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Assessing the Reliability, Validity and Acceptance of a 
Classification Scheme of Usability Problems (CUP)  

 

The aim of this study was to evaluate the Classification of Usability Problems (CUP) scheme. The goal of CUP is 

to classify usability problems further to give user interface developers better feedback to improve their 

understanding of usability problems, help them manage usability maintenance, enable them to find effective fixes 

for UP, and prevent such problems from reoccurring in the future.  First, reliability was evaluated with raters of 

different levels of expertise and experience in using CUP. Second, acceptability was assessed with a 

questionnaire. Third, validity was assessed by developers in two field studies. An analytical comparison was also 

made to three other classification schemes. CUP reliability results indicated that the expertise and experience of 

raters are critical factors for assessing reliability consistently, especially for the more complex attributes. Validity 

analysis results showed that tools used by developers must be tailored to their working framework, knowledge 

and maturity. The acceptability study showed that practitioners are concerned with the effort spent in applying 

any tool. To understand developers’ work and the implications of this study two theories are presented for 

understanding and prioritising UP. For applying classification schemes, the implications of this study are that 

training and context are needed.   

 
 

 
 

 

 

1. INTRODUCTION  

Discovering usability problems (UP) is insufficient: we must be able to explain them (Wixon, 2003), i.e. what 

they involve, what causes them and how they are fixed. Human-computer interaction (HCI) researchers and 

practitioners have long tried to build a link between a problem and its design, recognising that a problem is not 

rooted in a static design but in the dynamic interaction that occurs between a user and the user interface design. 

The motivations for analysing problem characteristics can be several: (i) To understand the nature of the 

problem, including what has gone wrong in the interaction, or what the deviation from the intention has incurred; 

(ii) To find relations between problems, such as identifying generalised patterns or types (e.g., a local fix solving 

only the symptoms vs. global findings of underlying causes cutting across products (Dumas, 2002) or 

aggregating several problems into one problem scenario (e.g., SUPEX (Lavery et al., 1997))); (iii) To understand 

a problem’s characteristics, such as its effects on the user, and to make the problem analysis valid, as in not 

reporting problems that are false alarms. The ultimate goal is to see whether analysis of these problem 

characteristics and their relations to interactions can guide designers to devise and implement new designs that 

fix problems (Hornbæk, 2010).  

 

Classifying usability problems according to characteristics is not an end itself but a means to enhance the 

understandability of UP, enabling developers and designers to prioritise them correctly (i.e. high priority UP are 

corrected first) and inspiring them to form redesign ideas. It has been suggested that researchers should look at 

how problem prioritisation is done in practice (Hornbæk, 2010), as the matter has not been getting enough 

attention in the HCI field.  Several studies have been conducted to investigate the relationship between 

prioritisation and severity (Hassenzahl, 2000; Hertzum, 2006) but the findings are inconsistent.  Two issues that 

make severity a difficult parameter to assess and apply are the evaluator effect (Hertzum and Jacobsen, 2001) 

and the vague persuasiveness of this parameter given its seemingly arbitrary nature. Other influencing factors on 

prioritisation include managerial conflicts, budgetary constraints, frequency of problems, location of problems 
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and technical skills. Determining which UP to fix is a challenging issue (Bruun and Stage, 2012), but deciding 

how to fix them can be even harder. The generic topic of revisions has not received enough attention, and little is 

known about how evaluation results are interpreted and translated into revisions (De Jong and Schellens, 2000). 

Basically, redesign can either be symptomatic or non-symptomatic, with the former being triggered by problem 

fixing and the latter by new requirements.  According to Wixon (2003) view that usability evaluation should not 

cease at the point of identifying UP but extend to include fixing UP, redesign proposals are deemed significant 

evaluation outcomes (Andre et al., 2003; Hornbæk and Stage, 2006). Describing UP is necessary but not 

sufficient for coming up with viable redesign proposals; more relevant would be providing a development team 

with accurate information about underlying UP causes.  

 

Besides the motivations of making the tasks of understanding and prioritisation problems easier, and redesign, 

another motivation for developing classification schemes is improving the development process. Though the 

software engineering community has mostly addressed this issue (Dyba, 2005), there is evidence that HCI 

practitioners are well aware that applying analysis, design or evaluation methods can impact the development 

process. A survey of practitioners (168 responses) asked to identify the three most significant outcomes of 

methods revealed that 44% of the respondents rated impact on the development process as an important outcome 

of a method, landing in sixth place after such factors as customer satisfaction, new design suggestions, usability 

of the system, new understanding of users, and identification of usability problems, which came in first place 

(69%) (Bark et al., 2005).  

 

The topic of classification schemes has been researched in the software engineering community. In a systematic 

literature review of papers that researched software requirement errors (Walia and Carver, 2009), the authors 

identified nine schemes that use error information to improve software quality.  However, no scheme is  tailored 

specifically to UP. The above motivations have driven us to develop a scheme targeting UP. This scheme, 

entitled “Classification of Usability Problems” (CUP), has the following main goal: 

Classify usability problems (UP) further to give developers better feedback to improve their understanding of 

these problems, help them manage usability maintenance, enable them to find effective fixes for UP, and prevent 

such problems from reoccurring in the future. 

 

To systematically evaluate the effectiveness of CUP-informed redesigns, the evaluation of design-change 

effectiveness is important (John and Marks, 1997), i.e. the effectiveness with which the resolution of a usability 

problem (UP) is implemented (downstream utility). This  is an under-researched area (Law, 2006).  The 

psychology of developers, despite a half-century attempt to bring psychological paradigms to bear on software 

engineering (Curtis, 1984), remains not well understood, including such areas as how developers integrate 

multifarious information (e.g., usability evaluation outcomes, corporate guidelines, timeframe) to draw up a 

problem fixing plan (cf. theoretical models for decision-making (Patel et al., 2002) and information integration 

(e.g., (Anderson, 1996)) and how they associate low-level coding data with high-level redesign solutions (cf. the 

viscosity of cognitive dimensions (Green, 2006)).   Methodologically, experimental psychology lab-based 

paradigms seem inapplicable, as the design process is highly situated, intertwining with a cluster of personal, 
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social, technical and organisational factors.  In the ensuing text, we further explore the role of CUP in the 

complex issues of prioritization and redesign. 

 

The validity and reliability of methods have been a concern in the HCI discipline for decades (De Jong and 

Schellens, 2000; Wenger and Spyridakis, 1989), but these characteristics are unfortunately all too seldom 

evaluated. The reliability analysis conducted in this research study aimed to learn whether analysts can agree 

while using the classification scheme, what their performance depends on and, if they do not agree, how the 

scheme can be improved. As with any tool provided for development, we must probe applicants on their 

acceptance of the tool. In the acceptance study, we asked participants about the scheme’s ease of use and 

usefulness and their intention to use the scheme further. Though such studies have not been performed on defect 

classification schemes (see below), they are now considered relevant measures of developers’ motivations 

(Baddoo and Hall, 2002) and software process improvement adoption (Green et al., 2005). A method's validity 

concerns whether it measures what it is intended to measure (De Jong and Schellens, 2000) or observe. As an 

example, if our aim was that the CUP scheme be able to measure problem understanding or prioritisation, we 

would want to know if there was a match between those concepts and the variables constructed for CUP. While 

other papers have evaluated “predictive validity” (De Jong and Schellens, 2000), where one method is compared 

to another, often in a laboratory setting, we were more interested in how well the developers found the metrics 

represented real-world activities. As a part of the validity analysis, we constructed a theory of what variables can 

support two activities, namely understanding usability problems and prioritising the usability problems to fix. 

Therefore, this paper goes beyond mere observation of the developers’ understanding and prioritisation of 

usability problems by trying to understand why they work the way they do and how (Hannay et al., 2007). 

Building a theory of what influences developers’ tasks allows us to form a foundation to further validate the 

conclusions and compare them to analogous theories in software engineering and related design disciplines.  

 

Three main rationales underlie the current work: (1) to expand the scale and scope of studying the reliability of 

the CUP classification scheme with usability practitioners of different expertise levels in applying CUP and 

domain knowledge, (2) to assess the acceptability of CUP among its users, and (3) to establish the validity of 

CUP by assessing its usefulness during the redesign of two systems of interest. The above aims were addressed 

by studying the development of user interfaces of two systems, LMS (Learning Management System) and HS 

(Hydrology Recording System). This paper is organised as follows. In section two, CUP is compared with other 

classification schemes.  Section three contains a description of CUP and its development and includes the 

research questions based on the three rationales introduced above. Section four describes the research 

methodology in detail. Section five presents the results of the study. Finally, section six of the paper discusses 

implications drawn from this research study on the scheme’s improvements and the downstream utility of CUP.  

 
2. CLASSIFICATION SCHEMES 

Hvannberg and Law (2003) developed the CUP scheme. The basic justification behind the creation of CUP is 

that defects (i.e. a list of usability problems) identified in usability tests greatly enhance product quality and 

process improvement if precise and concrete information about these defects can be presented to the 

development team. Freimut (2001) proposed the structure of a Defect Classification System (DCS) which 

inspired CUP development. Other DCSs were also used as reference frameworks, including those found in 
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(Card, 1998), Chillarege et al. (1992), Grady (1992), Leszak et al. (2000) and Mays et al. (1990). Hvannberg and 

Law (2003) adjusted the granularity of existing attributes and their subsuming values and created new values to 

meet the needs of user interface developers. Attributes from other DCSs are not relevant because, in principle, 

when usability problems (UP) are classified, the evaluators as usability engineers do not necessarily have access 

to the source code of the interface.  

 

To better understand the basis of CUP and its distinction from other DCSs, three DCSs were selected for 

comparison: Orthogonal Defect Classification (ODC) (Chillarege et al., 1992; Freimut, 2001), Root Cause 

Defect Analysis (RCA) (Leszak et al., 2000; Leszak et al., 2002) and User Action Framework (UAF) (Andre et 

al., 2001). These three schemes were selected because we believe they have most relevance to CUP. 

Furthermore, ODC and RCA have been heavily cited and UAF was selected because it has been specifically 

designed for problems found in user interfaces.  

 

Before we describe the comparison of the four DCS, we will explicate how the literature review was performed. 

We searched for citations to the original papers describing the schemes in Web of Science® and Google Scholar, 

and only looked at journal and conference publications. Papers found in Web of Science® were loaded into 

EndNote, a reference manager, where we searched in abstracts for the keywords reliability, repeatability, 

validity, case study and the name of the scheme. The search within Google Scholar was different in that after 

receiving a set of cited papers of the original publication of the scheme, the keywords search was applied to the 

whole document. Regardless of the portal, the abstracts of the resulting set were read, and papers, thus indicating 

evaluation of reliability or validity were selected for reading.  Table 1 contains a comparison of these four DCSs 

with respect to ten factors, providing an overview of the classification schemes and identifying their 

commonalities and differences.  A central, common factor is that three of the four schemes have not been 

assessed formally for validity. However, the current CUP study attempts to do so, as described in Section 5.3 

“Validity Analysis”. Although validity has not been formally evaluated for the schemes, several case studies 

have been reported on the use of the schemes. ODC’s successful use has been reported in a number of papers, 

e.g. (Bassin et al., 2002; Bhandari et al., 1993; Butcher et al., 2002; Gupta et al., 2009; Hamill and Goseva-

Popstojanova, 2009; Lutz and Mikulski, 2004; Shenvi, 2009). 

 

Among the four schemes, reliability has been systematically evaluated for CUP and UAF and partly for RCA. 

Stochel (2011) conducted a study of the agreement between evaluators using RCA and between an evaluator and 

a benchmark, which was played by either the person who fixed the fault or the technical lead. Six evaluators 

assessed 20 defects using three attributes, process root cause, screen failure and engineering type. The current 

study aims to evaluate CUP’s reliability more extensively, as described in Section 5.1 “Reliability Analysis”.  

 

None of the schemes has been evaluated for user acceptance. All schemes, except CUP, estimated the mean 

effort for applying the scheme. We view this as a fundamental dimension, which the current study aims to 

estimate. 
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A few case studies have been reported on Root Cause Analysis, e.g. Ghazarian (2009) conducted a study of how 

defects are introduced into software. Interestingly, the study found 449 defects and concluded that 8% of the 

defects examined in the user interface component can be traced back to inconsistencies in the user interface. 

Case studies of UAF include one by Mentis and Gray (2003), who classified problems according to the four 

phases of UAF, i.e. planning, translation, physical action, outcome and assesment. In addition, Khajouei et al. 

(2011a) have compared the results of two evaluation methods against the same four stages of UAF. Furthermore, 

the method has been extended with severity and impact to enable better understanding of the problem, its 

prioritization and redesign (Khajouei et al., 2011b). Chattratichart and Lindgaard (2008) compared two heuristics 

evaluation methods using UAF, similar to the work of Mentis and Gay (2003) but using the whole framework.  
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Table 1. Comparison of Four Defect Classification Schemes (DCSs) 

DCS 
 

Comparison criteria a 

Classification of Usability Problems (CUP) 
(Hvannberg and Law, 2003) 

Orthogonal Defect Classification (ODC) 
(Chillarege et al., 1992) 

Root Cause Defect Analysis (RCA) 
(Leszak et al., 2002) 

User Action Framework (UAF) 
(Andre et al., 2003) 

1.Goal  Classify UP in order to give developers 
better and constructive feedback on how to 

correct the defects found in usability 

evaluation 

Provide feedback on all the development 
lifecycle, measure the effectiveness of a 

verification stage and find the reason a 

defect surfaced. 

Find systematic root causes of defects. 
Reduce number of critical defects and 

reduce work cost by proposing 

improvement actions 

Guide interaction development activities 
and facilitate high quality UP reporting 

2. Structure & Attributes 11 attributes, 7 of which have pre-defined 
values(*): 

Defect ID 
Description 

Defect Detection Activity 

Trigger 
Impact 

Failure Qualifier* 

Expected Phase* 
Actual Phase* 

Type of Fault Removed  

Cause* 
Error Prevention 

8 attributes, all of which have pre-
defined values: 

Activity 
Trigger 

Impact 

Target 
Source 

Age 

Defect Type 
Defect Qualifier 

6 attributes, 4 of which have pre-defined 
values (*): 

Phase Detection* 
Real Defect Classification* 

Defect Nature* 

Real Defect Location 
Defect Triggers 

Barrier Analysis 

It uses a hierarchically structured 
knowledge base with 6 base levels. The 

flattened structure has more than 150 
end-node descriptions. Each node 

represents a usability attribute. The path 

from the root to a specific node is an 
encoded representation of a problem 

type and its causes. 

3. Users  Developers, usability experts Developers Developers Usability Experts 

4. Development lifecycle phase  After usability evaluation Throughout the systems  development 

lifecycle 

Throughout the systems  development 

lifecycle 

Throughout the systems  development 

lifecycle 

5. Proportion of problems  that 
the scheme was applied to in the 

case study 

Two CUP analysts applied CUP to all the 
UP that were found: 39 UP in user tests and 

52 UP in Heuristic Evaluation. 

Applied to all the defects found by the 
technical team  including developers, 

testers, and service personnel 

20-40% of the total modification requests 
(MRs) were analysed by an analyst and 

the authors 

Ten evaluators analysed 15 out of over 
100 UP case descriptions in a database  

6. Resources expended Not stated in the study Not stated in the study The mean time spent on analysing a 
modification defect was 19 minutes 

All the evaluators viewed a 20-minute 
tutorial on UAF. None of the evaluators 

took more than 90 minutes to classify 

the 15 UP descriptions.  

7. Process Automation Not available Unclear Fully automated web interface tool Fully automated 

8. Reliability Inter-evaluator kappa between two 

evaluators  

Not addressed  For a few variables, evaluations were 

compared to a standard (i.e. a technical 

lead or a developer fixing the fault), in 
Stochel, 2011  

Multi-evaluator kappa among ten 

evaluators 

9. Validity Not addressed   

Successful results of applying ODC in 
different projects have been reported e.g. 

see next line. 

Not addressed Not addressed 

10. Relevant case studies of the  (Bassin et al., 2002; Bhandari et al., (Ghazarian, 2009) (Chattratichart and Lindgaard, 2008) 
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schemes 1993) (Butcher et al., 2002; Lutz and 
Mikulski, 2004); (Gupta et al., 2009); 

(Hamill and Goseva-Popstojanova, 

2009); (Shenvi, 2009) 

(Khajouei et al., 2011b; Mentis and Gay, 
2003) 
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Before proceeding further, we distinguish between related terms used in the paper. CUP is designed to 

be applied to usability problems (UP), which we define as “a flaw in the design of a system that makes 

the attainment of a goal with the use of the system ineffective and/or inefficient and thus lowers the 

user’s level of satisfaction with its usage” (Law and Hvannberg, 2002).  In addition, we present 

definitions of a fault, failure and defect according to the IEEE standard 729 (IEEE, 1983). A fault 

occurs when a human error results in a mistake in some software product, i.e. the fault is the encoding 

of the human error. A failure is the departure of a system from its required behaviour. Failures can be 

discovered both before and after system delivery. Defects refer collectively to faults and failures.  

 

3. CLASSIFICATION OF USABILITY PROBLEMS (CUP)  

Usability specialists or developers, hereafter termed CUP analysts, apply the CUP scheme to usability 

problems by evaluating them according to thirteen attributes. CUP analysts do not have to discover the 

usability problems themselves; they can receive them electronically from a usability specialist who has 

conducted the usability evaluations. Nine attributes are recorded before a usability problem is fixed, 

which we call Pre-Fix, and four are recorded after a usability problem is corrected, called Post-Fix. The 

term corrected is used here to mean that the problem has been confirmed and resolved by, for 

examples, changing the design, followed by implementation. Whether the change removes the problem 

can be verified only after another round of evaluation and testing. Pre-Fix attributes describe in detail 

UP that are found in usability testing by representative end users in the case of user-based evaluation or 

usability experts in the case of usability inspection. The Pre-Fix results are presented to developers, 

who can then view the specific results for a selected subset of problems and/or collectively view the 

descriptive statistics. After correcting some or all UP, the developers record four attributes in Post-Fix. 

Figure 1 illustrates this process. The remainder of this section provides an overview of the attributes, 

including the two changes (attributes Expected phase and Cause) made to the original CUP scheme for 

this study before performing the reliability and validity analysis.  
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Design of 

usability tests

Usability 

evaluation

Usability 

Problem (UP) 

Extraction

Pre-Fix analysis 

of UPs

Usability evaluator CUP analyst / Developer

UPs

Redesign of 

system

Post-Fix 

analysis of UPs

More tests?
Yes

No

Pre-CUPs

Post CUPs

 

 

Figure 1. The CUP process 

 

 

Table 2 shows brief definitions of the CUP attributes and lists their values with the four Post-Fix 

attributes highlighted in grey. The third column in Table 2 explains the changes made to the original 

scheme in the study. In response to developers' comments during the first study reported in this paper, 

two attributes were added to the original Pre-Fix scheme: Frequency and Context. The developers were 

interested in knowing how many users/experts experienced/predicted a UP. This provides developers 

with an idea, quantitatively, of how much different users/experts agree on that UP. In the Context 

variable a screenshot from the user interface can be used for additional information. This was added to 

separate the context description from the UP description and allow grouping of the UP according to 

context. Both variables are often found in usability evaluations. Several CUP attributes warrant a 

detailed description of their values and an explanation of how they are constructed from previous 

research.  The rationale of the Failure Qualifier attribute is that it helps developers understand the 

nature of the problem and helps them fix it. The definitions of the Failure Qualifier values are inspired 
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by a corresponding Qualifier attribute in the Orthogonal Defect Classification scheme (Chillarege et al., 

1992) and are as follows: 

 

▪ Missing: When the test participant fails to find something in the user interface that she expected to be 

present.   

▪ Incongruent mental model: When the user interface is unclear because it does not match the test 

participant’s mental model or previous experience.  

▪ Irrelevant: When the user interface contains information/objects that do not contribute to system 

services and are unnecessary.  

▪ Wrong: When the test participant notices that something has gone wrong, e.g. an apparent 

programming bug.  

▪ Better way: When the test participant suggests that something in the user interface could have been 

done differently.  

▪ Overlooked: When the test participant is given a task, but she or he overlooks an entity in the user 

interface, i.e. the user does not see the existing entity or fails to realise that she/he is supposed to 

interact with it. 
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Table 2. CUP attributes and their values, first Pre-Fix variables and then Post-Fix. 

Attribute Values Changes made to 

CUP for the 

current study 

Pre-Fix  

Defect ID Identification number  

Frequency Number of users/experts that 

experienced/predicted a UP 

New attribute  

Trigger Describe what a user is doing when 

she/he discovers the UP, i.e., task 

scenario, heuristic, reflective 

question 

 

Context Describe in what part of the user 

interface the user/expert was when 

the UP occurred 

New attribute 

Description Concise description of the UP  

Defect Removal Activity Usability evaluation method, e.g. 

user test and heuristic evaluation 

 

Impact Severity Indicates what effects the UP had 

on the user/expert: Severe, 

Moderate and Minor 

 

Task Efficiency (%/min) 

 

Task 

Effectiveness  

Completion 

rate 

 

Mean time 

on task 

(min) 

Only for UP found with user tests 

(UT), calculations based on the 

tasks scenario that the user was 

performing 

 

Instances of Frustration  

Instances of Help Sought  

Failure Qualifier Describes how the user/expert 

experienced a UP;  
o Missing 
o Incongruent Mental Model 
o Irrelevant 
o Wrong 
o Better way 
o Overlooked 

One of the values 

was renamed from 

Extraneous to 

Irrelevant 

Expected phase  Indicates in which phase of a 

software development lifecycle the 

developer thought that the UP 

originated before fixing it:  
o Task analysis and context of 

use (TAN) 
o Functional requirements 

(FUR) 
o Quality attribute analysis 

(QAN) 
o Conceptual modelling (COM) 
o Dialogue design (DIA) 
o Navigational design (NAV) 
o Presentation design (PRE) 
o Implementation (IMP) 

This attribute was 

revised after the 

LMS study reported 

in this paper. The 

values were 

organised 

hierarchically into 

three development 

stages: 

Requirements 

(TAN, FUR, QAN) 

Design (COM, DIA, 

NAV, PRE) and 

Implementation 

(IMP). The 

descriptions of the 

values were 

improved to 

increase 

understandability. 
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Post-Fix  

Actual Phase The phase where the UP was fixed; 

same values as Expected Phase. 

 

Types of Fault Removed Describes what in the user interface 

was changed to fix the UP 

 

Cause Aimed to understand why the 

developers committed the error: 
o Personal 
o Communication 
o Technical 
o Methodological 
o Managerial 
o Review 

The attribute was 

revised based on the 

literature, but after 

the LMS study it 

was converted to 

free text, since 

developers found 

the values hard to 

understand and 

inappropriate. 

Error Prevention Techniques Ideas on what can be done in the 

future to prevent the fault 

 

 

 
The premise of the Expected phase is that if the developer knows in what development phase the 

problem originated, it could help him or her fix it. The design of the attribute Expected Phase was led 

by two objectives. The attribute should be appropriately detailed to give the developer sufficient 

information but not too detailed, which would make classification difficult. The number of values 

chosen can thus be critical. The phases must also reflect current practices, so they are likely to be 

familiar to usability engineers and developers. With this in mind, we coarsely analysed the current 

literature on user interface lifecycles. To meet the first goal, appropriate detail, we selected lifecycle 

models and integrated the phases into the Expected Phase variable. The lifecycle models were the 

Constantine and Lockwood (1999) model, Idiom (van Harmelen, 2001) and Hudson (2001) UCUML. 

We assumed that these models would be good candidates for our second goal, reflecting current 

practices, because of their wide dissemination, maturity, and acceptance in practice. The expected 

phase variable is described in detail below. The phases are described in the activities, which are typical 

actions that are performed; the deliverables are example outputs of the corresponding phases.  

Requirements analysis  

• Task analysis and use context: Activities: Analyse the application domain and what cognitive 

tasks and physical actions a user performs to achieve a goal. Deliverables: Use case diagrams and 

activity diagrams of tasks and/or hierarchical tasks. Scenarios. Descriptions of actors and the 

environment. 

• Functional requirements: Activities: Decide the scope of the system. Select which tasks from the 

task analysis phase the system should perform. Deliverables: Use case diagrams, text description 

of use cases according to a template.  

• Quality attribute analysis: Activities: Analysis of non-functional requirements, including 

usability, security, performance/efficiency, reliability/fault tolerance, interoperability between 

services or between devices and safety-criticality. Deliverables: Requirement specification. 
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Design 

• Conceptual modelling: Activities: Analysis of the system as a set of concepts and what the main 

objects in the system are and its operations. Deliverables: list of concepts in a data dictionary, 

simple relationships between concepts, actions on concepts, content model or class diagram.  

• Dialogue design: Activities: Divide the responsibilities and design the dialogue between man and 

machine. Decide how the user translates goals or intentions into actions on objects. Decide how the 

system responds in terms of what objects and actions are displayed as a response to an action. 

Deliverables: Essential use cases context maps, sequence diagrams.  

• Navigational design: Activities: Divide the user interface objects and actions into groups, i.e. 

contexts. Determine navigations between contexts. Deliverables: User interface architecture, 

navigational model.  

• Presentation design:  Activities: Design the look of the user interface, i.e. layout of objects within 

a context, presentation of objects and actions as user interface elements, i.e. icons, buttons, layout, 

font, colour scheme. Deliverables: Graphic design of user interface objects.  

 

Implementation: Activities: Programming Deliverables: programs and/or prototypes of user interface.  

 

The above phases are not meant to imply any order, i.e. they do not imply a waterfall-like lifecycle, but 

could also be used in a spiral lifecycle or even an agile process where phases are not well delimited. It 

is necessary to keep this in mind because the uptake of agile processes has become popular in the last 

decade. However, empirical research has not shown consistent evidence for better product quality in 

agile software development (Dybå and Dingsøyr, 2008), and one study showed that teams develop a 

better and much more consistent user interface with traditional lifecycles (Wellington et al., 2005).  

 

The final attribute described in this section is the Cause attribute from the Post-Fix attribute set. HCI 

researchers have been characterising causes of interaction problems from several perspectives, 

including cognitive, social, organisational and development process. The Post-Fix attribute Cause 

describes the development process perspective. An in-depth discussion of the attribute supports the 

view that a causal analysis is an important skill for a usability evaluator (Dumas, 2002p. 1106).  

  

A cognitive approach can help explain cause. Capra (2006) developed 10 guidelines for describing 

usability problems through a thorough study using an open-ended questionnaire with 19 respondents 

and card sorting of the results with 8 participants. The guideline on cause was: “Describe the cause of 

the problem, including context such as the interaction architecture and the user’s task. Describe the 

main usability issue involved in the problem. Avoid guessing about the problem cause or user’s 

thoughts.” In Capra’s study (2006), problem cause was considered difficult to assess, but at the same 

time required.  This attribute is related to two attributes of CUP, Trigger and Context.  

 

When analysing deviations from a system task model, Paternò and Santoro (2002) recommend that 

information on potential causes be collected, i.e.  “indicating the potential causes for the deviation 



Page 14 of 45 

considered and which cognitive faults might have generated the deviation”. The types of causes are 

classified according to which phases of Norman’s model (1988) can cause the problems: intention, 

action, execution, perception, interpretation and/or evaluation. The above work is rooted in the analysis 

of safety-critical software and hazard and accident analysis. Rasmussen (1986) developed a 

classification scheme called Skill, Role, Knowledge (SRK) for types of errors occurring during 

information processing. Reason (1990) identified these three classes as ranging from automatic (skill) 

to conscious (knowledge-based). He developed these ideas further into GEMS, a Generic Error 

Modeling system, which explains the switching between different types of errors (Embrey, 1995).  

Hollnagel’s (1993) classification distinguishes between observable error, phenotype (manifestation) 

and genotype (the cause). Sutcliffe and Rugg (1998) take a broader approach, grounded in previous 

research, including a classification of causes into social, organisational and cognitive categories. 

Sutcliffe and Rugg include a category of design errors in their taxonomy, as do Lavery et al. (1997), 

who have suggested a more development-oriented model.  In this model, for example, a design fault 

causes a breakdown in an interaction, which results in changed user behaviour or performance. A cause 

in their model is not only a design fault, but it can be further rooted in a wrong knowledge requirement 

on the part of the user, thus acknowledging that the user is a part of the context.  Lavery et al. (1997) 

allow evaluators to enter free text in the cause variable.  

 

In a discussion of motivating change through usability testing, Dumas (1989) raises the awareness that 

user testing can improve the technical and managerial skills of product designers and managers. In one 

of four usability testing practices, Dumas’ recommendation is to focus not only on product-related 

problems but also on the underlying technical and organisational problem causes. Examples of 

probable causes include a lack of clear guidelines for how to create effective software or manuals, lack 

of co-operation between people on the product development team, and lack of effective design reviews. 

Sutcliffe and Rugg (1998) propose a distinct category for human failure in the design process, which 

has indirectly led to accidents. This design process category has six values: lack of method 

conformance, poor tool support, machinery failure, maintenance problems, poor design method, and 

inadequate support tools. In software engineering, scientists and practitioners have for several decades 

(Chillarege et al., 1992; Endres, 1975; Weiss and Basili, 1985) studied the cause of faults through 

classification. The values selected for the Cause attribute in CUP are Personal, Communication, 

Technical, Methodological, Managerial and Review (Leszak et al., 2000). A systematic literature 

review of 149 papers (Walia and Carver, 2009) has resulted in a taxonomy of software requirement 

errors that led to the actual faults, i.e, people, process and documentation errors, with a total of fourteen 

values. Some values in the taxonomy coincide with values of the Cause attribute, including 

Communication, Methodological and Management. Though this taxonomy is comprehensive, it 

remains to be seen how suitable it is as a basis for classification.  

 

Having devised the CUP scheme and performed the initial evaluations, it became clear that a thorough 

evaluation of its reliability, validity and acceptance was needed. This would not only lead to 

improvement suggestions for the CUP scheme, but also to new knowledge on how software developers 
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perceive data, how they make decisions, and how they create ideas. Finally, given the challenging 

methodology of evaluating defect schemes, the present study was expected to provide insights in this 

regard. Thus motivated, the following research questions, based on the three goals described in the 

introduction, are set forward:  

 

 

Reliability 

RQ1: How reliable is the Pre-Fix scheme among a group of novice CUP analysts? 

RQ2: To what extent is the level of inter-evaluator agreement influenced by the CUP analysts’ expertise in 

applying the Pre-Fix scheme and by their involvement in usability testing the application? 

 

Validity 

VQ1: Do developers think that the Pre-Fix CUP scheme aids their UP understanding? 

VQ2: Do developers find the Pre-Fix CUP scheme useful when prioritising what UP to fix and deciding how to 

correct them? 

VQ3: How well do the developers understand Pre- and Post-Fix CUP attributes and their values? Do developers 

propose any changes to the CUP scheme? 

 

Acceptance 

AQ1: To what extent do CUP analysts’ perceived ease of use and usefulness of the Pre-Fix CUP scheme relate to 

their intention to adopt it in the future? 

 

 
4. RESEARCH METHODOLOGY 

For the study described in this paper, we have conducted three tests for different purposes. Figure 2 

illustrates the flow between the main parts of the study. The four studies are as follows: (i) user tests 

(UT) on two applications with a total of 18 participants to obtain a list of usability problems used as a 

baseline in the next two tests; (ii) reliability study on a subset of the UT results with eight novice 

participants and two experts to assess CUP reliability; and (iii) presentation of the Pre-Fix classification 

to four developers in two field studies to assess scheme validity. In the reliability analysis, the 

participants classified 21 UP according to CUP, and the reliability was evaluated using a generalised 

kappa.  Following the reliability study, (iv), an acceptance study was conducted with 8 novice 

participants. The validity analysis consisted of two field studies, where two different applications were 

tested for usability. After presenting developers in the first field study with the CUP results, the scheme 

was refined based on their views. The second field study then started, and data were collected on how 

developers used the results in their development. Each part of the research methodology is discussed in 

detail in this section. 
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Figure 2. The flow between the main parts of the study 

 

4.1 User test  

The purpose of the user test reported in this section was to produce data that would be used in the two 

reliability and validity studies. 

4.1.1 Applications 

This study uncovered defects in two applications, called the LMS Teaching Web Version 2.0 and HS 

Version 1.9.2, with think-aloud user tests. The LMS Teaching Web is a university learning 

management system which allows teachers to manage their courses online (hereafter referred to as the 

LMS). The application has two user groups: teachers and students. Teachers can provide students with 

online course materials (e.g. lecture notes and web links), send announcements to their students, create 

online discussions and maintain an event calendar for their course. Students have fewer functions 
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available to them and mainly use the system to access the provided learning resources. The size of the 

application is roughly 11 thousand lines of code, and the first version was released in the autumn of 

2001. The second application, HS, is a storage and analysis system for data collected by a 

governmental institute (e.g. river flow data). It was developed by the institute and first released ten 

years before this research took place. It enables users to analyse the collected data and conduct 

comparisons on data collected over time.  

4.1.2 Method and Procedure 

Eleven participants were recruited for the LMS UT, including five teachers and six students. The 

student participants received a compensation of €32 for participating in the tests. No participant had 

previously used the LMS Teaching Version 2.0 in any courses. The user groups had different tasks that 

they were required to perform, but both groups had nine task scenarios covering the core functionalities 

of their user group. Seven regular HS users were recruited for the UT in the second field study and 

were required to perform five tasks. The UT procedure for both applications was kept as similar as 

possible. While performing the tasks, the participants were asked to think aloud. An assistant UT tester 

was present at all sessions, and he recorded the test participant’s thinking aloud verbatim. The sessions 

were also recorded using Camtasia Studio (TechSmith, 2005) to capture screen activity and the 

thinking aloud audio.  

4.1.3 Measurements 

The performance measures were mainly obtained through observations, including time on task, number 

of screens of online help consulted, and number of instances of expressed frustration.  Primarily, the 

test participants reported the subjective measures in a think-aloud verbatim protocol and by answering 

post-task and post-test questionnaires. The LMS users experienced 112 total UP. The UP were filtered 

by consolidating those that were the same, i.e. users experienced the same types of problems in the 

same parts of the application. This was done by going over the list of UP, one at a time, and checking 

whether a similar UP had come up previously on the list. After filtering, there were 71 unique UP, 

including 46 in the teachers’ group and 25 in the student group.  Of the 71 unique UP, there were 26 

Minor, 30 Moderate and 15 Severe UP. The average number of UP experienced per user was 10.2 

(SD=4.0, N=11).  

 

The seven users in the HS UT experienced a total of 83 UP. After consolidating the UP, the list 

contained 65 unique UP, including 31 Minor, 20 Moderate and 14 Severe. The mean number of UP 

discovered per user was 11.9 (SD=5.4, N=7).  

 

4.2. Reliability and Acceptance Studies 

The reliability of the CUP scheme depends on its repeatability. It is only repeatable if there exists 

consistent, shared understanding of the scheme. Defect classification is a subjective exercise, and it is 

thus possible for different CUP analysts to classify the same defect differently. The credibility of defect 

data is unconvincing if such disagreement in classifications is dominant (Hvannberg and Law, 2003). 

The reliability analysis only addresses Pre-Fix attributes, as they constitute feedback that developers 
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receive from the usability testing. To evaluate CUP reliability an experiment was conducted, which is 

described in detail below and illustrated in Figure 3. The reliability study was intended to answer the 

first goal (1) in the introduction, and the results are presented in Section 5.1, Reliability Analysis. 

4.2.1 Selection of Usability Problems for Experiment 

As reported above, 71 unique UP were identified in the LMS application UT. We developed a scheme 

for selecting a subset of UP to use in the reliability experiment. When developing the scheme, we kept 

in mind that the classification should not take more than approximately 90 minutes for the participants, 

as otherwise they would get tired. We anticipated that the participants would be able to rate 

approximately 20 UP in 90 minutes. We reviewed two selection schemes: a case study of Root Cause 

Analysis (Lezak  et al., 2000) that used a rather complicated scheme where many items had to be 

selected and the User Action Framework (Andre et al., 2001) in which UP selection was based on the 

real-world expected frequency. Taking into account the trade-offs of these selection schemes, we 

developed our own scheme to select a subset of UP to be examined in the reliability experiment: 

i. Sort all UP according to the UT tasks where they occur. 

ii. For each UT task, first sort UP according to frequency, which is an objective parameter, and 

then according to severity. Two analysts should perform this severity rating, to discover inter-

evaluator reliability. One analyst should have conducted the UT. 

iii. Select the top half or 50% of the sorted list of UP per task.  

iv. Apply the Pre-Fix scheme to these extracted UP. An analyst who conducted the UT performs the 

rating. 

v. Identify 21 UP from those extracted in iv that cover most attribute values, i.e. at least one UP 

from each value of the attributes Expected Phase and Failure Qualifier. 

In step i UP were classified according to 18 tasks. In step iii 40 UP were extracted. The rationale of 

step v was to maximise the number of UP types with different attributes and attribute values, thereby 

allowing the reliability test participants to work on various UP types. After step v we ended up with 

approximately 30% of the total UP, or 21 UP.  

 

The two analysts who were involved in step ii are hereafter called the CUP and User Test (UT) experts. 

The CUP expert has better knowledge about CUP than the UT expert, but she conducted the UT. The 

UT expert performed the selection process and prepared the data on the 21 UP, i.e. filled out the Defect 

ID, Context, Description, Defect Removal Activity and Trigger attributes. The agreement between the 

experts on the severity rating was only fair (kappa value κ=0.303). The CUP expert received the same 

materials as the Pre-Fix experiment participants, who had all dealt with so-called ‘second-hand’ data 

about the UP because they did not conduct the UT themselves. 
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Figure 3 Reliability study, materials and measures 
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4.2.2 Participants 

Eight participants were recruited to participate in the reliability experiment, who were each paid 

approximately €64 for their participation. There were four master's degree students, two bachelor's 

degree students and two developers working in the industry. Three of the master’s degree students were 

studying computer science, and one was studying bioinformatics. The bachelor’s degree students were 

from computer science and industrial engineering disciplines. One software developer held a bachelor’s 

degree in computer science, and the other held a master’s degree in language technology.  

 

The participants' ages ranged from 20-50 years, and most were 20-24 years old. Half of the participants 

had work experience in software development, user interface design or user interface testing. Four 

participants had used earlier versions of the LMS system in their studies at the university for 2-3 years, 

two for 1-2 years, and two participants had not used the application before the experiment.  

4.2.3 Experimental Treatment 

The experiment (Figure 3) involved two sessions which the participants had to attend. A presentation to 

introduce Pre-Fix was followed by a session where participants had to classify 21 UP according to Pre-

Fix (3 attributes), which were selected using the method described in section 4.2.1.  

 

The presentation to introduce Pre-Fix covered the following items: explaining the user tests, the goal of 

Pre-Fix, information about the system where the UP were identified, explaining the Pre-Fix attributes 

and their values, example of a UP that had been classified according to Pre-Fix and instructions on 

what participants were supposed to do in the experiment.  

 

All participants received the following materials during the experimental treatment: a printout of the 27 

slides used in the training presentation, a five page booklet about Pre-Fix with an example of its 

application, the tasks used in the system's user test and access to the part of the LMS system used in the 

test.  

4.2.4 Experimental Task 

The information session for the participants about Pre-Fix was held by the CUP and UT experts, and 

the participants took part in the second (classification) session two or three days later. They were 

instructed, in the meantime, to familiarise themselves with the materials about Pre-Fix so they would 

be better at applying it to the UP. They were also asked to try out the LMS system between the two 

sessions to know the domain better and have an enhanced UP understanding. The participants were 

instructed to record the time they spent on these activities. 

 

The second session of the experiment was conducted in a computer lab so the participants could 

examine the system as they were classifying the UP. The participants received, on paper, 21 UP where 

the first five Pre-Fix attributes had been filled out for each UP. The attributes that had been filled out 

beforehand were Defect ID, Context, Description, Defect Removal Activity and Trigger. The 

participants also received a printout and electronic version of the seven screenshots to which the 
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Context attribute referred. The participants rated three attributes for each UP: Severity, Failure 

Qualifier and Expected Phase. The participants then entered their results into an Excel template that 

was provided, where they also recorded the time they spent preparing for the session and on the CUP 

classification. All participants filled in a questionnaire about their age, education, previous experience 

with the system and whether they had software development experience.  

 

At the end of the second session, the participants filled in a post-experiment questionnaire based on the 

Technology Acceptance Model (TAM) (Davis, 1989), which had been adapted to evaluate the CUP 

scheme as relates to the empirical examination of the CUP analysts’ perceptions of the CUP scheme. 

This part of the study was meant to address the second goal (2), acceptability assessment. Section 5.4 

discusses these results.  

 

4.3 Validity Study 

The validity analysis consisted of two field studies in real software development environments, where 

four developers were introduced to the CUP scheme. To strengthen the validity analysis, we presented 

CUP to developers in different application development environments. Two field studies, using action  

case study (Avison et al., 1999; Braa and Vidgen, 1999) where designers and researchers collaborate, 

allowed us to make changes to CUP based on what was learned in the first field study and test them in 

the second field study. The validity study was intended to answer the third goal (3), validity. The 

remainder of this section describes the environments in which the studies were performed, the data that 

were collected and how they were analysed. The results are presented in section 5.3, Validity Analysis. 

4.3.1 Environments of Study 

Two LMS software developers were involved in the study. One is the manager of the software 

development department, and the other is the main programmer of the LMS system. They work 

together on designing the application and make decisions regarding it, but only one programs the 

application. Both test the LMS system, mostly unit testing, and have never used the results of a UT. 

The programmer of the application has a bachelor’s degree in computer science and had worked for the 

company for 15 months when the study began. The department manager had worked for the company 

for nine years and is self-educated.  

 

The HS system was first released in 1995, and the work on it today is mainly maintenance work and 

adding new functionality as requirements are added and changed. The two developers who participated 

in the study are responsible for maintaining the system; one has a bachelor’s degree in computer 

science, and the other is a systems analyst. When the study started, the developers had worked on HS 

for approximately 18 months.  

 

These applications, LMS and HS, were selected for this study because they were developed in 

dissimilar environments. The HS developers were close to their users, as the software is maintained in-

house for a limited number of expert users, but the LMS is used by a large, diverse group in several 

universities. The HS developers worked on the redesign solely based on CUP results, but the LMS 
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developers additionally had a list of comments and change requests from their users, collected through 

a web survey.  

 

4.3.2 Data Collection Methods 

This section describes how we collected the data in the LMS and HS field studies.  After the LMS field 

study, we reflected on the research protocol to learn what could have gone better and employed that 

knowledge in the HS field study. The data in the LMS study were mainly collected in the form of semi-

structured interviews and meetings with system developers over a three-month period. After the 

developers received the CUP results from the UT, ten meetings were held with them, lasting a total of 

12 hours. Three meetings were spent discussing particular UP and their CUP ratings. These meetings 

provided the developers with a feel for the scheme and opened discussion on what they thought about 

it. We also examined the available documentation for the LMS system, which was limited, as their 

software development process is mainly agile and does not involve a great deal of documentation. The 

most relevant documentation was a list of 177 non-unique items that included comments and error 

reports from system users. The items on the list were collected through the company’s help line and 

running web surveys about the company’s services and applications. To motivate solutions to 

items/problems, the developer went through this list of items, which includes suggestions for 

enhancements, errors, and comments about functionality, usability and performance, and then they 

categorised all items according to a potential solution or change in design. Next, both developers 

estimated how long it would take to implement the changes and prioritised them.  

 

In the HS field study, we wanted to meet the developers more frequently to collect CUP data while the 

developers were using the data or shortly thereafter, while their recollection was still fresh. The 

researcher met the developers twice a day on the days that they were working on HS for short 

discussion meetings. This approach is similar to that used in agile software development (Abrahamsson 

and Kyllonen, 2005; Control Chaos, 2006). The first meeting was in the morning to find out what they 

had planned for the day and on what tasks they intended to work. The researcher then met the 

developers again in the afternoon; each meeting lasted approximately 10-15 minutes. The afternoon 

meeting was to discuss how their work went during the day, what they achieved and if they ran into any 

problems. Taking this approach allowed the researcher to talk to the developers directly before and 

after they were working on the HS application and find out more about how they employed the CUP 

scheme to help their development tasks. These meetings provided information about how the 

developers were using the CUP data after deciding on what UP they were going to work. An advantage 

of this approach was that the researcher talked to the developers at their work desk, where they were 

comfortable. In this way it was also possible to observe the developers' work, and they could easily 

show the researcher something on screen or paper. The researcher also had more structured meetings 

with the developers, both one at a time and together, at the start and end of the study to reflect on the 

study overall. The researcher spent eleven hours in meetings and discussions with the developers about 

software development and the CUP scheme. 
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There was no up-to-date documentation available about HS, except failure reports in a program called 

ProblemTracker (NetResults Corporation, 2005). This is a web-based system where users can report 

bugs, requests for enhancements or other similar issues. Users also talked directly to the developers, 

who recorded the issues in ProblemTracker. The developers said that users had not been reporting 

many HS-related errors or issues during the year prior to the CUP study.  

 

5. RESULTS AND DISCUSSIONS 

5.1 Reliability analysis 

5.1.1 RQ1: Reliability of Novice CUP analysts 

To evaluate reliability, Fleiss’ (1971) generalised kappa was used (King, 2004b).  The generalised 

kappa statistic extends the kappa statistic to include multiple analysts and is useful for measuring inter-

evaluator agreement among three or more evaluators (King, 2004b). King’s Microsoft Excel 

spreadsheet was used to calculate the generalised kappa values (King, 2004a).   

 

Table 3 reports the generalised kappa results. The reliability is highest for the Severity attribute and 

lowest for the Expected Phase attribute. The reliability results for the Expected Phase attribute suggest 

that its definition and values require refinement. This was confirmed by the post-experiment 

questionnaire, where the participants commented that the values for this attribute needed to be defined 

more clearly. The reasons for this may be twofold. First, there are probably too many values defined for 

this attribute. Second, the novice analysts may not have been given adequate background in user 

interface development to be able to distinguish between the phases, e.g. navigational and dialogue 

design. 

 

Table 3. Reliability measures for eight novice CUP analysts in the experiment 

Reliability measure Severity Failure 

Qualifier 

Expected 

Phase 

Generalised Kappa 0.31 0.25 -0.27 

 

 

The Severity attribute has the highest reliability, and part of the reason may be that it has the fewest 

values of the three attributes being examined. The fact that Severity is an ordinal scale (i.e. Minor, 

Moderate and Severe) may have increased the understandability of the novice analysts more than the 

other attributes, which are nominal scales.  

5.1.2 RQ2: Inter-evaluator Agreement and Influencing Factors 

As the participants were all CUP novices, we wanted to compare their ratings pairwise to those of a 

CUP expert. The ratings of every participant were compared to those of the CUP expert. The CUP 

expert was as familiar with the UP as the novice CUP analysts and received the same data on the 

defects. In addition, to see how much knowledge about the UTs could help a CUP analyst, we 

compared the ratings of the CUP expert to those of the UT expert.  
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In this part of the reliability evaluation, we used a kappa coefficient because it is the recommended 

statistical method for verifying inter-evaluator agreement for nominal scale data classified by two 

evaluators (Siegel and Castellan, 1988). Kappa values can be qualified into five agreement levels, 

ranging from “poor” to “very good” (Altman, 1991). Table 4 shows the kappa results for the 

comparison between the CUP analysts in the Pre-Fix experiment and the CUP expert. The Severity 

attribute had relatively the highest level of agreement: moderate (0.41-0.61) for three CUP analysts, but 

five CUP analysts had a poor (κ<0.2) level of agreement with the CUP expert. The Failure Qualifier 

attribute appeared to have the most consistent level of agreement, as it was rated as  fair (0.21-0.40) for 

seven CUP analysts. The Expected Phase attribute had the lowest overall level of agreement, with a 

poor value for half of the CUP analysts and a fair value for the other half.  

 

Table 4. Kappa for the attributes, as rated by the participants 

CUP analyst Severity Failure 

qualifier 

Expected 

phase 

CUP analyst 1 0.37 0.38 0.10 

CUP analyst 2 0.50 0.32 0.09 

CUP analyst 3 0.16 0.38 0.32 

CUP analyst 4 0.48 0.25 0.14 

CUP analyst 5 0.13 0.33 -0.04 

CUP analyst 6 0.13 0.22 0.21 

CUP analyst 7 0.11 0.25 0.31 

CUP analyst 8 0.44 0.20 0.38 

Mean 0.29 0.29 0.19 

SD 0.17 0.07 0.14 

 

 

If we consider the time that the participants spent preparing for the second session of the experiment, 

five of them spent less than an hour on preparation, two spent one to two hours and one participant 

spent two to three hours. The time that the participants spent on the Pre-Fix classification itself in the 

second session ranged from 60-117 minutes, and the mean time was 86 minutes (SD=17.01, N=8). In 

comparison, the CUP expert spent 50 minutes on the Pre-Fix classification, which was considerably 

less than the mean and could probably be explained by the fact that she knew the CUP scheme well. 
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Table 5. Kappa for the agreement of the CUP expert and the UT expert 

Attribute No. of possible 

values 

Kappa Agreed 

cases* 

Level of 

Agreement 

Severity 3 0.33 12 Fair 

Failure qualifier 6 0.50 13 Moderate 

Expected phase 8 0.22 7 Fair 

*Note the total number of cases was 21 

 

All but one of the novice CUP analysts had a poor agreement level with the CUP expert for one 

attribute. Specifically, Analyst 5 had poor agreement for two attributes and was also the only analyst 

who had a negative kappa value for the Expected Phase attribute, which implies that rater 5 and the 

expert agreed less than would be expected just by chance. Analyst 5 spent less than one hour on 

preparation and spent the least time of all participants on the Pre-Fix classification, i.e. 60 minutes. It is 

possible that Analyst 5 rushed himself too much.  

 

The analysts who spent more than an hour on preparation were Analysts 1, 2 and 4. As shown in Table 

4, Analysts 2 and 4 had the highest level of agreement for the Severity attribute, and Analyst 1 had the 

highest level of agreement for Failure Qualifier. However, the extra time did not seem to help these 

analysts in rating the Expected Phase attribute, as they all had a poor level of agreement. 

 

Table 5 shows the kappa results for the CUP and UT experts. The CUP and UT experts had a fair 

agreement level for the Severity and Expected Phase attributes and moderate for the Failure Qualifier. 

For the Expected Phase, the experts only agreed in seven cases out of 21, which was the lowest level of 

agreement of the three attributes. 

5.1.3 Discussion on Inter-evaluator Agreement 

The agreement level between the eight novice analysts from the experiment and the CUP expert was 

overall best for the Failure Qualifier attribute. This concurs with the agreement between the two 

experts (Table 5), but as discussed above, the Severity attribute had the highest reliability among 

novices according to the generalised kappa results. The Severity attribute has only three possible 

ordinal values and is thus easier for novices to learn rather than the eight nominal values for Expected 

Phase. The results confirm that the Expected Phase attribute requires refinement. The agreement level 

between the analysts and CUP expert on the Failure Qualifier attribute was quite consistent, i.e. nearly 

always fair, which might imply that the analysts understood some of the six values well and rated them 

similar to the expert, but perhaps they lacked understanding and practice in the other values. The value 

“Incongruent Mental Model” was most commonly used by the analysts, and seven agreed most of the 

time with the CUP expert on this value. The novice analysts never agreed with the CUP expert on the 

value “Better Way”, and half of them never agreed with the expert on the value “Irrelevant”.  

 

When comparing the inter-evaluator agreements of this study with those of the previous one, we 

noticed that the agreement between experts in this study was similar to that in Hvannberg and Law 
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(2003) for Severity (i.e. fair) and Failure Qualifier (i.e. moderate) in UP discovered in the heuristics 

evaluation.  The agreement was slightly worse than in the previous study for Failure Qualifier in UP 

discovered in usability tests with good agreement. The agreement in Hvannberg and Law (2003) was 

moderate for the Expected Phase, but for this study it was only fair. We attribute this difference to the 

experience in applying CUP.  

5.1.4 Consensus of Experts 

In a study by El Emam (1999), two groups independently performed a software process assessment 

based on the same data. After their independent ratings, the groups would meet to reach a consensus of 

their ratings and thus produce a consolidated rating, which was the outcome of an assessment. Based on 

this idea and because the kappa value between the experts was considered only fair for two attributes, it 

was necessary for the two experts to have a consensus building session. To find the reason for the 

disagreement and learn from it, the experts revisited the UP where they had disagreed. Next, they 

adjusted the ratings when appropriate. After the consensus building session, the kappa was calculated 

for the new ratings. 

 

As Table 6 shows, the experts achieved a very good level of agreement (0.81-1.00: Very good) after 

their consensus building session. The following were the main reasons for the experts’ disagreements:  

 
• The CUP expert thought the description for the UP was not precise enough and misunderstood 

the problem. 

• The UP descriptions contained two closely related usability issues, and the experts considered 

them from different perspectives. In these cases, the UP might have been split into two 

separate ones. 

• Some Failure Qualifier attribute values overlap, and both experts were correct in their rating; 

the same was true for Expected Phase. 

• The CUP expert thought a Context attribute value was unclear.  

• Both experts acknowledged a mistake. 

• The severity rating might have been partly based on the UT expert’s opinion influenced by 

user tests rather than solely on the description. 

• The CUP expert lacked domain knowledge of the application. 

 

Table 6. Kappa for the agreement of the CUP and UT experts after a consensus session 

Attribute No. of possible 

values 

Kappa Agreed 

cases* 

Level of 

Agreement 

Severity 3 1.00 21 Very good 

Failure qualifier 6 0.94 20 Very good 

Expected phase 8 0.88 19 Very good  

*The total number of cases was 21 
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5.2 Acceptance of CUP 

This section presents and discusses the results of the post-experiment questionnaire filled out by the 

analysts in the Pre-Fix experiment. The post-experiment questionnaire had 19 questions: 16 closed and 

3 open-ended questions. The closed questions were in a randomised order, and they were all measured 

on a 5-point Likert scale with a positive and negative assertion at each end of the scale for each item, 

e.g. 5 meaning easy to use and 1 meaning difficult to use.  The following three perception-based 

constructs were used to evaluate the scheme: 

• Perceived Ease of Use (EASE): the degree to which a person believes that using the scheme 

would be free of effort. (five questions) 

• Perceived Usefulness (USEFUL): the degree to which a person believes that the scheme 

would be useful. (eight questions) 

• Intention to Use (INTENT): the degree to which a person intends to use the scheme. (three 

questions) (Moody et al., 2003)  

Table 7 shows the means and standard deviations for the three constructs.  Perceived usefulness had the 

highest mean and intention to use the lowest. This was confirmed by the responses in the open-ended 

questions.  

 

Table 7. Mean of analysts’ responses (N=8) 

Construct Mean SD 

Perceived Ease of Use 3.48 0.60 

Perceived Usefulness 4.00 0.45 

Intention to Use 3.04 0.81 

 

To answer research question AQ1, a multiple regression analysis was performed. The relatively high 

multiple correlation coefficient (adjusted R2 = 0.74) suggested that EASE and USEFUL taken together 

could contribute to the INTENT prediction. As indicated by the beta weight (b), EASE was a 

significant predictor (b = 0.66, t = 2.48, p =.05), whereas USEFUL was not. The partial Pearson 

correlation coefficients (r) were 0.48 and 0.22 for EASE and USEFUL, respectively. These statistics 

corresponded to effect size measures in partial eta squared (p
2), which were 0.55 and 0.21 for EASE 

and USEFUL, respectively.  The findings imply that ease of use is a critical factor in determining 

whether the novice analysts will adopt the CUP scheme in their future work. This observation was not 

surprising, as these analysts were not involved in the entire process of applying the scheme (i.e. defect 

revisions and subsequent Post-Fix attribute classifications) and thus could not see its full potential 

usefulness. What concerned them most was whether they would be able to understand and apply the 

scheme rather than whether it was useful to improve the evaluated system.  This finding is opposite to 

that of a related study where researchers aimed to understand how ease of use and usefulness of 

software process innovations (i.e. Personal Software Process) related to practitioners’ intentions to 

adopt the innovations. That study could not find any relationship between ease of use and intention to 

adopt the innovation, a result it explained by observing that the practitioners had been trained using the 

innovation and had had considerable practice in using it and could have thus been past the initial 
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innovation use hurdle (Green et al., 2005). The opposite could be said for the study of the novices 

reported in this paper.   

 

When asked in an open-ended question how participants thought the scheme could be made easier to 

use in the future, they answered that the definitions of the Expected Phase values should be explained 

more thoroughly and more examples be provided. When asked what their main reasons for deciding to 

use or not use the CUP scheme in the future, they said that they thought the scheme took too long to 

use. The analysts’ concerns about scheme effectiveness concur with the study of (Green et al., 2005), 

which found a significant relationship between productivity from software process improvement 

innovation and its usefulness. Furthermore, the analysts said they would need more confidence in their 

own expertise to make a decision on intention to use the scheme. This relates to the finding of 

Mathieson et al. (2001), who extended TAM to include a perceived resources instrument, which 

includes resources available to the scheme analysts. Examples of such resources include help available 

during use, expertise and time. Their results showed that resources available to the analyst were related 

to intention to use and perceived ease of use, with a weak link to perceived usefulness. When there 

were no constraints on resources, ease of use and usefulness could be related to the intention to use, but 

in cases when there were constraints, the intention to use could better be explained by the extent of 

these resources than the ease of use or usefulness of the scheme.  

 

5.3 Validity analysis 

Observing developers empirically during user interface evaluation and maintenance, the following 

work activities emerged after uncovering usability problems: understanding the problem, prioritising 

the problem and redesigning the user interface to prevent the problem from appearing in future user 

interactions. This section addresses these activities in relation to CUP.  

5.3.1VQ1:  Developers’ understanding of the UP 

Understanding a problem includes getting information about the nature and origin of a usability 

problem (i.e. what is the problem, where does it occur, how much difficulty has it caused the user, why 

does the problem occur, and who has done the tasks leading to the problem). Neither of the two 

organisations involved had conducted a UT on the respective system before taking part in the present 

study; the number of UP found surprised both development teams. The attitude towards the UP was 

different, however. The LMS developers did not blame their users for the problems experienced but 

acknowledged that the system did not provide users with sufficient support for completing the tasks. 

The HS developers, however, felt that approximately a third of the UP was caused by a lack of 

knowledge or training on the part of the users. Evidence of such a view among developers can be found 

in other studies (Hoegh et al., 2006).  The developers considered bugs and program crashes to be the 

most serious UP and errors caused by the user interface as not as pertinent. The LMS developers 

probably had a different attitude because they had not been dealing with serious functionality bugs, e.g. 

program crashing, which the HS developers had from the beginning. Another influential factor could be 

that the LMS developers were conscious of the fact that they had a large user group (their users had 

different information technology skill levels) and one of their goals was that unassisted users could 
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carry out basic tasks in the system. The LMS users were also further away from the developers; they 

could not handle user problems by giving a short presentation like the HS developers did.  

 

The LMS and HS developers agreed that CUP helped them understand the UP; they focused most on 

the Description and found the screenshots useful in all cases. The LMS developers used the Trigger 

attribute less than the HS developers; the reason for this might have been that, in the LMS UP, the 

Description and Context usually made the user's task obvious. In HS, however, the tasks were more 

complicated, e.g. how they were carried out depended on the type of data entered by the user. 

 

When it came to understanding the UP, the HS developers did not look at CUP attributes other than 

Description, Frequency, Trigger, Context and Severity. The LMS developers found all attributes 

helpful, except Severity and Task Efficiency; they used the Description, Frequency, Trigger, and 

Context the most. The LMS developers did not consider Severity to be part of gaining an understanding 

of the UP because they thought it was included in the description.  

 

 

Understanding UPs

Description

Context (screen shots)

Trigger

Frequency

 

Figure 4. Attributes that the LMS and HS developers used most to understand the UP 

 

Figure 4 shows what CUP attributes the developers used most when trying to understand a UP. 

Description was most important to them; they found the screenshots useful and that they saved time by 

looking at the system itself. The developers also used the Trigger attribute often because it provided 

them with information about what the user intended to do. 

5.3.2 VQ2: CUP’s effect on prioritising what UP to fix 

Prioritisation is a method frequently addressed in software engineering in different activities. One is to 

prioritise requirement selection, i.e. what features and qualities the software product should include. 

When software products are tested, total test coverage is seldom affordable and test cases must 

therefore be prioritised. Next, when the problems have been discovered and reported, the development 
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team must decide how the product can be maintained, i.e. what problems should be given the highest 

priorities to correct. Developers can prioritise usability problems according to severity and frequency. 

Another way to prioritise a usability problem is to look at a broader organisational view, thus 

considering the company, marketing and sales goals. Fadden and McQuaid’s (2003) view on 

prioritisation is to consider not only the users' opinions, but also the product team's opinion, i.e. the 

group of people making changes to the product. From the perspective of the product team, it may be 

desirable to fix the easy problems first. Mapping importance and difficulty may help us determine the 

return on investment, where importance will return revenues but difficulty will determine the cost. 

Greer et al. (1999) list five factors that determine prioritisation and conclude that their relative 

importance is adjustable: benefits, costs and risk exposure in the current and target systems as well as 

development process.  In the HCI arena, Keenan et al. (1999) suggested ways in which problems might 

be prioritised based on their suggested Usability Problem Taxonomy (UPT) in conjunction with other 

factors, including severity, cost-to-fix and user satisfaction questionnaire. However, no formal studies 

have been made on the UPT’s contribution to problem prioritisation. Based on the literature, Table 8 

shows the expected effects of CUP attributes on prioritisation.  

 

Table 8. The expected effects of the CUP attributes on prioritisation 

CUP attribute /  Expected reasons for 

being useful for the 

prioritisation activity 

Prioritisation of change 

Task completion  It is more important to fix 

problems for tasks which 

have a low success rate 

Criticality  

Failure qualifier  It may be less expensive to 

take something out than 

add something to the user 

interface. (e.g. extraneous 

vs. missing)  

Something that is 

incongruent to the user’s 

mental model may be more 

costly to correct.  

Effort of implementation in man 

power 

 

Expected phase It is generally believed that 

problems originated in 

earlier phases are more 

costly to correct than in 

later phases 

Effort of implementation in man 

power 

Severity, Frequency Problems with higher 

severity impact are more 

critical and it is more 

urgent to fix problems 

experienced by many   

Criticality  

 

 

All developers in our study agreed that Frequency and Severity had the most influence on prioritising 

what UP to fix. The LMS developers also mentioned the Trigger attribute because they considered 

some tasks less important. A low completion rate (Task completion) drew the attention of all 

developers; only the HS developers thought that Failure Qualifier could be useful in assessing UP 

seriousness. When planning for release increments, the developers commented on the Context attribute 
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and felt that “If there are many programmers working on the system, the Context can be used to 

allocate UP among them.” 

 

Prioritizing UPs to fix

Technical feasibility 

Time constraints

Budget constraints

Frequency

Severity

 

Figure 5. Influencing factors on prioritising what UP to fix in the LMS and HS field studies 

 

Figure 5 shows these and other factors that also affect the prioritising task. At both organisations, 

deadline and budget constraints had a strong effect on the UP that would be fixed because there was a 

limit on how many person-hours could be spent on redesign. The LMS developers had a systematic 

way of evaluating the effort of a change: they would list the possible changes and estimate how long it 

would take in workdays to implement them. They based this evaluation on insight, experience and their 

system knowledge. They were concerned with meeting a deadline, which was the start of the 

university’s semester. The new LMS version had to be ready before the semester started, and they did 

not want to change the system in the middle of the semester. They spent all available resources on the 

LMS, and it was not possible to add another developer to work on it full-time.  

 

The HS developers did not estimate the effort of a change as precisely as the LMS developers. They 

did not have to meet a deadline for a new version but had limited work-hours to spend on HS. In effect, 

the limited resources created the same pressure as a deadline. In their prioritising, the HS developers 

were concerned with the technical feasibility of a change to the system; they did not always appear to 

be confident in making changes to the code. They were maintaining a system that they did not develop, 

and might thus have been facing more difficult challenges. The developers were always worried that 

making a change in one place would have unforeseen effects. One developer said that: “When I started 

working here I didn’t think it would take so long to familiarise yourself with the code and the system. It 

has taken a long time, and it has been very difficult, much harder than I expected. I think maintenance 

can be one of the hardest tasks in software development.” The LMS developers did not appear to be 
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having these problems. The organisation developed LMS from the start, and nothing seemed beyond 

their capabilities; it was just a matter of how long it would take them. What also affected the HS time 

schedule was that managers pressed the developers to work on another system. That work came up 

quite unexpectedly and led to less time spent on HS than originally planned.  

 

It is intriguing to compare these results to those from the study by Boivie et al. (2003). The developers 

in that study said that deadlines controlled their work. “Whenever there was a priority conflict between 

usability and development resources, deadlines ruled - sometimes meaning that the teams had to give 

up on usability matters.” (Boivie et al., 2003). This was also the case in the HS field study, where the 

developers had limited time to spend on correcting UP, and their priority was on correcting functional 

errors. They did not have the resources to address the root cause of some UP. The LMS study showed 

that the developer thought that the UP he fixed were due to a lack of development time. Other studies 

have reported similar findings; for example, in Hoegh et al. (2006), a project resource such as time was 

an overall topic throughout interviews with two developers while examining usability reports. A lack of 

time is common in software projects, according to several cost overrun analyses of software projects, 

where the average overrun was found to be between 33% and 41% (Moloekken-Oestvold et al., 2004). 

Further, as with the LMS development team, which had a hard delivery deadline, a tight schedule may 

affect the development process (Cerpa and Verner, 2009). In such circumstances, it may be difficult for 

developers to focus on usability, as they mostly think about getting the software functional.  

5.3.3 VQ2: CUP’s effect on system redesign 

The third activity observed was system redesign. Indeed, redesign proposals associated with UP are 

deemed useful for improving the system under evaluation (Hornbæk and Frøkjær, 2005).  

 
However, CUP lacks this redesign attribute based on two considerations. Presumably, values of the 

existing attributes can inspire or somewhat guide the development team to come up with redesign 

ideas. It is also desirable to keep scheme complexity to a manageable level to ensure its usability. 

Furthermore, because time is already a limited resource, the scheme should not suggest activities that 

may expand it. The first presumption seems corroborated by the chief developer’s comment that, 

although CUP does not suggest correction to a UP, the data make the problem obvious: the data 

referred to are the values of the variables Description, Failure Qualifier, and Expected Phase.  The 

conclusions of Hoegh et al. (2006) concur with the importance of the Failure Qualifier, emphasising 

that a usability problem list could be improved by giving the reason why a problem occurred, e.g. 

saying that “there is too much information or that a button is placed without a clear reference to its 

context”  (Hoegh et al., 2006). 

 

All developers focused on creating intuitively holistic solutions to a set of problems rather than 

identifying individual problem corrections. While Hornbæk (2010) remarks that most studies consider 

individual usability reports, he gives three reasons why individual usability reports should be 

supplemented, e.g. with feedback of a higher abstraction. One reason is that, as pointed out by Jeffries 

Jeffries (1994), a set of problems must be considered as a whole. Indeed, CUP could meet this need by 
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allowing a developer to group problems together according to different categories, such as Failure 

Qualifier, Expected Phase or Context.  

5.3.4 VQ3: Developers’ understanding of the CUP attributes 

The developers were asked to rate their understanding of the CUP attributes on a three-point scale: 

easy, moderate and hard. The LMS developers understood all attributes easily, except for Expected 

phase, Task Efficiency and Cause. The developers’ view that the attribute Expected phase was hard to 

understand concurred with the outcome of the inter-evaluator agreement in the reliability study. The 

developers felt that it had too many values, some definitions were too technical and they found it tough 

to distinguish between the values. The LMS developers found the attribute Cause hard to understand 

and thought it hard not to take the Cause classification personally. They did not like being tied to some 

defined values that were perceived as unfit to the faults in their process.  They also found the Task 

Efficiency hard to grasp because it was difficult to benchmark it against another value and did not have 

a specified range. On Task Effectiveness, the developers found the completion rate useful, but not the 

mean time-on-task. Again, this was because there was no baseline against which it could be compared. 

 

It is interesting that the developers relied most on the Description attribute. However, the classifying 

parameters could be more useful when the Description quality was low or the usability problem was 

complex.  

  

Based on the LMS field study and reliability analysis, some changes were made to CUP to address the 

most salient issues before the HS study commenced (Table 2). To improve the attribute Expected 

Phase, we took the approach of simplifying the values' structure by organising them hierarchically into 

three development stages: Requirement analysis, Design and Implementation. Three sub-phases 

belonging to the Requirement analysis are Task analysis and context of use, Functional requirements, 

and Quality attribute analysis. Design has four sub-phases: Conceptual modelling, Dialogue design, 

Navigational design and Presentation design. By structuring the values hierarchically, we hoped that 

rating the UP would be more accessible: the analyst first selects one of the three stages and can then 

focus on the sub-phases. It was not considered viable to merge values to reduce their number lest the 

classification be less accurate. The descriptive definitions of the Expected Phase values were simplified 

to make them more understandable. The Cause attribute was made free text, so the developers could 

describe the cause in their own words. The attribute aimed to make the developers think about the 

underlying cause of the problem, and it should be equally achievable with free text. 

 

The HS developers found CUP slightly hard to grasp at first because there were many attributes to 

consider and they had not previously been involved with a UT. However, after they got started, the 

developers easily understood all Pre-Fix attributes, except for Expected Phase and Task Efficiency. 

They also found Failure Qualifier slightly challenging to understand and commented that the value 

Incongruent Mental Model was a bit technical. The developers did not find Task Efficiency a useful 

attribute, as they found it hard to understand because there was no baseline with which to compare.  

The developers said that they found Expected Phase hard to distinguish between its values and thought 
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they were intertwined. One developer commented, “I think it overanalyses things and it’s too 

complicated and hard to learn.” They only related the main categories: Requirement Analysis, Design 

and Implementation to their own software development process.  

 

When it came to the Post-Fix attributes, the HS developers found Actual Phase to be the most complex. 

One developer said that: “I had to look at the definitions many times because there are so many values. 

But Actual Phase tells you how big the fault was depending on where it was fixed.” The developers did 

not experience any problems with the rest of the Post-Fix attributes and found it useful to fill them out. 

The attribute Cause helped them think about the problems, and they thought it would help them in 

future projects. One developer said the following about Cause: “It is very useful to fill this out because 

it makes you think of what has gone wrong. Although it is sometimes hard since we have not worked 

on HS from the beginning.” This is a compelling point because the developers had only been 

maintaining HS for 18 months and thus did not know what basic design decisions had been made prior 

to their involvement. The developers did not have any documentation about HS development. When 

they were filling out Cause, it was hard for them to find the root cause of the fault; this could therefore 

explain why some of their answers specified what in the user interface caused the UP but not what in 

the software process caused it, i.e., what the developer did wrong.  

 

When the Cause attribute is free text, it is possible to collect data on what causes UP in systems. It is 

appealing to collect this data for more than one system or usability evaluation of the same system, 

because we can then learn more about what developers think about what causes the UP. As more such 

data are gathered, it is even possible to develop patterns of UP root causes.  

 
 

5.4 Implications for the Improvements of CUP 

The developers did not suggest any significant changes to the CUP scheme, except to the Expected and 

Actual Phase attributes. As discussed above, the Cause attribute was changed to free text after the first 

study, and it worked better in the second study. Though the developers were not using all CUP data at 

once and considered one attribute more useful than another, they still wanted all the data. They focused 

on what could be most useful to them at some point in time. Hornbæk and Frøkjær (2005) had the same 

result: the developers all felt that they wanted to receive the problem descriptions and redesign 

proposals.  

 

Based on what the developers thought about the Expected Phase values, it appeared that they might not 

be of any real use, even if values were simplified. The values as currently defined seem inapplicable to 

the development process employed at the participating organisations. A further detailed study of the 

reasons for this would be required. One reason could be that there was no explicit documentation to 

support the processes, and processes were implicit with tacit knowledge of them, which is the current 

trend, as a software process study has revealed (Coleman and O'Connor, 2008). In developing a defect 

classification scheme, it is imperative to consider that many development teams do not use user 

interface lifecycles at all (Gulliksen et al., 2004). Instead of presenting the engineer with a predefined 
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lifecycle for user interface development for the Expected Phase, an assessment of an individual team’s 

current practice can thus identify a lifecycle model that can then be later used to reveal root causes of a 

usability problem. This harmonises well with previous findings, which conclude that companies tailor 

standard software processes to their own contexts depending on the size of the company, market and 

project and system type (Coleman and O'Connor, 2008; Green et al., 2005). The obvious advantage of 

this approach is that developers are familiar with the Expected Phase attribute values, but the 

disadvantage is that it may not give enough information about root causes if the lifecycle is too plain.   

 

Despite dissatisfaction with some variables, including Expected phase, the developers found that CUP 

increased their UP understanding and its attributes helped them when prioritising what UP should be 

fixed. The aim of the field studies was not only to study how the developers used CUP, but to come up 

with ways to improve it. The aim was achieved to a certain extent. The changes that were made to CUP 

after the first field study probably enhanced the developers’ use and understanding of CUP. One HS 

developer made the following comment: “I think that CUP is very useful when working on a new 

version or improvements on a system. The reason is that it makes you work in a more disciplined and 

precise manner because the data are so precise. Comments that we get from users in ProblemTracker 

are usually too vague and hard to understand. CUP saves a lot of time and effort, makes the work more 

focused because knowing what the problem is makes it easier to solve.” 

 

Besides improving the definition of individual attributes of the classification scheme, the included and 

excluded attributes must be decided. Linking the attributes to certain work activities can lead to a more 

targeted and practical classification scheme.  The present paper has presented such links by suggesting 

two theories on what influences developers’ understanding and prioritisation of a UP. 

 

Research on how problem prioritisation is done in practice is scarce, but such studies could help 

discover whether that process has any implication on usability evaluation methods (Hornbæk, 2010). In 

response to the findings of this study, i.e. that developers decide which defects to correct and their 

redesign is based on technical difficulty, budget constraints and holistic solutions, Table 9 suggests new 

variables considered useful for prioritisation. The first column proposes new CUP attributes, the second 

column justifies an attribute’s existence and the third column links the attribute to the other attributes 

supposed to determine prioritisation, according to the literature. The first two new attributes relate to 

the technical difficulty, the third new attribute relates to a holistic solution and the final two new 

attributes would help users assess whether the corrections are worth their time (return on investment).  
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Table 9. Proposed new attributes influencing prioritisation 

Proposed new CUP 

attributes 

Expected reason for 

being useful for 

prioritisation activity 

Prioritisation of change Genre 

 Span of solution 

 

The solution may induce 

more risk if a large part 

of the application is 

being changed at one 

time 

Risk of implementation (risk 

factor, impact, 

countermeasures/controls) 

Technical difficulty 

Complexity of 

solution 

The solution may induce 

more risk if it is complex 

Risk of implementation (risk 

factor, impact, 

countermeasures/controls) 

Groups or an 

abstraction of 

problems 

Instead of looking at 

individual problems, 

strive to find a group of 

problems for which there 

exists a solution module. 

The module could be a 

node in a dependency 

graph.  

Dependency between 

requirement changes 

Holistic 

Sacrifice cost 

 

Revenues lost by 

owner/buyer/user 

because of this problem 

and future loss if not 

corrected  

Revenues, returns  Return on investment  

Gained revenues if 

problem is corrected 

Correction of problem 

leading to increased 

sales  

Revenues, return on investment  

 
5.5. Downstream Utility of CUP  

The main goal of CUP is to provide a development team with more concrete information about system 

UP, thereby maximising the usability evaluation outcome exploitation to improve the system. Put 

differently, CUP aims to facilitate interplay between usability evaluation and system redesign.  Can 

CUP achieve this?   

 

Hornbæk and Stage (2006) identify four challenges for improving the interplay. We call them 

Evaluation Artefacts, Evaluation Goals, Evaluation Products, and Evaluation Insights. Put briefly, 

artefacts to be evaluated should include not only low- or high-fidelity prototypes but also design 

products, including personas and scenarios. Evaluation goals should address the real needs of the 

development team as well as values to be attained by applying interest. Common feedback mechanisms 

include written usability reports and UT observations, but richer and more diverse evaluation products 

are required. Finally, redesign insights can be gained through support for analysing problems, 

prioritising them and recommending solutions. CUP can be seen as an alternative Evaluation Product, 

offering rich contextual and analytical information about UP. CUP may also be regarded as discount 

Evaluation Insights, providing support for understanding and prioritising UP but lacking 

recommendations; this graceful degradation is meant to ensure scheme usability.  

 

Nevertheless, the downstream utility of CUP is hard to demonstrate with the two field studies 

conducted.  Law (2006) defines “downstream utility” as the effectiveness with which the resolution to a 

usability problem is implemented”.  The challenge is that there are so many confounding variables in a 

real software development environment that one can never conclusively attribute the improved system 
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redesigns to any specific CUP features.  For LMS, their own list of issues might have contributed even 

more to system improvement than the CUP list, but we cannot isolate the respective impacts.  In fact, 

given that no systematic usability evaluation has yet been performed on the new LMS release, there is 

no way for us to tell whether the changes triggered by the two lists are effective or not. With the major 

concern about ecological validity, it is undesirable to perform any lab-based experiment to manipulate 

interesting variables (e.g. one group of developers is provided with CUP results, whereas another group 

is provided with a conventional usability report). Alternatively, we adopted action research 

methodology, by engaging practitioners and researchers in collaboratively identifying limits of and 

improvement strategies for CUP through an informal, qualitative, reflective and interpretive approach. 

 

 

6. CONCLUSION AND FUTURE WORK  

 

We have evaluated the reliability, validity and acceptability of the CUP scheme by conducting 

comparative experiments, qualitative studies and questionnaires. We believe that the contribution of the 

paper is twofold; one for HCI developers and evaluators and a second for researchers of work practices 

and tools. First, the study results serve as valuable insights into improving a maturing usability tool, 

which can strengthen the feedback between evaluation and redesign. Second, the study provides a 

methodological framework for assessing reliability, validity and acceptance of a tool under 

development. Analysing reliability is useful for improving the scheme. CUP reliability results indicated 

that analysts' expertise and experience are critical factors or determinants for applying this tool 

consistently and effectively. An expert CUP user could analyse the given UP differently than a novice 

CUP user. The former can analyse more accurately than the latter. Our results show that systematic 

training on deploying CUP is imperative. Similar results were shown in Henningsson and Wohlin 

(2004, 2005), but previous studies are not unanimous on this. For example, Chattratichart and 

Lindgaard (2008) have found no difference between the novices and experts and Capra (2006) found 

that for some variables there was a difference between the groups but not always. Research studies 

examining variations of ODC and studying novices and experts have discussed the reason for 

differences in repeatability of the two groups. Kelly and Shepard (2001) stated that lack of training and 

inexperience accounted for the largest contributions to the variations between students and 

professionals. Besides considering prior experiences of the evaluators, previous research has examined 

if familiarity or experience with the artefacts in question affects the agreement level. Henningsson and 

Wohlin (2005) tried to analyse whether classifiers’ experiences with the software components under 

inspection affected their agreement levels, but discovered that no such relationship could be found. 

Another way to gain experience with the artefact is to ask classifiers to work with the software during 

classification. In a study by Kelly and Shepard (2001), the task-directed software inspection included 

tasks such as finding a data dictionary while reviewing the code. To increase their knowledge about 

classifiers’ level of understanding and to examine what level of understanding was required by the task, 

Kelly and Shepard (2001) described each defect with four levels, requiring increasing understanding:  

C (Comparison of code to user documentation), I (Naming of variables and modules versus use), S 
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(Semantic or logical structure of data, active code, and modules), and L (Calculation/logic and error 

conditions). In a second experiment, participants in the experiments were asked to describe the defects 

with these four levels after completing the regular ODC-CC experiment. The conclusion from this 

exercise was that there was some evidence that tasks will help participants to find more L level defects, 

i.e. the kind of defects which require the most understanding.   

 

The inference for future work is to identify effective training strategies to enhance novice analysts’ 

understanding. A comparison of two equal sized groups of novices and experts would hopefully lead to 

a more valid study and further understanding of how the progression from novice to expert occurs. In 

addition, we can further break down analysts’ expertise and experiences into three variables, namely, 

the actual involvement in conducting the usability evaluation method of interest, the domain knowledge 

of the system under investigation, and CUP scheme expertise. Indeed, research into expertise 

development in product design has shown that novices and experts differ substantially in the strategies 

and domain-specific and experiential knowledge employed.  Using this framework, it has been shown 

that novices can only handle small steps, small ‘chunks’ of information, and need concrete phenomena 

to make many assumptions, but experts can handle large ‘chunks’, can abstract more and do not need to 

make many assumptions (Popovic, 2004). The difference in behaviour between experts and novices in 

classifying phenomena, objects or events has been attributed to their ability to understand abstraction 

(Snyder, 2000). For example, novices are thought to understand phenomena that are at a lower level 

than those that are at a higher level of abstraction and include many sub-categories. As an example, the 

attribute Actual phase is a higher level category than Severity. The value ‘requirements analysis’ (of 

Actual phase) potentially includes a number of sub-categories and many more than the value ‘severe’ 

(of Severity).  Alexander (2012) discusses at length the subjectivity vs. objectivity of a taxonomy, 

comparing it to a scientific endeavour.  Instead of focusing on objectivity, an alternative goal which is 

especially eminent in user interface design, is to focus on usefulness rather than truthfulness.  Second, 

Alexander summarises the literature by stating that the issue of subjectivity vs. objectivity is presented 

as a contrast between tailorability to a specific viewpoint vs. accessibility to all. In practice, Alexander 

(2012)  notes that there will always be a balance between making things more useable to a specific 

community or a target user group vs. accessible to all, or about a balance between specialisation and 

generalisation (Lambe, 2007).  This can be a motivation for further studies into the systematic 

investigation of the variables’ effect on CUP analysis results. 

 

The validity analysis helped us understand whether the CUP attributes are relevant for developers’ 

work. The study showed, interestingly, that developers focused more on creating intuitively holistic 

solutions to a set of problems rather than identifying individual problem solutions. This may suggest 

that grouping the problems or their abstraction may indeed be useful. The study also showed that 

project management is of immense concern and some attributes supported that task well. The 

developers’ unfamiliarity with using the results of systematic tools, including UTs, applying problem 

reviews and problem tracking, might have affected the study results. The results of the Expected Phase 

attribute convinced us that tools used by developers must be tailored to their working framework, 



Page 39 of 45 

knowledge and maturity. More fine-grained attributes, such as Failure Qualifier and Expected Phase, 

can give richer data and provide more insight into plausible UP origins, but they may demand more 

expertise or initial training effort.  

 

The results of the acceptability study showed that practitioners were concerned with the effort spent in 

applying any tool. However, the preliminary data on cost-effectiveness of CUP collected in this study 

indicated that CUP was not time-consuming and did not delay deadlines or the releases of either the 

LMS or HS software. Nonetheless, further data are needed to assess the direct benefit in the effort 

saved.   

 

A triangulation study, like the one described here, with experiments, qualitative work in the field, and a 

questionnaire are all helpful in assessing and improving an intervention suggested for user interface 

developers. Our experience in this study shows that such an intervention can not only help us evaluate 

the scheme in question, but can also tell us a great deal about the current practices and constraints of 

developers’ work.  

 

What distinguishes this work from previous work on classification schemes is that it recognises the 

importance of relating such a scheme to primary work activities, the team’s maturity, development 

constraints and the application being developed.  

 

Future work will study work activities, especially process lifecycles, to understand better the usefulness 

of the Expected Phase variable.  The results of the study motivate questions on whether there are links 

between process maturity and classification scheme usefulness. For example, a problem management 

activity taxonomy has been proposed as a part of the Corrective Maintenance maturity Model (CM3) 

(Kajko-Mattsson, 2006). As the suitability of development methods may depend on applications or 

domains, it may be worthwhile to investigate that dependency. In particular, the comparison between 

domains or types of application will be done with respect to individual parameters of the scheme. How 

to go about tailoring such a classification scheme to individual teams and corporations remains an open 

question. 

 

While the main emphasis has been on Pre-Fix variables, a more longitudinal study will give us 

enhanced data for a study on Post-Fix variables. With data from two different application 

developments, it will also be useful to study the distribution of values for individual parameters, 

including Failure Qualifier and Expected Phase. Finally, the methodology of developing such a 

classification scheme will be an interesting question to tackle. It may not be a none-or-all decision 

between a quantitative (i.e. pre-defined values) and a qualitative approach (i.e. free text); identifying 

the right balance by integrating both into the scheme is more challenging and relevant. 

 

As this research study has shown, explaining usability problems in a language understandable to 

developers in an effective manner is a challenging task.  Many factors are involved, including 
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organisational motivation, development context, current practices and skills. Achieving high reliability 

and validity is thus demanding. In many ways, we are caught between current practices and desired 

outcomes. While we do want to fit the CUP classification scheme to the current context, we aim to pull 

practitioners to higher process standards. Process improvement is thus not only about designing 

innovative schemes, but also providing appropriate training (Cockton, 2006) to maximise the impact on 

products and processes.  

 

The conclusion is that while such classifications may be proposed, they will be adapted by 

practitioners, and, as experience from ODC has shown, they will evolve as time passes. Such 

classifications need to be open and responsive to criticism,  publicly accessible, for example, through 

standards, and maintain an equality of the intellectual authority of the contributors, as referred to in 

Alexander (2012). Thus, the aim of this paper is to put forward such a classification scheme and by 

evaluating its reliability, validity and acceptability, point out its strengths and weaknesses which can be 

a basis for further adaption and evolution.  

 

When implementing the field study, we tackled this challenge with a well-defined evaluation plan and 

intensive meetings with the development team in order to teach them the details of implementing and 

understanding the potential results obtainable from using CUP. However, what we lack is 

methodologically sound measures and instruments to demonstrate the actual impact of utilising CUP.  

It is not only a matter of the interplay between problem discovery and redesign or problem explanation, 

but also the interplay between qualitative and quantitative research methods (Hughes, 1999). The HCI 

and software engineering communities should strive to develop innovative research tools to address 

these interplays. 
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