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Abstract

i∗ models are inherently sequence agnostic. There is an immediate need to bridge

the gap between such a sequence agnostic model and an industry implemented

process modelling standard like Business Process Modelling Notation (BPMN).

This work is an attempt to build State Transition Models from i∗ models. In

this paper, we first spell out the Naive Algorithm formally, which is on the lines

of Formal Tropos [1]. We demonstrate how the growth of the State Transition

Model Space can be mapped to the problem of finding the number of possible

paths between the Least Upper Bound (LUB) and the Greatest Lower Bound

(GLB) of a k-dimensional hypercube Lattice structure. We formally present the

mathematics for doing a quantitative analysis of the space growth. The Naive

Algorithm has its main drawback in the hyperexponential explosion caused in

the State Transition Model space. This is identified and the Semantic Implosion

Algorithm is proposed which exploits the temporal information embedded within

the i∗ model of an enterprise to reduce the rate of growth of the State Transition

Model space. A comparative quantitative analysis between the two approaches

concludes the superiority of the Semantic Implosion Algorithm.
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1. Introduction

The use of models for software development has become a very standard

software engineering practise. The advantages of using modelling notations to

obtain the working view of a system or software, before actually coding it, is

well-known. The most prominent benefits of modelling a system is to identify

risks of failure before the coding of the system / software actually begins. Also,

the use of standard modelling notations like UML helps in automated generation

of code snippets.

A system or enterprise is modelled during the design phase of the develop-

ment life cycle, only after the requirement specifications have been frozen by the

consumer. Requirements Engineering helps in maintaining and documenting the

user requirements. Requirement specifications are finalized only after multiple

communications between the designer and the consumer. It is always beneficial

to both the consumer and the designer if a working model of the system / enter-

prise can be obtained during the requirement analysis phase of development. i∗

models were proposed keeping this in mind. The i∗ model provides an abstract

sequence-agnostic view of the system to the consumer. In other words, it identi-

fies actors and how they interact with each other. The i∗ model does not specify

an activity work-flow or data-flow to the consumer. Temporal information is

not specified anywhere within an i∗ model. This graphical representation of the

system acts as a dashboard to the consumer where he can specify changes and

be sure that the developer is in sync with what the consumer requires.

Merely developing a formal modelling tool for requirement analysis only does

not help the software engineering community much. i∗ models can have a huge

impact on the development life cycle of systems / enterprises if we can map

them to activity diagrams, and work-flow and data-flow models. Sequential

or temporal characteristics are an inherent property of any standard business

process model like BPMN or Petri-Nets. Without any control flow informa-

tion, i∗ models prove to be futile. Again, since i∗ models are supposed to be

sequence-agnostic, proposing modifications over i∗ models to incorporate tem-
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poral information, changes the very semantics and purpose of the i∗ modelling

notation.The need of the hour is, thus, to bridge this gap between a sequence-

agnostic requirements analysis model and a control-flow specific business process

model. This paper is a conscious effort towards bridging this gap.

The most obvious solution to this problem is using the brute-force method.

Fuxman introduced the concept of actor instances and how dependencies, as-

sertions, possibilities, and invariants can exist in either of three states - Not

Created, Created but Not Fulfilled, and Fulfilled [1]. The Naive Algorithm ex-

tends this concept to Goals, Tasks, Resources, and Dependencies existing within

an i∗ model. It assumes that every model element goes through the above three

states and makes two state transitions to reach the Fulfilled state from the Not

Created state. Using this brute-force method to generate all possible state tran-

sition models corresponding to an i∗ model, results in an explosion within the

state transition model space. This is identified in the following section. It is

interesting to observe that, although an i∗ model is sequence agnostic, yet there

exists some features or modelling constructs of the i∗ model that provide some

temporal insight into the underlying system / enterprise. For instance, every

dependency has a cause-effect property in the sense that it is only when a de-

pendee satisfies or fulfils a requirement of the depender does the dependency

become satisfied. The Semantic Implosion Algorithm identifies these untapped

temporal characteristics and tries to contain the rate of growth of the state

transition model space corresponding to an i∗ model. Simulation results reveal

that the Semantic Implosion Algorithm indeed outperforms the Naive algorithm

and provides a drastic improvement over the brute-force method.

The rest of the paper is structured as follows. Section 2 provides a review on

existing techniques for transforming models. This section identifies that i∗ mod-

els have not beeen transformed to sequential models so far. The next section

(Section 3) details out the Naive Algorithm and the State Implosion Algorithm.

The drawbacks of the Naive Algorithm are identified and the Semantic Implo-

sion Algorithm is proposed as a solution to these drawbacks. Section 4 performs

a detailed simulation where both the algorithms are applied to the same classes
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of i∗ models and their behaviour are observed, compared and contrasted. Fi-

nally, section 5 concludes the paper.

2. State-of-the-Art

Sendall and Kozaczynski had already identified Model Transformation as

the central driving force behind Model-Driven Software Development [2]. Model

Transformation represents the daunting challenge of converting higher-level ab-

straction models to platform-specific implementation models that may be used

for automated code generation. Performing a model transformation requires a

clear understanding of the abstract syntax and semantics of both the source and

target.

Most Model-Driven Engineering practises offer a black box view of the trans-

formation logic making it difficult to observe the operational semantics of a

transformation. Most strategies work with lower levels of abstraction and en-

counter several limitations. In [3], the authors propose a Domain Specific Lan-

guage over Colored Petri-Nets - called Transformation Nets - that provides a

high level of model transformation abstraction. An integrated view of places,

transitions, and tokens, provide a clear insight into the previously hidden oper-

ational semantics.

Model transformation plays a vital role in bridging the gap between non-

successive phases of the software development life cycle. [4] presents one such

attempt to bridge the gap between system designers and system analysts. A

model generated by the designer is transformed to a model suitable for con-

ducting analysis. the outcome of the analysis is mapped back into the design

domain. The authors work with UML2Alloy - a tool that takes a UML Class

diagram augmented with OCL constraints and converts it into the Alloy formal

representation. Design inconsistency analysis is done on the Alloy representa-

tion. Alloy creates counter examples for any such inconsistency and converts it

back into a UML Object diagram. This paper tries to do model transformation

for bridging the gap between the Requirements phase and the Design phase of
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the development life cycle.

Creating a wide array of formal models for enhancing the system engineer-

ing process, proves to have time and cost overheads. Kerzhner and Paredis use

model transformations to achieve this objective, overcoming the overheads, in

[5]. Formal models are used to specify the structures of varying design alter-

natives and design requirements, along with experiments that conform the two.

These models are represented using the Object Management Group’s Systems

Modelling Language (OMG SysMLTM). Model transformation is then used to

transform design structures into analysis models by combining the knowledge

of reusable model libraries. Analysis models are transformed into executable

simulations which help in identifying possible system alternatives. Model trans-

formation plays a vital role in this work.

Mussbacher, et al, have performed a detailed comparison of six different

modelling approaches in [6]. The modelling approaches that were assessed

include Aspect-oriented User Requirements Notation (AoURN ) [7], Activity

Theory (AT ) [8], The Cloud Component Approach (CCA), Model Driven Ser-

vice Engineering (MDSE ) [9], Object-oriented Software Product Line Modelling

(OO-SPL) [10], and Reusable Aspect Models (RAM ) [11, 12]. The comparison

criteria werre grouped into two broad categories - Modelling Dimensions and

Key Concepts. Modelling dimensions include properties like Phase, Notation,

and Units of Encapsulation. Key concepts, on the other hand, provide an in-

sight into parameters like Paradigm, Modularity, Composability, Traceability

and Trade-off Analysis. Of these six approaches, AoURN [7, 13] and OO-SPL

[10] are of interest to this work, as both these approaches are applicable in the

Early and Late Requirements phases of software development. the i∗ modelling

notation belongs to this approach. In fact, AoURN is based on the ITU-T Z.151

[14] standard that uses Goal-oriented Requirements Language (GRL), that is

based on i∗ modelling. AoURN is machine analysable and can perform sce-

nario regression tests, goal-model evaluation, and ttrade-off analysis. Unlike

the other modelling approaches, AoURN provides structural, behavioural, and

intentional views, along with generic support for qualities and non-functional
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properties. It is purely graphical in nature.

The importance of i∗ modelling in Requirements Engineering has been well

established in the last couple of years. Model transformations help in reducing

the time and cost overheads associated with developing formal models for all

possible design strategies across different architectures. There exists solutions

to transform design models into execution sequences and perform various types

of analyses. However, no work has been done so far on transforming requirement

specification models to design models. Bridging this gap will help in identifying

risks and failures during the Requirement Specification and Analysis phase of

software development itself. Also, modern enterprises must ensure that they

conform to a well-defined set of compliance rules involving government laws

and regulations. Compliance checking deals with ensuring that an enterprise

is system compliant. Although compliance rules can be defined as temporal

properties on the system, compliance conformance cannot be verified with the

i∗ model as it is typically sequence agnostic. In order to perform any type of

model checking, we must first transform such a sequence-agnostic i∗ model into

some form of state transition model that provides an insight into the possible

sequence of activities within the enterprise. However, since it is an intuitive ex-

traction of state transition models from an i∗ model, we might not be restricted

to one particular unique solution. Rather, such a model transformation will be

a one-to-many mapping. This work takes a leap in the efforts to bridge the gap

between requirement models and design models. Two algorithms are presented

and discussed that achieve this. A quantitative analysis is also performed be-

tween the two and the superiority of the Semantic Implosion Algorithm over

the Naive Algorithm is established.

3. Developing State Transition Models from an i* model

The primary aim of this research is to analyze an i* model and develop all

possible state transition models that can be derived from the given i* model.

The challenge as well as motivation behind this work lies in the fact that i*
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models are sequence agnostic. However, without identifying a sequence of oper-

ations within the enterprise, it becomes very difficult to check and verify tem-

poral properties and compliance rules within the system. Again, it is to be kept

in mind that since an i* model is sequence agnostic, we cannot deterministically

establish one single state transition model that corresponds to a given i* model.

The output of this work will generate a set of state transition models, each of

which satisfy the specification of the i* model. Once we obtain this valid set

of plausible state transition models, we can apply some user defined enterprise

specific compliance rules that fine tunes this set of probable state models. This

final set of pruned state transition models can then be reverted back to the

Enterprise owner in order to verify the requirements.

In this work we are considering the more detailed strategic relationship (SR)

diagram of an i* model. The SR-diagram is much more comprehensive than

its strategic dependency (SD) counterpart and encompasses all the dependency

information that is captured in the SD-diagram. In fact, an SD-diagram rep-

resents the dependencies between different actors but does not exactly depict

which particular model element of the depender is dependent on which partic-

ular model element of the dependee. The SR model is much more elaborate in

this sense.

3.1. The Naive Algorithm

The simplest and most obvious solution to develop the set of all possible

state transition models from an i* model, is to consider each model element

separately and assume that they can exist in either of 3 possible states – Not

Created (NC), Created Not Fulfilled (CNF), and Fulfilled (F) - and apply the

brute-force approach. In the first phase of this research, we assume a single

instance of each model element appearing in the SR-diagram, i.e., each goal,

task, or resource appearing in the SR-diagram represents a single instance of the

corresponding model element. We obtain sequences of states or state transition

models by evaluating the all possible permutations of the model elements and

the state in which they exist.
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Let us demonstrate the above concept with an example. Consider the sim-

plest possible SR diagram with one actor consisting of only one goal G. This is

shown in figure 1.a. The goal G can be in either of three states – Not Created

denoted by Ĝ, Created Not Fulfilled denoted by Ğ, and Fulfilled denoted by Ġ.

These three states give rise to 3! state transition models as shown in figures 1.b

to 1.g.

Developing State Transition Models from an i* model 
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of three states – Not Created denoted by Ĝ, Created Not Fulfilled denoted by Ğ, and Fulfilled denoted 
by Ġ. These three states give rise to 3! state transition models as shown in figures 1.b to 1.g. 

 
Fig. 1. (a) Actor A with a single goal G; (b) – (g) Possible state transition models that can be derived by 

permuting the state space 

Ĝ Ġ Ğ 

Ğ Ĝ Ġ Ğ Ġ Ĝ 

Ġ Ğ Ĝ Ġ Ĝ Ğ 

(a) 

(c) 

(e) 

(g) 

(b) 

(d) 

(f) 

Ĝ Ğ Ġ 

A 

Goal G 

Figure 1: (a) Actor A with a single goal G; (b) – (g) Possible state transition models that

can be derived by permuting the state space

However, out all these 6 state transition models, only figure 1.b is semanti-

cally correct. All the other state transition models are semantically inconsistent

as a model element can go through its possible states in exactly one possible

sequence – NC (Ĝ) → CNF (Ğ) → F (Ġ). We call this sequence the default

sequence, and must be satisfied by all model elements. Now, let us increase

the complexity by incorporating one more model element in the SR-diagram,

i.e., let there exist two model elements in the SR-diagram. These two model

elements can belong to the same actor or to two different actors. In either case,

the complexity analysis remains the same.

Let A1 and A2 be two different actors, each with a single goal node G1 and

G2, respectively. Since each goal can be in either of 3 states, the total number
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of possible combined states is 32 (= 9). However, since both G1 and G2 must

individually satisfy the default sequence, it is interesting to observe the valid

state transition sequences that do not violate the individual default sequences.

We draw a State Sequence Graph that maps all the possible state transition

paths from the source node – denoted by (Ĝ1 Ĝ2) – to the destination node –

denoted by (Ġ1 Ġ2). Figure 2.b illustrates the State Sequence Graph for two

model elements.

However, out all these 6 state transition models, only figure 1.b is semantically correct. All the 
other state transition models are semantically inconsistent as a process element can go through its 
possible states in exactly one possible sequence – NC (Ĝ)  CNF (Ğ)  F (Ġ). We call this sequence 
the default sequence, and must be satisfied by all process elements. Now, let us increase the 
complexity by incorporating one more process element in the SR-diagram, i.e., let there exist two 
process elements in the SR-diagram. These two process elements can belong to the same actor or to 
two different actors. In either case, the complexity analysis remains the same. 

Let A1 and A2 be two different actors, each with a single goal node G1 and G2, respectively. Since 
each goal can be in either of 3 states, the total number of possible combined states is 32 (= 9). 
However, since both G1 and G2 must individually satisfy the default sequence, it is interesting to 
observe the valid state transition sequences that do not violate the individual default sequences. We 
draw a State Sequence Graph that maps all the possible state transition paths from the source node – 
denoted by (Ĝ1 Ĝ2) – to the destination node – denoted by (Ġ1 Ġ2). Figure 2.b illustrates the State 
Sequence Graph for two process elements. 

 
Fig. 2. (a) Actors A1 and A2 with goals G1 and G2, respectively; (b) The State Sequence Graph over the set of 

32 = 9 possible states 

The State Sequence Graph has all the 9 possible combined state representations as vertices. These 
vertices are connected in the form of a mesh as all state transitions do not satisfy the default sequence. 
Each path, in the State Sequence Graph, from the source node (Ĝ1 Ĝ2) to the destination node (Ġ1 Ġ2) 
defines a semantically valid set of state transitions. In other words, each path represents a state 
transition model. Thus, with two process elements, we obtain 6 possible state transition models that 
satisfy the default sequences of the individual process elements.  

Definition: State Sequence Graph 
A State Sequence Graph G can be defined as a 2- tuple ‹V, E› where V represents the set of vertices 
and E represents a set of directed edges such that, 

(a) 

A1 

Goal G1 

A2 

Goal G2 

‹ Ĝ1 Ĝ2› 

‹ Ĝ1 Ğ2› ‹ Ğ1 Ĝ2› 

‹ Ğ1 Ğ2› ‹ Ġ1 Ĝ2› ‹ Ĝ1 Ġ2› 

‹ Ğ1 Ġ2› ‹ Ġ1 Ğ2› 

‹ Ġ1 Ġ2› 
(b) 

Figure 2: (a) Actors A1 and A2 with goals G1 and G2, respectively; (b) The State Sequence

Graph over the set of 32 = 9 possible states

The State Sequence Graph has all the 9 possible combined state represen-

tations as vertices. These vertices are connected in the form of a mesh as all

state transitions do not satisfy the default sequence. Each path, in the State

Sequence Graph, from the source node (Ĝ1 Ĝ2) to the destination node (Ġ1

Ġ2) defines a semantically valid set of state transitions. In other words, each

path represents a state transition model. Thus, with two model elements, we
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obtain 6 possible state transition models that satisfy the default sequences of

the individual model elements.

Definition: State Sequence Graph

A State Sequence Graph, G, can be defined as a 2-tuple 〈V,E〉 where V

represents the set of vertices and E represents a set of directed edges such that,

1. Each state (Ḡ1 Ḡ2.... Ḡn) ∈ V is an n-tuple that represents each of the

n involved model elements in either of 3 possible states NC, CNF, or F,

denoted by the generic symbol Ḡk.

2. Each directed edge eij ∈ E is directed from vertex vi to vertex vj such that

vi → vj satisfies the default sequence for any one of the n model elements

represented in every vertex notation. This implies that vi → vj represents

either of the following –

(a) Some goal Ḡi goes from the NC state to the CNF state, denoted by

(Ḡ1... Ĝi....Ḡn) → (Ḡ1... Ği....Ḡn), or

(b) Some goal Ḡi goes from the CNF state to the F state, denoted by

(Ḡ1... Ği....Ḡn) → (Ḡ1... Ġi....Ḡn)

3. The number of vertices in the vertex set V is 3n, i.e., |V|= 3n

4. Each path from the source vertex (Ĝ1 Ĝ2 ... Ĝn−1 Ĝn) to the sink vertex

(Ġ1 Ġ2 ... Ġn−1 Ġn) represents a valid state transition sequence that

satisfies the default sequence of each individual model element G1, G2, ...,

Gn−1, Gn, i.e., every unique path (Ĝ1 Ĝ2 ... Ĝn−1 Ĝn) → .... → (Ġ1 Ġ2

... Ġn−1 Ġn) represents a state transition model

The next level of complexity involves 3 different model elements. The analy-

sis remains the same irrespective of how these 3 model elements are distributed

between actors. Let G1, G2 and G3 be the three different goals plotted in the

SR-diagram. As mentioned above, since each goal can be in either of 3 states,

this particular situation will result in a state space with 33(= 27) combined

states. The State Sequence Graph obtained is shown in Figure 3.b.
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i. Each state (Ḡ1 Ḡ2.... Ḡn) ∊ V is an n-tuple that represents each of the n involved process 
elements in either of 3 possible states NC, CNF, or F, denoted by the generic symbol Ḡk. 

ii. Each directed edge eij ∊ E is directed from vertex vi to vertex vj such that vi  vj satisfies the 
default sequence for any one of the n process elements represented in every vertex notation. 
This implies that vi  vj represents either of the following –   

a. (Ḡ1... Ĝi....Ḡn)  (Ḡ1... Ği....Ḡn), or 
b. (Ḡ1... Ği....Ḡn)  (Ḡ1... Ġi....Ḡn) 

iii. The number of vertices in the vertex set V is 3n, i.e., | V | = 3n. 
iv. Each path from the source vertex (Ĝ1 Ĝ2 ... Ĝn-1 Ĝn) to the sink vertex (Ġ1 Ġ2 ... Ġn-1 Ġn) 

represents a valid state transition sequence that satisfies the default sequence of each 
individual process element G1, G2, ..., Gn-1, Gn, i.e., every unique (Ĝ1 Ĝ2 ... Ĝn-1 Ĝn)  ....  
(Ġ1 Ġ2 ... Ġn-1 Ġn) represents a state transition model. 

The next level of complexity involves 3 different process elements. The analysis remains the same 
irrespective of how these 3 process elements are distributed between actors. Let G1, G2 and G3 be the 
three different goals plotted in the SR-diagram. As mentioned above, since each goal can be in either 
of 3 states, this particular situation will result in a state space with 33 (= 27) combined states. The 
State Sequence Graph obtained is shown in Figure 3.b. 

 

(a) 

A1 

Goal G1 

A2 

Goal G2 

‹ Ĝ1 Ĝ2 Ĝ3› 

A3 

Goal G3 

‹ Ĝ1 Ğ2 Ĝ3› ‹ Ğ1 Ĝ2 Ĝ3› ‹ Ĝ1 Ĝ2 Ğ3› 

‹ Ğ1 Ğ2 Ĝ3› ‹ Ġ1 Ĝ2 Ĝ3› ‹ Ğ1 Ĝ2 Ğ3› ‹ Ĝ1 Ğ2 Ğ3› ‹ Ĝ1 Ġ2 Ĝ3› ‹ Ĝ1 Ĝ2 Ġ3› 

‹ Ġ1 Ğ2 Ğ3› ‹ Ġ1 Ġ2 Ĝ3› ‹ Ġ1 Ĝ2 Ġ3› ‹ Ğ1 Ğ2 Ġ3› ‹ Ğ1 Ġ2 Ğ3› ‹ Ĝ1 Ġ2 Ġ3› 

‹ Ğ1 Ġ2 Ĝ3› ‹ Ġ1 Ĝ2 Ğ3› ‹ Ğ1 Ğ2 Ğ3› ‹ Ĝ1 Ġ2 Ğ3› ‹ Ğ1 Ĝ2 Ġ3› ‹ Ĝ1 Ğ2 Ġ3› ‹ Ġ1 Ğ2 Ĝ3› 

‹ Ġ1 Ğ2 Ġ3› ‹ Ġ1 Ġ2 Ğ3› ‹ Ğ1 Ġ2 Ġ3› 

‹ Ġ1 Ġ2 Ġ3› 

(b) 

Figure 3: (a) Actors A1, A2, and A3 with goals G1, G2, and G3, respectively; (b) The State

Sequence Graph over the set of 33 = 27 possible states

A detailed reachability analysis using Depth-First Search yields 90 different

paths that can be used to reach the sink vertex (Ġ1 Ġ2 Ġ3) from the source

vertex (Ĝ1 Ĝ2 Ĝ3). Each of these paths represents a plausible set of state

transitions such that none of the 3 goals G1, G2, and G3 violate the default

sequence. Thus, with 3 model elements in the SR-diagram we get 90 possible

State Transition Models that correlate to the given i* model.

3.1.1. Counting Multi-dimensional Lattice Paths

In general, it is interesting to observe the number of paths within a State

Sequence Graph corresponding to an i∗ model with k model elements. It is
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intuitive from the above case studies that the state space grows exponentially

as a function f(k) = 3k. This is because each of the model elements can exist

in either of 3 states. The growth function representing the growth of the state

transition model space is far more complex. Before going into the details of an

upper bound representing the growth of the state transition model space, we

need to keep in mind that every model element is initially in the Not Created

state and it needs 2 transitions to reach the Fulfilled state. Thus, the distance

covered by each model element is always 2.

Consider the case where k = 2. Since each model element needs to cover a

distance of 2, we can consider (P̂1P̂2) and (Ṗ1Ṗ1) as the Least Upper Bound and

the Greatest Lower Bound of a 2 × 2 lattice. In general, the number of paths

on a n1×n2 lattice is given by -

LP =

(
n1 + n2

n1

)
=

(n1 + n2)!

n1!n2!
(1)

So for a 2× 2 lattice structure, we have -

LP =

(
2 + 2

2

)
=

(2 + 2)!

2! 2!
=

4!

2! 2!
=

24

4
= 6.

This is exactly what we obtain from our empirical study in Figure 2.

When k = 3, we can represent the set of all possible transitions from

(P̂1P̂2P̂3) to (Ṗ1Ṗ1Ṗ3) as 3-dimensional cubic lattice. Again, since each model

element makes 2 transitions to be fulfilled, hence, we obtain a 2 × 2 × 2 3-

dimensional cubic lattice. In general, the number of paths in a 3-dimensional

cubic lattice with dimensions (n1, n2, n3) is given by -

LP =

(
n1 + n2 + n3

n1,n2,n3

)
=

(n1 + n2 + n3)!

n1!n2!n3!
(2)

So for a 3-dimensional cubic lattice with dimensions(2, 2, 2), we have -

LP =

(
2 + 2 + 2

2, 2, 2

)
=

(2 + 2 + 2)!

2! 2! 2!
=

6!

2! 2! 2!
=

720

8
= 90.

Again, this is exactly what we obtain from our empirical study in Figure 3.

To generalize the upper bound on the growth function of the state transition

model space, if we have a k-dimensional hypercube lattice with dimensions (n1,
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Table 1: Rate of growth of space w.r.t. the number of model elements

No. of Process Elements State Space State Transition Model Space

5 243 113400

10 59049 2.37588E+15

15 14348907 8.09487E+27

20 3486784401 7.78117E+41

25 8.47289E+11 9.06411E+56

30 2.05891E+14 7.74952E+72

35 5.00315E+16 3.48622E+89

40 1.21577E+19 6.5092E+106

45 2.95431E+21 4.2227E+124

50 7.17898E+23 8.289E+142

55 1.74449E+26 4.4083E+161

60 4.23912E+28 5.8022E+180

65 1.03011E+31 1.7528E+200

70 2.50316E+33 1.1403E+220

75 6.08267E+35 1.5123E+240

80 1.47809E+38 3.8999E+260

85 3.59175E+40 1.876E+281

n2, ..., nk), then the number of paths is given by -

LP =

(
n1 + n2 + ... + nk

n1,n2, ...,nk

)
=

(n1 + n2 + ... + nk)!

n1!n2!...nk!
=

(
∑k

i=1 ni)!∏k
i=1(ni!)

(3)

Irrespective of the number of model elements involved, since each model element

travels a distance of 2 to become fulfilled, we have the condition ∀ki=1, ni=2.

The total number of paths is given by -

LP =
(
∑k

i=1 2)!∏k
i=1(2!)

=
(2k)!

2k
. (4)

Equation 4 can be used to generate a data set and observe how the state

space and the state transition model space grows with increasing number of
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model elements in the i∗ model. Table 1 represents such a data set as the

number of model elements increases from 5 to 85 in steps of 5. Data thus

obtained can be plotted on a graph and the trends may be observed. Figure 4

below depicts the rate of growth for both the state space and the state transition

model space with respect to the number of model elements depicted in the given

i* model.
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Figure 4: Graph depicting the rate of growth of the state space and state transition model

space with respect to the number of model elements in the i* model for the Naive Algorithm

[To be reproduced in color on the Web and in black-and-white in print ]

Interpretation of the graph is quite interesting. Some of the more interesting

observations are as follows:

1. The reader should not to be misled by the linear nature of the growth

curves. A careful analysis of the graph reveals that the vertical axis rep-

resents a Logarithmic scale where the values represent exponentially in-

creasing integers. The values range from 1 to 1.876E + 281. Linear curves

on a Logarithmic scale represent Exponential growth functions. In fact,
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the state space growth function, as represented by the blue line, actually

represents the growth function f(k) = 3k. The growth function of the

state transition model space, as represented by equation 4, is represented

by the red line.

2. Another significant observation here is that the gradient of the blue line

is much less than that of the red line. This implies that although both

the state space and the state transition model space grows exponentially,

the rate of growth for the state transition model space is much higher

compared to that of the state space. In fact, the values in Table 1 reveal

that, in every step, the state space grows by a factor of 102−103, whereas

the state transition model space grows by an approximate factor of 1019−

1020. This is really huge in terms of the rate of growth.

We can conclude from the above data that the Naive Algorithm causes a

hyperexponential explosion in the state transition model space. The growth

curve of the state transition model space is so steep that it reaches infinitely

large values for very small values of k, the number of model elements in the i*

model. It is evident from the nature of the curves that the state transition model

space becomes quite unmanageable when we are looking at the i* model of an

entire enterprise, comprising of hundreds of model elements. Thus, it becomes

necessary to extract partial sequence information that remain embedded within

an i* model and perform some pruning activities while the state transition model

space is being generated.

3.1.2. The Naive Algorithm:

Input : SR-diagram of the i* model of an enterprise

Output : The set of plausible state transition models that can be derived from

the given i* model

Data Structure: A List for each actor that stores model elements of the actor

Step-1 : Select the i-th model element Pi from the List of model elements for

the actor Aj .
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Step-2 : Remove Pi from the List.

Step-3 : Pi can make two transition from Pi-Not Created to Pi-Created Not

Fulfilled and from Pi-Created Not Fulfilled to Pi-Fulfilled, in

that order.

Step-4 : Generate all possible execution traces by interleaving the default se-

quences of all model elements that have been removed from the List, such

that, the default sequence of the individual model elements is satisfied.

Step-5 : Repeat Steps 1-4 for all model elements Pi residing within the Actor

boundary, i.e., while the List is not empty.

Step-6 : Repeat Step 5 for all actors in the i∗ model.

Step-7 : Perform cartesian product between the sets of state transition models

as obtained for individual actors, to generate the set of possible state

transition models for the entire i∗ model.

Step-8 : Stop.

3.2. The Semantic Implosion (SI) Algorithm

The motive here is to prevent the hyperexponential explosion of the state

transition model space that is caused by the Naive Algorithm. Although the

Naive Algorithm generates all possible state transition models that can be de-

rived from an i* model, some filtering can be done on this model space. The

simplest means of doing this is to feed each possible model being generated

into some standard Model Verifier like NuSMV and check the model against

user-defined temporal compliance rules, specified using some standard temporal

language like CTL or LTL. However, since this needs to be done on the entire

state transition model space, the time complexity of the entire process becomes

unmanageable even when machine-automated.

The desirable situation here is to prevent the hyperexponential explosion from

occurring in the first place. We propose the Semantic Implosion Algorithm, or
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SIA, that tries to achieve this. SIA is based on the underlying hypothesis that

although an i∗ model is sequence agnostic, there exists some embedded temporal

information that can be extracted and exploited to reduce the plausible space of

state transition models. Temporal compliance rules may be defined that further

reduce the number of coherent state transition models.

Every model element Pi residing within the SR-diagram of an actor is

uniquely identified using a system variable Vi. Every system variable Vi can

have either of three values - 0, 1, or 2 - representing the conditions Not Created

(P̂i), Created Not Fulfilled ˘(Pi), and Fulfilled (Ṗi), respectively. Every time

a new model element Pj is encountered, a corresponding system variable Vj

is created and initialized to 0 representing the Not Created situation. This is

reflected in the state transition model of the enterprise with a transition from

the current state to a new state where the corresponding system variable Vj

becomes a member of the state variables.

The algorithm proceeds to explore the child model elements of a chosen

parent model element. Before doing so, the corresponding system variable Vj

is updated to contain the value 1 and pushed onto a stack. This is reflected in

the state transition model with a state transition from the current state to a

new state that reflects the fact that Pj has been created but not fulfilled. A

model element is said to be fulfilled when either it has no child model element

(we have reached the actor boundary) or all its child model elements have been

individually fulfilled. When this happens, the system variable Vj corresponding

to the parent model element Pj is popped from the stack and updated with the

value 2. A corresponding state transition is incorporated in the state transition

model that reflects the fact that model element Pj has been fulfilled. Figure 5

illustrates the state transition model corresponding to a single model element

and how the corresponding system variable is incorporated and updated along

each transition.

However, it is interesting to note how the child model elements of a partic-

ular parent are processed. The processing differs for task decompositions and

means-end decompositions. A task decomposition is an AND-decomposition and
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Figure 5: (a) Actor A1 with goal G1; (b) The corresponding State Transition Model

demands that all the child model elements be fulfilled in order to declare that

the parent has also been fulfilled. A means-end decomposition, on the other

hand, is an OR-decomposition and provides alternate strategies to fulfill the

parent model element. Let us elaborate on the consequences of these two de-

compositions.

A task decomposition requires that all the child model elements be fulfilled

before changing the state of the parent model element to the fulfilled state.

However, since an i∗ model is sequence agnostic, the child model elements may

be fulfilled in any random permutation. System variables associated with the

child model elements should not defy the default sequence defined in section

3.1. Let a model element Pj be decomposed by a task decomposition to a set

of model elements 〈P1,P2, ...,Pm〉. The system variables associated with these

model elements are V1, V2, ..., Vm, respectively. We define a state transi-

tion from the current state with Vj=1 to a new state with the state variables

Vj=1, ∀mr=1,Vr=0. There exists several execution permutations of the decom-

posed model elements that results in a state with the state variables, Vj=1,

∀mr=1,Vr=2. The set of all possible execution sequences can be defined using a

lattice structure, similar to the ones shown in figures 2, and 3. Since all child

model elements are fulfilled in this state (the GLB of the lattice), we define

another state transition in the state transition model that reflects the fact that

the parent model element is also fulfilled, i.e., the new state has state variables

Vj=2, ∀mr=1,Vr=2. The state transition model corresponding to such a task

decomposition is shown in figure 6.
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Figure 6: (a) Actor A1 with goals G1, G2, and G3 connected through a task decomposition;

(b) The corresponding set of all possible State Transition Models

The interpretation of the figure is quite interesting. The lattice structure

represents the set of all possible execution sequences that result in the successful

fulfillment of the task decomposition. As seen in section 3.1, the number of paths

in a lattice structure for two model elements is 6. All of these 6 paths represent

valid execution sequences or state transitions. Each path gives rise to a different

state transition model. This implies that the task decomposition shown in figure

6 gives rise to 6 possible state transition models. The Naive Algorithm, on the

other hand, would generate a lattice structure with three model elements and the
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number of possible state transition models would become 90. This is a significant

reduction in the state transition model space. In fact, the significant observation

here is that a lattice structure will be generated only where AND-decompositions

take place. In other words, only AND-decompositions will increase the size of

the state transition model space.

A means-end decomposition is easier to handle. OR-decompositions, in gen-

eral, do not increase the size of the state transition model space. Rather, if a

particular model element Pj decomposes via a means-end decomposition into k

model elements 〈P1,P2, ...,Pk〉, then we introduce k different transitions from

the current state (Vj=1) to k unique new states, each representing one of the k

alternate means (Vj=1, Vp=0, ∀kp=1). An OR-decomposition is characterized by

the fact that fulfilling any one of the alternate means implies fulfilling the par-

ent model element. Thus, each of these k new states will make two transitions

(labelled by Vp:0→1 and Vp:1→2, ∀kp=1) to reach their respective fulfillment

states. Each alternate means will have a separate fulfillment state labelled by

Vj=1, Vp=2, ∀kp=1. All the k fulfillment states will converge to a final state

that represents the fulfillment of the parent model element Pj and is labelled

by Vj=2, ∨kp=1Vp=2. The structure obtained is similar to the longitudinal lines

on the globe of the earth. Figure 7 illustrates this further.

3.2.1. Some interesting Observations

1. Decompositions can be nested. This implies that decompositions can occur

within other decompositions. One particular decomposition link may be

further blown up with a second decomposition. For instance, means-end

decompositions may be followed by a task decomposition along one means-

end link and a means-end decomposition along some other means-end link.

Figure 8 illustrates this scenario. This nesting of decompositions does

not require any modifications on the algorithm. The corresponding state

transition models are built accordingly where the state transition sub-

model of the nested decomposition is mereologically connected to the state

transition model of the outer level decomposition.
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Figure 7: (a) Actor A1 with goals G1, G2, G3, and G4 connected through a means-end

decomposition; (b) The corresponding State Transition Model

2. It is interesting to note what happens if we reach a model element Pi,

located at the actor boundary of actor Ai, that is dependent on some

model element Pj that is located at the actor boundary of actor Aj . In

that case, we assume that the model element Pi will be fulfilled by Aj ,

pop out the system variable Vi from the stack and set its value to 2. At

the same time we introduce a temporary transition in the corresponding

state transition model that changes the state of Vi from Created Not

Fulfilled(CNF ) to Fulfilled(F ). This is necessary as we cannot proceed

with the construction of the state transition model of individual actors

without this assumption. However, we need to maintain a list of all such
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Figure 8: The State Transition Model corresponding to a nested decomposition. An outer

mean-end decomposition contains another means-end decomposition along the leftmost means

and a task decomposition along the rightmost means.

dependencies. A Global List is maintained that stores 2-tuples of the form

〈depender variable, dependee variable〉. Once the state transition models

of the individual actors have been built, the elements of the Global List are

accessed. Each element represents a dependency of the form 〈Vik, Vjl〉

and is interpreted as model element Pk within actor Ai depending on actor

Aj for model element Pl. The temporary transition in the state transition

model of actor Ai representing the change Vk: 1 → 2 is replaced by

two new transitions that connect the state transition models of actors Ai

(STMi) and Aj (STMj). The first transition is established from the state

in STMi having label Vk=1 to the state in STMj having label Vl=2. The

second transition is placed from the state in STMj having label Vl=2 to

the state in STMi having label Vk=2. 〈Vik, Vjl〉 is removed from the

Global List. Figure 9 further illustrates this process.
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Figure 9: (a) Goal G3 of actor A1 dependant on Goal G4 of actor A2; (b) Temporary transi-

tion from Ğ3 to Ġ3 introduced; (c)Resolution of the dependency by replacing the temporary

transition with two permanent transitions

3. Dependency resolution causes state transitions to be set up between states

belonging to the state transition models of the depender and the dependee.

If the depender and dependee have M and N possible state transition

models, respectively, then we get a maximum of M × N combinations

for interlinking the state transition models of the depender and dependee.

Every dependency resolution must take place simultaneously in all the

M ×N combinations.

Let n be the total number of model elements occurring in the SR-diagram
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of the enterprise. The terminating condition of the SI Algorithm is given by the

constraint, ∀nj=1,Vj=2 and the Global Dependency List is empty. The algorithm

initiates with the model elements at the actor boundaries that do not stem

from a parent model element. State transitions are defined in the corresponding

state transition model as and when model elements are discovered, explored and

fulfilled. Let us look into the Semantic Implosion Algorithm now.

3.2.2. The Semantic Implosion Algorithm:

Input : SR-diagram of the i* model of an enterprise

Output : The set of plausible state transition models that can be derived from

the given i* model

Data Structure: A Local Stack for each actor that stores model elements of the

actor and a Global List to keep track of dependencies between actors

Step-1 : For every model element Pi that is not at the end of a task decomposi-

tion or means-end link, assign a system variable Vi=0. Perform a Depth-

First Scan of the SR-diagram of each actor starting at these boundary

model elements.

Step-2 : For any model element Pj with Vj=0, set Vj=1 and push it onto

the Local Stack. Reflect this transition in the state transition model by

plotting a transition from the Not Created state to the Created Not Fulfilled

state. Label this transition Vj :0→1.

Step-3 : Discover all model elements 〈P1,P2, ...,Pq〉 that stem from the ele-

ment Pj and are connected to Pj with task decomposition or means-end

links. For each such element Pk, initialize a system variable Vk such that

∀qk=1Vk=0.

a) If Pj is at an actor boundary with no elements stemming from it and

with no dependencies to other actors, pop Vj from the Stack and set

Vj=2. Set up a corresponding transition in the state transition model

from the Created Not Fulfilled state to the Fulfilled state. Label this

transition Vj :1→2.
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b) If Pj is dependent on some other actor for fulfillment, then pop Vj

and insert it into the Global List with value Vj=2. Insert a temporary

transition between states Created Not Fulfilled and Fulfilled. No need

to label this transition as it is a temporary transition.

c) If Pj undergoes a task decomposition then we obtain several different

state transition sub-models for the task decomposition by permuting

the order of execution of the decomposed model elements. Each such

permutation can be considered to be a valid state transition sub-

model and can be attached to the overall state transition model to

obtain a set of unique state transition models for the actor.

d) If Pj undergoes a means-end decomposition then we obtain multiple

transitions from the current node in the same state transition model.

Each transition represents an alternate strategy and is triggered by

the corresponding guard condition. All the alternate state transitions

emanating from the parent model element must converge at a state

that represents that the parent model element has been fulfilled.

Step-4 : Repeat Steps 2-3 for all siblings of Pj in all the state transition models

generated for actor Ai.

Step-5 : Repeat Step 4 until the Local Stack is empty. This leaves us with the

set of plausible state transition models of an actor Ai.

Step-6 : Repeat Steps 1-5 to extract all the possible state transition models of

all the actors in the i* model.

Step-7 : Remove elements of the form 〈Vik, Vjl〉 from the Global List.

Step-8 : Remove the temporary transitions corresponding to this dependency

from all state transition models of actor Ai.

Step-9 : Insert transitions from the Pk-Created Not Fulfilled state in all

state transition models of actor Ai to the Pl-Fulfilled state in all state

transition models of actor Aj . Label these transitions Vk:1→1.
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Step-10 : Insert another set of transitions from the Pl-Fulfilled state to the

the Pk-Fulfilled state in between all possible state transition models of

actors Ai and Aj . Label these transitions Vk:1→2.

Step-11 : Repeat Steps 7-10 until the Global List is empty and all the depen-

dencies have been resolved.

Step-12 : Stop.

4. Experimental Results

Let us perform some analytics on comparing and contrasting the behavior of

the Naive Algorithm and the Semantic Implosion Algorithm. The two metrics

that are used for this analysis are the State Space Size(SSS) and the State

Transition Model Space Size(STMSS). However, since both algorithms share

the concept of every model element going through 3 states, the SSS metric will

be the same for both algorithms and is defined by f(k)=3k. The STMSS metric

is far more crucial in contrasting the behavioral differences between the two

algorithms.

Figure 4 clearly illustrates the hyper-exponential explosion caused by the

Naive Algorithm in the state transition model space. This is mainly due to

the fact that the Naive Algorithm considers all possible orderings of the model

elements ensuring the default sequence of each individual model element. A

careful understanding of the SI Algorithm reveals that, while the state transition

model corresponding to every actor is being built, the state transition model

space increases only when the following conditions hold:

1. Whenever a Task Decomposition is encountered. Suppose a task is de-

composed to k different model elements. Since an i∗ model is sequence

agnostic, these k model elements can be executed in any order. The set of

all possible execution traces is given by a k-dimensional hypercube lattice

with each dimension having distance 2. As discussed in section 3.1, the
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state transition model space increases by a factor of (2k)!
2k

as given by equa-

tion 4. This implies that if the state transition model space representing

the set of all possible state transition models already has p models, a task

decomposition into q model elements causes the number of state transition

models to become p. (2q)!2q . In general, if the SR-diagram of an actor within

the i* model has d task decompositions, and the number of possible alter-

nate execution sequences generated by each of these task decompositions

be given by #Seq1, #Seq2, ..., #Seqd, then state transition model space

size is given by the following relation:

S =

d∏
i=1

#Seqi (5)

2. Whenever a dependency is being resolved. Dependency resolution needs

to be done individually for every pair of models that can be extracted

from the state transition model space of the depender and the dependee.

If the state transition model spaces of actors Ai and Aj contain M and

N models respectively, then irrespective of the number of dependencies

between Ai and Aj , the state transition model space changes from M +N

to M ×N . Again, if actor Aj requires dependency resolution with actor

Ak, and actor Ak has L state transition models, then the combined state

transition model space has size L×M ×N .

3. Even if 2 actors Ar and As are not dependent on each other, Complete-

ness demands that the state transition model space of the entire i∗ model

considers all possible combinations of the state transition models of actors

Ar and As. Let {S1, S2, ..., Sn} be the state transition model space sizes

of the n actors participating in an i∗ model. Then the size of the state

transition model space of the entire enterprise (S) is given by the following

relation:

S =

n∏
i=1

Si (6)

Dependency Resolution and Completeness conditions are both represented

using the Cartesian Product relation. So, behaviour analysis boils to two basic
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steps. The first steps involves observing the growth of the state transition model

space for each individual actor. Once this has been done for all the actors, the

state transition model space for the entire enterprise is constructed.

4.1. Actor Internal Analytics

It is very difficult to predict the distribution of model elements of an i∗

model within the SR-diagrams of individual actors. Since this is the first step

of behaviour analysis, we are concerned with the state transition model space

growth of individual actors within an i* model. In order to generate a consistent

data set, we assume a uniform distribution of model elements. We increase the

number of model elements occurring within the SR-diagram of an actor in the

i∗ model in steps of 5. Without loss of uniformity, we assume that for every 5

model element within an actor, there exists a task decomposition of 4 elements.

We know that the Naive Algorithm causes the state transition model space to

grow according to equation 4, i.e., STMSSN = (2k1)!
2k1

, where k1 is the number of

model elements in the i∗ model. The Semantic Implosion Algorithm grows only

on the basis of task decompositions. The number of possible execution sequences

generated by a 4-element task decomposition is obtained by substituting k = 4

in equation 4, i.e., (2.4)!
24 = 8!

16 = 2520. Since every 4-element task decomposition

increases the state transition model space size by a factor of 2520, applying the

Cartesian Product relation, we obtain the growth function of the SI Algorithm

to be given by STMSSS = 2520k2 , where k2 is the number of 4-element task

decompositions occurring within the SR-diagram of an actor. Table 2 reflects

such a data set.

The graph plotted on the basis of this data is shown in Figure 10. It is

interesting to analyze the graph. The vertical axis is again a Logarithmic Scale

of Integers. Straight lines in this plot represent exponential functions. The

slopes of the straight lines are directly proportional to the rate of growth of

the corresponding exponential function, i.e., greater the slope, the greater is the

exponential rate of growth. The following observations can be concluded from

the graph:
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Table 2: Actor Internal Analytics

No. of Process

Elements (k1)

No. of 4-element Task

Decompositions (k2)

Naive Algorithm SI Algorithm

STMSSN = (2k1)!
2k1

STMSSS = 2520k2

5 1 113400 2520

10 2 2.37588E+15 6350400

15 3 8.09487E+27 1.6E+10

20 4 7.78117E+41 4.03E+13

25 5 9.06411E+56 1.02E+17

30 6 7.74952E+72 2.56E+20

35 7 3.48622E+89 6.45E+23

40 8 6.5092E+106 1.63E+27

45 9 4.2227E+124 4.1E+30

50 10 8.289E+142 1.03E+34

55 11 4.4083E+161 2.6E+37

60 12 5.8022E+180 6.56E+40

65 13 1.7528E+200 1.65E+44

70 14 1.1403E+220 4.16E+47

75 15 1.5123E+240 1.05E+51

80 16 3.8999E+260 2.64E+54

85 17 1.876E+281 6.67E+57

1. The blue line depicts the growth of the state space and is consistent for

both scenarios, given by 3k. As both algorithms have the underlying basis

that every model element goes through 3 states, the state space growth

remains the same.

2. The green line depicts the behaviour of the Semantic Implosion Algorithm.

It is to be noted that the blue and green lines are very close to one another.

This implies that the exponential rate of growth of the state transition

model space as governed by the SI Algorithm is almost the same as the

exponential rate of growth of the state space.
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Figure 10: Behaviour analysis with respect to the state transition model space of individual

actors for the Naive Algorithm (STMSS-N) and the Semantic Implosion Algorithm (STMSS-S)

as the number of model elements in the i∗ model varies [To be reproduced in color on the Web

and in black-and-white in print ]

3. The red line depicts the exponential rate of growth for the Naive Algo-

rithm. The slope of the red line is much greater than those of the green

and blue lines. This represents the hyper-exponential explosion that is a

characteristic of the Naive Algorithm.

4. A closer look at the STMSS values in Table 2 reveals the fact that the

STMSS metric increases by a factor of 1019 - 1020 for the Naive Algorithm

whereas for the SI Algorithm the STMSS metric increases by a factor of

103.

The conclusions from Table 2 and Figure 10 clearly indicate that the Seman-

tic Implosion Algorithm provides a huge improvement in the rate of growth of

the state transition model space with respect to individual actors in comparison

to the Naive Algorithm.
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4.2. Inter-Actor Analytics

Actor Internal Analytics explore the growth of the state transition model

space for each individual actor. Inter-Actor Analytics provides an insight into

how Actor Internal Analytics impact the state transition model space growth

rate of the entire i∗ model representing an enterprise. There are two events that

impact Inter Actor Analytics as follows:

1. Density of Actors participating in the i∗ model, and

2. Distribution of Process Elements within the actors.

Let us individually analyse how these two parameters effect the growth rate of

the state transition model space.

4.2.1. Variation of Actor Density

Let there be n actors participating in an i∗ model. Let the size of the state

transition model spaces of the individual actors be given by S1, S2, ..., Sn,

respectively. Assuming a uniform density of 5 model elements within individual

actors, we try to evaluate the rate of growth of the state transition model space.

Similar to the data in table 1, we assume that every actor has a 4-element task

decomposition.

The Naive Algorithm affects the state transition model space by causing the

space size to grow according to equation 4. Replacing k = 5, we get the state

transition model space size of every actor as -

LP =
(2.5)!

25
=

10!

32
= 113400.

Since all the n actors of the i∗ model have uniform distribution of model

elements, the state transition model space size remains the same for all actors

as given by equation 4, i.e., ∀ni=1, Si = (2k)!
2k

. Combining equations 4 and 6, we

get the state transition model space size for the entire enterprise (SN ) as -

SN = (
(2k)!

2k
)n (7)
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Table 3: Inter Actor Analytics obtained by varying Actor Density

No.

of Actors(n)

Naive Algorithm SI Algorithm

STMSSN = ( (2k)!
2k

)n, k = 5 STMSSS = (2520)n

5 1.87528E+25 1.01626E+17

10 3.51666E+50 1.03277E+34

15 6.59471E+75 1.04956E+51

20 1.23669E+101 1.06662E+68

25 2.31914E+126 1.08396E+85

30 4.34902E+151 1.10158E+102

35 8.15562E+176 1.11949E+119

40 1.52940E+202 1.13768E+136

45 2.86805E+227 1.15618E+153

50 5.37840E+252 1.17497E+170

55 1.00860E+278 1.19407E+187

The Semantic Implosion Algorithm, on the other hand, causes the state

transition model space of individual actors to grow only when task decomposi-

tions are encountered. Since we assume a 4-element task decomposition to exist

in each actor, the state transition model space size of all the actors remains

constant and is given by replacing k = 4 in equation 4.

LP =
(2.4)!

24
=

8!

16
= 2520.

Since ∀ni=1, Si = 2520, replacing this value in equation 6 the state transition

model space size for the entire enterprise (SS), as given by the SI Algorithm, is

-

SS = (2520)n (8)

We restrict the number of model elements in each actor to 5 and increase the

density of actors from 5 to 55 in steps of 5. Table 3 represents such a data set.

Figure 11 shows the corresponding graph structure that is obtained by plotting

this data.
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Figure 11: Behaviour analysis with respect to the state transition model space of the entire en-

terprise for the Naive Algorithm (STMSS-N) and the Semantic Implosion Algorithm (STMSS-S)

as the density of actors in the i∗ model varies [To be reproduced in color on the Web and in

black-and-white in print ]

Interpretation of the graph is quite intuitive. The blue line represents the

growth function of the Naive Algorithm. In this case study, it represents the ex-

ponential function (113400)n. The red line, on the other hand, plots the growth

function of the Semantic Implosion Algorithm and represents the exponential

(2520)n. With the vertical axis representing a Logarithmic scale of integers, the

two functions are mapped as straight lines with different gradients. Obviously,

the gradient of the blue line is greater than the gradient of the red line. This

has the semantic interpretation that the Naive Algorithm increases the state

transition model space more rapidly as compared to the Semantic Implosion

Algorithm.

4.2.2. Variation of the Distribution of Process Elements

In this particular case study, we fix the number of actors involved in the

enterprise i∗ model to 5. Keeping the number of actors fixed, the distribution
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Table 4: Inter Actor Analytics obtained by varying the Distribution of Process Elements

No. of Process

Elements (k1)

Naive Algorithm SI Algorithm

STMSS-N=( (2k1)!
2k1

)5 STMSS-S=( (2k2)!
2k2

)5, k2 = k1 ÷ 5

5 1.87528E+25 1.01626E+17

10 7.57046E+76 1.03277E+34

15 3.47576E+139 1.04956E+51

20 2.85249E+209 1.06663E+68

25 6.11823E+284 1.08399E+85

of model elements per actor is increased from 5 to 25 in steps of 5. Assuming

uniformity across all the actors in the i∗ model, every actor generates it’s state

transition model space with the same size. The space size changes with varying

model element distribution density. Let the size of the state transition model

spaces of the individual actors be given by S1, S2, ..., S5, respectively, for some

model element distribution k.

The Naive Algorithm combines equations 4 and 6 to give a function repre-

senting the growth rate of the state transition model space as follows:

SN = (
(2k1)!

2k1
)5,∀k1, k1 ∈ {5, 10, 15, 20, 25}. (9)

The Semantic Implosion Algorithm expands the state transition model space

for task decompositions only. Our underlying assumption that there exists a 4-

element task decomposition for every group of 5 elements dictates the growth

function of the state transition model space as follows:

SS = (
(2k2)!

2k2
)5, k2 = k1 ÷ 5,∀k1, k1 ∈ {5, 10, 15, 20, 25}. (10)

The data generated from equations 9 and 10 is shown in Table 4. The number

of actors have been fixed to be 5. Figure 12 represents the graph corresponding

to this data.

The interpretation of the graph is quite similar to the previous graphs. The

vertical axis represents a Logarithmic scale of integers. Both the exponential

function given by equations 9 and 10 appear as straight lines. However, the
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Figure 12: Behaviour analysis with respect to the state transition model space of the entire en-

terprise for the Naive Algorithm (STMSS-N) and the Semantic Implosion Algorithm (STMSS-S)

as the distribution of model elements within actors in the i∗ model varies [To be reproduced

in color on the Web and in black-and-white in print ]

gradients of the two lines are widely different. This implies that the rate of

growth of STMSS-N (represented by the blue line) is much greater than that of

STMSS-S (represented by the red line).

4.3. SIA Analytics

The analytics provided in tables 2, 3, and 4, and the corresponding graphs

shown in figures 10, 11, and 12, all point in the same direction. The obvi-

ous conclusion from these data sets is that the Semantic Implosion Algorithm

provides a huge improvement over the more simple Naive Algorithm. The im-

provement is in the context of space complexity and the SI Algorithm provides

this improvement with a factor of 1015 − 1016.

Accepting the above conclusion triggers an urge to take an insight into the

behaviour of the SI Algorithm when both the parameters - Actor Density and
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Table 5: Inter Actor Analytics obtained by varying both Actor Density and Distribution of

Process Elements for the SI Algorithm

No.of Process

Elements (k1)

SI Algorithm

STMSS-5 STMSS-10 STMSS-15

5 1.01626E+17 1.03277E+34 1.04956E+81

10 1.03277E+34 1.06662E+68 1.10158E+102

15 1.04956E+51 1.10157E+102 1.15617E+153

20 1.06663E+68 1.13769E+136 1.21349E+204

25 1.08399E+85 1.17503E+170 1.38069E+255

Property Element Distribution - are varied simultaneously. Table 5 provides

such a data set. The data are obtained by varying the distribution of model

elements in individual actors from 5 per actor to 25 per actor, in steps of 5. The

state transition model space size is obtained using the following equation:

STMSS-A = (
(2k2)!

2k2
)A, k2 = k1 ÷ 5 (11)

The A in equation 11 represents the number of actors. k2 is obtained from

k1 as mentioned in the equation due to the assumption that we have a 4-element

task decomposition for every group of 5 model elements. Maintaining the uni-

formity of model element distribution across all the actors of an i∗ model, we

obtain the data set for 5, 10, and 15 actors, given by STMSS-5, STMSS-10, and

STMSS-15, respectively. The graph obtained from the data set in table 5 is

shown in figure 13.

The graph is fairly simple to analyze and interpret. The vertical axis is

again a Logarithmic Scale. Each of the individual lines (blue, red, and green)

are linear, representing exponential growth functions. The fact that the state

transition model space size will increase with greater number of actors has al-

ready been observed in figure 11. Hence, the higher positioning of the lines as

the number of actors increases. It can also be concluded from figure 12 that

for a fixed actor density, the state transition model space size increases with

increasing density of model elements. Hence, the positive gradient in each of
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Figure 13: Behaviour analysis of the Semantic Implosion Algorithm (w.r.t. the state transition

model space) as the distribution of model elements within actors and the actor density in the

i∗ model are both varied [To be reproduced in color on the Web and in black-and-white in

print ]

the three lines.

The more important observation here is that the gradient of the lines in-

creases with increasing actor density, i.e., the green line is more steep compared

to the red line which, in turn, is steeper than the blue line. We already know

that the gradient of the straight lines represents the rate of growth of the ex-

ponential functions representing the growth of the respective state transition

model spaces. This means that as the actor density increases, the state transi-

tion model space increases even more rapidly.

5. Conclusion

Enterprise architects are aware of the need for temporal information to be

captured by a modelling language. However, a requirement specification mod-

elling paradigm like i* is essentially sequence agnostic and rightfully so. i∗ mod-
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els are used to provide an abstract graphical overview of the enterprise to the

customer so that he/she has a better understanding of the implications of the

requirements as specified by him/her. The true essence of modelling does not

reside in providing a graphical interface to the outside world; rather modelling

can be exploited for ensuring the correctness of the enterprise being designed

by checking the model against inconsistencies, incorrect assertions, counter-

possibilities and different other types of anomalies. Formal Model Checking

methods and tools exist to achieve this. A correct model can then be used to

automate the generation of code snippets that help in the design and testing

phases of the System Development Life Cycle.

Enterprise designers are of the same opinion that both Model Checking and

Automated Code Generation demand the existence of sequential information

within the model. Model Checking tools, typically check a model against cer-

tain temporal properties. The need to bridge the gap between i* models and

any other business process model is evident. Although model transformations

have existed in the industry for quite some time, no work has been done to de-

rive sequential models from i* models. This paper first illustrates and presents

a Naive Algorithm for extracting sequences from i* model constructs. Simu-

lation results demonstrate how this causes a hyperexponential explosion in the

state transition model space. The Semantic Implosion Algorithm provides an

approach to counter this explosion.

Detailed simulations have been done by applying both the algorithms to

similar types of i* models and the results show that the Semantic Implosion

Algorithm provides a significant improvement over the Naive Algorithm. Typi-

cally, the state transition model space grows in the order of 1020 for the Naive

Algorithm, whereas, for the Semantic Implosion Algorithm, the growth rate is

restricted to the order of 103. Although this may not be the best approach to

extract a minimal set of plausible state transition models that can be derived

from a given i∗ model, it definitely provides a significant improvement over the

Naive Algorithm.

The set of possible state transition models, that correspond to a given i∗
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model, can be further pruned by feeding them into a Model Checking tool like

NuSMV and checking them against certain customer-specific temporal proper-

ties or compliance rules. All models that generate counter-examples may be

discarded. This is one of the biggest advantages of modelling an enterprise.

Also, once the set of valid state transition models have been obtained, we can

map them to BPMN models, Petri-Nets, or even UML models. This helps

Enterprise Architects by allowing the automated generation of code snippets,

thereby, reducing the efforts required to build the enterprise. Thus, once the

requirements have been finalized and modelled by the architects, the develop-

ment of the enterprise becomes fully automated, ensuring greater consistency

and correctness and reducing the risks of failure.
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