1611.08847v1 [cs.SE] 27 Nov 2016

arxXiv

Rapid Quality Assurance with Requirements Smells

Henning Femmer®*, Daniel Méndez Fernandez?®, Stefan Wagner”, Sebastian Eder®

*Software & Systems Engineering, Technische Universitat Minchen, Germany
b Institute of Software Technology, University of Stuttgart, Germany

Abstract

Context: Bad requirements quality can cause expensive consequences during the software development
lifecycle, especially if iterations are long and feedback comes late. Objectives: We aim at a light-weight
static requirements analysis approach that allows for rapid checks immediately when requirements are written
down. Method: We transfer the concept of code smells to Requirements Engineering as Requirements Smells.
To evaluate the benefits and limitations, we define Requirements Smells, realize our concepts for a smell
detection in a prototype called Smella and apply Smella in a series of cases provided by three industrial and
a university context. Results: The automatic detection yields an average precision of 59% at an average
recall of 82% with high variation. The evaluation in practical environments indicates benefits such as an
increase of the awareness of quality defects. Yet, some smells were not clearly distinguishable. Conclusion:
Lightweight smell detection can uncover many practically relevant requirements defects in a reasonably
precise way. Although some smells need to be defined more clearly, smell detection provides a helpful means
to support quality assurance in Requirements Engineering, for instance, as a supplement to reviews.

Keywords: Requirements Engineering, Quality Assurance, Automatic Defect Detection, Requirements
Smells

Contents 4.1 Requirements parsing Il
4.2 Language annotation 11
1 Introduction 4.3 Findings identification
4.4 Findings presentation
2 Related work 3
2.1 The notion of smells in software engi- 5 Requirements Smell detection in the
neering process of quality assurance
2.2 Quality assurance of software require-
ments . . o.o. ... 6 Evaluation L6
2.3 Discussion 6.1 Case study design 10
6.1.1 Research questions 16l
3 Requirements Smells 8l 6.1.2 Case and subjects selection . . [I1]
3.1 Requirements Smell terminology . 6.1.3 Data collection procedure . . . [T
3.2 Requirements Smells based on ISO 29148 [6.1.4 Analysis procedure 1K
6.1.5 Validity procedure [19]
4 Smella: A prototype for Requirements 6.2 Results. @
Smell detection 10l 6.2.1 Case and subjects description . [0

Preprint accepted at Elsevier, /doi:10.1016/5.jss.2016.02.047

http://dx.doi.org/10.1016/j.jss.2016.02.047

6.2.2 RQ 1: How many Requirements
Smells are present in the artifacts? 211

6.2.3 RQ 2.1: How accurate is the
smell detection? 25]

6.2.4 RQ 2.2: Which of these smells

are practically relevant in which
context? 290l

6.2.5 RQ 3: Which requirements

quality defects can be detected
with smells? 301

6.2.6 RQ 4: How could smells help
in the QA process? 33
6.2.7 Evaluation of validity 34
7 Conclusion 35l
7.1 Summary of conclusions 35
7.2 Relation to existing evidence
7.3 Impact/Implications
7.4 Limitations B7
7.5 Future work B7

Appendix A Requirements Checklist [41]

1. Introduction

Defects in requirements, such as ambiguities or in-
complete requirements, can lead to time and cost
overruns in a project [56]. Some of the issues re-
quire specific domain knowledge to be uncovered. For
example, it is very difficult to decide whether a re-
quirements artifact is complete without domain knowl-
edge. Other issues, however, can be detected more
easily: If a requirement states that a sensor should
work with sufficient accuracy without detailing what
sufficient means in that context, the requirement is
vague and consequently not testable. The same holds
for other pitfalls such as loopholes: Phrasing that a
certain property of the software under development
should be fulfilled as far as possible leaves room for
subjective (mis-)interpretation and, thus, can have
severe consequences during the acceptance phase of a
product [24], [33].

To detect such quality defects, quality assurance
processes often rely on reviews. Reviews of require-
ments artifacts, however, need to involve all relevant

stakeholders [65], who must manually read and un-
derstand each requirements artifact. Moreover, they
are difficult to perform. They require a high domain
knowledge and expertise from the reviewers [65] and
the quality of their outcome depends on the quality of
the reviewer [75]. On top of all this, reviewers could
be distracted by superficial quality defects such as the
aforementioned vague formulations or loopholes. We
therefore argue that reviews are time-consuming and
costly.

Therefore, quality assurance processes would benefit
from faster feedback cycles in requirements engineer-
ing (RE), which support requirements engineers and
project participants in immediately discovering cer-
tain types of pitfalls in requirements artifacts. Such
feedback cycles could enable a lightweight quality
assurance, e.g., as a complement to reviews.

Since requirements in industry are nearly exclu-
sively written in natural language [58] and natural
language has no formal semantics, quality defects in
requirements artifacts are hard to detect automati-
cally. To face this challenge of fast feedback and the
imperfect knowledge of a requirement’s semantics, we
created an approach that is based on what we call
Requirements (Bad) Smells. These are concrete symp-
toms for a requirement artifact’s quality defect for
which we enable rapid feedback through automatic
smell detection.

In this paper, we contribute an analysis of whether
and to what extent Requirements Smell analysis can
support quality assurance in RE. To this end, we

1. define the notion of Requirements Smells and in-

tegrate the Requirements Smellﬂ concept into an
analysis approach to complement (constructive
and analytical) quality assurance in RE,

2. present a prototypical realization of our smell

detection approach, which we call Smella, and

3. conduct an empirical investigation of our ap-

proach to better understand the usefulness of

n context of our studies, we use the ISO/IEC/IEEE
29148:2011 standard [33] (in the following: ISO 29148) as
basis for defining requirements quality. The standard supplies
a list of so-called Requirements Language Criteria, such as

loopholes or ambiguous adverbs, which we use to define eight
smells (see also the smell definition in Sect. [3.2)).

a Requirements Smell analysis in quality assur-
ance.

Our empirical evaluation involves three industrial
contexts: The companies Daimler AG as a represen-
tative for the automotive sector, Wacker Chemie AG
as a representative for the chemical sector, and Tech-
Divison GmbH as an agile-specialized company. We
complement the industrial contexts with an academic
one, where we apply Smella to 51 requirements arti-
facts created by students. With our evaluations, we
aim at discovering the accuracy of our smell analysis
taking both a technical and a practical perspective
that determines the context-specific relevance of the
detected smells. We further analyze which require-
ments quality defects can be detected with smells, and
we conclude with a discussion of how smell detection
could help in the (industrial) quality assurance (QA)
process.

Previously published material

This article extends our previously published work-
shop paper [24] in the following aspects: We provide
a richer discussion on the notion of Requirements
Smell and give a precise definition. We introduce
our (extended) tool-supported realization of our smell
analysis approach and outline its integration into the
QA process. We extend our first two case studies with
another industrial one as well as with an investigation
in an academic context to expand our initial empirical
investigations by

1. investigating the accuracy of our smell detection

including precision, recall, and relevance from a
practical perspective,

2. analyzing which quality defects can be detected

with smells and

3. gathering practitioner’s feedback on how they

would integrate smell detection in their QA pro-
cess considering both formal and agile process
environments.

Outline

The remainder of this paper is structured as follows.
In Sect. 2] we describe previous work in the area. In
Sect. [3| we define the concept of Requirements Smells
and describe how we derived a set of Requirements

Smells from ISO 29148. We introduce the tool real-
ization in Sect.] and discuss the integration of smell
detection in context of quality assurance in Sect. [5]
In Sect. [6] we report on the empirical study that we
set up to evaluate our approach, before concluding
our paper in Sect. [7]

2. Related work

In the following, we discuss work relating to the
concept of natural language processing and smells in
general, followed by quality assurance in RE, before
critically discussing currently open research gaps.

2.1. The notion of smells in software engineering

The concept of code smells was, to the best of our
knowledge, first proposed by Fowler and Beck [27]
to answer the question at which point the quality of
code is so low that it must be refactored. According
to Fowler and Beck, the answer cannot be objectively
measured, but we can look for certain concrete, visible
symptoms, such as duplicated code [27] as an indicator
for bad maintainability [35]. This concept of smells,
as well as the list that Fowler and Beck proposed, led
to a large field of research. Zhang et al. [76] provide
an in-depth analysis of the state of the art in code
smells. The metaphor of smells as concrete symptoms
has since then been transferred to quality of other
artifacts including (unit) test smells [72] and smells for
system tests in natural language [3I]. Ciemniewska
et al. [12], further characterize different defects of use
cases through the term use case smell. In our work,
we extend the notion of smells to the broader context
of requirements engineering and introduce a concrete
definition for the term Requirements Smell.

2.2. Quality assurance of software requirements
The concept of Requirements Smells is located in

the context of RE quality assurance (QA), which is

performed either manually or automatically.

Manual QA. Various authors have worked on QA for
software requirements by applying manual techniques.
Some put their focus on the classification of quality
into characteristics [15], others develop comprehen-
sive checklists [2] [6] 50l [39] [38]. Regarding QA, some

develop constructive QA approaches, such as creating
new RE languages, e.g. [I7], to prevent issues up front,
others develop approaches to make analytic QA, such
as reviews, more effective [69]. In a recent empirical
study on analytical QA, Parachuri et al. [60] manu-
ally investigate the presence of defects in use cases.
To sum it up, these works on manual QA provide
analytical and constructive methods, as well as (vary-
ing) lists for defects. They strengthen our confidence
that today’s requirements artifacts are vulnerable to
quality defects.

Automatic QA. Various publications discuss the au-
tomatic detection of quality violations in RE. We
summarize existing approaches and tools, their pub-
lications, and empirical evaluations in Table [2l We
also created an in-depth analysis of in total 27 related
publications evaluating which quality defects or smells
the approaches opt for in their described detection.
In the following, we will first explain two related ar-
eas (automatic QA for redundancy and for controlled
languages), before discussing automatic QA for ambi-
guity in general. For ambiguity, we first describe those
approaches that conducted empirical evaluations of
precision or recall of quality defects related, but not
identical to, the ones of ISO 29148. Afterwards, we fo-
cus on publications that mention the same criteria as
in the ISO 29148 (see Table[1] for this list and their re-
spective empirical evaluations) and discuss the chosen
approaches and results. We publish the complete list
of each quality defect that is detected by each of the
27 papers, as well as the precision and recall (where
provided), online as supplementary material [25].

Automatic QA for redundancy. One specific area of
QA is avoiding redundancy and cloning. Whereas
Juergens et al. [34] use ConQAT to search for syn-
tactic identity resulting from a copy-and-paste reuse,
Falessi et al. [2I] aim at detecting similar content,
therefore using methods from information retrieval
(such as Latent Semantic Analysis [52]). Rago et
al. [62] extend this work specifically for use cases.
Their tool, ReqAlign, classifies each step with a se-
mantic abstraction of the step. These publications
analyze the performance of their approaches, and de-

pending on the artifact and methods achieve precision
and recall close to 1 (see Table [2)).

Automatic QA for controlled languages. Another spe-
cific area is the application of controlled language and
the QA of controlled language. RETA [4] specifically
analyzes requirements that are written via certain
requirements patterns (such as with the EARS tem-
plate [54]). Their goal is to detect both conformance
to the template but also some of the ambiguities as de-
fined by Berry et al [7]. The authors report on a case
study where they look at the template conformance
in depth, indicating that template conformance can
be classified with various NLP suites to a high accu-
racy (Precision > 0.85, Recall > 0.9), both with and
without glossaries. However, the performance of am-
biguity detection (such as the detection of pronouns)
is not further discussed in the publication. Similarly,
AQUSA [51] analyzes requirements written in user
story format (c.f. [I4] for a detailed introduction into
user stories), and detects various defects, such as miss-
ing rationales, where they achieve a precision of 0.63-1.
Circe [1l 29] is a further tool that assumes that re-
quirements are written in such requirements patterns
and detects violations of context- and domain-specific
quality characteristics by building logical models. The
authors report on six exemplary findings, which were
detected in a NASA case study. However, despite
their value to automatic QA, such approaches require
very specific requirements structure.

Automatic QA for ambiguity in general. The remain-
ing approaches listed in Table [2] aim at detecting
ambiguities in unconstraint natural language. Since
the quality defects detected by the approaches by
Ciemniewska et al. [12], Kof [45], HeRA by Knauss et
al. [41l [42], Kiyavitskaya et al. [40], RESI by Koérner
et al. [46] [47] 48], and Alpino by DeBruijn et al. [16]
are not the ones discussed in ISO 29148 and since we
could not find an evaluation of precision and recall of
these approaches, we omit discussing these approaches
in-depth here. An analysis of what these approaches
focus on in detail as well as their evaluation can be
found in short in Table[2|and in full length in our sup-
plementary material online [25]. In the following, we
first report on those publications that focus on criteria

different from ISO 29148, but which report precision
or recall. Afterwards, we describe publications that
aim at detecting quality violations of ISO 29148 (see
Table .

First, Chantree et al. [I1] target the specific gram-
matical issue of coordination ambiguity (detecting
problems of ambiguous references between parts of a
sentence), mostly through statistical methods, such
as occurrence and co-occurrence of words. In a case
study, they report on a precision of their approach
mostly between 54% and 75%. even though they
do not explicitly differentiate between the detected
ambiguities and the concept of pronouns. Second,
Gleich et al. [30] base their approach on the ambigu-
ity handbook, as defined by Berry et al. [7], as well
as company-specific guidelines. They compare their
dictionary- and POS-based approach against a gold
standard which they created by letting people high-
light ambiguities in requirements sentences. The gold
standard deviates substantially, however, from what is
considered high quality in their guidelines. Therefore,
they create an additional gold standard, mostly based
on the guideline rules. Consequently, their precisiorﬂ
varies between 34% for the pure experts opinion, to
97% for a more guideline-based gold standard. Third,
Krisch and Houdek [49], focus on the detection of
passive voice and so-called weak words. They present
their dictionary- and POS-based approach to practi-
tioners and find many false positives, similar to our
RQ 3. In average, a precision of 12% is reported for
the weak words detection. These approaches focus on
very related, but not identical quality violations or
smells.

Automatic QA for ISO 29148 criteria. Lastly, we
specifically focus on those approaches that report
to detect the criteria from the ISO 29148 standard.
Table [I] provides an overview of these works and their
respective evaluations.

2Gleich et al. calculate their metrics based on the combina-
tion of all ambiguities; unfortunately, they do not differentiate,
e.g. by the type of ambiguity. Also, to our knowledge, the
gold standard does not differentiate between the types. This
prevents a direct comparison to their work.

The ARM tool [74] defines quality in terms of the
(now superseeded) IEEE 830 standard [32] and pro-
poses generic metrics, instead of giving feedback di-
rectly to requirements engineers. The metrics are
calculated through counting how often a set of pre-
defined terms (per metric) occurs in a document, in-
cluding a metric of what we call Loopholes. Even
though they report on a case study with 46 specifi-
cations from NASA, only a quantitative overview is
reportecﬂ The QuARS tool [19, [I8] is based on the
author’s experience. Bucchiarone et al. [I0] describe
the use of QUARS in a case study with Siemens and
show some exemplary findings. SyTwo [22] adopts
the quality model of QuARS and applies it to use
cases. Loopholes and Subjectivity are part of the
QuARS quality model. Also RQA is built on a dif-
ferent, proprietary quality model, as described by
Génova et al. [28], which includes negative terms as
well as pronouns as quality defects. These works also
built upon extending natural language with NLP an-
notations, such as POS tags and searching through
dictionaries for certain problematic phrases. However,
we could not find a detailed empirical investigation
of these tools, e.g. with regards to precision and re-
call. SREE is an approach by Tjong and Berry [70],
which aims at detection of ambiguities with a recall
of 100%. Therefore, they completely avoid all NLP
approaches (since they come with imprecision), and
build large dictionaries of words. The tool includes
detection of loopholes, as well as pronouns; however,
they report only on an aggregated precision for all
the different types of ambiguities (66-68%) from two
case studies. In our previous paper [24], we searched
for violations of ISO 29148, yet we provided only a
quantitative analysis, as well as qualitative examples.
As mentioned before, RETA also issues warnings for
pronouns, however, the evaluation in their paper [4]
focusses on template conformance.

2.8. Discussion

Previous work has led to many valuable contribu-
tions to our field. To explore open research gaps, we
now critically reflect on previous contributions from

3See also our RQ 1 in Sect. @

Table 1: Related work on criteria of ISO-29148 standard, detailed supplementary material can be found

online [25]
ARM QuARS RQA SREE Smella RETA

[74] L9 08 R21 [po o 28 [70] [24] 2]
Ambiguous Adv. & Adj. E/Q
Comparatives E/Q
Loopholes (or Options) Q E/Q E/Q E E Q*/P* E/Q
Negative Terms E/Q
Non-Verifiable Terms E/Q
Pronouns (0] Q*/P* E/Q (0]
Subjectivity E/Q E/Q E E E/Q
Superlatives E/Q

Legend: O=No empirical analysis, E=Examples from Case, Q=Quantification, P=Precision analyzed,
R=Recall analyzed, *=Aggregated over multiple smells

an evaluation, a quality definition and a technical
perspective.

First, one gap in existing automatic QA approach-
es is the lack of empirical evidence, especially under
realistic conditions. Only few of the introduced contri-
butions were evaluated using industrial requirements
artifacts. Those who do apply their approach on
such artifacts focus on quantitative summaries ex-
plaining which finding was detected and how often
it was detected. Some authors also give examples of
findings, but only few works analyze this aspect in
depth with precision and recall, especially in the fuzzy
domain of ambiguity (see Table . When looking at
the characteristics that are described in ISO 29148,
we have not seen a quantitative analysis of precision
and recall. Furthermore, reported evidence does not
include qualitative feedback from engineers who are
supposed to use the approach, which could reveal
many insights that cannot be captured by numbers
alone. However, we postulate that the accuracy of
quality violations very much depends on the respective
context. This is especially true for the fuzzy domain of
natural language where it is important to understand
the (context-specific) impact of a finding to rate its
detection for appropriateness and eventually justify
resolving the issue.

Second, the existing approaches are based on pro-
prietary definitions of quality, based on experience
or, sometimes, simply on what can be directly mea-
sured. The ARM tool [74] is loosely based on the

IEEE 830 [32] standard. However, as the recent liter-
ature survey by Schneider and Berenbach [67] states:
“the ISO/IEC/IEEFE 29148:2011 is actually the stan-
dard that every requirements engineer should be fa-
miliar with”. We are not aware of an approach that
evaluates the current ISO 29148 standard [33] in this
respect. As Table [I] shows, for most language quality
defects of ISO 29148, there has not yet been a tool
to detect these quality defects. To all our knowledge,
for neither of these factors, there is an differentiated
empirical analysis of precision and recall. Yet, many
other quality models (most notably from the ambigu-
ity handbook by Berry et al. [7]) and quality violations
could lead to Requirements Smells, as far as they com-
ply with the definition given in the next section.

Finally, taking a more technical perspective, our
Requirements Smell detection approach does not fun-
damentally differ from existing approaches. Similar
to previous works, we apply existing NLP techniques,
such as lemmatization and POS tagging, as well as
dictionaries. For the rules of the ISO 29148 standard,
no parsing or ontologies (as used in other approaches)
were required. However, to detect superlatives and
comparatives in German, we added a morphological
analysis, which have not yet seen in related work.

In summary, in our contribution, we extend the
current state of reported evidence on automatic QA
for requirements artifacts via systematic studies in
terms of distribution, precision, recall, and relevance,
as well as by means of a systematic evaluation with

s[ews o[d N I9A0 PRSIy =,
‘pozATeur [[ROIY=7Y ‘PozAeur UOISIRIJ=J ‘Uonesynuen)=g) ‘ose)) woij sojdurexg=r ‘sisA[eue [eoundwe oN=() :pue3e]

- - o/d izd RICLES

~ %89°0:99°0 «d/ 50 [0zl AAYS

- - 0 82l vOua

- - o/a [o1l zal (81 (6Tl OMTAS / SUVID

- - 6] 7)) SOLTOIN 19RJIY HY NV

- zro d/0/4 671 (gosta3)
98°0€5°0 L60FED «H/xd/+D/A [ogl LRISIE)
86°0-20°0 1-9°0 v/d/d (1Tl (01yureT))
- - b/a (91l ourdy

- - c| [l (17 VH°H

- - b/a sl 27 [97 ISHY

- - o/d [0F] (ederysyraedry)

- - o/d il (3031)

- - o [z1] (e{smerutaT)))

- - o 1 [62 so[ny oSenSue] paInjonilg ADYUID

- 1-€9°0 d/0/4 [l sany A109G 1080 vsnbv

1160 ¥6°0-98°0 u/d/0/4 i so[ny oFeNSuUe] poInjonIg LAKCE!
98°0 €9°0 v/d/0 7ol L>wepunpay usiyboy

96 01 dn 96 01 dn a/d/o 17 Aouepunpay] (1ssoreq)
- 1-L8°0 d/0/a iz Louepunpoy IvOuep

[[®09Y UOISIAI] uoryenyeAy] suorjeotiqng (“39p AymSiqure ssofun) asoding yoroxddy /[o0T,

[¢Z] eutuo punoj oq weo eLeW Arejuowo[ddns pojrejop ‘uolpen[RAS IBY) pue ‘s[oo} pue soypeoidde pojye[oy :g o[qeR],

practitioners under realistic conditions. We perform
this on both existing, as well as new quality defects
taken from the ISO 29148. Therefore, we extend our
previously published first empirical steps [24] to close
these gaps by thorough empirical evaluation.

3. Requirements Smells

We first introduce the terminology on Requirements
Smells as used in this paper. In a second step, we
define those smells we derived from ISO 29148 and
which we use in our studies, before describing the tool
realization in the next section.

3.1. Requirements Smell terminology

Code smells are supposed to be an imprecise in-
dication for bad code quality [27]. We apply this
concept of smells to requirements and define it as
follows: A Requirements Smell is an indicator of a
quality violation, which may lead to a defect, with a
concrete location and a concrete detection mechanism.
In detail, we consider a smell as having the following
characteristics:

1. A Requirements Smell is an indicator for a qual-
ity violation of a requirements artifact. For this
definition, we understand requirements quality in
terms of quality-in-use, meaning that bad require-
ments artifact quality is defined by its (potential)
negative effects on activities in the software life-
cycle that rely on these requirements artifacts
(see also [26]).

2. A Requirements Smell does not necessarily lead
to a defect and, thus, has to be judged by the con-
text (supported e.g. by (counter-/)indications).
Whether a Requirements Smell finding is or is
not a problem in a certain context must be indi-
vidually decided for that context and is subject
to reviews and other follow-up quality assurance
activities.

3. A Requirements Smell has a concrete location
in an entity of the requirements artifact itself,
e.g. a word or a sequence. Requirements Smells
always provide a pointer to a certain location that

QA must inspect. In this regard, it differs from
general quality characteristics, e.g. completeness,
that only provide abstract criteria.

4. A Requirements Smell has a concrete detection
mechanism. Due to its concrete nature, Require-
ments Smells offer techniques for detection of the
smells. These techniques can, of course, be more
or less accurate.

Furthermore, we define a quality defect as a concrete
instance or manifestation of a quality violation in the
artifact, in contrast to a finding which is an instance
of a smell. However, like a smell indicates for a quality
violation, the finding indicates for a defect. Fig. []]
visualizes the relation of these terms.

Quality Model
Quality-in- supported by RE
use Entity
decreases present in

Requirements Smells

Quality indicates for
Violation Smell

automated by

instance of Smell
Detector

detects

Finding

Instance

Quality indicates for

Defect

Figure 1: Terminology of Requirements Smells (sim-
plified)

In the following, we will focus on natural language
Requirements Smells, since requirements are mostly
written in natural language [58]. Furthermore, the real
benefits of smell detection in practice should come
with automation. Therefore, the remainder of the
paper discusses only Requirements Smells where the
detection mechanism can be executed automatically
(i.e. it requires no manual creation of intermediate or
supporting artifacts).

3.2. Requirements Smells based on ISO 29148

We develop a set of Requirements Smells based on
an existing definition of quality. For the investiga-
tions in scope of this paper, we take the ISO 29148
requirements engineering standard [33] as a baseline.
The reasons for this are two-fold.

First, the ISO 29148 standard was created to har-
monize a set of existing standards, including the
IEEE 830:1998 [32] standard. It differentiates between
quality characteristics for a set of requirements, such
as completeness or consistency, and quality character-
istics for individual requirements, such as unambiguity
and singularity. The standard furthermore describes
the usage of requirements in different project phases
and gives exemplary contents and structure for re-
quirements artifacts. Therefore, we argue that this
standard is based on a broad agreement and accep-
tance. Recent literature studies come to the same
conclusion [67].

Second, the standard provides readers with a list
of so-called requirements language criteria which sup-
port the choice of proper language for requirements
artifacts. The authors of the standard argue that
violating the criteria results “in requirements that are
often difficult or even impossible to verify or may allow
for multiple interpretations” |33, p.12]. For defining
our smells, which we describe next, we refer to this
section of the standard and use all the defined require-
ments language criteria. We employ those criteria
as a starting point and define the smells by adding
the affected entities (e.g. a word) and an explana-
tion. Here, we do not discuss the impact smells have
on the quality-in-use. Essentially, smells hinder the
understandability of requirements and consequently
their subsequent handling and their verification (for
a richer discussion, see also previous work in [260]).

Our current understanding is based on the ex-
amples given by the standard. A subset of
the language criteria, namely Subjective Lan-
guage, Ambiguous Adverbs and Adjectives and
Non-verifiable Terms, as defined in [33], are
strongly related, essentially since subjective language
is a special type of ambiguity, which may lead to is-
sues during verification. Since the intention of this
work is to start with the standard as a definition of

quality, in the following, we will remain with the pro-
vided definition based on the language criteria and
leave the development of a precise and complete set
of Requirements Smells to future work. In detail, we
use the requirements language criteria to derive the
smells summarized next.

Smell Name:
Entity:
Explanation:

Subjective Language

Word

Subjective Language refers to
words of which the semantics is
not objectively defined, such as
user friendly, easy to use, cost
effective.

The architecture as well as the
programming must ensure a sim-
ple and efficient maintainabil-
ity.

Example:

Smell Name: Ambiguous Adverbs and Ad-
jectives

Adverb, Adjective

Ambiguous Adverbs and Adjec-
tives refer to certain adverbs and
adjectives that are unspecific by
nature, such as almost always, sig-
nificant and minimal.

If the (...) quality is too low, a
fault must be written to the error
memory.

Entity:
Explanation:

Example:

Smell Name:
Entity:
Explanation:

Loopholes

Word

Loopholes refer to phrases that
express that the following require-
ment must be fulfilled only to a
certain, imprecisely defined ex-
tent.

As far as possible, inputs are
checked for plausibility.

Example:

Smell Name:

Entity:

Explanation:

Example:

Open-ended, Non-verifiable
Terms

Word

Open-ended, non-verifiable terms
are hard to verify as they offer a
choice of possibilities, e.g. for the
developers.

The system may only be acti-
vated, if all required sensors (...)
work with sufficient measure-
ment accuracy.

Smell Name:

Entity:

Explanation:

Example:

Superlatives

Adverb, Adjective

Superlatives refer to requirements
that express a relation of the sys-
tem to all other systems.

The system must provide the sig-
nal in the highest resolution that
is desired by the signal customer.

Smell Name:

Vague Pronouns

Entity: Pronoun

Explanation: Vague Pronouns are unclear rela-
tions of a pronoun.

Example: The software must implement

services for applications, which
must communicate with con-
troller applications deployed on
other controllers.

Smell Name:

Incomplete References

Smell Name:

Entity:

Explanation:

Example:

Comparatives

Adverb, Adjective

Comparatives are used in require-
ments that express a relation of
the system to specific other sys-
tems or previous situations.

The display (...) contains the
fields A, B, and C, as well as
more exact build infos.

Smell Name:

Entity:

Explanation:

Example:

Negative Statements

Word

Negative Statements are “state-
ments of system capability not
to be provided"[33]. Some argue
that negative statements can lead
to underspecification, such as lack
of explaining the system’s reac-
tion on such a case.

The system must not sign off
users due to timeouts.

Entity: Text reference
Explanation: Incomplete References are refer-
ences that a reader cannot follow
(e.g. no location provided).
Example: [1] “Unknown white paper". Pe-
ter Miller.
4. Smella: A prototype for Requirements

Smell detection

Requirements Smell detection, as presented in this
paper, serves to support manual quality assurance
tasks (see also the next section). The smell detection
is implemented on top of the software quality analysis
toolkit ConQATE] a platform for source code analysis,
which we extended with the required NLP features.
In the following, we introduce the process for the au-
tomatic part of the approach, i.e. the detection and
reporting of Requirements Smells. To the best of our
knowledge, there is no tool, other than the ones men-
tioned in related work, that detect and present these
smells in natural language requirements documents.

The process takes requirements artifacts in vari-
ous formats (MS Word, MS Excel, PDF, plain text,
comma-separated values) and consists of four steps

(see also Fig. [2)):

1. Requirements parsing of the requirements arti-
facts into single items (e.g. sections or rows),
resulting in plain texts, one for each item

4http://www.congat.org

10

http://www.conqat.org

Parsing Annotation Identification Presentation
Spec A1 —Sec1 —Reqt i
E.I é P R q2 POS T.aggmg) 1o Overview
pocx] TXT IPDF €q Morphologic Analysis = Dashboard
El h —> Req3 Lemmatization
=== Sec2 Req1
XLSX]CSV Req2
Requirements Spec B1 —Sec1 ——Req1 o Smell
—ERqu O Viewer
Reqg3

Figure 2: The overall smell detection process

2. Language annotation of the requirements with
meta-information

3. Findings identification in the requirements, based
on the language annotations

4. Presentation of a human-readable visualization
of the findings as well as a summary of the results

The techniques behind these steps are explained in
the following section.

4.1. Requirements parsing

Our current tool is able to process several file for-
mats: MS Word, MS Excel, PDF, plain text and
comma-separated values (CSV). Depending on the
format, the files are parsed in different ways. Plain
text and PDF are taken as is and parsed file by file.
Microsoft Word files are grouped by their sections.
For Microsoft Excel and CSV files, we define those
columns that represent the IDs or names (if there are
any), and those columns should be used as text input
to detect smells.

If a file is written in a known template, such as a
common template for use cases, we can make use of
this template to understand structural defects, such
as lacking content items in a template. In the remain-
der of this paper, however, we focus on the natural
language Requirements Smells as provided by the ISO
standard.

11

4.2. Language annotation

For the annotation and smell detection steps, we
employ three techniques from Natural Language Pro-
cessing (NLP) [36]. Table [3[additionally shows which
of the techniques we use for which smell.

POS Tagging: For two smells, we use part-of-speech
(POS) tagging. Given a sentence in natural lan-
guage, it determines the role and function of
each single word in the sentence. The output is
a so-called tag for each word indicating, for in-
stance, whether a word is an adjective, a particle,
or a possessive pronoun. We used the Stanford
NLP library [71] and the RFTagger [66] for this.
Both are statistical, probabilistic taggers that
train models similar to Hidden Markov Models
based on existing databases of tagged texts. A
detailed introduction into the technical details of
POS tagging is beyond the scope of this paper
but can be found, for example, in [36]. We use
POS tagging to determine so-called substituting
pronouns. These are pronouns that do not re-
peat the original noun and, thus, need a human’s
interpretation of its dependency.

Morphological Analysis: Based on POS tagging,
we perform a more detailed analysis of text and
determine a word’s inflection. This includes, inter
alia, determining a verb’s tense or an adjective’s
comparison. We use this technique to analyze if

adjectives or adverbs are used in their compara-
tive or superlative form.

Dictionaries & Lemmatization: For the remain-
ing five smells, we use dictionaries based on the
proposals of the standard [33] and on our ex-
periences from first experiments in a previous
work [24]. We furthermore apply lemmatization
for these words, which is a normalization tech-
nique that reproduces the original form of a word.
In other words, if a lemmatizer is applied to the
words were, is or are, the lemmatizer will re-
turn for all three the word be. Lemmatization
is in its purpose very similar to stemming (see,
e.g. the Porter Algorithm [61]), yet not based
on heuristics but on the POS tag as well as the
word’s morphological form. For Requirements
Smells, the difference is significant: For example,
the words use and useful stem to the same word
origin (use), but to different lemmas (i.e. mean-
ings; use and useful). Whereas the lemma use is
mostly clear to all stakeholders, the lemma useful
is easily misinterpreted.

4.8. Findings identification

Based on the aforementioned information, we iden-
tify findings. This step actually finds the parts of an
artifact that exhibit bad smells. Dependent on the
actual smell, we use different techniques, as shown in
Table [3] If the smell relates to a grammatical aspect,
we search through the information from POS tagging
and morphological analyses. For example, for the
Superlatives Smell, we report a finding if an adjec-
tive is, according to morphologic analysis, inflected
in its superlative form. If the smell does not relate
to grammatical aspects but rather the semantics of
the requirements, we identify the smell by matching
the lemma of a word against a set of words from pre-
defined dictionaries. Since the requirements under
analysis in our cases did not contain references, in-
complete references are not part of our tool at present.

4.4. Findings presentation

We implemented the presentation of findings in
a prototype, which we call Smella (Smell Analysis).

Smella is a web-based tool that enables viewing, re-
viewing and blacklisting findings as well as a hotspot
analysis at an artifact level. In the Smella presenta-
tion, we display the complete requirements artifact
and annotate findings in a spell checker style. This
follows the idea of smells as only indications that must
be evaluated in their context. Lastly, the system gives
detailed information when a user hovers a finding (see
Fig. . In the following, we shortly describe the fea-
tures of Smella in detail to provide the reader with a
rough understanding of the prototype.

View findings: At the level of a single artifact, we
present the text of the artifact and its structure.
We mark all findings in the text. With a click on
the markers, more information about the finding
is displayed. The tool provides an explanation of
the rationale behind this smell and possible im-
provements for the finding depending on the smell
(every smell has a message for improvements).

Review findings: We allow the user to write a re-
view and to set a status for each finding, both
supporting feedback mechanisms within and be-
tween project teams. A user has the possibility
to accept or reject a finding but also to set a cus-
tom state, for example under review. Accepting a
finding means the finding needs to be addressed.
If a finding is rejected, the finding does not need
to be addressed. The semantics of the custom
status is open to the reviewer.

Blacklist findings: Smells are only indicators for
issues. Therefore, users can reject findings. If
a finding is rejected by the user, the finding is
removed from the visualization and will not be
presented to the user anymore.

Disable smells: Often, users are interested in only a
subset of smells or even just one smell. Therefore,
we allow the user to hide all findings of particular
smells and to select the smells she wants to display
in the artifact view.

Analyze hotspots: In this view, we present all ar-
tifacts in a colored treemap (see Fig. [). Every
box in the treemap is one artifact, with the color

12

Smella m @

+ WCase A .
Show smells by severity
+WCaseB Case C
_ _ fess ‘ more
= WCase C Requirement01.txt severe severe
I Requirement01.txt
Show smells by category
N As a visitor, I want to see the checkboxes in the different categories displayed more clearly,
B Requirement02.txt & play: Y. m Requirements Smells
Looj
B Requirement03.txt Caom | ambi [Ambiguous Adverbs and ...

so that I can see more quickly that I can select and deselect categories.
[IEE comp | Comparative Requirement..

Requirement02.txt (G oop | Loophole Smell

I Requirement05 txt Nega LT Negative Words Smell
Comparative Requirements Smell

1] Requirement04.txt

Non- [EEEY Non-verifiable Term Smell

B Requirement06.txt As a visitor, I want to see the checkbo oo
pl 1 suvj GG subjective Language Smell
N . I

I Requirement07 txt Con; Comparallves are often hard to test. Use absolute values to ensure | supe E Superlative Requirements ...

so that I can see more quickly that I ci testability.
B Requirement08.txt Example: 'response time is within 1 second' instead of instead of 'faster Vagu Vague Pronouns Smell

Requ irement03_txt response time than previous systems'
I Requirement09.txt
[Comp) (==

B Requirement10.txt As an editor, I want to make it simpler
B Requirement11.txt Requirement04_txt
B Requirement12.txt As a visitor, I want to see further det)
B Requirement3.txt Requirement05.txt
k Requirement14.txt Comy

Re = ructamar Tuant $F T hawa = Tarao R T

Figure 3: A sample output from the smell detection tool (detailed artifact view) with some smells disabled
and some findings blacklisted

13

—
co n QAT ConQAT Dashboard @ Mon Jun 29 10:42:37 CEST 2015

HTotal Number of Smells (Findings)

Overview Total Number of Smells
= All Smells
% Table Tree Map

= Smell Visualization
Complete Artefact View
2 Findings
54 Total Number of Smells
[&d execution time for nlp
5 subjective Language
Smell
Ed Loophole Smell
[&d vague Pronouns Smell
5 superlative Requirements
Smell
Ed Megative Words Smell
Ed comparative
Requirements Smell
|54 mon-verifiable Term Smell
[E Ambiguous Adverbs and
Adjectives Smell
& smell Subset

B Execution Time
B3 Version

Oooo Mz00 Maoo

Figure 4: A sample output from the smell detection tool (hotspot analysis view)

14

Table 3: Detection techniques for smells

Smell Name

Detection Mechanism

Subjective Language Dictionary
Ambiguous Adverbs and Adjectives Dictionary
Loopholes Dictionary
Open-ended, non-verifiable terms Dictionary
Superlatives Morphological analysis or POS tagging
Comparatives Morphological analysis or POS tagging

Negative Statements
Vague Pronouns
Incomplete References

POS tagging and dictionary
POS tagging: Substituting pronouns.
Not in scope of this study

of the box indicating the number of findings: the
more red an artifacts is, the more findings it con-
tains (the more it “smells” bad). The artifacts
are grouped by their folder structure. The tool
provides a summarized treemap for all smells
as well as a separate treemap for all individual
smells. With these treemaps, users can identify
artifacts or groups of artifacts exhibiting a high
number of findings — for one single smell but also
for all smells together. This feature supports the
identification of candidates for in-depth reviews.

5. Requirements Smell detection in the pro-
cess of quality assurance

The Requirements Smell detection approach de-
scribed in previous sections serves the primary purpose
of supporting quality assurance in RE. The detection
process itself is, however, not restricted to particu-
lar quality assurance tasks, nor does it depend on a
particular (software) process model as we will show
in Sect. [} Hence, a smell detection, similar to the
notion of quality itself, always depends on the views
in a socio-economic context. Thus, how to integrate
smell detection into quality assurance needs to be an-
swered according to the particularities of that context.
In the following, we therefore briefly outline the role
smell detection can generally take in the process of
quality assurance. More concrete proposals on how
to integrate it into specific contexts are given in our
case studies in Sect.

15

We postulate the applicability of the Requirements
Smell detection in the process of both constructive
and analytical quality assurance (see Fig. [5). From
the perspective of a constructive quality assurance,
authors can use the smell detection to increase their
awareness of potential smells in their requirements
artifacts and to remove smells before releasing an ar-
tifact for, e.g., an inspection. External reviewers in
turn, can then use the smell detection to prepare an-
alytical, potentially cost-intensive, quality assurance
tasks, such as a Fagan inspection [20]. Such an in-
spection involves several reviewers and would benefit
from making potential smells visible in advance. Iter-
ative inspection approaches are also known as phased
inspections, as defined by Knight and Myers [43].

We furthermore believe that one major advantage
is that the scope of our smell detection is not to
enforce resolving a potential smell but to increase
the awareness of the like and to make transparent
later reasoning why certain decisions have been taken.
Please note that two different roles (e.g. requirements
engineer and QA engineer) can take two different view-
points on the same smell, respectively its criticality
and whether it should be resolved or not. In addition,
a finding could be unambiguous to the author, but
unclear to the target group of readers (represented by
the reviewers). Therefore, one contribution of our tool-
supported smell detection is also to actively foster the
communication between reviewers and authors and to
enable continuous feedback between both roles. For
this reason, we enable stakeholders in Smella to com-

Constructive QA

/ §

Author

Analytical QA

L

Reviewer

Create/_ |

update

== Feedback /1\

View findings &
Review findings

Detect

smells

View findings &
Review findings

Automatic |

Smell Detection |

Figure 5: A suggestion for applying Requirements Smell detection in QA

ment on detected smells and make explicit whether
they need to be resolved or whether and why they
have been accepted or rejected.

6. Evaluation

For a better, empirical understanding of smells in
requirements artifacts, we conducted an exploratory
multi-case study with both industrial and academic
cases. We particularly rely on case study research
over other techniques, such as controlled experiments,
because we want to evaluate our approach in practical
settings under realistic conditions. For the design
and reporting of the case study, we largely follow the
guidelines of Runeson and Host [63].

6.1. Case study design

Our overall research objective is as follows:

Research Objective: Analyze whether automatic
analysis of Requirements Smells helps in requirements

16

artifact quality assurance.

To reach this aim, we formulate four research ques-
tions (RQ). In the following, we introduce those re-
search questions, the procedures for the case and
subjects selection, the data collection and analysis,
and the validity procedures.

6.1.1. Research questions

RQ 1: How many smells are present in require-
ments artifacts? To see if the automatic detection
of smells in requirements artifacts could help in QA,
we first need to verify that Requirements Smells exist
in the real world. The answer to this question fosters
the understanding how widespread the smells under
analysis are in industrial and academic requirements
artifacts.

RQ 2: How many of these smells are relevant?
Not only the number of detected smells is important.
If many of the detected smells are false positives and
not relevant for the requirements engineers and devel-
opers, it would hinder QA more than it would help.

As relevancy is a rather broad concept, we break down
RQ 2 into two sub-questions.
RQ 2.1: How accurate is the smell detec-
tion? The first sub-question looks at the more
technical view on relevance. We want to find
false positives and false negatives to determine
the precision and recall of the analysis in terms
of correct detection of the defined smell.
RQ 2.2: Which of these smells are practi-
cally relevant in which context? This sec-
ond sub-question is concerned with practical rel-
evance. We investigate whether practitioners
would react and change the requirement when
confronted with the findings.
RQ 3: Which requirements quality defects can
be detected with smells? After we understood how
relevant the analyzed Requirements Smells are, we
want to understand their relation to existing quality
defects in requirements artifacts. Hence, we need to
check whether, and if so, which defects in requirements
artifacts correspond to smells, as we understand smell
findings as indicators for defects.
RQ 4: How could smells help in the QA pro-
cess? Finally, we collect general feedback from prac-
titioners whether (and how) smell detection could be
a useful addition to QA for requirements artifacts and
whether as well as how they would integrate the smell
detection into their QA process.

6.1.2. Case and subjects selection

Our case and subject selection is opportunistic but
in a way that maximizes variation and, hence, eval-
uates the smell detection in very different contexts.
This is particularly important for investigating re-
quirements artifacts under realistic conditions, also
due to the large variation in how these artifacts man-
ifest themselves in practice. A prerequisite for our
selection is the access to the necessary data. To get
a reasonable quantitative analysis of the number of
smells (RQ 1) and qualitative analysis of the rela-
tion of smells and defects (RQ 3), we complement
our three industrial cases with a case in an academic
setting. There, various student teams are asked to
provide software with a certain set of (identical) func-
tionality for a customer as part of a practical course.
This is also a realistic setting but provides us with a

higher number of specifications and reviews than in
the industrial cases.

We will refer to the subjects of the industrial cases
as practitioners and we will call the latter subjects
students.

6.1.3. Data collection procedure
We used a 6-step procedure to collect the data
necessary for answering the research questions.

1. Collect requirements artifact(s) for each case. We
retrieved the requirements artifacts to be ana-
lyzed in each case. For one case, the require-
ments were stored in Microsoft Word Documents.
For the other cases, this involved extracting the
requirements from other systems, either a propri-
etary requirements management tool (resulting
in a list of html files), or the online task manage-
ment system JIRA, which led to a set of comma-
separated values files. For the student projects,
the students handed in their final artifacts either
as a single PDF or as a PDF with the general
artifact and another PDF with the use cases.
Where authors explicitly structured requirements
in numbered requirements, user stories or use
cases, we counted these artifacts.

2. Run the smell detection via Smella. We applied
our detection tool as introduced in Sect. [£4] on
the given requirements artifacts, which generated
a list of smells per artifact.

3. Classify false positives. For all cases in which we
wanted to present our results to practitioners, we
reviewed each detected finding. In pairs of re-
searchers, we classified the findings as either true
or false positive. We classified a finding as false
positive if the finding was not an instance of the
smell, e.g. because the results of the linguistic
analysis was incorrectﬂ For artifacts contain-
ing more than 10 findings of a smell, we only
inspected a set of 10 random findings (of that

5For example, if the linguistic analysis incorrectly classified
the word provider in the sentence “As a provider, I want [...[”
as a comparative adjective.

17

smell) per artifact. The same holds for Case D,
where we inspected 10 random findings of each
category for the whole case.

. Inspect documents for false mnegatives. To
calculate the recall of the smell detection,
for each case we randomly selected one ar-
tifact that a pair of researchers inspected
for false negatives. To ease the manual
inspection, we grouped the smells Subjec-
tive Language, Ambiguous Adverbs and Ad-
jectives, Loopholes, Non-verifiable Terms
(as Ambiguity-related smells). We classified
whether a finding is a true or false negative based
on the same conditions as in the previous step.

One common cause for false negatives for
dictionary-based smells can be that an ambigu-
ous phrase is not part of the dictionary. Since
we developed the dictionaries based on existing
dictionaries, such as the standard, these dictio-
naries are not yet complete and must be further
developed. However, since this is an issue that is
not a problem of the smell detection approach in
general, but rather a configuration task, we did
not take these findings into consideration for the
recall.

. Get rating by practitioners. We selected a subset
of the true positive findings so that we cover all
smells with a minimum of two findings per smell
as far as the artifacts allowed. When we found
repeating or similar findings, e.g. multiple similar
sentences with the same smell, we also included
one of these findings into the set.

We presented this subset to the practition-
ers and interviewed them, finding by finding,
through three closed questions (see also Table E[):
Q1: Would you consider this smell as relevant?
Q2: Have you been aware of this finding before?
Q3: Would you resolve the finding? Of these,
the former two must be answered with yes or
no. For the last question, we also needed to take
the criticality into account. Therefore, in case
practitioners answered that they would resolve a
finding, we also asked whether they would resolve
it immediately, in a short time (i.e. within this

18

project iteration) or in a long time (e.g. if it hap-
pens again). In addition to these three questions,
we took notes of qualitative feedback, such as
discussions.

. Interview practitioners. In addition to the rat-

ings, we performed open interviews with prac-
titioners about their experience with the smell
detection and how they might include it in their
quality assurance process. We took notes of the
answers.

. Get review results from students. Lastly, the stu-

dents performed reviews of the artifacts of other
student teams. They documented and classified
found problems according to a checklist (see Ta-
ble without awareness of the smell findings
in their artifacts. We then collected the review
reports from the students.

6.1.4. Analysis procedure

We structure our analysis procedure into seven
steps. Each step leads to the results necessary for
answering one of our research questions.

1. Calculate ratios of findings per artifact. To un-

derstand whether smells are a common issue in
requirements artifacts, we compared the quanti-
tative summaries of smells in the various artifacts
and domains. To enable a comparison between
different types of requirement artifacts, we used
the number of words in each artifact as a measure
of size. Hence, we finally reported the ratio of
findings per 1000 words for each smell and all
smells in total. This provided answers for RQ 1.

. Calculate ratios of findings for parts of user sto-

ries. In one case, we had a common structure of
the requirements, because they were formulated
as user stories. To get a deeper insight into the
distribution of smells and findings, we calculated
the ratios of findings per 1000 words for each
part. We divided the user stories into the parts
role (“As a...”), feature (“I want to...”) and
reason (“so that...”) using regular expressions.
We counted the words and findings in each part.
This provided further insights into the answer for
RQ 1.

3. Calculate ratios of false positives. After a rough
overview obtained under the umbrella of RQ 1
describing the number of findings for each smell
of the varying artifacts, we wanted to better un-
derstand the smell’s relevance. The first step
was to calculate the ratios of false positive as we
classified them in Step [3| of the data collection.
We reported false positive rates overall and for
each smell. This provides the first part of the
answer to RQ 2.1.

4. Calculate ratios of false negatives. The preci-
sion of a smell detection is tightly coupled with
the recall. Therefore, we calculated the ratio of
detected smell findings to all existing findings,
according to our manual inspection, as described
in Step [of the data collection procedure. This
provides the second part of the answer to RQ 2.1.

5. Calculate ratio of irrelevant smells. We were not
only interested in errors in the linguistic analysis
but also in how relevant the correct analyses
were for the practitioners. Hence, we calculated
and reported the ratios of findings considered
irrelevant by the practitioners. This answers
RQ 2.2.

6. Compare defects from reviews with findings. From
the students, we received review reports for each
artifact. As the effort to check them all would
have been overwhelming, we took a random sam-
ple of 20% of the artifacts. For each of the defects
detected in the review, we checked if there is a
corresponding finding from a smell. This answers
RQ 3.

7. Interpret interview notes. To answer finally RQ 4,
we analyze the interview transcripts and code the
answers given by the interviewees manually.

6.1.5. Validity procedure

First, we used peer debriefing in the sense that all
data collection and analyses were done by at least two
researchers. Analysis results were also checked by all
researchers. This researcher triangulation especially
increases the internal validity. Furthermore, we kept

an audit trail in a Subversion system to capture all
changes to documents and analyses.

Second, we performed all the classifications of find-
ings into true and false positives in pairs. This already
helped to avoid misclassifications. To further check
our classifications, we afterwards did an independent
re-classification of randomly selected 10% of the find-
ings and calculated the inter-rater agreement. We
discussed to clarify which findings we consider false
positives and repeated the classifications until we
reached an acceptable agreement. The same proce-
dure held for the inspection of artifacts to detect false
negatives, which we also conducted in pairs. Further-
more, we also independently re-classified one of the
artifacts to understand the inter-rater agreement on
the false negatives. Overall, our analysis for false pos-
itives and relevance of the findings is also a validity
procedure in the sense that we check in RQ 2 the
results from RQ 1.

Third, we discussed with the practitioners what
relevance of smells means in the context of the study
to avoid misinterpretations. Furthermore, we gave the
students review guidelines to give them an indication
what quality defects in requirements artifacts might
be. Both serve in particular as mitigation to threats
to the internal and the construct validity.

Fourth, we performed the analysis of the corre-
spondence between smells and defects with a pair of
researchers. This pair derived a classification of the
found and not found defects. Both other researchers
reviewed the classification, and we improved it itera-
tively until we reached a joint agreement.

Fifth, we performed member checking by showing
our transcriptions and interpretations for RQ 4 to the
interviewed practitioners and incorporating feedback.

Finally, to support the external validity of the re-
sults of our study, we aimed at selecting cases with
maximum variation in their domains, sizes, and how
they document requirements.

6.2. Results

In the following, we report on the results of our case
studies. We first describe the cases and subjects under
analysis, before we answer the research questions. We
end by evaluating the validity of the cases.

19

6.2.1. Case and subjects description

The first three cases contain requirements produced
in different industrial contexts: embedded systems
in the automotive industry, business information sys-
tems for the chemical domain and agile development
of web-based systems. While the first two represent
rather classical approaches to Requirements Engineer-
ing, the third case applies the concept of user stories,
as it is popular in agile software development. The
fourth case is in an academic background and employs
both use cases and textual requirements. Regarding
subject selection, for each industrial case we selected
practitioners involved in the company, domain and
specification. We executed the findings rating (Step [5)
and the interviews regarding the QA process (Step |6
with the same experts, so that their answer in Step [0]
is based on their experience with practical, real ex-
amples. In the following, we describe the cases, as
well as the experts or students for each case. Table [4]
provides a quantitative overview of the cases.

Case A: Daimler AG. Daimler AG is a multinational
automotive corporation headquartered in Stuttgart,
Germany. At Daimler, we analyzed six different re-
quirements artifacts (A1-A6) which were written by
various authors. The requirements artifacts describe
functionality in different domains of engine control as
well as driving information. In this case, requirements
are written down in the form of sentences, identified
by an ID. The authors are domain experts who are
coached on writing requirements.

The requirements artifacts A1-A6 consist of 323
requirements in total (see Table[d)). All of the artifacts
of Daimler analyzed in our study were created by
domain experts in a pilot phase after a change in the
requirements engineering process as part of a software
process improvement endeavour. For RQ 2.2., we
reviewed 22 findings with an external coach who works
as a consultant for requirements engineering and has
tightly collaborated with the group for many years.

Case B: Wacker Chemie AG. In the second case, we
analyzed requirements artifacts of business informa-
tion systems from Wacker Chemie AG. Wacker is a
globally active company working in the chemical sec-
tor and headquartered in Munich, Germany. The

systems that we analyzed fulfil company-internal pur-
poses, such as systems for access to Wacker buildings
or support systems for document management.

We analyzed three Wacker requirements artifacts
that were written by five different authors. At Wacker,
functional requirements are written as use cases (in-
cluding fields for Name, Description, Role and Pre-
condition) whereas non-functional requirements are
described in simple sentences. The artifacts consisted
of 53 use cases and 13 numbered requirements (see
Table . For the reviews of the findings in RQ 2.2,
we selected 18 findings and discussed them with the
Chief Software Architect, who also has several years
of experience in quality assurance.

Case C: TechDivision. For the third case, we ana-
lyzed the requirements of the agile software engineer-
ing company TechDivision GmbH. TechDivision has
around 70 employees, working in 3 locations in Ger-
many. They focus mainly on web development, i.e.
creating product portals and e-commerce solutions for
a variety of companies, as well as web consulting, espe-
cially focusing on search engine optimizations. Many
of their products involve customisation of Magent(ﬂ
or Typoiﬂ frameworks.

In their projects, TechDivision follows an agile soft-
ware development process using either Scrum [68] or
Kanban [3] methodologies. For their requirements,
TechDivision applies user stories [14], which they write
and manage in Atlassian JIRAE User stories at Tech-
Divison follow the common Connextra format: As a
[Role], I want [Feature], so that [Reason]. We will
also follow this terminology here.

The systems under analysis consist of two online
shopping portals, a customer-relationship system and
a content-management system, all of which we cannot
name for non-disclosure-agreement reasons. In total,
we analyzed over 1,000 user stories containing roughly
28,000 words. For RQ 2.2, we met with an experienced
Scrum Master and a long-term developer, who have
worked on several projects for TechDivision.

Shttp://www.magento.com
“http://www.typo3.org
8https://atlassian.com/software/jira

20

http://www.magento.com
http://www.typo3.org
https://atlassian.com/software/jira

Case D: University of Stuttgart. The requirements of
Case D were created by 52 groups of three 2nd-year
students each during a compulsory practical course in
the software engineering programme at the University
of Stuttgart. We removed one artifact, because it was
incorrectly encoded, thus resulting in 51 requirements
artifacts for this analysis.

8000
I

6000

4000

2000
I

Figure 6: Variation of size of requirements artifacts
in Case D in words

The resulting requirements artifacts differ vastly in
style; hence, we were unable to count them in terms of
requirements, but instead only counted the structured
use cases as provided by the authors, and quantified
the artifacts by word size. The average size of a
requirements artifact was 4,471 words (min: 1,425,
max: 8,807, see Fig. @ and contained 19 use cases
(min: 6, max: 39), thus creating a set of artifacts of
nearly a quarter of a million words, including more
than 950 use cases.

For practical reasons, we could not evaluate each
research question in each case: For example, RQ 3
depends on the existence of reviews with documented
results, which is often not existent in practice. Fur-
thermore, depending the answers of RQ 4 on the po-
tentially less experienced students from Case D would
introduce a threat to the validity of our evaluation.

21

Table |5| shows the mapping between research ques-
tions and study objects. The interviews for RQ 2.2
and RQ 4 lasted 60 minutes for each Case A and B
and 120 minutes for Case C.

Table 5: Study objects usage in research questions

n
(=] O
23 Z:1
= I s H 8
2 8 & 5 = £
E 3 8§ < & =
B - A s
) A
— — [aN]
o o C o o C
Case [o o o R o o' a1
A: Daimler v v VY v
B: Wacker v v VY v
C: TechDivision v v v Y v
D: Univ. of Stuttgart v vV v

6.2.2. RQ 1: How many Requirements Smells are
present in the artifacts?

Under this research question, we quantify the num-
ber of findings that appear in requirements. Table [f]
shows the number of findings for each case, each re-
quirements artifact and each smell and also puts these
numbers in relation to the size of the artifact. We
analyzed requirements of the size of more than 250k
words, on which the smell detection produced in total
more than 11k findings, thus revealing roughly 44
findings per thousand words.

Table[6]shows that all requirements artifacts contain
findings of Requirements Smells. They vary from 5
findings for the smallestﬂ case (A3) up to 572 for the
largest case (C4). The number of findings strongly
correlates with the size of the artifact (see Fig. [7]
Spearman correlation of 0.9). Hence, in the remainder,
we normalize the number of findings by the size of the
artifact.

The artifacts of Daimler have an average of 26 find-
ings per thousand words, in contrast to 41 for both

9in terms of total number of words

‘(poAeldsip are sjoejILIe SUIYR[OLI0D SSI] JO S(]
Auo (en[q) sesed 11e8)IN)g 1) I0] ‘suoseal A)[Iqepeal 10]) JoRJIIIR JO 9ZIS)M S9)e[a1100 A[SuoI)s sSuIpuy jo Ioquiny :J InSry

10€}111Y Ul SPIOAA JO JaquinN

000¢T 0000T 0008 0009 000t 0002 0
| | | | | | |
)
R W
o 61a Eﬂmoﬁ_m v -
— O
S
pd
C
3
N T
- o @
0 -~
<A
Tl
>
8 m..
© @
wm
uebnns e >
TN
- o =
uoIsINIYIaL © g
Q
PeM ¢
ol
= O
lojwreqg = ©

22

Wacker and TechDivision and 43 for the artifacts pro-
duced by the students. Best to analyze the variance
within a requirements artifact seems Case D, in which
multiple teams had a similar background and project
size. Fig. [§shows the variance between the artifacts
of Case D with an average of 44 findings, a minimum
of 26 findings (D11) and a maximum of 75 findings
(D32) per 1,000 words.

70
I

60
I

50
I

40

Figure 8: Number of findings per 1,000 words in Case
D

When inspecting the different Requirements Smells,
we can see that the most common smells are vague
pronouns with 25 findings per 1,000 words, followed
by the negative words smell with 6 findings and
the loophole smell with 4 findings. The least of-
ten smells are non-verifiable terms with 1 finding
per 1,000 words, and ambiguous adverbs and ad-
jectives with 0.25 findings per 1,000 words. In fact,
the most common smell, vague pronouns, appears
100 times more often than the ambiguous adverbs
and adjectives. To analyze the variance in depth,
we again take the students’ artifacts for reference.
Fig. 0] shows the relative number of findings across
the projects.

23

Interpretation. We interpret the quantitative
overview along three variables: projects, contexts and
the different Requirements Smells.

Projects When comparing at project level, we see
that Cases A1-A6 (with outlier A5) and C1-C4
(with outlier C3) show quite similar numbers.
In contrast Bl to B3 vary between 28 and 68
findings per 1,000 words. When looking into
the most extreme outliers B3 and D32, we see a
systematic error that creates a large number of
findings: Both projects repeatedly explain what
the system should'"| do instead of what it must
do. 16 of 19 loopholes findings in B3 and 29
of 37 loophole findings in D32 root from this
problem. This can lead to difficult issues in con-
tracting as requirements that are phrased with
a should are commonly understood as optional
(see e.g. RFC2119 [9] for a detailed explanation).

Hence, we could see a surprising consistency in
two of three industrial case studies. The Wacker
data varies, so does the students case. In both
cases, the negative extremes point at issues that
potentially have expensive consequences.

Context The four cases differ strongly in their con-
text: They write down requirements in differ-
ent forms, vary in their software development
methodology and also produce software for dif-
ferent domains. When comparing the findings
at the domain level, we see that Daimler arti-
facts with an average of 26 findings per thousand
words contain less findings than both Wacker and
TechDivision with 41 findings and the artifacts
produced by the students with 43 findings.

Our partners reported that there have been train-
ings for the authors of the cases A1-A6 recently,
which could explain the difference. Another rea-
son could be the strong focus that the automotive
domain puts on requirements and requirements
quality in contrast to the other domains. Lastly,
also the strict process in this domain could be a

10801l is a German modal verb that is less strict than an
English must.

(9se) ut spiom (00‘T Iod S[[oWS JO UOTJBIIBA :G 9INSTI

SQlanpy ‘quy a|genuan-uoN sanneledwo) saniebaN saneiadns "d anfep sajoydoo] aAndalgns
| | | | | | |

(0]

0¢

0€

ov

0S5

24

reason for this striking difference of the Daimler
requirements. Unsurprisingly, the students’ re-
quirements form the lower end of the scale, yet
not by much.

Requirements Smells When comparing the eight
smells, we see a strong variance between the num-
ber of findings, both in absolute as well as relative
values. A qualitative inspection indicates reasons
for the most occurring smells. First, the smell
detection for vague pronouns finds all substi-
tuting pronouns in the requirements. Especially
in German, in many sentences the reference of
the pronoun can sometimes be derived from gen-
der and grammatical case of the word, thus cor-
rectly detecting pronouns, but not wvague pro-
nouns. RQ 2.1 quantifies this issue. Second, the
most common indication for loophole findings
is the aforementioned use of the word should. We
discuss this case in-depth with practitioners in
RQ 2.2. Third, we will also inspect reasons for
the high number of negative words findings in
RQ 2.1 and RQ 2.2.

Answer to RQ 1. The number of findings in require-
ments artifacts strongly correlates with the size of
the artifact. There are roughly 44 findings per 1,000
words and some contexts show a striking similarity
in the number of findings for their artifacts. In our
cases, the automotive requirements had a lower num-
ber of findings whereas student artifacts contained
a higher number of findings relative to the size of
the artifacts. The most common findings are for the
smells loopholes and vague pronouns.

6.2.3. RQ 2.1: How accurate is the smell detection?

To understand the capabilities of the smell detec-
tion, we need to understand precision as metric indi-
cating how many of the detected findings are correct,
as well as recall as a metric indicating how many of
the correct findings are detected.

Precision. To understand to which extent the num-
bers of findings for certain smells in RQ 1 are caused
by the detection mechanism, we inspected a random
sample of 616 findings by taking equivalent sets of

25

findings from each project and manually classifying
whether the finding fulfills the smell definition. We
could not inspect the same number of findings of each
smell for each project, because some projects only had
few or even no findings of a certain smell (see number
of findings per project in Table @

Table 7] and Fig. [I0]show the summary of this anal-
ysis: The precision of the detection of the subjec-
tive language smell revealed only three false pos-
itives in total, thus leading to a precision of 0.96.
Non-verifiable words, loophole, and ambiguous
adverbs and adjectives smells range between 0.70
and 0.81, hence leading to roughly one mistake in four
suggestions. Comparative and superlative smells
range around 0.5 which would mean that every sec-
ond finding is correct. At the rear end of the list
are the negative words and vague pronouns smells
with one correct finding in three to four suggestions.
Across all smells, the precision is between 0.48 (over all
inspections) and 0.59, if we take the varying number
of inspected findings between the smells into account.
To understand these numbers, we qualitatively in-
spected the false positive classifications, revealing the
following main reasons for false positives:

Grammatical errors in real world language.
The first issue that creates false positives is the
fact that our study analyzes real world language.
Some of the requirements, especially in Case
C, contained a number of grammatical flaws as
well as dialectal phrases, which lead to wrong
results in the automatic morphologic analysis
and automatic POS tagging and consequently
also to false positives during smell detection.

Vague pronouns. The smell detection for vague
pronouns showed the lowest precision. In the
detection of this smell, we look for substituting
pronouns, which are pronouns where the noun
is not repeated after the pronourm of which we
characterize only every fourth finding as a defect.
The reason behind this poor performance, be-
sides a number of false positives due to the poor
grammar mentioned before, is the comparably

1E.g. The father of these. vs The father of these kids.

large number of grammatical exponents of the
German language. In addition to number and
three grammatical genders, the German language
also has four grammatical cases. Therefore, in
various instances of substituting pronouns, there
is only one grammatical possibility of what the
pronoun could refer to.

Findings in conditions. A third reason for false
positives is that the smell detection, so far, takes
very little context into account. For example, the
comparatives smell aims at detecting require-
ments that define properties of the system rela-
tive to other systems or circumstanceﬂ When
searching for grammatical comparatives in re-
quirements, roughly 48% of the cases are of the
aforementioned kind. In roughly the same num-
ber of cases, however, the comparative describes a
condition. For example, if the requirement states
that if the system takes more than 1 second to re-
spond [. ..], the comparison is not against another
system or circumstance but against absolute num-
bers. Therefore, in this case, the comparative
does not indicate a problem (one could even argue
that this is an indicator for good quality).

A similar problem holds for the negative
phrases smell: The smell detection aims at re-
vealing statements of what the system should not
do. Often, however, the negative is mentioned
in conditions. For example, if the requirements
express what to do if the user input is not zero
[- ..], the negation relates to a condition and not
to a property of the system.

Recall. When analyzing the accuracy of an automatic
detection, we must look not only at precision, but
also at recall, i.e. the ratio of all detected findings to
all defects of a certain type in an artifact. To this
end, we inspected one artifact of each case, in total a

12 As discussed in Sect. the problem of comparatives in
requirements is validation: How can we understand whether
a system fulfills a requirements if that requirement is stated
in a relative instead of an absolute way? What if the system
in comparison changes its properties, would this render the
requirement suddenly unfulfilled?

26

set of roughly 16,200 words, and manually identified
the findings in each artifact. Due to the problems of
distinguishing the various ambiguity-related smells,
we analyzed the recall of these four smells as if it
was one smell, without further differentiation (see
Section |6.1.3]).

The manual inspection revealed 200 findings in this
artifact sample and an average recall of 0.82. Table [§]
and Fig.[I0]show the summary of the results: The com-
parison shows a recall between 0.84 and 0.95 for four
of the five investigated smells. The highest recall was
achieved by the Comparative Requirements Smell,
with 0.95, which means that the smell detection missed
one in 20 findings. The fifth smell, with the lowest
recall, is Superlative Requirements Smell with a
recall of 0.5. However, this smell is one of the rarest
of the smells, as one can also see in the results to RQ
1. Therefore our analysis of the recall of this smell is
based on few data points. Hence, we suggest to take
the recall of this smell with care, and suggest that
future studies should investigate this issue in more
depth.

A further analysis of the false negatives shows that
the smell detection missed findings because of impre-
cisions in the NLP libraries (i.e. Stanford NLP [71] for
Lemmatization and POS Tagging and RFTagger [60]
for morphologic analysis). For the dictionary-based
smells, the lemmatization did not correctly deduce
the correct lemma, e.g. it did not understand that
a certain word was a plural of a lemma. If only
the lemmatized version of the word, i.e. the singular
form, is in the dictionary, then the smell detector
does not correctly identify the smell. In the false neg-
ative cases for the Comparative and Superlative
Requirements Smell, RFTagger did not correctly
classify the inflection.

Interpretation. The study revealed that the precision
strongly varies between the different smells. Qual-
itative analysis provided further insights described
next.

We can now explain the high number of findings
for vague pronouns in RQ 1. If we assume that a
quarter of the findings are correct, the number of
findings in this category is closer to the remaining
smells. Also, we could see that while there are certain

reasons of impreciseness that root from the study
objects themselves and are, thus, unavoidable, there
is plenty of space for optimization. First, existing
techniques from NLP could be applied to improve
certain smells, such as the vague pronouns. Second,
from the examples we have seen, we would argue that
the application of heuristics could heavily improve the
precision of existing smell detection techniques. For
example, if we exploit the information available from
POS tagging, we can find out whether a comparison
refers to a number or numerical expression.

Regarding recall, our analysis shows only a slight
variance between the smells, with the only outlier
being the Superlative Requirements Smell; how-
ever, since this is a very rare smell, this recall is based
on only few data points, therefore, we must consider
this result with care. When inspecting the reasons
for false negatives, we found that optimizations could
be made through the lemmatizer. Future research in
this direction should compare whether the accuracy of
lemmatizers as reported in the field of computational
linguistics also holds for requirements engineering ar-
tifacts. Furthermore, we analyzed requirements in
German language where lemmatization is a more dif-
ficult problem than in English, since the language
makes stronger use of inflections (e.g. with cases or
gender). Hence, smell detectors based on lemmatiza-
tion for the English language might work better than
the results indicate in our analysis.

In general, the precision and recall are therefore
comparable to other approaches with related purposes
(see Sect. . However, is it sufficient for an application
of Requirements Smells in practice?

First, when looking at precision, we must take into
account that the current state of practice consists
still of manual work and that the cost for running
an automatic analysis is virtually zero. Nevertheless,
checking a false positive finding takes effort which an
inspector could rather spend in reading the document
in more detail. However, as we see a high variation in
the precision over different smells, we need to discuss
these separately. Several of the smells have a preci-
sion of 0.7 and higher which is considered acceptable
in static code analysis [8]. For other Requirements
Smells, the precision is below 0.5. This means that
every other finding will be a false positive. This can

be critical in the effort spent in vain and annoy a
user of the smell detection. Yet, we follow Menzies et
al. [57] that a low precision can be still useful “When
there is little or no cost in checking false alarms.” In
our experience, the cost of checking a finding is often
just a few seconds.

Second, when looking at recall, most of the smell
detections reach a recall of more than 80%. Various
publications, most prominently Kiyavitskaya [40] and
Berry et al. [5], argue that a recall close to 100% is a
basic requirement for any tool for automatic QA in
RE. The core argument is that with a lower recall, re-
viewers stop checking these aspects and consequently
miss defects, and that reviewers need to check the
complete artifact anyway. However, if taking the ex-
ample of spell checkers and grammar checks, these are
still used on a daily basis, although they are far away
from 100% recall. Therefore, one could consequently
also argue that the precision is more important than
the recall.

In any case, whether the reported precision and re-
call are sufficient in industry needs further research in
the future. As mentioned above, it mainly depends on
two factors: the required investment versus the gained
benefit (similar to the concept of technical debt). For
the required investment, we argue that, based on our
experience of analyzing the various cases presented
here, one can quickly iterate through the detected
findings with low investment. To further support this
discussion, the following research question analyzes
the aspect of the benefits to practitioners in more
detail.

Answer to RQ 2.1. As shown in Tables [7] and [, and
as shown in Fig. the precision is on average around
59%, with an average recall of 82%, but both vary
between smells. We consider this reasonable for a task
that is usually performed manually. However, this also
depends on the relevance of findings to practitioners,
which we analyze in RQ 2.2. The study also reveals
improvements for future work through the application
of deeper NLP.

27

<
- .
Ambiguous
¢ Compgrative Non- Adverbs
: verifiable and
Vague Requirements Terms Adjectives
Pronouns &
& Loopholes Subjective
© | Negative Language
o Words
Q |
o
]
3 &
o Superlative
Requirements
<
o
N
o
o |
o
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Precision

Figure 10: Precision and recall of the discussed smell detection approaches.

28

Table 8: Recall of smell detection within sample of 4
artifacts (16,271 words)

2
i
g
-
=
B=! =
& &
B
<
R
Smell =3 =3 o
Ambiguity-related S. 74 64 0.86
Superlative Requirements S. 4 2 0.50
Comparative Requirements S. 21 20 0.95
Negative Words S. 64 54 0.84
Vague Pronouns S. 37 34 0.92
Average 40 34.8 0.82
Overall 200 174 0.87

6.2.4. RQ 2.2: Which of these smells are practically
relevant in which context?

To understand whether the Requirements Smells
help detecting relevant problems, we first performed
a pre-study, in which we confronted practitioners of
Daimler and Wacker with findings. The pre-study,
which we reported in Femmer et al. [24], aimed at
receiving qualitative and tacit feedback. It showed
that Requirements Smells can in fact indicate relevant
defects.

In contrast, in this study we analyze relevance in
specific categories by interviewing practitioners at
TechDivision on their opinion on the findings in terms
of relevance, awareness, and whether these practition-
ers would resolve the suggested finding.

Quantitative observations. Table[d|reports the 20 find-
ings that we discussed with TechDivision. In summary,
we can see that they considered 65% of the findings
as relevant for their context. Furthermore, they have
not been aware of 45% of the findings. Lastly, they
would act on 50% of the presented findings and on
40% even immediately.

29

Qualitative observations (true positives). The find-
ings that the tool produces mostly constituted forms
of underspecification. For example, in Finding #1 (see
Table@: "As a searcher, I want to see the checkbozxes
in the different categories displayed more clearly, so
that. .. " (for similar examples, see Findings 3, 4, 14,
16, and 20). In this case, as in many of the other exam-
ples, the practitioners stated that no developer could
implement this story properly. They also recalled
various discussions in estimation meetings on what
was to be done to complete these types of storieﬁ

In the previous research questions, we have seen that
Requirements Smells are able to detect 1loopholes in
requirements, such as the usage of the word should. To
understand the relevance of this finding in the context
of an agile company, we also discussed the loophole
in Finding #6. When we pointed out the finding, they
responded that they considered expressing what the
system should do in user stories problematic. They
considered this defect a low risk, as the developers
understood ("If you are told that you should take out
the trash, you understand that it is an imperative.")
and their user stories did never turn out to be of legal
relevance. They concluded that they want to avoid
this, but it has no immediate urgency in a project
situation.

ISO 29148 discusses the use of negative state-
ments ("capabilities not to be provided"). In a previ-
ous study [24] practitioners expressed their reluctance
of this criterion. In contrast, in this study, practition-
ers said they would act upon 2 out of 3 of the negative
statements (Findings #9-11) that we presented to
them as they revealed unclear requirements. In one
case they even remembered that this led to discussions
about the implementation during the sprint. Table []
shows many more, similar examples.

Qualitative observations (false positives). Also inter-
esting are those cases that practitioners considered not

13Note that discussions can have different objectives, i.e. what
is to be implemented and how. For these, how to implement a
story is the team’s task and thus discussions can help finding
the best way. In contrast, what the product owner wants is
outside of the team’s scope and therefore should not be a matter
of discussion.

relevant in their context or where practitioners said
they would not act upon. Summarized, the reasons
were the following:

Domain and context knowledge: Some stories
that were unclear to outsiders were understand-
able for someone knowing the system under
consideration. For example, in user story #18 it
was unclear to the first and second author what
their refers to. It was clear, however, to both
practitioners with knowledge about the system.

Process requirement: In Finding #8, the smell re-
veals another conspicuous finding: The developer
should put as low effort as possible into the im-
plementation of this story. In the discussion, the
reason for this was that the customer did not
want to pay much for this implementation. Thus
the story should only be fulfilled if it was possible
to be fulfilled cheaply. While the practitioners
told us they would not change anything about
this story, they agreed that the smell pointed
out something that violates common user story
practice.

Finding in reason part: In four cases, the practi-
tioners agreed to the finding but considered it
irrelevant as the finding was inside the reason
part of the user story. This is due to this part of
the user story only serving as additional informa-
tion. This reason part is not used in testing nor
is the information directly relevant for implemen-
tation. The main purpose is to understand the
business value and to indicate the major goal to
the team, similar to goals and goal modeling in
traditional requirements engineering [50].

Answer to RQ 2.2. In summary, the practitioners
expressed that 65% of the discussed findings were
relevant, as they lead to lengthy discussions and un-
necessary iterations in estimation. They also saw the
problem of legal binding, but in contrast to the prac-
titioners of Case A and B, they considered these find-
ings less relevant. Due to these results, they expressed
their strong interest in exploring smell detection for
projects; we will explain the results of this discussion
in RQ 4.

Further observations of quality defects in different
parts of a user story

We considered especially the last explanation for re-
jecting findings (finding in reason part of a user story)
particularly interesting. We had noticed that the rea-
son part was often written in a rather imprecise way.
To be able to quantify this aspect, we automatically
split user stories according to the language patterns
and quantified the distribution of words as well as
findings over the different parts of user stories.

Table [I0] shows the results of this analysis. The
number of words is roughly distributed as follows: 11%
of the words of a user story describe the role, 55% of
the words describe the feature and 34% describe the
reason. Of the 1,082 user stories, 290 had no reason
part at all. Due to this uneven distribution, similar as
in the previous analyses, we normalize the number of
findings by the number of words in each part resulting
in the number of findings per 1,000 words.

Only 1% of the findings are located in the role
part. In fact, when we inspected these findings, they
were false positives due to the grammatical problems
described in the previous section. The absence of
findings in this section is expected, as this part of
the user story only names the role and does not offer
many chances for smells as described in Sect. [3.2] For
the remainder, 46% of the findings are located in the
feature and 53% are located in the reason part. In
relation to its size, the difference is striking: With 64
findings per 1,000 words, the reason has nearly double
the number of findings of the feature part and nearly
70% more findings than the average requirement, as
analyzed in Sect. [6.2.2]

In summary, the reason part of user stories is par-
ticularly prone to smells, but the qualitative analysis
in RQ 2.2 reveals that practitioners consider findings
in this section to be less relevant. This investigation
could support further application of Requirements
Smells in practice by helping to prioritize smells ac-
cording to their location.

6.2.5. RQ 3: Which requirements quality defects can
be detected with smells?

For 44 of the 51 requirements artifacts the stu-

dents provided technical reviews. We qualitatively

analyzed the results of 10 randomly selected reviews

30

(around 20%). The inspected reviews were conducted
by 5-7 reviewers (mean: 5.6), took 90 minutes and
resulted in 18-69 defects (mean: 38.1). We iterated
through the 381 defects documented in the reviews
and evaluated whether the smell detection produced
findings indicating these defects. If no smell indicated
the defect, we openly classified the defects. We did
not quantify these results, because the resulting num-
bers would assume and suggest that the distribution
of defects is representative for regular projects, which
we are unsure about (i.e. because of a high number of
spelling and grammatical issues).

The classification of the defects and their compari-
son with the detected smells resulted in the following
list of of defects indicated by Requirements Smells:

Sentence not understandable. In some instances,
when the defect suggested changing the sentence
to improve understandability, these sentences
were highlighted especially by the vague pro-
nouns and negative statements smells.

Improper legal binding. Various requirements ar-
tifacts had issues with improper legal binding.
In one case, the reviewers recognized this and
demanded the use of the term must. The loop-
holes smell pinpointed at this issue.

Unspecified/unmeasurable NFRs. Various
smells, especially the superlatives smell,
indicated at defects of underspecification within
non-functional requirements.

The remaining defects were not indicated by Re-
quirements Smells.

Interpretation. The quantitative distribution of de-
fects is not necessarily representative for industry
projects and, thus, has not been not analyzed. The re-
views clearly show that manual inspection discovered
the same defects as in the previous research question:
Understandability, legally binding terminology and
underspecified requirements. These are issues with re-
gards to representation but also the content described
in the artifact. We argue that these issues are com-
mon for requirements artifacts. Requirements Smells
can therefore indicate relevant defects from multiple,

31

independent sources (manual inspection, interviews
with practitioners, independent manual reviews) for
multiple, independent cases.

Answer to RQ 3. Automatic smell detection can point
to issues in both representation (e.g. improper legal
binding) and content (underspecified /unmeasurable
NFRs). The analysis of the reported defects indicates
that more defects could be automatically detected
(see section further discussion on detectability of de-
fects described next). Nevertheless, just as for static
code analysis, we see that automatic analysis can not
indicate all defects and thus must be accompanied by
reviews [73]. The fourth research question aims at
analyzing this aspect in depth.

Further discussion on detectability of defects. During
the analysis, if no smells indicated the defect, we
openly classified the defects. While discussing the
resulting list of defects and the degree to which they
are detectable within the group of authors, we came
up with a classification which is broader as initially
planned while designing the study. This classification
considers whether a defect:
e Already can be detected
e (Could be detected, but is not implemented yet
in our detection
e Cannot be detected at the moment, but should be
soon
e Cannot be detected at all and probably won’t be
soon
This classification is purely based on our knowledge
of existing related work and our subjective expecta-
tions gained during the data analysis process. The
classification yielded in a map visualised in Fig. [I1]
The figure is structured in two dimensions: On the
vertical axis, we group the defects into defects relating
to the content, and defects relating to representation.
Furthermore, on the horizontal axis, we map the items
according to the expected precision and completeness
we believe the detection could be (i.e. the classifi-
cation above). The further left an item, the more
precise and complete we expect a smell detection to
be; the items on the right we assume to be close to
impossible to detect in a general case.

UOT10910p pUR UO1RIUSaIdoI/JU090d AQ POYISSR[O ‘SMOIADI SJUOUISIMDAI UT

s||ows sjuawaainbay Aq

<

s||ows sjuawaainbay Aq

>

<

9]qe129313p J0U JaYyiey

swelbelp 10 MOJ} 8SBD 89S SAIINUIUN
uoljew.ojul 1081100U| S8UOD OljUBWSS
uolrew.ojul ayojdwoosu uonewloul Bupolpeuod Ajjeonuewes

\

3|qeyalaq

swelbelp juaisisuooul Ajjeinionis
Buiuo|n 7 Aouepunpal [einjonig
swia)l Alojepuew Buissiy

abew Buireaddeun abew ajgepealun
9|qe} JO 2INJONIIS SAIINUIUN suoneziway [ednyeuun

on ut Aienbuis
Buipoou]

a24n1on43§ pub uonplU3Said

swis} Jo abesn juslsisuoou|

sulie} payoadsiapun swua} o10ads-urewop pauepun

uonuaAuod bunejoin BuiweN
Aresso|b6 ul swia) Aressaosuun

ABojourwiag

(urewop) piom BuoIpn (sbenbue]) piom Buoipn

ainxiw abenbue]
Jewweln
Buyieds

sonupbwas abonbuoy

sgurpury :11 9In3rg

]
]
paelLag “
o mmmmm e ---
| Lo
| -1
1 SH4N 8|qeunseawun/paiyosdsun | z
| 1A
!]
t-———— === | -
!]
!]
!]
!]
!]
| H o
! Buipuiq jebs| sadosdw B
1 -
' B
| 13
| !
“ g
| =]
I
| |
| |
|]
|]
|]
|]
|]
\ I
H

s||ows sjuawaainbay Aq

8|gepue)SIapuN J0U 80UBUSS

32

With the defects that our current approach does not
reveal, this research question shows that more defects
could be detected: These are namely defects with
terminology, singularity in use cases and structural
issues focusing on the content such as the absence
of mandatory elements in the artifact [37], structural
redundancy [34] or structural inconsistency between
content. It remains unclear how far more enhanced
language analysis with more sophisticated NLP and
ontologies can enable to understand language. In any
case, when a defect remains subtle and vague in its
definition, such as an unintuitive structuring or design,
we only see potential for automation if a defect can
be defined precisely. For problems relating to the
domain itself (e.g. incomplete information about the
domain or incorrect information with regards to the
domain), we consider it impossible to detect issues
unless formalizing the concepts of the domain.

6.2.6. RQ 4: How could smells help in the QA pro-

cess?

After the interviews and analysis, we asked all in-
volved practitioners whether or not they think re-
quirements smell detection is a helpful support, and
whether and how they would integrate it in their
context. We asked those questions openly and tran-
scribed the answers for validation by the interviewees
and later coding. In the following, we report on the
results structured by topics. Where applicable, we
provide the verbatim answers in relation to their cases

(A,Bor C).

Owverall FEvaluation. In general, all practitioners
agreed on the usefulness of the smell detection even if
considering different perspectives that arise from their
process setting. One practitioner (Case C) reports
that he expects one benefit in using smell detection is
that it would lead to a reduction of the time spent for
effort estimations (in context of agile methods), as the
product owner could benefit from the smell detection
on the fly and, thus, avoid misinterpretations later.

33

Quotes on Overall Evaluation
“I think that smells can help to analyze a
specification.”

B. “The method of Requirements Smells is a
valuable extension in the area of require-
ments engineering and gives helpful input
concerning the quality of specified require-
ments in early development phases.”

C. “I think such a smell detection is of high
value to make sure that our team is con-
fronted with already quality assured [user]
stories. This can reduce the time in our ef-
fort estimations, because the product owner
would directly notice on the fly what could
lead to misinterpretations later.”

Integration into Process. When asked for how the
practitioners would integrate the smell detection into
their process setting, we got varying answers depend-
ing on the process. The practitioner relying more
on rich process models (Case B) could imagine using
a smell detection either as a support for the person
writing the requirements or as part of a more funda-
mental QA method for the company. But also the
practitioner relying more on the agile methods (Case
C) could imagine using Requirements Smells as a sup-
port for the person writing the requirements or in
context of analytical QA. In addition, one potential
use is seen in context of problem management. Im-
portantly, all practitioners see the full potential of a
smell detection only if integrated in their existing tool
chain (see also quotes on constraints and limitations).

Quotes on Integration into Process

“I like to compare Requirements Smells to
the “check spelling aid" known e.g. from
Microsoft Word. So for me Requirements
Smells are intuitive and lightweight and
should be used and integrated within require-
ments engineering and quality assurance
processes.”

C. “As a product owner, I would use a smell
detection on the fly [...J. In addition, smell
detection could help in analytical QA, as it
could reveal when a problem occurs repeat-
edly, either in a project or in the company
as a whole.”

Constraints and Limitations. One facet we consider
especially interesting when using qualitative data is
the chance to reveal further fields of improvement.
We therefore concentrate now on the constraints that
would hamper the usage of a smell detection. One
facet we believe to be important is that practitioners
want to avoid additional effort when using smell detec-
tion in their context. Furthermore, the practitioner
of Case A believes that the automatic smell detection
requires a common understanding on the notion of RE
quality. He further indicates that the smell detection
should explicitly take into account that some criteria
cannot be met at every stage of a project.

Quotes on Constraints and Limitations
“First, the people who need to write the
specification received training which gives
the required performance criteria. Second,
abstraction levels must be taken into ac-
count during the smell detection process,
since at higher abstraction levels different
criteria cannot be met (e.g. vague pronouns
or subjective language).”

B. “As a product owner, I would use a smell
detection on the fly provided that it would
not mean additional effort [such as by hav-
ing to use another tool].”

Answer to RQ 4. Our practitioners provided a general
agreement on potential benefits of using smell detec-
tion a quality assurance context. When asked how
they would integrate the requirements smell detection,
they see possibility for both analytical and construc-
tive QA, provided, however, this integration would
not increase the required effort, e.g. by integrating
the detection into existing tool chains.

6.2.7. Evaluation of validity
We use the structure of threats to validity from [64]
to discuss the evaluation of the validity of our study.

Construct validity. In our evaluation, we analyzed
Requirements Smells in the terms of false positives,
relevance and relation to quality defects. There are
threats that the understanding of these terms varies
and, thus, the results are not repeatable. Yet, we are

confident that our validity procedures described in
Sect. reduced this threat. For the false positives,
we classified a subset of the findings independently,
and afterwards compared (inter-rater agreement Co-
hen’s kappa: 0.53) and discussed the results. We
subsequently reclassified a different subset of findings
again, which lead to an inter-rater agreement (Cohen’s
kappa) of 0.72. For the classification of false negatives,
we reclassified one document separately, calculating
the percentage of agreement on false positives{izl This
lead to an agreement of 88%.

We consider both of these substantial agreements,
especially in the inherently ambiguous and complex
domain of RE. Thus, we consider this threat as suffi-
ciently controlled.

Internal validity. A threat to the internal validity of
our results is that the experience of the students as
well as the practitioners might play a role in their rat-
ings of relevance or detection of quality defects. We
mitigated this threat by choosing only practitioners
for the ratings and interviews who had several years
of experience. The students are only in the second
year. We cannot mitigate this threat but consider the
effect to be small. There might be some defects not
found by the students that could have been indicated
by a smell as well as unfound defects undetectable
by smells. Hence, future studies will add to the clas-
sification but are unlikely to change it substantially.
Personal pride could potentially have an impact on
the answers to a RQ 2.2, if practitioners are not able
to professionally discuss their own work products. In
our cases, however, all practitioners openly accepted
the discussions (as can be seen in their answers). Even
though we carefully supervised this threat, we have
not found signs of personal bias in the cases involved.
Finally, the students might also have been influenced
by the review guidelines we provided. Yet, none of
the investigated smells was explicitly listed in the

14We did not employ Cohen’s kappa here, since the number
of true positives (non-smell words) would strongly dominate the
result and therefore skew the inter-rater agreement. Instead,
we calculated the ratio of findings which both rating teams
independently classified as false positive to the number of
findings which only one of the teams classified false positive.

34

guidelines. Instead, the guideline contained rather
high-level aspects such as “unambiguity”. Although
we consider this threat to be a minor one, it is still
present.

External validity. As requirements engineering is a
diverse field, the main threat to the external validity
of our results is that we do not cover all domains
and ways of specifying requirements. We mitigated
this threat to some degree by covering at least several
different domains and study objects, of which some are
purely textual requirements artifacts, some use cases,
and some user stories. We argue that this represents
a large share of today’s requirements practices.

Reliability. Our study contains several classifications
and ratings performed by people. This constitutes a
threat to the reliability of our results. We are confi-
dent, however, that the peer debriefing and member
checking procedures helped to reduce this threat.

7. Conclusion

In this paper, we defined Requirements Smells and
presented an approach to the detection of Require-
ments Smells which we empirically evaluated in a
multi-case study. In the following, we summarize
our conclusions, relate it to existing evidence on the
detection of natural language quality defects in re-
quirements artifacts, and we discuss the impact and
limitations of our approach and its evaluation. We
close with outlining future work.

7.1. Summary of conclusions

First, we proposed a light-weight approach to de-
tect Requirements Smells. It is based on the natural
language criteria of ISO 29148 and serves to rapidly
detect Requirements Smells. We define the term Re-
quirement Smell as an indicator of a quality violation,
which may lead to a defect, with a concrete loca-
tion and a detection mechanism, and we also give
definitions of a concrete set of smells.

Second, we developed an implementation that is
able to detect Requirements Smells by using part-of-
speech (POS) tagging, morphological analysis and
dictionaries. We found that it is possible to provide

35

such tool support and outlined how such a tool could
be integrated into quality assurance.

Third, in the empirical evaluation, our approach
showed to support us in automatically analysing re-
quirements of the size of 250k words. Findings were
present throughout all cases but in varying frequencies
between 22 and 67 findings per 1,000 words. Outliers
indicated serious issues. An investigation of the de-
tection precision showed an average precision around
0.59 over all smells, again varying between 0.26 and
0.96. The recall was on average 0.82, but also varied
between 0.5 and 0.95. To improve the accuracy, we
described concrete improvement potential based on
real world, practical examples.

A further analysis of reviews and practitioner’s opin-
ions strengthen our confidence that smells indicate
quality defects in requirements. For these quality
defects, practitioners explicitly stated the negative
impact of discovered findings on estimation and im-
plementation in projects. The study also showed,
however, that while Requirements Smell detection
can help during QA presumedly in a broad spectrum
of methodologies followed (including agile ones), the
relevance of Requirements Smells varies between cases.
Hence, it is necessary to tailor the detection to the
context of a project or company. We analyzed this
factor in depth, demonstrating that the reason part of
a user story contains most findings (absolutely and rel-
atively), but practitioners consider these findings less
relevant as they argue that this part is not commonly
used in implementation or testing. This raises the
question of the relevance of this part at all, at least
from a quality assurance perspective, which should
be investigated in future work.

Our comparison with defects found in reviews fur-
thermore showed that the Requirements Smell detec-
tion partly overlaps with results from reviews. As a
result, we provide a map of defects in requirements
artifacts in which we give a first indication where
Requirements Smells can provide support and where
they cannot.

Therefore, we provide empirical evidence from mul-
tiple, independent sources (manual inspection, inter-
views with practitioners, independent manual reviews)
for multiple, independent cases, showing that Require-
ments Smells can indicate relevant defects across dif-

ferent forms of requirements, different domains, and
different methodologies followed.

7.2. Relation to existing evidence

Existing approaches in the direction of automatic
QA for RE are based on various quality models, in-
cluding the ambiguity handbook by Berry et al. [7],
the now superseeded IEEE 830 standard [32] and pro-
prietary models. Yet, according to a recent literature
review by Schneider and Berenbach [67], ISO 29148
is the current standard in RE ‘“that every require-
ments engineer should be familiar with”. However,
no detailed empirical studies (see Table [1)) exist for
the quality violations described in ISO 29148. When
comparing to similar, related quality violations, also
few empirical, industrial case studies exist (see Ta-
ble[2). Gleich et al. [30] and Chantree et al. [1T] report
for conceptually similar problems, a precision of the
detection between 34% and 75% (97% in a special
case), and a recall between 2% and 86%. Krisch and
Houdek [49] report a lower precision in an industrial
setting. The precision and recall for the detection of
the smells, which we developed based on the descrip-
tion in the standard, are in a similar range to the
aforementioned. In summary, this work provides a
detailed empirical evaluation on the quality factors of
ISO 29148, including a deeper understanding of both
existing and novel factors.

We also take a first step from the opposite perspec-
tive: So far, to all our knowledge, all related work
starts from a certain quality model and goes into
automation. Our results to RQ 3 provides a bigger
picture for understanding in how far quality defects in
requirements could be addressed through automatic
analysis in general.

Our results to RQ 2.2 furthermore provides evi-
dence for the claim by Gervasi and Nuseibeh [29] that
“Lightweight validation can discover subtle errors in
requirements.” More precisely, our work indicates
that automatic analysis can find a set of relevant de-
fects in requirements artifacts by providing evidence
from multiple case studies in various domains and
approaches. The responses by practitioners to the
findings do, to some extent, contradict the claim by
Kiyavitskaya et al. [40] who state that “any tool [...]
should have 100% recall”. Practitioners responded

very positively on our first prototype and the smells
it finds. Yet, obviously, more detailed and broader
evaluations, especially conducted independently by
other researchers not involved in the development of
Smella, should follow.

7.3. Impact/Implications

For practitioners, Requirements Smells provide a
way to find certain issues in a requirements artifact
without expensive review cycles. We see three main
benefits of this approach: First, the approach, just
as static analysis for code, can enable project leads
to keep a basic hygiene for their requirements arti-
facts. Second, the review team can avoid discussing
obvious issues and focus on the important, difficult,
domain-specific aspects in the review itself. Third,
the requirements engineers receive a tool for immedi-
ate feedback, which can help them to increase their
awareness for certain quality aspects and establish
common guidelines for requirements artifacts.

Yet, the low precision for some of the smells might
cause unnecessary work checking and rejecting find-
ings from the automatic smell detection. Hence, at
least for now, it is advisable to concentrate on the
highly accurate smells.

For researchers, this work sharpens the term Re-
quirements Smell by providing a definition and a tax-
onomy. By implementing and rating concrete smell
findings, we also came to the conclusion, however, that
not all of the requirements defects from ISO/IEC/-
IEEE 29148 can be clearly distinguished as Require-
ments Smells. In particular, the difference between
Subjective Language, Ambiguous Adverbs and Adjec-
tives, Non-verifiable Terms, and Loopholes was not al-
ways clear to us during our investigations (see RQ 2.1).
Therefore, we, as a community, can take our smell
taxonomy as a starting point, but we also need to
critically reflect on some smells to further refine the
taxonomy.

Finally, empirical evidence in RE is, in general, dif-
ficult to obtain because many concepts depend on
subjectivity [65]. One issue increasing the level of
difficulty in evidence-based research in RE remains
that most requirements specifications are written in
natural language. Therefore, they do not lend them-
selves for automated analyses. Requirements Smell

36

detection provides us with a means to quantify the
extent of certain defects in a large sample of require-
ments artifacts while explicitly taking into account
the sensitivity of findings to their context. Hence,
this allows us to consider a whole new spectrum of
questions worth studying in an empirical manner.

7.4. Limitations

We concentrated on a first set of concrete Require-
ments Smells based on our interpretation of the some-
times imprecise language criteria of ISO/IEC/IEEE
29148. There are more smells, also with different char-
acteristics than the ones we proposed and analyzed.
In addition, even though we diversified our study ob-
jects over domains, methods and different types of
requirements, we cannot generalize our findings to
all applicable contexts. We therefore consider the
presented results only a first step towards the contin-
uous application of Requirements Smells in software
engineering projects.

7.5. Future work

Our work focuses on Requirements Smells based
on ISO/IEC/IEEE 29148. Future work needs to clar-
ify and extend this taxonomy based on related work
and experience in practice. This also includes the
development of other Requirements Smell detection
techniques to increase our understanding about which
defects can be revealed by Requirements Smells and
which defects cannot.

Second, this first study gained first insights into the
usefulness of Requirements Smells for QA. We further-
more sketched an integration of Requirements Smells
into a QA process. Yet, a full integration and the con-
sequences must be analyzed in depth. In particular,
we need to understand whether smell detection as a
supporting tool, similar to spell checking, as pointed
out by on of our participants, enables requirements
engineers to improve their requirements artifacts.

Lastly, Requirements Smells focus on the detection
of issues in requirements artifacts. They require a
thorough understanding of the impact of a quality
defect, which is hence also part of the requirements
smell taxonomy. This link must be carefully evaluated
and analyzed in practice. Our preliminary works on
this topic [23] [59] provide first ideas in that direction.

Acknowledgments

We would like to thank Elmar Juergens, Michael
Klose, Ilona Zimmer, Joerg Zimmer, Heike Frank,
Jonas Eckhardt as well as the software engineering
students of Stuttgart University for their support
during the case studies and feedback on earlier drafts
of this paper.

This work was performed within the project Q-
Effekt; it was partially funded by the German Federal
Ministry of Education and Research (BMBF) under
grant no. 01IS15003 A-B. The authors assume respon-
sibility for the content.

Bibliography
References

[1] V. Ambriola and V. Gervasi. On the system-
atic analysis of natural language requirements
with CIRCE. Automated Software Engineering,
13(1):107-167, 2006.

[2] B. Anda and D. I. K. Sjgberg. Towards an inspec-
tion technique for use case models. In Proceedings
of the 14th International Conference on Software
Engineering and Knowledge Engineering. ACM,
2002.

[3] D. J. Anderson. Kanban. Blue Hole Press, 2010.

[4] C. Arora, M. Sabetzadeh, L. Briand, and F. Zim-
mer. Automated Checking of Conformance to
Requirements Templates using Natural Language
Processing. IEEFE Transactions on Software En-
gineering, 41(10):944-968, 2015.

[5] D. Berry, R. Gacitua, P. Sawyer, and S. F. Tjong.
The case for dumb requirements engineering tools.
In Requirements Engineering: Foundation for
Software Quality, pages 211-217. Springer Berlin
Heidelberg, 2012.

[6] D. M. Berry, A. Bucchiarone, S. Gnesi, G. Lami,
and G. Trentanni. A new quality model for nat-
ural language requirements specifications. In
Requirements Engineering: Foundation for Soft-
ware Quality. Essener Informatik Beitriage, 2006.

37

17l

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

D. M. Berry, E. Kamsties, and M. M. Krieger.
From Contract Drafting to Software Specification
: Linguistic Sources of Ambiguity. Technical

report, School of Computer Science, University
of Waterloo, Waterloo, ON, Canada, 2003.

A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton,
S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak,
and D. Engler. A few billion lines of code later:
using static analysis to find bugs in the real world.
Communications of the ACM, 53(2):66-75, 2010.

S. Bradner. Key words for use in RFCs to In-
dicate Requirement Levels - RFC 2119. https:
//www.letf.org/rfc/rfc2119.txt, 1997.

A. Bucchiarone, S. Gnesi, and P. Pierini. Quality
Analysis of NL Requirements : An Industrial
Case Study. In 13th IEEFE International Require-
ments Engineering Conference, pages 390-394,
2005.

F. Chantree, B. Nuseibeh, A. D. Roeck, and
A. Willis. Identifying Nocuous Ambiguities in
Natural Language Requirements. 1/th IEEE In-
ternational Requirements Engineering Confer-
ence, pages 59-68, sep 2006.

A. Ciemniewska, J. Jurkiewicz, L. Olek, and
J. Nawrocki. Supporting Use-Case Reviews. In
Business Information Systems, pages 424-437.
Springer Berlin Heidelberg, 2007.

A. Cockburn. Writing Effective Use Cases.
Addison-Wesley, 2000.

M. Cohn. User stories applied: For agile software
development. Addison-Wesley Professional, 2004.

A. Davis, S. Overmyer, K. Jordan, J. Caruso,
F. Dandashi, A. Dinh, G. Kincaid, G. Ledeboer,
P. Reynolds, P. Sitaram, A. Ta, and M. Theo-
fanos. Identifying and measuring quality in a soft-
ware requirements specification. In Proceedings
First International Software Metrics Symposium,
pages 141-152, 1993.

F. De Bruijn and H. L. Dekkers. Ambiguity in
natural language software requirements: A case

38

[17]

(18]

([19]

20]

21]

22]

23]

study. In Requirements Engineering: Foundation
for Software Quality, pages 233—-247. Springer
Berlin Heidelberg, 2010.

C. Denger, D. Berry, and E. Kamsties. Higher
quality requirements specifications through nat-
ural language patterns. In Software: Science,
Technology and Engineering, pages 80-90. IEEE,
2003.

F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami.
An automatic quality evaluation for natural lan-
guage requirements. In Proceedings of the Sev-
enth International Workshop on Requirements
Engineering: Foundation for Software Quality,
volume 1, pages 4-5, 2001.

F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami.
The linguistic approach to the natural language
requirements quality: benefit of the use of an au-
tomatic tool. In Proceedings 26th Annual NASA
Goddard Software Engineering Workshop, pages
97-105. IEEE Computer Society, 2001.

M. Fagan. Design and code inspections to re-
duce errors in program development. In Software
pioneers, pages 575—-607. Springer, 2002.

D. Falessi, G. Cantone, and G. Canfora. Empir-
ical Principles and an Industrial Case Study in
Retrieving Equivalent Requirements via Natural
Language Processing Techniques. IEEE Trans-
actions on Software Engineering, 39(1):18-44,
2013.

A. Fantechi, S. Gnesi, G. Lami, and A. Maccari.
Application of linguistic techniques for Use Case
analysis. Requirements Engineering, 8(3):161—
170, 2003.

H. Femmer, J. Kucera, and A. Vetro. On the
impact of passive voice requirements on domain
modelling. In Proceedings of the 8th ACM/IEEFE
International Symposium on Empirical Software
Engineering and Measurement, ESEM 14, pages
21:1-21:4, New York, NY, USA, 2014. ACM.

https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt

[24]

[25]

[26]

27]

28]

[29]

[30]

[31]

[32]

H. Femmer, D. Méndez Fernandez, E. Juergens,
M. Klose, I. Zimmer, and J. Zimmer. Rapid re-
quirements checks with requirements smells: Two
case studies. In Proceedings of the 1st Interna-
tional Workshop on Rapid Continuous Software
Engineering, RCoSE 2014, pages 10-19, New
York, NY, USA, 2014. ACM.

H. Femmer, D. Méndez Fernandez, S. Wagner,
and S. Eder. Supplementary online material:
Analysis of related work. Created on: 2015-12-
22.

H. Femmer, J. Mund, and D. Mendez Fernandez.
It’s the Activities, Stupid! A New Perspective
on RE Quality. In Proceedings of the 2nd Inter-
national Workshop on Requirements Engineering
and Testing, pages 13-19, 2015.

M. Fowler and K. Beck. Refactoring: improv-
ing the design of existing code. Addison-Wesley
Professional, 1999.

G. Génova, J. M. Fuentes, J. Llorens, O. Hurtado,
and V. Moreno. A framework to measure and
improve the quality of textual requirements. Re-
quirements Engineering, 18(1):25-41, Sept. 2011.

V. Gervasi and B. Nuseibeh. Lightweight vali-
dation of natural language requirements. Soft-
ware: Practice and Ezxperience, 32(2):113-133,
Feb. 2002.

B. Gleich, O. Creighton, and L. Kof. Ambiguity
detection: Towards a tool explaining ambiguity
sources. In Requirements Engineering: Founda-
tion for Software Quality, volume 6182, pages
218-232. Springer Berlin Heidelberg, 2010.

B. Hauptmann, M. Junker, S. Eder, L. Heine-
mann, R. Vaas, and P. Braun. Hunting for smells
in natural language tests. In Proceedings of the

International Conference on Software Engineer-
ing, pages 1217-1220, 2013.

IEEE Computer Society. IEEE Recom-
mended Practice for Software Requirements
Specifications. https://standards.ieee.org/
findstds/standard/830-1998.html, 1998.

39

33]

[34]

[35]

[36]

37]

38

39]

[40]

[41]

ISO, IEC, and IEEE. ISO/IEC/IEEE
29148:2011. https://standards.ieee.org/
findstds/standard/29148-2011.html, 2011.

E. Juergens, F. Deissenboeck, M. Feilkas,
B. Hummel, B. Schaetz, S. Wagner, C. Domann,
and J. Streit. Can Clone Detection Support Qual-
ity Assessments of Requirements Specifications?
In Proceedings of the International Conference
on Software Engineering, pages 79-88, 2010.

E. Juergens, F. Deissenboeck, B. Hummel, and
S. Wagner. Do code clones matter? In Proceed-
ings of the International Conference on Software
Engineering, pages 485-495, 2009.

D. Jurafsky and J. H. Martin. Speech and Lan-
guage Processing. Pearson Education, 2nd edi-
tion, 2014.

M. I. Kamata and T. Tamai. How Does Require-
ments Quality Relate to Project Success or Fail-
ure? In 15th IEEFE International Requirements
Engineering Conference, pages 69-78, 2007.

E. Kamsties, D. M. Berry, and B. Paech. De-
tecting Ambiguities in Requirements Documents
Using Inspections. In Proceedings of the 1st
Workshop on Inspection in Software Engineer-
1ng, pages 68-80, 2001.

E. Kamsties and B. Peach. Taming ambiguity
in natural language requirements. In Proceed-
ings of the International Conference on System
and Software Engineering and their Applications,
pages 1-8, 2000.

N. Kiyavitskaya, N. Zeni, L. Mich, and D. M.
Berry. Requirements for tools for ambiguity iden-
tification and measurement in natural language
requirements specifications. Requirements Engi-
neering, 13(3):207-239, 2008.

E. Knauss and T. Flohr. Managing requirement
engineering processes by adapted quality gate-
ways and critique-based RE-tools. In Proceed-
ings of Workshop on Measuring Requirements for
Project and Product Success, Nov. 2007.

https://standards.ieee.org/findstds/standard/830-1998.html
https://standards.ieee.org/findstds/standard/830-1998.html
https://standards.ieee.org/findstds/standard/29148-2011.html
https://standards.ieee.org/findstds/standard/29148-2011.html

42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

E. Knauss, D. Liibke, and S. Meyer. Feedback-
Driven Requirements Engineering : The Heuristic
Requirements Assistant. In Proceedings of the In-
ternational Conference in Software Engineering,

pages 587-590, 2009.

J. C. Knight and E. A. Myers. An improved
inspection technique. Communications of the
ACM, 36(11):51-61, 1993.

L. Kof. Scenarios: Identifying missing objects and
actions by means of computational linguistics. In
In Proceedings of the 15th IEEE International
Requirements Engineering Conference, pages 121—
130, Oct 2007.

L. Kof. Treatment of Passive Voice and Conjunc-
tions in Use Case Documents. Natural Language
Processing and Information Systems, 4592:181—
192, 2007.

S. J. Kérner and T. Brumm. Improving natural
language specifications with ontologies. In Pro-
ceedings of the 21st International Conference on
Software Engineering and Knowledge Engineer-
ing, pages 552-557. World Scientific, 2009.

S. J. Korner and T. Brumm. Natural Lan-
guage Specification Improvement With Ontolo-
gies. International Journal of Semantic Comput-
ing, 03(04):445-470, 2009.

S. J. Korner and T. Brumm. RESI - A natural
language specification improver. In Proceedings
of the 2009 IEEE International Conference on
Semantic Computing, pages 1-8. IEEE, 2009.

J. Krisch and F. Houdek. The Myth of Bad
Passive Voice and Weak Words: An Empirical
Investigation in the Automotive Industry. In 23rd
IEEFE International Requirements Engineering
Conference, pages 344-351, 2015.

A. V. Lamsweerde. Requirements Engineering.
John Wiley & Sons, 2009.

G. Lucassen, F. Dalpiaz, S. Brinkkemper, and
J. van der Werf. Forging High-Quality User Sto-
ries: Towards a Discipline for Agile Requirements.

40

[52]

53]

[54]

[55]

[56]

[57]

[58]

[59]

In 23rd IEEE International Requirements Engi-
neering Conference, pages 126-135, 2015.

A. D. Lucia, F. Fasano, R. Oliveto, and G. Tor-
tora. Recovering traceability links in software
artifact management systems using information
retrieval methods. ACM Transactions on Soft-
ware Engineering and Methodology, 16(4), Sept.
2007.

J. Ludewig and H. Lichter. Software Engineering.
dpunkt.verlag, 2nd edition, 2010.

A. Mavin, P. Wilkinson, A. Harwood, and M. No-
vak. EARS (Easy Approach to Requirements
Syntax). Proceedings of the IEEE International
Conference on Requirements Engineering, pages
317-322, 2009.

D. Méndez Fernandez, J. Mund, H. Femmer, and
A. Vetro. In Quest for Requirements Engineering
Oracles: Dependent Variables and Measurements
for (good) RE. In Proceedings of the 18th Interna-
tional Conference on Evaluation and Assessment
i Software Engineering, pages 3:1-3:10. ACM,
2014.

D. Méndez Fernadndez and S. Wagner. Naming
the Pain in Requirements Engineering: A Design
for a Global Family of Surveys and First Re-
sults from Germany. Information and Software
Technology, 57(1):616-643, 2015.

T. Menzies, A. Dekhtyar, J. Distefano, and
J. Greenwald. Problems with precision: A re-
sponse to "Comments on ’data mining static
code attributes to learn defect predictors’". IEEE
Transactions on Software Engineering, 33(9):637—
640, 2007.

L. Mich, M. Franch, and P. L. Novi Inverardi.
Market research for requirements analysis us-
ing linguistic tools. Requirements Engineering,

9(2):151-151, 2004.

J. Mund, H. Femmer, D. Méndez Fernandez, and
J. Eckhardt. Does Quality of Requirements Spec-
ifications matter? Combined Results of Two Em-
pirical Studies. In Proc. of the 9th International

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Symposium on Empirical Software Engineering
and Measurement, pages 1-10, 2015.

D. Parachuri, A. Sajeev, and R. Shukla. An Em-
pirical Study of Structural Defects in Industrial
Use-cases. In Proceedings of the International

Conference on Software Engineering, pages 14—
23. ACM, 2014.

M. Porter. An algorithm for suffix stripping.
Program, 14(3):130-137, 1980.

A. Rago, C. Marcos, and J. A. Diaz-Pace. Identi-
fying duplicate functionality in textual use cases
by aligning semantic actions. Software & Systems
Modeling, pages 1-25, Aug. 2014.

P. Runeson and M. Hést. Guidelines for con-
ducting and reporting case study research in
software engineering. Empirical Software En-
gineering, 14(2):131-164, Dec. 2008.

P. Runeson, M. Hést, A. Rainer, and B. Regnell.
Case Study Research in Software Engineering.
Guidelines and Examples. Wiley, 2012.

F. Salger. Requirements reviews revisited: Resid-
ual challenges and open research questions. In
Proceedings of the 2013 21st IEEE International
Requirements Engineering Conference, pages 250—
255. IEEE, 2013.

H. Schmid and F. Laws. Estimation of conditional
probabilities with decision trees and an applica-
tion to fine-grained POS tagging. In Proceedings
of the Conference on Computational Linguistics,
pages 777-784. Association for Computational
Linguistics, 2008.

F. Schneider and B. Berenbach. A Literature
Survey on International Standards for Systems
Requirements Engineering. In Proceedings of
the Conference on Systems Engineering Research,
volume 16, pages 796-805, Jan. 2013.

K. Schwaber and J. Sutherland. The scrum guide.
Technical report, Scrum.org, 2011.

41

(69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

F. Shull, I. Rus, and V. Basili. How perspective-
based reading can improve requirements inspec-

tions. Computer, 33(7):73-79, 2000.

S. F. Tjong and D. M. Berry. The design of SREE
- A prototype potential ambiguity finder for re-
quirements specifications and lessons learned. In
REFSQ, pages 80-95. Springer Berlin Heidelberg,
2013.

K. Toutanova, D. Klein, and C. D. Manning.
Feature-rich part-of-speech tagging with a cyclic
dependency network. In Proceedings of the 2003
Conference of the North American Chapter of
the Association for Computational Linguistics on
Human Language Technology, 1(June):252-259,
2003.

A. van Deursen, L. Moonen, A. van den Bergh,
and G. Kok. Refactoring test code. CWI, 2001.

S. Wagner, J. Jirjens, C. Koller, and
P. Trischberger. Comparing bug finding tools
with reviews and tests. In Proceedings of Test-
ing of Communicating Systems, pages 40-55.
Springer, 2005.

W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt.
Automated analysis of requirement specifications.
In Proceedings of the International Conference
on Software Engineering, pages 161-171. ACM,
1997.

M. V. Zelkowitz, R. Yeh, R. G. Hamlet, J. D.
Gannon, and V. R. Basili. The Software Indus-
try: A State of the Art Survey. Foundations of
Empirical Software Engineering: The Legacy of
Victor R. Basili, 1:383-383, 1983.

M. Zhang, T. Hall, and N. Baddoo. Code bad
smells: a review of current knowledge. Journal of
Software Maintenance and Evolution, 23(3):179-
202, 2011.

Appendix A. Requirements Checklist

Table 4: Study objects

2 g, 8
.5 O .

R= g % %
g 2o) =]

Artifact Topic n #* 4=

Al Adaptive valve control 1896 91

A2 Exhaust control 2244 72

A3 Driving information 199 12

A4 Engine startup control 975 44

A5 Engine control 524 49

A6 Powertrain communication 1100 55

Sum Daimler 6938 323

B1 Management of access control 2093 9 18

B2 Event notification 1015 3 19

B3 Document management 458 1 16

Sum Wacker 3566 13 53

C1 Webshop for fashion articles 5226 168

C2 CMS in transportation domain 2742 123

C3 CRM system 6863 230

C4 Webshop for hardware articles 13124 561

Sum TechDivision 27955 1082

Avg Stuttgart 4470 18.9

Sum Stuttgart 227973 966

Sum over all 266432 336 53 1082

42

9¢°0 89 86°0 092 € 6€0T ce9 L991 cr'l 66C 9¢'G¢C T€L9 90 180T 8L'T €LY 9'€y 80911 cEV99C e 1=2a0
12°0 67 G011 0ve cLe 878 LT'9 LOVT Y1 T9¢ 92°9¢C 986G 14 co0T 4 62¢ V'vv ¢TI0l €L6.LTT JreSymyg wng
120 96°0 ¢0'1 L7 cLe €991 LT'9 69°LC Y1 ¢’ 92°9¢ LELTT v 9961 4 Sv'9 V'vv 9’861 0L¥V ERGERLNEISILR) A
LG°0 91 6€°0 11 16°¢ Vel a9 VLT ¢80 €¢ T8'IC 019 T (44 vy el g1y eIt GG6Lc UOISIAIQYOST, Wing
¥16°0 [69°0 6 €L'e 6V L 10T 80 1T €8'Ge 6¢¢ el 9T L9°C g€ 9'ey CLS veiet O
S1°0 T ST°0 T 969 v (454 1€ L8°0 9 ST GOt 70°'¢ v LEV 0€ Ve €€C €989 €D
0 0 0 0 GL'8 14 VLV €T 60°T € T19C¢ 29 Ga'e L 0% 11 8'€Y 0ct [4oX4 40}
LS80 € 61°0 T 689 9¢ gg'e 62 L8°0 € 61 701 96°0 g 816 8V g€y 62¢C 9¢cs 10
8¢°0 T 8¢°0 T LLY LT Sv'9 €¢ 96°1 L 6€°LT 29 69°8 1€ 96°T L 81y 671 99¢€ IR Wng
81°C T 0 0 81'¢ T 0 0 81'C T 9961 6 S¥V'IV 6T 0 0 L°L9 1€ 8G¥ €d
0 0 0 0 L8'8 6 96°C € 0 0 1I8°¢CI €T 66°0 T L6'T 4 9'LT 8¢ G101 cd
0 0 870 T vee L 94°6 0g L8'C 9 TIT'6T ov 9z°¢ 1T 6€°C g €V 06 €60¢ Td
62°0 4 ST'1 8 88'C 0¢ 9L €4 ST'T 8 901 €L 98°0 9 L8'T el 7'9¢ €81 8¢€69 eruire wng
0 0 ¥9'¢ 4 9€'9 L CT8'IL eT 0 0 LTL 8 0 0 0 0 1°6¢ (49 00TT A
0 0 16°T T 0 0 746 g 0 0 ¢L9¢ 4t 0 0 0 0 '8¢ 0¢ 1444 vV
0 0 €01 T €0'T T 128 8 0 0 8¢¢T ST €01 T 80°¢ € L76C 6C GL6 144
0 0 0 0 0 0 <001 4 0 0 80°¢T € 0 0 0 0 1°4¢ g 661 €V
o T 68°0 4 €C'C g ¥Z9 v <vo 1 16'8 0c ve'l € L9°¢ 9 c'eT [4Y yvee (a4
€40 T 0 0 69°¢ L < 1T 69°¢ L 989 €1 G0'1 4 11'¢ 14 L'€¢ v 9681 v
o1 sqe o1 sqe o1 sqe o1 sqe o1 sqe o1 sqe o1 sqe o1 sqe o1 sqe
[Pws [Pws [Pws [Pws [IGES

VvV % V SOIqeYTIoA [Pwg SPIOA [Pwg sunouorg [Pwg oSenSuery s[lowg SPIOA\ ose

snonSiqury -uoN searperedwo)) aA13eSaN soarjelrodng anSep aroydoory aa1309[qng 8% wnN o

SBUIpUY [[oWS JO ATRUITNS SATIRIIJURNY) 9 S[QR],

43

Table 7: Precision of smell detection

T Tt

2 2 2

P % B ¢
Smell =3 =3 =2 2}
Subjective Language Smell 69 66 3 0.96
Ambiguous Adverbs and Adjectives Smell 21 17 4 0.81
Loophole Smell 60 43 17 0.72
Non-verifiable Term Smell 23 16 7 0.70
Superlative Requirements Smell 39 19 20 0.49
Comparative Requirements Smell 88 42 46 0.48
Negative Words Smell 129 42 87 0.33
Vague Pronouns Smell 187 48 139 0.26
Average 77T 36.6 404 0.59
Overall 616 293 323 0.48

44

*90u0 e 3ulylAIoAa 91eISI AJJUSIDYJD 09

oN Sox sox 9[qe oq 0} [INALSAS] 07 [INAILSAS| wWoij juajuod smou I9jsuel) 01 Moy Aem pooS ' mouy 0} juem [‘I03Ipd ue Sy 0c
‘(A110doad puesoeq 91} Ul JopIo 97} JO SNIRIS S} 89S URD DUO () puUe) sowl) o[dinut
Iopio o1) sseooid jou op [0s pue siopio uado JUIXOPUI USYM I9PIO 91} 99s jou op T eyl os ‘ [INGAILSAS| ojur uots
oN OoN ON -SIWSU®RI) I0J }IeM, SNJR)S OJUI SUOIJISURI) ,OUWIODUT IOPIO), SNIRIS Y} JO 19pIo ue jey) juem I ‘(INHISAS HAH.LO| sV 61
‘SI9[Y JI9YJ puR SOL1089)BD pUR SPURI(POJII[AS JO MOIAIIAO
ON ON sox ue 908 (') wed I03ISIA Oy} ey Os ‘sorro8ereo Sunjull 10j sjutod Arjue ojdrinwr LARY 09 juBM [‘I0JIPO UR Sy ST
*1opraoad
ON ON ON 3urddoys pojins 3seq oY) 3007[0s uwed [ey} os ‘(") siopraoid Surddoys jo jos ® WOIJ 409[9S 0} jueM] ‘194N ® Sy L1
A[orerpawtur oK Sox Sox ‘JIeM pUR)X0) © I9JUd | USYM X0(-}s938ns-ydIeas pauSisop A[adIuU © juem] ‘9)I1Sqom 9y} JO IO}ISIA & SY 9T
A[orerpawiut oK Sox Sox ‘poploae st Suljrem Aressedouun et} os ‘93Isqom o) jo seanjold ayg uedo AdINb 03 juem | ‘1031S1A ® SY [}
AloreIpawiiul sox Sox Sox 'SNULUI 9} BIA SO91I0399BD Painjoniis AnjSuiuesul 0} 91eIIARU 01 juem | ‘I011SIA © Sy s
‘o8ed MOIAISAO 97} 09 or(q 08 09 Julaey noyrim jonpoid sidijnu je oo A[isea
ON ON ON pue Ap{omb ueod T jey) os ‘sjonpoad jxou pue snoradid ySnoays asmoliq o3 Aqiqissod e oARY 09 jueMm] ‘10}ISIA B SY [
oN oN ON ‘(") yey) Os ‘WINWIIXEW pUR WNWIUIW I0J SoN[RA WOJSND 98N 04 A}I[IqIssod o) dARY 0} jueM] ‘19N © Sy 1
‘poyrodwur st 9o11d © UM sowInNsal A[[edIjewiojne S[d14Ie 93 ety os ‘X NHLSAS
A[ejerpawital sox Sox sox Ul pade[dsip jou aq 07} [qe[rear, [oqe[oY) 231dsep ‘pajioduur st 9o11d ou J1 ‘e[oIjre ue jey) juem | ‘esdojduis ue sy 11
*10100 ul pake[dsip are
SOLI0391RD JUBAD[DI JO S1IROY ATUO sAem[e pue poSueyd jou si Av[dsIp 9100s o7} JRY) ‘I0[0D & Yons ul pade[dsip oq 09
A[orerpawur oK Sox S9X (9SI] SHINSOI YOIeDS) 91008 9Y) JO S1IedY pake[dsIp o) ‘Sa110899ed pajoa[es jou 10J juem [‘9Sedqom o) JO I0}ISIA © S 01
ON ON ON ONSST 91} YJIM POJUOIJUOD JOoU Wk | jey) 0s ‘¥ A1080)eD 998 0} jueM J0U Op [‘I0}ISIA ® SY 6
ON SOx SOx ‘a[qissod se mo] se 110]Jo Ue Yiim pajuswa[duil 9q 0} UOIJO9S SMAU 9} jueMm | Iopiaoid e sy 8
A[ojerpomital Sox SOx SOx ‘g wesAg pue y wojsAg usomioq poddew ore ‘sploy [[e ‘e[qissod se aej se ‘jer) juem [‘1opiaoid e sy L
wrIe) SUO[Ul S9x OoN Sox ' se pajoqe] ¢ P[NOYS Y ‘9I0JoIoY) ‘g PUe Y UsoM)dq 9)RIJUDISPIP 0} I9[dWIS J1 9YRU O} jueM] ‘10}Ipd U SY 9
AJoyerpowruul sox Sax Sax ‘xXoqqrewr Aw ur s[IRJA-H JO Iequinu Jo3ae[® oARY] JT ‘yuem | ‘I9WI0ISND ® SY [
A[oyerpowruur sox SOx SOx cregeyy os ¢ (v) 8o ‘s[relap JOYJINg 99s 0) juem | ‘I0ISIA ® Sy 17
OoN ON ON 1 Ueam)9(99RIULISHIP 07 Ja[dwils 11 oyelwl O} juem [‘I0)Ipe Ue Sy I
*SO1103998D 100[9S0p puUe 109[9s ued eyl Ao1nb
oN OoN ON oJoul 99s ued T Jey) 0OS ‘A[1ea[d a1ow pake(dsIip sa110899ed JUSISHTP OYY Ul SOXOCNIAYD 9} 99S 0} jueMm | ‘I0}SIA ® Sy 4
‘sor10809eD 109[9sop pue 309[as ued | jey) A3omb arow
U119} 1I0YS Ul SoX Sox Sox 99s uwd] JeY) Os ‘A[Ies[d aJowr pake[dsIip s9110891€D JUSISHIP dY7 Ul S9XO(¥IaYd dY) 99s 09 JueM] ‘IOJISIA © Sy 1
JOAJOSOY joTemy jIueAd[oy Surpurgy I

proq ur ssurpuy ‘sioyjne sy} Aq paje[suRI}) pue pouslIoys sgurpuy Arejduwoxy :6 o[qR],

45

¥9 <€ ¢ 1y GT19 €€S 9 VeIt ¢v96 OPCST €L0E 9G96.L¢C 06¢ ¢80T wng
1. L€ 0 ¥v 99¢ L0€ 0 ¢LS €ILE €068 88IT VCIET €0¢ 194 ¥O
0¢ 9¢ 9 ve LVl 18 ¢ €€C 676¢ 060¢ ¥e8 €989 6T 0€¢ €0
a9 0y 0 ¥ 89 4¢) 0 0c1 0€6 ¢SST 09¢ ¢vlc i €cl (40)
L 6€ I ¥ a7l €8 I 6¢¢ 0<0¢ G6Lec 108 9¢cS €¢ 891 0]
g o o 'L oY 1 oy "], UOsedy oInjed] O[O0y [BIO], UOSBAI T
SPIOAN 000‘T Iod sSurpurg oInjosqe sSuIpurg SPIOAA UI 971G o/m HO¥S D

(uosear=oy ‘ornjeaj—=J ‘9J01=0Y ‘[BI0}=],) SOLI0)s Iosn Jo sired JULIOPIP Ul SSUIPUL] (0T °[qR],

46

Table A.11: Checklist for the students’ requirements reviews. Created by Anke Drappa, Patricia Mandl-
Striegnitz and Holger Roder based on [I3] and [53]. Translated from German.

The document is well structured and easy to understand.

All used terms are clearly defined and consistently used.

All external interfaces are clearly defined.

The level of detail is consistent throughout the document.

The requirements are consistent and unambiguous.

The defined requirements are consistent with the state of the art.

All tasks and data have useful identifiers.

Data is not defined redundantly.

The defined relationships between data objects are necessary and sufficient.

The specification of quality attributes is realistic, useful, quantifiable and unambiguous.

The user interface is comfortable and easy to learn.

The use case describes a behaviour of the system which is valuable and visible for the actor.

The use case is described in a table which is consistently used for the whole requirements specification.

The use case has a unique ID.

The use case has a unique and expressive name.

The main actor’s goal is described in an understandable way.

All actors participating in the use case are specified.

If there is more than one actor, the main actor is identified.

The preconditions of the use case are specified.

The postconditions for the use case are specified.

Tt is clearly specified how the main actor triggers the main success scenario.

The main success scenario has 3 to 9 steps.

After the main success scenario, the postconditions hold.

The main actor reaches their goal by the main success scenario.

Each step is sequentially numbered.

It is clear which actor is executing the step.

The step does not describe details of the user interface.

The step describes exactly one action of the acting actor.

There are postconditions for each extension.

It is clearly specified in which step the main success scenario deviates into an extension.

The conditions for the deviation into an extension are clearly specified.

After an extension, all postconditions for that extension hold.

47

	1 Introduction
	2 Related work
	2.1 The notion of smells in software engineering
	2.2 Quality assurance of software requirements
	2.3 Discussion

	3 Requirements Smells
	3.1 Requirements Smell terminology
	3.2 Requirements Smells based on ISO 29148

	4 Smella: A prototype for Requirements Smell detection
	4.1 Requirements parsing
	4.2 Language annotation
	4.3 Findings identification
	4.4 Findings presentation

	5 Requirements Smell detection in the process of quality assurance
	6 Evaluation
	6.1 Case study design
	6.1.1 Research questions
	6.1.2 Case and subjects selection
	6.1.3 Data collection procedure
	6.1.4 Analysis procedure
	6.1.5 Validity procedure

	6.2 Results
	6.2.1 Case and subjects description
	6.2.2 RQ 1: How many Requirements Smells are present in the artifacts?
	6.2.3 RQ 2.1: How accurate is the smell detection?
	6.2.4 RQ 2.2: Which of these smells are practically relevant in which context?
	6.2.5 RQ 3: Which requirements quality defects can be detected with smells?
	6.2.6 RQ 4: How could smells help in the QA process?
	6.2.7 Evaluation of validity

	7 Conclusion
	7.1 Summary of conclusions
	7.2 Relation to existing evidence
	7.3 Impact/Implications
	7.4 Limitations
	7.5 Future work

	Appendix A Requirements Checklist

