Aggregate-Strength Interaction Test Suite Prioritization

Rubing Huang®®*, Jinfu Chen?, Dave Towey®, Alvin T. S. Chan?, Yansheng Lu®

“School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
bSchool of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
¢School of Computer Science, The University of Nottingham Ningbo China, Ningbo, Zhejiang 315100, P.R. China.
4Department of Computing, The Hong Kong Polytechnic University, Hong Kong, PR. China

Abstract

Combinatorial interaction testing is a widely used approach. In testing, it is often assumed that all combinatorial test cases have
equal fault detection capability, however it has been shown that the execution order of an interaction test suite’s test cases may be
critical, especially when the testing resources are limited. To improve testing cost-effectiveness, test cases in the interaction test
suite can be prioritized, and one of the best-known categories of prioritization approaches is based on “fixed-strength prioritization”,
which prioritizes an interaction test suite by choosing new test cases which have the highest uncovered interaction coverage at a
fixed strength (level of interaction among parameters). A drawback of these approaches, however, is that, when selecting each
test case, they only consider a fixed strength, not multiple strengths. To overcome this, we propose a new “aggregate-strength
prioritization”, to combine interaction coverage at different strengths. Experimental results show that in most cases our method
performs better than the test-case-generation, reverse test-case-generation, and random prioritization techniques. The method also

usually outperforms “fixed-strength prioritization”, while maintaining a similar time cost.

Keywords:

Software testing, combinatorial interaction testing, test case prioritization, interaction coverage, fixed-strength prioritization,

aggregate-strength prioritization, algorithm

1. Introduction 20

21
Combinatorial interaction testing [29], is a black-box ,,

testing method that has been well researched, and applied in
the testing of practical systems [14, 24, 42]. It focuses on ,,
constructing an effective test suite (called an interaction test
suite) in order to catch failures triggered by the interactions
among k parameters of the software under test (SUT). Here, ,,
parameters may represent any factors that affect the running of ,,
the SUT, such as user inputs, configuration options, etc., and
each parameter may have several valid values. In fact,
combinatorial interaction testing provides a trade-off between _,
testing effectiveness and efficiency, because it only requires
coverage of certain key combinations, rather than of all
possible combinations, of parametric values. For instance, ,
7-wise (1 < 7 < k) combinatorial interaction testing, where 7 is
referred to as the level of interaction among parameters
(named strength), constructs an interaction test suite to cover _,
all possible 7-tuples of parameter values (referred to as 7-wise

parameter value combinations). %

40

*Corresponding author at: School of Computer Science and “
Telecommunication Engineering, Jiangsu University, 301 Xuefu Road, 2
Zhenjiang, Jiangsu 212013, P.R. China. 43

Email addresses: rbhuang@mail.ujs.edu.cn, or w“
rbhuang@hust . edu. cn (Rubing Huang), jinfuchen®@ujs.edu.cn (Jinfu
Chen), dave.towey@nottingham.edu. cn (Dave Towey),
cstschan@comp.polyu.edu.hk (Alvin T. S. Chan), 1ys@hust.edu.cn
(Yansheng Lu)

Preprint submitted to Journal of Systems and Software

Due to limited testing resources in practical applications
where combinatorial interaction testing is used, for example in
combinatorial interaction regression testing [32], the execution
order of combinatorial test cases can be critical, and therefore
the potentially failure-revealing test cases in an interaction test
suite should be executed as early as possible. In other words, a
well-ordered test case execution may be able to detect failures
earlier, and thus enable earlier fault characterization, diagnosis
and correction [29]. To improve testing efficiency, interaction
test suites can be prioritized [29].

The prioritization of interaction test suites has been well
studied [1, 2, 4-7, 18, 30-33, 37, 39, 40], with many
techniques having been proposed, such as random
prioritization [1] and branch-coverage-based prioritization
[32]. A well-studied category of prioritization approaches for
interaction test suites is “fixed-strength prioritization”, which
prioritizes the interaction test suite by repeatedly choosing an
unexecuted test case from candidates such that it covers the
largest number of uncovered parameter value combinations at
a fixed strength [1, 2, 4-7, 18, 30-33, 37, 39, 40]. However,
when selecting each unexecuted test case, this strategy only
considers interaction coverage of a fixed strength 7, rather than
interaction coverage of multiple strengths: Although it focuses
on T-wise interaction coverage, it may neglect A-wise
(1 < A < 7)! interaction coverage when choosing the next test

IFor ease of description, in this paper we assume 7 is a constant, because T
is obtained from an interaction test suite; while A is a variable where 1 < 1 < 7.

July 29, 2014

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

case. Consequently, “fixed-strength prioritization” may not use
sufficient information to guide the prioritization of the
interaction test suite — an example of this will be given in the
following section.

To evaluate the difference between a combinatorial test
case and the already executed test cases, we propose a new
dissimilarity measure which considers different interaction
coverage at different strengths. Based on this, we present a ,,
heuristic algorithm which, given an interaction test suite 7 of 4,
strength 7, chooses an element from among candidates after .,
comprehensively considering different interaction coverage at
strengths from 1 to 7, and assigning each interaction coverage
a weight. The method gives a priority of all strengths from 1 to 5
7, and balances A-wise interaction coverage for 4 = 1,2,...,7. %
This proposed method has the advantage over existing 58
prioritization methods by employing more information to
guide the prioritization process. We refer to this method as *
“aggregate-strength prioritization”. ®

In terms of the rates of covering parameter value 4
combinations and fault detection, experimental results show ,
that in most cases our method performs better than the ,
test-case-generation, reverse test-case-generation, and random
prioritizations; and also has better performance than the &
“fixed-strength prioritization,” while maintaining a similar
time cost. &

This paper is organized as follows: Section 2 introduces
some background information, including combinatorial e
interaction testing, and test case prioritization. Section 3 ¢
describes some related work. Section 4 introduces a7
motivating example, and then proposes a new prioritization
strategy, with an analysis of its properties and time complexity. !
Section 5 presents some simulations and experiments with *
real-life programs related to the use of the proposed strategy, °
and finally, Section 6 presents the conclusions and discusses "

potential future work. °
76

2. Background ”
78
In this section, some fundamental aspects of combinatorial 7o
interaction testing and test case prioritization are presented. &
81

2.1. Combinatorial interaction testing 82

Combinatorial interaction testing is used to generate a test *
suite to detect faults triggered by interactions among
parameters in the SUT. For convenience, in the remainder of
this paper we will refer to a combination of parameters as a
parameter combination, and a combination of parametric

values or a parameter value combination as a value
combination.

Definition 1. A test profile, denoted as
TPk, \VilIVal---|\Vil, 9), has information about a

combinatorial test space of the SUT, including k parameters,
\Vil G = 1,2,---,k) values for the i-th parameter, and
constraints 9 on value combinations.

Table 1: A Test Profile for a SUT

Parameter | p; | po | p3 | pa
0] 3 6 8

Value 1 4 7 9
215 - -

Table 1 gives an example of a SUT with Z = 0, in which
there are four parameters, two of which have two values and
another two of which have three values: the test profile can be
written as T P(4, 2232, 0).

Definition 2. Given a test profile T P(k,|Vi||Va| - - - |Vil, D), a k-
tuple (vi,Vva, -+, V) is a combinatorial test case for the SUT,
wherev; € V; (i=1,2,--- ,k).

For example, (0, 3, 6, 8) is a 4-tuple combinatorial test case
for the SUT shown in Table 1.

Definition 3. The number of parameters required to trigger a
failure is referred to as the failure-triggering fault interaction
(FTFI) number.

The combinatorial input domain fault model assumes that
failures are caused by parameter interactions. For example, if
the SUT shown in Table 1 fails when both p, is set to 5 and
p3 is set to 6, this failure is caused by the parameter interaction
(p2, p3), and therefore, the FTFI number is 2.

In combinatorial interaction testing, a covering array is
generally used to represent an interaction test suite.

Definition 4. Given a TP(k,|V1||Va|---|Vil, @), an N Xk matrix
is a T-wise (1 < v < k) covering array, denoted CA(N; 7, k,|V1|
[Va| -« - |Vi]), which satisfies the following properties: (1) each
columni (i = 1,2,--- ,k) contains only elements from the set
Vi; and (2) the rows of each N X T sub-matrix cover all T-wise
value combinations from the T columns at least once.

Table 2 shows an example covering array for the SUT in
Table 1. The covering array, denoted as CA(9;2,4,2%32), only
requires a set of nine test cases in order to cover all 2-wise value
combinations.

Each column of a covering array represents a parameter of
the SUT, while each row represents a combinatorial test case.
Testing with a 7-wise covering array is called 7-wise

Table 2: CA(9;2,4,2%32) for the T P(4, 2232, 0) shown in Table 1

TestNo. | p1 | p2 | p3 | P4
tcy 0 3 7 9
tco 0 4 6 8
tc3 0 5 7 8
tcy 1 3 6 9
tcs 1] 4|7]8
tfcg 1 5 6 9
tcy 2 3 7 8
tcg 2 4 6 9
tco 2 5 6 8

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

combinatorial interaction testing. In this paper, we focus on s
T-wise covering arrays, rather than on other interaction test 4
suites such as variable-strength covering array [9]. a8

In 7-wise combinatorial interaction testing, the uncovered 4
A-wise value combinations distance (UVCD),) is a distance (or so
dissimilarity) measure often used to evaluate combinatorial test s1
cases against an interaction test suite [20]. 52

53
Definition 5. Given an interaction test suite T, strength A, and
a combinatorial test case tc, the uncovered A-wise value
combinations distance (UVCD,) of tc against T is defined as:

UVCD,(tc,T) = |CombSet(tc) \ CombSet(T)|, (1) s

55
where CombSet,(tc) is the set of all A-wise value combinations ss
covered by tc, and CombSet)(T) is the set covered by all of T. s7
More specifically, these can be respectively written as follows: ss

59
CombSety(tc) = {(v}, ,Vj,, - Vi)l < ji<jo<---<jagk}, (2) 4

3) e

63

CombSet (T) = U CombSet,(tc).

tceT

In the past, minimization of the interaction test suite size &
has been emphasized in order to achieve the desired coverage, ©
and although the problem of constructing interaction test suites
(covering array and variable-strength covering array) is
NP-Complete [35], many strategies for building them have
been developed, including approaches employing greedy, es
recursive, heuristic search, and algebraic algorithms and e

methods (see [29] for more details). 68
69

2.2. Test case prioritization 70
Suppose T = {tcy,tcp, - ,tcy} is a test suite containing N ™
test cases, and S = (51,52, -+ ,sy) is an ordered set of T, 7
called a test sequence, where s; € T and?™

si#F s, j=1,2,--- ,N;i#j). If S = (51,8, ,5,) and ™
S>» =4q1,92," - , qn) are two test sequences, we define S >S5,
as ($1,52," ", Sm»q1,42, " »qny; and T \ S as the maximal 7
subset of 7 whose elements are notin S. 7
Test case prioritization is used to schedule test cases in an 7
order, so that, according to some criteria (e.g. condition 7
coverage), test cases with higher priority are executed earlier &
in the testing process. A well-prioritized test sequence may @
improve the likelihood of detecting faults earlier, which may
be especially important when testing with limited test ,
resources. The problem of test case prioritization is defined as
follows [34]: 83

Definition 6. Given (T,Q, g), where T is a test suite, Q is the ::
set of all possible test sequences obtained by ordering test cases o
of T, and g is a function from a given test sequence to an award o
value, the problem of test case prioritization is to find an S € Q .
such that:

89

(4) 90

91

(VS (S € Q) (S"#5) [8(S) > g(SN].

In Eq. (4), g is a function to evaluate a test sequence S by *
returning a real number. A well-known function is a weighted *

3

average of the percentage of faults detected (APFD) [13],
which is a measure of how quickly a test sequence can detect
faults during the execution (that is, the rate of fault detection).
Let T be a test suite containing N test cases, and let F' be a set
of m faults revealed by T. Let SF; be the number of test cases
in test sequence S of T that are executed until detecting fault i.
The APFD for test sequence S is given by the following
equation from [13]:

SFy+SF, +---+ SF,, 1

APFD =1 - + —.
Nxm 2N

&)

The APFD metric, which has been used in practical
testing, has a range of (0, 1), with higher values implying faster
rates of fault detection. Two requirements of the APFD metric
are that (1) all test cases in a test sequence should be executed;
and (2) all faults should be detected. In practical testing
applications, however, it may be that only part of the test
sequence is run, and only some of the faults detected. In such
cases, the APFD may not be an appropriate evaluation of the
fault detection rate. To alleviate the difficulties associated with
these two requirements, Qu et al. [32] have presented a new
metric, Normalized APFD (NAPFD), as an enhancement of
APFD, and defined it as follows:

_SF1+SF2+~--+SFm)4

NAPFDZP N x<m +2_]\7”

6)

where m and SF; (i = 1,2,--- ,m) have the same meaning as in
APFD; p represents the ratio of the number of faults identified
by selected test cases relative to the number of faults detected
by the full test suite; and N’ is the number of the executed test
cases. If a fault f; is never found, then SF; = 0. If all faults can
be detected, and all test cases are executed, NAPFD and APFD
are identical, with p = 1.0 and N’ = N.

Many test case prioritization strategies have been
proposed, such as fault severity based prioritization [12],
source code based prioritization [34, 41], search based
prioritization [26], integer linear programming based
prioritization [44], XML-manipulating prioritization [28], risk
exposure based prioritization [43], system-level test case
prioritization [36], and history based prioritization [21]. Most
prioritization strategies can be classified as either
meta-heuristic search methods or greedy methods [40].

3. Related Work

According to Qu’s classification, the prioritization of
interaction test suites can generally be divided into two
categories: (1) pure prioritization: re-ordering test cases in the
interaction test suite; and (2) re-gemeration prioritization:
considering the prioritization principle during the process of
interaction test suite generation, that is, generating (or
constructing) an interaction test sequence [32]. The method
proposed in this paper, as well as the methods used for
comparison, belongs to the former category. However, if based
on the same prioritization principle, pure prioritization works
in a similar manner to re-generation prioritization. For

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

example, when testers base prioritization on test case ss
execution time, pure prioritization chooses an element from so
the given test suite such that it has the lowest execution time, e
and re-generation prioritization selects (or generates) such e
elements from the exhaustive test suite (or constructed ez
candidates). In this section, therefore, we do not distinguish e
between pure and re-generation prioritization. 64
Bryce and Colbourn [1, 2] initially used four test case es
weighting distributions to construct interaction test sequences ss
with seeding and constraints, which belongs to thes
re-generation prioritization category. Bryce et al. [4, 5]es
proposed a pure prioritization method without considering any es
other factors (only considering 2-wise and 3-wise interaction 7o
coverage) for interaction test suites, and then applied it to the 7
event-driven software. Similarly, Qu et al. [31-33] applied test
case weight to the pure prioritization method, and applied this
method to configurable systems. They also proposed other test "
case weighting distributions based on code coverage [32], .,
specification [32], fault detection [31], and configuration ,
change [31]. Additionally, Chen et al. [7] used an ant colony _,
algorithm to generate prioritized interaction test suites which _,
considered interaction coverage information. .
Srikanth et al. [37] took the cost of installing and building _,
new configurations into consideration for helping prioritize
interaction test suites. Bryce et al. [6] used the length of the
test case to represent its cost, and combined it with pair-wise ,,
interaction coverage to guide the prioritization of interaction
test suites. Wang et al. [40] combined test case cost with test ,
case weight to prioritize interaction test suites, and also
extended this method from lower to higher strengths, and ®
proposed a series of metrics which have been widely used in *
the evaluation of interaction test sequences. Petke et al. [30] *
researched the efficiency and fault detection of the pure *
prioritization method proposed in [4, 5] with other (lower and 7
higher) strengths. Recently, Huang et al. [18] investigated *
adaptive random test case prioritization for interaction test ®
suites using interaction coverage, a method which, by *
replacing the prioritization method in [4, 5] attempts to reduce !
time costs, while maintaining effectiveness. *
Throughout the interaction test suite prioritization process, ®
the strategies so far mentioned [1, 2, 4-7, 18, 30-33, 37, 40] o
do not vary the strength of interaction coverage. For example, *
given a strength 7 for prioritization, these prioritization *
strategies only consider T-wise interaction coverage to guide 7
the test cases selection. These implementations of *
“fixed-strength prioritization” are also referred to as *
interaction coverage based prioritization (or ICBP). Previous'”
studies also investigated incremental strengths to prioritize101
interaction test suites. For instance, Wang [39] used'”
incremental strengths, and proposed a pure [m'oritization103
method named inCTPri used to prioritize covering arrays.104
More specifically, given a 7-wise covering array105
CA(N; 1, k,|V1||Val - - - [Vi]), the inCTPri firstly uses interaction
coverage at a low strength (such as 4 where 1 < 4 < 1) to"”
prioritize CA; when all A-wise value combinations have been'”
covered by selected test cases, the inCTPri increases A to
A+ 1, and then repeats the above process until A > 7. In other

words, inCTPri is actually ICBP using different strengths
during the prioritization process. Huang ef al. [19] proposed
two pure prioritization methods for variable-strength covering
arrays which exploit the main-strength and sub-strengths of
variable-strength covering arrays to guide prioritization.

To date, most interaction test suite prioritization strategies
belong to the category of “fixed-strength prioritization”,
because they only consider a fixed strength when selecting
each combinatorial test case from candidates. Few studies
have been conducted on the prioritization of interaction test
suites using “aggregate-strength prioritization”, and our study
is, to our best knowledge, the first to use multiple strengths
when choosing each combinatorial test case from the candidate
elements.

4. Aggregate-Strength Interaction Test Suite Prioritization

In this section, we present a motivating example to
illustrate the shortcoming of “fixed-strength prioritization”,
and then introduce a new dissimilarity measure for evaluating
combinatorial test cases, the weighted aggregate-strength test
case dissimilarity (WASD). We then introduce a heuristic
algorithm for prioritizing an interaction test suite based on the
WASD measure (“aggregate-strength prioritization” strategy),
investigate some of its properties, and give a time complexity
analysis.

4.1. A motivating example

Given covering array CA(9;2,4,2%32), shown in Table 2,
“fixed-strength prioritization” generally uses strength 7 = 2 to
guide the prioritization. = More specifically, this strategy
chooses the next test case such that it covers the largest
number of 2-wise value combinations that have not yet been
covered by the already selected test cases (that is, UVCD,).
We assume that “fixed-strength prioritization” is deterministic,
e.g. the first candidate is selected as the next test case in
situations with more than one best element, and therefore its
generated interaction test sequence would be
S1 = (tcy,ter, teg, tes, teg, teg, tes, tey, tCy). Intuitively
speaking, S| would face a challenge when a fault f; is
triggered by “P;=2", because it needs to run five test cases
(5/9 = 55.56%) in order to detect this fault. However, if
multiple strengths were used to prioritize this interaction test
suite, e.g. strengths 1 and 2, both 1-wise and 2-wise value
combinations would be considered, and therefore we would
obtain the interaction test sequence
So = (tcy,tey, tey, ten, tes, ter, tes, tes, teg). So would only
require 2 test cases (2/9 = 22.22%) to be run to identify the
fault f;, which means that S, has a faster fault detection than
Si.

Motivated by this, it is reasonable to consider different
strengths for prioritizing interaction test suites, which may
provide better effectiveness (such as fault detection) than
“fixed-strength prioritization”.

23

24

25

4.2. Weighted aggregate-strength test case dissimilarity 26

Given an interaction test suite T on 27
TPk, |Vi|IVa]---IVil, @), a combinatorial test case zc, and the 28
strength 7, the weighted aggregate-strength test case ®
dissimilarity (WASD) of tc against T is defined as follows: %

g UVCD,(tc, T
WASD(ic, T) =) (wa X |—ﬂ(c)|), ©)
A=1 Ck
31
where 0 < w, < 1.0(1=1,2,---,7),and Y }_, wa = 1.0. 2

Intuitively speaking, WASD(tc, T) = 0, if and only if tc € T; *
WASD(tc, T) = 1.0, if and only if any 1-wise value combination o
covered by fc is not covered by T. Therefore, the WASD ranges *°
from O to 1.0. *

Here, we present an example to briefly illustrate the WASD. ¥
Considering the combinatorial test cases in Table 2, suppose *
interaction test sequence S = {fc}, strength 7 = 2, two 3
candidates tc, and fcg, and w; = wy = -+ = w; = 1/7, the
WASD of tc) against T is

9

40

WASD(tc,,S) = % X —UVCD*CEI(’CZ’S) + 3 X —UVCD‘C}ZUCZ’S) =«
1 x 3+ x8=0375+05 = 0.875; while the WASD of icy "
against S is

WASD(ICg,S) - 1 % UVCD4=11(1‘09,S) + 1 X UVCDA=Zg(tc‘9,S) =

2 C! 2 2
% X % + % X g = 05+ 0.5 = 1.0. In this case, it can be 4
concluded that the test case fc9 would be a better next test case
in S than tc,. 7

48

4.3. Algorithm

In this section, we introduce a new heuristic algorithm,
namely “aggregate-strength prioritization” strategy (ASPS), to

49

Algorithm 1 Aggregate-strength prioritization strategy (ASPS)
Input: Covering array CA(N; 1, k, |V1||Va| - - - [Vi]), denoted as
T.
Output: Interaction test sequence S
IS « ()
2: while (S| # N)

3 best_distance «— —1; o
4 equalSet — { };

5 for (each element e € T;)

6: Calculate distance «— WASD(e, S);

7 if (distance > best_distance) 53
8 equalSet «— { }; 54
9 best_distance < distance; 55
10: best_data « e; 56
11: else if (distance == best_distance) 57
12: equalSet «— equalSet | J{e}; s
13: end if 5
14: end for 6
15: best_data « random(equalSet); o
16: /* Randomly choose an element from equalSet */

17: T, « T, \ {best_data}, 62

18: S « S>(best_data);
19: end while
20: return S.

63

64

65

prioritize interaction test suites using the WASD to evaluate
combinatorial test cases.

Given a covering array T = CA(N; T, k, |V{||[Va] - - - |Vi]), the
element ¢’ is selected from 7 as the next test element in an
interaction test sequence S when using the WASD, such that:

(Ve) (e e T) (e # ') [WASD(e',S) > WASD(e,S)]. (8)
This process is repeated until all candidates have been selected.

The ASPS algorithm is described in Algorithm 1. In some
cases, there may be more than one best test element, indicating
that they have the same maximal WASD value. In such a
situation, a best element is randomly selected.

For ease of description, we use a term 7, to represent a
CA(N; 1, k, [V1|I[Va] - - - [Vk]), with the strength 7 used in the
WASD and Algorithm 1 often being provided by a CA rather
than being assigned in advance.

4.4. Properties

Consider a T, and a pre-selected interaction test sequence
S C T, prioritized by the ASPS algorithm, some properties of
ASPS are discussed as follows.

Theorem 1. Once S covers all possible (T — 1)-wise value
combinations where 2 < v < k, the ASPS algorithm has the
same mechanism as the “fixed-strength prioritization

strategy”.

Proof. When S covers all possible (r — 1)-wise value

combinations, it can be noted that
CombSet,_(S) = CombSet._(T;), which means that
Yte) (tc € (T, \ S)) [UVCD,_(tc,S) = 0].)

Since

CombSet;_(S) = CombSet._(T-)
= CombSet)(CombSet._(S)) = CombSet,(CombSet,_(T;))

= CombSet)(S) = CombSet (T;), (10)
where 1 < A < 7 — 1. Therefore, we can obtain that
Vte) (tc € (T \ S)) [UVCD (tc,S) = 0]. (1)

where A4 = 1,2,---,t — 1. As a consequence,
WASD(tc,S) = w; X w Since w, is a constant
parameter, WASD(tc, S) is Lonly related to UVCD.(tc,S).
Consequently, the ASPS algorithm only uses t-wise
interaction coverage to select the next test case, which means
that it is “fixed-strength prioritization”. In summary, once S
covers all possible (t — 1)-wise value combinations, the ASPS
algorithm becomes the same as “fixed-strength
prioritization”. O

4.5. Complexity analysis

In this section, we briefly analyze the complexity of the
ASPS algorithm (Algorithm 1). Given a CA(N; 7, k, |V||V3| - - -
|V, denoted as T, we define 6 = max;<;<{|Vil}.

20

21

22

23

24

25

26

27

28

29

30

31

32

We first analyze the time complexity of selecting the i-th s3
(i = 1,2,---,N) combinatorial test case, which depends on
two factors: (1) the number of candidates required for the *
calculation of WASD; and (2) the time complexity of %
calculating WASD for each candidate. %

For (1), (N—i)+ 1 test cases are required to compute WASD. ¥
For (2), according to C ,l([-wise parameter combinations where
1 < [< 1, we divide all [-wise value combinations that are %
derived from a TP(k, |V1||Va| - - - |Vil, @) into C,’(sets that form 4

41

vidlvi, € Vi, j= 1,2, 1}, 4
<<k} (12)*
44

Il = {mlm; = {(viy, vip, -+

I1<ip<ip<---

Consequently, when using a binary search, the order of time 4
complexity of (2) is O(X1_; 3 xen, log(im; \ CombSety(T)))), wh- 4

ich is equal to O(}]_; Xz, log(lm)). a7
Therefore, the order of time complexity of algorithm ASPS 4
can be described as follows: 49

50

O(ASPS) = 0((2 =i x(Y) Y loglmhy
=1 ﬂ[EH[

< 0((2 (N—-i+1)x Z(C,ﬁ x log(6"))) *

55

56

N2
oM N, Z(C’ x log(8))). (13) &
58
59
There exists an integer 7 (1 < i < 7) such that?: 60
61
(YD) (1 <1< 7) (7% D [(C! xlog(6") > (CL x log(@]. (14) _,
AS a Consequence, Gj
6
2 65
o@sps) < o+ N o Z(c" x 1og(5"))) 6
67

N2+ N

= 0= xTx CIxlog@) (15)"

70
Therefore, we can conclude that the order of time complexity _

of algorithm ASPS is O(N? x T X C] x log(8")).

The value of 7 is usually a551gned in the range from 2 to 6 s
[23, 24], therefore, 1 < 7 < { 1, in general. If 1 < 7 < { 1.,
n = 7, then the order of time complex1ty of algorithm ASPS is ”s
O(t x N? x C; x log(67)). Since counting the number of value 2
combinations at different strengths can be implemented in
parallel, the order of time complexity of the ASPS algorithm _
can be reduced to O(N? x Ci x log(67)). As discussed in [40]
the order of time complex1ty of the ICBP algorithm (an
implementation ~ of “fixed-strength prioritization™) is
O(N? x Ci x log(67)). The order of time complexity of the 5
inCTPri algonthm (another “fixed-strength prioritization”
implementation) also equals to O(N? x C; x log(67) [39]. o
Therefore, the order of time complexity of the ASPS algorithm __
is similar to that of both ICBP and inCTPri.

80

86

87

Af1 <7 <[4l =7 whileif [§1< 7 <k =71 &

6

5. Empirical Study

In this section, some experimental results, including
simulations and experiments involving real programs, are
presented to analyze the effectiveness of the prioritization of
interaction test suites by multiple interaction coverage
(multiple strengths). We evaluate interaction test sequences
prioritized by algorithm ASPS (denoted ASPS) by comparing
them with those ordered by four other strategies: (1)
test-case-generation prioritization (denoted Original), which
is an interaction test sequence according to the covering array
generation sequence; (2) reverse test-case-generation
prioritization (denoted Reverse), which is the reversed order
of the Original interaction test sequence; (3) random test
sequence, whose ordering is prioritized in a random manner
(denoted Random); and (4) two implementations of
“fixed-strength prioritization” — the ICBP algorithm (denoted
ICBP) [1, 2, 4-7, 18, 30-33, 37, 40]; and the inCTPri
algorithm (denoted inCTPri) [39].

In Algorithm 1, which uses WASD, it is necessary to assign
a weight for each interaction coverage (Eq. (7)). The ideal
weight assignment is in accordance with actual fault
distribution in terms of the FTFI number. However, the actual
fault distribution is unknown before testing. In this paper, we
focus on three distribution styles: (1) equal weighting
distribution — each interaction coverage has the same weight,
that is, w; = wy = -+ = w; = 1; (2) random weighting
distribution — the weight of each interaction coverage is
randomly distributed; and (3) empirical FTFI percentage
weighting distribution based on previous investigations
[23, 24]: for example, in [24], several software projects were
studied and the interaction faults reported to have 29% to 82%
faults as 1-wise faults, 6% to 47% of faults as 2-wise faults,
2% to 19% as 3-wise faults, 1% to 7% of faults as 4-wise
faults, and even fewer faults beyond 4-wise interactions.
Consequently, we arranged the weights as follows:
W] = W, Wiy = %wi, where i = 1,2,--- ,7 — 1. For example, if
T=2,wesetw; =067 and wy, = 0.33;if 7 = 3, w; = 0.57,
wy = 0.29, and w3 = 0.14. For clarity of description, we use
ASPS,, ASPS,, and ASPS,, to represent the ASPS algorithm
with equal weighting distribution, random weighting
distribution, and empirical FTFI percentage weighting
distribution, respectively.

The original covering arrays were generated using two
popular tools: (1) Advanced Combinatorial Testing System
(ACTS) [25, 38]; and (2) Pairwise Independent Combinatorial
Testing (PICT) [10]. Both ACTS and PICT are supported by
greedy algorithms, however, they are implemented by different
strategies: ACTS is implemented by the In-Parameter-Order
(IPO) method [38]; while PICT is implemented by the
one-test-at-a-time approach [3]. We focused on covering
arrays with strength 7 = 2,3,4,5. We designed simulations
and experiments to answer the following research questions:

RQ1: Do prioritized interaction test sequences generated
by ASPS methods (ASPS,, ASPS,, and ASPS,) have better
performance (e.g. fault detection) when compared with
non-prioritized interaction test suites (Original)? The answer

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

Table 3: Sizes of covering arrays for four test profiles.

ACTS PICT
Test Profile T=2 1=3 1=4 71=5 T=2 1=3 1v=4 71=5
TP1(6,5° 0) 25 199 1058 4149 37 215 1072 4295
TP2(10,23334351 @) 23 103 426 1559 23 109 411 1363
TP3(7,2*3'6'16', 0) 96 289 578 1728 96 293 744 1658
TP4(8,2°9'10', 0) 90 180 632 1080 90 192 592 1237
to this question will help us decide whether it would be s« 5.1.2. Metric

necessary to prioritize interaction test suites using ASPS .
methods. 2
intuitive 4
prioritization strategies such as the reverse prioritization s
The 4
answer to this question will tell us whether or not it would be 4,
helpful to use ASPS methods rather than reverse or random 4

RQ2: Are ASPS methods better than

(Reverse) and the random prioritization (Random)?

ordering for prioritizing interaction test suites. 4
RQ3: Do ASPS methods perform better than
“fixed-strength prioritization” (ICBP and inCTPri)? The

answer to this question will help us decide whether or not
ASPS can be a promising technique for interaction test suite

prioritization, especially if it could perform as effectively as _ *

the current best prioritization techniques (“fixed- strength
prioritization”).

RQ4: Which weighting distribution is more suitable for ®
random **
FTFI percentage ”
weighting distribution? The answer to this question will help *

the ASPS method:
weighting distribution, or

equal weighting distribution,
empirical

us decide which weighting distribution to use for the ASPS
method.

5.1. Simulation

. 58

We ran a simulation to measure how quickly an interaction
. . N 59

test sequence could cover value combinations of different
. . . . 60

The simulation details are presented in the

strengths.

following. 3

62

63

5.1.1. Setup

We designed four test profiles as four system models with ::
details as shown in Table 3. The first two test profiles were o
0), both of which have o

TP1(6,5°, 0) and TP2(10,233%4351 0
been used in previous studies [40]. The third and fourth test

profiles (TP3(7,2*3'6'16',0) and TP4(8,2°9'10',0)) have :
previously been created [32, 33] to model real-world subjects "

— a module from a lexical analyzer system (flex), and a real
configuration model for GNUzip (gzip)>.

The sizes of the covering arrays generated by ACTS and
PICT are given in Table 3, Since randomization is used in some
test case prioritization techniques, we ran each test profile 100
times and report the average of the results.

3These two models are unconstrained and incomplete.

57

The average percentage of combinatorial coverage
(APCC) metric* [40] is used to evaluate the rate of value
combinations covered by an interaction test sequence. The
APCC values range from 0% to 100%, with higher values
meaning better rates of covering value combinations. Let an
interaction test sequence S = (s, s2, - ,Sy) be obtained by
prioritizing a CA(N; Tk, |V1||Va|---|Vi|), that is, T;, the
formula to calculate APCC at strength A (1 < A < 1) is:

T U, CombSet,(s))l
N X |CombSet(T)|

APCCi(S) = x 100%. (16)

Additionally, since we consider 4 = 1,2,---,7 for an
interaction test sequence S of a CA(N; 7, k, [V1[|Va| - - - Vi), we
could obtain 7 APCC values (that is, APCC(S), APCC,(S),

, APCC.(S)). Therefore, in this simulation we also
considered the average of the APCC values, which is defined
as:

.l T
Avg(S) = - ZAPCCA(S).
T
=1

a7

5.1.3. Results and Discussion

For covering arrays of strength 7 (2 < 7 < 5) on individual
test profiles, we have the following observations based on the
data in Tables 4 and 5, which are separated according to the
four test profiles.

1) According to the APCC metric, are prioritized
interaction test suites by ASPS methods better than
non-prioritized interaction test suites? In this part, we analyze
the data to answer whether ASPS methods (ASPS,, ASPS,, and
ASPS,,) are more effective than Original.

Since different weighting distributions in ASPS provide
different APCC values, we compare the APCC values of each
ASPS method with Original. In 98.21% (110/112),
86.61% (97/112), and 98.21% (110/112) of cases, interaction
test sequences prioritized by ASPS,, ASPS,, and ASPS,,

“In [30], Petke er al. proposed a similar metric, namely the
average percentage of covering-array coverage metric (APCC). Both Wang’s
APCC [40] and Petke’s APCC [30] aim at measuring how quickly an interaction
test sequence achieves interaction coverage at a given strength. In fact, their
APCCs are equivalent: given two interaction test sequences, S and S, if one
determines that the test sequence S | is better than S, then the other metric will
also have the same determination. The only difference between them is that they
use different plot curves to describe the rate of covered value combinations.
More specifically, Wang’s APCC [40] uses the ladder chart; while Petke’s
APCC [30] uses the line chart.

£TP6 8T08 9S°€6 90°86 CF'66 €866 | IST6 806L €b'€E6 8086 SH66 | I888 S6'SL 09T6 88L6 | #6LL O0L99 8168 | “SdSV
9/°€6 1€6L TLT6 99L6 0£66 1866 | #6116 OI'SL LST6 TLL6 LE66 | [1'88 €OSL 8916 €916 | L0/ZL 86'S9 L1°88 ‘Sdsy
0ZF6 9€08 SHE6 LO6L6 O0F66 €866 | LFT6 SI'6L T1€€6 96L6 +¥66 | S£8 S0O9L TET6 S8L6 | 284 8L99 S8'88 ’SdsV | =
80+6 996L €6 SO86 bH'66 €866 | 9T6 €S8L 8EE6 TI'86 E£V66 | 0L'88 09SL 89°T6 I8L6 | ££/L T899 +9'88 | Tadiput |
LIP6 6€08 I¥'€6 €6L6 966 8L66 | S£°T6 LI6L 976 S6L6 +E66 | [£°99 OI'9L TET6 OLL6 | €£/L T899 1988 dgoI .
686 98'9L 6¥'16 1TL6 SI'66 SL'66 | SL06 SY'SL TTI6 8IL6 SI66 | €98 OI'TL SO06 0696 | 07 €T€9 9198 | wopwey | O
P66 TL9L 1816 9€L6 €166 CTL66 | 2906 €8F¥L ¥E€T16 STL6 9066 | [£98 LY'IL 1¥06 9€L6 | 66+, 6T€9 8998 | osionsy
99°€6 €8°6L 88T6 S9L6 LT66 8L66 | 6716 9S8L SST6 vvL6 8066 | L9898 €T9L 1TT6 9SL6 | S€// 1§99 81'88 | TRUISTIQ
966 LLTS SE€P6 TE€86 0566 9866 | 6,76 686L S9€6 PIS6 LYV66 | KT8 C8VL ¥IT6 SL'L6 | 8T8 ¥TL9 TE68 | “SdSY
St6 1818 €9€6 S6'L6 8€66 V866 | STT6 86'SL €8T6 SLL6 OV66 | FSLS €6CEL YT16 LYL6 | 8€LL 0V99 SE'88 ‘Sdsy
FP6P6 €878 6TV6 YIU86 8Y66 9866 | SLT6 L66L TSE6 Y086 9v'66 | LI'SS S6YL 9816 OL'L6 | 0I'SL 0EL9 6888 °SdSY | w
28t6 81T8 LTP6 0£86 1S'66 S866 | 99T6 LE6L 796 8I'86 Sv66 | [198 €vvL €TT6 LYL6 | 9674 TELY 0988 | Tadioutr |’
06'+6 T8T8 STY6 0T86 Vv66 1866 | 2LT6 86'6L 1S€6 €086 9€66 | IS8 66vL S816 9SL6 | 962, TELI 0988 dgoI =
6S°€6 006L TFT6 VSL6 tT66 LL66 | 1016 TI'9L S¥16 8TL6 6166 | ££S8 860L TS68 6996 | SFF. SLT9 SI'98 | wopuey | =
6,76 6V9L LST6 6I'L6 1886 1966 | 668 vI'EL SI'06 9E€L6 ¥I66 | 69+ 0T69 8LSS 6996 | 267, €609 T6b8 | osiensy | 7
€699 I1'9L 10€8 €I'L8 8016 1€S6 | €968 TYEL 6678 9988 90°L6 | [#€8 LITL €€S8 TLT6 | S€9/ €599 $1°98 | Teur8tig
£6'68 0609 9016 9786 L9'66 €666 | €068 S80S9 69T6 €986 TLG66 | 97°S8 L¥¥9 €LT6 LS'S6 | L9SL TI'09 TTT6 | “SdSY
ZE68 €V09 6688 OLL6 LS66 €666 | S€88 €Y 9T16 TT86 O0L66 | ISHS SL'E9 6£16 ¥Y86 | LSFL tvP6S 0£06 ‘Sdsy
L668 0609 60°16 STS6 LI66 €666 | Z06S 61'S9 €ST6 TI86 TL'66 | #TSS 8SV9 8ST6 9586 | £9°SL 1109 9I'16 SdsV | o
6868 0909 6606 ST86 LY66 T666 | 668 €8V 9976 €986 9966 | FI'SS 6TV9 6LT6 ¥E86 | II'SL LTO9 S6'68 | TALOUT | T
P68 6609 6588 I€L6 66 8866 | LSS 8TSY9 €ST6 06L6 SS66 | 9L+S 8SH9 6L 16 16L6 | [['SL LTO9 S668 dgo1 R
1618 Y6'SS TU'L8 LI'L6 TH66 8866 | #£'98 TE0Y9 LEGY ELLO €566 | SKT8 9T09 668 OLLO | #6'[L SE9S TS'LY | wWOPURY | O3
9948 E€LYS 8I'L8 TTL6 O0OV66 6866 | L9998 0965 8968 18L6 6566 | #ST8 L86S 6868 S8L6 | €97, LE9S 8T68 | osI9a9y
2888 LT6S 67’88 0LL6 0F66 6866 | S99 9S¥9 I¥'16 €816 6566 | 68+8 Ovv9 1176 9186 | S#SL LT09 €906 | TRUTSTIQ
8468 6£09 €L06 078 S966 €666 | 068 61'S9O 95T6 0986 IL'66 | IS+ 88€9 60T6 SH'S6 | #6°99 008y LS'S8 | '“SASY
0168 €665 6v88 1916 SS66 T666 | SESS €vv9 6016 0T86 0L66 | 66 €8 TTEY €406 1€86 | £9C9 008y LTS ‘sdsy -
8468 8€09 SL06 S8I'8 S966 €666 | 0068 0£S9 0FT6 0986 IL66 | SL+S €I'¥9 LI16 SH'86 | #6799 008y L8'SS ’SdSY | ~
1268 1109 1906 6186 9966 1666 | 698 88¥9 €576 7986 9966 | SO+ 6S€9 +I'T6 1786 | Z€S9 008y €978 | Tadiout | |
6688 TH09 86L8 6IL6 TH66 8866 | #SS 6£S9 9€T6 88L6 1S66 | 66€S TEHY +668 ILL6 | SFS9 008 96C8 dgo1 =
L8 06FS 6798 90'L6 OY66 8866 | 0998 66'6S OT68 69L6 €S66 | €68 T9BS €908 PSLO | 8€C9 008 SLTY | WOPURH | ~
0908 9S6F €STL LTLS 88V6 LL'S6 | LL'SS LI'LS $L'88 LYL6 0S66 | 8508 19SS €788 16,6 | #€S9 008y L9T8 | ©sI8nrsy
SS9/ 09LS 8I'EL 1608 LELS 69€6 | 0478 65€9 8978 1968 €676 | 6208 LvE9 T11'S8 08¢€6 | #£S9 008y L9T8 | TeUTSTIQ
BAaY G=V y=¥ ¢=¥ =¥ 1=¥ | Ay p=v¥ ¢=¥ =¥ 1=V | say ¢=¥ =¥ 1=¥ | Bay =¥ 1=V¥ oo

g=1 =1 g=1 7=1 PO

(0°Sebe€eT 01T L PUB () ‘S ‘9)1d L 10§ senbruyoa) uoneznioud JuatoyIp 10§ (%) dtmouwt YD)JV :f AqEL

1606 1LTL TI'S8 1S'S6 €586 6966 | #S06 6£SL +H06 S696 9€°66 | 0L98 OI'TL 6668 T086 | 6448 T86L 9L'S6 | '“SdSY
0I06 %6 1L TL98 STH6 66,6 T966 | 0968 99FL TT68 TI'96 TT66 | ZI98 SLIL 6888 ILL6 | 1948 196L 09°S6 ‘Sdsy
9,06 V¥6TL T6L8 S6¥6 T1€86 6966 | SS06 SP'SL 8006 TS96 SE€66 | €998 TTTIL 9L'68 06L6 | 6448 V¥86L €L°S6 ’SdsV | o
L506 I8TL TSL8 TES6 €586 6966 | 0706 6YFL 86'68 8696 SE66 | #2798 SLOL 0006 V6'L6 | ££/8 V6'6L 15S6 | TidLdut | T
0906 S6'TL TLLS L9V6 LO86 LS66 | ST06 €YSL $668 0v96 1766 | C298 0TTL $88'88 8SL6 | L1418 P6'6L 1556 dgoI .
8T8 8089 Y9'€8 LLTO6 SKL6 Y66 | 0L18 L8OL 8198 86 06186 | PEES L899 SYI8 IL96 | 0SFS TSL LI'E6 | WOPERH | Q)
SS9 91'89 TSH8 TI'C6 9VL6 866 | 0I'SS SI'IL 0¢L8 90S6 S886 | 6448 6569 €818 1696 | 9L+8 9¥'SL SO+6 | osiensy
FL68 9STL 9198 ILE€6 ILL6 $S66 | 9268 8TYL L¥y'88 LES6 1686 | /#SS 00TL 788 80L6 | 8298 T98L ¥6€6 | TRUTSTID
TL'68 LT69 SS98 ¥8V6 6786 S966 | FO'I6 LSOL LOT6 T1'L6 OP'66 | #T'S8 6989 +I'68 88L6 | €848 686L 9L'S6 | '“SdSV
9888 L689 €8V LTE6 S9L6 9566 | 6606 V6SL 6668 8€96 ST66 | LFFS 6889 10°L8 0SL6 | #9148 OL6L 8S°S6 ‘Sdsy
668 €969 €798 €6€6 0086 S9°66 | 6806 699L LL06 0L96 8€66 | [SFS 69 SI'LS 98°L6 | [SL8 686L TLS6 SdSV | ~
£€68 TTYY 8L'S8 696 TE86 1966 | 1906 TESL LS06 SIT'L6 8E66 | 9978 SS99 SL'68 6916 | 9LL8 b6'6L 8SS6 | TAdIOoUT | 1
9768 9669 86'S8 6TE6 SSL6 TS66 | SL06 S99L 0906 0S96 9T66 | #LES 0V69 6¥¥8 TELE | 9448 P6'6L 8SS6 dgoI =
2898 T9Y9 L9188 IL16 L6996 8E66 | 9088 TEIL T89S tIS6 9686 | 9278 9919 SLSS 8€96 | £9F8 €09L 9TE6 | wWopuey | =
ILFS 6119 S908 +6'68 Ltve 1€L6 | S678 vTOL €FL8 8ES6 SL'S6 | 6969 €LVS Iv1L €S€8 | 0SS, €089 8578 | esiensy | 7
SE€/L 8T99 S6TL 9S9L 1918 €68 | L9718 11TL 096L LIYS 0806 | 05T/ 1TT9 LLIL €S€8 | ST9/ T969 L8T8 | TRUTSTIQ
TT06 S6'69 9€L8 8Y'S6 S986 89°66 | 0968 09TL TS68 8696 6766 | TF88 88YL 81T6 61'86 | 9S8 +vTIL 8YH6 | “SdSV
€68 0£69 9LS8 LIT6 LOS6 8566 | €998 66'1L P88 86'S6 0166 | ££/8 SvvL 6806 S8L6 | SOSS €6SL 9I'H6 ‘Sdsy
0106 91°0L ¥I'L8 SOS6 6v'86 89°66 | ##'6S 9LTL SI'68 6596 LT66 | L2898 86vL IL16 1186 | ZES8 9T9L LEH6 SdsV | =
L6668 S6'89 6L98 LL'S6 9986 L966 | 068 €9TL 1€68 00°L6 9T66 | 0I'88 96'€L 61T6 ¥1'86 | IS8 LTIL LI¥6 | TAdLdUT |
868 LI'OL S998 SS+6 1086 1S66 | 268 6LTL LS8 +CT96 S066 | 6088 TOSL 9€16 06L6 | ZZSS LTIL LIT6 dgo1 R
€18 089 1€T8 SET6 0SL6 1766 | 0598 TYL9 SO'S8 TOW6 TLBG | €848 0869 18'L8 6896 | 8078 POTIL TI'l6 | wWoPUwRd | O3
[F/8 09v9 TLT8 08C6 ¥SL6 0F66 | #9998 89L9 €968 ISH6 LL'S6 | Z9FS 0T69 PLLS 1696 | S808 9S0L €116 | osI9a9Y
0988 8789 098 €I'€6 0SL6 L¥66 | [£/8 ¥80L LS98 ¥Lv6 0L'86 | 0098 8TTL L¥y'88 STL6 | SS°€8 TSHL 8ST6 | TRUTSTIQ
1906 LOIL 68°L8 89°S6 1IL'86 6966 | Z€98 €£¥9 +8'S8 1096 80°66 | S628 09€L 6076 LI'S6 | 80°S8 69SL Ly'bve | “SdSY
€868 8YOL SH98 L¥¥e tI86 0966 | 8€S8 609 TOYS 8SH6 TG | 9748 9TEL 6906 T8L6 | SLFS 8ESL €I'V6 ‘Sdsy -
0S06 6TIL L9L8 8TS6 6586 6966 | S6S8 SLYY LSPS €4'S6 9066 | S48 SSEL 9€16 +086 | S68 IL'SL tIH6 ’SdSY | ~
SZ06 000L STL8 9SS6 TL'86 69°66 | S8'S8 1979 +9S8 TI'96 SOG6 | 6548 LSTL TI'T6 6086 | 88'#8 LL'SL 86'€6 | Tidiout |
LI06 6TIL TTLY SLY6 0186 1566 | ZSS8 SLVY9 TI'VS TSH6 9986 | IS£8 TSEL 1606 6LL6 | 8948 LL'SL 86€6 dgo1 =
$9L8 6€S9 687T8 ¥8T6 19°L6 8’66 | ££€8 1€19 86’18 9TE6 886 | LIFS TEBY YYL8 $896 | S#08 T8G9 LO'I6 | WOPTRY | =
SFS 11°€9 LEIS 1006 98T6 9SS6 | 649 +¥ITS 9€09 +v6'L9 SI'6L | €29 6V9S S99 106L | 2SL9 9L'6S 8TSL | osienrsy
PCPL 1799 IYOL TOEL IULL SY¥8 | STHY 8I'SS 0S6S 89°S9 S99L | #8°99 S9'8S O0¥'S9 9F9L | L£'69 0Ov'€9 +S'SL | TeutSTIQ
BAaY G=V y=¥ ¢=¥ =¥ 1=¥ | Ay p=v¥ ¢=¥ =¥ 1=V | say ¢=¥ =¥ 1=¥ | Bay =¥ 1=V¥ oo

g=1 =1 g=1 7=1 PO

(0101 64T ‘8)rd L PUE (919 €4,T ‘L)Ed L 10§ sonbruyda) uoneznuotid Juaroyip 10§ () Smew Y04V :§ 9[quL

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

respectively, have greater APCC values than Original test
sequences. Additionally, the average APCC values of ASPS,,
ASPS,, and ASPS,, are higher than those of Original, in
100.00% (32/32), 84.38% (27/32), and 100.00% (32/32) of
cases, respectively.

As shown in Tables 4 and 5, it can be noted that different
non-prioritized interaction test suites generated by different
tools have different performances.

For example, consider TP3(7,2*3'6'16',0) at strength
7 = 2: when non-prioritized covering arrays are constructed
using ACTS, the difference between ASPS, and Original is
18.60% for A = 1, and 32.31% for A = 2. However, when
using PICT, the difference is 1.79% for A = 1, and 1.74% for
A = 2. The main reason for this is related to the different ss
mechanisms used in the ACTS and PICT tools [10, 25, 38]. s
Specifically, without loss of generality, consider a test profile e
TPk, [Vi|IVa| -« [Vil, 0) with [Vq| > [Va| = -+ > |Vi]. When &
generating a 7-wise (1 < 7 < k) covering array, the ACTS e
algorithm first uses horizontal growth [25, 38] to construct a
T-wise test set for the first 7 parameters, which implies that it e
needs at least (1 + (|V;| — 1) x []7_, [Vi]) test cases to cover all e
possible 1-wise value combinations. However, the PICT ¢
algorithm chooses each next test case such that it covers the ¢
largest number of 7-wise value combinations that have not yet es
been covered — a mechanism similar to that of ICBP. 69

In conclusion, the simulation indicates that the ASPS
techniques do outperform Original in terms of the rate of
covering value combinations, regardless of which construction 7.
tools are used (ACTS or PICT). 73

2) Do ASPS methods have better APCC values than -4
reverse or random ordering? In this part, we attempt to s
determine whether or not ASPS methods are more effective 7
than two widely-used prioritization methods, Reverse and
Random. 78

In all cases, each ASPS method (regardless of ASPS,, 7
ASPS,, and ASPS,,) has higher APCC values than Reverse, g
and hence achieves higher average APCC values. Additionally,
the performance of Reverse is correlated with the s
non-prioritized interaction test suite (that is, the ACTS and e
PICT tools). 84

Compared with Random, the ASPS methods have higher g
APCC wvalues in all cases, irrespective of the strength g
A = 1,2,---,7 and interaction test suite construction tool g
(ACTS or PICT). As a result, the ASPS methods have better g
performance according to the average APCC values at g
different strengths. %

In conclusion, in all cases our ASPS methods (regardless o
of the weighting distributions) do perform better than both the ¢
Reverse and Random prioritization strategies, according to the ¢
APCC values. o

3) Are ASPS methods better than “fixed-strength o
prioritization”? In this part, we would like to determine g
whether or not ASPS methods perform better than two g
implementations of “fixed-strength prioritization”, ICBP and
inCTPri.

Compared with ICBP, according to APCC values, ASPS,,
ASPS, and ASPS,, perform better in 79.46% (89/112),

10

R
©
o
Co
)
a
1%}
<

ASPS,: 33.63%

ASPS,;: 65.77%

Figure 1: Comparison of ASPS,, ASPS,, and ASPS,, according to APCC.

36.61% (41/112), and 72.32% (81/112) of cases, respectively.
Furthermore, according to the average of APCC values (Avg.),
ASPS,, ASPS,, and ASPS,, have better performances than ICBP
in 100.00% (32/32), 18.75% (6/32), and 100.00% (32/32) of
cases.

Similarly, compared with inCTPri, ASPS,, ASPS,, and
ASPS,, have higher APCC values in 58.93% (66/112
21.43% (24/112), and 75.00% (84/112) of cases, respectivel))@‘
Moreover, according to the average of APCC values, ASPS,,
ASPS,, and ASPS,, outperform inCTPri in 100.00% (32/32),
3.13% (1/32), and 100.00% (32/32) of cases.

In conclusion, the simulation results indicate that apart
from ASPS,, in (58.93% ~ 79.46%) of cases our ASPS
methods (ASPS, and ASPS,,) do perform better than ICBP and
inCTPri, and also have higher averages of APCC values in all
cases. Consequently, we conclude that our ASPS methods
(except for ASPS,) do have better performance than
“fixed-strength prioritization”.

4) Among the three weighting distributions, which
weighting distribution is used for the ASPS method? In this
part, we are interested in which weighting distribution is more
suitable for the ASPS method. As discussed before, there are
three distributions used for the ASPS methods: equal, random,
and empirical FTFI percentage weighting distributions.

As discussed in the last part, among the three weight
distributions for ASPS, ASPS, has the lowest APCC,
performance, irrespective of which A value is used (1 < A1 < 7).
Additionally, when A is high, ASPS, performs better than
ASPS,,, otherwise it performs worse. According to the average
APCC values, however, ASPS,, performs best, followed by
ASPS,; while ASPS, has the worst performance. Figure 1
shows the comparison of ASPS,, ASPS,, and ASPS,, according
to the APCC metric. From this figure, it can be observed that
in 65.77% (73.67/112) of cases ASPS,, has the highest APC
values; in 33.63% (37.67/112) of cases, ASPS, does; and onl
in 0.60% (0.67/112) of cases is the highest values for ASPS,”.
In other words, among three weighting distributions, empirical
FTFI percentage weighting distribution would be the best
choice, followed by the equal weighting distribution,
according to the APCC metric.

=l
[l

S1f there exist two or three ASPS strategies that ha@ame APCC value,
each strategy is assigned by 1/2 or 1/3.

Dave
Highlight

Dave
Sticky Note
delete "of"

Dave
Highlight

Dave
Sticky Note
delete "of"

Dave
Highlight

Dave
Sticky Note
delete (and)

Dave
Highlight

Dave
Sticky Note
average
delete "of"

Dave
Highlight
Do you really need this footnote? I think it could be deleted.

If you want to keep it, rephrase it as: "If two or three ASPS strategies have the same APCC value, then each strategy is assigned a $1/2$ or $1/3$, respectively."

BUT what does "assigned a 1/2" mean? Assigned 1/2 of what?

Dave
Highlight

Dave
Sticky Note
rephrase

Dave
Sticky Note

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Table 6: Subject programs.

Subject Program Test Profile #uLOC #Seeded Faults #Detectable Faults #Used Faults
count TP(6,273°,0) 42 15 12 12
nametbl TP(5,2'3%5%,0) 329 51 44 43
flex TP(9,2°3°51, 9), 9,581 ~ 11,470 81 50 34
grep TP(9,2'334%5'6!'8', 2) 9,493 ~ 10,173 57 12 10

In conclusion, the empirical FTFI percentage weighting s
distribution appears to be more suitable than the other s
weighting distributions for the ASPS method (ASPS,,). 3%

5) Conclusion: Based on the above discussions, we find so
that given a covering array of strength 7, the ASPS strategies
behave better than the Original, Reverse, and Random a1
strategies (in 86.61% ~ 100.00% of cases), and apart from 4
ASPS, perform better than “fixed-strength prioritization” s
including ICBP and inCTPri implementations (in
58.93% ~ 79.46% of cases). Additionally, among the three 4
weighting distributions, the empirical FTFI percentage is most
suitable for use with the ASPS method, followed by the equal +
weighting distribution. a8

49
5.2. Experiments s

An experimental study was also conducted to evaluate the ,,
ASPS techniques, the goal of which was to compare the fault ,,
detection rates of the ASPS,, ASPS,, and ASPS,, techniques
against those of other interaction test suite prioritization g,
techniques, such as Original, Reverse, Random, ICBP, and
inCTPri. In actual testing conditions, testing resources may
be limited, and hence only part of an interaction test suite (or
an interaction test sequence) may be executed. As a,
consequence, in this study we focused on different budgets by ,,
following the practice adopted in previous prioritization
studies [30] of considering different percentages (p) of each ,
interaction test sequence, e.g. p = 5%, 10%, 25%, 50%, 75%,
and 100% of each interaction test sequence being executed. 62

63

5.2.1. Setup o
For the study, we used two small-sized faulty C programs _
(count and nametbl)®, which had previously been used in .
research comparing defect revealing mechanisms [27],
evaluating different combination strategies for test case
selection [17], and fault diagnosis [16, 45]. Since these two
programs are small, we also used another two medium-sized
UNIX utility programs’, flex and grep, with real and seeded

SFrom http://www.maultech.com/chrislott/work/exp/
"From http://sir.unl.edu

faults from the Software-artifact Infrastructure Repository
(SIR) [11]. These two programs had also been widely used in
prioritization research [22, 30, 32]. To determine the
correctness of an executing test case, we created a fault-free
version of each program (i.e. an oracle) by analyzing the
corresponding fault description. These subject programs are
described in Table 6, in which the Test Profile is the test profile
of each subject program®; the #uLOC® gives the number of
lines of executable code in each program; the #Seeded Faults'®
is the number of faults seeded in each program; the
#Detectable Faults is the number of faults that could be
detected from the accompanying test profiles, which are not
guaranteed to be able to detect all faults; and the #Used Faults
is the number of faults used in the experiment by removing
some faults that could be triggered by nearly every
combinatorial test case in the test suite, that is, faults could be
removed such that they are identified by more than
(78.00% ~ 100.00%) test cases in the test suite.

Similar to the simulation (Section 5.1), we also used ACTS
and PICT to generate original interaction test sequences for
each subject program. Additionally, we focused on covering
arrays with strength 7 = 2, 3,4, 5. Table 7 gives the sizes of the
original interaction test sequences obtained by ACTS and
PICT. Because of the randomization in some of the
prioritization techniques, we ran the experiment 100 times for
each subject program and report the average.

5.2.2. Metric

The APFD metric [13] is a popular measure for evaluating
fault detection rates of interaction test sequence. In this study,
only part of the interaction test sequences could be run, and
some faults might not have been triggered by a particular
interaction test sequence. As discussed before, however,

8The test profiles of two medium-sized programs, flex and grep, are from
Petke et al. [30].

9We used the line count tool named cloc, downloaded from
http://cloc.sourceforge.net, to count the number of code lines.

10Similar to [30], in this study we only used the faults provided with each of
subject programs, in order to avoid experiment bias and ensure repeatability.

Table 7: Sizes of original interaction test sequences for each subject program.

Subject Program ACTS PICT
T=2 1=3 1v=4 71=5 T=2 1=3 1=4 71=5
count 15 41 108 243 14 43 116 259
nametbl 25 82 225 450 25 78 226 450
flex 27 66 130 238 26 65 129 219
grep 46 153 298 436 47 150 296 436

11

Dave
Highlight

Dave
Highlight

Dave
Sticky Note
Rephrase as:
"that is, faults were removed if they were identifiable by 78.00% ~ 100.00% of test cases in the test suite"

[I N N

APFD has two requirements which may cause APFD to fail. 1
Consequently, it was not possible to use APFD to investigate 2
the fault detection rates of the different prioritization strategies, a1
and so we used an enhanced version of APFD, NAPFD [32],
as an alternative evaluation metric. 2
24

5.2.3. Results and Discussions 25
The experimental results from executing all prioritization 2
techniques to test count, nametbl, flex, and grep are =
summarized in Tables 8 ~ 11, based on which we can have the 2s
following observations. It should be noted that the data in bold 2e
in the tables is the largest in each sub-column. 3
1) Does the ASPS method have faster fault detection rates 3
than the Original method? In this part, we analyze the s2
experimental data to answer the research question of whether 33
or not the ASPS method is better than Original according to
fault detection rates. %
As shown in Tables 8 ~ 11, in 96.84% (184/190), ss
97.37% (185/190), and 96.84% (184/190) of cases, ASPS,, s

ASPS,, and ASPS,, respectively, obtain interaction test
sequences with higher fault detection rates than Original.
The fault detection improvement of ASPS over Original for
ACTS is larger than that for PICT: as was the case in the
simulation, the main reason for this is the different methods
used to construct ACTS and PICT interaction test suites.

Additionally, as the proportion of the interaction test
sequence executed (p) increases, the NAPFD improvement of
ASPS over Original generally becomes smaller. For
example, consider subject program nametbl for ACTS with
7 =5, when p = 5%, 10%, 25%, 50%, 75%, and 100%, the
corresponding NAPFD improvements of ASPS, over
Original are 58.92%, 42.87%, 27.78%, 14.54%, 9.71%, and
7.27%, respectively.

In conclusion, in (97.37% ~ 96.84%) of cases, the ASPS
method has higher rates of fault detection compared with
Original. Furthermore, the ASPS method favors the cases
where smaller percentages of interaction test sequence are
executed, compared with Original.

Table 8: The NAPFD metric (%) for different prioritization techniques for subject program count when executing the percentage of interaction test sequence.

Method Strength 5o "y 00 " s, s0% 5%

p of ACTS Interaction Test Sequence Executed | p of PICT Interaction Test Sequence Executed

100% | 5% 10% 25% 50% 75% 100%

Original - 0 0 25.00 48.11 59.72 - 0 33.33 69.05 78.33 84.52
Reverse - 0 30.56 62,50 73.11 78.06 - 25.00 43.06 51.79 60.00 71.43
Random - 15.38 3775 60.08 70.76 76.31 - 17.71 44.18 68.19 76.71 83.21
ICBP P - 16.29 40.56 61.98 72.05 77.27 - 1796 46.67 72.69 80.82 86.30
inCTPri - 16.29 40.56 6198 72.05 7727 - 1796 46.67 72.69 80.82 86.30
ASPS, - 15.21 3881 6232 7209 77.29 - 19.04 50.68 7545 82.82 87.73
ASPS, - 17.83 42.69 63.86 73.18 78.10 - 17.08 47.72 7281 80.62 86.15
ASPS,, - 13.58 39.10 6290 7232 7745 - 17.13 4724 7399 81.79 86.99
Original 0 0 1.25 31.04 5333 6585 | 1250 3438 65.00 83.33 89.06 91.86
Reverse 39.58 4896 5875 74.58 83.06 87.60 0 21.88 5583 7897 86.20 89.73
Random 3040 47.89 7123 84.03 89.08 9198 | 29.96 46.75 71.65 8579 90.67 93.06
ICBP -3 29.06 4825 7325 86.03 90.64 93.15 | 27.25 4843 7591 8849 9245 94.38
inCTPri = 31.71 5196 7585 87.05 91.34 93.66 | 3298 5444 7845 89.68 93.23 9496
ASPS, 3263 5440 7598 86.83 91.16 93.53 | 3092 54.42 7892 89.90 93.37 95.07
ASPS, 33.21 53.60 7545 86.68 91.09 9348 | 3442 53.15 77.06 88.74 92.61 94.50
ASPS,, 35.00 55.78 76.39 8694 9123 9358 | 3090 54.75 78.74 89.85 93.34 95.04
Original 0 0 0 28.86 51.03 63.27 | 60.83 80.30 92.53 96.26 97.51 98.13
Reverse 65.00 82.50 93.52 96.76 97.84 9838 | 74.17 87.12 95.11 97.56 98.37 98.78
Random 57.02 73.14 89.02 9448 9632 9724 | 52.12 7247 8898 9449 96.33 97.25
ICBP =4 56.04 7430 90.15 95.08 96.72 97.54 | 52.76 74.07 89.96 9498 96.65 97.49
inCTPri B 60.20 77.81 9152 9576 97.17 97.88 | 59.88 79.42 92.04 96.02 97.35 98.01
ASPS, 61.80 7825 91.78 9589 9726 9795|6028 79.11 9194 9597 9731 97.99
ASPS, 60.67 7770 9140 9569 97.13 97.85 | 60.85 78.61 9141 9571 97.14 97.85
ASPS,, 61.63 7834 91.64 9582 9721 9791 | 60.39 7932 9194 9597 97.31 97.98
Original 0 0 0 16.53 3592 51.75 | 70.14 85.67 9440 9722 98.15 98.62
Reverse 78.47 82.81 88.13 9263 95.10 96.33 | 80.56 90.67 96.35 98.19 98.80 99.10
Random 74.65 86.21 9437 9721 98.14 98.61 | 74.84 86.84 9477 97.41 98.28 98.71
ICBP =5 76.34 87.46 9497 9750 9834 98.76 | 76.84 88.17 9534 97.69 98.46 98.85
inCTPri 80.51 90.08 96.03 98.03 98.69 99.02 | 81.19 90.77 96.40 98.21 98.81 99.11
ASPS, 80.76 90.27 96.11 98.07 98.72 99.04 | 80.39 90.41 96.25 98.14 98.76 99.07
ASPS, 79.89 89.48 9579 9791 98.61 9896 | 80.34 90.27 96.20 98.11 98.75 99.06
ASPS,, 8145 90.65 96.26 98.15 98.77 99.08 | 8141 90.88 96.44 9823 9882 99.12

12

Dave
Highlight

Dave
Sticky Note
remove (and)

Table 9: The NAPFD metric (%) for different prioritization techniques for subject program nametbl when executing the percentage of interaction test sequence.

Method Strength p of ACTS Interaction Test Sequence Executed | p of PICT Interaction Test Sequence Executed
5% 10% 25% 50% 75% 100% | 5% 10% 25% 50% 75% 100%
Original 0 15.70 55.04 75.87 8391 8842 | 11.63 2733 5872 7297 8198 §&7.02
Reverse 3721 5756 81.78 90.02 9335 9521 | 11.63 2384 6143 7936 86.24 90.09
Random 18.22 3292 6285 79.31 86.15 90.03 | 19.13 3358 61.53 77.54 84.65 8891
ICBP =2 19.15 3449 68.01 83.55 89.04 92.11 | 1892 3398 6527 8048 86.90 90.57
inCTPri 19.15 3449 68.01 83.55 89.04 92.11 | 1892 3398 6527 80.48 86.90 90.57
ASPS, 19.38 3581 69.56 8433 89.55 9248 | 19.21 3452 66.05 8131 87.50 91.00
ASPS, 18.21 3421 67.28 83.06 8871 91.87 | 19.23 3435 64.69 80.26 86.72 90.44
ASPS,, 19.57 35.80 6870 83.89 89.26 9227 | 1899 35.07 67.22 82.28 88.14 91.46
Original 27.03 4855 69.19 8437 89.50 92.19 | 40.31 64.12 8537 92.87 9521 96.44
Reverse 72.38 8299 91.63 9577 9716 97.89 | 18.60 53.16 82.19 9132 94.17 95.66
Random 5344 7153 87.80 94.04 96.00 97.02 | 43.26 6639 85.87 93.06 9534 96.53
ICBP =3 53.77 7293 8891 9459 9636 9729 | 46.24 6931 88.11 9421 96.10 97.10
inCTPri 60.26 78.46 9132 9577 97.16 9788 | 48.86 71.82 89.26 9477 96.48 97.38
ASPS, 60.53 7859 9135 95.78 97.16 97.89 | 47.54 7283 89.68 9497 96.62 97.48
ASPS, 5832 76.43 9037 9530 96.84 97.65 | 47.21 71.03 88.35 9425 96.14 97.13
ASPS,, 57775 77.18 90.83 9553 9699 97776 | 46.28 71.78 89.13 9470 96.43 97.35
Original 32.03 51.64 70.14 8435 89.57 9221 | 72.09 85.68 9437 9721 98.14 98.61
Reverse 81.18 87.47 92.69 9563 97.09 97.82 | 7484 86.63 9475 9740 9826 98.70
Random 77.58 8829 9539 97.69 98.46 9885 | 78.14 8857 9549 97776 98.50 98.88
ICBP S 7756 8847 9547 9774 9849 9887 | 7794 8871 9556 97.80 9853 98.90
inCTPri 82.07 9098 96.46 9823 98.82 99.12 | 81.48 90.72 9635 98.19 98.79 99.10
ASPS, 83.20 91.56 96.68 98.34 98.89 99.17 | 82.51 91.21 96.55 98.29 98.86 99.14
ASPS, 81.79 90.74 96.36 98.18 98.79 99.09 | 82.46 91.14 96.52 98.27 98.85 99.14
ASPS,, 8292 9140 96.62 9831 98.87 99.16 | 82.40 91.14 96.52 98.28 98.85 99.14
Original 32.19 52779 7047 8459 89.71 9230 | 88.85 9455 97.81 9891 99.27 9945
Reverse 83.30 88.71 93.13 9587 97.24 9794 | 89.38 9481 9791 98.96 99.31 9948
Random 88.02 94.10 97.63 98.82 99.21 9941 | 87.77 93.99 97.58 98.80 99.20 99.40
ICBP =5 88.37 9428 9770 9886 99.24 9943 | 88.77 94,50 97.79 98.90 99.27 99.45
inCTPri 90.47 9534 98.13 99.07 99.38 99.53 | 90.69 95.44 98.17 99.09 9939 99.54
ASPS, 91.11 95.66 98.25 99.13 9942 99.57 | 91.16 95.68 98.26 99.14 9942 99.57
ASPS, 90.04 95.13 98.04 99.03 9935 99.51 | 90.69 9545 98.17 99.09 99.39 99.54
ASPS,, 90.97 9559 98.23 99.12 99.41 99.56 | 90.73 9547 98.18 99.09 99.39 99.55

2) Does the ASPS method lead to higher fault detection 2
rates than intuitive prioritization methods such as reverse 2
prioritization and random prioritization? 1In this part, we 2
compare the ASPS method with Reverse and Random, in 2
terms of fault detection rate. 2

As shown in the tables, ASPS,, ASPS,, and ASPS,, have 2
higher NAPFD values than Reverse in 76.32% (145/190),
76.84% (146/190), and 78.42% (149/190) of cases, 2
respectively. Furthermore, these three ASPS methods 2
outperform Random in 97.37% (185/190), 95.79% (182/190), =
and 94.74% (180/190) of cases, respectively. Also, as the =0
values of p increase, the improvement of the ASPS method s
over Reverse or Random decreases. 32

Howeyver, there are cases where either Reverse or Random s3
obtain interaction test sequences with the highest NAPFD a4
values. For instance, for subject program count with 7 = 4, s
Reverse performs best among all prioritization strategies, s
regardless of p value or interaction test suite construction tool s7
(ACTS or PICT); likewise, for subject program flex with ss

13

ACTS at 7 = 2, when p = 75% or 100%, Random obtains
interaction test sequences with the highest NAPFD values.

In conclusion, in 76.32% ~ 97.37% of cases, the ASPS
method performs better than the two intuitive prioritization
methods Reverse and Random, according to NAPFD.
Furthermore, similar to Original, the ASPS method favors
the cases where smaller percentages of interaction test
sequence are executed, compared with Reverse and Random.

3) Is the ASPS method better than “fixed-strength
prioritization” in terms of fault detection rates? In this part,
we compare fault detection rates of interaction test sequences
prioritized by the ASPS method against two implementations
of “fixed-strength prioritization”, ICBP and inCTPri.

For subject program flex at strength 7 = 2, ICBP performs
better than the ASPS method for some p values; otherwise, the
ASPS method has higher NAPFD values, regardless of p
value. More specifically, ASPS,, ASPS,, and ASPS,, have higher
rates of fault detection than ICBP in 85.79% (163/190),
71.58% (136/190), and 86.31% (164/190) of cases,

respectively. The main reason for this phenomenon is that 2
ICBP is an implementation of “fixed-strength prioritization”, =
which means that each selected element is evaluated according 2.
to a fixed strength 7. In addition, ICBP does not actually 2
change the prioritization strength value throughout the 24
prioritization process, and may consequently detect faults with 2s
the FTFI number = 7 more quickly than ASPS, and faults with 2
the FTFI number < 7 more slowly, because the ASPS method 2-
focuses on aggregate strengths. 2

According to the NAPFD values shown in tables, ASPS,, 20
ASPS,, and ASPS,, have better performances than inCTPri, in s
70.00% (133/190), 43.16% (82/190), and 70.53% (134/190) a
of cases, respectively. The improvements of the ASPS z
methods over inCTPri in medium-sized programs (flex and ss
grep) are larger than those in small-sized programs (count and s4
nametbl). Additionally, as the values of p increase, the ss
improvement of the ASPS method against inCTPri generally s
decreases. Similar to ICBP, inCTPri is an implementation of s
“fixed-strength prioritization”, which means that it also ss

prioritizes each test case using a fixed strength. However, they
have different performances, something which can be
explained as follows: ICBP uses a fixed strength 7 throughout
the prioritization process, but inCTPri uses different strengths
2, 3, .-+, and 7) to guide the interaction test suite
prioritization.

Both ICBP and inCTPri use only one strength to prioritize
each combinatorial test case, while ASPS uses different
strengths when choosing each, which could explain why it
performs better in most cases. On the other hand, although
neither ICBP nor inCTPri consider different strengths to guide
the selection of each test case, the selected best candidate fc
also involves additional information on interaction coverage at
higher strengths. For example, suppose that 7c covers a number
of uncovered A-wise value combinations, then according to the
proof of Theorem 1, it can be concluded that tc also covers a
number of uncovered value combinations at strengths higher
than A. Furthermore, since the fault distribution of each subject
program (the FTFI number) is unknown before testing, it is

Table 10: The NAPFD metric (%) for different prioritization techniques for subject program flex when executing the percentage of interaction test sequence.

Method Strength 5o "y 00 " s, s0% 5%

p of ACTS Interaction Test Sequence Executed | p of PICT Interaction Test Sequence Executed

100% | 5% 10% 25% 50% 75% 100%

Original 5.88 12,50 3456 44.11 5588 6427 | 882 1691 5392 7240 77.63 81.28
Reverse 13.24 2794 4853 64.82 7294 7691 | 7.35 1691 48.53 66.74 7245 76.75
Random 15.68 2739 51.69 67.61 74.18 77.69 | 15.03 27.48 5325 69.58 75.82 79.87
ICBP P 15.12 31.10 6296 76.10 80.29 8235 | 1494 29.69 6131 7512 79.62 82.66
inCTPri 15.12 31.10 6296 76.10 80.29 8235 | 1494 29.69 61.31 7512 79.62 82.66
ASPS, 1641 3228 63.19 7596 80.19 8227 | 16.59 2825 60.11 7482 79.60 82.67
ASPS, 1541 3031 6224 7537 79.75 8194 | 17.35 30.57 59.81 75.05 7993 82.94
ASPS,, 1544 3132 62.60 7573 80.05 82.17 | 1441 2926 61.29 7531 79.79 82.77
Original 2696 4583 66.82 77.27 81.00 83.96 | 22.55 46.81 72.61 8042 83.03 85.00
Reverse 2941 4289 5634 71.88 79.11 8298 | 42.65 58.09 75.83 83.50 86.06 87.40
Random 36.35 52777 7259 81.51 8492 87.10 | 36.17 51.43 71.02 79.99 83.36 85.29
ICBP -3 43.57 62.09 77.66 83.66 8597 87.88 | 4141 6042 76.65 8244 84.65 86.18
inCTPri = 4188 61.30 7733 8340 8580 87.82 | 4035 59.89 76.63 82.61 84.83 86.32
ASPS, 44.54 62.55 77.61 83.62 8592 87.84 | 3826 60.39 7743 8284 85.04 86.52
ASPS, 4221 60.68 7735 83.59 86.01 87.85 | 4040 59.23 7643 82.68 8491 86.39
ASPS,, 4350 6233 7796 8391 86.18 88.10 | 42.09 61.44 77.21 8277 84.81 86.23
Original 32.11 5170 6820 7828 83.79 8790 | 41.67 4988 7243 8033 83.79 86.43
Reverse 50.25 59.62 6438 76.79 84.17 88.19 | 58.09 70.10 79.60 8598 88.69 90.08
Random 51.75 6836 8131 87.77 90.74 9285 | 52.52 67.10 80.16 8549 §87.88 8§9.36
ICBP o4 59.98 7436 83.96 88.33 90.54 9272 | 61.04 73.40 8297 86.72 88.86 90.10
inCTPri B 61.67 7546 84.01 8832 90.66 92.82 | 61.82 7421 83.37 8693 88.67 89.83
ASPS, 62.11 75.83 84.50 88.44 90.50 92.69 | 60.63 73.66 83.00 86.41 88.44 89.68
ASPS, 59.90 7392 8348 8836 90.72 9280 | 59.25 7225 8241 86.50 88.51 8§9.78
ASPS,, 62.85 76.07 8429 88.30 9031 9252 | 62.19 7429 83.26 86.60 88.67 8§9.94
Original 3596 57.54 7423 8264 87.48 90.63 | 55.15 71.15 8230 89.06 91.80 93.86
Reverse 52.81 6055 64.88 71.81 81.03 85.81 | 59.71 7157 81.13 87.56 89.76 92.13
Random 65.23 77.11 86.13 90.77 93.09 9472 | 61.14 7423 8426 89.01 91.52 93.36
ICBP =5 71.39 80.69 87.50 91.03 93.02 94.67 | 6931 7940 86.58 90.49 9295 94.71
inCTPri 73.23 8127 86.97 9045 9281 9454 | 71.92 80.55 86.20 89.69 92.33 94.23
ASPS, 7336 81.71 87.54 91.02 93.09 94.76 | 70.84 80.52 86.98 90.59 93.05 94.77
ASPS, 70.62 7995 8730 91.06 9297 94.61 | 69.31 79.15 86.54 9032 9251 9430
ASPS,, 7391 81.73 87.02 9048 9274 94.44 | 72.34 80.69 86.53 90.27 92.66 94.49

14

Table 11: The NAPFD metric (%) for different prioritization techniques for subject program grep when executing the percentage of interaction test sequence.

p of ACTS Interaction Test Sequence Executed

p of PICT Interaction Test Sequence Executed

Method Strength 50" 160, 0590 s0% 75% 100% | 5% 10% 25% S0% 75% 100%
Original 7500 3250 3727 4196 5118 6054 | 25.00 3250 4182 6674 7471 78.62
Reverse 30.00 3500 4545 5935 6926 74.67 | 30.00 3875 5409 6848 7586 7947
Random 33.03 4430 60.15 7035 7534 7875 | 3278 4509 6285 7423 7933 82.04
ICBP __, 3LI3 4274 6180 7236 7610 7869 | 30.65 4230 6142 7429 7958 8224
inCTPri =2 3103 4274 6180 7236 7610 78.69 | 30.65 4230 6142 7429 7958 82.24
ASPS, 3655 49.55 6635 7535 78.66 80.90 | 31.05 4435 6470 7623 80.89 83.22
ASPS, 3170 4430 63.07 7289 7667 7943 | 34.05 4648 6453 7579 8055 82.97
ASPS,, 3315 4625 6497 7403 77.57 8005 | 3345 4573 6494 7639 8099 83.29
Original 3786 4433 6158 7684 8456 88.50 | 5000 62.00 7743 8600 90.63 93.00
Reverse 4786 6400 7460 8230 8544 89.15 | 58.57 70.00 79.86 87.87 91.88 93.93
Random 57.17 67.65 7822 8487 8847 9099 | 58.11 69.50 80.58 87.28 9093 93.18
ICBP __, 5644 6951 7994 8627 8992 9248 | 58.69 7153 8069 87.56 9134 9353
inCTPri 5504 69.84 80.68 87.42 91.10 9337 | 5867 7157 8151 8820 O91.81 93.88
ASPS, 5030 7121 80.81 86.65 9045 92.88 | 5833 72.07 82.67 88.88 9236 94.29
ASPS, 60.17 7220 81.09 8601 89.06 91.80 | 60.17 7239 82.14 89.05 9233 9425
ASPS,, 5057 7223 8140 8651 8998 9252 | 58.12 71.65 81.88 88.62 92.13 94.12
Original 4303 5586 7054 8280 8857 9144 | 61.07 68.62 7872 8436 8624 8953
Reverse 6393 6724 7588 8299 8605 89.56 | 51.79 6431 79.93 89.80 9320 94.90
Random 6596 7525 8443 89.80 92.65 9445 | 66.06 7533 8523 90.82 9342 95.01
ICBP __, 6797 7758 8644 9233 9491 9619 | 7094 7850 8622 9236 9490 96.18
inCTPri 7102 7943 87.07 9285 9522 9642 | 7122 7944 8774 9313 9542 96.57
ASPS, 70.64 78.17 8624 9226 9483 96.13 | 71.59 7898 86.81 92.59 95.06 96.30
ASPS, 71.44 79.62 87.94 9339 9558 96.69 | 70.09 79.74 87.62 9291 9528 96.46
ASPS,, 7024 7849 8696 9275 9515 9637 | 7098 79.13 8648 9240 9493 9620
Original 4505 4302 4922 5943 7196 7897 | 66.19 7826 87.98 9399 9599 97.00
Reverse 6429 7233 7711 86.10 9073 93.05 | 7976 8500 94.04 97.02 98.01 9851
Random 70.05 77.18 8543 9072 93.50 95.11 | 70.05 77.18 8543 90.72 9350 95.11
ICBP _ 7232 8033 8888 9436 9624 O97.18 | 7232 8033 8888 9436 9624 97.I8
inCTPri 7400 8141 8895 9444 9629 9722 | 7452 8247 90.57 9528 9685 97.64
ASPS, 76.98 8292 9033 95.10 9673 9755 | 7589 81.84 89.18 9443 9629 97.22
ASPS, 76.60 82.61 89.07 94.16 9610 97.08 | 7530 8178 8952 9450 9634 97.25

ASPS,, 7649 83.69 91.09 9547 9698 97.73 | 7649 83.69 91.09 9547 9698 97.73

reasonable that ICBP and inCTPri occasionally have better 2
fault detection rates than ASPS (especially ASPS,, as its 2
weighting distribution is assigned in a random manner). 2
In conclusion, according to the fault detection rates (the s
NAPFD values), ASPS performs better than both 2
“fixed-strength prioritization” implementations, that is, ICBP 2
(in 71.58% ~ 86.32% of cases) and inCTPri (in about 70.00% 25
of cases for ASPS, and ASPS,,; and in 43.16% of cases for 2z
ASPS,). 28
4) Which weighting distribution for the ASPS method gives 29
the best fault detection rates? In this part, we study the fault a0
detection rate of the ASPS method with three weighting s
distributions, so as to determine which weighting distribution s2
is best. %
From the experimental data, no weighting distribution is s«
always best, because each weighting distribution performs best 35
for some cases, but worst for others. Consider subject program ss
grep (Table 8), for example: (a) ASPS with equal weighting s
distribution (ASPS,) has the best NAPFD values for ACTS at

15

strength 7 = 2; (b) ASPS with random weighting distribution
(ASPS,) performs best for ACTS at strength 7 = 4; and (c)
ASPS with empirical FTFI percentage weighting distribution
(ASPS,,) has the best fault detection at strength 7 = 5, for both
ACTS and PICT.

On the whole, however, equal and empirical FTFI
percentage weighting distributions have better rates of fault
detection than random weighting distributions. As shown in
Fig. 2, ASPS, achieves the best NAPFD values in
48.33% (91.83/190) of cases, followed by ASPS, in
34.65% (65.83/190) of cases. In other words, for the ASPS
method, equal and empirical FTFI percentage weighting
distributions would be the better choice in practical testing.

In conclusion, although each weighting distribution can
perform best in some cases, the equal and empirical FTFI
percentage weighting distributions perform better than random
weighting distribution.

5) Time-cost analysis: In this part, we further investigate

21

22
ASPS,;: 48.33%

23

24

ASPS:17.02%
25

26

ASPS,: 34.65% 27

28
29
30
3t
Figure 2: Comparison of ASPS,, ASPS,, and ASPS,, according to NAPFD. 3

33

the time cost of the ICBP, inCTPri, and ASPS!'! methods, to *
help guide practical use. *
Table 12 presents the time cost (in seconds) for different .
prioritization techniques of interaction test suites on different
subject programs. From the experimental data, we can observe
that our method ASPS has very similar time cost to ICBP. It *
can also be observed that when the strength 7 = 2, the time ¥
cost of ASPS is similar to that of inCTPri; but as the strength *
7 increases (t = 3,4,5), the time cost of ASPS differs from *
that of inCTPri. More specifically, for the two small-sized *
programs (count and nametbl), ASPS requires less time, but *
for the medium-sized programs (flex and grep), inCTPri has *
lower time costs. “®
According to the fault detection rates, ASPS generally has *
better performance than ICBP and inCTPri, especially when *
the percentage of interaction test sequence executed (p) is*
lower, in which case, the prioritization time cost of ASPS is *
also lower. In other words, when testing resources are limited, *
ASPS should be chosen as the prioritization method; however, *

when testing resources are less constrained, inCTPri would *
53

54

'We do not consider Original, Reverse, and Random, because the cost of 55
these methods should be much less than that of the methods which make use of sg
some additional information (ICBP, inCTPri, and ASPS). Furthermore, since 5
the three implementations of ASPS (ASPS,, ASPS,, and ASPS,,) have similar

prioritization time, we use ASPS to represent all three. 58

be a better choice because it requires less prioritization time
for medium-sized programs.

6) Conclusion: The experimental study using real
programs shows that although each method may sometimes
obtain the highest NAPFD values, the ASPS method
(regardless of ASPS,, ASPS,, and ASPS,,) performs better than
Original, Reverse, Random, and ICBP in at least 70% of
cases. Furthermore, the ASPS method (except for ASPS,) also
has better fault detection rates than inCTPri in about 70% of
cases. Additionally, equal and empirical FTFI percentage
weighting distributions give better performance for ASPS than
random weighting distribution. With regard to the time cost for
different prioritization strategies, the ASPS method has similar
performance to ICBP, and higher costs than inCTPri for some
subject programs but lower for others.

5.3. Threats to validity

In spite of our best efforts, our experiments may face three
threats to validity:

(1) The experimental setup: The experimental programs are
well-coded and tested. We have tried to manually cross-validate
our analyzed programs on small examples, and we are confident
of the correctness of the experimental and simulation set-up.

(2) The selection of experimental data: Two
commonly-used tools (ACTS and PICT) were used for
generating different covering arrays at different strength
values. Although they are used in the field of combinatorial
interaction testing, both of them use greedy algorithms. Only
four test profiles were used for the simulations, which,
although representative, were limited. = For the real-life
experiments, we examined only four subject programs, two of
which were of a relatively small size. To address these
potential threats, additional studies will be conducted in the
future using many other test profiles, a greater number of
subject programs, and different algorithms for covering array
construction such as simulated annealing based
algorithms [8, 15].

(3) The evaluation of experimental results: In order to
objectively evaluate the effectiveness of the proposed method,

Table 12: Time comparisons (in seconds) of different prioritization techniques of interaction test suites.

Subject Program Prioritization Strategy ACTS PICT

=2 1=3 1v=4 1=5 T=2 =3 1=4 T1=5

ICBP 0.04 025 1.30 3.11 0.04 0.26 1.47 3.49

count inCTPri 0.04 022 1.34 5.48 0.04 024 1.59 6.15

ASPS 0.04 025 1.30 3.12 0.04 0.26 1.47 3.51

ICBP 007 049 227 3.65 0.07 044 235 3.65

nametbl inCTPri 007 045 274 8.36 0.07 045 2.88 8.71
ASPS 0.07 049 227 3.66 0.07 044 235 3.66

ICBP 0.13 1.57 1042 38.64 0.12 1.50 10.72 34.61

flex inCTPri 0.13 1.00 586 27.10 0.12 1.11 6.55 22.26
ASPS 0.13 1.57 1053 3894 0.12 150 10.81 3497
ICBP 0.31 8.13 57.63 190.59 0.37 7.89 54.85 195.70

grep inCTPri 031 554 31.80 9227 0.37 525 3281 99.66
ASPS 0.31 8.19 5832 191.87 037 789 5540 196.94

16

2

4

6

7

8

9

10

"

12

13

14

15

16

prioritization”.

the covering value combinations and the fault detection were ss
measured with the APCC and NAPFD metrics, which are s
commonly used in the study of test case prioritization. ss
Additionally, we only presented the averages for each s
prioritization strategy rather than a full statistical analysis,

which is something we will prepare in the future.
60

6. Conclusion and Future Work o1
62

Combinatorial interaction testing [29] is a well-accepted
testing technique, but due to often limited testing resources, .,
prioritization of interaction test suites in combinatorial
interaction testing has become very important. A dissimilarity
measure to evaluate combinatorial test cases is introduced in
this paper, based on which, a new pure prioritization strategy ,
for interaction test suites is proposed, “aggregate-strength
Compared with traditional interaction
test prioritization (“fixed-strength _,

coverage based

w7 prioritization”) [1, 2, 4-7, 18, 30-33, 37, 39, 40], the proposed _,

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

method uses more information to guide prioritization of test
suites. From the perspective of covering value combinations _,
and fault detection, experimental results demonstrate that in
most cases our method outperforms the test-case-generation
prioritization, the reverse test-case-generation prioritization, ™
and the random prioritization. Additionally, in most cases, our 26
method has better performance than two implementations of -,
“fixed-strength prioritization” while maintaining a similar time 7
cost. 7
Similar to “fixed-strength prioritization”, our prioritization ::)
strategy is not limited to conventional software. For example, e
event-driven software is a widely used category of software &
that takes sequences of events as input, alters state, and outputs Zz
new event sequences [4, 5]. It would be interesting to apply 4
our strategy to different software including event-driven e
software in the future. Additionally, since the challenges of &
which weighting to be used and of whether to use’
fixed-strength or aggregate-strength prioritization strategy may ,,
depend on characteristics of the system under test, it would be e
useful, but challenging, to investigate the application scope of
each prioritization strategy (including different weighting Z:
distributions). 9
The interaction test suite construction tool in our study, s
PICT [10], uses a greedy algorithm to generate (select)
combinatorial test cases: it selects an element as the next test1zz
cases such that it covers the largest number of value
combinations at a given strength 7 (the largest UVCD;). Sinceto2
PICT considers UVCD; as the benefit for each combinatorial'®
test case, PICT actually considers the prioritization during itsjﬂi
the process of combinatorial test case generation. According tO1os
Qu’s classification [32], therefore, PICT belongs to the?
category of re-generation prioritization. Although thelzz
simulation results (Section 5.1) indicate that the differences,,,
between PICT and other prioritization methods are small ini
terms of the APCC metric, the experimental results against''?
real-life programs (Section 5.2) show that other prioritizationnj
methods can obtain higher fault detection rates than PICT,,,,
according to the NAPFD metric. In the future, it will bes

17

important and interesting for us to solve the problem: do
interaction test sequences obtained by re-generation
prioritization need to be further ordered by the pure
prioritization category?

Acknowledgements

The authors would like to thank Christopher M. Lott for
providing us the source code and failure reports for count and
nametbl, and the Software-artifact Infrastructure Repository
(SIR) [11] for providing the source code and fault data for flex
and grep. We would also like to thank D. Richard Kuhn for
providing us the ACTS tool, and Justyna Petke for helping in
the experimental setup. Additionally, we would like to
acknowledge T. Y. Chen for the many helpful discussions and
comments. This work is partly supported by the National
Natural Science Foundation of China (Grant No. 61202110),
the Natural Science Foundation of Jiangsu Province (Grant
No. BK2012284), and the Senior Personnel Scientific
Research Foundation of Jiangsu University (Grant No.
141DG039).

References

[1] Bryce, R. C., Colbourn, C. J., 2005. Test prioritization for pairwise
interaction coverage. In: Proceedings of the 1st International Workshop
on Advances in Model-based Testing (A-MOST’05). pp. 1-7.

[2] Bryce, R. C., Colbourn, C. J., 2006. Prioritized interaction testing for
pairwise coverage with seeding and contraints. Information and Software
Technology 48 (10), 960-970.

[3] Bryce,R.C., Colbourn, C.J., Cohen, M. B., 2005. A framework of greedy
methods for constructing interaction test suites. In: Proceedings of the
27th International Conference on Software Engineering (ICSE’05). pp.
146-155.

[4] Bryce, R. C.,, Memon, A. M., 2007. Test suite prioritization by
interaction coverage. In: Proceedings of the Workshop on Domain
Specific Approaches to Software Test Automation (DoSTA’07). pp. 1-7.

[5] Bryce, R. C., Sampath, S., Memon, A. M., 2011. Developing a single
model and test prioritization strategies for event-driven software. IEEE
Transactions on Software Engineering 37 (1), 48—64.

[6] Bryce, R. C., Sampath, S., Pedersen, J. B., Manchester, S.,
2011. Test suite prioritization by cost-based combinatorial interaction
coverage. International Journal of Systems Assurance Engineering and
Management 2 (2), 126—134.

[7] Chen, X., Gu, Q., Zhang, X., Chen, D., 2009. Building prioritized
pairwise interaction test suites with ant colony optimization. In:
Proceedings of the 9th International Conference on Quality Software
(QSIC’09). pp. 347-352.

[8] Cohen, M. B., Gibbons, P. B., Mugridge, W. B., Colbourn, C. J., 2003.
Constructing test suites for interaction testing. In: Proceedings of the 25th
International Conference on Software Engineering (ICSE "03). pp. 38—-48.

[9] Cohen, M. B., Gibbons, P. B., Mugridge, W. B., Colbourn, C. J.,

Collofello, J. S., 2003. Variable strength interaction testing of

components. In: Proceedings of the 27th Annual International Conference

on Computer Software and Applications (COMPSAC’03). pp. 413-418.

Czerwonka, J., 2006. Pairwise testing in real world: Practical extensions

to test case generators. In: Proceedings of the 24th Pacific Northwest

Software Quality Conference (PNSQC’06). pp. 419—430.

Do, H., Elbaum, S. G., Rothermel, G., 2005. Supporting controlled

experimentation with testing techniques: An infrastructure and its

potential impact. Empirical Software Engineering 10 (4), 405—435.

Elbaum, S., Malishevsky, A., Rothermel, G., 2001. Incorporating varying

test costs and fault severities into test case prioritization. In: Proceedings

of the 23rd International Conference on Software Engineering (ICSE’01).

pp. 329-338.

[10]

[11]

[12]

Dave
Highlight

Dave
Sticky Note
rephrase to "use"

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

[23]

(24]

[25]

(26]

(27]

[28]

[29]

[30]

(31]

[32]

(33]

Elbaum, S., Malishevsky, A. G., Rothermel, G., 2002. Test case 72
prioritization: A family of empirical studies. IEEE Transaction on 73
Software Engineering 28 (2), 159-182. 74
Fouché, S., Cohen, M. B., Porter, A., 2009. Incremental covering array 75
failure characterization in large configuration spaces. In: Proceedings 76
of the 18th International Symposium on Software Testing and Analysis 77
(ISSTA’09). pp. 177-188. 78
Garvin, B. J., Cohen, M. B., Dwyer, M. B., February 2011. Evaluating 79
improvements to a meta-heuristic search for constrained interaction so
testing. Empirical Software Engineering 16 (1), 61-102. 81
Ghandehari, L. S. G., Lei, Y., Xie, T., Kuhn, R., Kacker, R., 2012. s2
Identifying failure-inducing combinations in a combinatorial test set. In: &3
Proceedings of the 5th International Conference on Software Testing, s4
Verification and Validation (ICST’12). pp. 370-379. 85
Grindal, M., Lindstrom, B., Offutt, J., Andler, S. F., 2006. An evaluation ss
of combination strategies for test case selection. Empirical Software 87
Engineering 11 (4), 583-611. 88
Huang, R., Chen, J., Li, Z., Wang, R., Lu, Y., 2014. Adaptive random g9
prioritization for interaction test suites. In: Proceedings of the 29th o
Symposium On Applied Computing (SAC’14), To appear. 91
Huang, R., Chen, J., Zhang, T., Wang, R., Lu, Y., 2013. Prioritizing e2
variable-strength covering array. In: Proceedings of the IEEE 37th Annual e3
Computer Software and Applications Conference (COMPSAC’13). pp. 94
502-511. %5
Huang, R., Xie, X., Chen, T. Y., Lu, Y., 2012. Adaptive random s
test case generation for combinatorial testing. In: Proceedings of the o7
IEEE 36th Annual Computer Software and Applications Conference os
(COMPSAC’12). pp. 52-61. 9%
Huang, Y.-C., Peng, K.-L., Huang, C.-Y., 2012. A history-based cost-100
cognizant test case prioritization technique in regression testing. Journalio1
of Systems and Software 85 (3), 626-637. 102
Jiang, B., Zhang, Z., Chan, W. K., Tse, T. H., 2009. Adaptive random test103
case prioritization. In: Proceedings of the 24th IEEE/ACM Internationalios
Conference on Automated Software Engineering (ASE’09). pp. 233-244.105
Kuhn, D. R., Reilly, M. J., 2002. An investigation of the applicability of1os
design of experiments to software testing. In: Proceedings of the 27th1o7
Annual NASA Goddard/IEEE Software Engineering Workshop (SEW-
27°02). pp. 91-95.

Kuhn, D. R., Wallace, D. R., Gallo, A. M., 2004. Software fault
interactions and implications for software testing. IEEE Transaction on
Software Engineering 30 (6), 418-421.

Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., 2008. Ipog/ipod: Efficient test
generation for multi-way software testing. Software Testing, Verification,
and Reliability 18 (3), 125-148.

Li, Z., Harman, M., Hierons, R., 2007. Search algorithms for regression
test case prioritization. IEEE Transactions on Software Engineering
33 (4), 225-237.

Lott, C., Rombach, H., 1996. Repeatable software engineering
experiments for comparing defect-detection techniques. Empirical
Software Engineering 1 (3), 241-277.

Mei, L., Chan, W. K., Tse, T. H., Merkel, R. G., 2011. Xml-manipulating
test case prioritization for xml-manipulating services. Journal of Systems
and Software 84 (4), 603-619.

Nie, C., Leung, H., 2011. A survey of combinatorial testing. ACM
Computer Survey 43 (2), 11:1-11:29.

Petke, J., Yoo, S., Cohen, M. B., Harman, M., 2013. Efficiency and early
fault detection with lower and higher strength combinatorial interaction
testing. In: Proceedings of the 12th Joint Meeting on European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE’13). pp. 26-36.

Qu, X., Cohen, M. B., Rothermel, G., 2008. Configuration-aware
regression testing: an empirical study of sampling and prioritization. In:
Proceedings of the 17th International Symposium on Software Testing
and Analysis (ISSTA’08). pp. 75-86.

Qu, X., Cohen, M. B., Woolf, K. M., 2007. Combinatorial interaction
regression testing: A study of test case generation and prioritization.
In: Proceedings of the IEEE International Conference on Software
Maintenance (ICSM’07). pp. 255-264.

Qu, X., Cohen, M. B., Woolf, K. M., 2013. A study in prioritization
for higher strength combinatorial testing. In: Proceedings of the 2nd
International Workshop on Combinatorial Testing, IWCT’13). pp. 285—

18

[34]

[35]
[36]

[37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

294.

Rothermel, G., Untch, R. H., Chu, C., Harrold, M. J., 2001. Prioritizing
test cases for regression testing. IEEE Transactions on Software
Engineering 27 (10), 929-948.

Seroussi, G., Bshouty, N. H., 1988. Vector sets for exhaustive testing of
logic circuits. IEEE Transactions on Information Theory 34 (3), 513-522.
Srikanth, H., Banerjee, S., 2012. Improving test efficiency through system
test prioritization. Journal of Systems and Software 85 (5), 1176-1187.
Srikanth, H., Cohen, M. B., Qu, X., 2009. Reducing field failures in
system configurable software: Cost-based prioritization. In: Proceedings
of the 20th International Symposium on Software Reliability Engineering
(ISSRE’09). pp. 61-70.

Tai, K. C., Lei, Y., 2002. A test generation strategy for pairwise testing.
IEEE Transaction on Software Engineering 28 (1), 109-111.

Wang, Z., 2009. Test case generation and prioritization for combinatorial
testing. Ph.D. thesis, Southeast University, Nanjing, Jiangsu, China.
Wang, Z., Chen, L., Xu, B., Huang, Y., 2011. Cost-cognizant
combinatorial test case prioritization. International Journal of Software
Engineering and Knowledge Engineering 21 (6), 829-854.

Wong, W. E., Horgan, J. R., London, S., Bellcore, H. A., 1997. A
study of effective regression testing in practice. In: Proceedings of
the 8th International Symposium on Software Reliability Engineering
(ISSRE’97). pp. 264-274.

Yilmaz, C., Cohen, M. B., Porter, A. A., 2006. Covering arrays for
efficient fault characterization in complex configuration spaces. IEEE
Transactions on Software Engineering 32 (1), 20-34.

Yoon, H., Choi, B., 2011. A test case prioritization based on degree of
risk exposure and its empirical study. International Journal of Software
Engineering and Knowledge Engineering 21 (02), 191-209.

Zhang, L., Hou, S.-S., Guo, C., Xie, T., Mei, H., 2009. Time-aware
test-case prioritization using integer linear programming. In: Proceedings
of the 18th International Symposium on Software Testing and Analysis
(ISSTA’09). pp. 213-224.

Zhang, Z., Zhang, J., 2011. Characterizing failure-causing parameter
interactions by adaptive testing. In: Proceedings of the 20th International
Symposium on Software Testing and Analysis (ISSTA’11). pp. 331-341.

