with variability) is passed to the Optimisation Space
Definition Module (or OSDM), which generates a Master Encoding
Hierarchy. This defines the search space for the Central Optimisa-
tion Engine, which generates different model encodings that are
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Fig. 7. EAST-ADL optimisation tool architecture.

passed to the Variability Resolution Mechanism to be resolved
into analysable models. The analysis wrappers then evaluate these
models according to different objectives and return the results.
Eventually the optimisation settles on a set of Pareto optimal solu-
tions, which constitute the final results of the process. There is also
a further planned process involving product line optimisation (see
Section 3.2.5), although this is not included in the current proto-
type.
The major elements of the architecture will be described next.

3.2.1. Optimisation Space Definition Module (OSDM)

The OSDM provides the input for the overall optimisation pro-
cess by taking the original “variant-rich” EAST-ADL model, which
contains variability elements to define the variation points of the
design, and derives from this input the set of possible encodings
of the optimisation search space—the Master Encoding Hierarchy.
This is a structure that can be manipulated to obtain the set of all
valid design candidates. The Master Encoding Hierarchy allows the
Central Optimisation Engine to explore the design space automat-
ically by using an abstract structure without the need for semantic
knowledge of the EAST-ADL design model itself. This is “abstract”
in the sense that it does not include any information on the struc-
ture, behaviour or other properties of the individual candidates; it
just provides a means to unambiguously identify each candidate.
It takes the form of a tree-based hierarchical structure (based on
a normal variability feature model) in which each node defines
an individual variability and the nature of the node describes the
type of variability. In EAST-ADL, the core technical feature model

on vehicle level provides such an abstract view of the complete
system’s variability, as detailed in Section 2.2, and can therefore be
used as is for this purpose.

The OSDM is therefore necessary to ensure that the optimisation
engine itself does not need to know anything about the semantics
of the models it deals with other than what variability is present
in the original model and how it can be encoded. It is then the
job of the VRM to convert a particular encoding—i.e., a particular
configuration of the variability in the model—into a new model in
which all the variability is resolved. This can then be analysed by
the external tools, and the optimisation engine then determines
whether to keep or discard that particular design candidate on the
basis of those analysis results.

Unlike the other elements, which are used in each optimisation
iteration, the OSDM is only required once, at the beginning of the
optimisation, not iteratively in each optimisation cycle as with the
other elements.

3.2.2. Central Optimisation Engine (COE)

The Central Optimisation Engine is the driver of the optimisation
process, responsible for exploring the design space (by choosing
which encodings to evaluate) and for collecting the best solutions so
far. The COE will use genetic algorithms based on established HiP-
HOPS technology (Papadopoulos et al., 2011), but is implemented
as a separate plugin to facilitate easier communication with the
other elements of the tool architecture.

When optimisation is initiated, the optimisation engine receives
three things: a set of optimisation parameters (such as the number
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of generations to run for, the size of the solution population to main-
tain, and a specification of which objectives are to be evaluated),
the original variant-rich EAST-ADL model, and the Master Encoding
Hierarchy from the OSDM—a tree containing the different variation
points in the model. This is essentially the base DNA of the model
to be optimised. To perform optimisation, the optimisation engine
chooses a particular encoding by selecting which variation points
to use and which not to use according to its internal heuristics,
e.g. via crossover and mutation operators (called “model encoding”
in Fig. 7). This encoding is then passed on to the VRM. The VRM
returns a version of the original model with the variability resolved,
which is then passed to the plugin interfaces to the various analy-
sis engines (timing, safety, cost etc.), according to the optimisation
objectives. Once complete, the analysis results are returned so the
optimisation algorithm can evaluate them against its objectives and
then repeat the cycle.

Since EAST-ADL'’s core technical feature model on vehicle level
is used as the master encoding hierarchy in the prototype, an ordi-
nary feature configuration of this feature model, i.e., a selection
and deselection of its features, can be used to represent a model
encoding.

As mentioned above, the optimisation engine also requires the
optimisation parameters, which specify the goals of the process
and the objectives to evaluate. So for example, an optimisation
may be initiated to minimise cost, maximise reliability, maximise
processing slack, and minimise response times; alternatively, we
may only be interested in minimising cost and maximising safety.
Constraints can also be provided (e.g. minimum safety require-
ments, maximum cost etc.), although the optimisation engine will
not necessarily treat these as hard limits during the optimisation
process itself.

3.2.3. Variability Resolution Mechanism (VRM)

The Variability Resolution Mechanism (VRM) is responsible for
taking the original, variant-rich EAST-ADL model and producing a
new model, with all variability resolved, according to the encod-
ing received from the optimisation engine. The basis for this step
is an EAST-ADL model with variability defined. For this purpose,
standard EAST-ADL variability modelling techniques, as described
in Section 2.2, can be employed.

The encoding is used by the VRM to configure the model;
essentially it produces a copy of the original model in which any
unused optional structural elements (e.g. optional subfunctions,
connectors, ports) are removed and selected optional elements are
retained (i.e. they are no longer marked as optional). The resultis a
fully resolved model in which all variation points have been replaced
by the correct variant according to the configuration defined by
the encoding. This model can then be subjected to analysis for the
purposes of evaluation.

As the master encoding hierarchy is represented by EAST-ADL’s
vehicle-level technical feature model and the model encodings
are represented by ordinary feature configurations thereof (as
explained above), we were able to employ standard EAST-ADL
variability resolution mechanisms when implementing the VRM
in the prototype. This way, the ordinary EAST-ADL variability man-
agement techniques can be used very effectively for optimisation
purposes.

The consistency of the resolved model lies within the responsi-
bility of the standard EAST-ADL variability support. With respect
to structural variability, i.e. optional structural elements, EAST-
ADL requires the modeller to either define the optional elements
such that all permutations of the optional elements are valid or
to define constraints on their selection and deselection (as part
of the EAST-ADL model). In addition, several implicit dependency
rules are provided in EAST-ADL to avoid the need for user-defined
constraints in most standard cases. For example, if a subfunction

is defined to be optional, all connectors to/from this subfunction
within the containing function as well as related ports of the con-
taining function are automatically marked as implicit optional.

3.2.4. Analysis wrappers

The analysis tools are responsible for analysing the model
according to the objectives given to the optimisation engine. In
principle there is a separate analysis for each objective, although
in practical terms these analyses could be carried out by the same
tool or as part of the same process (for example, HiP-HOPS will
analyse safety, unavailability, and optionally a simple cost metric
all as part of the same process). The results of the analysis/analyses
are then fed back to the optimisation engine, which uses them to
decide whether or not to retain that candidate model.

Access to each analysis tool is provided by a particular analysis
wrapper, currently implemented as Eclipse plugins in our current
optimisation environment. This helps ensure that there is a com-
mon interface for each objective/analysis so that the optimisation
engine does not need to know the specific call procedure for each
tool. In some cases, the plugin itself may carry out the analysis (e.g.
for custom cost analyses); in other cases, it typically performs a
model transformation on the fully resolved EAST-ADL model and
passes it to an external tool (e.g. HiP-HOPS or MAST) for analysis.
When external tools are involved, the plugin also needs to retrieve
the results and return them to the optimisation engine. The result
of the analysis is provided as a fitness value decided by the plugin
(one value per objective); the rest of the optimisation engine does
not need to know what this means, only whether it should be
attempting to minimise or maximise the value. The abstraction
layer provided by the analysis plugins also makes it possible to
quickly extend the tool architecture with new objectives, e.g. anal-
yses for energy consumption, weight, temperature, cable length, or
any other analysable attribute for which a compatible tool exists.
However, our prototype architecture is not yet at a stage where we
have a fully defined API available to third party developers.

3.2.5. Product line optimisation

Variability in EAST-ADL was originally included to help cater for
different product lines that may have different sets of features but
share an overall commonality of architecture. It is hoped that the
optimisation process can be extended to work with not just a single
member of a product line, but all members of a product line simul-
taneously. Because product lines are already represented by the
same sort of variability techniques used to define the design space
for optimisation, it should be possible to include both optimisation
and product line variability in the same model (with the two forms
of variability distinguished by the binding time for each variation),
and exhaustively analyse the variants of the product line as part
of the overall optimisation loop (shown as “Product Line Loop” in
Fig. 7).

The process would involve resolution of optimisation variabil-
ity as normal by the VRM to create a product line according to the
encoding provided by the optimisation engine. The VRM would
then enumerate each of the variants of the product line in a sec-
ond step, resolving them fully so that they could then be evaluated
by the analysis plugins. The major complication is that analysing an
entire product line is different to analysing a single product; each
analysis tool would likely only analyse one product at a time, mean-
ing that the analysis plugins would have to iterate over the product
line and combine the results in some form. Whilst in some cases
this may only involve a simple summation of the individual results,
in other cases the result involves a more complex calculation that
would have to be carried out by the wrapper itself for the whole
product line. For example, cost may be determined by the sum of
each piece cost multiplied by the piece count for that piece (where
the number of pieces is potentially different for each product as
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well as each design candidate), whereas for something like safety,
the wrapper may simply use a maximum unavailability value as its
result instead. This would have to be determined on a case-by-case
basis, as each analysis would have different semantics and would
require different calculations. The proposed architecture, with the
dedicated analysis wrappers for each kind of analysis, should allow
different aggregation strategies depending on the specific needs of
the analysis (e.g. whether the resultis a sum, a product, a maximum,
or a minimum etc.).

Product line optimisation is still being investigated in the MAE-
NAD project and is intended to be undertaken after work on the
standard architectural optimisation process is complete. However,
the tool architecture is being developed in such a way that it can
support the future extension to product line optimisation with min-
imum impact.

3.2.6. Optimisation results

When the optimisation process finishes (e.g. because it meets
its time limit, or because no progress has been made for X number
of iterations, or because the user manually stops the process etc.),
it will output the Pareto set of all optimal encodings it has found
so far, together with the evaluation results for each objective. Ulti-
mately this would probably be presented to the user in the form of
a selection dialogue; when the user selects a particular encoding
(and set of evaluation results), the VRM can take that encoding and
provide the user with the resolved model in question. This avoids
the need to store all of the optimal models themselves. Currently
the Pareto set is simply stored as a set of XML-based model encod-
ings, together with their analysis results. The configured model can
still be obtained by manually providing the VRM with the chosen
encoding.

3.2.7. Realisation of interfaces

There are three types of technical realisations for the interfaces
between the above components in our current prototype: pure Java
interfaces, Eclipse extension points and file-based data exchange
with external tools. The OSDM, COE and VRM are all implemented
in Java, so currently we use plain Java interfaces between these.
While some analyses are implemented as external, non-Java tools,
all analyses must be represented in Java at least with a thin wrap-
per in the form of a Java class. The actual communication with the
analysis is the responsibility of this wrapper and its implementa-
tion depends on the implementation of the analysis: file-based in
the case of external tools, e.g. HiP-HOPS, or plain Java in case of a
Java-implemented analysis, e.g. cost analysis.

Even though all analysis wrappers are thus implemented in Java,
the interface to these analysis wrappers is not plain Java. Instead,
the Eclipse plug-in mechanism based on Eclipse extension points
is employed here, which makes this interface extremely flexible. In
fact, this will allow analysis wrappers to be provided and installed
by third parties without having to recompile any other part of the
optimisation architecture. Analysis wrappers and thus additional
analyses can be installed by an end user as ordinary Eclipse plug-
ins using the standard Eclipse plug-in installation procedure. This
plug-in interface for analysis wrappers is already present in the
current prototype, but we are also considering using such a plug-
in interface between OSDM, COE and VRM in the future, which
would allow us to replace even these components with custom
implementations.

4. Case study
4.1. Example model

In this section, a prototype version of the tool architecture
described in Section 3.2 has been applied to a simple example

to illustrate the benefits of the method. A more complex case
study is currently being performed on a braking system, but a
simpler example was considered more appropriate for showing
the mechanics of the analysis and optimisation. The example
demonstrates the ability to perform a multi-objective optimisa-
tion, involving multiple analysis functions, on an EAST-ADL model.
In particular, it was deemed important to have a model that:

e Featured multiple perspectives, e.g. separate functional and hard-
ware architectures in the EAST-ADL model. This allows allocation
relationships between the different perspectives to be modelled
as part of the optimisation and enables a meaningful timing anal-
ysis to take place, as well as testing the ability of the dependability
analysis to model propagation of failures from one perspective to
another.

Featured variability to help define the size and scope of the design
space. Variability in this regard came in three forms: the ability
to have different implementations of a component/function with
different characteristics, the ability to have different hierarchical
architectures (i.e., different subsystems/subcomponents), and as
mentioned above, variable allocation relationships. These vari-
ability constructs would then define and control the scope of the
optimisation.

Featured timing information to allow a timing analysis to take
place and enable optimisation with schedulability as one objec-
tive. Because of difficulties in linking to the timing analysis tool
(MAST in this case) from the optimisation engine, we analysed
the timing characteristics for each option and enabled the opti-
misation engine to use these previously calculated values directly
as its timing evaluation function.

The result was a generic multi-perspective model involving sen-
sors, processors/processing functions, and actuators that could be
an example of a braking system, cruise control system, or many
other automotive systems. It would take input from sensors, per-
form some calculations based on that input, and deliver some
output instructions to an actuator as a result.

The overall system is visualised in an abstract fashion in Fig. 8.

The functional layer contains six functions targeted for software
implementation and two hardware functions. Input comes from
the “sensor” transfer function and is fed to a pair of local device
manager functions which manage the sensor by converting the
measured electrical input values into the corresponding physical
measure, i.e. the inverse of the sensor’s transfer function. Qutput
is delivered by an abstract “actuator” function (which could for
example be a vehicle brake actuator); like the sensor, it has two
parallel local device managers (LDMs) which convert the intended
physical output to a corresponding electrical signal appropriate for
the actuator. For both sensor and actuator, we have omitted func-
tions reflecting electrical components and low level software to
keep down complexity.

The actuator function is the overall output of the system—a
problem with the output of this function results in a system error
of some kind. In between are two control functions connected in
series; these are control functions that interpret the input sensor
dataand processit to provide correct output commands to the actu-
ator. These functions perform the main ‘work’ of the system and are
both more complex software functions than the others.

All eight functions need to be allocated to one of the four
hardware components, shown at the bottom in the hardware
layer. The abstract sensor and actuator functions are assumed
to represent the function of the physical sensor and actuator
components, but the other functions (the LDMs, Function1, and
Function2) are allocated to one of two parallel ECUs (Electronic
Control Units). These ECUs are connected together as well, allow-
ing communication from one ECU to another. The dual LDMs are
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Fig. 8. The example optimisation system.

required to be allocated to different ECUs (to ensure redundancy),
but the two control functions can be allocated freely.

Furthermore, each function can have one of two different imple-
mentations or variants, represented as different subsystems. The
first implementation is a single function that offers no redundancy
and performs all the work itself; the second implementation uses
two functions, a standby and a primary, so that if the primary fails,
the standby is able to take over operation, adding some redun-
dancy to the function. It is possible for the primary and standby
sub-functions to be allocated to separate ECUs.

4.1.1. Error modelling

There are two main channels for fault propagation in the model,
as modelled by the EAST-ADL error model for the system. The first
is through the hardware (in the HDA), so a failure of the sensor will
propagate to ECU1 and ECU2, and any failure of an ECU (whether
internal or a failure propagated from the sensor) will in turn prop-
agate to the Actuator. The ECUs may also propagate failures to each
other as well. Furthermore, a failure of any of these components will
lead to the failure (omission) of any software functions allocated to
them; in the case of the Actuator, this means that any propagated
hardware failure will in turn propagate to the ActuatorFunction and
thus cause system failure.

The failure logic of the hardware architecture (in HiP-HOPS fail-
ure expression format, relating component output failure on the left
to combinations of internal failure modes and errors at the input)
is shown below:

Error-Sensor.Out = SensorFailure
Error-Sensor.Allocated = SensorFailure
Omission-ECUL.Out = Error-ECUl.In OR ECUlFailure
Omission-ECUl.Allocated = Error-ECUl.In OR ECUlFailure
Omission-ECU2.0ut = Error-ECU2.In OR ECU2Failure
Omission-ECU2.Allocated = Error-ECU2.In OR ECU2Failure
Omission-Actuator.Allocated = Omission-Actuator.In OR
ActuatorFailure

The first part of the each name (before the dash) is the failure
class; in this example, only omissions are being modelled. On
the right is the name of the port where the failure occurs, in
component.port format. When the port name is “Allocated”, it rep-
resents a failure propagated to anything allocated to the current
component. Names without dashes (e.g. SensorFailure) represent

abstract internal failure modes of the component. These internal
failure modes are defined separately with appropriate failure
rates.

Thus for example an error in the output from the sensor is caused
by an internal failure of the sensor (“SensorFailure”), and similarly
a fault propagated along the allocation link to the hosted software
is also caused by a SensorFailure. For the ECUs and Actuator, the
logic is more complex, as either type of output failure (propagation
via hardware and via allocation) can be caused by either an error
received at the input or by an internal failure mode.

In the FDA, we can generally either assume that no internal fail-
ures occur or alternatively that internal failures are possible, but
with fairly abstract failure rates (e.g. discrete failure rate classi-
fications determined solely by ASIL). In this case, abstract failure
rates were applied. As with the hardware, failures propagate from
SensorFunction through the SensorLDMs, on to Function1 and
Function2, and then to the ActuatorLDMs and eventually Actu-
atorFunction (the system output). Because each pair of LDMs
are redundant, both LDMs must fail to cause a later omis-
sion. In addition, failures propagated from hardware will also
enter this channel of propagation, e.g. a failure of the hardware
Sensor will cause an omission of output from the SensorFunc-
tion.

The failure logic of the functional architecture is as follows:

Omission-SensorFunction.Out = FromAllocation(Error) OR
SensorFunctionFailure
Omission-SensorLDM.Out = FromAllocation(Omission) OR
SensorLDMFailure OR
Omission-SensorLDM.In
Omission-ActuatorLDM.Out = FromAllocation(Omission) OR
ActuatorLDMFailure OR
Omission-ActuatorLDM.In
Omission-ActuatorFunction.Out = FromAllocation(Omission) OR
ActuatorFunctionFailure OR
(Omission-ActuatorFunction.Inl
AND
Omission-ActuatorFunction.In2)

The “FromAllocation(<failure class>)” construct indicates faults
propagated via the allocation links from the hardware components.
Thus an omission failure of the Actuator Function’s output is caused
by either an internal failure mode, an omission of input to the
Actuator Function, or a failure propagated from hardware.
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The failure logic for the single Functions implementation are
simply:

Omission-Functionl.Out = FromAllocation(Omission) OR
SingleFailure OR
Omission-Functionl.In

Omission-Function2.Out = FromAllocation(Omission) OR
SingleFailure OR
Omission-Function2.In

In other words, the single software Function can fail because of
internal fault, propagated hardware failure, or omission of input in
the functional layer.

For the primary/standby, it is:

Omission-Functionl.Out = Omission-Primary.Out AND
Omission-Standby.Out

Omission-Function2.Out = Omission-Primary.Out AND
Omission-Standby.Out

Omission-Primaryl.Out = (Omission-Primary.Inl AND
Omission-Primary.In2) OR
FromAllocation(Omission) OR
PrimaryFailure

Omission-Primary2.0ut Omission-Primary.In OR
FromAllocation(Omission) OR
PrimaryFailure
Omission-Standbyl.Out = Omission-Standby.Monitor AND
((Omission-Standby.Inl AND
Omission-Standby.In2) OR
StandbyFailure OR
FromAllocation (Omission))

Omission-Standby?2.0ut Omission-Standby.Monitor AND

(Omission-Standby.In OR
StandbyFailure OR
FromAllocation (Omission))

Thus an omission of the whole Function is caused by an omis-
sion of both primary and standby subfunctions, which in turn can be
caused only by an omission of input(s) to the function or combina-
tions of failures propagated from hardware or software or internal
failure modes.

After transforming the error model of the fully resolved system
model provided by the optimisation engine, HiP-HOPS can take this
information and analyse the propagation of failures through the
system via a fault tree analysis (FTA). The primary outcomes of the
FTA are the minimal cut sets (showing the set of root causes of
the system failures—in this case, omission of actuator output) and
an estimate of the unavailability of the system (i.e., the probability
that the system will be unavailable at any given time).

4.1.2. Cost

For cost analysis, we have so far developed a simple cost analysis
wrapper that uses a basic cost metric: each element of the system
is assigned an abstract cost value, and the cost analysis wrapper
is able to sum the constituent elements of each design candidate
to produce an overall cost value. More sophisticated cost analy-
sis schemes could also be implemented, particularly to take into
account the effect of product lines (e.g. a mass produced element
will provide efficiencies of scale and thus cost less than an element
which is produced in smaller quantities).

In this case study, all software functions were given a cost of
10; therefore, primary/standby implementations of Functions 1 and
2 had a total cost of 20, while everything else had a cost of 10.
Hardware components similarly had a cost of 10, except for the
faster implementations of ECU1 and ECU2, which have cost 15.

4.1.3. Timing modelling

To provide some scope for timing analysis, two different imple-
mentations of each ECU are available: a cheaper, less reliable,
slower ECU, and a faster, more reliable, but more expensive ECU.
The latter, ECU-B, has 4x the performance of ECU-A (the large dif-
ference was chosen to help show larger changes in the results).

At EAST-ADL level we have a nominal execution chain from
sensor to actuator. It is fed with a triggering event, in our case a Peri-
odicEvent of period 200 ms. Each function has an execution time,
in the form of a (min value, max value, unit). Function1 is (10 and
20 ms), Function2 (20 and 30 ms), and their replicas (e.g. Primary,
Standby) have the same properties. Whenever a primary/standby
scheme is used, an additional execution chain has to be considered
to include in the analysis possible delays due to the commu-
nication between the primary function and its replica and the
execution of the replica itself. Period for this execution chain is set
to 100 ms.

The controlled refinement towards a MARTE task model
analysable by MAST is then applied. We obtain a MARTE model in
which each execution chain is represented by an Activity diagram
(seeFig.9), called end-to-end flow. Here each task is represented by
a MARTE step. As depicted in Section 2.4, the controlled refinement
we apply on the EAST-ADL model allows obtaining one execution
step for each function. A dedicated task called “communication
step”, modelling usage of communication resources, is also used.
Communication steps occur when two functions allocated on dif-
ferent ECUs need to exchange data, e.g. between Function1 and
Function2 when these are on different ECUs. When Function1 and
Function2 are allocated on the same ECU, the communication step
functionl1.send() is removed. Each execution step inherits execu-
tion times from the function mapped into it. For communication
steps, communication time is set to (5 and 10ms). As for task
periods, all the steps in the same end-to-end flow have the same
period set to the period of the execution chain (200 ms for the
nomimal end-to-end flow and 100 for reconfigurations).

Priorities for steps are all set to the same value.

The schedulability analysis methods suitable for the example are
limited because of the distributed nature of the communication.
The objective evaluation functions are therefore focused on the
offset-based optimised analysis (Palencia and Gonzailez Harbour,
1998) provided by MAST. This takes into account the presence of
multiple tasks involved in different end-to-end flows (called trans-
actions in MAST) on the same ECU by adding offsets (extra delay
time) to the worst case execution time (WCET). The optimised ver-
sion also takes into account the order of the tasks, i.e., the WCET of
the steps are increased by the WCET of all concurrent steps except
for those which are known to occur beforehand.

The timing analysis results are given as slacks and response
times. Response times include both best case execution time (BCET)
and worst case execution time (WCET) in milliseconds (ms) for
all end-to-end flows involved in the configuration. Slacks are per-
centages which show how much more the system can be loaded
compared to the current timing requirements; for instance, 100%
would mean you can double the timing requirement and the sys-
tem should still be schedulable. In this example, the slacks provided
by MAST can be very high, as we chose large periods (200 ms for
the nominal activity and 100 ms for each of the reconfigurations) so
that all configurations would be schedulable. The worst case per-
formance occurs when everything is allocated on the same ECU and
the “slow” ECU version, ECU-A, is chosen.

It should be noted that thanks to the proposed controlled refine-
ment towards a MARTE task model, schedulability results given by
MAST represent a sufficient condition for the schedulability of the
EAST-ADL architecture.

4.1.4. Optimisation context

Having created a variability-rich EAST-ADL model containing
an error model to describe the failure propagation and a timing
model to represent the end-to-end flows, the optimisation param-
eters need to be defined. The objective functions and their goals in
the optimisation are as follows:
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Fig. 9. Nominal end-to-end flow depicting tasks chain.

e [Minimise unavailability]—Unavailability is measured by the
HiP-HOPS tool via a transformation of the error model. The opti-
misation process should seek to minimise it, i.e., reduce the
probability of failure. Since in this case there is only one output
failure, it can be considered proportional to safety as well.

e [Maximise slack]—As measured by the MAST timing analysis
results. The goal should be to maximise the cumulative slack, i.e.,
maximise overall system performance. In general this also results
in lower execution times and increased extensibility.

¢ [Minimise cost]—The cost is measured using a simple summation
by the HiP-HOPS tool and should be minimised.

All three of these goals conflict to some extent: for example,
using the more reliable primary/standby versions of the functions
increases ECU load (because two functions are running instead),
which also increases cost; similarly, using the faster ECUs also
increases cost.

In addition, the parameters of the optimisation process itself are
defined as follows:

e Each generation should produce 10 new individuals.

e The algorithm should be pure elitist, i.e., all dominated solutions
are removed from the population in each generation.

e The mutation rate (i.e. chance for an individual to have an
attribute randomly changed) is set at 5% for each generation.

¢ The optimisation should run for 100 generations, or stop early if
no new Pareto optimal solutions have been identified for the past
10 generations.

The overall goal is to obtain the set of Pareto solutions, i.e., the set
of system configurations that have superior attributes and which
are not dominated by any other solutions.

4.2. Results

After 10 runs, where each run was an average of 62 genera-
tions and took only a matter of seconds (due to the small size of
the model), the outcome of the optimisation is a set of 18 Pareto
optimal solutions. In practice, there are several configurations that
have the same fitness values for all objectives, e.g. there is no differ-
ence between allocating everything to ECU1 compared to allocating
everything to ECU2, assuming all else remains equal. These are still
included in the results because there may be other characteristics
that differentiate the solutions while not being part of the optimi-
sation. Consequently, there are in fact only 9 unique combinations
of attributes, due to the symmetry in the model.

The 18 solutions are listed in Table 1.

Each of these solutions has an associated encoding that uniquely
identifies it. The encoding for each of the solutions in the results
can be viewed graphically, e.g. the encoding for solution #1 is
shown below. This encoding can also be used to ‘configure’ the
original, variant-rich model by resolving the variability, allowing
the designer to see the actual model of that particular solution.
In the case of solution #1, the result is a relatively slow system
with very little slack and average unavailability, but at the lowest
possible cost. As seen in Fig. 10, this is due to the selection of the
slower, cheaper ECU (ECU-A, i.e., Implementation 1) for both ECUs,
and the use of the single function implementation rather than the
primary/standby implementation for both control functions.

By contrast, solution 17 represents both one of the most expen-
sive and one of the most reliable solutions. In this case, the most
expensive (and highest performance) ECUs were chosen, and pri-
mary/standby versions of both functions were used. To minimise
the unavailability, not only are the two functions distributed across
both ECUs, but so are their subfunctions, such that the two primary
subfunctions are on ECU1 and the two standby subfunctions are
on ECU2. This ensures that a failure of either ECU will still allow
the system to function, whereas allocating e.g. both subfunctions
of Function 1 to ECU1 and both subfunctions of Function 2 to ECU2
would not (this combination would result in the same cost and
similar slack, but considerably higher unavailability). Finally, the
highest system slack is provided by solutions 4 and 6; in these

Table 1
Pareto optimisation results.

Solution ID System slack (%) Unavailability Cost
1 183.59 0.002999 120
2 1036.7 0.002999 125
3 396.88 0.003996 120
4 1889.8 0.003996 130
5 396.88 0.003996 120
6 1889.8 0.003996 130
7 183.59 0.002999 120
8 1036.7 0.002999 125
9 695.31 0.002998 150

10 183.59 0.002001 145

11 396.88 0.002001 150

12 121.09 0.002001 140

13 467.97 0.002998 145

14 467.97 0.002998 145

15 121.09 0.002001 140

16 183.59 0.002001 145

17 396.88 0.002001 150

18 695.31 0.002998 150
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Fig. 10. Encoding for solution 1.

solutions, the high performance ECUs are chosen, but only the sin-
gle versions (no primary/standby) of Functions 1 and 2 are used;
each function is allocated to a different ECU, which means that the
processing load is both minimal and balanced across the two ECUs.

The results can be viewed in pairs as one objective against
another on a 2D chart (as seen in Figs. 11-13, with solutions
labelled). Due to the number of objectives, it is also possible to
visualise the Pareto solutions in 3 dimensions, as in Fig. 14.

Other timing metrics (e.g. worst-case execution time) can also
be used as additional optimisation objectives, and in fact in one
experiment we had 10 timing metrics in addition to cost and
unavailability; this resulted in 107 Pareto solutions, since with so
many objectives, it is less likely for any given solution to be domi-
nated in every objective.

It is clear that the optimisation process results in a set of opti-
mised candidate solutions, each representing a different optimal or
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Fig. 12. System slack vs cost.

near optimal trade-off among the parameters of the optimisation.
Choosing a single solution out of this set for further development
and implementation is essential and would require analysts to
examine the results closely in order to assess which solution best
meets requirements. Sorting the solutions in terms of their perfor-
mance in individual objectives, and prioritising the most important
objectives, can help with this process. In addition, constraints can
be set, which would eliminate any solutions that do not meet those
constraints. By sorting results in terms of unavailability and setting
a maximum cost, for instance, it would be possible to quickly see
the most reliable solutions for a given cost. Iterating this selection
process for other objectives will make it possible to further reduce
the set of candidate solutions and ultimately locate a single solu-
tion (or at least a smaller set of solutions) for further investigation
and possible further development.

In general, the above process is structured and very systematic
and helps to arrive at sound decisions about the architecture which
are informed by a set of essential analyses that can be considered
in a single framework of evaluation and optimisation. The example
we used to illustrate the method was kept simple to facilitate the
presentation of the method, but other applications of HiP-HOPS
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Fig. 13. System slack vs unavailability.



M. Walker et al. / The Journal of Systems and Software 86 (2013) 2467-2487 2485

150

144

138

Cost

132

126

TZ,S

3.5 400

- 800

System Slack (%)
0.0024 4200
0.0028

Unavailability 00052

0.0036

Fig. 14. Visualisation of the Pareto optimal solutions in 3D.

on optimisation (e.g. Adachi et al., 2011)—although not specific to
EAST-ADL—show that the underpinning optimisation algorithms
can be effective in larger scale.

5. Conclusion

In this paper, we have described how the model-based design
and analysis capabilities of the EAST-ADL language can be com-
bined with metaheuristic algorithms such as genetic algorithms
to allow automatic architectural optimisation to take place. In
particular, this is made possible through EAST-ADL'’s variability
semantics and its support for varied analysis techniques of differ-
ent quality attributes. Variability is used in EAST-ADL to express
optionality and consequent dependencies in the model, and has
been adapted here to express the architectural degrees of free-
dom that make up the overall optimisation design space. Three
example attributes—dependability, schedulability, and cost—have
so far been established as possible objectives (with associated anal-
ysis tool support) for evaluation of the candidate system designs
identified by the optimisation process, allowing a multi-objective
optimisation to take place.

The result is an optimisation concept and associated tool archi-
tecture design to allow for the automatic optimisation of EAST-ADL
system architectures according to multiple, potentially conflicting
objectives, which can be evaluated by means of heterogeneous
external tools. While there are other architectural optimisation
approachesin development (see Aleti et al. (2012) for a full review),
we believe that basing our optimisation technique on EAST-ADL, a
comprehensive ADL designed for use in the automotive domain that
offers anintegrated modelling and analysis solution across multiple
stages of the design process, offers significant advantages in terms
of consolidation and reuse of existing domain-specific information.
This can offer major benefits during the design of complex sys-
tem architectures, as the huge potential design space—which could
never effectively be fully investigated manually—can be easily
derived from existing system models augmented with established
variability semantics, and then rapidly explored by the optimisa-
tion algorithm. The benefits are amplified when there are multiple,
often conflicting objectives for the design (e.g. maximum safety

and performance for minimum cost), which are supported by
EAST-ADL’s analysis support. On a more general level, such opti-
misation capabilities are particularly useful where there is little
prior experience to inform the evolution of the design, as auto-
matic optimisation allows many different possible design decisions
to be rapidly experimented with and evaluated without the need
for expensive delays and redevelopments.

The optimisation concept itself is based on the use of genetic
algorithms (GAs), which mimic the behaviour of natural evolu-
tion. The algorithms themselves have already been successfully
applied in the context of HiP-HOPS models of automotive sys-
tems (Adachi et al.,, 2011), and similar genetic algorithms have
also been successfully applied in other architectural optimisation
approaches, e.g. AQOSA (Etemaadi and Chaudron, 2012) and Per-
Opteryx (Koziolek et al., 2011). In this paper we have repurposed
the HiP-HOPS optimisation concept for application to EAST-ADL
models and attributes, expanding beyond dependability to include
costand timing analysis as well. The ultimate aim would be to allow
optimisation with respect to any of the qualities in EAST-ADL that
can be analysed.

The design space is defined in the EAST-ADL model by means
of variability mechanisms, which express variability points in the
architecture—places where different implementations, replication
strategies, or allocations from software to hardware can be applied.
Each particular configuration of the system is represented by an
encoding, which indicates which options have been chosen (if
any) for each variability point by the genetic algorithm. Genetic
algorithms offer two main methods for this—crossover, which per-
petuates successful traits from previous generations, and mutation,
which introduces new traits and prevents stagnation of the popula-
tion. Multi-objective evaluation is provided by an analysis interface
based on tool plugins, which provide either local analysis capabil-
ities or link to external tools like HiP-HOPS or MAST via a model
transformation process. The results of the analyses are fed back
into the optimisation engine to evaluate each potential candidate,
enabling successful candidates to survive and unsuccessful ones to
be discarded.

The result of the process is a set of Pareto optimal solutions—
those which represent the best tradeoffs between the multiple
objectives found so far. Each of these is stored as an encoding
and associated analysis results, so that the designers can choose a
promising set of attribute characteristics (e.g. high safety, good per-
formance, low cost) and use the encoding to configure the original
model to obtain that particular solution.

The ‘glue’ that makes all of this possible is the use of an
ADL—specifically, EAST-ADL—to model the architecture and store
all of the associated functional and non-functional attributes and
requirements in a consistent, organised fashion. By acting as a cen-
tralised repository of information about the system and providing
a means to define architectural choices as part of the model via
its variability mechanisms, EAST-ADL makes it possible to define
the design space and, by providing access to the specific infor-
mation needed by each objective evaluation function, explore the
design space successfully by analysing potential new candidates
and evolving them according to its heuristics.

Thus one of the contributions of this paper in regard to auto-
mated architecture optimisation is related to the formalisation
of system parameters and quality/objective functions. EAST-ADL
represents a domain-specific approach to a formalised system
description. The language provides an enabling technology for cap-
turing various quality concerns as well as the design parameters in
a consolidated architecture model and thereby for allowing auto-
mated design space exploration, quality assessment, and variability
management.

We applied the concept to a small example to demonstrate how
the principles can be applied in practice. The model featured a mix
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of challenging characteristics, including a mixture of modelling per-
spectives (separate hardware and software layers, separate nomi-
nal and error models), the use of different variability constructs to
represent different forms of architectural choices (including substi-
tution, replication, and allocation), and the inclusion of information
in the same model to allow both timing and dependability analyses.

The results demonstrate, even on a small scale, how useful this
conceptcanbe. It produced a set of different design candidates, each
representing a different tradeoff between the three main objec-
tives considered (cost, unavailability, and processing slack) and
presenting them to the designer in an accessible way. If this was
used as part of an overall iterative design approach, the system
designers could apply the optimisation to investigate which options
are available to them, choose the solution that suits their require-
ments most closely, and use that as the basis for the next iteration of
the system design. This could be done much more rapidly and effi-
ciently than a manual approach, as many more possibilities can be
examined by the optimisation algorithm. Even in this small exam-
ple, 18 different optimal solutions were identified and many more
non-optimal ones discarded.

Although our results so far have been encouraging, we plan to
carry out considerable further work. As part of the MAENAD project,
we are currently working on a larger optimisation case study based
on a brake-by-wire system, which will demonstrate the full capa-
bilities of the optimisation tool architecture. Furthermore, we also
hope to extend the optimisation to be able to work with entire
product lines at once. This would mean optimising not just a single
model, but a range of models. For example, while a given architec-
tural choice may make sense when dealing with just one model,
that same choice may have different implications for other models
in the same product line, perhaps making them uneconomical or
resulting in them failing to satisfy their requirements. This involves
developing a much more sophisticated cost analysis algorithm but
would result in a powerful new capability that could be of great
benefit to e.g. the automotive industry.

Another promising area worthy of investigation is the inclusion
of ASIL (Automotive Safety Integrity Levels) allocation and decom-
position as part of the optimisation process. This would mean the
optimisation algorithm would not only experiment with differ-
ent architectural choices to meet a given set of requirements and
objectives, but it could even experiment with how those require-
ments are applied. Early work into the automatic allocation of ASILs
(Papadopoulos et al.,2010) and initial experiments in using optimi-
sation algorithms to perform this allocation have yielded promising
results so far, although integrating this into the wider architectural
optimisation process may still pose significant challenges.

Judging from the growing body of work on architectural optimi-
sation, as well as from our investigations, it is clear that automatic
optimisation of system architectures, particularly when modelled
using an ADL to centralise all of the information about those sys-
tems, could offer significant benefits for the design of complex
modern systems. We believe the potential advantages presented
by the conjunction of these technologies have only just begun to be
explored.
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