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Abstract

Modern consumer devices must execute multimedia applications that exhibit high resource utilization. In order to
efficiently execute these applications, the dynamic memory subsystem needs to be optimized. This complex task can
be tackled in two complementary ways: optimizing the application source code or designing custom dynamic memory
management mechanisms. Currently, the first approach has been well established, and several automatic methodolo-
gies have been proposed. Regarding the second approach, software engineers often write custom dynamic memory
managers from scratch, which is a difficult and error-prone work. This paper presents a novel way to automatically
generate custom dynamic memory managers optimizing both performance and memory usage of the target appli-
cation. The design space is pruned using grammatical evolution converging to the best dynamic memory manager
implementation for the target application. Our methodology achieves important improvements (62.55% and 30.62%
better on average in performance and memory usage, respectively) when its results are compared to five different
general-purpose dynamic memory managers.

Keywords: Genetic Programming, Grammatical Evolution, Dynamic Memory Manager, Multi-Objective
Optimization

1. Introduction

Nowadays, multimedia applications are mostly developed using C++. This kind of software programs tend to
make intensive use of dynamic memory due to their inherent data management. However, in C++, dynamic memory
is allocated via the operator new() and deallocated by the operator delete(), which are mapped directly to the
malloc() and free() functions of the standard C library in most compilers. Therefore, the creation and destruction
of objects is managed by a general-purpose memory allocator, which may provide good runtime and low memory
usage for a wide range of applications [1, 2].

However, using specialized Dynamic Memory Managers (DMMs) that take advantage of application-specific be-
havior can dramatically improve application performance [3, 4]. In this regard, three out of the twelve integer bench-
marks included in SPEC (parser, gcc, and vpr [5]) and several server applications, use one or more custom DMMs
[6].

On the one hand, studies have shown that dynamic memory management can consume up to 38% of the execution
time in C++ applications [7]. Thus, the performance of dynamic memory management can have a substantial effect
on the overall performance of C++ applications. On the other hand, new multimedia devices must rely on dynamic
memory for a very significant part of their functionality due to the inherent unpredictability of the input data. These
devices also integrate multiple services such as multimedia and wireless network communications which also compete
for memory space. Then, the dynamic memory management influences the global memory usage of the system [8].
Finally, energy consumption has become a real issue in overall system design due to circuit reliability and packaging
costs [9]. However, it has been recently proved that the DMM consumes only a 1% of the total enery consumption
by the memory subsystem usually in the execution of a given application [10]. Thus, the energy consumption by the
DMM is not relevant on this case and the optimization of the dynamic memory subsystem has two goals that cannot
be seen independently: performance and memory usage. There cannot exist a memory allocator that delivers the best
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performance and least memory usage for all programs. However, a custom memory allocator that works best for a
particular program can be developed using grammatical evolution [11].

To reach higher performance, programmers often write their own ad hoc custom memory allocators as macros or
monolithic functions in order to avoid function call overhead. This approach, implemented to improve application
performance, is enshrined in the best practices of skilled computer programmers [12]. Nonetheless, this kind of
code is brittle and hard to maintain or reuse, and as the application evolves, it can be difficult to adapt the memory
allocator as the application requirements vary. Moreover, writing these memory allocators is both error-prone and
difficult. Indeed custom and efficient memory allocators are complicated pieces of software that require a substantial
engineering effort.

In this work, we have developed a framework based on grammatical evolution to automatically design optimized
DMMs for a target application, minimizing memory usage and maximizing performance. Figure 1 depicts the opti-
mization process. First, as Figure 1(a) shows, we run the application under study together with an instrumentation
tool, which logs all the required information into an external file: identification of the object created/deleted, opera-
tion (allocation or deallocation) object size in bytes and memory address. Since all the DMM exploration process is
performed simulating the generated DMMs with the profiling report, this task must be done just once. In the following
phase, as Figure 1(b) shows, we automatically examine all the information contained in the profiling report, obtaining
a specialized grammar for the target system. As a result, some incomplete rules in the original grammar (see Section
5), such as the different block sizes, are automatically defined according to the obtained profiling. To this end, we have
developed a tool called Grammar Generator. The last phase is the optimization process. As Figure 1(c) depicts, this
phase consists of a Grammatical Evolution Algorithm (GEA) that takes the grammar generated in the previous phase
and the profiling report of the application as inputs. GEA is supported by a DMM simulator that tests the behavior of
every DMM generated by the grammar applied to the application. Our GEA is constantly generating different DMM
implementations from the grammar file. When a DMM is generated (DMM(j) in Figure 1(c)), it is received by the
DMM simulator. Then, the simulator emulates the behavior of the application, debugging every line in the profil-
ing report. Such emulation does not de/allocate memory from the computer like the real application, but maintains
useful information about how the structure of the selected DMM evolves in time. After the profiling report has been
simulated, the DMM simulator returns back the fitness of the current DMM to the GEA. The fitness is computed as
a weighted sum of the performance and memory usage by the proposed DMM for the target device and application
under study. Finally, the DMM with lowest fitness is returned as solution (optimized DMM).

The rest of the paper is organized as follows. First, Section 2 describes some recent advances in the area of DMMs.
Next, Section 3 defines the design space of memory allocators. Then, Section 4 details the design and implementation
of the DMM simulator, as well as some configuration examples. Section 5 details how grammatical evolution is
applied to the DMM optimization. Section 6 shows our experimental methodology, presenting the six benchmarks
selected, whereas Section 7 shows the results for these benchmarks. Finally, Section 8 draws conclusions and future
work.

2. Related work

Several approaches have been presented in the last decade to design flexible and efficient infrastructures for build-
ing custom and general-purpose memory allocators [6, 8, 13]. All the proposed methodologies are based on high-level
programming where C++ templates and object-oriented programming techniques are used. They allow the software
engineer to compose both general-purpose and custom memory allocator mechanisms. The aforementioned method-
ologies enable the implementation of custom DMMs from their basic parts (e.g., de/allocation strategies, order within
pools, splitting, coalescing, etc.). In addition, [8] and [13] provide a way to evaluate the memory usage and energy
consumption, but at system-level. However, all the previously mentioned approaches require the execution of the tar-
get application to evaluate every candidate custom DMM, which is a very time-consuming task, especially if the target
application requires human inputs (like video games). In this regard, [14] and [15] presented two DMM design frame-
works that allow the definition of multiple memory regions with different disciplines. However, these approaches are
limited to a small set of user-defined functions for memory de/allocation. Furthermore, the selection of the “best”
DMM is based on a set of predefined rules and mono-objective search, respectively. Thus, new multi-objective ap-
proaches to measure performance and memory usage are needed when designing a custom or general-purpose DMM.
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Figure 1: DMMs optimization flow. In the first phase, we generate an initial profiling of the de/allocation pattern. In the second phase, we
automatically analyze the profiling report to generate the final grammar. Finally, in the third phase an exploration of the design space of DMMs
implementation is performed using GE.

An initial design of the GEA proposed in this work was presented in [11] and the DMM simulator was described in
[16] and [17]. However, the design space was defined in terms of previous DMM classifications performed by Berger
[6] and Atienza [13]. Such classifications implied a complex taxonomy of DMMs, as well as a huge search space.
The execution time of both the simulator and the GEA became prohibitive and a parallelization was needed [18].
Furthermore, the profiling of the application was obtained overloading both malloc() and free() functions. Such
mechanism required the modification and re-compilation of every target application. Thus, in this new framework,
with the use of instrumentation code, the re-compilation is no longer needed, which is a great advantage. Thus, we
have renewed both the GEA and the simulator improving the previous search space (too complex for GEA) and the
simulation performance, reaching a straightforward design that offers better results in affordable computational times
(from minutes to several hours, depending on the target application, vs. days or weeks in other approaches [11]). As a
consequence, we present in this work a flexible, stable and highly-configurable DMM design framework. By profiling
the target application, the DMM simulator can receive the dynamic behavior of the application off-line and evaluate
all the aforementioned metrics. As a result, the simulator is integrated into a search mechanism based on grammatical
evolution in order to obtain optimum DMMs.

3. Dynamic memory management

In this Section, we summarize the main characteristics of dynamic memory management, as well as the new
classification of memory allocators, which is later considered in the implementation of the simulator and the grammar
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definition.

3.1. Dynamic memory management

Dynamic memory management basically consists of two separate tasks, i.e., allocation and deallocation. Alloca-
tion is the mechanism that searches for a memory block big enough to satisfy the memory requirements of an object
request in a given application. Deallocation is the mechanism that returns a freed memory block to the available mem-
ory of the system in order to be reused subsequently. In current applications, the blocks are requested and returned in
any order. The amount of memory used by the memory allocator grows up when the memory storage space is used
inefficiently, reducing the storage capacity. This phenomenon is called fragmentation. Internal fragmentation happens
when requested objects are allocated in blocks whose size is bigger than the size of the object. External fragmentation
occurs when no blocks are found for a given object request despite enough free memory is available. Hence, on top
of memory de/allocation, the memory allocator has to take care of memory usage issues. To avoid these problems,
some allocators include splitting (breaking large blocks into smaller ones to allocate a larger number of small objects)
and coalescing (combining small blocks into bigger ones to allocate objects for which there are no available blocks of
their size). However, the algorithms that implement these features usually reduce performance due to the additional
data structures needed to keep track of the free and used blocks [19].

There exist several general-purpose DMMs. Here we briefly describe two of them, the Kingsley DMM [20] and
the Lea DMM [2]. Our optimized DMMs are compared with them because Kingsley and Lea are widely used in
both general-purpose and embedded systems, and they are on opposite ends between maximizing performance and
minimizing memory usage.

The Kingsley DMM was originally used in BSD 4.2, and current Windows-based systems (both mobile and
desktop) apply the main ideas from Kingsley. The Kingsley DMM organizes the available memory in power-of-two
block sizes: all allocation requests are rounded up to the next power of two. This rounding can lead to severe memory
usage issues, because in the worst case, it allocates twice as much memory as requested. It performs no splitting
(breaking large blocks into smaller ones) or coalescing (combining adjacent free blocks). This algorithm is well
known to be among the fastest DMMs although it is among the worst in terms of memory usage [6, 21].

On the contrary, the Lea DMM is an approximate best-fit DMM that provides mainly low memory usage. Linux-
based systems use as their basis the Lea DMM. It presents a different behavior based on the size of the requested
memory. For example, small objects (less than 64 bytes) are allocated in free blocks using an exact-fit policy (one
linked list of blocks for each multiple of 8 bytes). For medium-sized objects (less than 128Kb), the Lea allocator
performs immediate coalescing and splitting in the previous lists and approximates best-fit. For large objects (≥
128Kb), it uses virtual memory (through mmap).

3.2. Classification of memory allocators

Memory allocators are typically categorized by the mechanisms that manage the lists of free blocks (free lists).
These mechanisms include segregated free lists, simple segregated storage, segregated fit, exact segregated fit, strict
segregated fit, and buddy systems.

Figure 2 shows the classification of memory allocators provided in [20]. To easily describe the search space in
a grammar definition, we have reorganized these memory allocator mechanisms in a hierarchy. In the following we
briefly describe these allocator mechanisms.

A segregated free-list allocator divides the free list into several subsets, according to the size of the free blocks.
A freed or coalesced block is placed on the appropriate list. An allocation request is served from the appropriate list.
This class of mechanism usually implements a good fit or best fit policy.

Simple segregated storage is a segregated free-list allocation mechanism which divides the storage into pages or
other areas, and only allocates objects of a single size, or small range of sizes, within each area. This approach makes
allocation fast and avoids headers, but may lead to high external fragmentation, as unused parts of areas cannot be
reused for other object sizes.

Segregated fit is another variation of the segregated free-list class of allocation mechanisms. It maintains an array
of free lists, each list holding free blocks of a particular range of sizes. The manager identifies the appropriate free list
and allocates from it (often using a first-fit policy). If this mechanism fails, a larger block is taken from another list
splitting it accordingly.

4



Figure 2: Classification of memory allocators.

Strict segregated fit is a segregated fit allocation mechanism which has only one block size on each free list. A
requested block size is rounded up to the next provided size, and the first block on that list is returned. The sizes must
be chosen so that any block of a larger size can be split into a number of smaller sized blocks.

Exact segregated fit is a segregated fit allocator, which has a separate free list for each possible block size. The
array of free lists may be represented sparsely. Large blocks may be treated separately. The details of the mechanism
depend on the distribution of sizes between free lists.

Buddy systems are special cases of strict segregated fit allocators, which make splitting and coalescing fast by
pairing each block with a unique adjacent buddy block. To this end, an array of free lists exists, namely, one for each
allowable block size. Allocation rounds up the requested size to an allowable size and allocates from the corresponding
free list. If the free list is empty, a larger block is selected and split. A block may only be split into a pair of buddies.
A block may only be coalesced with its buddy, and this is only possible if the buddy has not been split into smaller
blocks. Different sorts of buddy system are distinguished by the available block sizes and the method of splitting.
They include binary buddies (the most common type), Fibonacci buddies, weighted buddies, and double buddies [20].

4. DMM simulator design

The global DMM optimization process needs an external simulator to evaluate every candidate DMM generated
by the GEA (see Figure 1(c)). In this section we motivate and describe our DMM simulator as well as we outline its
design goals.

As introduced in Section 1, several existing libraries allow the implementation of both general-purpose and custom
DMMs. However, exploration techniques cannot be easily applied. Indeed, each custom design must be implemented,
compiled and validated against a target application; hence, even if the DMM library is highly modular, this is a very
time-consuming process. Thus, a simulator can greatly help in such optimization by being part of a higher optimization
module that allows system designers to evaluate (in terms of performance and memory usage) a candidate DMM for
the target application. Thus, the desired design goals for the development of this DMM exploration framework are:

• Efficiency: since the simulator needs to collaborate with the search algorithm, the DMM simulator must improve
the execution time of a real DMM.

• Flexibility: software engineers must be able to simulate any DMM as a composition of single memory alloca-
tors. Thus, the parameters of each allocator should be highly configurable.
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The global design of our software platform is constituted by a DMM simulation library, an optimization library
(based on Grammatical Evolution) and a basic Graphical User Interface (GUI). We also have implemented both the
Kingsley and Lea memory allocators [20]. All the source code is publicly available in [22].

In order to work with our simulator, the engineer must start with a profiling phase of the target application. To
this end, we have used a tool called Pin [23]. Pin’s instrumentation is easy to work with. It allows the designer to
insert calls to instrumentation at arbitrary locations in the target application source code. The Pin distribution includes
many sample architecture-independent Pin-tools including profilers, cache simulators, trace analyzers, and memory
bug checkers. Appendix A details the source code and configuration needed to obtain a profiling report of the target
application. Note that the software engineer does not need the source code of the target application to obtain the
profiling report.

Once obtained the profile, the next step consists of: (a) performing an automatic exploration as described in
Figure 1(c), or (b) selecting the best design among a predefined set of DMM candidates. As a consequence, the
composition of a DMM candidate follows a straightforward process for the designer. For instance, one common
way of improving memory allocation performance is allocating all objects from a highly-used class using a per-class
pool of memory. Because all these objects are of the same size, memory can be managed by a simple singly-linked
free-list. Thus, programmers often implement these per-class allocators in C++ by overloading the new and delete

operators for the class. In this regard, Appendix B provides the details to configure custom DMMs in two ways: (1)
programming, composing DMMs with a few lines of code, or (2) via a Graphical User Interface (GUI), which allows
us to select a DMM in a range of preconfigured ones. Appendix B also shows how we can analyze the profiling report
to check the different block sizes de/allocated in the target application. We can also study the different classes used in
the application as well as their sizes.

On each simulation run, several relevant metrics are computed, such as the number of de/allocations, splittings,
coalescings, performance, memory usage, memory accesses, etc. See Appendix B for more details.

Following the scheme provided in Figure 1(c) we now proceed to describe the other module involved in our design
framework: the optimization of DMMs using a Grammatical Evolution Algorithm.

5. Grammatical evolution applied to DMM optimization

Grammatical Evolution (GE) (e.g., [24], [25], [26], [27], [28]) is a grammar-based form of Genetic Programming
(GP) [29]. It combines principles from molecular biology to the representational power of formal grammars. GE
has a rich modularity, which provides a unique flexibility. This makes possible to use alternative search strategies
(evolutionary, deterministic or some other approach), changing the behavior of the algorithm by merely changing the
grammar supplied. Since we use a grammar to define the structures that are generated by GE, we can easily modify
the output structures. To this end, we must simply edit the plain text grammar. This is one of the advantages that
makes the GE approach so attractive. The characteristics of the GE genotype-phenotype mapping also means that we
can operate in traditional integer or binary chromosomes (instead of operating on solution trees, as in standard GP).
When solving a problem with GE, a suitable Backus Naur Form (BNF) grammar definition must initially be defined.
The BNF can be either the specification of an entire language or, perhaps more usefully, a subset of a language geared
towards the problem at hand. In a simulation run, GE can theoretically evolve programs in any language described by
a BNF.

A grammar can be represented by the tuple {N,T, P, S }, where N is the set of non-terminals, T the set of terminals,
P a set of production rules that maps the elements of N to T , and S is a start symbol that is a member of N. When
there are a number of productions that can be applied to one element of N, the choice is delimited with the “|” symbol.

We have defined a grammar to optimize DMMs using GE. Such grammar follows the DMM’s classification de-
scribed in Section 3.2. Since the grammar depends on the different block sizes managed by the target application,
we have developed a tool that generates a grammar file from a given profiling report. Figure 3 shows the grammar
generated for DealII, one of the benchmarks analyzed in this paper, which is described in Section 6. As Figure 3
shows, the grammar contains 12 non-terminals, 31 terminals, and 12 production rules.

Following the production rules, a DMM is a list of several allocators (see production rules I and II in Fig-
ure 3). There are two kinds of allocators (rule II): AllocatorSize, which is followed by more allocators, and
AllocatorMaxSize, which is the last allocator in the chain. In this sense, production rules III and IV are equivalent
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N = {<DynamicMemoryManager >, <Allocators >,
<AllocatorSize >, <AllocatorMaxSize >,
<AllocatorClass >, <Size >, <MaxSize >,
<AllowSplitting >, <AllowCoalescing >,
<DataStructure >, <AllocationMechanism >,
<AllocationPolicy >}

T = {SegregatedFreeList , SimpleSegregatedStorage , ExactSegregatedFit , BuddySystemBinary ,
BuddySystemFibonacci , 4, 7, 8, (block sizes ommited here for the sake of space)... , 7832240 , true ,
false , SLL , DLL , BTREE , FIRST , BEST , EXACT , FIFO , LIFO}

S = <DynamicMemoryManager >
I <DynamicMemoryManager > ::= <Allocators >
II <Allocators > ::= <AllocatorSize >

|<AllocatorMaxSize >
III <AllocatorSize > ::= <AllocatorClass >

<AllowSplitting >
<AllowCoalescing >
<Size >
<DataStructure >
<AllocationMechanism >
<AllocationPolicy >
<Allocators >

IV <AllocatorMaxSize > ::= <AllocatorClass >
<AllowSplitting >
<AllowCoalescing >
<MaxSize >
<DataStructure >
<AllocationMechanism >
<AllocationPolicy >

V <AllocatorClass > ::= SegregatedFreeList
|SimpleSegregatedStorage
|ExactSegregatedFit
|BuddySystemBinary
|BuddySystemFibonacci

VI <Size > ::= 4|7|8|12|14|15|16|17|18|19|20|21|23|24|25|26|28|31|32|36|40|44
|48|52|56|60|64|72|76|79|80|84|88|92|96|100|104|108|112|116|120|128
|132|136|140|144|152|160|168|172|176|180|184|188|192|200|202|208|212
|216|220|224|228|232|236|240|248|252|256|264|276|280|284|288|300|303
312|316|320|324|336|348|352|356|360|380|384|396|400|424|432|440|444
|448|457|480|492|496|500|504|512|525|528|536|540|556|564|576|584|600
|608|617|624|626|630|631|632|648|660|672|692|713|720|745|756|768|772
|784|800|808|820|...|820840|995732|1011432|1034632|1274436|1295112
|1296000|1616064|1916188|1947512|1991464|2548872|2760556|2804912
|3832376|3916120|3979304|5521112

VII <MaxSize > ::= 7832240
VIII <AllowSplitting > ::= true|false
IX <AllowCoalescing > ::= true|false
X <DataStructure > ::= SLL|DLL|BTREE
XI <AllocationMechanism > ::= FIRST|BEST|EXACT
XII <AllocationPolicy > ::= FIFO|LIFO

Figure 3: Grammar file generated with the DealII profiling report. More than 200 block sizes have been omitted for simplicity. The only differences
between grammar files generated for different benchmarks are both the Size and MaxSize non-terminals.

with the only difference that an AllocatorMaxSize is employed to manage block sizes belonging to the biggest
range.

As rules III and IV suggest, the general behavior of the allocator is defined in its allocator class, which specifies
the way in that list (or arrays) of blocks are distributed. We have developed up to five different classes (see rule
V). Both AllocatorSize or (AllocatorMaxSize) production rules determine if the corresponding allocator allows
splitting and/or coalescing. Every allocator is responsible to manage block sizes in the range from Size bytes to the
Size defined in the following allocator. If the allocator is the last one, i.e. and AllocatorMaxSize, then it manages
block sizes in the range (Size,MaxSize]. Both Size and MaxSize production rules (VI and VII in Figure 3) depend
on the profiling report of the target application, because each application manages its own range of block sizes.

In this regard, we have observed that different profiling reports coming from the same application are quite similar
in both block sizes and number of mallocs and frees. This occurs even if the application is purely interactive (like
video games, that need human input), as happens with many multimedia applications. As a consequence, only one
profiling report is needed to obtain an optimized DMM per application.

In addition to block sizes, rules III and IV also declare, for a given allocator, which data structure is used to store
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the blocks (three data structures have been declared, see rule X), the allocation mechanism (first, best and exact fits
are allowed, see rule XI) and the allocation policy (FIFO and LIFO, see rule XII).

A GE’s individual uses a variable-length encoding scheme where each gene holds an integer value that will be
mapped to previously labeled production rules of a given BNF by the decoding process. The genotype is used to map
the start symbol, as defined in the Grammar, onto terminals by reading codons to generate a corresponding integer
value.

Consider the genome example of Figure 4, which has 18 genes with integer values, and the grammar in Figure 3.
In order to decode the genome, the modulus operation is applied between the gene value and the number of options
of each production rule. In this regard, the maximum integer value admitted for each gene is the maximum number of
options in a rule of the given grammar.

401 213 8 151 77 2 34 60 300 114 205 7 2 122 183 197 49 136

Figure 4: A GE individual’s genome.

Therefore, the decoding process reads the first gene, namely, 401. Since there is only one production rule headed
by <DynamicMemoryManager> (group I), the selected one is the production 0 (401 mod 1= 0) (<DynamicMemoryManager>
::= <Allocators>). Next, the second gene is read and its value (213), after the modulus operation (213 mod 2),
results in 1; therefore, the production <Allocators> ::= <AllocatorSize> is picked up. Next, there are eight
productions pointed to by the symbol <AllocatorSize>; thus, the genes 8, 151, 77, 2, 34, 60, 300 and 114 are
picked up. After the modulus operation, it results in:

• AllocatorClass (8 mod 5 = 3): BuddySystemBinary

• AllowSplitting (151 mod 2 = 1): false

• AllowCoalescing (77 mod 2 = 1): false

• Size (2 mod 419 = 2): 8

• DataStructure (34 mod 3 = 1): DLL

• AllocationMechanism (60 mod 3 = 0): FIRST

• AllocationPolicy (300 mod 2 = 0): FIFO

• Allocators (114 mod 2 = 0): AllocatorMaxSize

So far the decoded expression is formed by one allocator, using a BuddySystemBinary behavior. It does not allow
us splitting and/or coalescing. In addition, the decoded DMM until now manages block sizes in the range of (0, 8]
bytes. The data structure used to store blocks is a doubly-linked list. Finally, the allocation mechanism and allocation
policy are first fit and first in first out, respectively.

Following the same procedure for the rest of the individual, we decode the next seven genes (205, 7, 2, 122, 183,
197 and 49), which after the modulus operation, result in:

• AllocatorClass (205 mod 5 = 0): SegregatedFreeList

• AllowSplitting (7 mod 2 = 1): false

• AllowCoalescing (2 mod 2 = 0): true

• MaxSize (122 mod 1 = 0): 7832240

• DataStructure (183 mod 3 = 0): SLL

• AllocationMechanism (197 mod 3 = 0): FIRST

8



Table 1: Resultant Dynamic Memory Manager encoded in Figure 4.

BuddySystemBinary, split=false, coalesce=false
Data Structure Mechanism(Policy) Range (bytes)

DLL FIRST(FIFO) (0, 1]
DLL FIRST(FIFO) (1, 2]
DLL FIRST(FIFO) (2, 4]
DLL FIRST(FIFO) (4, 8]

SegregatedFreeList, split=false, coalesce=true
Data Structure Mechanism(Policy) Range (bytes)

SLL FIRST(LIFO) (8, 7832240]

• AllocationPolicy (49 mod 2 = 1): LIFO

The decoded DMM after the 17th gene is represented in Table 1. Such DMM is composed by two allocators,
both defined in terms of the decoded individual depicted in Figure 4. Then, as shown in Figure 1(c), the simulator is
continuously receiving best individuals in the optimization process. Hence, it decodes the individual and simulates
the resulting DMM using the profiling report, giving its fitness in terms of performance and memory usage.

An important advantage of the grammatical evolution representation shown is that it uses a linear genome. There-
fore, GE can directly use all standard genetic algorithm operators. Furthermore, because of the simplicity of the linear
representation, computing implementations of GE are relatively simple to deploy.

Indeed, in the previous example the decoding process terminated without translating all genes. This occurs because
in GE the genetic operations do not know about the semantics of a genome until it is decoded, so the decoding process
frequently ends up with a complete expression (final) without traversing the entire genome. Hence, this exploration
process has a short exploration time.

On the other hand, we can find a potentially more serious concern with GE, which is the situation of having
redundant genes. In the decoding process, it could happen that a genome does not have sufficient genes to create a
complete phenotype, i.e., there still exist non-terminals in the chromosome. In this case the wrap operator is applied.
It consists of returning the reading process head back to the first codon in the chromosome. Even after the first
wrapping, the mapping process could be incomplete and would carry on indefinitely unless terminated. This occurs
because non-terminals are being mapped recursively by several production rules. This individual should be marked
as invalid. For this reason an upper limit on the number of wrappings is set in our optimization approach for DMMs.
Therefore, during the mapping process, starting from the left-hand side of the genome, we generate integer values and
use them to select rules from the BNF grammar, until one of the following situations arise:

1. A complete DMM is generated. It occurs when all the non-terminals are transformed into elements from the
terminal set of the BNF grammar.

2. The end of the genome is reached and then the wrapping operator is called. This results in the continuation of
the genome reading starting from the left hand side of the genome once again. The reading of the codons will
then continue, unless an upper limit representing the maximum number of wrappings has occurred during this
indidual’s mapping process.

3. In the case that the limit of the number of wrappings has occurred and the individual is still incompletely
mapped, the mapping process is stopped, and the individual is assigned the highest fitness value (assuming
minimization).

Our grammar is complete enough to implement any well-known DMMs and to explore custom DMM implemen-
tations for real-life multimedia applications (see Section 7 for more details). Regarding hardware platforms, it can be
applied to any computer platform where the use of C++ is allowed.
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6. Experimental methodology

In this section we describe the set of benchmarks used, the fitness function employed and the general configuration
of our optimization algorithm.

6.1. Benchmarks

As stated above, we study the performance and memory usage implications of building general-purpose and
custom allocators using both the simulator and our GEA proposal. To evaluate both metrics, we have selected a
number of memory-intensive programs [30], some of them executed with different inputs, as listed in Table 2 and next
described.

Table 2: Statistics for the analyzed memory-intensive benchmarks
Memory-Intensive Benchmark Statistics

Benchmark Objects Total memory (bytes) Max in use (bytes) Average size (bytes) Memory ops
hmmer 5000101 2780155771 66074 556.01 10020365
dealII 4926536 451183299 33747256 91.58 10251022
soplex 6188584 4537088927228 13273944 733138.45 12377148
calculix 4054631 19675406468 92335483 4852.57 10432894
gcc/200 4810046 4568294683 163997226 949.74 10875348
gcc/expr2 3363661 6246880022 531906484 1857.16 7632761
gcc/c-typeck 2786057 6040320719 408900497 2168.05 6781339
perl/split 5534308 1526190192 140256527 275.76 10900336
perl/diff 5321169 54544092 17209415 10.25 10544463
perl/spam 5278732 213309132 27784844 40.40 10320179

hmmer performs sensitive searches in a gene sequence database, by applying the statistic models developed in
profile hidden Markov models. These tecniques are widely used in computational biology to search for patterns in
DNA sequences and in the protein sequence analysis.

dealII is an application that uses the C++ library named deal.II. This library allows the development of modern
adaptive finite elements algorithms in several space dimensions using, among others aspects, sofisticated error esti-
mations and adaptive meshes. The library provides a modern interface to the complex data structures and algorithms
required. Also, programs can be developed to be independent of the space dimension, without great penalties on
run-time and memory consumption.

soplex is an application which solves a linear program applying the Simplex algorithm. A linear program is given
by a sparse matrix A of m by n, and a right hand side vector b of dimension m and an objective function coefficent
vector c of dimension n. The goal is usually to find the vector x that minimizes c with Ax ≤ b and x ≥ 0.

calculix is applied in structural mechanics and it is based on Calculix, a software that uses clasical theory of
finite elements. It is used for linear and non linear three dimensional structural applications and can be used to solve
problems related with the design of bridges, building, earthquake resistance, resonance phenomena, etc.

gcc is a C language optimizing compiler based on gcc version 3.2. It adds optimized code generation for an AMD
processor. The inlining of heuristics have been slightly modified in order to add code more typical of current compiler
usage. Also, gcc would spend more time analyzing the source code inputs and use more memory. In addition, we
have profiled this application with three different inputs: 200.i comes from a previous version of the floating point
SPEC2000 benchmark (SPECfp2000) 200.sixtrack (gcc/200). Expr2.i comes from the source of 403.gcc (gcc/expr2),
as c-typeck.i does (gcc/c-typeck).

perlbench is a shortened version of PERL, a scripting programming language where OS-specific features have
been removed. The workload consists of three scripts with several third-party modules. The first workload is the
open source spam checking software SpamAssasin, used to score a couple of known corpora of both spam and ham.
MhonArc is a popular freeware email-to-HTML converter, where email messages are generated randomly and con-
verted to HTML. Lastly, a slightly-modified version of specdiff script, as part of the CPU2006 tool suite. Thus, we
have profiled this application with three different inputs: splitmail, based on the splitmail program that takes an email
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message and break it up into smaller pieces (perl/split); diffmail, which is a differentiated message delivery archi-
tecture to control spam (perl/diff); and checkspam, which is a PERL script to check both spam and ham using the
SpamAssasin module (perl/spam).

To perform the profiling of the applications, we applied the Pin tool, as described in Section 4, and we run all the
applications on an Intel Core 2 Quad processor Q8300 system with 4 GB of RAM, under Windows 7. This task was
performed just once within the proposed DMM exploration methodology.

Table 2 includes the number of objects allocated and their average size. The applications’ memory usages range
from just 64.5 KB (for hmmer) to over 507.27 MB (for gcc/expr2). For all the programs, the ratio between total
allocated memory and the maximum amount of memory in use is large. In addition, the number of memory operations
is also large. Thus, all the proposed benchmarks highly rely on the dynamic memory subsystem. In the next step
we simulate five general-purpose allocators, as well as perform an automatic exploration of feasible DMMs using
grammatical evolution over all the tested benchmarks.

6.2. Fitness function

In order to select the best possible DMM among a set of candidates, the optimization algorithm must use a well-
defined fitness function. In this work, we have used a weighted sum of execution time and memory usage, normalized
to both Kingsley and Lea DMMs, the fastest and the more memory efficient, respectively. Thus, the fitness function
is given by:

F = 0.5 ·
T

TKNG
+ 0.5 ·

M
MLEA

(1)

where T and M are the execution time and memory used by the DMM being evaluated, and TKNG, MLEA are the
execution time and memory usage of Kingsley and Lea DMMs, respectively. It is worth noting that we define memory
usage as the high water-mark of memory requested from the virtual memory.

6.3. Algorithm configuration

To implement our GE algorithm, we have used JECO [22], a well-known optimization library developed in Java.
With the parameters given below, we have set 250 generations and 100 individuals because is the minimal number
of evaluations needed by GEA to reach the best DMM in the Soplex benchmark, which is the biggest one (12 × 106

memory operations, as Table 2 shows). Obviously, with the number of evaluation fixed, the smaller the size of the
profiling report (with respect to Soplex), the higher the quality of solutions. Thus, we have selected the following
parameters:

• Population size: 100

• Elite size: 10

• Replacement type: generational

• Number of generations: 250

• Selection mechanism: Tournament

• Tournament size: 2

• Probability of crossover: 0.80

• Fixed point crossover: yes

• Probability of mutation: 0.02

• Maximum number of wraps: 3

Nevertheless, it should be noted that in our methodology the simulator can obtain the fitness of a generic DMM
in a couple of seconds (the Kingsley DMM, for example) and continue with the optimization process until a given
fitness have been reached (75% of Kingsley’s, for example).
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7. Results

We simulated the benchmarks described in the previous section by considering five general-purpose allocators:
the Kingsley allocator (labeled as KNG in the following figures), the Doug’s Lea allocator (labeled as LEA), a buddy
system based on the Fibonacci allocation algorithm (labeled as FIB), a list of 10 segregated free-lists (S10), and an
exact segregated free list allocator (EXA). Finally, we compared the results with the custom DMM obtained with
our proposed automatic exploration process (labeled as GEA). To find a solution to our multiobjective optimization
problem, we construct the single aggregate objective function shown in Equation (1). In addition, to prove that the
algorithm is not trapped into a local optima, we have extended the number of generations for both hmmer and soplex
benchmarks to 5000 (labeled as GEA*). All the results obtained are averaged over 10 trials.

To create the custom DMMs, we have followed the proposed methodology flow (Figure 1). We first profiled the
behavior of the application under study using the Pin tool. Our Grammar Generator tool completes the grammar
file (as described in Section 5), filling in the different block sizes demanded by the application, which are initially
unknown. Finally, we execute our grammatical evolutionary algorithm.

In Figure 5 we present our experimental results. To better scale the values, we have limited the upper bound of
the bar plots to 3 (FEXA = 2763.79 in soplex, for instance). Figure 5(a) depicts the global fitness reached by all the
proposed DMMs, given by Eq. (1). Figs. 5(b) and 5(c) show each one of the components of the global fitness, i.e.,
normalized execution time T

TKNG
and normalized memory usage M

MLEA
, respectively. In all the experiments performed,

the standard deviation was lower than 0.04.
Table 3 shows the improvement (in average) obtained by GEA in global fitness, performance and memory use,

respectively, with respect to the six benchmarks. As can be seen, GEA outperformed all the five general purpose
DMMs in all cases, reaching improvements up to 90.78% in the global fitness.

Table 3: Averaged percentage of improvent. GEA vs. KNG, LEA, FIB, S10 and EXA.
KNG LEA FIB S10 EXA Average

Fitness (= 100 × F∗−FGEA
F∗

) 9.13% 62.52% 51.81% 86.88% 86% 59.27%
Performance (= 100 × T∗−TGEA

T∗
) 1.17% 72.44% 62.62% 85.74% 90.78% 62.55%

Memory (= 100 × M∗−MGEA
M∗

) 16.03% 23.14% 15.08% 38.88% 59.96% 30.62%

As a global analysis of general-purpose DMMs, we can see in both Figure 5(a) and Table 3 that Kingsley is
an excellent allocator. It is clearly the best general-purpose DMM in terms of performance (see Figure 5(b)). This
great performance is slighty damaged by the memory usage (see Figure 5(c)), which is the feature where KNG is
outperformed, mainly by LEA, in nine of the ten cases. As a consequence, LEA is a good candidate in order to
reduce memory usage. It is worth noting than LEA was widely outperformed by Kingsley in soplex. The buddy
system based on Fibonacci (FIB) always shows an intermediate behavior in five of the six benchmarks. The other
two general-purpose DMMs, labeled S10 and EXA, present a different behavior, depending on the benchmark. For
example, examining the global fitness (Figure 5(a)), the ten segregated lists (S10) is a good allocator for hmmer, but
it is the worst choice for dealII, calculix, gcc and perlbench. Finally, the exact segregated list (EXA) did not respond
well, being the worst choice for hmmer and soplex.

We now analyze the results obtained by both GEA and GEA*, examining each metric independently. To this
end we also show in Table 4 the percentage of improvement reached by our exploration algorithm, compared to the
Kingsley allocator. After a first view to the global fitness (see also Figure 5(a)) we may conclude that our custom
DMM is the best choice in all the six benchmarks (ten configurations), giving improvements of 20.08%, 2.31%,
0.17%, 6.59%, 7.21%, 10.55%, 33.35%, 1.11%, 3.61% and 4.30% in the cases of hmmer, dealII, soplex, calculix, gcc
(200, epxr2, c-typeck), and perlbench (split, diff, spam), respectively. It is worth noting that the results was exactly
the same (in average) using 5000 generations instead of 250 (see hmmer* and soplex* in Table 4). It makes sense
since both GEA and GEA* finished quite close to the Kingsley’s performance, which is difficult to improve. Finally,
the wall-clock time needed to evaluate 250 generations of 100 individuals varies from a couple of hours in the case of
hmmer to 9-10 hours in the case of soplex.

Regarding performance (Figure 5(b)) the best results in this case are obtained by Kingsley and GEA. Note that in
6 of 10 cases, GEA is up to 0.84% worse than Kingsley. It is not relevant, because Kingsley is a highly optimized
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(a) Global fitness

(b) Execution time

(c) Memory usage

Figure 5: Global fitness F, execution time T
TKNG

and memory usage M
MLEA

for the six benchmarks managed by six DMMs.

allocator for performance, while tends to perform worse than other managers regarding to memory footprint [8].
Then, Lea, the Fibonacci-based buddy allocator, Segregated list and Exact fit, on the contrary, have different behaviors
depending on the application (particularly S10 and EXA). Thus, these four allocators are worse than Kingsley and
GEA in all conditions.

In terms of memory usage (Figure 5(c)), we can observe that Kingsley is not the best allocator, as it suffers from
a high level of internal fragmentation which in turn results in a larger memory utilization. Although Lea is highly
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Table 4: Percentage of improvent. GEA (GEA*) vs. Kingsley

100 × FKNG−FGEA
FKNG

100 × TKNG−TGEA
TKNG

100 × MKNG−MGEA
MKNG

hmmer 20.08% 8.33% 31.04%
hmmer* 20.08% 8.33% 31.04%

dealII 2.31% 0.11% 4.58%
soplex 0.17% 0.08% 3.72%

soplex* 0.17% 0.08% 3.72%
calculix 6.59% -0.84% 13.17%
gcc/200 7.21% 0.01% 14.05%

gcc/expr2 10.55% -0.37% 20.80%
gcc/c-typeck 33.35% -0.49% 52.44%

perl/split 1.11% -0.04% 2.05%
perl/diff 3.61% -0.58% 7.65%

perl/spam 4.30% -0.54% 8.14%

optimized in memory usage, we can see that it does not perform well in the case of soplex. This occurs because
soplex uses almost all the block sizes in the range [1 . . . 3849000] bytes. Then Lea uses big block sizes and internal
fragmentation occurs. Once more, the DMM obtained by GEA is the best choice: 31.04%, 4.58%, 3.72%, 13.17%,
14.05%, 20.80%, 52.44%, 2.05%, 7.65%, and 8.14% better than Kingsley in hmmer, dealII, soplex, calculix, gcc
(200, epxr2, c-typeck), and perlbench (split, diff, spam), respectively. As a result, GEA is the best choice.

At this point, we can observe that using our proposed DMM simulator in the memory exploration process enables
the study of six different allocation mechanisms starting from a unique previous run of each target application. This
point, that comes from joining the profiling task and the simulator features, enables large savings in the dynamic
memory optimization exploration, providing great benefit to designers.

We have analyzed the numerical results obtained using our methodology. Next, we describe the structure of the
best custom DMMs obtained by GEA for all the ten configurations.

7.1. hmmer

Table 5 shows the DMM obtained by both GEA and GEA* for the hmmer benchmark. This benchmark includes
2013 different block sizes, varying from 2 to 9696 bytes (9.47 KB). The custom DMM presents 2 different internal
allocators. The first one is a segregated free list with only coalescing, where its unique list of free-blocks covers
the range (2 . . . 9600] bytes, and is implemented as a B-tree with first-fit allocation and first-in-first-out policy. The
allowed range by the free list is depicted in the last column of Table 5. The second allocator follows an exact segregated
fit with splitting and coalescing. It contains one free list implemented with a binary tree, with first-fit and last-in-first-
out policies, varying from 9.37 to 9.47 KB. Since there are no block sizes between 9600 and 9696 bytes, it is logical
to have one exact allocator to store the blocks with the maximum size. In this way, the performance is close to the
kinsgley allocator (having only 2 data structures) and the memory is better managed.

Table 5: Custom DMM map for the hmmer benchmark.

SegregatedFreeList, split=false, coalesce=true
Data Structure Mechanism(Policy) Range (bytes)

BTREE FIRST(FIFO) (0, 9600]
ExactSegregatedFit, split=true, coalesce=true

Data Structure Mechanism(Policy) Range (bytes)
BTREE FIRST(LIFO) (9600, 9696]
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7.2. dealII

In the same format, Table 6 shows the DMM obtained for the dealII benchmark. It includes 419 different block
sizes, varying from 4 to 7832240 bytes (7.47 MB). The GEA DMM presents 4 different internal allocators, three of
them with both splitting and coalescing. The first one is a binary buddy, where all the free-lists are implemented as
single-linked lists with exact allocation and LIFO policy, allocating block sizes in the range from 0 to 8192 bytes.
The second allocator follows a segregated free list and contain just one free-list, implemented as a binary tree with a
first-fit allocation algorithm with LIFO policy convering the range 8 to 64 KB. This allocator is followed by a binary
buddy with just one free-list, implemented as a single-linked list with a first-fit allocation algorithm and FIFO policy.
The last allocator is again a binary buddy, this time formed by six binary trees with exact allocation algorithm and
FIFO policy. In this case, the 96% of the mallocs are concentrated in the first allocator that allows the custom DMM
to obtain a performace similar to Kingsley. In addition, most of the block sizes are power of two. Thus, the exact-fit
algorithm is a good choice both in the first and last allocators.

Table 6: Custom DMM map for the dealII benchmark.

BuddySystemBinary, split=false, coalesce=false
Data Structure Mechanism(Policy) Range (bytes)

SLL EXACT(LIFO) (0, 1]
SLL EXACT(LIFO) (1, 2]
SLL EXACT(LIFO) (2, 4]

. . .
SLL EXACT(LIFO) (4096,8192]

SegregatedFreeList, split=true, coalesce=true
Data Structure Mechanism(Policy) Range (bytes)

BTREE FIRST(LIFO) (8192, 65536]
BuddySystemBinary, split=true, coalesce=true

Data Structure Mechanism(Policy) Range (bytes)
SLL FIRST(FIFO) (65536, 131072]

BuddySystemBinary, split=true, coalesce=true
Data Structure Mechanism(Policy) Range (bytes)

BTREE EXACT(FIFO) (131072, 262144]
BTREE EXACT(FIFO) (262144, 524288]
BTREE EXACT(FIFO) (524288, 1048576]

. . .
BTREE EXACT(FIFO) (4194304, 8388608]

7.3. soplex

Table 7 shows the DMM obtained by both GEA and GEA* for the soplex benchmark. Soplex uses 47728 different
block sizes, varying from 1 to 3849000 bytes (3.67 MB). Our custom DMM is almost equal to the Kingsley allocator,
but with splitting and coalescing that allows us to save memory. In this case, memory usage (in terms of block sizes) is
equally distributed in the whole range. This diversification does not allow the optimization algorithm to find patterns
in which a particular allocator could improve the internal fragmentation.

7.4. calculix

Table 8 depicts the DMM obtained for calculix. Calculix uses 939 different block sizes, varying from 4 to 8214296
bytes (7.83 MB). Our custom DMM is formed by 3 internal allocators. The first one is a binary buddy, with splitting
and coalescing. It includes 17 singly-linked lists, all of them with first-fit mechanism and FIFO policy. The second
and third allocators follows a segregated free list mechanism and both are formed by just one free-list, implemented
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Table 7: Custom DMM map for the soplex benchmark.

BuddySystemBinary, split=true, coalesce=true
Data Structure Mechanism(Policy) Range (bytes)

DLL FIRST(FIFO) (0,4194304]

the first as a binary tree, with first-fit mechanism and FIFO policy, and the second as a doubly-linked list with exact-
fit mechanism and FIFO policy. The 99.46% of the block requests are concentrated in the first allocator. Since the
first one is a binary buddy, it approximates the performance to the Kingsley allocator. The other two allocators are
optimized for the remaining 0.54%. It allows our custom DMM to save up to 13.17% of memory usage with respect
to Kingsley (see Table 4).

Table 8: Custom DMM map for the calculix benchmark.

BuddySystemBinary, split=true, coalesce=true
Data Structure Mechanism(Policy) Range (bytes)

SLL FIRST(LIFO) (0, 1]
SLL FIRST(LIFO) (1, 2]
SLL FIRST(LIFO) (2, 4]

. . .
SLL FIRST(LIFO) (32768, 65536]
SegregatedFreeList, split=false, coalesce=false

Data Structure Mechanism(Policy) Range (bytes)
BTREE FIRST(FIFO) (65536, 177240]

SegregatedFreeList, split=false, coalesce=false
Data Structure Mechanism(Policy) Range (bytes)

DLL EXACT(FIFO) (177240, 8214296]

7.5. gcc (200, expr2 and c-typeck)

Table 9 shows the best three DMMs obtained by GEA for the three configurations of the gcc benchmark. The
number of block sizes was different in each case, 13964, 5957, and 8177 for gcc/200, gcc/expr2 and gcc/c-typeck,
respectively. The two DMMs obtained for gcc/200 and gcc/expr2 were almost the same (two binary buddies, the
second one with splitting and coalescing), whereas the last DMM was partially different, being the second allocator
a segregated free list. However, we also found a binary buddy as the second allocator among the 5 best DMMs for
gcc/c-typeck (in all the 10 runs), saving a 43.13% of memory use instead of a 52.44% with respect to the Kingsley
DMM (see Table 4). Thus, we were able to obtain a uniform custom DMM based on two binary buddies for gcc,
independently of the selected input.

7.6. perlbench (split, diff and spam)

Finally, the three DMMs obtained by GEA for the perl benchmark are shown in Table 10. This benchmark was also
configured with 3 different inputs to check the possibility to obtain the same DMM for all the three configurations.
In this case, as Table 10 shows, the three DMMs were radically different. If we examine the three profilings, we
may observe that the demand pattern for the three configurations was quite different. We found 3397, 555 and 1863
different block sizes for perl/split, perl/diff and perl/spam, respectively. The most demanded block size was 105 KB,
9 KB, and 1KB in each case, which gives us and idea of the different nature of these three configurations. Regarding
the profilings, perl/split directly starts with big block sizes, whereas perl/diff and perl/spam are more concentrated in
small block sizes. Thus, our GE algorithm did not find an optimal DMM for all the three configurations.
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Table 9: Custom DMM map for the gcc benchmark (200, expr2 and c-typeck).

gcc/200
BuddySystemBinary, split=false, coalesce=false

DLL FIRST(FIFO) (0,1]
DLL FIRST(FIFO) (1,2]
DLL FIRST(FIFO) (2,4]

. . .
DLL FIRST(FIFO) (8K,16K]

BuddySystemBinary, split=true, coalesce=true
BTREE FIRST(FIFO) (16K,32K]

. . .
BTREE FIRST(FIFO) (8M,16M]

gcc/expr2
BuddySystemBinary, split=false, coalesce=false

DLL FIRST(FIFO) (0,1]
DLL FIRST(FIFO) (1,2]
DLL FIRST(FIFO) (2,4]

. . .
DLL FIRST(FIFO) (8K,16K]

BuddySystemBinary, split=true, coalesce=true
BTREE FIRST(FIFO) (16K,32K]

. . .
BTREE BEST(FIFO) (128M,256M]

gcc/c-typeck
BuddySystemBinary, split=false, coalesce=false

DLL FIRST(FIFO) (0,1]
DLL FIRST(FIFO) (1,2]
DLL FIRST(FIFO) (2,4]

. . .
DLL FIRST(FIFO) (64K,128K]
SegregatedFreeList, split=false, coalesce=true

BTREE BEST(FIFO) (128K,256M]

To conclude, GEA was able to find optimal DMMs for each of the six benchmarks. In the case of gcc, we were
able to find a common DMM for different configurations. However, in the case of the perl benchmark it was not
possible, due to the different nature of this benchmark whose behavior strogly depends on the given input. In addition,
all the custom DMMs started with a binary buddy that concentrated more than the 90% of the block sizes, trying to
approximate the performance to the Kingsley DMM while improving the memory management in the other 10%. It
was a good policy in general, since we obtained a gain of 33.35% in the global fitness.

8. Conclusions and future work

New multimedia devices have increased their capabilities and now complex applications can be ported to them.
Such applications include intensive dynamic memory requirements that must be heavily optimized for an efficient
mapping on these devices. To efficiently use dynamic memory in these applications, software engineers often write
custom allocators from scratch, which is a difficult and error-prone process.

In this paper, we have presented a new multi-objective optimization method based on genetic programming that
can be used to optimize the complex DMMs implementations for highly dynamic applications. This method largely
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Table 10: Custom DMM map for perlbench (split, diff and spam).

perl/split
BuddySystemBinary, split=false, coalesce=false

DLL EXACT(FIFO) (0,1]
DLL EXACT(FIFO) (1,2]

. . .

DLL EXACT(FIFO) (128K,256K]
SegregatedFreeList, split=true, coalesce=true

BTREE BEST(FIFO) (256K,1M]
perl/diff

BuddySystemBinary, split=false, coalesce=false
DLL FIRST(FIFO) (0,1]
DLL FIRST(FIFO) (1,2]

. . .

DLL FIRST(FIFO) (64,128]
BuddySystemFibonacci, split=false, coalesce=false
SLL FIRST(FIFO) (128,144]
SLL FIRST(FIFO) (144,233]
SLL FIRST(FIFO) (233,377]

. . .

BTREE BEST(FIFO) (610,987]
SegregatedFreeList, split=false, coalesce=true

BTREE BEST(LIFO) (987,497K]
perl/spam

BuddySystemBinary, split=false, coalesce=false
SLL FIRST(FIFO) (0,1]
SLL FIRST(FIFO) (1,2]

. . .

SLL FIRST(FIFO) (256,512]
SegregatedFreeList, split=true, coalesce=true

BTREE BEST(FIFO) (512,8K]
SimpleSegregatedStorage, split=false, coalesce=false
BTREE BEST(FIFO) (8K,128K]

simplifies the exploration effort of multi-layered DMMs for designers and enables the refinement of DMM implemen-
tations in an automated way. As a result, the proposed approach leads to important savings in overall system inte-
gration time for dynamic applications. In addition, the method obtains optimal implementations of DMMs structures
with respect to key designer’s metrics. Moreover, our experimental results with six benchmarks and five general-
purpose DMMs show that the presented optimization approach significantly reduce the execution time and memory
usage consumption up to 59.27% on average when comparing the global fitness.

The results obtained so far have outlined other interesting future research lines in the area of DMM implementation
optimizations using grammatical evolution. Initially, the grammar can be extended in order to obtain much more
DMM candidates. Furthermore, the study of the possible benefits of parallel algorithms in the exploration of the
design space of DMM implementations is a very challenging research. Finally, other multi-objective optimization
algorithms can be implemented, like optimizers with Pareto-based ranking schemes. In this work, we used a single
aggregate objective function to solve this multi-objetive problem.
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Appendix A. Profiling of the application using Pin

Figure A.6 shows the source code that a user would write to create a Pintool that prints out a trace of address and
size for every memory de/allocation in a program, as well as the time in which the function was called. To this end, we
use the RTN InsertCall() function, specifying for both malloc() and free() functions the arguments of interest.
The omitted code in Figure A.6 can be found in the Pin’s malloctrace.cpp example.

/*

@ORIGINAL_AUTHOR : Robert Cohn

@AUTHOR: Jos L. Risco -Martn

*/

#include "pin.H"

#include <iostream >

#include <fstream >

#include <time.h>

#if defined(TARGET_MAC)

#define MALLOC "_malloc"

#define FREE "_free"

#else

#define MALLOC "malloc"

#define FREE "free"

#endif

std:: ofstream TraceFile;

KNOB <string > KnobOutputFile(KNOB_MODE_WRITEONCE , "pintool",

"o", "MallocTrace.out", "specify␣trace␣file␣name");

INT32 Usage() {

cerr << "This␣tool␣produces␣a␣trace␣of␣calls␣to␣malloc .\n";

cerr << KNOB_BASE :: StringKnobSummary ();

cerr << endl;

return -1;

}

/* ===================================================================== */

VOID MallocBefore(CHAR * name , ADDRINT size) {

TraceFile << name << "␣" << (1.0* clock())/CLOCKS_PER_SEC << "␣" << size;

}

VOID FreeBefore(CHAR * name , ADDRINT addr) {

TraceFile << name << "␣" << (1.0* clock())/CLOCKS_PER_SEC << "␣" << addr << endl;

}

VOID MallocAfter(ADDRINT addr) {

TraceFile << "␣" << addr << endl;

}

VOID Image(IMG img , VOID *v) {

RTN mallocRtn = RTN_FindByName(img , MALLOC);

if (RTN_Valid(mallocRtn)) {

RTN_Open(mallocRtn);

RTN_InsertCall(mallocRtn , IPOINT_BEFORE , (AFUNPTR)MallocBefore , IARG_ADDRINT , MALLOC , IARG_G_ARG0_CALLEE , IARG_END);

RTN_InsertCall(mallocRtn , IPOINT_AFTER , (AFUNPTR)MallocAfter , IARG_G_RESULT0 , IARG_END);

RTN_Close(mallocRtn);

}

RTN freeRtn = RTN_FindByName(img , FREE);

if (RTN_Valid(freeRtn)) {

RTN_Open(freeRtn);

RTN_InsertCall(freeRtn , IPOINT_BEFORE , (AFUNPTR)FreeBefore , IARG_ADDRINT , FREE , IARG_G_ARG0_CALLEE , IARG_END);

RTN_Close(freeRtn);

}

}

/* ===================================================================== */

VOID Fini(INT32 code , VOID *v) {

TraceFile.close ();

}

int main(int argc , char *argv []) {

PIN_InitSymbols ();

if( PIN_Init(argc ,argv) )

return Usage ();

TraceFile.open(KnobOutputFile.Value().c_str ());

IMG_AddInstrumentFunction(Image , 0);

PIN_AddFiniFunction(Fini , 0);

PIN_StartProgram ();

return 0;

}

Figure A.6: DmmProfile.cpp: Instrumentation code to trace malloc() and free() function calls.

As a result, after running the application, a profiling report is available and the system designer can test different
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DMMs using the same profiling report. Thus, the application must be executed just once during the whole study.
Figure A.7 shows how the profiling of the application is performed. After including DmmProfile.cpp in the

corresponding makefile, the first line in Figure A.7 compiles the instrumentation code. The second line runs the
original target application, specified in the <app> parameter, which is the original binary of the target application.
Note that using this instrumentation tool, the original application does not need to be modified due to the use of
dynamic libraries.

make dir DmmProfile.so.test

../../../ pin -t obj -intel32/DmmProfile.so -- <app >

Figure A.7: Profiling of the application.

Appendix B. DMM Simulator configuration

Figure B.8 shows how to apply our library to compose a complex DMM. In this example, we first read the profiling
report (lines 1-2), previously generated with Pin. When we build the ExactSegregatedFit allocator, we provide the
constructor with the minimum block size in bytes, the maximum block size in bytes and the different sizes supported
by this allocator. In the example of Figure B.8, line 3, the last two parameters are given by the profiling report, but they
can be set manually. After that, we configure the allocator defining the data structure to be used (singly-linked list),
the allocation mechanism (first-fit) and the allocation policy (first in, first out). Finally, we build the corresponding
DMM. As defined before, a DMM may contain one or more allocators in our case.

Finally, the simulator is invoked (lines 8-10 in Figure B.8) and, after a few seconds, we obtain all the metrics
needed to evaluate the current DMM.

1 ProfilingReport profReport = new ProfilingReport ();

2 profReport.load("profile.mem");

3 ExactSegregatedFit exact = new ExactSegregatedFit (0, profReport.getMaxSizeInB (), profReport.getSizesInB ());

4 exact.setup(FreeList.DATA_STRUCTURE.SLL , FreeList.ALLOCATION_MECHANISM.FIRST , FreeList.ALLOCATION_POLICY.FIFO);

5
6 DynamicMemoryManager manager = new DynamicMemoryManager(exact);

7
8 Simulator simulator = new Simulator(profReport , manager);

9 simulator.start ();

10 simulator.join();

Figure B.8: Configuration of a DMM using the Simulator API

At the same time the simulation runs, several relevant metrics are computed, such as number of de/allocations,
splittings, coalescings, performance, memory usage, memory accesses, etc. All the previous parameters except the
execution time can be calculated accurately. However, since the system is using simulation time instead of real time,
the total execution time is calculated as the computational complexity or time complexity [31].

The code snippet in Figure B.9 shows an illustrative example of how this task is performed in the proposed DMM
optimization framework. This code excerpt shows a portion of the first-fit algorithm inside the simulator. The main
loop looks for the first block big enough to allocate the requested size. We count the number of iterations in the loop,
and after that, both the execution time and memory accesses are updated accordingly (+1 for each cycle in the loop to
consider the computational time and +2 for each cycle to count two accesses in the actual allocator: one to the current
node in the free-list and another one to compute the size, i.e., subtraction of two pointers).

Finally, as Figure B.10 shows, to facilitate the use of the simulator, we have developed a GUI to test some general-
purpose memory allocators, as well as to perform an automatic exploration of DMMs for the target application. Given
a profiling report, the interface simulates the selected allocator, giving its “map” and some of the computed metrics.
In any case, all the metrics are saved in external files.
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void firstFit(long sizeInB) {

// ...

while(iterator.hasNext ()) {

counterForMetrics ++;

currentBlock = iterator.next();

if(currentBlock.sizeInB >= sizeInB) {

block = currentBlock;

iterator.remove ();

break;

}

}

metrics.addExecutionTime(counterForMetrics);

metrics.addMemoryAccesses (2* counterForMetrics);

// ...

}

Figure B.9: Execution time and memory accesses computation

Figure B.10: Simulator Graphical User Interface
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