
 
 

Delft University of Technology

Web API growing pains
Loosely coupled yet strongly tied
Espinha, Tiago; Zaidman, Andy; Gross, Hans Gerhard

DOI
10.1016/j.jss.2014.10.014
Publication date
2015
Document Version
Submitted manuscript
Published in
Journal of Systems and Software

Citation (APA)
Espinha, T., Zaidman, A., & Gross, H. G. (2015). Web API growing pains: Loosely coupled yet strongly tied.
Journal of Systems and Software, 100, 27-43. https://doi.org/10.1016/j.jss.2014.10.014

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jss.2014.10.014
https://doi.org/10.1016/j.jss.2014.10.014


Delft University of Technology
Software Engineering Research Group

Technical Report Series

Web API Growing Pains:
Loosely Coupled yet Strongly Tied

Tiago Espinha, Andy Zaidman and Hans-Gerhard Gross

Report TUD-SERG-2014-017

SERG



TUD-SERG-2014-017

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

c© copyright 2014, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.



Web API Growing Pains:
Loosely Coupled yet Strongly Tied

Tiago Espinhaa, Andy Zaidmana, Hans-Gerhard Grossb

aDelft University of Technology, Faculty EEMCS, Mekelweg 4, 2628 CD Delft, The
Netherlands

bEsslingen University, Faculty of Information Technology, Flandernstrasse 101, 73732
Esslingen, Germany

Abstract

Web APIs provide a systematic and extensible approach for application-to-

application interaction. Developers using web APIs are forced to accompany

the API providers in their software evolution tasks. In order to understand the

distress caused by this imposition on web API client developers we perform a

semi-structured interview with six such developers. We also investigate how

major web API providers organize their API evolution, and we explore how this

affects source code changes of their clients. Our exploratory qualitative study of

the Twitter, Google Maps, Facebook and Netflix web APIs analyzes the state

of web API evolution practices and provides insight into the impact of service

evolution on client software. In order to complement the picture and also under-

stand how web API providers deal with evolution, we investigate the server-side

and client-side evolution of two open-source web APIs, namely VirtualBox and

XBMC. Our study is complemented with a set of observations regarding best

practices for web API evolution.

Keywords: Web API, software evolution, breaking changes, Web Services

Email addresses: t.a.espinha@tudelft.nl (Tiago Espinha), a.e.zaidman@tudelft.nl
(Andy Zaidman), Hans-Gerhard.Gross@hs-esslingen.de (Hans-Gerhard Gross)

Preprint submitted to Elsevier October 8, 2014

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 1



1. Introduction

Modern-day software development is inseparable from the use of Applica-

tion Programming Interfaces (APIs) [1, 2]. Software developers access APIs as

interfaces for code libraries, frameworks or sources of data, to free themselves

from low-level programming tasks and/or speed up development [3]. In contrast

to statically linked APIs, a new breed of APIs, so called web service APIs, offer

a systematic and extensible approach to integrate services into (existing) appli-

cations [4, 5]. However, what happens when these web APIs start to evolve?

Lehman and Belady emphasize the importance of evolution for software to stay

successful [6], and updating software to the latest version of its components,

accessed through APIs [7]. In the context of statically linked APIs, Dig and

Johnson state that breaking changes to interfaces can be numerous [7], and

Laitinen says that, unless there is a high return-on-investment, developers will

not migrate to a newer version [8].

In the context of web APIs, developers can no longer afford the inertia that

was noted by Laitinen, as it is the web API provider that sets the pace when it

comes to migrating to a new version of the web API. In the statically linked API

context, developers could choose to stay with an older version of e.g. libxml,

which meets their needs, yet, with web service APIs the provider can at any

time unplug a specific version (and functionality), thus forcing an upgrade. In

2011, a study by Lämmel et al. showed that among 1,476 Sourceforge projects

the median number of statically linked APIs used is 4 [9]. Should developers

have no control over the API evolution (as is the case with web APIs), this

would represent a heavy burden for client developers as it causes an endless

struggle to keep up with changes pushed by the web API providers.

Also in 2011, a survey among 130 web API client developers entitled “API

Integration Pain” [10] revealed a large number of complaints about current API

providers. The authors reported the following regarding web API providers:

“[...] There’s bad documentation. [...] APIs randomly change without warning.

And there’s nothing even resembling industry standards, just best practices that

2

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

2 TUD-SERG-2014-017



everyone finds a way around. As developers, we build our livelihoods on these

APIs, and we deserve better.”

Pautasso and Wilde present different facets of “loose coupling” [11] on web

services. Indeed, all web APIs which make use of REST interfaces can be easily

integrated with through a single HTTP request. However, a facet not considered

in Pautasso and Wilde’s work is that of how clients end up tightly tied to the

evolution policies of the web API providers. This motivated us to investigate

how web service APIs evolve and to study the consequences for clients of these

web APIs.

In this exploratory qualitative study, we start by investigating [RQ1] what

some of the pains from client developers are when evolving their clients to make

use of the newest version of a web API. We do this by interviewing six profes-

sional developers that work with changing web APIs. Subsequently, we inves-

tigate the guidelines provided by 4 well-known and frequently used web API

providers to find out [RQ2] what are the commonalities in the evolution poli-

cies for web APIs? Ultimately, we turn our attention to the source code. We

do so by analyzing the code of several web API clients to find out [RQ3] what

the impact on the source code of the web API clients is when the APIs start to

evolve. Extending our previous study [12], we are also turning our attention to

the impact of evolution at the server-side of a web API, more precisely, we are

asking ourselves [RQ4] whether web API providers take precautions in order to

ease evolution pains of web APIs? We do so by analyzing the source code impact

on two different case studies of web API provider and its respective client.

The remainder of this paper is structured as follows: in Section 2 we first

explain some terminology regarding web APIs. Subsequently, in Section 3.1

we describe our experimental setup for the client-side study including how the

projects were selected and how we calculate the impact on code. Section 4.1

describes the interviews with client developers and the lessons learned across

different domains. Section 4.2 looks at the different web API policies from

different providers, while Section 4.3 presents the impact web API evolution

has on client code. Section 3.2 describes our experimental setup for the server-

3

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 3



side study including how the projects were selected and an introduction to the

analyses we performed. Section 5 presents the results of the server-side analysis

for the two case studies and Section 6 frames these results with our research

questions and provides a list of recommendations for API providers. Lastly, we

discuss related work in Section 7 and present our conclusions in Section 8.

2. Terminology

Throughout this paper we refer to different terms in the context of web

APIs. Indeed, the concept itself of a web API is somewhat ambiguous and is, in

our definition, no different from a web service. Already Alonso et al [13] report

that “the term Web services is used very often nowadays, although not always

with the same meaning”. The authors then resort to the W3C definition which

states that a web service is a “software application identified by a URI, whose

interfaces and bindings are capable of being defined, described and discovered as

XML artifacts”. While this definition is for the most part correct, it restricts the

technology to XML for which there are currently alternatives (such as JSON) as

it is shown in this paper. In the context of web APIs, different technologies also

translate into different challenges faced by the developers which should be con-

sidered. In our study we encountered three major implementation approaches

which we will briefly describe in the sub-sections below.

2.1. SOAP

The invocation of SOAP1, originally defined as Simple Object Access Pro-

tocol, web APIs is most commonly performed through the sending of an XML

document (where the method name as well as arguments are defined) over an

HTTP media to the server. Before the invocation occurs, clients request the

WSDL file (Web Service Description Language) which defines both which meth-

ods are available for invocation as well as which data types the web API expects.

1SOAP —http://www.w3.org/TR/soap12-part1/

4

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

4 TUD-SERG-2014-017



2.2. REST

Representational state transfer (REST)2 is an architectural style originally

defined by Roy Fielding [14]. Apigee’s booklet on web API design 3 provides

a clearer overview of what constitutes a REST web API as well as a set of

practical guidelines.

Essentially, a REST web API relies on entities and basic CRUD (Create,

Read, Update, Delete) actions on those entities. For example, when a web API

client would like to get data on the ‘Customer’ entity with id ‘1337’ it would

send a HTTP GET request to the address /customer/1337.

Such an approach does not allow for method invocation and Apigee supports

that in certain particular cases, the ’entity’ can actually be an action (i.e. a

method) to be invoked by the web API server. In such cases, the client can

then send a payload (specifying which method to invoke and its arguments)

typically using JSON (c.f. next subsection).

An important distinction between SOAP and REST is the fact that while a

WSDL equivalent exists (the WADL file), it is seldom used in practice [15]. The

more common alternative is human-readable documentation usually through

means of a wiki. This lack (in comparison to SOAP) becomes evident by the

existence of software which specializes in generating documentation for REST

web APIs4.

2.3. JSON-RPC & JSON

The JSON-RPC5 (JavaScript Object Notation — Remote Procedure Call)

approach shares a similarity with REST: it uses JSON as the data format for

requests. In fact, oftentimes web APIs claim to be RESTful while in fact a flavor

of JSON-RPC is used. JSON-RPC (where RPC stands for Remote Procedure

Call) provides a mechanism for one software system to be able to invoke methods

2REST — https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.

htm
3Web API Design — http://bit.ly/apigee-web-api-design
4MireDot — http://www.miredot.com/
5JSON-RPC — http://www.jsonrpc.org/specification

5

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 5



on another software system over the network. It is therefore, not an architectural

pattern as REST and is bound to less restrictions.

The remote procedure calls are also made over HTTP and use JSON to

specify which method should be invoked as well as the payload (arguments and

responses). JSON in turn is used to dynamically construct types composed of

key:value pairs, where the key is a string and the value is either an object or

an array of objects. This contrasts with SOAP’s XML-based invocations where

types are defined statically and interactions are much more verbose.

3. Experimental Setup

Our exploratory study is comprised of two subsidiary studies. In the first

part of our study we start by investigating the impact web API evolution has on

clients for a group of high-profile web API providers. However, due to the closed

nature of these web API providers, nothing can be learned from the potential

pains web API providers also face when their web APIs must evolve. Therefore,

with the second part of our study, we selected two open-source projects as well

as a client for each of these projects as an attempt to shine a light on the web

API providers’ side of the story.

The two subsections below describe the experimental setup for each of these

two parts of the study.

3.1. Experimental Setup for the Client-Side Investigation

In order to perform our client-side study which is exploratory in nature, we

divided the study in three steps. We started by interviewing six developers

(Table 1) who maintain clients for web APIs as to obtain anecdotal evidence of

developers who had to undergo web API evolution in their clients. While we

expected the developer interviews to provide fruitful insight into the evolution of

web APIs, we also knew in advance that developer interviews are always subject

to some degree of personal bias. The second step of our study therefore focused

on analyzing objective software evolution metadata regarding the web APIs.

Namely, we analyze the evolution policies (i.e. deprecation periods, breaking

6

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

6 TUD-SERG-2014-017



change notifications, etc) from four major web API providers. This allows us

to identify potential best practices. The last step of our study is to analyze the

main artifact where the web API evolution task may cause more or less impact:

the source code. We measure and interpret the impact web API evolution has

on client code by analyzing code churn and identifying the commits related to

web API evolution.

In this section we provide more insight on how we selected the developers to

be interviewed, how we selected the projects under analysis as well as how we

measure the impact on the client code.

3.1.1. Interviews With The Developers

Our experiment included interviews with several developers who have at

some point dealt with evolving web APIs. In order to find suitable candidates

we e-mailed the developers of all the clients under study (see Section 4.3) and

sent out public calls for participation on social networks. Ultimately, due to a

low response rate from the approached developers, we interviewed all developers

who accepted to participate in the study.

Additionally we had the opportunity to interview the client developers of

a multi-national payment aggregator company whose software system interacts

with several financial institutions through web APIs.

Table 1 provides an overview of the web APIs each of the 6 interviewees

API Developers Observations

Google Maps 1 developer Single developer. Creator and sole de-
veloper of the project since its creation
in 2009.

Google Search & Bing 1 developer Single developer. Creator and sole de-
veloper of the project since its creation
in 2012.

Redmine API 1 developer Developer is part of a larger team of 13
developers. Started in 2005.

Google Calendar 1 developer Single developer. Creator and sole de-
veloper of the project since its creation
in 2006.

Unnamed Payments Aggregator 2 developers Two professional developers, part of a
larger team.

Table 1: Interviewed Developers

7

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 7



developed clients for.

The interviews took on average thirty minutes per developer and were per-

formed by the first author of the paper either face-to-face or via Skype in the

format of a semi-structured interview [16]. The ten starting questions that we

used during the interview are listed in Table 2 and cover several web API-related

issues, such as: maintenance effort, frequency of version upgrades, security, de-

veloper communication and implementation technologies.

As for the analysis of the collected data, we followed the guidelines set for-

ward by Creswell [17] for qualitative research. The interviews were recorded

and further transcribed by the first author. Subsequently, the first and second

authors read the transcriptions and established a basic coding in dialogue. This

basic coding resulted in the identification of the categories or overall themes as

they are reflected in the sections 4.1.x. Once we identified the categories, the

first author did the actual coding.

3.1.2. Selecting Web APIs

In order to perform our code analysis we required web APIs with a large

number of clients. To find such web APIs we resorted to ProgrammableWeb’s 6

web services directory. From this list, sorted by popularity, we picked the top

most popular web APIs and quickly verified which web APIs contained the

largest number of references in GitHub. This led us to choose Twitter, Google

Maps and Facebook. The projects using the Netflix web API were found while

investigating projects on GitHub.

3.1.3. Selecting The Projects With Web API Evolution

Once we have selected a set of web APIs that are known to have evolved,

we have to find candidate projects integrating with those web APIs. Candidate

projects for our analysis need to meet the criteria of having had to perform

maintenance due to the web API having changed. In order to have access to

projects which contain this evolution step and thus shine a light on the amount

6Web Services Directory — http://bit.ly/web-services-directory, last visited October
3rd 2013

8

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

8 TUD-SERG-2014-017



of changes involved in web API evolution we devised a mechanism to identify

the evolution step.

This mechanism was then applied on GitHub as it contains a large collection

of potentially suitable open-source projects.

For web API providers such as Twitter, Google Maps and Netflix, where an

explicit versioning system is provided, the approach consists of two steps. They

are: 1) compiling a list of all the projects on GitHub which contain references

to the latest version of their specific web API, and 2) for each project found,

filter the Git diffs which contain references to the old version of the web API.

Facebook required a different approach. Even though a booklet on web API

design by Apigee7 emphasizes the importance of versioning by dubbing it “one

of the most important considerations” and advising developers to “never release

an API without a version”, Facebook violates this principle. Because there is

no version number involved in the requests, our search is done by querying the

GitHub repositories for small pieces of code which were reported in Facebook

Developer’s blog8 as having been changed.

3.1.4. Impact evaluation

The goal of the paper is to investigate how web service APIs evolve, and

how this affects their clients. So, for each project, we looked at the commits

right before and right after the first commit containing references to the new

version of a web API. This was done to identify potential initial preparations

prior to bringing a new API online, as well as to check for a potential fallout

effect caused by switching to the new API.
In order to estimate the impact involved in maintaining the clients of a web

service API, we start by using the code churn metric [18], which we define for
each file as

FileCodeChurn =
LOCAdded + LOCChanged

TotalLOC
(1)

The code churn we analyze and display in Table 4 (Avg. Churn) represents the

average code churn for each commit. Of note is the fact that the churn presented

does not count added files. Additionally, the evolution churn presented in the

7Web API Design — http://bit.ly/apigee-web-api-design
8Completed Changes — http://bit.ly/fb-completedchanges

9

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 9



table consists of the churn caused by the evolution-related code changes. This

churn is determined manually and through visual inspection of the evolution-

related commits. This is done manually to ensure that all the churn considered

in the evolution commits is indeed related to the evolution task. The percentage

presented is then how this evolution churn compares to the average. With the

data we collected we are also able to plot graphs showing the code churn per

commit. This way we can also visually identify abnormally high code churn

peaks as well as churn peaks surrounding the evolution related commits. These

peaks are potential candidates for web API-related maintenance and are then

investigated in more detail by looking at the source code and commit messages.

While code churn provides a good starting point for assessing the impact of

a maintenance task, it does not provide the whole picture: the nature of the

code change, the number of files involved and their dispersion also play a role

in determining the impact of a change. Hence, we also provide a more in-depth

view of how the API migration affects a particular project. This is done by

looking at the number of source code files changed, and analyzing the nature of

the changes (e.g. file dispersion, actual code changes, whether the API-related

files are changed again). This analysis also allows us to mitigate the code churn’s

indifference to the complexity of code changes.

3.2. Experimental Setup For The End-to-End Analysis

While it is important to consider the impact web API changes have on

clients, this relationship is bidirectional and minimizing client-side impact can

be achieved if the web API provider is mindful of changes to the web API.

This is particularly important due, again, to how in a web API relationship

the provider and clients are tied to the web API provider’s web API evolution

policy.

To further our study, we perform an end-to-end analysis, meaning that we

study how the web API changes from the provider’s perspective and how this

impacts the client. Ideally, we would have liked to analyze the server-side code

of the web APIs mentioned before. However, due to the closed nature of such

10

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

10 TUD-SERG-2014-017



software systems, we resort to case studies using open-source systems (where

both the provider and clients are open-source) to study these added aspects of

web API maintenance.

3.2.1. Project Selection

For this part of our experiment we chose Oracle Virtualbox9 and XBMC10

since both are large projects (∼4 million and ∼2.2 million SLOC respectively)

and for both there is a client available that is actively maintained and used.

Additionally these two projects use different web API technologies (VirtualBox

uses SOAP whereas XBMC uses JSON-RPC) which, on both the server and

client side, also plays a role in how much code needs to be changed and under

what circumstances.

Together with these two projects we analyzed a web API client for each

case. For VirtualBox we studied phpVirtualBox11 which is a feature-complete

web-based GUI for VirtualBox and is endorsed by Oracle as a “hot pick” on

the main page (even though it is developed by a third party developer). For

XBMC we analyzed the Android-XBMC client as it is the official client for this

web API (developed by a subset of the XBMC developers).

3.2.2. Source Code Analysis

Our source code analysis is aimed at better understanding how the code of

both the servers and clients is organized, how it evolves and how the web API

is implemented. We look at technologies used for the implementation (as we

have observed these have an impact on maintenance) as well as how the web

API source code is organized. Specifically we look at the encapsulation of the

code (e.g. is the whole source code tied to the web API or is the functionality

abstracted into a translation layer), at its size12 and at the structure of the web

API itself (e.g. is the different business logic also well encapsulated).

9Oracle VirtualBox — https://www.virtualbox.org/
10http://xbmc.org/
11phpVirtualBox — http://sourceforge.net/projects/phpvirtualbox/
12SLOCCount — http://www.dwheeler.com/sloccount/

11

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 11



3.2.3. Co-change analysis

With our co-change analysis we identify which files consistently change with

the web API-related files. Our initial goal with this analysis is to identify to

what extent the web API-related code is self-contained. If we can establish

that the web API-related code is (relatively) self-contained, we expect the web

API to be more stable, which in turn would be helpful for the web API client

developers.

Continuing our reasoning: in most cases, changes to a web API involve

changing more than just the web API interface. For instance, if new methods

are added, then the types used as method parameters will also have to be added

elsewhere. Similarly, when a web API is changed due to a change in method

parameters, these changes are often a result of deeper changes in the business

logic of the software system.

These deeper changes to files which co-change with the web API interface

also provide an interesting view of how a system evolves. If a non-web API

file (e.g. in a different package) consistently changes whenever the web API

changes, it provides a hint that such file contains web API-related functionality.

This might be an indication for a refactoring opportunity.

For our analysis we make use of association rule mining to identify co-

evolving entities, similar to how Zimmermann et al. have applied it previ-

ously [19]. We make use of the Apriori algorithm as implemented in the Se-

quential Pattern Mining Framework) (SPMF) tool13. Because this tool requires

the input to be numeric, we mapped each filename to a number and considered

each commit as a transaction where the files (i.e. the numbers) are the items of

the transaction. In addition, because we are particularly interested in finding

association rules that indicate a change to the web API, we add one item at

the end of each line/transaction: 1 if the commit contains changes to the web

API files, 0 if it does not. The parameters (support and confidence) used for

the Apriori algorithm are explained in the analysis section.

13SPMF — http://www.philippe-fournier-viger.com/spmf/

12

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

12 TUD-SERG-2014-017



4. Client-side Analysis

In the sub-sections below we present the results regarding the first part of our

study. Namely the results of the interviews with client developers, our findings

regarding web APIs evolution policies and lastly the source code impact on

clients caused by web API evolution.

4.1. Interviews With Client Developers

This study aims at understanding how web API evolution impacts client

developers through the forced nature of the web API changes. To do so we first

performed interviews with client developers for well known web APIs (Table 1).

The most interesting findings obtained through the interviews are presented

in the subsections below. These subsections represent the major themes (or

codes) which the participants had experience and commented on. As additional

remarks we present the results which do not fit in the predefined questions.

4.1.1. Web API Stability

We asked the client developers “how does the effort of initial integration

with a web API compare with the effort of maintaining this integration over

time” (Q1). Two of the interviewed developers (one for Google Maps and one

Q1 How does the effort of initial integration with a web API compare
with the effort of maintaining this integration over time?

Q2 How often does your web API provider push changes?
Q3 How dependent is your client on the 3rd party web APIs you are

currently using?
Q4 Does your project also make use of statically linked libraries and do

you feel there is a difference on how its evolution compares with web
APIs’?

Q5 How do you usually learn about new changes being pushed to the web
API your client is making use of?

Q6 Do implementation technologies make a difference to you?
Q7 How do you learn how to use an API? (Documentation? Examples?

Do errors play a role in this learning?)
Q8 Is having different versions of a web API useful when integrating with

your client?
Q9 When using 3rd party APIs, did you ever find that particular thought

was put into an API behavior?
Q10 As a web API client developer, given your development life cycle, how

many versions should the API provider maintain? And for how long?

Table 2: Questions Asked During the Developer Interviews

13

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 13



for Google Calendar) were very peremptory and claimed that it takes them far

more time maintaining the integration than it does integrating with a web API

in the beginning.

The developer behind the integration with Redmine web API claimed that

the effort involved in these two tasks is divided “at least 50% into each task,

with possibly even more time going into maintaining the integration”.

What also came to light from all the participating client developers was the

fact that in the beginning, the web APIs are very unstable and generally prone

to changes.

This results in two-fold advice for web API providers and client developers

alike when it comes to web API stability:

• From a provider’s point of view, more thought should be put towards the

early versions of the web API. In the event the web API requires some

instability, then an approach as suggested by one of the interviewed client

developers is recommended: the Redmine API developers clearly mark

which features are prototype/alpha/beta (i.e. features which are very

likely to change).

• As for web API client developers, because of this inherent instability in

the early versions of web APIs, the need for separation of concerns and

good architectural design becomes more urgent than ever. Integration

with static libraries can be maintained for as long as the client developer

wishes but since a third party is now in charge of pushing changes, making

sure the changes are contained to a small set of files should become a top

priority.

4.1.2. Evolution Policies

When asked about evolution policies (Q2, Q3), the participants presented

us with different insights.

While different web API providers establish different timelines for depre-

cation of older versions of their web API, the client developer using Google

Calendar’s APIs was generally happy with the two year window provided by

14

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

14 TUD-SERG-2014-017



Google and in fact favored longer periods for this evolution. This developer

claimed that “we got now two years for updating to the [new] Google Calen-

dar API, I think it should be even longer because a year is nothing anymore”.

Of consideration is the fact that this developer works on his project as a hobby

(even though he is a professional developer) and therefore favors having a longer

time to migrate to newer versions of the API. As he himself states “if you have

other projects, if you have to make money on other projects, even in two years

it is difficult to find time to implement [the changes]”.

The developer interviewed in the context of the Redmine API claimed that

“[while] it is quite a difficult question which depends on many factors in the

project, four months time before deprecating would be fine”. Because the Red-

mine API is still under development, he would rather have shorter cycles with

functionality added more often.

Despite this developer’s preference for shorter cycles, the nature of the

changes should also be considered. In the case of the Redmine API, the evolu-

tion process consists mostly of feature addition and the features of the web API

which are likely to change are clearly marked accordingly. However, looking at

the comments in the 2011 survey [10] regarding Facebook’s similar four-month

deprecation policy, developers complained about how “Facebook continually al-

ters stuff thus rapidly outdating my apps” and “as I only use Facebook[...], [the

biggest headache] is the never ending changes to the API”. This is an indicator

that more than just the frequency of the changes, web API providers should

take also into consideration how invasive are the changes being pushed.

Also interviewed were two client developers for web APIs provided by finan-

cial institutions. An important distinction in this context is the fact that the

web APIs being used are not available for free, as opposed to the others under

study. Perhaps for this reason and according to the interviewed developers be-

cause “the stakes are too high in the financial context”, the web API providers

maintained all the older versions of the web API indefinitely. This allows for

client developers to never have to make any changes unless they require the

features made available in the new web API version. While this is the ideal sce-

15

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 15



nario from a web API client developer’s point of view, whether this is feasible

for all web API providers and the effort it takes to maintain several versions

simultaneously is still something we would like to investigate in future research.

4.1.3. Static Libraries versus Web APIs

We asked all the interviewed developers how does, in their experience, the

evolution of static libraries compare with the evolution of web APIs (Q4). While

only one of the developers was simultaneously using static libraries as well as web

APIs, his experience was that the static library he used had always maintained

backwards compatible methods even after adding new features.

The developer interviewed in the context of Google Maps also mentioned

that while his projects do not resort to statically linked libraries, he is using

Drupal (a content management system) as the basis for his Google Maps in-

tegration and admitted that with Drupal and PHP he was in control of when

to migrate to newer versions in contrast with those pushed by Google Maps.

This is particularly relevant seeing as PHP itself introduced breaking changes

in versions 5.3 and 5.4.

4.1.4. Communication Channels

Another issue touched upon in the interviews with the client developers has

to do with how the web API providers notify their clients of upcoming changes

(Q5). The client developers integrating with financial institutions’ web APIs

said that while it is a rare event, they will be notified by e-mail of any upcoming

changes pushed by their web API providers. What was also mentioned was that

while it ultimately does not affect them (because the web API providers do not

force them to migrate to newer versions), it would be unfeasible to keep up with

changes (should they be mandatory) from all providers due to the unreliable

nature of e-mail (e.g. messages can be lost, automatically filtered as spam or

simply missed altogether by the recipient).

Nonetheless, the web API providers under analysis have changed their com-

munication channels over time. For instance, Google and Twitter nowadays

force all client developers to request an API key and by doing so, they are

16

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

16 TUD-SERG-2014-017



added to a mailing list on which the upcoming changes are announced.

While this is what is currently considered the state of the practice, client

developers for these web APIs will still get e-mails even if their code is not

affected by the changes.

Facebook goes further and dynamically determines what parts of the web

API a specific client is using in order to send e-mails only when changes are

planned for that particular functionality.

4.1.5. Implementation Technologies

Even though all the web APIs under study use JSON-based technologies,

we asked the interviewed developers whether they believe that the choice of

technology from the web API provider can have an impact on the effort it takes

to both integrate and maintain the integration with a web API (Q6).

One of the developers integrating with financial institutions using both

SOAP and REST interfaces claimed both come with advantages and disadvan-

tages. For instance, while integrating with a SOAP interface there is generally

a WSDL file available which gives an overview of which methods and types

are available and how to invoke them. The downside is the extreme verbosity

of such an interface which is hardly ever human-readable. On the other side,

REST, while allowing for less wordy interactions lacks anything similar to the

WSDL file and the client developer is left to rely solely on the documentation

which is usually written manually by the web API providers (and is thus, not

as reliable as an automatically generated WSDL file).

An interesting remark by the same developers was that while some web API

providers claim to provide a REST interface, this is in fact not the case. In

his experience the interface is simply an HTTP endpoint which outputs JSON

content but which does not, for example, meet the criteria of being stateless.

The developers integrating with Google Calendar and Google Maps ex-

pressed negative opinions on XML as a language for message exchange (thus,

SOAP). Specifically, the developer integrating with Google Calendar claimed

that “the simpler the [better]. I hate XML because XML is such an open stan-

17

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 17



dard, it is very complex.” whereas the developer integrating with Google Maps

claimed that “SOAP is gone and dead”. The developer behind the integration

with Google Calendar went further and commented on the effort involved in

maintaining the two technologies, namely “at the beginning [he] had a wall to

climb [when switching from SOAP to JSON] but now because I have everything

it is certainly much easier to switch another API from XML to JSON”.

4.1.6. Additional Remarks

An interesting remark from the interview with the client developer for Google

Maps was his concern for vendor lock-in. In fact, when dealing with web APIs,

a client is tightly coupled with a particular web API provider. The same devel-

oper highlighted the dangers of such dependencies with the example of Google

Translate which Google officially discontinued in December 2011 (even if later

on the web API was made available once more).

Additionally, even though the feedback provided by the developers integrat-

ing with the financial web APIs was limited due to the providers maintaining all

the old web API versions, these developers also contributed with an additional

anecdotal story. During their integration with financial institutions worldwide,

they are often faced with web API documentation in foreign languages. This

causes great distress and requires the developers to resort to either unreliable

machine translation or to eventual colleagues who happen to speak the language,

both of which come with the cost of time.

4.2. Web API Characteristics

In the aforementioned survey performed in 2011, the authors claimed that in

the web API world, “there’s nothing even resembling industry standards” [10].

We also found this to be the case amongst the chosen web API providers.

In fact, each of the four web API providers under study in this paper adhere

to different policies on what concerns web API evolution. These are explored

in detail in the following sub sections.

18

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

18 TUD-SERG-2014-017



4.2.1. Google Maps

The Google Maps API allows client developers to, amongst other things,

display maps for specific regions, calculate directions and distances between

two locations.

This API14 falls under the global Google deprecation policy, i.e., whenever

products are discontinued or backwards-incompatible changes are to be made,

Google will announce this at least one year in advance. Exceptions to this rule

regard whenever it is required by law to make such changes or whenever there

is a security risk or “substantial economic or material technical burden”. To

summarize, save for security-related bugs, Google claims to provide a 1-year

window for the transition to a new API.

In practice, however, Google is much more lenient, e.g. analyzing the migra-

tion of Google Maps version 2 to version 3, Google provided a 3-year period for

this transition rather than the announced 1-year deadline. Additionally, before

the deadline arrived for version 2 going offline, Google prolonged this period

for another 6 months, effectively offering a 3.5-year period for the transition.

Why they offered such long period is not certain. However, anecdotal evidence

from Google’s user forums shows that many developers waited until the last

moment to upgrade. In March 2013, an unnamed developer asked “I’m work-

ing on upgrading to v3 but I’m expecting to finish 2 or 3 weeks after 19 May

[initial deprecation date], so I was wondering if we can get an official answer

about this”. Similarly, when earlier in 2013 Google experienced an outage in all

its Maps APIs’ versions, several developers also asked whether v2 had already

been taken offline, thus revealing that a number of developers were still using it.

Google’s provision of a very long transition period may have led the developers

to be too relaxed about the deprecation, leading them to migrate at the latest

moment.

14Google Maps Terms — https://developers.google.com/maps/terms

19

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 19



4.2.2. Twitter

The Twitter API allows client developers to manage a user’s tweets as well

as the timeline. While this web API15 has no official deprecation policy, the

announcement for the current API version set a 6-month period to adjust to

the change. Since it implies a different endpoint URI, both versions could in fact

be maintained in parallel indefinitely, and it means that once the old endpoint

is disabled, all applications using it will break. Despite the 6-month period,

Twitter did not follow the original plan. The new API version, announced

in September 2012, was intended to fully replace the old version by March

2013. However, rather than fully take it offline, they decided to approach the

problem by starting to perform “blackout tests”16, both on the date the API

was supposed to be taken offline and twice again two weeks apart after the

original deadline. These blackout tests last for a period of one hour and can

occur at random during the days they are announced. They act as an indicator

for unsuspecting users, that they should migrate.

This approach contrasts that of Google and Facebook but gathers appreci-

ation in its own right. The blackout tests have been very well received, with

developers claiming “These blackout tests will be super helpful in the transition.

Thanks for setting those up!”17

4.2.3. Facebook

The Facebook API is extensive and allows for client developers to access

many data related to users’ posts and connections. Facebook’s18 approach to

web API evolution is substantially different as it does not use an explicit version-

ing system. Instead, the introduction of new features is done by an approach

referred to as “migrations,” which consists of small changes to the API that

each developer can enable/disable at will during the roll-in period. After this

period the changes become permanently enabled for all clients. The Facebook

15Twitter API v1.1 — https://dev.twitter.com/docs/api/1.1/overview
16https://dev.twitter.com/blog/planning-for-api-v1-retirement
17Discussion API v1’s Retirement — http://bit.ly/apiv1-retirement
18Facebook Breaking Change Policy — http://bit.ly/fb-changepolicy

20

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

20 TUD-SERG-2014-017



Developers website claims that Facebook provides a 90-day window for break-

ing changes. Like Google’s, this policy also explicitly excludes security and

privacy changes, which can come into effect at any time without notice. Unlike

Google, however, Facebook has proven to not be lenient and the 90-day window

is consistently enforced.

Facebook is also in the process of changing this policy. While so far there

have been breaking changes put into place every month from January 2012 to

May 2013 (with the exception of March 2012)19, Facebook has announced that

from April 2013, all the breaking changes will be bundled into quarterly update

bulks (except security and privacy fixes).

In addition, Facebook has an automated alert system in place, which sends

e-mails20 to developers whenever the features they use are affected by a change.

Dynamically determining which developers are relying on which features of the

API goes along our previous line of work [20] where we investigated to which

extent such a mapping affects system maintenance.

4.2.4. Netflix

The Netflix API is a public web API which allows client developers to access

text catalogues of movies and tv shows available in the Netflix collection. Netflix,

much like Twitter, has no official deprecation policy. Additionally, to date only

two versions have been released and both versions do still work. What makes

this web API stand out is the fact that all the versions released to date still

work and have no planned deprecation date. This highlights that, albeit at a

potential cost to the web API provider, it is possible to simultaneously maintain

several versions of the same web API.

It should be noted, however, that over time Netflix has released breaking

changes across all versions of its web API. For example, on June 2012 Netflix

announced a new web API endpoint to which all clients had to migrate within

three months. Additionally, in March 2013 Netflix announced that it “is not

19Completed changes — http://bit.ly/fb-completedchanges
20Example e-mail: http://bit.ly/so-migrationemail

21

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 21



accepting new developers into its public API program”. This suggests that the

public Netflix API is on a path to discontinuation.

Because no deprecation of older versions exists and the migration to the

newer version is fueled by the client developers’ will to access the latest features,

very little can be said regarding the amount of time given to client developers

to migrate. Nonetheless, the migration witnessed in both clients under study

stems from the web API endpoint change for which three months were given to

migrate.

4.3. Impact on Client Code

Web Project First Commit Number of developers

Twitter rsstwi2url March 2012 1
TwiProwl August 2009 3

netputweets January 2011 6
sixohsix/twitter April 2008 46

Google hobobiker November 2009 1
Maps cartographer May 2008 5

wohnungssucherportal January 2010 1

Facebook spring-social-facebook August 2010 9

Netflix pyflix2 June 2012 3
Netflix.bundle July 2010 8

Table 3: Project Metadata
When analyzing the impact web API evolution has on different clients, sev-

eral considerations must be made regarding each project’s code base. In Table 3

we present each of the projects under analysis for each web API along with its

age and number of developers per their GitHub history. In Table 4 we present

different metrics for the projects under analysis for each web API. All projects

are different in nature and the number of lines of code (LOC) for the projects

under consideration varies from 1.2KLOC to 479KLOC. This, coupled with the

file count for each project, has an influence on both the average code churn for

each project as well as the code churn required to implement evolution-related

changes.

In our study we use code churn, a measure of how much code has been

changed, as a first indicator of commits which should be further investigated

manually. The raw data used for this study, namely a spreadsheet per project

22

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

22 TUD-SERG-2014-017



including a list of commits and commits which are tagged as being related to

the web API evolution task, is also available online 21.

In the following subsections we analyze the data per web API provider and

present our findings.

4.3.1. Twitter

The web API evolution step under analysis for Twitter consists of a minor

version upgrade. It is, nonetheless, described by Twitter as “the first major

update of the API since its launch”. This new version does indeed bring many

changes. For instance, clients are now forced to authenticate, XML support was

discontinued in favor of JSON (until then, developers were given the option for

either XML or JSON) and changes have been made to rate limiting (which can

penalize clients who query the web API too often).

netputweets — The netputweets project is an alternative web interface for

Twitter on mobile phones. Because it implements a wide range of features from

21Raw commit data — http://figshare.com/articles/JSS_Web_API_Data/1192860

Web Project LOC C
o
m

m
it

s

Avg. Evol. Churn F
il

e
d

is
p

er
si

o
n

E
v
o
l.

co
m

m
it

s

API Churn (% of Avg.)

Twitter rsstwi2url 2101 366 0.008203 0.008251 0.59 3 1
TwiProwl 1199 156 0.007530 0.030629 306.75 1 1

netputweets 8853 218 0.001679 0.005521 228.80 15 3
sixohsix/twitter 3866 375 0.00871 0.004509 -48.21 11 7

Google hobobiker 478994 37 0.0000607 0.000147 142.27 4 2
Maps cartographer 1895 36 0.009328 0.115652 1139.84 17 2

wohnungssucherportal 35119 208 0.00026 0.000127 -51.34 4 1

Facebook spring-social-facebook 30362 1042 0.001222 0.000277 -77.33 14 1

Netflix pyflix2 3433 49 0.008032 0.008409 4.70 8 2
Netflix.bundle 1724 80 0.007530 0.002115 -71.91 2 1

Notes: Avg. Churn defines the average churn of modified files per commit (for all the commits).
Evol. Churn defines the churn caused by the evolutionary step (manually inspected within
the commits which set forward changes for the evolutionary step). File dispersion consists of
how many files are changed in the context of the evolutionary step. Evol. commits consists of
how many commits were involved in implementing the changes for the evolutionary step.

Table 4: Statistics Per Project

23

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 23



0	
  

0.005	
  

0.01	
  

0.015	
  

0.02	
  

20
11
-­‐0
1-­‐
31
	
  1
4:
48
:2
0+
08
:0
0	
  

20
11
-­‐0
1-­‐
31
	
  0
8:
16
:1
0+
00
:0
0	
  

20
11
-­‐0
9-­‐
01
	
  2
3:
31
:5
4+
08
:0
0	
  

20
11
-­‐0
9-­‐
03
	
  1
1:
16
:0
6+
08
:0
0	
  

20
11
-­‐0
9-­‐
21
	
  1
6:
46
:3
2+
08
:0
0	
  

20
11
-­‐0
9-­‐
22
	
  1
1:
01
:4
6+
08
:0
0	
  

20
11
-­‐0
9-­‐
25
	
  1
7:
36
:0
4+
08
:0
0	
  

20
11
-­‐0
9-­‐
27
	
  1
7:
52
:0
7+
08
:0
0	
  

20
11
-­‐0
9-­‐
27
	
  2
1:
10
:0
4+
08
:0
0	
  

20
11
-­‐0
9-­‐
28
	
  2
1:
07
:3
9+
08
:0
0	
  

20
11
-­‐0
9-­‐
30
	
  1
8:
47
:2
7+
08
:0
0	
  

20
11
-­‐1
0-­‐
15
	
  2
2:
31
:2
2+
08
:0
0	
  

20
11
-­‐1
0-­‐
16
	
  1
5:
37
:1
9+
08
:0
0	
  

20
11
-­‐1
0-­‐
19
	
  2
2:
34
:0
5+
08
:0
0	
  

20
11
-­‐1
0-­‐
22
	
  1
7:
13
:5
9+
08
:0
0	
  

20
11
-­‐1
0-­‐
25
	
  2
1:
41
:3
1+
08
:0
0	
  

20
12
-­‐0
1-­‐
31
	
  2
0:
59
:5
7+
08
:0
0	
  

20
12
-­‐1
1-­‐
14
	
  0
7:
06
:3
1-­‐
08
:0
0	
  

20
13
-­‐0
2-­‐
25
	
  1
5:
50
:5
7+
08
:0
0	
  

20
13
-­‐0
2-­‐
27
	
  1
6:
22
:1
1+
08
:0
0	
  

20
13
-­‐0
2-­‐
27
	
  1
7:
29
:3
1+
08
:0
0	
  

20
13
-­‐0
2-­‐
27
	
  1
8:
40
:1
8+
08
:0
0	
  

20
13
-­‐0
2-­‐
27
	
  0
4:
39
:1
4-­‐
08
:0
0	
  

20
13
-­‐0
2-­‐
28
	
  0
0:
07
:2
8+
08
:0
0	
  

20
13
-­‐0
2-­‐
27
	
  1
7:
45
:1
0-­‐
08
:0
0	
  

20
13
-­‐0
2-­‐
28
	
  1
1:
32
:2
9+
08
:0
0	
  

20
13
-­‐0
2-­‐
28
	
  1
2:
35
:1
7+
08
:0
0	
  

20
13
-­‐0
3-­‐
01
	
  1
5:
18
:2
5+
08
:0
0	
  

20
13
-­‐0
3-­‐
02
	
  1
2:
06
:1
7+
08
:0
0	
  

20
13
-­‐0
3-­‐
02
	
  1
5:
15
:0
7+
08
:0
0	
  

20
13
-­‐0
3-­‐
02
	
  1
6:
37
:2
1+
08
:0
0	
  

20
13
-­‐0
3-­‐
04
	
  1
1:
50
:0
9+
08
:0
0	
  

20
13
-­‐0
3-­‐
04
	
  1
4:
08
:1
8+
08
:0
0	
  

20
13
-­‐0
3-­‐
04
	
  1
8:
26
:1
4+
08
:0
0	
  

20
13
-­‐0
3-­‐
04
	
  2
0:
25
:2
7-­‐
08
:0
0	
  

20
13
-­‐0
3-­‐
05
	
  0
0:
43
:5
8-­‐
08
:0
0	
  

20
13
-­‐0
3-­‐
07
	
  1
0:
55
:0
2+
08
:0
0	
  

20
13
-­‐0
3-­‐
06
	
  2
3:
52
:4
6-­‐
08
:0
0	
  

20
13
-­‐0
3-­‐
08
	
  0
5:
46
:5
4+
08
:0
0	
  

20
13
-­‐0
3-­‐
08
	
  2
0:
06
:1
2+
08
:0
0	
  

20
13
-­‐0
3-­‐
10
	
  1
5:
38
:5
3+
08
:0
0	
  

20
13
-­‐0
3-­‐
11
	
  1
5:
27
:0
5+
08
:0
0	
  

20
13
-­‐0
3-­‐
18
	
  0
4:
09
:2
0-­‐
07
:0
0	
  

Co
de

	
  C
hu

rn
	
  

Timestamp	
  

Modified	
  only	
   Added	
  +	
  Modified	
  

882943d	
  

e36c9f0	
  

5510a0d	
  

Figure 1: Code churn per commit netputweets

the Twitter web API, it is also the Twitter project with the highest LOC.

In Figure 1 we present the code churn data compiled for the netputweets

project. The figure shown concerns only the netputweets project although we

did compile the data for all the projects. Doing so helped us in identifying

potentially interesting hotspots in the projects’ commits. In this figure we high-

lighted the commits involved in the web API evolution task. Here it is possible

to visually assert that these commits are not exceptional in terms of code churn

when compared to the remaining commits. Table 4 does show, however, that

the evolution-related code churn is approximately 228% higher than average and

the changes span across several files.

From the same table we also learn that netputweets is the Twitter project

with the largest codebase, yet, its evolution-related churn is lower than TwiProwl

(the smallest Twitter project by LOC). The netputweets project contains ap-

proximately eight times more LOC than TwiProwl and it took three commits

over 15 files to implement these changes. Such an increase in file dispersion may

signal a tight coupling with the web API. Through manual inspection of the

24

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

24 TUD-SERG-2014-017



netputweets project we confirmed our hypothesis. Many of the changed files

contain on themselves a static reference to the Twitter endpoint which, should

it change, requires these files to be also changed. Additionally, several changes

are also made to the code handling the web API data. Because the data is used

directly throughout the code (which implies a tight coupling with the specific

data format), several changes are required throughout several files.

TwiProwl — As the client with the lowest LOC (compared to all analyzed

Twitter projects), TwiProwl is also the one that implements the changes for the

new API version by changing one file in a single commit. This project is a one file

script which explains the file dispersion of 1. The 300% code churn compared to

the average churn comes from implementing a new feature in the Twitter API

(user lookup) and from adjusting several lines of code which directly iterate

through the data provided by the web API (which was changed in this version).

sixohsix/twitter — Another project which has an elevated file dispersion is a

Twitter library for Python (sixohsix/twitter). Manual inspection resulted in a

different finding from that of netputweets. This client tucks away all the web

API-specific integration into one file and even after the changes for the newest

version had been implemented, the project was still using the older version. This

is possible because of how the developer implemented a mechanism to allow him

to choose the version of the web API by changing an argument in the method

calls. This also justifies the file dispersion. While normally having to change

a several number of files would be a task developers wanted to avoid, the only

change to be done in this case is an argument that specifies which web API

version to use.

rss twi2url — The rss twi2url project is a small script which provides tweets

as an RSS feed. Because of its limited focus on a small subset of Twitter’s

web API, we expected the changes caused by web API evolution to be small.

This was confirmed through the low code churn (approximately the same as the

average). The changes span across three files, although manual code inspection

revealed one of the files is a configuration file (changed due to Twitter’s rate

limit) and the other two files were directly impacted by Twitter’s change on the

25

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 25



returned data.

What We Learn

While in a general way Twitter pushed extensive changes with its latest

web API version, our findings are that when dealing with web APIs a good

architecture matters more than ever. This finding is supported by two projects:

sixohsix/twitter and netputweets. While both integrate extensively with the

Twitter web API, netputweets, by virtue of a poorer architecture, contains

larger evolution-related churn. For instance, the Python library presents an

evolution related churn that is 48% smaller than the average code churn which

supports a more carefully thought architecture, versus the 228% higher than

average churn seen on netputweets.

4.3.2. Google Maps

The changes put forth by Google in version 3 of its Maps web API are

extensive. Google says so itself in its thorough upgrading Google Maps guide:

“as you start working with the new API, you will quickly find that this is not

simply an incremental upgrade”22. In our study we noticed that simple activities

such as creating an instance of the web API are now done using entirely different

constructors.

hobobiker — It took the hobobiker project changes in 4 files to implement the

integration with the new web API. Through manual inspection we concluded

that despite the low file dispersion, all the components of this project which

require Google Maps integration are tightly tied with its web API. This tight

connection is observed as each component of this project which requires web API

integration establishes its own direct dependency to the web API. This, coupled

with the 142.27% size of the evolution commits compared to the average churn

may indicate poor architectural design.

wohnungssucherportal — The wohnungssucherportal, by comparison with

hobobiker, despite requiring the same number of files to be changed, it took

22Upgrading Your Google Maps JavaScript Application To v3 —
https://developers.google.com/maps/articles/v2tov3

26

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

26 TUD-SERG-2014-017



-51% of the average churn to implement the same changes. The LOC of both

these projects is rather high and is justified by both being web applications

and containing a large amount of boilerplate code (hobobiker relies on Drupal

whereas wohnungssucherportal relies on Ruby on Rails). While the elevated

LOC influences the absolute average churn (0.00026 compared to 0.009328 for

cartographer with 1895 LOC) it should not interfere with the code churn re-

quired by the web API evolution task.

cartographer — The cartographer project stands out in the elevated file dis-

persion it presents (17 files changed). As a library which allows other projects

to integrate with Google Maps, this project also maintains backwards compat-

ibility with the previous version of the Google Maps web API. Because of this

and because this project’s architecture clearly separates the connection to the

two API versions, several files were touched to provide support to the newer

version. Namely, 8 files were copied and became the basis for the older version

2 support and the same files were copied and modified to enable the integration

with the latest version. It is then not surprising that the code churn involved

in the evolution task represents a 1139% increase over the average code churn

spread out across 17 files.

What We Learn

The three projects under study present different lessons learned for client

developers. While the change introduced by Google with version 3 of Maps is

overarching and requires substantial changes (as stated by Google and proven

by the creation of an extensive migration guide), projects like hobobiker and

wohnungssucherportal suffered the sharpest pains (hobobiker in code churn and

wohnungssucherportal in file dispersion). This is so as these two projects reveal

poor design choices where every reference to the Google Maps web API was

hardcoded.

The cartographer project on the other hand continuously implements sup-

port for both the old and new versions of Google Maps and despite the higher

code churn, tucks away the web API concerns in a way that the core library

does not require changes as extensive as the other projects.

27

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 27



4.3.3. Facebook

The only Facebook project available (as more could not be found using

our approach) is a fairly large plugin for the Spring Framework which provides

Facebook integration. What can be learned from this project is that even though

Facebook’s migrations are said to be smaller (and happen more frequently than

in other web API providers), in fact the changes cause many files to require

maintenance.

Considering the changes analyzed are relative to a migration and therefore

not a major version change, and considering the churn percentage of this evolu-

tion task compared to the average is lower by 50%, we expected to encounter an

underlying architecture with a good separation of concerns. This was confirmed

through manual inspection. The web API-related code is encapsulated in Java

classes specifically built for the web API communication, which were also the

only files that required changes. By analyzing the changes we also realized the

changes concern two major modifications in the Facebook web API. Namely,

Facebook changed the way it handles images and simultaneously changed the

way it refers to “check-ins” and the way to retrieve them. What also contributes

to the high file dispersion of these changes is the existence of an extensive test

suite. In fact, for this specific commit there are six changed files (out of the

13) which are test-related. For this particular project we conclude that despite

the changes pushed by Facebook being actually intrusive and require change,

the way these particular client developers designed their architecture by iso-

lating web API access into single-feature classes mitigates this problem. The

changes span across several files but are generally small and confined to the web

API-specific files.

4.3.4. Netflix

The Netflix web API pushed extensive changes with version 2. Amongst

them are refactorings in the returned data, changes in API conventions and

addition of new features.

pyflix2 — The pyflix2 project presents a rather high file dispersion of eight files.

28

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

28 TUD-SERG-2014-017



While the file dispersion is the first indicator of a potential poor architectural

design, the meagre 4% increase in code churn versus the average suggests the

changes are not very extensive. Nonetheless, manual investigation shows that

part of the changes consist of unit tests and database migrations which are stored

in text files. The majority of the remaining changes transform the hardcoded

Python strings to Unicode, as presumably Unicode became mandatory on the

new Netflix API. However, there are no mentions to this in the Netflix web API

documentation.

Netflix.bundle — The second project which makes use of the Netflix API is

a bundle for Plex (a media center) which contains all its web API references

in the same two files. This justifies how all the evolution related changes are

contained in two files as only these two particular files have the necessity to

make web API calls.

What We Learn

Both projects analyzed in the context of the Netflix web API are small and

relatively young. This somewhat justifies the small number of commits. The

code churn caused by the web API evolution is rather small (with the projects

staying around or below the code churn average). The pyflix2 project is a Python

library which requires a more extensive integration than the one provided by

Netflix.bundle, hence the larger file dispersion and evolution-related churn.

5. End-to-End Analysis

In this section we analyze how the web API is implemented and whether

there is evidence of special design and implementation considerations on the

web API source code.

5.1. VirtualBox

Our analysis of the VirtualBox case study is split into two: the server-

side and client-side analysis. In the server-side we cover the implementation,

versioning and source code analysis of the web API as well as a co-change

analysis of the web API-related files. On the client side we strictly look at the

source and how it integrates with the VirtualBox web API.

29

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 29



5.1.1. Server-side

Oracle VirtualBox is a software system which allows the deployment of vir-

tualized operating systems. Through its web API it allows full control over the

features of each virtual machine deployed within an instance of VirtualBox.

Implementation In the VirtualBox web API all the methods are available

under one single endpoint. This results in a single “class” which contains 1888

methods (one single file with approximately 54 kLOC) from different business

entities (e.g. INATNetwork, IDHCPServer, IAppliance). This is symptomatic of

a web API suffering from the multi-service anti-pattern as described by Dudney

et al. [21] where one single web API provides functionality pertaining to multiple

disjoint business entities.

The web API is implemented using SOAP and thus, its interface is available

as a WSDL file. This file is generated based off a XIDL (Extended Interface

Definition Language) file which is also used to define the interface for all the

APIs VirtualBox provides (webservice bindings for Java, Perl, PHP and Python

as well as static library bindings for C, Microsoft COM and XPCOM interfaces)

in all the different languages. The fact alone that the SOAP interface is treated

as any other (non-web) API raises a warning that VirtualBox developers take

no special precautions when pushing changes to the web API.

Versioning As far as versioning is concerned, VirtualBox’s web API is as-

signed the same version of the application itself. The implication is that regard-

less of whether a major, minor or patch release has pushed breaking changes

to the web API, the web API will also have its version number increased.

While VirtualBox does follow the semantic versioning23 approach, with a ma-

jor.minor.patch versioning scheme, in fact, it applies a twist on this approach.

With semantic versioning only a major version change is allowed to introduce

breaking changes to the (web) API. In VirtualBox, the documentation states

that both major and minor releases may introduce breaking changes, thus de-

parting from the semantic versioning approach. In order to clarify the reason

23SemVer — http://semver.org/spec/v2.0.0.html

30

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

30 TUD-SERG-2014-017



why semantic versioning was not being strictly followed, we asked the devel-

opers in the official VirtualBox mailing list for clarification. One of the lead

developers stated it was simply a naming convention and that they “consider

the MAJOR.MINOR.0 releases as major”. In a different post on the mailing

list, a developer also stated that “when [they] do a major update (first and/or

second digit change), [they] may change APIs in incompatible ways. This is a

burden on the API consumer but it allows [them] to keep a clean design and not

accumulate legacy. Within one major version (e.g. 3.1.x), [they] guarantee API

stability.”

Source code analysis In order to compile an overview of the breaking

changes to the VirtualBox web API we analyzed all the provided SDK versions

on the VirtualBox website. Each SDK downloadable is a ZIP file containing

(amongst other files) a WSDL file. The WSDL file from each SDK was ex-

tracted in order to then extract WSDL changes from subsequent version pairs

of the file. While the SDK downloadables contain both a version number and

a SVN revision number, the SVN revision number is from an internal SVN

server which means it does not match that of Oracle’s public SVN repository.

This means that we have a WSDL file, its external version number (in the

Major.Minor.Revision format obtained from the ZIP), the internal SVN revi-

sion but do not know what public revision of the whole VirtualBox source code

the SDK belongs to. Because we are interested in source code changes, it is a

requirement to know which commit was used to compile a specific SDK (and

thus a specific WSDL). In order to obtain this information, we had to devise

a matching mechanism to map WSDL files from the SDK downloadables to

SVN revisions of the public repository. Because the WSDL is not versioned

but rather generated, for each commit in SVN we compile the XIDL file into a

WSDL file and compare to each of the WSDL files in the SDK.

By using a tool to compile the fine grained changes between two WSDL files

(WSDLDiff24) we can then know what changes were made at the web API level

24http://www.membrane-soa.org/soa-model-doc/1.4/cmd-tool/wsdldiff-tool.htm

31

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 31



as well as connect these changes to other files which also had to be modified to

make the web API changes possible. This tool not only mines the changes from

the WSDL files, but also identifies for each change whether it breaks backwards

compatibility for clients. In the scope of our study, we are only interested in

changes that break backwards incompatibility as those are the only ones which

cause clients to be forced to change.

With resort to this tool and through analyzing the 73 officially released

versions following the Major.Minor.Patch semantics, we were able to gather

that VirtualBox has pushed:

- 3 major releases, all of which contain breaking changes.

- 7 minor releases, all of which contain breaking changes.

- 63 patch releases, two of which contain breaking changes.

This data is not surprising except for the two patch releases which bear

breaking changes (version 4.0.2 to 4.0.4 and 3.0.0 to 3.0.2). Developers claim

that patch releases are free from backwards incompatible changes but this princi-

ple was violated twice. We tried to identify the nature of the changes introduced

and the rationale behind this decision.

Our analysis has found that version 3.0.2 removed web API methods and

changed a data type, whereas version 4.0.4 included a small change where a field

was renamed.

As an attempt to clarify what was the reasoning behind this decision we

reached out to the project’s mailing list. Klaus Espenlaub, one of the VirtualBox

developers, claimed that in 4.0.4 a field was renamed for the sake of clarity and

in 3.0.2 there were “more intrusive” changes but that the removed methods

were “not really useful” and because this functionality had been made available

for a 10-day period (between version 3.0.0 and 3.0.2) they found “the probability

of breaking existing third party code was negligible” and thus “decided it was

worth it”.

Co-change analysis In order to identify co-changes, we applied associ-

ation rule mining techniques. To do so, we first identified the file which,

should it be changed, would cause a change to the web API. While Virtu-

32

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

32 TUD-SERG-2014-017



alBox makes use of WSDL for its web services, the WSDL file is generated

and not initially available under versioning. For this reason, we perform our

analysis on the file which is used to generate the WSDL interface, that is

“src/VBox/Main/idl/VirtualBox.xidl”. We then grab all the commits where

this file is changed and treat each commit as a “transaction” for the Apriori

algorithm. By doing so, we obtain a list of which files are associated with (and

thus, tend to co-evolve) which other source files.

In Table 5 we present the results for a minimum support of 10% (lowest was

24 occurrences) and a confidence of 10%. The results of this table have been

filtered to include only association rules where the web API is involved. The

values for minimum support and confidence were chosen by experimentation.

We started with significantly higher values (80% confidence and support) and

gradually lowered until the occurrences were in the range of 20.

For VirtualBox we see then that 4 out of the 5 files which contain an associ-

ation rule with the web API interface file are in the “Main” package and are all

core implementation files (e.g. HostImpl.cpp deals with the implementation of

host-related functionality, MachineImpl.cpp contains implementation regarding

the virtual machines).

5.1.2. Client-side

As a client we study phpVirtualBox, a feature-complete web client for the

VirtualBox software system. This project is developed by one single developer

who is not affiliated with the development of VirtualBox itself.

This client links the WSDL file statically into their own source code. For the

particular situation of phpVirtualBox this static approach works well, as each

Rule Sup. Conf.

src/VBox/Main/MachineImpl.cpp ⇒ VirtualBox.xidl 30 14.8%
include/VBox/settings.h ⇒ VirtualBox.xidl 21 25.3%

src/VBox/Main/ConsoleImpl.cpp ⇒ VirtualBox.xidl 29 20.6%
src/VBox/Main/HostImpl.cpp ⇒ VirtualBox.xidl 14 23.3%

src/VBox/Main/include/VirtualBoxImpl.h ⇒ VirtualBox.xidl 15 15.6%
src/VBox/Main/include/HostImpl.h ⇒ VirtualBox.xidl 12 16.9%

Table 5: Association Rules VirtualBox

33

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 33



Rule S
u

p
p

o
rt

C
o
n

fi
d

en
ce

(%
)

{./interfaces/json-rpc/VideoLibrary.cpp,./interfaces/json-rpc/methods.json} 24 100
⇒ ./interfaces/json-rpc/ServiceDescription.h

{./interfaces/json-rpc/JSONServiceDescription.cpp, 40 100
./interfaces/json-rpc/methods.json} ⇒ ./interfaces/json-rpc/ServiceDescription.h

{./interfaces/json-rpc/JSONServiceDescription.cpp, 40 88.9
./interfaces/json-rpc/ServiceDescription.h} ⇒ ./interfaces/json-rpc/methods.json

{./interfaces/json-rpc/ServiceDescription.h, 24 82.8
./interfaces/json-rpc/JSONServiceDescription.cpp} ⇒ ./interfaces/json-rpc/methods.json

./interfaces/json-rpc/JSONServiceDescription.cpp 24 77.4
⇒ ./interfaces/json-rpc/ServiceDescription.h

./interfaces/json-rpc/JSONServiceDescription.cpp 24 77.4
⇒ ./interfaces/json-rpc/methods.json

./interfaces/json-rpc/methods.json 91 75.8
⇒ ./interfaces/json-rpc/ServiceDescription.h

./interfaces/json-rpc/JSONServiceDescription.cpp 40 66.7
⇒ ./interfaces/json-rpc/methods.json

./interfaces/json-rpc/JSONServiceDescription.cpp 40 66.7
⇒ {./interfaces/json-rpc/ServiceDescription.h,./interfaces/json-rpc/methods.json}

./interfaces/json-rpc/types.json 63 58.3
⇒ ./interfaces/json-rpc/ServiceDescription.h

./interfaces/json-rpc/ServiceDescription.h 91 51.7
⇒ ./interfaces/json-rpc/methods.json

{./interfaces/json-rpc/ServiceDescription.h,./interfaces/json-rpc/methods.json} 40 44
⇒ ./interfaces/json-rpc/JSONServiceDescription.cpp

./interfaces/json-rpc/ServiceDescription.h 63 35.8
⇒ ./interfaces/json-rpc/types.json

./interfaces/json-rpc/methods.json 40 33.3
⇒ ./interfaces/json-rpc/JSONServiceDescription.cpp

./interfaces/json-rpc/methods.json ⇒ {./interfaces/json-rpc/JSONServiceDescription.cpp, 40 33.3
./interfaces/json-rpc/ServiceDescription.h}

{./interfaces/json-rpc/ServiceDescription.h,./interfaces/json-rpc/methods.json} 24 26.4
⇒ ./interfaces/json-rpc/JSONServiceDescription.cpp

./interfaces/json-rpc/ServiceDescription.h 40 22.7
⇒ {./interfaces/json-rpc/JSONServiceDescription.cpp,./interfaces/json-rpc/methods.json}

./interfaces/json-rpc/methods.json 24 20
⇒ ./interfaces/json-rpc/JSONServiceDescription.cpp

./interfaces/json-rpc/methods.json 24 20
⇒ ./interfaces/json-rpc/ServiceDescription.h

./interfaces/json-rpc/ServiceDescription.h 24 13.6
⇒ ./interfaces/json-rpc/JSONServiceDescription.cpp

Table 6: Association Rules XBMC

version of phpVirtualBox targets one specific version of the web API. However,

SOAP-based web APIs allow for the WSDL to be queried dynamically [13, p.

186] and in a dynamic scenario where the web API client provides support for

web APIs with different versions, this approach is recommended as a way to

34

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

34 TUD-SERG-2014-017



ensure the web API does indeed support the required version.

On the client side of VirtualBox we analyze the impact on phpVirtualBox,

a popular web-based front-end application used to control VirtualBox instances

through the web API.

This client maintains its versions synchronized with those of VirtualBox. The

approach taken by phpVirtualBox means that with every release, it does not

have to keep any code related to deprecated or modified features. Ultimately,

the client developer claims that regardless of the patch version, an instance of

phpVirtualBox from a specific minor release should work with all the patch

releases under the same minor release (which is coherent with the evolution

policy of VirtualBox itself).

Source code The phpVirtualBox client is written in PHP and Javascript.

All the interactions with the VirtualBox web API happen in two files: one

PHP file which is automatically generated based on the server’s XIDL file and

a second PHP file, this one manually created, which contains all the web API

interaction logic. While at a first sight this is a sound design decision as it

results in one single point which potentially needs to be changed should the

server push breaking changes, our analysis revealed a different scenario. Indeed,

a single point for change exists but all the source code directly relies on this

file which is a 1-to-1 mapping of the server-side methods and data types. In

other words, the client’s source code is directly tied to specific methods of the

server-side.

5.2. XBMC

5.2.1. Server-side

XBMC is a media player developed as open-source and has been under devel-

opment since 2002. It provides a web API through a JSON-RPC implementation

which allows for full control of the media player’s operations.

Implementation Unlike the SOAP approach used by VirtualBox, it pro-

vides no schema similar to the WSDL. Instead, human-readable documentation

is provided in the form of wiki pages on the website of the project which as of

right now does provide information about the latest version of the web API.

35

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 35



Additionally, the source code of XBMC does have data types defined for server-

side use. These types as well as their names are never provided to the web API

clients. This in turn means that XBMC clients are not bound to type names

or type references but rather the developers must compose JSON objects out of

primitive types (strings, integers, etc).

Additionally, the 120 different methods are also packaged within 13 different

classes. The encapsulation of the XBMC web API functionality is more carefully

thought out than that of VirtualBox and it stands as a major difference between

the two. The VirtualBox web API provides 1888 methods under one single class.

Versioning The API is implemented with its own separate versioning which,

in its early stages, was represented by a single digit. Recently, at version 6 (also

the current version), the semantic versioning approach was adopted. Addi-

tionally, the developers warn potential client developers that only even version

numbers represent stable states of the web API. This versioning approach is

similar to the one used in the Linux kernel where minor releases with an odd

version number are not meant to be used in production25.

Source code analysis On the server side of the XBMC scenario, the web

API maintains its own separate version. To perform our analysis we must then

first resort to the ServiceDescription.h file to identify which web API version

corresponds to each snapshot of the source code.

While this analysis is possible on the server side, the Android XBMC client

does not check which version of the web API is available on the server and it is

therefore not trivial to identify which version is being targeted by the client.

On the client side the data sent through JSON-RPC as well as the responses

are accessed through reflection. This makes it very difficult to identify which

arguments of which data type are being used in each commit of the client’s

source code.

On the server side we attempted to use different approaches to identify which

25Linux Kernel Versioning — http://www.tldp.org/FAQ/Linux-FAQ/kernel.html#

linux-versioning

36

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

36 TUD-SERG-2014-017



methods exist in each commit. We attempted to do so by performing textual

mining on the JSON file used as the definition of the web API as well as mining

a C header file which also contains all the web API methods. Both approaches

yielded no usable results. The JSON file is large (142 methods, 2221 LOC) and

encompasses many different web API methods. It also relies on a separate file

where the data types are declared (1610 LOC). This makes manual inspection of

these files across the many thousands of commits infeasible. Automatic diffing

of this file in pairs of consecutive commits also resulted in many false positives

which would also be too time consuming to analyze manually.

Co-change analysis For the XBMC server we used a similar approach as

the one used for VirtualBox. The JSON-RPC-based web API is declared as a

JSON file which is then used to generate the actual interface. Therefore, changes

applied to this file are a potential indicator of breaking changes. However, it is

not trivial to identify what constitutes a breaking change for a JSON client. For

instance, adding fields will not break backwards compatibility whereas removing

fields depends on whether the client is actually using those fields.

For this reason, we considered all the commits where changes are applied

on the interface definition files (methods.json and types.json) and use temporal

references as a guideline to match changes on the server side to those on the

XBMC Android client.

The association rules obtained from the XBMC project tell a different story

from that of VirtualBox. All the rules involve three files only (VideoLibrary.cpp,

JSONServiceDescription.cpp and ServiceDescription.h) in addition to the two

web API interface files which are used to identify changes to the web api (meth-

ods.json and types.json). Furthermore, the files implicated as co-changing with

the files used as reference for the web API are also all related to the web API, as

can be seen by the package to which they belong (json-rpc). Table 6 shows us all

the tight co-change relationship involving all the aforementioned files (web API

interface plus the co-changed files). Nonetheless, the conclusion to be drawn is

that changes to the web API are self-contained to the web API packaging.

In both the VirtualBox and XBMC case studies we also attempted to find

37

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 37



other possible links between the web API and the remaining source code. Specif-

ically, we investigated whether there was any single package which was more

likely to co-change with the web API. However, no such connection was found.

5.2.2. Client-side

The client application under study, the official XBMC client for Android,

is developed by a subset of the XBMC developer community. This application

actively keeps up with the latest version of the web API provided, thus breaking

compatibility with previous versions of the server-side software. This is partic-

ularly troubling as the end-users who installs the Android XBMC client via the

Google Play Store on an Android device cannot choose which version to install.

This means that an end-user running an older version of the XBMC media

player will have to either manually prevent the application from auto-updating

or manually download the particular version through the XBMC client’s pre-

vious releases website in order to have a functioning client. Looking at the

comments left on the Play Store regarding the XBMC client, we found clear

evidence of web API evolution causing trouble to end-users. Users of the client

commented “it worked until the last update with no warning. Apparently then it

requires the latest version of XBMC. This is highly unfortunate, as it’s hard to

install older versions of software on Android devices. This basically means that

if you want to use the Android remote you have to always use the last version of

XBMC. In my opinion that’s worse behavior towards your users than is usual

amongst even open source, and I really hope this is not going to be repeated in

the future.” and “don’t update the entire app without keeping backwards com-

patibility in mind.(...) I have 6 XBMCs running and have no time to update

them all when a new release comes out of beta.”.

6. Discussion

In this section we use our findings to address our three research questions

and present a list of nine do’s and don’ts for developers of API web services.

38

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

38 TUD-SERG-2014-017



6.1. Answering the Research Questions

We start by answering the research questions laid out in the introduction

regarding the three different API providers.

6.1.1. RQ1

“What are some of the pains from client developers when evolving their

clients to make use of the newest version of a web API?”. Through our in-

terviews, client developers highlighted how the early versions of web APIs are

invariably unstable and change-prone. While some web API providers offer in-

dicators of particularly unstable functionality in their web API, by default web

API providers push breaking changes across the whole feature set. It also be-

came clear that no standard policy exists on what concerns deprecation periods

and that the ideal amount of time is dependent on the developer. Ideally longer

periods would be provided but further study is required to establish what the

cost would be for the web API provider to keep two versions of a web API

active for a longer period of time. The technology being used also plays a role

in the developers satisfaction with an observed preference for REST and JSON

amongst the interviewed developers.

6.1.2. RQ2

“What are the commonalities in the evolution policies for web APIs?”. In

a survey on “Web API Evolution Pains” the authors concluded that “there’s

nothing even resembling industry standards, just best practices that everyone

finds a way around”. When it comes to evolution policies, this seems to be

true as well. Google and Twitter make use of versioning and give ample pe-

riods of time (∼2 years and 6 months respectively) for the client developers

to migrate. Facebook opts for not providing versioning altogether and pushes

breaking changes every three months. Lastly, Netflix with already two exist-

ing versions continues to maintain both versions simultaneously. Twitter also

stands out for the “blackout tests” which serve as warnings for developers that

eventually the old web API version will be shutdown.

39

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 39



6.1.3. RQ3

“What is the impact on source code when web APIs start to evolve?”. As

expected, the impact on source code depends greatly on both the breadth of

the changes pushed by the web API provider and on the quality of the clients’

architectural design. An example of this is two projects which integrate with

the Twitter web API. While sixohsix/twitter provides an extensive integration

with the web API, the churn caused by the changes is much lower than that of

TwiProwl which performs basic web API tasks. This same observation applies

to the two Netflix projects. The code churn and file dispersion metrics have also

had limited usefulness. For instance, the cartographer project contains changes

in excess of 1000% of average churn and reports having 17 files changed, yet,

the architectural design is robust as this project maintains support for multiple

web API versions. The lesson learned is that the impact can be high (e.g.

Google Maps pushed changes which affect the smallest of tasks) and that for

this reason, developers should take caution and design for change. Lastly, our

evidence also suggests that web APIs are significantly more change prone in

their early versions.

6.1.4. RQ4

“Do web API providers take precautions in order to ease evolution pains of

web APIs??”. To answer this question we focus on the VirtualBox and XBMC

projects since they are the only ones for which we have access to the source

code.

VirtualBox In the case of VirtualBox the fact that the web API is gener-

ated from the same interface as other statically linked APIs provides an early

indication that no special care is taken regarding the web API. This is further

fueled by a web API which suffers from a severe case of the multi-service anti-

pattern where the web API and all its 1888 methods (and respective request and

response types) from different business entities are provided under one single

class. Perhaps as a result of this, and to the fact that the backwards compatibil-

ity responsibility has been delegated fully to the client side, the main client for

40

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

40 TUD-SERG-2014-017



this web API (phpVirtualBox) simply disregards the issue of backwards compat-

ibility by releasing a new version for each of the VirtualBox releases. From the

code analysis performed on VirtualBox it has also arisen that every single major

and minor version has pushed breaking changes to the web API which reveals a

great deal of external instability. Furthermore, the association rules mined out

of the source code showed that multiple core implementation files consistently

change together with the web API, revealing a potentially high fan-in between

implementation and web API.

XBMC The XBMC web API was developed from the beginning as a web

API. There are generally fewer breaking changes, with most breaking changes

representing refactorings. Also from the association rule mining, only web API-

related files (specifically, the files used for web API implementation) were ob-

served to co-change with the main web API files. In this case study, it is then

the client’s fault for the poor backwards compatibility management. Namely,

the Android XBMC client is publicly available in the Google Play Store and

multiple end-users complain that the latest version simply does not work with

older XBMC servers. The client developers do make older versions of the client

available through their website but this requires manual installation and require

multiple clients to be installed for controlling different servers with different ver-

sions.

In sum, referring back to RQ4, our analysis resulted in a mixed picture. On

the one hand VirtualBox shows no particular arrangements made in order to

maintain its web API more or less stable than any other statically linked API,

whereas XBMC contains a purpose-built web API with its own versioning and

human-readable documentation. As a result, the clients under analysis also deal

with their web API’s differently (albeit neither with an ideal approach). The

phpVirtualBox client simply releases one client version per web API version and

Android XBMC keeps up with the latest version of the web API, disregarding

backwards compatibility.

41

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 41



6.2. Recommendations

Based on our investigation and additional insights obtained from observing

developer forums, we compiled a list of nine recommendations for web service

API providers with regard to easing the evolution task for developers of API

clients.

6.2.1. Do not change too often

Facebook is pushing monthly “breaking changes”, yet a recent survey on

API integration pain [10] revealed that this policy has caused distress amongst

developers. It is unclear whether this has played a role in Facebook moving to

quarterly updates (starting April 2013). It stands to reason that some business

domains require more frequent breaking changes than others, nonetheless, fre-

quency of change would be an interesting gauge to include in future research

on metrics for service quality which to the best of our knowledge currently does

not exist.

6.2.2. Old versions of the API should not linger too long

Looking at the scenarios where the web API provider will deprecate older

versions of their web API, Google started off with a 1-year timeframe for the

deprecation of Google Maps’s version 2, and ended up extending it to 3 years.

Yet, reaching the 3-year mark, many developers still flocked to the developer

forums in hopes that the deadline would be extended further (which happened

for another 6 months). Seeing as maintaining legacy code often implies a high

level of effort, time and cost the message is: longer periods leave developers

too relaxed about the change. While a large company like Google can perhaps

afford to invest in long periods for backwards compatibility, this may not be

true for all other web API providers.

It should be noted that this advice is not applicable to web API providers

which decide not to deprecate their old web API versions.

6.2.3. Keep usage data of your system

By knowing which users are using which features, system maintainers can

target those particular users via e-mail to remind them about upcoming changes.

42

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

42 TUD-SERG-2014-017



In previous work [22] we have investigated how this could be achieved and

indeed developed Serviz which provides an overview of the system in terms

of time, users and versions. This approach was also adopted by Facebook as

can be seen through the targetted e-mails sent to client developers who use a

particular feature of a web API which will be affected by an upcoming backwards

incompatible change.

6.2.4. Blackout tests

Before taking the old versions offline permanently, try it for short periods of

time. While it requires no special tooling, Twitter’s blackout tests approach has

been successful in reminding developers that a change in the API is upcoming;

the approach has also been appreciated by developers.

6.2.5. Provide an example of interaction with the API

Something not gathered directly from the analysis presented in this paper

but rather collected from the API integration Pain Survey, is the developers’

need for an (up-to-date!) example of how to interact with the API. Maleshkova

et al. [23] also recognized this need stating that “most [web] API descrip-

tions are characterized by under-specifications”. Indeed, recognizing this need,

industry has now starting to create tools which aid in automated web API

documentation (e.g. Miredot 26).

6.2.6. Stability Status per Web API Feature

As a web API provider, tagging each of your web API’s features with a

“stability status” which indicates whether a feature is stable for production use

or instead it is alpha/beta is welcomed by the interviewed developers. This

way, developers aiming for stability are able to know which features to be wary

of. This recommendation can also be the starting step for further investiga-

tion on automatically determining the stability status of a feature through e.g.,

repository mining techniques or unstructured data mining of bug trackers.

26Miredot — http://www.miredot.com/

43

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 43



6.2.7. Lookout for Young Web APIs

An observation recurring from nearly all the developer interviews warns

client developers about how young web APIs tend to be very change-prone.

This should be taken into account by client developers who are advised to, from

early on, implement good separation of concerns between web API interaction

and the core of the client. Web API age is another factor which may influence

web API/service quality and it should be further investigated for inclusion in

potential future service quality metrics.

6.2.8. Version Accessibility

Ideally, a client will provide some degree of backwards compatibility. How-

ever, when that is not done, the client developers should make sure all previous

versions of their client are as easily accessible. While not an ideal situation

(e.g. an end user will require different clients to control servers with different

versions as is the case for XBMC) it is still a better practice than simply discon-

tinuing the older versions. In practice, Google for example provides a setting

on the Android platform which automatically updates all applications to the

latest version. Should this be used, and it is indeed important as in some cases

using outdated versions represent a security risk, end users will be left with an

application which is no longer compatible with an older web API. This calls

for either easier switching to older versions of the same client or a better ef-

fort at not pushing backwards incompatible changes in a single e.g. Android

application.

6.2.9. Robustness Against Changing Web APIs

Of particular use to client developers who integrate with web APIs is ensur-

ing their client application is as robust as possible when web API providers push

unexpected changes. In another paper [24] we have investigated mechanisms to

support this and provide preliminary results of how mutation analysis can be

used for this purpose.

To summarize, web service APIs drive the evolution of software. Clients

are forced to update by the API providers which contrasts with the statically

44

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

44 TUD-SERG-2014-017



linked libraries. However, in order to ease that evolution, we think the nine

aforementioned guidelines should be taken into account.

6.3. Threats to validity

We now identify factors that may jeopardize the validity of our results and

the actions we have taken or intend to take.

External validity. While we have quite some variety in terms of (1) developers

working on web APIs, (2) API providers, as well as in (3) API client projects,

it remains to be seen whether our observations still hold for (a) API providers

who charge money for usage of the API, as they might be more reluctant when

deprecating older version of the API which in turn might imply losing customers,

and (b) for closed source API clients, whose developers might be inclined to

upgrade quicker in order to satisfy their (paying) customer base with the latest

security fixes and/or features. In future work, we will expand our investigation

in this direction.

With regard to the generalizability of the end-to-end analysis, we studied

two projects which are vastly different in terms of implementation technology,

software architecture and versioning principles. They also exhibited differences

in concerns with regard to backward compatibility. We acknowledge that two

case studies systems form a limited basis to draw conclusions from and as such

we will investigate more systems in future work.

Construct validity. We have measured the impact of evolving APIs on clients

by investigating the code churn. While code churn is very valuable, it does not

sufficiently take into account the relative complexity, nor the time needed to

perform change tasks. In future work, through developer interviews we will

investigate the actual effort of these maintenance tasks.

Reliability validity. There might be bias in the manual interpretation of the

impact of change. To minimize bias the lead author who performed the investi-

gation, thoroughly discussed all findings with the co-authors. Also a potential

threat to reliability validity with the interviews is the existence of potential

45

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 45



inaccurate memories, misunderstandings, and miscommunications and misrep-

resentations. We attempt to mitigate this threat by recording and transcribing

all the interviews.

7. Related work

Maintenance of service-based systems. Lewis and Smith were among the

first to recognize that maintenance of service-based software systems is differ-

ent from maintaining other types of software systems [25]. In particular, they

highlight the importance of impact analysis for service providers as they have

to consider a potentially unknown set of users.

In order to help mitigate the issues highlighted by Lewis and Smith, Espinha

et al. address this lack of knowledge regarding the user-base of services by

tracking how different users use a service-based system in different ways [20].

Through collecting runtime data of a web service-based system, the authors are

then able to plot an overview of which services depend on which other services,

as well as being able to do so for a specific period of time as well as for a specific

user.

Fokaefs et al [26] also recognize the added challenges of web service evolution.

The authors devised and evaluated VTracker, an algorithm for XML differenc-

ing, and based on its results analyze what actually changes between subsequent

versions of web services and what is the effect on the maintainability of their

clients. While very useful for XML-based services, some of the web APIs we

analyzed such as Twitter or Facebook make use of JSON and have no equivalent

of the WSDL document available.

Also Fokaefs and Stroulia [27] expanded on their previous work and defined

a classification for the different types of changes which afflict different versions

of web service interfaces through the usage of a tool (WSDarwin). This tool

was also extended in further work [28] by the same authors where it is then able

to automatically adapt clients to changed service interfaces.

Pautasso and Wilde study the different facets along which web services can

46

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

46 TUD-SERG-2014-017



be described as “loosely coupled” and analyze different implementation tech-

nologies [11].

Maleshkova et al. study the state of the practice on what concerns web API

implementation and amongst the findings, discovered that the majority of the

web APIs are actually underspecified [23].

Evolution of APIs. Robillard and DeLine conducted a large-scale investi-

gation among 440 professional developers at Microsoft to establish what makes

APIs hard to learn [29]. Their observations are that the most severe obstacles

developers face pertain to the documentation and other learning resources.

Dig and Johnson try to understand the nature of changes to APIs [7]. From

the five case studies that they analyzed in detail, they found that over 80% of

the API-breaking changes can be classified as being refactorings.

Dagenais and Robillard present SemDiff, tool-support for recommending

API-method replacements for methods that were broken during the evolution

of the API [30].

McDonnell et al. through a study on API stability and adoption in the

Android ecosystem have found that, despite the added benefits of newer versions

of APIs, developers tend to be slow in adopting the newer versions [31].

An interesting non-peer reviewed work in this field is a survey [10] conducted

on the pains of web API integration which presents many complaints from web

API client developers.

Daigneau focuses specifically on the brittleness of web APIs in his book on

service design patterns [32]. He proposes the Single Message Argument pattern,

which suggests to refrain from creating signatures with long parameter lists.

Daigneau further states that long parameter lists “[...] signal the underlying

framework to impose a strict ordering of parameters which, in turn, increases

client-service coupling and makes it more difficult to evolve the client and service

at different rates.”

Mileva et al. [33] present an interesting analysis on the usage of different

versions of statically linked APIs. As an example they show that the the 3.8.1

47

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 47



version of the junit library is more popular than the latest 4.4 version. They

explain this usage trend through the fact that there has been a big API change

between 3.x and 4.x and that developers were reporting “lots of work”. The

choice to remain with an older version of an API that developers have when

working with statically linked libraries is in most cases not present when working

with web APIs.

Romano and Pinzger [34], through the analysis of web service WSDL files,

make use of fine-grained changes applied to service interfaces as an attempt to

measure how often these changes happen and what types of changes happen

between versions of services.

Kaminski et al [35], mindful of the pains of web service evolution, propose the

“chain of adapters” technique as a means for unmanaged web service evolution

where the older web service interfaces are pushed into different namespaces and

a translation layer translates and forwards the calls as necessary to the older

versions. This approach is also supported by an Eclipse plugin which facilitates

the use of this technique on WSDL-based web services.

The work of Xing and Stroulia [36] also supports the task of web service evo-

lution with resort to a tool (Diff-CatchUp) which through the use of heuristics,

attempts to automatically suggest replacement APIs for such APIs which broke

backwards compatibility.

Web APIs. Ly et al. [37] note that despite the availability of a number of

best practices, e.g., REST principles, and a plethora of software components

and technologies, discovering and exploiting Web APIs requires a significant

amount of manual labour. Notably developers need to devote efforts to inter-

acting with general purpose search engines, filtering a considerable number of

irrelevant results, browsing some of the results obtained and eventually reading

and interpreting the Web pages documenting the technical details of the APIs

in order to develop custom tailored clients. In this light, Ly et al. attempt to

automate the extraction of relevant technical information from web pages.

48

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

48 TUD-SERG-2014-017



8. Conclusion

In this paper we perform an exploratory study regarding the impact of web

service API evolution. Our contributions are:

• An interview with six professional developers to ask them about their

experiences with web APIs that evolved.

• A study into the evolution policies of four high-profile web APIs (Google

Maps, Twitter, Facebook and Netflix).

• An investigation of ten open source clients integrating the aforementioned

four web APIs to see the impact of web API evolution on source code.

• A list of nine recommendations for developers of web APIs and client

applications integrating web APIs.

• A study on the code impact on both server and client-side code for both

VirtualBox and XBMC.

Our findings suggest that web APIs still fall short of an industry standard.

Different web API providers adhere to different practices and what would seem

like essential features (e.g. versioning), are in fact neglected (e.g. by Facebook).

Our study also stresses the importance of developing clients for change on

what concerns web API integration. The promise of loosely coupled web ser-

vice APIs comes, in fact, at the cost of having changes forced upon the client

developers. Should developers fail to implement proper separation of concerns,

switching to different web API providers may also prove more difficult than what

“loosely coupled” would otherwise suggest. While some web API providers may

allow developers to use their old web API versions for extended periods of time,

in general, all web API providers will sooner or later impose changes on their

clients.

From our two end-to-end case studies we have also found that still some web

API providers consider their web API just as any other statically linked API.

Changes are pushed regularly and clients will also resort to per-version client

releases which in turn implies requiring different versions of the client when

communicating with different versions of the web API.

49

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 49



From these observations stems our claim that while technology-wise web

APIs seem to offer a “loosely coupled” way of connecting web API provider and

client, organizationally web API provider and client are “strongly tied” when

the web API starts to evolve as in most cases the client is forced to “co-evolve”.

As the evolution is indeed inevitable, we also found that the different evo-

lution policies impact the satisfaction of web API client developers. To help

mitigate this problem, we provide a list of recommendations such as not chang-

ing the API too often and performing blackout tests.

Future work. We aim to extend our investigation to a wider range of API

providers and a larger selection of projects using these APIs. Another aspect

we want to consider in future work is to make use of a change distilling tool

such as proposed by Fluri et Gall [38] and categorize the different types of

changes as to be able to determine the nature of each change as well as to

quantify its relative impact. Additionally, we aim to analyze whether web service

API changes impact open-source and closed-source applications differently. Do

these closed-source projects apply more urgency to their changes due to their

paying customers? While the proposed recommendations stem from having

been successful in real-world projects, an interesting aspect which we would like

to further investigate is under which conditions these recommendations may in

fact not be applicable or may require adjustments.

Finally, we also want to investigate whether the closed-source API providers’

policies differ from those of open-source APIs where client developers have no

direct say in the evolution process.

Acknowledgments

The authors would like to acknowledge NWO for sponsoring this research

through the Jacquard ScaleItUp project.

References

[1] C. Burns, J. Ferreira, T. Hellmann, F. Maurer, Usable results from the field of api
usability: A systematic mapping and further analysis, in: Symposium on Visual

50

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

50 TUD-SERG-2014-017



Languages and Human-Centric Computing (VL/HCC), IEEE, 2012, pp. 179–182.
doi:10.1109/VLHCC.2012.6344511.

[2] S. Raemaekers, A. van Deursen, J. Visser, Measuring software library stability
through historical version analysis, in: Proceedings of the International Confer-
ence on Software Maintenance (ICSM), IEEE CS, 2012, pp. 378–387.

[3] B. Dagenais, M. P. Robillard, Recommending adaptive changes for framework
evolution, in: Proceedings of the International Conference on Software Engineer-
ing (ICSE), ACM, 2008, pp. 481–490.

[4] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, S. Weerawarana, Unrav-
eling the web services web: an introduction to SOAP, WSDL, and UDDI, Internet
Computing 6 (2) (2002) 86–93.

[5] S. Vinoski, Restful web services development checklist, IEEE Internet Computing
12 (6) (2008) 96–95.

[6] M. M. Lehman, L. A. Belady, Program Evolution: Processes of Software Change,
Academic Press, 1985.

[7] D. Dig, R. E. Johnson, How do APIs evolve? A story of refactoring, Journal of
Software Maintenance 18 (2) (2006) 83–107.

[8] M. Laitinen, Object-oriented application frameworks: Problems and perspectives,
Wiley, 1999, Ch. Framework maintenance: Vendor viewpoint, p. 9.

[9] R. Lämmel, E. Pek, J. Starek, Large-scale, AST-based API-usage analysis of open-
source Java projects, in: Proceedings of the 2011 ACM Symposium on Applied
Computing (SAC), ACM, 2011, pp. 1317–1324.

[10] S. Blank (YourTrove), Api integration pain survey results, website last visited
September 27, 2013 (2011).
URL https://www.yourtrove.com/blog/2011/08/11/

api-integration-pain-survey-results/

[11] C. Pautasso, E. Wilde, Why is the web loosely coupled? a multi-faceted metric for
service design, in: Proceedings of the International World Wide Web Conference
(IW3C2), ACM, 2009, pp. 911–920.

[12] T. Espinha, A. Zaidman, H.-G. Gross, Web api growing pains: Stories from
client developers and their code, in: Proc. Conference Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), IEEE CS, 2014, pp.
84–93.

[13] G. Alonso, F. Casati, H. Kuno, V. Machiraju, Web Services: Concepts, Architec-
tures and Applications, 1st Edition, Springer Publishing Company, Incorporated,
2010.

[14] C. Pautasso, E. Wilde, REST: From Research to Practice, Springer, 2011.

51

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 51



[15] M. Maleshkova, C. Pedrinaci, J. Domingue, Supporting the creation of semantic
RESTful service descriptions, in: Proceedings of the 3rd International SMR2 2009
Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web,
collocated with the 8th International Semantic Web Conference (ISWC), 2009,
http://ceur-ws.org/Vol-525/.

[16] E. Babbie, The practice of social research, 11th edn., Wadsworth Belmont, 2007.

[17] J. W. Creswell, Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches, SAGE Publications, 2009.

[18] J. C. Munson, S. G. Elbaum, Code churn: A measure for estimating the im-
pact of code change, in: Proceedings of the International Conference on Software
Maintenance (ICSM), IEEE CS, 1998, pp. 24–33.

[19] T. Zimmermann, A. Zeller, P. Weissgerber, S. Diehl, Mining version histories to
guide software changes, IEEE Transactions on Software Engineering 31 (6) (2005)
429–445.

[20] T. Espinha, A. Zaidman, H.-G. Gross, Understanding the interactions between
users and versions in multi-tenant systems, in: Proceedings of the International
Workshop on Principles of Software Evolution (IWPSE), ACM, 2013, pp. 53–62.

[21] B. Dudney, J. Krozak, K. Wittkopf, S. Asbury, D. Osborne, J2EE Antipatterns,
1st Edition, John Wiley & Sons, Inc., New York, NY, USA, 2002.

[22] T. Espinha, A. Zaidman, H.-G. Gross, Understanding the runtime topology of
service-oriented systems, in: Proc. of the Working Conf. on Reverse Engineering
(WCRE), IEEE CS, 2012, pp. 187–196.

[23] M. Maleshkova, C. Pedrinaci, J. Domingue, Investigating web APIs on the world
wide web, in: Proc. European Conf. on Web Services (ECOWS), IEEE CS, 2010,
pp. 107–114.

[24] T. Espinha, A. Zaidman, H.-G. Gross, Web api fragility: How robust is your
web api client, Tech. Rep. TUD-SERG-2014-009, Delft University of Technology
(2014).
URL http://arxiv.org/abs/1407.4266

[25] G. Lewis, D. Smith, Service-oriented architecture and its implications for software
maintenance and evolution, in: Proceedings Frontiers of Software Maintenance,
IEEE CS, 2008, pp. 1–10.

[26] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, A. Lau, An empirical study
on web service evolution, in: Web Services (ICWS), 2011 IEEE International
Conference on, 2011, pp. 49–56.

[27] M. Fokaefs, E. Stroulia, Wsdarwin: Studying the evolution of web service systems,
in: A. Bouguettaya, Q. Z. Sheng, F. Daniel (Eds.), Advanced Web Services,
Springer New York, 2014, pp. 199–223.

[28] M. Fokaefs, E. Stroulia, Wsdarwin: Automatic web service client adaptation,
in: Proceedings of the 2012 Conference of the Center for Advanced Studies on
Collaborative Research, CASCON ’12, IBM Corp., Riverton, NJ, USA, 2012, pp.
176–191.

52

Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

52 TUD-SERG-2014-017



[29] M. P. Robillard, R. DeLine, A field study of API learning obstacles, Empirical
Software Engineering 16 (6) (2011) 703–732.

[30] B. Dagenais, M. P. Robillard, Semdiff: Analysis and recommendation support
for API evolution, in: Proceedings of the International Conference on Software
Engineering (ICSE), IEEE, 2009, pp. 599–602.

[31] T. McDonnell, B. Ray, M. Kim, An empirical study of API stability and adoption
in the Android ecosystem, in: Proceedings of the International Conference on
Software Maintenance (ICSM), IEEE CS, 2013, pp. 70–79.

[32] R. Daigneau, Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and RESTful Web Services, Addison-Wesley, 2011.

[33] Y. M. Mileva, V. Dallmeier, M. Burger, A. Zeller, Mining trends of library usage,
in: Proceedings of the Joint International and Annual ERCIM Workshops on
Principles of Software Evolution (IWPSE) and Software Evolution (Evol) Work-
shops, ACM, 2009, pp. 57–62.

[34] D. Romano, M. Pinzger, Analyzing the evolution of web services using fine-grained
changes, in: Proceedings of the 2012 IEEE 19th International Conference on Web
Services, ICWS ’12, IEEE Computer Society, Washington, DC, USA, 2012, pp.
392–399.

[35] P. Kaminski, M. Litoiu, H. Müller, A design technique for evolving web services,
in: Proceedings of the 2006 Conference of the Center for Advanced Studies on
Collaborative Research, CASCON ’06, IBM Corp., 2006.

[36] Z. Xing, E. Stroulia, Api-evolution support with diff-catchup, Software Engineer-
ing, IEEE Transactions on 33 (12) (2007) 818–836.

[37] P. Ly, C. Pedrinaci, J. Domingue, Automated information extraction from web
APIs documentation, in: X. Wang, I. Cruz, A. Delis, G. Huang (Eds.), Web
Information Systems Engineering (WISE), Vol. 7651 of LNCS, Springer Berlin
Heidelberg, 2012, pp. 497–511. doi:10.1007/978-3-642-35063-4_36.

[38] B. Fluri, H. C. Gall, Classifying change types for qualifying change couplings, in:
Program Comprehension, 2006. ICPC 2006. 14th IEEE International Conference
on, 2006, pp. 35–45.

53

SERG Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied

TUD-SERG-2014-017 53



Espinha, Zaidman & Gross – Web API Growing Pains: Loosely Coupled yet Strongly Tied SERG

54 TUD-SERG-2014-017





TUD-SERG-2014-017
ISSN 1872-5392 SERG


