

The Journal of

Systems and
Software

The Journal of Systems and Software 00 (2013) 000–000

www.elsevier.com/locate/jss

* Corresponding author. Tel.: +44 207 568 2764.
E-mail address: eoin.woods@artechra.com

Modelling Large-Scale Information Systems using ADLs – An
Industrial Experience Report

Eoin Woods a,*, Rabih Bashroush b

a Artechra, Hemel Hempstead, UK
b School of Architecture, Computing and Engineering, University of East London, London E16 2QN, UK

Abstract

An organisation that had developed a large information system wanted to embark on a
programme that would involve large-scale evolution of it. As a precursor to this, it was decided
to create a comprehensive architectural description to capture and understand the system’s
design. This undertaking faced a number of challenges, including a low general awareness of
software modelling and software architecture practices. The approach taken by the software
architects tasked with this project included the definition of a simple, very specific, architecture
description language. This paper reports our experience of the project and a simple ADL that we
created as part of it.

Keywords: Architecture Description Language, ADL, Software Architecture Discovery, Software Architecture for Legacy Systems,
Industrial Experience Report.

1 INTRODUCTION	
There has been a great deal of academic and some industrial research into the definition of

Architecture Description Languages (ADLs) to assist with the difficult task of clearly defining the
architecture of software intensive systems and there is still a significant amount of such research
underway today [1-3]. However, there is limited evidence of significant industrial use of the
ADLs that have been produced, which we believe is for a number of reasons [4, 5] including the
narrow focus of most ADLs and the mismatch between their strengths and the needs of
practitioners. This is particularly marked in the information systems domain, where it is difficult
to find any large-scale use of ADLs, whereas there has been some documented use of ADLs in
embedded and real-time systems [3, 6, 7].

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

2

In this paper, we report on the experience gained from the creation of a large architectural
description for a complicated information system, in an environment where there was no existing
use of UML, SysML or specialist ADLs and where it was felt that such approaches would not be
successful. We describe the experience of that project, which was used as an opportunity to
explore the use of a simple, domain specific, architecture description notation in an industrial
context.

This paper explains the context of the project and the work undertaken during it, including the
definition of a simple graphical notation and the experience of using the ADL with software
development teams to produce architecture description documents. We also reflect on the
experience in order to identify the lessons learned and discuss why we did not attempt to reuse an
existing ADL from the many that can be found in the research literature.

The specific contribution of this work is to describe the experience of creating a large
industrial architectural description intended for long-term use and the factors that we found to be
important in successfully achieving this. While we did create a specific notation and structuring
approach for the project, this was a side effect of the project, not its goal, and our intention is not
to contribute yet another general purpose ADL to the research literature. In fact, as we explain at
the end of the paper, based on this specific experience, we concluded that general purpose ADLs
might be less useful for industrial use than has been previously assumed; the ADL we created is
described here merely to explain what we found to be effective in this project.

In the next section we present an overview of related work on ADLs in both industry and
academia. Section 3 provides background information about the work and the context of the
project. Section 4 then explained the rationale and drivers of the project. The approach used is
described in section 5. The ADL design, along with the system architectural style is presented in
section 6. A case study is then presented in section 7. The experience and lessons learned from the
project are discussed in sections 8 and 9 respectively. Finally, section 9 completes the paper with
the summary and conclusion.
2 RELATED WORK

As explained in the previous section, this paper reports an industrial experience of applying
ADL concepts to the description of a significant industrially developed information system.
Directly related work would be other similar case studies and experience reports. On searching
the research literature, we did not find any directly equivalent work, where an architectural
description language was used to describe a large information system, although there have been
published reports of ADLs being used to describe embedded or real-time systems (such as [8, 9]).

However given that as part of this project we decided to create our own notation for the
architectural description, it is worth considering related work in the ADL field and why we didn’t
choose to reuse an existing ADL.

Over the past two decades, an increasing number of ADLs have been developed, largely within
academia [10, 11]. Although some ADLs have been put to industrial use in specific domains [2, 3,
6, 12], the majority of ADL projects remain confined to laboratory-based case studies.

While ADLs originated in academia such as ACME [13]/ADML, ABACUS [14], Aesop [15],
UniCon [16], Wright [17], GEN-VOCA [18], π-ADL [3], Rapide [19], SADL [20], xADL [21],
ADLARS [22], ALI [23, 24], ArchiMate [25] and ByADL [1], to name a few, all exhibit novel

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

3

approaches to architecture description, from support for interchange and interoperability to
advanced architectural analysis capabilities, the vast majority tend to be vertically optimized,
limiting their attractiveness in many industrial projects.

It is important to state that many of these ADLs probably could be used in an industrial
context, but there is often no strong reason to do so. In general, academic ADLs focus more on
analytical evaluation and rigour while in this project, and many other industrial projects, the focus
was more on accessibility, practicality, and the ability to rapidly obtain a reasonably complete
view of the structure of the system. Those ADLs that do support the kind of description we
wanted to create (such as ACME and xADL) are general-purpose languages that are not used in
mainstream practice. Accordingly, they would have needed a lot of investment in tailoring and
extension to fit our requirements, not to mention the tool support development effort (such as
providing drawing support in standard tools). This meant the benefits we would have gained
from using them did not appear to be large enough to justify the adoption overhead.

Considering these various factors together, our conclusion was that there wasn’t a strong
reason to adopt a research ADL for this work and we judged that it was going to be simpler and
quicker to develop our own special-purpose notation.

The use of ArchiMate was also considered given the fairly wide spectrum it provides for
enterprise architectural description. However, upon closer investigation, we found that the
primitives in the ArchiMate language were not a particularly good fit as we needed to describe
system (i.e. software) architecture rather than enterprise architecture in this project.

As mentioned above, outside the area of information systems, there have been a number of
industrial applications of ADLs for embedded and real-time systems, from consumer electronics
(e.g. Koala [6], π-ADL [3]) to aeronautics and automotive systems (e.g. AADL [12] and EAST-
ADL [2]). The use of ADLs in these application domains has enabled automated system analysis,
and automated code generation (e.g. MetaEdit+ [26]). However, given that such capabilities were
less important for this project than our much simpler goals of easy adoption and straightforward
system description, and the fact that these ADLs are specialised for embedded systems rather than
large information systems, we did not feel that we should receive a return on the investment
required to tailor and adopt them. We discuss our reasoning for not reusing an existing ADL
further in Section 5.
3 BACKGROUND TO THE WORK	

This project was undertaken in a financial services firm that has developed a large custom
information system to run its business. The software has been developed over a period of about
15 years and has grown from quite modest beginnings to the large system it is today, comprising
millions of lines of code, storing several terabytes of information. The system includes software
modules that have been developed from scratch within the organization along with modules that
have been acquired as a result of organizational acquisitions and that have been modified to
integrate with the rest of the system.

Today, the system comprises about 20 major subsystems and over 10 million lines of Java,
C++, C# and Perl, sharing a large multi-terabyte relational database. Although some members of
staff who worked on the system in its early days are still with the firm (and actively involved with

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

4

the system) it has grown to a size that means no individual understands it all, even at a reasonably
high level of abstraction.

At the start of the project, there was no overall unified system description, although some
teams responsible for subsystems did have their own documentation. This meant that the
operation and interconnectedness of the system was often difficult to judge and this was starting
to hinder change and evolution.

The organization wanted to perform some wide ranging evolution and modernization of the
system’s implementation and realized that a useful first step, to enable better intellectual control
over the system, would be to capture a unified description of the system’s architecture. This led
to the project described in this paper being undertaken.
4 OVERVIEW OF THE PROJECT

The lack of a unified system description and a new initiative to modernise and restructure parts
of the system led senior managers to initiate a project to “document” the system. At the outset it
was not entirely clear what “document” meant, but discussion and exploration led to the
conclusion that a current state architecture description was required (i.e. a description of the
system’s architecturally significant elements, responsibilities and interactions, rather than more
detailed documentation of the design of individual modules).

A team of two experienced architects was tasked with this project, with a remit to define an
approach and then work with the software development teams to create the architecture
description.

One immediate complication was the lack of a clearly defined use for the documentation once
it was available. A number of senior managers considered the creation of the documentation to be
important, but it wasn’t clear what they intended to use it for. Specifically, it wasn’t clear if this
was to be a living document, that the organization aspired to keep current, or a snapshot to be
used for planning, which would then be deliberately abandoned. The target audience also wasn’t
well defined, so we did not know whether it was to be a senior management planning tool or a
more detailed description to be used by designers for tasks like impact analysis.

In order to make progress, some assumptions had to be made and these were:
• The point of the exercise was to (a) understand what was there today (catalogue); (b) allow

change to be planned (allow impact analysis); and (c) provide a reference for people to
build knowledge (communicate); and

• The audience for the completed documentation was architects, designers and development
teams, so precision and completeness were important attributes.

A secondary open question was whether it would be useful to be able to automate the
processing of the architecture description, which would require it to be captured in a parsable
form with well-defined semantics. There didn’t seem to be a compelling need to achieve this,
although it would have allowed a number of interesting options, so it was decided to try to capture
the information in a form that would be amenable to parsing later, but not to slow down the
project by trying to investigate this in any detail. In practice, this meant using structured textual
representations rather than free form word processor documents.

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

5

5 THE APPROACH USED

When the software development teams were approached to discuss their involvement with the
project, it quickly became clear that while there was general enthusiasm for the idea, there was
very little appetite for actually performing the work required. This led us to the conclusion that
the tolerance of the development teams for learning new concepts or reworking outputs would be
very low. Hence, it was going to be necessary to identify a simple, low-ceremony approach that
was highly prescriptive in order to minimize the possibility of teams producing inconsistent
artefacts that would need to be reworked.

This initial interaction with the development teams, along with our assumptions about the
goals of the project and the audience for the artefacts (see Section 4), meant that there were a
number of implicit emergent requirements and constraints that we needed to take into account.
These were as follows:
• Simplicity - the approach needed to be simple to understand and apply, first because senior

managers needed to understand it quickly to agree to its use; and second, because the
software development teams who needed to produce the design documents were not
prepared to expend a lot of effort on learning a new language.

• Low Adoption Effort – given the low tolerance for significant adoption effort, people
needed to be able to pick up the basics very quickly and incrementally learn what they
needed. This extended to tooling where there was no enthusiasm for implementing,
supporting or learning specialised modelling tools for this project.

• Familiarity –the requirement for low adoption effort also meant that the notation and
approach needed to use existing concepts that people were already familiar with (so the
notation needed to contain the type of architectural elements found in the system, rather
than generic elements that needed to be specialised or interpreted).

• Use Existing Tools – as mentioned above, requiring a new modelling tool to be installed
and used for this effort would have caused the project to fail, so we had to use the tools
already available in the organisation (which meant general drawing tools and wikis).

Using a tailored version of UML, with a suitable UML profile was seriously considered as the
architects leading the effort already knew UML and it would have provided a basis on which to
build. However, the organisation did not have the necessary UML tooling available to make the
use of a tailored version of the language practical and even a tailored UML tool needs some
background knowledge of UML in order to use it effectively, which was lacking in nearly all of
the software development teams. The use of generic UML without a profile wasn’t seriously
considered because we knew it would meet with a lot of resistance and we would end up with
significant divergence in the models that the teams would create.

Existing ADLs such as xADL (see Section 2 above) were also briefly considered, but none of
these appeared to offer any great benefit over UML for this particular situation and like UML, all
of them would have needed significant tailoring and probably deployment of a modelling tool to
make their use practical for this task. The lack of clear benefits from the use of these languages
for this project meant that there didn’t seem to be compelling reasons to use them and made their
implementation costs difficult to justify.

We also considered just letting teams use their own informal notations. In principle, this
would have removed one of the major points of resistance to the project and would have saved the

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

6

effort of developing a notation. However, this had already been attempted in the organisation and
the results were so varied that the exercise did not yield a useful system-wide description, so we
also discounted this option.

Eventually, given all of the factors involved in this project, we reluctantly concluded that the
project was most likely to be successful if we developed a simple, well-defined, very specific,
notation that just contained the element types that would be found in this particular system and
then provided the teams with support for it in desktop drawing tools and a wiki.

The initial discussions with the development teams revealed a varied understanding of
modelling and abstraction, which led to a further realisation that the approach used was going to
have to be comprehensible to modelling novices within minutes, rather than needing much effort
to learn. We concluded that in order to avoid confusion, the models were going to have to capture
specific component and connector types that described the physical structure of the software (e.g.
runtime processes and inter-process communication channels) rather than more abstract and
generalised concepts such as software components and responsibilities. If the teams had been
asked to describe their software in terms of more abstract concepts, we believe that the project
would have collapsed under the weight of debatable, unverifiable abstractions and it would not
have been possible to validate the models against the implementation.

Given the resources available, it was decided that using a wiki was going to be the most
effective way to capture the data underpinning a graphical representation (the system element
descriptions, connection definitions, inter-element dependencies and so on). A wiki allowed this
information to be captured in an accessible way, without special tools, but allowed very restricted
formats to be prescribed that standardised presentation and would be amenable to basic machine
parsing later if needed.

The wiki approach of creating simple hyperlinked pages also allowed the architecture
description to be decomposed into a set of manageable pieces, each with clear ownership, but
allowed these different pieces to be linked together to provide cross referencing and navigation
through the documentation. Hyperlinking also provides a simple sort of type checking in the
documentation, as names can be linked to their definitions elsewhere in the wiki and if the name
is wrong, a broken link results, which is immediately obvious.

We found that a wiki provides a lot of the flexibility of a word processor, but can also provide
basic mechanisms to allow structuring, templating and cross referencing via simple conventions
and most software developers find them very easy to use.

What a wiki does not usually provide is any support for graphical notations, but the diagrams
are the part of the architecture description that people spend the most time creating and reading,
so they are important to get right. As explained already, having considered the options available,
it was decided to create a new highly constrained graphical notation that would encourage the
creation of graphical models at the right level of abstraction. In order to create a consistent
notation that was easy to use, the guidance in [27] was followed in order to design the notation
systematically.

The whole project, and in particular the definition of the graphical notation, was helped by the
fact that while the system had grown rather organically, it had evolved according to a specific set
of architectural constraints that could loosely be identified as an architectural style. This had

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

7

limited the degree of implementation diversity and so reduced the number of concepts that it was
necessary to represent in the description language.

Within the system, nearly all subsystems were comprised of the following types of elements:
• Message driven servers that performed functional processing in response to events or

requests arriving from a system-wide message bus;
• "Thick” clients that provided user interfaces and business logic (and typically

communicated with the message driven servers via the system message bus);
• Web interface servers that provided web user interfaces (typically written as Java servlets

or Perl modules);
• Batch programs that performed some sort of periodic processing (such as end-of-day

reporting); and
• Data loaders, which were a particular sort of batch program, which imported data into the

system or moved data between subsystems.
The servers, batch programs and data loaders (and occasionally clients) would in turn normally

have dependencies on a fairly large number of database objects (that is tables, views and stored
procedures).

This very specific set of architectural element types was used throughout the implementation
of the system, which meant that a simple ADL could be defined in terms of those specific element
types.

A corresponding set of wiki page templates was created to support the capture of the
supporting textual description for the graphical models in order to make the format required for
the descriptions clear. This also made the management of the process easier as there were
relatively few concepts that needed to be explained and it made progress easy to track in terms of
completed wiki pages and sections.
6 THE STYLE AND ITS DESCRIPTION LANGUAGE	
A The Architectural Style

An analysis of the system’s implementation revealed that it generally followed a set of
discernable patterns created from a small number of types of architectural elements, which could
loosely be described as an architectural style (taking the definition of architectural style from
Shaw and Garlan [28] to be “… a vocabulary of components and connector types, and a set of
constraints on how they can be combined”).

To allow the element types of the system to be described, a few basic concepts were used to set
the context and help people to understand the key abstractions:
• System – the entire information system being described, which is a conceptual structure,

composed of a number of interconnected subsystems that collectively provide its behaviour
and qualities.

• Subsystem - a subset of the system that has a well-defined, cohesive, set of responsibilities,
and in most cases a well-defined boundary and set of interfaces to its services.

• Component - a tangible software artefact which is delivered to the production environment
and which is "executed" in some way at runtime (whether directly or by being called).
Nearly all components are binary releasable elements, tracked in the change management

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

8

system. (Elsewhere in this paper we refer to “components” as “elements” in line with
much of the software architecture literature)

• Connector - the mechanism by which two or more components collaborate (usually by
passing data between them). Examples are a messaging, a file system file, a database table,
or a web service endpoint and invocation.

It is worth noting that even though our definitions of concepts like “component” and
“connector” were quite specific, most people didn’t really understand what we meant until we
made the concepts very concrete with the specific types of component and connector that they
were familiar with.

As mentioned above, the basic types of system element used within the system were user
interface programs, servers, data stores, external entities and a fairly specific set of connector
types were used to link them. While these generic types of element sound fairly standard, what
was interesting was the limited number of variations of them that were used in most of the system.
These element types are summarised in Table I.

TABLE I. TYPES OF ARCHITECTURAL ELEMENTS

User Interfaces
- GUI A traditional GUI client written in Java

Swing, C# WebForms or C++ Motif.
- WebUI A user interface implemented as a set of web

pages (typically as a set of CGI scripts or a
Java webapp)

- Command Line A user interface implemented as a command
line program, such as a script or a Unix
command line utility

Servers
- Message Driven Server A server whose operation is driven by the

recipt of messages from the system message
bus

- Server A server whose operation is driven by a
mechanism other than messages (such as
RPCs, database polling or temporal
schedules)

- Batch Program A program that is run from a scheduler and
performs its operation in a single execution,
without waiting for other system elements to
perform any operations or for human
intervention.

- Data Loader A program whose primary purpose is to
extract data from a source and move it to a
destination, typically transforming it in some
way during the transmission.

Data Stores
- System database The shared system database or a set of tables

from it
- File A file on the file system

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

9

External Entities
- Subsystem Another subsystem that communicates with

this one in some way
- External System An information system outside our system

that a subsystem communicates with in some
way

- External Data Source A Data Source outside our system that a
subsystem receives data from (such as a
source of security prices)

The fairly restricted set of inter-element connectors in use throughout the system is described

in Table II.

TABLE II. TYPES OF ARCHITECTURAL CONNECTORS

RPC A synchronous inter-process procedure call
(usually XML over HTTP)

Direct Invocation An in-proess direct procedure invocation
(calling a library)

Database Data Flow Writing data to a database table or tables to
allow it to be used by another element

File Data Flow Writing data to a filesystem file to allow it to
be used by another element

System Messaging Dispatch and receipt of messages over the
system message bus via a named messaging
destination

In order to allow for the inevitable special cases that are found in a system of this scale, an

“other” type was also allowed for both components and connectors, which could be annotated
using a UML style stereotype to make its type clear.

Most architectural styles limit the element and connector configurations that they allow. In
this style, there weren’t really any such constraints defined formally, although there were
combinations that were encouraged and discouraged (e.g. UI Clients should connect to Message
Driven Servers, but not access the database). However, most configurations of element and
connector types could be found somewhere in the system! A number of the common patterns
were captured as examples in the notation documentation.

A couple of examples of the patterns identified are shown in Figure 1.

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

10

Figure 1. Examples of the ADL Notation Illustrating Preferred Configurations

The notation used to express the examples is explained more fully in the next section, but
briefly triangular shapes represent user interfaces, rectangles represent server resident elements
(servers, batch programs), files and databases are represented by the fairly conventional “record
stack” and “drum” shapes, while connectors are represented by arrows using a variety of line
types (the line type in example (a) being messaging, the line type in example (b) being stored data
access).
B The Architecture Description Language

Once the universe of required element and connector types was understood, we needed a
notation that would allow instances of the style (i.e. the subsystems) to be clearly represented. As
explained earlier, we decided to define a custom notation because the initial discussions with the
teams had made it clear that getting people to use a specific tool or invest much effort in learning
the notation was going to be very difficult. This was a key reason for creating a very simple
notation and “just drawing pictures” rather than trying to apply a general-purpose notation or
create machine readable models.

Given people’s general enthusiasm for diagrams over text, we chose to create a graphical
notation rather than a more formal textual one. We could have created an equivalent textual
notation to provide an alternative concrete syntax, but we didn’t need one for this project and as
we were not trying to create a reusable ADL we had no reason (or the time) to create alternative
notations.

When defining the graphical detail of the notation, the advice in [27] were particularly useful,
in particular the exhortation to avoid construct overload, deficit, redundancy or excess, the
suggestion to systematically consider the visual variables of each shape (shape, size, colour,

<<GUI>>

Order Manager

<<Message Based Server>>

Order Management
Server

ORDERUIREQ(OrderUiCmd)

<<BatchPgm>>

BBG Price Loader

<<database>>

pricedb

price,rate,pricehist,ratehist,
fileload

<<filesystem>>

BBG Daily Price Files

(a) Thick client UI and message driven server

(b) File Loader, reads files, writes to database

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

11

orientation, brightness and texture) and the need for deliberate selection of shapes so that their
appearance suggested their meaning, to help achieve semantic transparency.

We created the graphical notation by selecting a base shape for each major type of element
(server, user interface, data store, external entity) and designing a variation of the shape for each
subtype of the element. The diagrams were likely to be printed in black and white, so brightness
and colour were used in a very limited way (just being used as an informal diagrammatic
annotation, rather than having a predefined meaning). Each element had to have a name, shown
on its symbol and optionally a stereotype (discussed below). Examples of the notation for some
of the more important element types are shown in Figure 2.

Figure 2. ADL Element Types

A triangle was used as the base shape for user interfaces and a rectangle for server resident

components. The triangle was chosen as it hinted at the head and shoulders shape of a user and
the triangles were then modified slightly for each type of user interface (the thick client having
sharp corners, the web user interface having rounded corners as it blurs the distinction between
“client” and “server” and the command line utility having a graphical representation of a
command line interface added to it). Similarly, a rectangle is the base shape for server elements
(based on long accepted conventions) with a stereotype being used to indicate the type of server
and a “lozenge” variant being used to indicate a data loader (hinting at pieces of data being
transmitted through it).

An arrow of some form was used to represent all of the connector types, with the arrowhead
usually indicating the direction of data flow. All connectors were defined to be one way
connections, with the exception of data access connectors, which could indicate read and write
activity with arrow heads at both ends of the connector if appropriate. The convention for RPC
connectors was defined to be a one-way arrow from the caller to the target. No attempt was made

<<GUI>>

Order Manager

<<WebUI>>

Settlements Viewer

<<CmdUI>>

Parameter
Utils

<<Message Driven Server>>

Trade Processing
Server

<<Server>>

Confirmation Event
Generator

<<Loader>>

Daily Price Loader

Thick Client
GUI

Web UI

Command Line
UI

Message
Driven Server

Non Message
Driven Server

Data Loader

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

12

to represent the various complicated possibilities of dependency and initiation of interaction using
the connector symbols. Each connector had to indicate what was carried over the connection,
with message flows being annotated with a message data type, file and database connectors being
annotated with table or record names, and RPC and direct invocation connectors being annotated
with the name of the service or procedure they were calling. Examples of the notation for the
main connector types are shown in Figure 3.

Figure 3. ADL Connector Types

The RPC or direct procedure call is shown using a solid arrow, messaging is shown using a
line with embedded dots, suggesting messages flowing over it, while data access is shown using a
regular chain line, suggesting records being read or written over the connector.

A general mechanism used on elements and connectors was the stereotype, adopted from
UML, where the type of an architectural element is made clear by annotating it with a type name
using the convention “«type»” on the symbol concerned. This allowed the casual reader to
understand the types of element on the diagram without having to understand the notation and
allowed new element types to be easily introduced.

The semantics of the elements and connectors were generally based on the semantics of the
corresponding element and connector implementations in the system: broadcast messaging in the
system worked in a particular way, a relational database has well understood behaviour, a web
service call is widely understood and a message driven server was a concept that most people
understood with little further explanation. Undoubtedly there were cases where elements on
diagrams had surprising behaviour because they did not behave entirely as expected given their
type, but on the whole, the resulting documents were good enough to form a useful architecture
description.

In order to ensure that the process produced more than just pictures, we defined a set of
required attributes for each type of element and connector. Part of this task was defining
enumerations of expected standard values for many of the attributes, again to standardise and
simplify the process of recording the information (such as standard lists of data domains
[“trading”, “counterparties”, “securities”, …], lists of programming languages in use [C++, Java,
C#, Perl] and so on).

In order to simplify and standardise the subsystem descriptions, a set of wiki page templates
and a comprehensive Microsoft Visio stencil were created, along with clear instructions, quick
reference material and – most crucially – a fully worked example of the documentation for one
subsystem. This allowed a number of conventions, such as hyperlinking element names to allow
navigation through the documents, to be illustrated and encouraged by example. A hierarchy of

<<flow transport>>

RPC / Direct Call Data Access or
Update

Application
Standard Messaging Other Messaging

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

13

empty wiki pages for the required subsystem descriptions was also created so that authors knew
where to put their documents and so they could be unambiguously referenced.

The result of this process was a relatively informal definition of a simple ADL with a graphical
notation and set of well-defined conventions for storing the supporting text needed to explain and
fully define the subsystem descriptions. The ADL is tied very strongly to the particular
architectural style of this system (its element and connector types) and we deliberately did not
attempt to generalise the language, as this very tight link to the system to be described was one of
its major strengths for our situation. In this way, our ADL is rather like the ADLs defined to
support specific implementation frameworks like DAOP-ADL [29] which was developed to
describe DAOP applications [30] and CBabel [31] which was developed to allow the definition of
CR-RIO applications [32].
7 A CASE STUDY OF THE APPROACH IN USE

The system described in the case study is the Asset Management System (AMS) a financial
asset management system used by a fund manager to support making and executing investment
decisions for a large-scale investment portfolio. The example is based on a real subsystem from
the case study, modified slightly in order to retain anonymity.

The primary aim of the system is to allow a fund manager (or fund management team) to
manage a portfolio of holdings in financial instruments (primarily equities in this case). The
system must allow them to view the content of their portfolios and to use analytical tools and
market data (such as prices, volatilities, projected interest and foreign exchange rates and
projected bond yields) to make investment decisions. The system provides the ability for
suggested changes to portfolios to be automatically calculated on demand or from a temporal
schedule and also allows direct entry of orders to buy or sell securities to allow for investment
strategies that are outside the scope of the system. Once lists of orders to buy or sell securities are
generated, the system allows them to be dispatched to another system for execution and it receives
the results of the execution of those orders in return, to allow the current holdings to be updated.

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

14

A Architectural Description
The functional structure of the AMS is described using our system-specific ADL notation in

Figure 4.

Asset Management System

<<database>>

AMSdb

pmgmt
ordermgmt

<<External>>

Trading
System

<<Messaging Server>>

Job Processor

<<Server>>

UI Server

<<GUI>>

Portfolio GUI

mktdata
pricing

riskmetrics

mktdata
pricing

riskmetrics

OrderRequest

Execution
Report

Fund Manager <<rpc>>
portfolio_service

<<Loader>>

Market Data Loader

<<External>>

Market Data
Source

<<rpc>>
data_set_service

<<Messaging Server>>

Order Gateway

pm
gm

t

ord
erm

gm
t

mktdata
pricing

riskmetrics

Rebalance
Request

OrderList
Update

Order

Fill

Figure 4. The Asset Management System

The elements of this architectural structure are described in TABLE III.

Element
Name

Type Description

Portfolio
GUI

GUI The responsibilities of the Graphical User Interface (GUI) are to provide the asset managers using the system with
the ability to view and analyse their portfolios, to request (and monitor progress of) long running system
operations (such as order generation) and to check, enter, dispatch and monitor orders that go for execution to
trading systems. The GUI provides a human interface and requires an RPC interface to the UI Server to provide it
with services and data.

UI Server Messaging
Server

The responsibility of the UI Server is to provide the data access facilities that the UI requires (accessing data from
the AMSdb internal database) and to dispatch requests for orders or for long running work (such as analysis
processing) to be carried out by other parts of the system. The UI Server provides an RPC interface to expose its
provided services to the GUI and requires an SQL query interface to the system database and a messaging
interface to allow it to request and monitor order dispatch and long running work.

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

15

AMSdb Database The system database’s responsibility is to store the portfolio, analytical, market and (system) operational data that
the system requires to operate. It provides an SQL based DML interface to allow data to be inserted, manipulated
or retrieved.

Job Processor Messaging
Server

The responsibilities of the Job Processor are to execute long running processing items (“jobs”) such as investment
analytics and automated order list generation. The processor can be configured to run particular jobs on temporal
schedules and can also be requested to execute particular jobs on demand. The processor provides a message
based job control and status request interface and requires an SQL query based interface to the database.

Market Data
Loader

Loader The responsibility of the Market Data Loader (MDL) is to retrieve various forms of market data from an internal
Market Data Source system and load the data into the database, handling versioning and business date
identification as part of the loading process. The datasets required include securities prices, bond yields, interest
rates, FX rates, volatilities, correlations and so on. The loader requires a data retrieval interface to the MDL
system, allowing data sets to be retrieved on demand.

Order
Gateway

Messaging
Server

The responsibility of the Order Gateway is to accept incoming orders to buy and sell securities (including order
parameters such as execution strategies and price limits), to forward these requests to a trading system for
execution and then receive the execution reports (“fills”) indicating order execution and broadcast these to other
interested parts of the system. The gateway provides a message based order request interface and a broadcast
status interface and it requires a message based interface to allow order submission to a trading system.

TABLE III. THE ELEMENTS OF THE AMS

B Example Scenario – Generate Order List
The key functional scenario for this system is to allow a fund manager to generate an order list

to “rebalance” a fund based on an analysis that identifies the theoretically optimal holdings for the
portfolio and execute that set of buy and sell orders, reflecting the results in the portfolio. The
interactions required to implement this scenario are illustrated in Figure 5.

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

16

<<Messaging Server>>

Job Processor

<<database>>

AMSdb

Asset Management System – Rebalance Interactions

2: RebalanceRequest

3: pmgmt, ordermgmt

Fund Manager

<<GUI>>

Portfolio GUI

<<Server>>

UI Server

1: portfolio_service (for rebalance)
6: portfolio_service (for get status)

7: portfolio_service (for trading request)
12: portfolio_service (for get status)

4: OrderListUpdate

<<Messaging Server>>

Order Gateway

8: ExecutionRequest

<<External>>

Trading
System

9: interaction with trading system

10: ExecutionReport

5: pmgmt, ordermgmt
10: pmgmt, ordermgmt

Figure 5. Portfolio Rebalance Scenario Interactions

The interactions between system elements necessary to implement this scenario are described
in TABLE IV.

Step From To Type Connector Description

1 GUI UI Server RPC portfolio_service Fund manager selects a portfolio and instructs the system to create
an order list for it. The GUI invokes an RPC indicating that the
indicated portfolio should be rebalanced.

2 UI Server Job
Processor

Msg Rebalance
Request

The UI Server sends a request message to indicate that the portfolio
should be “rebalanced”. This is routed to the Job Processor.

3 Job Processor AMSdb DB “pmgmt” &
“ordermgmt”
schemas

The Job Processor receives the message and in response initiates a
portfolio analysis job to identify the theoretical optimal holdings in
the portfolio and generate buy and sell orders to move the portfolio
to that state. Portfolio state read from “pmgmt” and order lists
written to “ordermgmt”

4 Job Processor UI Server Msg OrderList Update The Job Processor sends a status message indicating that new order
lists exist, which is routed to the UI Server

5 UI Server AMSdb DB “ordermgmt” and
“pmgmt” schemas

The UI Server accesses the database to get the new portfolio state
and associated order list state

6 GUI UI Server RPC portfolio_service The GUI calls the UI Server for a status update and gets details of
the new order list in return

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

17

7 GUI UI Server RPC portfolio_service The GUI makes an RPC call to the UI Server to indicate that the
order list should be traded

8 UI Server Order
Gateway

Msg Execution
Request

The UI Server creates a message to request the order list to be traded
(including the list of orders) which is routed to the Order Gateway

9 Order
Gateway

Trading
System

- - The Order Gateway sends the orders to an external trading system
and receives status updates in return as the orders are executed

10 Order
Gateway

UI Server Msg Execution Report As the Order Gateway gets execution updates, it creates execution
report messages which are routed to the UI Server

11 UI Server AMSdb DB “pmgmt” &
“ordermgmt”
schemas

The UI Server updates the database with the status of the orders and
the effect on the portfolio

12 GUI UI Server RPC portfolio_service The GUI makes RPC calls to the UI Server and gets the updated
status of the orders and the changes to the portfolio in its response

TABLE IV. INTERACTION DESCRIPTIONS FOR THE PORTFOLIO REBALANCE SCENARIO

A full architectural description for a subsystem would also include a lot of operational and
implementation oriented information such as links to operational instructions, links to source code
control systems and automated build systems and links to test specifications and results. We do
not attempt to reproduce any of that here as the majority of such information was in the form of
links to other internal systems and nearly all of the information is context dependent and so not
particularly meaningful outside the organisation operating the system.
8 THE EXPERIENCE GAINED

A Creating the Architecture Description	
As mentioned earlier, two experienced architects led the project to create the architecture

description, which included identifying the underlying architectural style, defining a clear
approach, defining the ADL and leading the work to capture the architectural descriptions. There
were approximately 20 development teams who owned significant subsystems that needed to be
included in the scope of the project.

In order to organise the work, the development teams were ranked in order of the criticality of
their subsystems in terms of how central they were to key organisational workflows and this acted
as an ordered backlog of work for the architects.

The general approach taken to the task was simple and involved approaching each team and
asking for a single person to be nominated as the owner of their documentation. A conference
call was then held with this person and the group manager to explain the project and the approach.
The team was asked to commit time and effort to completing their documents and to commit to a
timeline for completing the agreed deliverables (a team often had a number of subsystems that
needed to be documented and for planning purposes the creation of a subsystem description was
decomposed into some standard subtasks). In return, the architects leading the effort offered
training, practical assistance (such as drawing diagrams) and to review the descriptions produced.

The interactions with different teams varied greatly, with some teams producing their
documentation largely unaided, needing only some review and minor correction, while others
were simply incapable or unwilling to produce what was needed and the architects ended up
writing most of the documentation for these teams.

The reasons for the problems encountered with development teams varied. In some cases it
was simply a lack of interest, often from the development manager who perhaps didn’t see the
value of the deliverables. However in other cases there seemed to be a genuine difficulty in

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

18

understanding how to represent their subsystem. In general this seemed to stem from an inability
to abstract away from the implementation, resulting in a confusing mix of concrete and totally
abstract concepts, which they then struggled to relate to each other. None of these subsystems
were very difficult to represent and in order to make progress the architects often stepped in and
simply created the models.

Another interesting problem was tooling. Everyone in the organisation had access to the wiki
and knew how to use it, so document authors could fill in the tables and text without any
difficulty. However, not everyone had access to Microsoft Visio and even of those that did, some
obviously didn't know how to use it. Again, the solution to this was simply for the architects
overseeing the process to create diagrams for some subsystems. This was a useful lesson and
provided further evidence that avoiding UML and more specialised modelling tools had been a
good decision. In this organisation, requiring the use of UML and modelling tools would have
been a significant barrier to getting architectural descriptions created.

Over time, a significant and useful body of subsystem descriptions emerged and this allowed
the architects to create a summary level architecture description that showed how the subsystems
related to each other. Some use of scripting to process the wiki subsystem descriptions and
drawing tool macros to generate parts of the summary level diagrams allowed some degree of
automation, although it was still a fairly manual process.

 The process of capturing the architecture description took about six months, with the
architects working on it approximately 60% of their time and the development teams working on
it as their project schedules allowed.
B The Results of the Project

The outputs of the project were as follows.
• A fairly consistent architecture description for most of the system that provided an accurate

and largely complete view of its subsystems, their components and their dependencies.
Each subsystem was described using a standardised approach, which captured the same
information for each one and presented it in a consistent manner through the use of the
templates provided. This made the information provided easy to navigate and check for
completeness.

• An informal definition of the architectural style used across most of the system and the
typical patterns used when implementing it.

• A degree of visibility and understanding of the structure, scale and interconnectedness of
the system which hadn't been achieved before. The consistent presentation of system
design information in a single location allowed the overall system structure to be more
easily understood compared to the previous inconsistent descriptions on scattered wikis
and web sites. This appeared to allow a number of senior technical managers to achieve
new insights into the system.

As mentioned earlier, the project did not have particularly clear goals for the architecture
description once developed. A number of people did find it insightful and there seemed to be a
general consensus that it was a useful description to have. However organisational changes then
meant that the architects involved moved on to other work, so the project effectively came to an
end. Since then however another group within the firm has adopted the architectural description

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

19

and continued its use and maintenance (primarily to support production operation of the system, a
use which was not foreseen at the outset of the project).

C Evaluating the Usefulness of the ADL

Early practical experience led to some rapid refinement of the notation to remove ambiguities
that had not been apparent to its creators, and to introduce some missing concepts. However,
after three or four teams had used the approach over a period of about 6 weeks, the ADL itself
remained stable for the rest of the project.

As the project neared completion we started to validate what was being produced with some of
the important stakeholders, particularly the senior technical managers in the organisation. To do
this we met with them and demonstrated what was being produced and what the completed
architectural description would contain, discussing possible uses of it (such as impact analysis,
pre-implementation reviews, incident post-mortems and regulatory enquiries). We were pleased
to find that this stakeholder group reacted positively to what they were shown, with responses
ranging from fairly neutral (where the possible usefulness was acknowledged but no specific use
of it particularly interested them) to very positive (where they wanted to start using it
immediately). Given this informal but consistently positive sentiment, we felt that our notation
and approach had been validated (an outcome which was anything but certain at the start of the
project, when the use of a specific notation and a highly prescriptive form for the documentation
had been viewed as very risky).

A factor that was constant throughout the project was that teams who had the ability to identify

clear abstractions for their subsystems also appeared to find the ADL helpful and straightforward
to use, as the ADL gave them a clearly defined way to represent their models and they didn’t have
any difficulty in representing their models using it. These teams tended to create their models
with little or no assistance once they’d asked a few clarifying questions about the purpose of the
models and the semantics of the notation.

In contrast, teams who struggled to identify good abstractions never really grasped how to use
the ADL and needed constant assistance, to the point of needing to have parts of their
architectural descriptions completely rewritten for them. What was interesting about this stark
contrast in modelling ability was that we could find no obvious factor to explain it in terms of
educational background, age, team size, technology preferences, type of subsystem, geographical
location or any other relevant factor. We did observe that even in teams that produced good
models, the ability and enthusiasm to do this varied and even for large subsystems we found that
it tended to be one or two people in a team who did all of the modelling on behalf of the rest of
the team. We don’t know whether there were many other people in those teams who would have
done an equally good job, but based on hallway conversations, we suspect not. Our conclusion
was that relatively few people in the general population of software engineers we worked with
find modelling straightforward, but we were not sure why this was the case.

We interpreted this experience as validation of the approach that had been used. People who
could create models and knew what they wanted to represent were able to use the ADL effectively
with minimal training, so it was obviously usable by mainstream practitioners. On the other hand,
the approach did not help those people who found it difficult to create a model. It had been hoped

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

20

that the straightforward and prescriptive nature of the approach would guide people to create
useful models, even if they did not find modelling easy, and it was a disappointment that the
approach failed to achieve this.

Looking back to the success criteria we had set ourselves at the start of the project, we
considered whether the architectural description we had created was useful for our three goals to
create a catalogue of what was there, to allow impact analysis and to facilitate communication
(see Section 4).
• Create a Catalogue of the Current State – the project created the first comprehensive

description of the system and so provided a very useful descriptive catalogue of the current
state of the architecture. The weakness of the architectural description as a catalogue was
that it was only as comprehensive as the authors of each piece decided to make it.
However, it was possible to cross check it against a number of systems that were known to
contain complete lists of the elements in the production system (as they were used for
automated tasks relating to deployment). Sampling about 30% of the architectural
description and cross checking this against the lists of deployment elements revealed a high
degree of completeness, so confidence in its use as a catalogue was high.

• Allow Impact Analysis – the architectural description quickly proved its worth for impact
analysis and helped considerably with the process of understanding the impact of proposed
changes. This was primarily due to the fact that it allowed the interconnectedness of
system elements to be quickly assessed, information that hadn’t been easy to find before.

• Communicate – the architectural description was quickly recognised to be a comprehensive
knowledge base of the system’s design information and so helped inter-team
communication (when people in one team could use it to understand another team’s
subsystem). It also acted as a single place where further information could be gathered.
As mentioned earlier, the architects involved in creating the architectural description
moved onto other work soon after its initial creation, however it does appear to have
continued to be used, to grow and to evolve, suggesting that it did fulfil this role.

Based on this fairly informal assessment, we judged the project to have met the goals we set
for ourselves and the architectural description became a useful resource within the organisation,
as a centralised and standardised source of design information for the system.
9 LESSONS LEARNED FROM THE PROJECT

At the start of the project, no one involved in it had much experience in using ADLs in an
industrial context. The experience the architects had between them was limited to some simple
use of ADLs in an academic context and some significant experience of using UML for
architectural modelling in large industrial projects. Therefore, we had relatively few
preconceptions as to how successful the project would be and on the whole we were pleased with
its results.

The main lessons that were learned during the course of the project were:
• A specialised ADL can have benefits over a general modelling language like UML and

even a simple ADL can be used to create useful results.
• The more specialised an ADL is, and so the closer it matches the implementation style of

the system being modelled, the easier people seem to find it to use. While at first glance

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

21

this sounds like an obvious point, it is contrary to the conventional industrial approach of
using a general modelling language like UML or SysML and also contrasts with the
domain independent nature of most academically developed ADLs.

• Carefully designing the detail of the graphical notation pays off. Using shapes that hint at
their meaning and using a range of graphical dimensions to differentiate shapes helps
people to remember them, even if they don’t guess the link between the shape and the
concept themselves. Again, this is not reflected in mainstream notations like UML or most
existing ADLs, where little effort is made to identify meaningful symbols for concepts.

• Consistency in the notation is very important and having a base shape for a general concept
with refinements to it for different sub-concepts appears to help people considerably when
interpreting the diagrams.

• Providing high quality support materials including an example based description of the
approach and notation, a number of realistic completed examples and a set of templates for
new documents is very important. We found repeatedly that people are much better at
“filling in the gaps” rather than following a set of instructions and creating something from
scratch.

• Utilising familiar tools helps with the acceptance of the approach. In this particular
organisation, there were no complaints or difficulties with the use of a wiki for the text and
tables information, whereas a very widely used commercial drawing tool (Visio) caused
problems, even with a carefully tailored template, because it was not widely used in the
organisation already.

These lessons aren’t all that surprising but the importance of what seemed to be quite minor
things (such as worked examples and quick reference cards) is important and is useful to bear in
mind for the future. The importance of matching the ADL to the specific domain being modelled
is also a lesson that is not reflected in most modelling languages today, which tend towards the
general rather than the specific.

Given the relative success of this project, it is natural to ask how generally applicable its results
are and how repeatable it is likely to be. Given what we learned during the project, particularly
the fact that the specialised nature of the notation was a key factor in its success, we feel that these
lessons may well have general applicability, but only in the broad sense. People like to be guided
and they like familiar tools and techniques. However the specific tools or techniques that work
will be specific to each environment and people in different environments will have different
levels of enthusiasm for learning new approaches. However, when trying to get a significant
amount of work done by people who are agnostic to the approach, familiarity and accessibility
appear to help greatly with acceptance.

The particular notation and approach used in this paper may be of use to others, but as
explained earlier in the paper, this wasn’t a goal of the project and while some of the aspects of
the notation invented will be generally familiar (e.g. servers that are driven by messaging) the
overall set of element types is specific to one environment and may well not be directly useful
elsewhere. Certainly we did not set out to contribute yet another general purpose ADL to the
world and so reuse of the notation was not considered during its development. We report this
project to describe a successful application of the concepts of architectural description notations
and to record the factors that we believe made the project successful.

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

22

10 SUMMARY AND CONCLUSIONS

An organisation in the financial services industry wanted to create an architecture description
for a large existing enterprise system. In order to achieve this within acceptable cultural and time
constraints a simple, custom architecture description language was defined in order to make the
process of capturing the architecture description as simple and prescriptive as possible.

While it was not clear at the outset whether this approach would be successful, the ADL
actually proved to be a helpful and effective tool for capturing this specific architecture
description in an entirely industrial context. A large architecture description was created,
something that the organisation had not achieved before, and this allowed new perspectives on the
system to be gained.

What the approach did not achieve was helping those who found modelling difficult to create
effective models. People who found abstraction difficult seemed to find it just as difficult when
using this very specific approach as when using a general-purpose notation, which was a surprise
and a disappointment.

Having said that, the factor that appeared to make the approach generally successful was
focusing on describing the specific structures in the system of interest, rather than trying to create
a general-purpose approach, which would be effective for other uses too. Other factors which
contributed to the success of the approach were its simplicity (which traded sophistication for
accessibility), a carefully designed, consistent graphical notation, the availability of a large
amount of tutorial and reference material to guide document authors, and the use of very familiar
tools, which users of the notation were already familiar with.
REFERENCES

[1] D. Di Ruscio, I. Malavolta, H. Muccini, P. Pelliccione, and A. Pierantonio, "ByADL: an

MDE framework for building extensible architecture description languages," in
Proceedings of the 4th European Conference on Software Architecture, Copenhagen,
Denmark, 2010, pp. 527-531.

[2] P. Cuenot, P. Frey, R. Johansson, H. Lonn, Y. Papadopoulos, M.-O. Reiser, et al., "The
EAST-ADL architecture description language for automotive embedded software," in
Proceedings of the 2007 International Dagstuhl conference on Model-based engineering
of embedded real-time systems, Dagstuhl Castle, Germany, 2010, pp. 297-307.

[3] F. Oquendo, "π-ADL: an Architecture Description Language based on the higher-order
typed π-calculus for specifying dynamic and mobile software architectures," ACM
SIGSOFT Software Engineering Notes, vol. 29, pp. 1-14, 2004.

[4] R. Bashroush, I. Spence, P. Kilpatrick, and T. Brown, "Towards More Flexible
Architecture Description Languages for Industrial Applications," in EWSA 2006. vol.
4344, V. Gruhn and F. Oquendo, Eds., ed Nantes, France: Springer-Verlag, 2006, pp. 212-
219.

[5] E. Woods and R. Hilliard, "Architecture Description Languages in Practice," in the 5th
Working IEEE/IFIP Conference on Software Architecture (WICSA 2005), Pittsburgh, PA,
2005, pp. 243 - 246.

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

23

[6] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, "The Koala component
model for consumer electronics software," IEEE Computer, vol. 33, pp. 78-85, 2000.

[7] R. Allen, S. Vestal, D. Cornhill, and B. Lewis, "Using an architecture description
language for quantitative analysis of real-time systems," in Proceedings of the 3rd
international workshop on Software and performance, Rome, Italy, 2002, pp. 203-210.

[8] P. Feiler, B. Lewis, and S. Vestal, "Improving Predictability in Embedded Real-Time
Systems," Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania2000.

[9] H. Lonn, T. Saxena, M. Torngren, and M. Nolin, "Far east: Modeling an automotive
software architecture using the east adl," 2004.

[10] N. Medvidovic and R. N. Taylor, "A classification and comparison framework for
software architecture description languages," IEEE Transactions on Software
Engineering, vol. 26, pp. 70-93, 2000.

[11] P. C. Clements, "A Survey of Architecture Description Languages," in Proceedings of the
8th International Workshop on Software Specification and Design, 1996, p. 16.

[12] "Standard AS5506/1: SAE Architecture Analysis and Design Language (AADL)," ed:
SAE International, 2006.

[13] D. Garlan, R. T. Monroe, and D. Wile, "Acme: architectural description of component-
based systems," in Foundations of component-based systems, T. L. Gary and S. Murali,
Eds., ed: Cambridge University Press, 2000, pp. 47-67.

[14] K. Dunsire, T. O'Neill, M. Denford, and J. Leaney, "The ABACUS Architectural
Approach to Computer-Based System and Enterprise Evolution," in Proceedings of the
12th IEEE International Conference and Workshops on Engineering of Computer-Based
Systems, 2005, pp. 62-69.

[15] R. Allen, "A Formal Approach to Software Architecture," PhD thesis, Computer Science,
CMU, Pittsburgh, 1997.

[16] M. Shaw, R. DeLine, and G. Zelesnik, "Abstractions and implementations for
architectural connections," in Proceedings of the 3rd International Conference on
Configurable Distributed Systems, Annapolis, Maryland, 1996, pp. 2-10.

[17] R. Allen and D. Garlan, "The Wright Architectural Specification Language," Carnegie
Mellon University, Software Engineering Institute, Pittsburgh, PA1996.

[18] D. Batory and B. J. Geraci, "Composition Validation and Subjectivity in GenVoca
Generators," IEEE Transactions on Software Engineering, vol. 23, pp. 67-82, 1997.

[19] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann,
"Specification and analysis of system architecture using Rapide," IEEE Transactions on
Software Engineering, vol. 21, pp. 336-354, 1995.

[20] M. Moriconi and R. A. Riemenschneider, "Introduction to SADL 1.0: A Language for
Specifying Software Architecture Hierarchies," SRI International,1997.

[21] R. Khare, M. Guntersdorfer, P. Oreizy, N. Medvidovic, and R. N. Taylor, "xADL:
enabling architecture-centric tool integration with XML," in Proceedings of the 34th
Annual Hawaii International Conference on System Sciences, 2001, p. 9 pp.

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

24

[22] R. Bashroush, T. J. Brown, I. Spence, and P. Kilpatrick, "ADLARS: An Architecture
Description Language for Software Product Lines," in Proceedings of the 29th
NASA/IEEE Software Engineering Workshop (SEW'29), Greenbelt, MD, 2005, pp. 163-
173.

[23] R. Bashroush, I. Spence, P. Kilpatrick, T. Brown, W. Gilani, and M. Fritzsche, "ALI: An
Extensible Architecture Description Language for Industrial Applications," in
Proceedings of the 15th IEEE International Conference on Engineering of Computer-
Based Systems (ECBS), Belfast, UK, 2008, pp. 297-304.

[24] R. Bashroush and I. Spence, "An Extensible ADL for Service-Oriented Architectures," in
Information Systems Development - Towards a Service-Provision Society, G. A.
Papadopoulos, W. Wojtkowski, W. G. Wojtkowski, S. Wrycza, and J. Zupancic, Eds., ed
New York: Springer, 2009, pp. 227-237.

[25] M. M. Lankhorst, H. A. Proper, and H. Jonkers, "The Architecture of the ArchiMate
Language," in Proceedings of the 10th International Workshop on Enterprise, Business-
Process and Information Systems Modeling (BPMDS 2009) held at CAiSE, Amsterdam,
Netherlands, 2009, pp. 367-380.

[26] K. Smolander, K. Lyytinen, V.-P. Tahvanainen, and P. Marttiin, "MetaEdit: a flexible
graphical environment for methodology modelling," in Proceedings of the 3rd
International Conference on Advanced Information Systems Engineering, Trondheim,
Norway, 1991, pp. 168-193.

[27] D. Moody, "The "Physics" of Notations: Toward a Scientific Basis for Constructing
Visual Notations in Software Engineering," IEEE Transactions on Software Engineering,
vol. 35, pp. 756-779, 2009.

[28] M. Shaw and D. Garlan, Software architecture: perspectives on an emerging discipline
vol. 1: Prentice Hall Englewood Cliffs, 1996.

[29] M. Pinto, L. Fuentes, and J.-M. Troya, "DAOP-ADL : An Architecture Description
Language for Dynamic Component and Aspect-Based Development," in 2nd international
conference on Generative programming and component engineering (GPCE '03), Erfurt,
Germany, 2003, pp. 118-137.

[30] M. Pinto, L. Fuentes, and J. M. Troya, "Towards an aspect-oriented framework in the
design of collaborative virtual environments," in Distributed Computing Systems, 2001.
FTDCS 2001. Proceedings. The Eighth IEEE Workshop on Future Trends of, 2001, pp. 9-
15.

[31] C. Braga and A. Sztajnberg, "Towards a Rewriting Semantics for a Software Architecture
Description Language," Electronic Notes in Theoretical Computer Science, vol. 95, pp.
149-168, 2004.

[32] O. Loques and A. Sztajnberg, "Customizing component-based architectures by contract,"
in Component Deployment, ed: Springer, 2004, pp. 18-34.

 XXXXX et al / The Journal of Systems and Software 00 (2015) 000–000

25

