
HAL Id: hal-01245555
https://inria.hal.science/hal-01245555

Submitted on 17 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust and reliable reconfiguration of cloud applications
Francisco Durán, Gwen Salaün

To cite this version:
Francisco Durán, Gwen Salaün. Robust and reliable reconfiguration of cloud applications. Journal of
Systems and Software, 2016, 122, pp.524-537. �10.1016/j.jss.2015.09.020�. �hal-01245555�

https://inria.hal.science/hal-01245555
https://hal.archives-ouvertes.fr


Robust and Reliable Reconfiguration of Cloud

Applications

Francisco Durána, Gwen Salaünb

aUniversity of Málaga, Spain
bUniversity of Grenoble Alpes, France

Abstract

Cloud applications involve a set of interconnected software components run-
ning on remote virtual machines. The deployment and dynamic reconfigu-
ration of cloud applications, involving the addition/removal of virtual ma-
chines and components hosted on these virtual machines, are error-prone
tasks. They must preserve the application consistency and respect impor-
tant architectural invariants related to software dependencies. In this paper,
we introduce a protocol for automating these reconfiguration tasks. In order
to ensure its correctness and robustness, we implement the protocol with the
support of the Maude system for rapid prototyping purposes, and we verify
it with its formal analysis tools.

Key words: Cloud Computing, Dynamic Reconfiguration, Rewriting Logic,
Model Checking

1. Introduction

Cloud computing aims at delivering resources and software applications
on demand over a network, leveraging hosting platforms based on virtual-
ization, and promoting a new software licensing and billing model based on
the pay-per-use concept. For service providers, this means the opportunity
to develop, deploy, and possibly sell cloud applications everywhere on earth
without investing in expensive IT infrastructure. Cloud computing is at the
crossroads of several recent computing paradigms such as grid computing,

Email addresses: duran@lcc.uma.es (Francisco Durán), gwen.salaun@imag.fr
(Gwen Salaün)

Preprint submitted to Journal of Systems and Software November 24, 2015



peer-to-peer architectures, autonomic computing, utility computing, etc. It
allows users to benefit from all these technologies without requiring a deep
expertise in each of them. In particular, autonomic computing is conve-
nient for automating specific tasks such as the on-demand provisioning of
resources or the elasticity of the application for facing peak-load capacity
surge. Automation reduces user involvement, which speeds up the process
and minimizes the possibility of human errors.

Many private and public clouds have emerged during the last years, of-
fering to users a range of different services at SaaS, PaaS and IaaS1 levels.
In general, a cloud application may be seen as a distributed application com-
posed of a set of virtual machines (VMs) running a set of interconnected
software components. Such applications benefit from several services pro-
vided in the cloud, such as database storage, virtual machine cloning, or
memory ballooning. To deploy their applications, cloud users need first to
provision and instantiate some virtual machines and indicate the software
components to be run on them. Once these applications are deployed, some
reconfiguration operations may be required, such as instantiating new VMs,
dynamically replicating some of them for load balancing purposes (elastic-
ity), destroying or replacing VMs, etc. However, setting up, monitoring,
and reconfiguring distributed applications in the cloud are complicated tasks
because software involves many dependencies that oblige any change to be
made in a certain order for preserving application consistency. Moreover,
some of these tasks can be executed in parallel for execution time and per-
formance optimization, but again this cannot easily be achieved manually.
Thus, there is a need for robust protocols that fully automate reconfiguration
tasks on running applications distributed across several VMs. The design of
these reconfiguration mechanisms is complicated not only due to the high
level of parallelism inherent to such applications, but also because they must
preserve important architectural invariants at each step of the protocol appli-
cation, e.g., a started component cannot be connected to (and then possibly
using) a stopped component. Failures can also occur and should be properly
treated.

In this paper, we present a fully automated, decentralized, robust, and
reliable protocol which aims at reconfiguring at runtime cloud applications

1The different types of Cloud Computing services are commonly referred to as Software
as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS).

2



consisting of a set of interconnected components hosted on remote VMs. We
consider several kinds of reconfiguration operations, namely addition and
suppression of bindings, components, and VMs. When configuring an ap-
plication, the protocol is able to instantiate VMs, effectively connect the
components as required, and start these components respecting their func-
tional dependencies. When removing parts of an application, the protocol
needs to stop and disconnect components in a certain order for preserving
the architecture consistency. For instance, since we never want a started
component to be connected to a stopped component, in order to stop a com-
ponent, we must previously ask their client components (components bound
to that component) to unbind, and we can stop the component only when
they have all done so. This supposes a backward-then-forward propagation of
messages across VMs composing the application, along bindings connecting
components on mandatory required services.

The protocol presented in this article supports external failures, which are
failures of the execution environment (i.e., the virtual and physical infras-
tructure) and the management system itself. This article focuses on failures
on VMs—we will use failure or VM failure indifferently in the remainder of
this article. Applicative failures, which are specific to a given application, or
failures of the cloud manager are not supported. Moreover, we only consider
permanent failures: if a transitory failure is detected, it will be treated as a
permanent failure.

Due to the high degree of parallelism inherent to the applications to be
reconfigured, the design of these reconfiguration mechanisms is very com-
plicated and would have not been possible without the support of formal
techniques and tools. Particularly, we have implemented the reconfiguration
protocol using the rewriting-logic-based Maude language [10]. We have cho-
sen Maude because it relies on a declarative style, which simplifies program
writing and rapid prototyping. Maude is also very expressive for develop-
ing concurrent programs involving nondeterministic computations. Another
advantage of the Maude system is that it is equipped with several formal
analysis techniques and tools, which turn out to be very useful when design-
ing highly parallel, and therefore error-prone, protocols. As for verification
of the protocol, we used the Maude interpreter and its reachability analysis
tool in early stages for correcting simple errors. Then, we verified a number
of crucial properties on the protocol with Maude’s LTL model checker, which
helped us to detect and correct subtle bugs in boundary cases that would
have been very difficult to identify otherwise.

3



The main contributions of this work are the following:

• We propose and design a robust protocol for runtime reconfiguration
of cloud applications consisting of interconnected components hosted
on several VMs.

• We implement the protocol using Maude, which results in a formal
specification giving a precise rewriting logic semantics to our reconfig-
uration protocol.

• We validate our protocol through extensive application on a large num-
ber of component assemblies and reconfiguration scenarios using Maude
verification tools.

A first version of this article was published in [11] and is extended here
as follows:

• We have provided better and more extended descriptions of the problem
and the solution, as well as a better contextualization of it;

• It is the first time that a description of the Maude prototypical im-
plementation of our protocol, as well as its verification using Maude’s
analysis tools, is published;2

• The algorithm has been extended so that now it handles VM error
situations, that is, if a VM fails, the algorithm is able to restore a state
in which invariants are re-established;

• The discussion on related work has been updated and enhanced to give
a larger and more up to date view and comparison with existing results.

The paper is structured as follows. We present the reconfiguration mech-
anisms in Section 2, and its Maude implementation and verification in Sec-
tion 3. We review related work in Section 4 and we conclude in Section 5.

2The complete Maude implementation and some results on its accompanying analysis
are available on the web at [1].

4



2. Reconfiguration Protocol

The reconfiguration protocol is presented in this section. Section 2.1
presents first the application model on which the algorithm applies, its main
features in Section 2.2, and the protocol participants in Section 2.3. Sec-
tions 2.4 and 2.5 present the protocol mechanisms by describing, respec-
tively, the activities carried out by the cloud and VM managers. Section 2.6
introduces the part of the protocol dedicated to failure recovery. We finally
illustrate how the protocol works in practice through some sample scenarios
of reconfiguration in Section 2.7.

2.1. Application Model

For the sake of comprehension, we abstract away from several implemen-
tation details such as IP addresses or configuration parameters. Thus, an
application model consists of a set of VMs. From a functional point of view,
these VMs do not play any role per se, but each of them hosts a set of com-
ponents, where resides the functional part of the application. A component
can be in one of these two states: started and stopped. A component can
either provide or require services. This is symbolized using ports: an import
represents a service required by a component and an export represents a ser-
vice provided by a component. An import can be optional or mandatory. An
import is satisfied when it is connected to a matching export and the compo-
nent offering that export is started. Such a connection is called a binding. A
component can import a service from a component hosted on the same VM
(local binding) or hosted on another VM (remote binding). A component can
be started, and then be fully operational, when all its mandatory imports are
satisfied. A component can be fully operational even if its optional imports
are not satisfied.

We will use as running example a typical three-tier Web application (Fig-
ure 1). Although this is a simple example, it shows several kinds of depen-
dencies and allows us to illustrate our algorithm on interesting cases in a
reasonable amount of space. VM1 hosts two components: a front-end Web
server (Apache) and a profiling component. VM2 hosts an application server
(Tomcat) and an object cache component. VM3 corresponds to the database
management system (MySQL). These components are connected using local
or remote bindings. These bindings can involve optional imports (o in the
figure) or mandatory imports (m).

5



Figure 1: Example: A Web Application Model

2.2. Protocol Main Features

Our reconfiguration protocol exhibits four main important design fea-
tures, namely, it is fully automated, decentralized, robust, and reliable.

Each VM is equipped with a VM manager in charge of automating the
reconfiguration tasks at the VM level.3 All VM managers work without any
human intervention. A cloud manager (CM) posts reconfiguration operations
that can be given by a cloud user or encoded into a scripting language.
Thus, the CM does not necessarily require the presence of a human being for
interacting with the running system and application.

VM managers are in charge of starting/stopping their own components
and no centralized manager is used for that purpose. The protocol is also
loosely-coupled because each VM manager does not have a global view of the
current state of the application and particularly of the other VMs. Yet the
VM managers need to exchange information in order to connect bindings on
remote components or to let certain components know that other (partner)
components have started or stopped. The only way to exchange necessary
information for the component start-up/shutdown is to interact via asyn-
chronous message passing. Each VM is equipped with two FIFO buffers,
one for incoming messages and one for outgoing messages. VMs interact in
a point-to-point fashion (no broadcast or multi-way communication). This
solution is standard in distributed systems, and avoids the use of bottleneck

3We distinguish in the rest of this paper a VM, which is a software implementation of
a physical machine, and a VM manager, which is the piece of software embedded on a VM
in charge of applying the reconfiguration tasks on that VM.

6



centralized servers or communication media (e.g., a publish-subscribe mes-
saging system [2]), which limit the parallelism induced in the distributed
system by transforming it somehow into a centralized one.

The protocol is robust in the sense that, during its application, some
important architectural invariants are preserved, e.g., all mandatory imports
of a started component are satisfied (i.e., bound to started components).
These invariants are crucial because they ensure that component assemblies
are well-formed. Therefore, they must be preserved during the whole lifetime
of the application and at any step of the reconfiguration protocol execution.

This protocol is reliable because it is able to detect VM and network
failures occurring during the reconfiguration process. When such a failure
occurs, the protocol informs the remaining VMs of what has happened to
make the system restore a consistent state. The protocol supports multiple
failures and always succeeds in restoring consistency of the application in
presence of a finite number of failures.

It is worth observing that when a VM fails, some invariants may tem-
porarily be unsatisfied. Upon the occurrence of a failure, the algorithm pro-
ceeds deactivating the minimum number of components so that the invariants
are eventually re-established (see Sections 2.6 and 3.2).

2.3. Architecture

The reconfiguration protocol involves a CM and a set of VM managers.
The CM guides the application reconfiguration by instantiating/destroying
VMs and requesting the addition/removal of components/bindings. Each
VM in the distributed application is equipped with a VM manager that
is in charge of (dis)connecting bindings and starting/stopping components
upon VM instantiation/destruction operations posted by the CM. Commu-
nications between participants (CMs and VM managers) are achieved asyn-
chronously via FIFO buffers. When a participant needs to post a message, it
puts that message in its output buffer. When it wants to read a message, it
takes the oldest one in its input buffer. Messages are transferred at any time
from an output buffer to its addressee’s input buffer. Buffers are unbounded,
but the protocol does not involve looping tasks that would make the system
infinitely send messages to buffers.

Figure 2 depicts a sample system with a CM and two VMs, and shows how
they exchange messages through their buffers (dashed lines). More precisely,
when the CM, for instance, needs to send an output message to VM1, it
first adds it to its output buffer. The message is then transferred from CM’s

7



output buffer to VM1’s input buffer. The VM1 manager can finally consume
this message from its input buffer.

Figure 2: Architecture

2.4. Cloud Manager’s Part

The CM submits reconfiguration operations to the running application
and keeps track of the activation state of the deployed VMs and components.
We consider the following reconfiguration operations:

• instantiation/destruction of a VM,

• addition/removal of a component on/from an existing VM, and

• addition/suppression of bindings.

In order to ensure a correct execution of the protocol, the CM validates
the operations before applying them, e.g., a VM is destroyed only if it was
previously instantiated, a new binding is added only if both ports exist in
the application, or a binding is added only if it does not form a cycle along
mandatory imports. Our reconfiguration mechanisms are triggered by the
execution of a sequence of such operations posted by the CM for, e.g., main-
tenance or elasticity purposes [23].

The protocol works applying up and down phases. A phase has a coarse-
grained granularity compared to atomic reconfiguration operations intro-
duced above. An up phase corresponds to a set of reconfiguration operations
dedicated to start-up operations (e.g., VM instantiation or binding addition).
When the CM instantiates a VM, it creates an image of this VM and the
VM starts executing itself. When a CM adds a set of required bindings to
the running application, it submits messages to all VMs impacted by these

8



changes, that is, all VMs hosting components involved in those bindings.
These messages come with some configuration information necessary to the
VM manager for binding purposes. In contrast, a down phase involves shut-
down operations only (e.g., VM destruction or binding removal). When the
CM decides to destroy a VM, it sends a message to that VM. A VM destruc-
tion message implies the destruction of all bindings on components hosted
on that VM. The CM also keeps track of the current activation state of all
VMs running in the system (instantiated VMs and whether they are started
or not). A VM is declared started when all components on that VM are
started; or stopped otherwise. Figure 3 summarizes the CM lifecycle where
we distinguish reconfiguration operations posted by the CM (solid lines) and
messages received from the VM managers (dashed lines).

Figure 3: Cloud Manager Lifecyle

The up/down phases are applied alternatively in sequence, the CM being
responsible for initiating a new phase. The application of these phases is
therefore completely transparent for the user. It is worth noting that the al-
ternative application of the phases by the CM implies some synchronization
points. Before starting a new phase, the cloud manager waits for ack mes-
sages from the VMs involved in the former phase. When the cloud manager
has received all these messages, it can initiate the new phase. Nonetheless,
between two phases, the protocol is fully distributed and does not work using
any centralized control. Likewise, keeping track of some information about
VMs does not impact the distributed execution of the protocol, it is similar
as logging information into a database.

We give in Figure 4 an example of scenario where first all VMs are in-
stantiated and required bindings are added (Bds corresponds to the set of

9



bindings in Figure 1). Then, we decide to remove the MySQL component for
replacing it by a new version. Finally, we add this new component (MySQL’)
on VM3 and add a binding (Bd’) connecting the Tomcat component to the
new MySQL component.

Figure 4: Web Application: Example of Reconfiguration Scenario

Figure 5 shows how the CM executes this scenario by applying successive
up and down phases.

Figure 5: Web Application: Up/Down Phases for the Reconfiguration Scenario

2.5. VM Manager’s Part

The VM manager of each VM starts its activity when the CM instantiates
its VM. A VM manager is in charge of binding, unbinding, starting, and
stopping components in its VM. In the rest of this section, we present the
two most general reconfiguration operations, namely the instantiation and
the destruction of a VM.

Binding and start-up. When a VM is instantiated, it is created with a
number of components, each of which is initially off. Figure 6 shows how
a newly instantiated VM proceeds in order to bind its ports and start its
components. After its instantiation (¶), the VM manager can immediately
start a component without imports or with optional imports only (·). If a
component involves mandatory imports, that component can only be started
when all its mandatory imports are satisfied, i.e., when all these imports
are bound to started components. When a component is started, its VM

10



manager informs the VM managers of all remote components using it by
sending component started messages (¸). If all components of a VM are
started, its VM manager sends a message to inform the CM (¹), otherwise
it starts reading messages from its input buffer (º):

• If a VM receives from the CM some binding requests (for both local
and remote bindings), the manager first establishes local bindings (¼).
Handling of remote bindings is initiated on the export side: when an
export of one of its components is involved in a binding, a VM manager
sends a message (½) with its export connection information (e.g., IP
address) to the VM hosting the other component (import side).

• If the VM receives a remote binding message, this means that an import
of one of its components is involved in a binding. Upon reception of
that message, the VM manager makes the binding effective (»).

• Every time a component started message is received, the VM manager
checks if the corresponding components can be started (·). Each VM
manager keeps the states of its partner components.

Note that the start-up process implies a propagation of started messages
along bindings across several VMs. Local bindings are handled directly by
VM managers, without additional messages with other VMs. The algorithm
checks for cycles of bindings over mandatory ports, thus ensuring the termi-
nation of the start-up process.

Figure 6: VM Manager Activity Diagram: Up Phase

Unbinding and shutdown. A VM manager is in charge of stopping some
local components, or all its components when the VM is to be destroyed

11



(Figure 7, ¶), i.e., removed from the running application. In this case, all
the components hosted on that VM need to be stopped and all bindings on
these components (connected to imports or exports) need to be removed. If
a component involved in the shutdown process does not provide any service
(there is no component connected to it), it can immediately stop, and all
outgoing bindings can be removed for these components (·). Otherwise, it
cannot stop before all components connected to it on mandatory imports
have unbound themselves. To do so, the VM manager of the VM under
destruction first sends unbind required messages to all VMs hosting compo-
nents connected to those VM’s components (¸). The VM manager of the
VM to be destroyed then collects unbind confirmed messages (¹) and stops
the corresponding components when all components using that component
on mandatory imports have stopped and unbound (º). Whenever a compo-
nent stops, an unbind confirmed message is sent (»). The VM is destroyed
and the CM informed when all components are stopped (¼).

Figure 7: VM Manager Activity Diagram: Down Phase (Destruction)

As a side effect to a VM destruction, the other VM managers can receive
messages (Figure 8, ¶) from their partner VMs. Upon reception of an unbind
required message, the VM manager either stops and unbinds some compo-
nents (·), if possible (no bindings on them or bindings on remote optional
imports only), or sends similar messages for all remote components bound
on mandatory imports to its components (º). When a VM manager stops
(and unbinds) a component (·), it may send a message to the CM indicating
that the VM is not fully operational (¸). It also sends messages to all re-
mote partner components formerly providing a service to that component, to

12



let them know that this component has been stopped/unbound (¹). Upon
reception of an unbind confirmed message, the VM manager goes to step ·.

Figure 8: VM Manager Activity Diagram: Down Phase (Side Effect)

Components bound on optional imports just need to unbind themselves,
but do not need to stop. Local bindings are handled locally by the VM
manager, but these changes can impact other remote components, and in that
case additional unbind required messages may be emitted. The component
shutdown implies a backward propagation of unbind required messages and,
when this first propagation ends (on components without exports or with
optional imports only), a second forward propagation of unbind confirmed
messages starts to let the components know that the disconnection has been
actually achieved. These propagations terminate because there is no cycle of
bindings over mandatory imports.

2.6. Failure Recovery

Many different kinds of infrastructure failures may affect the normal op-
eration of cloud applications, going from those due to human errors or spikes
on customer demands to security breaches. Any of the reconfiguration opera-
tions considered here may fail due to many different reasons, from a hardware
failure to a credentials failure. From all these possible failures, we may ab-
stract from the reasons and focus on the consequences. In this work we focus
on VM failure.

We assume that a VM may fail at any time, and that eventually the
CM detects such a failure (by polling, heartbeat, or some other method)
and reacts to lead the application under its control to a consistent state.
Specifically, when a failure is detected, the CM performs the following tasks:

• The CM first updates the model of the active system by removing the
failed VM;

13



• It also purges its buffers, removing all messages coming from or ad-
dressed to the failed VM;

• Finally, the CM alerts the impacted VMs (connected to the failed VM)
of the failure sending failure alert messages.

Upon the reception of a failure alert message reporting the failure of a
neighbor VM, a VM manager performs the following tasks:

• It purges its buffers;

• It changes the current states of its local components by unbinding and
stopping the impacted components; and

• It sends shutdown component messages to all VM managers of VMs
containing components connected to its shutdown components.

When a VM manager receives a shutdown component message resulting
of the failure propagation, it stops the impacted local component and prop-
agates (locally and remotely) this shutdown. Notice that the propagation of
shutdown component messages goes in one direction, and since only active
components may be turned off, the process eventually terminates. It is worth
noting that multiple VM failures may occur, this can be due to failures of
different instances of a single VM or failures of different VMs. A failure can
also take place when a VM is already handling a failure involving another
VM (cascading failures). If the number of failures is finite and if there is no
cycle of bindings through mandatory imports, the reconfiguration protocol
always succeed in restoring the application consistency. In the worst case,
all components are stopped. In Sections 3.2 and 3.3, we will show how this
process has been verified, and how after an instability period in which certain
invariants may be violated, the system eventually reaches a state in which
they are again satisfied.

2.7. Examples of Reconfiguration Scenarios

We show in this section how the protocol works on simple reconfiguration
scenarios for the Web application presented in Figure 1. Let us assume that
the application is fully operational and all components on all VMs are started
(end of the first up phase in Figure 5). A new version of the MySQL database
management system is available and we decide to upgrade that component
to this new version. Accordingly, the cloud manager initiates a down phase

14



(middle part of Figure 5) characterized by an emission of a remove message
to VM3. We show in Figure 9 a Message Sequence Chart (MSC) overviewing
the interactions and behaviors of all participants (CM and VM managers)
for this specific scenario. It is worth noting that we do not focus on the data
storage and migration here (not the goal of the protocol), which should be
handled by the designer if needed.

Upon reception of the remove component message, VM3 sends an unbind
required message to VM2 requesting to unbind the Tomcat component from
the MySQL component. When VM2 receives this message, it cannot un-
bind immediately because Tomcat is used by a remote component (Apache),
therefore it sends too an unbind required message to VM1. Upon reception
of that message, the VM1 manager stops the Apache component, because no
other component is connected to it, and then unbinds the Apache component
from the Tomcat component. VM1 sends a confirmation message to VM2
indicating that the disconnection has been achieved. VM1 also sends a VM
stopped message to the CM indicating that its components are not started
anymore. When VM2 receives the unbind confirmed message, its manager
stops Tomcat and unbinds it from MySQL. A confirmation is sent from VM2
to VM3 and a VM stopped message is sent to the CM. Once VM3 receives
the confirmation message, its manager stops the MySQL component, and
sends an acknowledgement message to the CM indicating that the VM is
stopped too. Note that stopping Tomcat and Apache is required to preserve
architectural invariants: a started component cannot be connected to a stop
component.

After the removal of MySQL, the application is in a situation where com-
ponents Apache and Tomcat are off and components Profiling and Object
Cache are on.

In order to restore a fully operational application, let us now consider
an up scenario (right-hand side of Figure 5) where the CM manager adds
a new version of the MySQL component on VM3 (add message) and a new
binding between the Tomcat component and the new MySQL component.
We show in Figure 10 the interactions and actions involved in this scenario.
VM3 can start the MySQL’ component immediately because this component
does not require any service from other components (no imports). VM3
knows that VM2 needs to connect its component to the MySQL’ component,
therefore the VM3 manager posts a send export message with the connection
information to VM2. Upon reception, the VM2 manager can connect both
components. The VM3 manager also indicates to VM2 that its MySQL’

15



Figure 9: MySQL Removal Scenario

component has started and to the CM that VM3 is started. Upon reception
of the send export message, the VM2 manager starts the Tomcat component.
VM2 sends a send export message and a started message to VM1, because the
VM2 manager knows the dependency between the Apache component and
the Tomcat component. VM2 also informs the CM that VM2 is started. The
VM1 manager finally binds Apache to Tomcat, starts the Apache component,
and informs the CM that VM1 is started too. Thus, the system is back to
operational and all components are active again. Note that acknowledgement
messages are not systematically required. They are useful in some specific
cases, e.g., when a component (import side) expects its partner (export side)
to start.

Finally, imagine that a failure of VM3 occurs. Figure 11 details this sce-
nario. First the CM detects this failure, updates the current model of the
application, purges its buffers, and sends a failure alert message to VM2.
Upon reception of this message, the VM2 manager purges its buffers and
restores its local consistency by stopping and unbinding the Tomcat compo-
nent. Then, it sends a shutdown component message to VM1. Upon reception
of this message, the VM1 manager stops and unbinds the Apache component.
Both VM managers also send messages to the CM to let it know that they

16



Figure 10: MySQL’ Addition Scenario

are no longer started.

3. Rapid Prototyping and Verification with Maude

We chose Maude [10] for implementing the reconfiguration protocol be-
cause its declarative style facilitates program writing, and specifically, it is
very simple to specify the creation and destruction of objects, and to model
locality as objects that contain other objects. Moreover, Maude is adequate
to specify concurrent systems and is equipped with a large variety of analy-
sis tools. All sources for our Maude implementation and its verification are
available online (see [1]).

3.1. Maude Specification

In this section, we describe the Maude representation of the models and
present some of the rewrite rules so that the reader can gain a general un-
derstanding of how the different steps of the protocol are represented as
rules. Maude supports the modeling of object-based systems by providing

17



Figure 11: Failure of VM3

sorts representing the essential concepts of object (Object), object identifier
(Oid), message (Msg), and configuration (Configuration). A configuration
is a multiset of objects and messages (with the empty syntax, associative
commutative, union operator ) that represents a possible system state.

Given a class C with attributes ai, of respective types Si, the objects
of this class are then record-like structures of the form < O : C | a1:v1,
..., an:vn >, where O is the identifier of the object, and vi are the current
values of its attributes. Objects may interact via messages, which are terms
of sort Msg. We assume all messages are of the form to O : MB, where O
is the addressee of the message and MB its message body, a term of sort
MsgBody.

For the specification of the protocol, we represent a system as an ob-
ject of class CloudManager and a collection of objects of class VMManager.
CloudManager and VMManager objects communicate through asynchronous
messages. We abstract such a common behavior in BufferedClass, a class
with two attributes, in and out, both of type Queue{Msg}, representing the
in and out message buffers, respectively.

class BufferedClass | in: Queue{Msg}, out: Queue{Msg} .

Given variables O1 and O2 of sort Oid, V1 and V2 of sort BufferedClass, In
and Out of sort Queue{Msg}, and MB of sort MsgBody, the transfer of a message

18



from the output buffer of an instance of the BufferedClass class to the input
buffer of another one is modeled by the following MsgTransfer rule:

rl [MsgTransfer] :

< O1: V1 | out: (Out; to O2: MB) >

< O2: V2 | in: In >

=> < O1: V1 | out: Out >

< O2: V2 | in: (to O2: MB; In) > .

Both CloudManager and VMManager classes are declared as subclasses of
BufferedClass, thus inheriting attributes in and out. The above MsgTransfer
rule, dealing with the transmission of messages, is also applicable on them,
so that they inherit such a behavior. The CloudManager class has three addi-
tional attributes: actions, which is used to represent the scenario or sequence
of reconfiguration operations to be executed, VMs, a map that associates a
Boolean value to a virtual machine indicating whether it is started or not
(the map returns null for identifiers not in the map), and phase, the phase
(up or down) of the overall system.

class CloudManager |

actions: List{Msg}, phase: Phase,

VMs: Map{Oid, Bool}, Cs: Map{Tuple{VMId, CId}, State} .

subclass CloudManager < BufferedClass .

To illustrate the form in which a CM obtains the sequence of actions, let
us consider the Web application example shown in Figure 1. The sequence
of actions corresponding to the second part of the scenario presented in Sec-
tion 2.4 is: remove(MySQL); add(MySQL’); addBinding(Bd’), with Bd’ a
set of bindings. This scenario is interpreted as down; remove(MySQL); up;

add(MySQL’); addBinding(Bd’) by the cloud manager, which infers the
necessity of two phases for applying this scenario.

The VMManager class has a single attribute, cs, in which a VMManager

object keeps all the information required on the components, their ports and
their bindings as a collection of objects.

class VMManager | cs: Configuration .

subclass VMManager < BufferedClass .

The cs attribute keeps a collection of components, where a component is
represented as an instance of class Component, which keeps in its attributes
an import set (imps), an export set (exps), and its activation state (started).

class Component | started: Bool, imps: Set{Port}, exps: Set{Port} .

19



A port has an identifier, and can either be an import or an export. Im-
ports and exports are constructed by using the following operators:

sorts Port Ploc CImp .

ops optional mandatory : -> CImp .

op _._._ : Oid Oid Oid -> Ploc .

op imp : Oid CImp Maybe{PLoc} Bool -> Port .

op exp : Oid Map{PLoc, Bool} -> Port .

Sort CImp, of importation types, corresponds to the optional or mandatory
import property. Terms of sort PLoc, of port locations, are constructed as
triples VMId.CId.PId, with VMId a VM object identifier, CId a component
object identifier, and PId a port identifier. The first argument of constructors
imp and exp represents the identifier of the corresponding port. An import is
only connected to one export, or is not connected. The second argument of
the imp operator represents the export it is bound to. The Maybe parametric
sort can either be an element of its parameter, a port location in the case of
Map{PLoc}, or null. Thus, if the port is bound to an export, it will keep the
location, or null otherwise. The third argument of the imp operator indicates
whether the component it is connected to is active or not. An export can be
connected to zero or more imports. For each import connected to an export,
the exp operator allows us to keep its location and a Boolean value indicating
whether the remote component is active or not.

Figure 12 shows the Maude term for the Web Application Model in Fig-
ure 1. We can see a CM, three VMs with their respective components, and
how given names for VMs, components and ports, bindings are represented
as appropriate references in the ports of the components.

Once the different classes and data structures are defined, as well as the
operations for handling them, the reconfiguration algorithm itself is defined
using rewrite rules. To do so, we defined 14 rules for the start-up process,
29 rules for the shutdown process, and 3 rules for the VM failure recovery.
These rewrite rules implement the different actions that can take place in the
algorithms, e.g., for the start-up process: if a cloud manager gets an action,
such as, e.g., instantiateVM, it processes it by creating a new VMManager

object; if a component is ready to be started and all its mandatory imports
are satisfied, it becomes active; when a VM is being instantiated and all its
components are active, it finalizes its instantiation and sends an acknowl-
edgement message to the cloud manager; upon reception of an instantiation
acknowledgement message from a VM manager, the cloud manager updates
its VMs attribute; etc. We explain several of these rules below.

20



< DEP: CloudManager |

in: nil,

out: nil,

actions: nil,

VMs: ((VM1, true), (VM2, true), (VM3, true)),

Cs: (((VM1, Apache), true), ((VM1, Profiling), true),

((VM2, Tomcat), true), ((VM2, Cache), true),

((VM3, MySQL), true)),

phase: up >

< VM1: VMManager |

in: nil,

out: nil,

cs: (< Apache: Component |

imps: (imp(AI1, optional, VM1.Profiling.PE, true),

imp(AI2, mandatory, VM2.Tomcat.TE, true)),

exps: empty,

started: true >

< Profiling: Component |

imps: empty,

exps: exp(PE, (VM1.Apache.AI1, true)),

started: true >) >

< VM2: VMManager |

in: nil,

out: nil,

cs: (< Tomcat: Component |

imps: (imp(TI1, mandatory, VM2.Cache.CE, true),

imp(TI2, mandatory, VM3.MySQL.ME, true)),

exps: exp(TE, (VM1.Apache.AI2, true)),

started: true >

< Cache: Component |

imps: empty,

exps: exp(CE, (VM2.Tomcat.TI1, true)),

started: true >) >

< VM3: VMManager |

in: nil,

out: nil,

cs: < MySQL: Component |

imps: empty,

exps: exp(ME, (VM2.Tomcat.TI2, true)),

started: true > >

Figure 12: Maude Term for the Web Application Model in Figure 1

21



The ComponentActivation rule (Figure 13) corresponds to the activation
of a component when that component is startable—the isStartable auxil-
iary function checks whether all mandatory imports are satisfied. In this
case, the started attribute is changed to true, and the components con-
nected to the one being activated are updated—by direct modifications on
components in the same VM with the updateLocalActiveBoolean auxiliary
function, or by sending appropriate messages to components in different VMs
(the activationMsgs function generates these messages). To avoid wrong
activations, when a VM is initially instantiated, one token per component
(startToken) is added to the VM inner configuration. When a component is
started, its token is removed.

crl [componentActivation] :

< VMId : VMManager |

cs: (< CId: Component |

imps: Imps, exps: Exps, started: false >

startToken(CId)

Cs),

out: Out >

=> < VMId: VMManager |

cs: updateLocalActiveBoolean(CId,

< CId: Component | imps: Imps, exps: Exps, started: true >

Cs),

out: (activationMsgs(VMId, CId, Imps, Exps)) Out) >

if isStartable(Imps) .

Figure 13: Component Activation Rule

Rules addBindingsAction and addExportBindingsMsg in Figure 14 are in
charge of establishing the bindings between components (Figure 14). When
a VM manager receives an addBindigs message, it resolves all local bind-
ing requests and generates the necessary messages for remote connections
(addBindings(VMId, Cs, Bds, nil)). In rule addExportBindingsMsg, com-
ponents with bindingRequest messages update their imports with the in-
formation on the connection. In case the component is active, it sends an
activation message to the component at the other side of the connection so
that it can update its connection information.

The rule destroyVMReceive corresponds to the consumption of a destruc-
tion message by a VM manager (Figure 15). The manager generates local
tokens indicating that the VM and all the components on that VM must stop.

22



rl [addBindingsAction] :

< VMId: VMManager | cs: Cs,

in: (In to VMId: addBindings(Bds)),

out: Out,

Atts1 >

=> < VMId: VMManager | cs: getConf(addBindings(VMId, Cs, Bds, nil)),

in: In,

out: (getMsgs(addBindings(VMId, Cs, Bds, nil)) Out),

Atts1 > .

rl [addExportBindingsMsg] :

< VMId: VMManager |

cs: (< CId: Component |

imps: (imp(PId, CI, null, false), Imps),

started: B1,

Atts2 >

Cs),

in: (In

to VMId: bindingRequest(VMId.CId.PId, VMId’.CId’.PId’, B)),

out: Out,

Atts1 >

=> < VMId: VMManager |

cs: (< CId: Component |

imps: (imp(PId, CI, VMId’.CId’.PId’, B), Imps),

started: B1,

Atts2 >

Cs),

in: In,

out: (if B1

then to VMId’: activation(CId’, PId’, VMId.CId.PId)

Out

else Out

fi),

Atts1 > .

Figure 14: Rules Establishing the Bindings between Components

The manager also posts messages to all VMs hosting components connected
to its components, indicating that they must unbind them.

The occurrence of VM failures is modeled with a failure rule, which
can be applied at any time on any VM. To limit its application, there is a
failure-injector class whose instances are in charge of limiting the occurrence
of such failures (nbf and cnbf represent the number of failures to be injected

23



rl [destroyVMReceive] :

< VMId: VMManager |

cs: Cs,

out: Out,

in: In to VMId: destroy,

Atts >

=> < VMId: VMManager |

cs: (tokenDestroy(VMId)

generateTokenStopCs(Cs)

Cs),

in: In,

out: generateUnbindMsg(VMId, Cs) Out,

Atts > .

Figure 15: Destruction Message Reception Rule

and the number of failures already injected, respectively).

class FailureInjector | nbf: Int, cnbf: Int .

During the protocol execution, the failure rule applies the number of
times specified by the nbf attribute and can be fired at any time. This is
particularly convenient for validation purposes using model checking tech-
niques, because this provides an exhaustive enumeration and analysis of all
possible execution cases.

3.2. Simulation and Model Checking

Simulation is very useful for exploring an execution of a system, with
the possibility of using some strategy language to guide such execution. In
Maude, simulation relies on rewriting, which consists in successively applying
equations and rewrite rules on an initial term (an application model here).
Since systems may be rewritten in many different ways, Maude also provides
a searching command, which allows us to explore the reachable state space
up to certain depth. Thus, we may perform analysis on the reachability of
states satisfying certain conditions, e.g., for deadlock states or for final states
with non-consumed messages. It is useful for checking non-trivial situations,
for instance, we were able to check in this way that up and down phases are
confluent, in the sense that for each of the models used we reach a unique
final model, which is moreover the expected one.

Simulation and reachability analysis were very helpful for identifying and
fixing simple bugs in the first versions of the protocol. Beyond these basic

24



checks, we used Maude’s Linear Temporal Logic (LTL) explicit-state model
checker [12] for analyzing all possible executions given an application model
and a reconfiguration scenario. Maude’s model checker allows us to check
whether every possible behavior starting from a given initial model satisfies
a given LTL property. It can be used to check safety and liveness prop-
erties of rewriting systems when the set of states reachable from an initial
state is finite. Full verification of invariants in infinite-state systems can be
accomplished by verifying them on finite-state abstractions [22] of the orig-
inal infinite-state system, that is, on an appropriate quotient of the original
system whose set of reachable states is finite.

We identified several properties that the protocol must respect during any
step of its application. They helped to verify that key architectural invariants
are satisfied during the protocol execution (e.g., P1, P5, or P8 below), final
objectives are fulfilled (e.g., P2, P3, or P6), and some intermediate behavioral
constraints respected (e.g., P4 or P7). The main ones may be summarized
as follows:

P1 All mandatory imports of a started component are bound to started
components.

P2 All VMs are eventually started (resp., all components started).

P3 A VM being destroyed eventually succeeds in stopping all its compo-
nents.

P4 All reconfiguration operations submitted by the CM are always treated
by the recipient VMs.

P5 There is never a binding from a started component (import side) to a
stopped component (export side).

P6 All bindings to be added/removed are eventually added/removed.

P7 Each startToken message is eventually consumed. Similar properties are
stated for other messages.

P8 If there is a failure, then eventually a state is reached where architectural
invariants are re-established.

Note that some properties depend on the input application model / recon-
figuration scenario, e.g., we can imagine specific scenarios in which P2 is not
verified because a binding is missing for a mandatory import.

We now illustrate how such properties can be specified in LTL by using
state predicates. In order to check P1, for instance, we may define a state

25



predicate, satisfied-imports, which is true if all components have their
imports satisfied, and false otherwise. In this case we may define it by using
matching equations: if there is a port VMId.CId.PId failing the condition,
then it is false for the entire system, and it is true otherwise. Given variables
VMId, CId and PId of type Oid, PLoc? of type Maybe{PLoc}, Imps of type
Set{Port}, and Cs and Conf of type Configuration, the satisfaction of the
proposition may be defined as shown in Figure 16.

op satisfied-imports : -> Prop [ctor] .

eq { < VMId: VMManager |

cs: (< CId: Component |

imps: (imp(PId, mandatory, PLoc?, false), Imps),

started: true >

Cs) >

Conf }

|= satisfied-imports

= false .

eq { Conf } |= satisfied-imports = true [owise] .

Figure 16: Specification of the satisfied-imports predicate

State predicates are defined as operators of sort Prop, and their semantics
are given by means of equations. Notice that the imp operator takes as
third argument a value of type Maybe{PLoc}, meaning that the argument
also accepts null as value. Thus, the first equation above matches a system
if there is a component with its started attribute true and with a mandatory
import, unbound or bound to a non-active component. If there is no such
component in the system the second equation—the owise attribute makes
of it an otherwise equation—is applied, returning true when the operator is
evaluated. Given the above definition of this proposition, we can now check
an LTL formula like [] satisfied-imports.

3.3. Experimental Results

The reconfiguration algorithm has been validated on more than 300 ex-
amples (application model and reconfiguration scenario), representing typical
n-tier Web applications with different sizes and connection structures. Most
of these case studies were extracted from real cases, others present artificial
configurations covering all possible combinations (please, see [1] for a detailed
presentation of these results). Table 1 shows some experimental results for

26



the verification of properties P1-P8 (for P8, we show the results for one and
two failures), on several application models from our database. For each ap-
plication model (identified in the first column), the verification times (given
in seconds) of several reconfiguration operation sequences (‘ops’ column) are
given for each of these eight properties (last nine columns).4 Note that we
give the times to complete the verification, that is, to explore the entire state
space. Simulation times, following a single path of execution, are under 5
milliseconds in all cases. The size of the state space depends both on the size
of the application and on its complexity.

Table 1: Experimental results for properties P1-P8 on several examples

Id
Size Analysis time (secs)

VMs Cs / lbds rbds ops P1 P2 P3 P4 P5 P6 P7 P8(1) P8(2)

001 3
(1-1-0) (0-0-1) / 1
(2-0-1) (0-0-1) / 1
(0-0-1) / 0

2

4/2 < 1 < 1∗ < 1 < 1 1 2 < 1 4 5

4/1/2 < 1 < 1 < 1 < 1 1 2 < 1 4 5

4/3/4 2 2 2 2 2 4 2 10 13

002 4

(3-0-0) / 0
(2-0-2) / 0
(0-0-1) / 0
(0-0-1) (0-1-1) / 0

6

5 82 91 92 93 103 188 103 1105 2394

5/1 110 111 110 111 117 210 107 1260 5219

5/2 111 111 110 111 117 210 107 2255 5304

5/1/2 111 111 111 111 117 209 107 2590 6285

003 5

(2-0-0) / 0
(1-0-1) / 0
(1-0-2) (1-0-1) / 1
(1-0-1) / 0
(0-0-1) / 0

5

6/2 23 23∗ 24 24 29 82 25 500 1687

6/1/2 23 23∗ 24 25 29 82 25 505 2301

6/2/3 29 25∗ 28 28 32 88 28 949 4363

6/3/4 62 26∗ 64 65 74 152 71 5032 > 3h

The size of a model is described by its number of virtual machines (VMs),
number of components, ports, and local bindings in each of these VMs (Cs
/ lbds, with each line describing the components and local bindings of each
VM), and number of remote bindings (rbds). A component is represented
by a triple (MI -OI -E ), where MI, OI and E are its numbers of mandatory
imports, optional imports, and exports, respectively. Operation sequences
are given just by the number of reconfiguration operations in each successive
phase separated by slashes. A sequence 4/1/2 represents a sequence of 4
operations in an up phase (typically instantiations for each of the three VMs
plus an operation for adding the bindings), followed by 1 operation in a

4Although Maude gives times in milliseconds, to improve readability, all values were
rounded to seconds. A time < 1 indicates that the time taken by the analysis was smaller
than one second.

27



down phase (a VM destruction), and 2 more operations in a final up phase
(instantiation of a new VM and bindings addition).

The complexity of the applications, understood as how intricate are the
bindings between mandatory/optional imports and exports, is not shown in
the table, although it is clearly reflected in the numbers. Models 002 and 003
are very similar in size, but very different in their bindings. Although 003 has
a non-trivial chaining of mandatory imports, 002 has a cycle in its bindings
(with optional ports), which explains that although 003 is slightly larger,
the analysis for 002 takes more than double for simpler operation sequences.
The complexity of the up/down operations in distinct scenarios may be very
different. For instance, the destruction of a specific VM may induce many
(shutdown) operations by propagation, whereas the destruction of another
VM, e.g., a VM hosting components without any exports, will not generate
any additional operations. The numbers marked with a star indicate that
the analysis fails and returns a counterexample. As we pointed out above,
P2 is not valid for all sequences of operations.

We may observe from the results in the table that for some properties
the numbers are very similar. For each model-checking command, Maude
constructs a Büchi automaton from the negation of the property formula
and lazily searches the synchronous product of the Büchi automaton and the
system state transition diagram for a reachable accepting cycle. Since the
state spaces are exhaustively explored, the properties are the only difference,
but for such properties the products are very similar in nature. The LTL
formula for P8 is more complex than the others, and the state spaces much
bigger.

Last but not least, let us note that the analysis times show that verifi-
cation is not (yet) a zero-cost task. Nonetheless, this is worth it if software
quality is at stake and this is the case with the reconfiguration protocol in
this paper. Most issues and bugs are usually found on models involving a
few VMs, thus the execution times show that such models can be analyzed
in a reasonable time (within one hour). The execution times are also useful
to show how the input (architecture and scenario) impacts the verification
time, and thus gives an idea of how these analysis tasks scale. There are other
approaches where verification techniques have been used for verifying cloud
management protocols or applications, see, e.g., [2, 5, 14]. These related
works present experimental results very similar to ours in terms of analysis
time.

28



3.4. Found Issues

Beyond correcting very simple bugs identified using simulation and reach-
ability analysis, model checking techniques helped us to detect very subtle
bugs in pathological models that would have been very difficult to iden-
tify without such exhaustive validation techniques. All detected bugs were
corrected in the final implementation of the protocol. Let us focus on two
concrete issues.

First, in an intermediate version of the protocol, we did not have the
notion of up/down phases, and it was possible to instantiate VMs and de-
stroy others at the same time. Nonetheless, this typically generates spurious
messages and erroneous behaviors, e.g., a VM trying to start and connect
its components to the components of another VM, which is in the process
of destroying itself. These contradictory instructions exchanged during the
protocol execution motivated our decision to introduce up and down phases.
This simplified the protocol execution and allowed us to ensure that the pro-
tocol preserves the consistency of the application at any step of its execution.

Second, when destroying VMs, we realized that the components involved
in this process were not stopped properly. This was detected thanks to
property P1. We detected that the propagation was not achieved as expected
in some boundary cases, e.g., for combination of local and remote bindings
on mandatory imports. In that situation, the first backward propagation of
unbind required messages stopped when arriving on local bindings. This was
a bug, because local bindings can lead to other remote bindings that require
proper disconnection too. On a wider scale, the double propagation, which
was introduced to correctly stop components, required several corrections
and adjustments before working properly and respecting all the properties
mentioned earlier in this section.

4. Related Work

Dynamic reconfiguration is not a new topic and many solutions have al-
ready been proposed in the context of, e.g., software architectures [18, 21, 17,
4, 19], graph transformation [3, 28], software adaptation [25, 24], metamod-
elling [16, 20], or reconfiguration patterns [8]. In software architectures, for
example, the authors proposed various formal models, such as Darwin [18] or
Wright [4], in order to specify dynamic reconfiguration of component-based
systems whose architectures can evolve (adding or removing components and
connections) at run-time. These techniques aim at helping users to formally

29



design dynamic applications. In [17, 19], the authors show how to formally
describe behavioral models of components using FSP and analyze these mod-
els using the Labeled Transition System Analyser (LTSA), which allows the
verification of temporal properties on the component architecture. Our goal
here is to propose a reconfiguration protocol that automatically applies a
set of reconfiguration tasks on a component assembly distributed on several
VMs. We do not want to check properties on each component assembly, we
rather want our protocol itself to preserve some important properties during
its application, whatever the assembly being reconfigured.

In the cloud computing area, there are several configuration management
tools, such as Puppet or Chef. They allow to automatically provision and
configure new machines as described in configuration files called manifests
or recipes. Such tools do not provide advanced protocols, which ensure to
preserve consistency of the application being (re)configured. Some existing
environments also provide mechanisms to automatically scale deployed ap-
plications based on monitoring data (see, e.g., the Elastic Beanstalk from
Amazon Web Services). However, these approaches typically work at the
application level (Platform-as-a-Service, PaaS). Moreover, changes are trig-
gered with respect to the individual performance of each tier, although there
are attempts to decide elasticity actions from entire application performance
models, see, e.g., the Reservoir [9] or ConPaaS projects [23]. We do not
address here the question of when or why new copies of components or new
VMs are needed, or when existing ones can be disposed of. We assume
that a running application required some reconfigurations and we present
the mechanisms to apply these changes.

In [13, 27], the authors present a protocol that automates the configu-
ration of distributed applications in cloud environments in a decentralized
way. Each VM is in charge of starting its own components and to do so
needs to interact with the other VMs in order to exchange binding informa-
tion. In these applications, all elements are known from the beginning (e.g.,
numbers of VMs and components, bindings among components, etc.). This
approach works fine when the application does not need to be changed after
deployment. Unfortunately, this is not the case in the cloud, where most ap-
plications need to be reconfigured for considering new requirements, scaling
on-demand, or applying failure recovery techniques. Another recent related
work [15] presents a system that manages application stack configuration. It
provides techniques to configure services across machines according to their
dependencies, to deploy components, and to manage the life cycle of installed

30



resources. This work presents some similarities with ours, but [15] does not
focus on composition consistency, architectural invariants preservation, or
robustness of the reconfiguration protocol.

As far as reconfiguration of component assemblies is concerned, [7, 6]
present a reconfiguration protocol applying changes to a set of connected
components for transforming a current assembly to a target one given as
input. Reconfigurations steps aim at (dis)connecting ports and changing
component states. The protocol is robust in the sense that all the steps of
this protocol preserve a number of architectural invariants. For designing
this reconfiguration protocol, the authors used value-passing process algebra
and model checking techniques for detecting and correcting behavioral issues
that showed up during the protocol design [7]. They proved recently the
protocol correctness by using theorem proving techniques [6]. This protocol
does not easily scale to cloud applications because the authors assume that
all components are hosted on a same VM and a unique centralized manager
is in charge of the reconfiguration steps. Our protocol instead is fully con-
current (all VMs evolve independently from one another at different speeds).
In [2], the authors present a formally validated management protocol for
instantiating and removing VMs from a running cloud application. The pro-
tocol is quite different because in that case, bindings are not made explicit
and the main task of the protocol is to resolve port matching by using port
typing and a publish-subscribe messaging system. Note also that Maude has
already been used for analyzing cloud architectures and applications, see,
e.g., [29, 5].

5. Conclusion

In this paper, we have presented a new protocol for automatically re-
configuring cloud applications consisting of interconnected components dis-
tributed over several VMs. The protocol does not only support VM instan-
tiation and component start-up, but also VM destruction and component
shutdown. These management tasks are guided by reconfiguration opera-
tions posted through a cloud manager. All VMs work in a decentralized and
loosely-coupled way in order to apply these reconfiguration tasks, exchang-
ing messages when necessary via FIFO buffers. The protocol is robust in the
sense that it preserves composition consistency and well-formedness architec-
tural invariants at any step of its application. The protocol is reliable because
it detects VM failures and makes the application restore a global consistent

31



state. For ensuring these correctness requirements, we have implemented it
using Maude’s rewriting logic-based language. This results in a formal de-
scription of the protocol that we analyzed using Maude’s verification tools
for chasing subtle bugs in pathological cases and therefore ensuring that our
implementation satisfies some key properties and invariants. As a result, this
allowed us to identify and correct several subtle issues during the protocol’s
design. It is worth noting that a Java implementation of the protocol is under
development at Orange Labs in the context of the OpenCloudware funded
project.5

A first perspective of this work aims at getting rid of the alternative
up and down phases during the protocol application. This is a non-trivial
change, since start and stop messages may be unwillingly mixed up, and
each VM manager must handle them correctly without introducing incon-
sistencies in the application being modified. Another perspective regards
high-level properties that may be preserved by the application. Our recon-
figuration protocol can be viewed as the (low-level) mechanics to achieve a set
of reconfigurations, but our protocol is not “clever” in the sense that there is
no algorithm on top of it computing the correct sequences of reconfigurations
to ensure high-level properties such as availability or elasticity. Such algo-
rithms could be proposed in order to satisfy these additional requirements.
As far as validation aspects are concerned, we plan to formally prove the
protocol correctness using Maude’s invariant analyzer tool (InvA). Another
alternative in this direction is to rely on Hoare-style verification and to use
graph-like structures [26]. Finally, we would like to use Maude’s statistical
model checker to analyze the protocol. Probabilistic modeling and analy-
sis is necessary to handle non-deterministic events such as network delays,
congestion, or failures.

Acknowledgements. This work has been partially supported by the Sea-
Clouds EU project and the OpenCloudware project, which is funded by the
French Fonds national pour la Société Numérique (FSN), by Pôles Minalogic,
Systematic, and SCS.

References

[1] http://maude.lcc.uma.es/HRfCA.

5http://opencloudware.org

32



[2] R. Abid, G. Salaün, F. Bongiovanni, and N. De Palma. Verification of
a Dynamic Management Protocol for Cloud Applications. In Proc. of
ATVA’13, volume 8172 of LNCS, pages 178–192. Springer, 2013.

[3] N. Aguirre and T. Maibaum. A Logical Basis for the Specification of Re-
configurable Component-Based Systems. In Proc. of FASE’03, volume
2621 of LNCS, pages 37–51. Springer, 2003.

[4] R. Allen, R. Douence, and D. Garlan. Specifying and Analyzing Dy-
namic Software Architectures. In Proc. of FASE’98, volume 1382 of
LNCS, pages 21–37. Springer, 1998.

[5] L. Bentea and P. Csaba Ölveczky. A Probabilistic Strategy Language for
Probabilistic Rewrite Theories and its Application to Cloud Computing.
In Proc. of WADT’12, volume 7841 of LNCS, pages 77–94. Springer,
2013.

[6] F. Boyer, O. Gruber, and D. Pous. Robust Reconfigurations of Compo-
nent Assemblies. In Proc. of ICSE’13, pages 13–22. IEEE/ACM, 2013.

[7] F. Boyer, O. Gruber, and G. Salaün. Specifying and Verifying the Syn-
ergy Reconfiguration Protocol with LOTOS NT and CADP. In Proc.
of FM’11, volume 6664 of LNCS, pages 103–117. Springer, 2011.

[8] T. Bures, P. Hnetynka, and F. Plasil. SOFA 2.0: Balancing Advanced
Features in a Hierarchical Component Model. In Proc. of SERA’06,
pages 40–48. IEEE Computer Society, 2006.

[9] C. Chapman, W. Emmerich, F. Galán Márquez, S. Clayman, and
A. Galis. Software Architecture Definition for On-demand Cloud Pro-
visioning. Cluster Computing, 15(2):79–100, 2012.

[10] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and C.L. Talcott. All About Maude - A High-Performance Logical
Framework, volume 4350 of LNCS. Springer, 2007.

[11] F. Durán and G. Salaün. Robust Reconfiguration of Cloud Applications.
In Proc. of CBSE’14, pages 179–184. ACM, 2014.

[12] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL Model
Checker. In Proc. of WRLA’02, volume 71 of ENTCS, pages 115–142.
Elsevier, 2002.

33



[13] X. Etchevers, T. Coupaye, F. Boyer, and N. de Palma. Self-
Configuration of Distributed Applications in the Cloud. In Proc. of
CLOUD’11, pages 668–675. IEEE Computer Society, 2011.

[14] X. Etchevers, G. Salaün, F. Boyer, T. Coupaye, and N. De Palma. Reli-
able Self-Deployment of Cloud Applications. In Proc. of SAC’14, pages
1331–1338. ACM Press, 2014.

[15] J. Fischer, R. Majumdar, and S. Esmaeilsabzali. Engage: A Deployment
Management System. In Proc. of PLDI’12, pages 263–274. ACM, 2012.

[16] A. Ketfi and N. Belkhatir. A Metamodel-Based Approach for the
Dynamic Reconfiguration of Component-Based Software. In Proc. of
ICSR’04, volume 3107 of LNCS, pages 264–273. Springer, 2004.

[17] J. Kramer and J. Magee. Analysing Dynamic Change in Distributed
Software Architectures. IEE Proceedings - Software, 145(5):146–154,
1998.

[18] J. Magee and J. Kramer. Dynamic Structure in Software Architectures.
In Proc. of SIGSOFT FSE’96, pages 3–14, 1996.

[19] J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour Analysis of
Software Architectures. In Proc. of WICSA’99, volume 140 of IFIP
Conference Proceedings, pages 35–50. Kluwer, 1999.

[20] J. Matevska-Meyer, W. Hasselbring, and R. Reussner. Software Ar-
chitecture Description Supporting Component Deployment and System
Runtime Reconfiguration. In Proc. of WCOP’04, 2004.

[21] N. Medvidovic. ADLs and Dynamic Architecture Changes. In Proc. of
SIGSOFT’96 Workshop, pages 24–27. ACM, 1996.

[22] J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Equational Abstractions.
In Proc. of CADE’03, volume 2741 of LNCS, pages 2–16. Springer, 2003.

[23] G. Pierre and C. Stratan. ConPaaS: A Platform for Hosting Elastic
Cloud Applications. IEEE Internet Computing, 16(5):88–92, 2012.

[24] P. Poizat and G. Salaün. Adaptation of Open Component-Based Sys-
tems. In Proc. of FMOODS’07, volume 4468, pages 141–156. Springer,
2007.

34



[25] P. Poizat, G. Salaün, and M. Tivoli. On Dynamic Reconfiguration of
Behavioural Adaptation. In Proc. of WCAT’06, pages 61–69, 2006.

[26] C. M. Poskitt and D. Plump. Hoare-Style Verification of Graph Pro-
grams. Fundam. Inform., 118(1-2):135–175, 2012.

[27] G. Salaün, X. Etchevers, N. De Palma, F. Boyer, and T. Coupaye. Ver-
ification of a Self-configuration Protocol for Distributed Applications in
the Cloud. In Proc. of SAC’12, pages 1278–1283. ACM Press, 2012.

[28] M. Wermelinger, A. Lopes, and J. L. Fiadeiro. A Graph Based Archi-
tectural (Re)configuration Language. In Proc. of ESEC / SIGSOFT
FSE’01, pages 21–32. ACM Press, 2001.

[29] M. Wirsing, J. Eckhardt, T. Mühlbauer, and J. Meseguer. Design and
Analysis of Cloud-Based Architectures with KLAIM and Maude. In
Proc. of WRLA’12, volume 7571 of LNCS, pages 54–82. Springer, 2012.

35


