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Stepwise API Usage Assistance Using
N-Gram Language Models

André L. Santos∗, Gonçalo Prendi, Hugo Sousa, Ricardo Ribeiro

Instituto Universitário de Lisboa (ISCTE–IUL)

Abstract

Reusing software involves learning third-party APIs, a process that is often
time-consuming and error-prone. Recommendation systems for API usage as-
sistance based on statistical models built from source code corpora are capable
of assisting API users through code completion mechanisms in IDEs. A valid
sequence of API calls involving different types may be regarded as a well-formed
sentence of tokens from the API vocabulary. In this article we describe an ap-
proach for recommending subsequent tokens to complete API sentences using
n-gram language models built from source code corpora. The provided system
was integrated in the code completion facilities of the Eclipse IDE, providing
contextualized completion proposals for Java taking into account the nearest
lines of code. The approach was evaluated against existing client code of four
widely used APIs, revealing that in more than 90% of the cases the expected
subsequent token is within the 10-top-most proposals of our models. The high
score provides evidence that the recommendations could help on API learning
and exploration, namely through the assistance on writing valid API sentences.

Keywords: API, usability, n-grams, code completion, IDE

1. Introduction

Software development and programming using third-party APIs (Applica-
tion Programming Interfaces) can be considered inseparable activities, given
that reliable and efficient software construction typically requires using several
APIs. The study of API usability has gained attention in the research commu-
nity [1], since efficient and correct use of third-party APIs is not easily achievable
with mainstream development practices and tools. On the one hand, API us-
ability was studied through empirical experiments (e.g., [2, 3, 4, 5, 6]), which
revealed the types of barriers that API users face (e.g., relationships between
types and instantiation of abstract types). On the other hand, recommendation
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systems were proposed as an aid to assist API users through IDE (Integrated
Development Environment) code completion mechanisms, which rely either on
structural analysis (e.g., [7, 8]) or on mining patterns from source code (e.g.,
[9, 10, 11, 12, 13]). Although code completion is an IDE feature that boosts
programmer productivity with respect to code writing using a familiar API,
empirical studies demonstrated that code completion is often used to explore,
and hence, learn an unfamiliar API (e.g., [3, 6]).

Analogously to natural languages, a valid sequence of API calls may be
regarded as a well-formed API sentence, which is composed of tokens from the
API vocabulary. A user that is learning an API is in fact learning how to
write valid API sentences for achieving a certain goal. More concretely, the
API sentences are formed by instructions that either instantiate public types
of the API or invoke public operations on those same types. API sentences
typically involve more than one API type, and hence, a sentence often forms a
collaboration between API types.

In this article we describe a recommendation system for stepwise API usage
assistance through code completion, based on an API sentence model built from
source code corpora using n-gram probabilistic language models [14]. N -gram
models have been used before to study the “naturalness” of source code [15]. An
important difference to this approach is that ours is a more semantic approach
to program representation, as the extracted sentences are not programming
instructions, but abstractions that represent them. The computed model and
the recommendation method work over the abstraction of API sentence. On
the other hand, our approach is specialized for building a language model for a
well-defined API, providing code completion focused on that API accordingly.
Constraining the scope of the language model to a well-defined API makes
possible to have specialized models for APIs that assist its usage in isolation, as
opposed to general source code writing.

The intelligent code completion approach initially proposed by Bruch et. al.
[9] is based on statistical models and has been successfully transferred to an
industry-scale solution, namely Code Recommenders1 for Eclipse. This system
can be considered to be one of the most advanced code completion systems avail-
able for developers. Although their system provides recommendations taking
into account the context, i.e. the instructions that a developer is writing, the
code completion recommendations are constrained to the calls on a particular
API type given by a variable of the context. More concretely, the conventional
code completion system of Eclipse is enhanced so that the valid operations on
a type displayed in a code completion pop-up menu are ordered according to
their likelihood given the context, instead of according to alphabetical order.
Intelligent recommendation of operations for a type only helps an API learner
partially, given that the code completion system does not provide assistance in
the creation of sequences of API tokens involving different types.

1www.eclipse.org/recommenders
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For example, considering the SWT2 library, if one has a variable of type
Composite, Code Recommenders may suggest invoking setLayout(...) as
the first proposal, because upon instantiating this type the most likely step
to take is setting the layout. However, the next typical step upon creating a
Composite object is to instantiate one of the layout types (e.g., GridLayout), in
order to use it through the setLayout(...) operation (otherwise no contents
are displayed). While the recommendation of this operation hints into that
direction, it is up to the user to find out about this requirement. In contrast
to our approach, Code Recommenders provides no help with this respect, as
their proposals are constrained to the API type on which the user requested
code completion. In our approach, recommendations consist of API sentence
completion involving different API types.

We implemented our approach for Java and the recommendation system
was developed as a plugin to the Eclipse IDE. The plugin makes use of the
available code completion facilities, namely the pop-up menus that are available
when writing code in the editor. Figure 1 presents a usage scenario of our
APISTA tool3 where we can see that the code completion proposals adapt to
the context, suggesting the use of related API types, using the previous example
with the Composite object. Notice that as the context changes, proposals are
progressively adapted to the previously written instructions (steps 1 to 3 in the
figure). In addition to this kind of recommendations, our system is also suitable
for recommending operation calls on a type given its variable (steps 4 and 5 in
the figure), in a similar way as Code Recommenders.

The recommendation system was evaluated using 4 widely-used APIs, for
which our models were trained and evaluated against existing source code har-
vested from public repositories of Github. The results of performing an evalua-
tion of the model recommendations using cross-validation, revealed that in every
API there is at least a 90% chance of having the expected subsequent instruction
within the 10-top-most recommendations. Given this high score, we argue that
the proposed recommendations consist of a valuable aid to programmers when
having to learn, explore, and use an API, considering that the typical amount
of code completion proposals that are visible in a code completion pop-up menu
without scrolling is around 10–15 items.

In this article we describe the components and processes required for building
the proposed recommendation system, namely how to mine software reposito-
ries, a method for building the n-gram language models for APIs, the integration
of the latter in an IDE, and we present an evaluation experiment and its results.
The main contributions of this article are: (1) an IDE-based code completion
approach for assisting on writing API sentences, (2) a method for building an
API sentence model using n-gram language models, and (3) a quantitative eval-
uation of the approach involving widely used APIs.

2Standard Widget Toolkit — www.eclipse.org/swt
3APISTA stands for API Sentence Token Assistance, whereas in Portuguese “a pista”

means the clue.
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Figure 1: Stepwise API usage assistance for writing API sentences using the code completion
proposals of our APISTA tool in Eclipse. Users may request code completion either on an
empty line or on a variable (after the dot). The immediate previous lines are considered as
the context for computing the recommendations. Values of parameters for which a compatible
variable was not available in the context were manually inserted by the user.

This article proceeds as follows. Section 2 presents an overview of our ap-
proach. Section 3 address the process of mining software repositories. Section
4 describes the language model in detail. Section 5 presents the evaluation
of our system against existing APIs. Section 6 discusses issues pertaining to
the integration of the recommendation system in an IDE. Section 7 compares
our approach to related work. Section 8 describes limitations of our approach.
Section 9 presents our conclusions and outlines future work.

2. Approach Overview

There are several components and stakeholders involved in our approach
(see Figure 2). Providing a recommendation system for a given API requires
mining source code repositories where the API is used. Several processes have
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Figure 2: Overview of components and stakeholders involved in our approach. The three
main components are depicted in gray. The recommender component is an Eclipse plugin
(APISTA).

to be carried out for achieving robust and accurate recommendations. Namely,
determining the API vocabulary in order to extract API sentences from source
code repositories, building the API language model using the extracted infor-
mation, and integrating the model in a code completion system that is able to
recommend proposals of API usage that take into account the code that is being
edited as context.

API developers write and maintain libraries and frameworks, whose API
is used by several projects that are developed by a programmer community.
Each project that uses the API is a candidate for being part of the source code
corpus that is used to build the API sentence model. The broader the source
code corpus is in terms of API coverage, the more complete the language model
will be. The API source is used to determine its boundaries, in terms of which
types belong to the API when mining the repositories.

There are two core processes for setting up our recommendation system for a
particular API. The sentence extractor component mines a set of API sentences
from the source code corpus. The model builder component uses the sentence
set to build a API sentence model. In turn, the model is used by a recommender
component in an IDE in order to assist API users with proposals that augment
the API sentence that is being written in the code editor. The recommender
is integrated with the code completion system of Eclipse, using the available
facilities as the means to present the API usage proposals. When requesting
code completion, the context in which the API user is writing code is given as
input to the recommender, namely the tokens contained in the lines of code that
precede the line where code completion is requested. API usage assistance is
provided in a stepwise manner, through single-token proposals to augment the
API sentence that is being written by the developer.
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Invocation Token type Token operation

Class constructor owner class “new”
Static operation owner class operation name
Instance operation target expression type operation name

Table 1: Token kinds in API sentences.

3. Extracting API Sentences

The degree of robustness in the process of extracting API sentences from
source code corpora affects the quality and accuracy of the recommendations.
Poorly extracted snippets result in data with more “noise”, which in turn will
lead to less accurate language models. Therefore, we handle with special care
the process of sentence extraction sentences using different tactics. The sentence
extractor is a parser of Java source files for this purpose, which we developed
using the infrastructure of Eclipse’s Java Development Tools. The sentence
examples that we use in this section are based on the API of SWT4.

3.1. Tokens

Within the realm of an API, we refer to token as a possible code instruction
that involves a public API type and a public operation therein, considering
both static operations and constructors as operations too. Tokens are semantic
“chunks” that abstract the representation of code instructions. Currently we do
not handle method overloading, and therefore, there is no distinction amongst
methods of the same class whose name is equal but their parameters differ. The
same applies to alternative public constructors of the same class. A token is
uniquely identifiable by a tuple formed by an API type and an operation of that
type. We consider the API vocabulary to be formed by a set containing all the
possible tokens of the API5, denoted by V:
V = (t0, t1, . . . , tn) : ∀t ∈ V, t = 〈type, operation〉

Our extraction process considers three kinds of tokens: constructor invoca-
tions, static operations, and instance operations. Constructor invocation is in
fact a static operation, but it has to have special treatment in Java and we use
the keyword “new” to name the operation. Table 1 summarizes the kinds of
tokens that are considered when extracting sentences.

Tokens are extracted from assignment statements and expressions. Tokens
are extracted if their type (first element of the tuple) is part of the API, whereas
all other tokens are ignored. The API boundaries are given by the API source
code that takes part as input in the extraction process.

4www.eclipse.org/swt
5A member of a vocabulary is normally referred to as type, but we do not adopt such a

terminology here to avoid confusion with the types of the API.
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3.2. Sentences

An API sentence is a sequence of tokens of V, whose instructions are related.
API sentences are mined from a corpus (a set of projects that use the API),
which is used to build the language model. A sentence consists of an observation
found in the corpus (ω) and is treated as a vector of tokens from the vocabulary:

ω = (t0, t1, . . . , tn) : ∀t ∈ ω, t ∈ V

The extracted sentences are mined by parsing every method instruction block
found in the source code corpora. For instance, the following method would
result in the extraction of the sentence below.

vo i d method ( . . . ) {
Labe l l a b e l = new Labe l ( . . . ) ;
S t r i n g s = . . . ;
l a b e l . s e tTex t ( s ) ;

}

Extracted sentence: ω = (〈Label, new〉, 〈Label, setText〉)

The instantiation of Label was considered as an API token, the String

assignment was ignored, and the operation Label.setText was also identified
as a token.

3.3. Sentence sample vocabulary

Consider SV as the set of all possible sentences using vocabulary V, i.e. the
sample space. The set of extracted sentences is denoted by Ω, consisting of a
sample of observations that is a subset of the possible sentences (Ω ⊆ SV).

Ω = (ω0, ω1, . . . , ωn) : ∀ω ∈ Ω, ω ∈ SV

Given that the sentences of the sample may not use every token of the
vocabulary, the vocabulary of the extracted sentences VΩ is a subset of the API
vocabulary (VΩ ⊆ V). VΩ is used to build the language model, and the accuracy
of the latter depends on the quality of the former.

3.4. Composite expressions

Instructions may contain composite expressions that involve API tokens.
Given that our goal is to capture sentences in terms of their semantics, rather
than how they are expressed syntactically, we treat composite expressions so
that the extracted sentences are decomposed as if having separate instructions.
For instance, both the following code snippets result in the same extracted
sentence.

Composite compos i t e = new Composite ( . . . ) ;
compos i t e . s e tLayou t ( new Gr idLayout ( . . . ) ) ;

Composite compos i t e = new Composite ( . . . ) ;
G r idLayout l a y o u t = new Gr idLayout ( . . . ) ;
compos i t e . s e tLayou t ( l a y o u t ) ;
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Extracted sentence: ω = (〈Composite, new〉, 〈GridLayout, new〉, 〈Composite, setLayout〉)

The token order reflects the execution order, namely, the instantiation of
GridLayout occurs prior to the invocation of setLayout(...). Analogously,
when having chained invocations, the expression is separated into different in-
structions. The following code snippet illustrates this case, where the two cases
also result in the same extracted sentence.

new Labe l ( . . . ) . g e tPa r en t ( ) . g e tPa r en t ( ) ;

Labe l l a b e l = new Labe l ( . . . ) ;
Composite pa r en t = l a b e l . g e tPa r en t ( ) ;
Composite pa r en tPa r en t = pa r en t . g e tPa r en t ( ) ;

Extracted sentence: ω = (〈Label, new〉, 〈Label, getParent〉, 〈Composite, getParent〉)

3.5. Token dependencies

API calls are normally interleaved with other instructions that do not relate
to the API, while unrelated API sentences might also be interleaved. The criteria
for relating the tokens that form a sentence is based on dependency graphs
between instructions. An instruction a is considered to depend on another
instruction b in the following cases:

1. b is an assignment and a uses the assigned variable;

2. a is an invocation and b is used in its arguments.

Algorithm 1 describes in pseudo-code how the instruction blocks are pro-
cessed with respect to token dependencies. Each instruction block will result in
a set of sentences (possibly empty, if no API tokens are found therein). We start
with an empty set of sentences. For every instruction of the block, the variables
used therein are obtained and the set of sentences where at least one of those
variables is used is computed (sv). If there are no matching sentences in the
set, then a new sentence containing the instruction is created and added to the
set. If there is only one matching sentence, then the instruction is appended to
the end of that sentence. Finally, if there is more than one matching sentence,
these are considered related and merged into a new sentence, using the order by
which the instructions appear in the block. The merged sentences are removed
from the set and the new sentence is added.

Consider the following example, where we have two unrelated sentences in
a block. The instructions that form the two Composite objects are unrelated
because the variables that are involved do not overlap, and hence, two sentences
are extracted from the block.

Composite compos i te1 = new Composite ( . . . ) ;
compos i te1 . s e tLayou t ( new RowLayout ( ) ) ;
Composite compos i te2 = new Composite ( . . . ) ;
compos i te2 . s e tLayou t ( new F i l l L a y o u t ( ) ) ;
Button button = new Button ( compos i te1 , . . . ) ;
Text t e x t = new Text ( compos i te2 , . . . ) ;
but ton . s e tTex t ( . . . ) ;
t e x t . s e tTex t ( . . . ) ;

8



input : block : ∀i ∈ block, i ∈ VΩ

(a list of instructions)

output: out ⊆ SV
(a set of unrelated sentences)

out← ∅
foreach i : block do

sv ← {s ∈ out : variables(s) ∩ variables(i) 6= ∅}
if sv.isEmpty() then

sentences.add(new Sentence(i))
end
else if sv.size() = 1 then

sv.get(0).append(i)
end
else

out.removeAll(sv)
s← merge(sv)
s.append(i)
out.add(s)

end

end
Algorithm 1: Computing a set of unrelated sentences of an instruction block.

Extracted sentences:
ω1 = (〈Composite, new〉, 〈RowLayout, new〉, 〈Composite, setLayout〉, 〈Button, new〉, 〈Button, setText〉)

ω2 = (〈Composite, new〉, 〈FillLayout, new〉, 〈Composite, setLayout〉, 〈Text, new〉, 〈Text, setText〉)

3.6. Selections and loops

Selections (if-else blocks) are treated so that a sentence is extracted for
each possible branch, using a similar strategy to the MAPO tool [10]. Once
again, the extracted sentences follow the execution order, but in this case, with
alternative execution sequences. Loops are treated in the same way as if they
were conditionals, preserving the possible execution sequences.

Consider the following code snippet with an if-else block to illustrate this
case. Given that there are two possible executions of the block, two sentences
are extracted.

i f ( compos i t e . i s V i s i b l e ( ) ){
compos i t e . s e tFocu s ( ) ;

}
e l s e {

compos i t e . s e t V i s i b l e ( . . . ) ;
compos i t e . redraw ( ) ;

}
compos i t e . l a y o u t ( ) ;

Extracted sentences:
ω1 = (〈Composite, isV isible〉, 〈Composite, setFocus〉, 〈Composite, layout〉)

ω2 = (〈Composite, isV isible〉, 〈Composite, setV isible〉, 〈Composite, redraw〉, 〈Composite, layout〉)
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4. API Sentence Model

The model builder component builds an API n-gram language model from
the set of all observed sentences, Ω, of a given repository.

4.1. N-gram language models

A language model [14] is a statistical model that allows us to compute the
probability of a sentence, or predict the next word in a sentence, of a given
language. From a generative perspective, all sentences of a (natural) language
can be described in terms of the product of a set of conditional probabilities.
Hence, the probability of a sentence ω = (t0, t1, . . . , tn) is given by

P (ω) = P (t0)P (t1|t0)P (t2|t0t1) · · ·P (tn|t0t1 · · · tn−1) (1)

Formally, a language model is a probability distribution over a set of symbol
(token) sequences, Ω, from a finite set of symbols, VΩ. The probability of a
sequence of symbols, ω is given by Equation 1, by applying the chain rule of
probability.

Either to make predictions or to compute the probability of a given sentence,
we need to estimate the conditional probabilities, P (t|h), where t is known as
the prediction and h as the history, found in Equation 1. A simple way to
compute these probabilities is to use the maximum likelihood estimate, which is
calculated by counting the number of sequences with history h that are followed
by the prediction t and dividing by the number of sequences with history h
(Equation 2).

P (tn|t0t1 · · · tn−1) =
C(t0t1 · · · tn)

C(t0t1 · · · tn−1)
(2)

However, since these models are computed using a limited set of data, in gen-
eral, it is not reliable to estimate these probabilities for long histories. Instead,
by making use of the (N -order) Markov assumption, we can approximate these
probabilities by setting a limit, N , to the length of the history (Equation 3).

P (tn|t0t1 · · · tn−1) ≈ P (tn|tn−N+1 · · · tn−1) (3)

The corresponding maximum likelihood estimate is given by Equation 4.

P (tn|tn−N+1 · · · tn−1) =
C(tn−N+1 · · · tn)

C(tn−N+1 · · · tn−1)
(4)

Language models have been widely used in natural language processing for
tasks such as speech recognition [16], spell-checking and correction [17], or ma-
chine translation [18]. We adapt this idea for code recommendation. Given a
sequence of tokens, a code history, and using a language model, it is possible to
compute the probability of each token of the vocabulary following that history.
The list of predictions consists of a list of instructions associated to the tokens of
VΩ, sorted according to the probabilities given by the n-gram language model.
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Tokens Count

〈Composite, new〉 3

〈RowLayout, new〉 1

〈Composite, setLayout〉 3

〈Button, new〉 2

〈Button, setText〉 2

〈FillLayout, new〉 2

〈Text, new〉 1

〈Text, setText〉 1

(a) 1-gram counts (unigram).
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〉
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〈Composite, new〉 1/3
2/3

〈RowLayout, new〉 1/1

〈Composite, setLayout〉 2/3
1/3

〈Button, new〉 2/2

〈Button, setText〉
〈FillLayout, new〉 2/2

〈Text, new〉 1/1

〈Text, setText〉

(b) 2-gram counts and probabilities.

ω0 = (〈Composite, new〉, 〈RowLayout, new〉, 〈Composite, setLayout〉, 〈Button, new〉, 〈Button, setText〉)
ω1 = (〈Composite, new〉, 〈FillLayout, new〉, 〈Composite, setLayout〉, 〈Text, new〉, 〈Text, setText〉)
ω2 = (〈Composite, new〉, 〈FillLayout, new〉, 〈Composite, setLayout〉, 〈Button, new〉, 〈Button, setText〉)

(c) Sample of observations Ω = (ω0, ω1, ω2).

Figure 3: Example of the estimation of a 2-gram model (bigrams).
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Figure 3 presents a small example of how to compute the probabilities for
2-grams given a set of sentences (subfigure 3c). Subfigure 3a presents the 1-
gram (unigram) counts for the sentence set. Subfigure 3b presents the 2-gram
counts and probabilities in a table that can be interpreted as “column token
given row token”. As shown in Equation 5, dividing each row by the frequency
of the corresponding unigram (since the example is a 2-gram language model)
we obtain the conditional probabilities, which are the parameters of our model.

P (t1|t0) =
C(t0t1)

C(t0)
(5)

4.2. N-gram smoothing methods

As we can see from the example in Figure 3, there are several possible
2-grams that do not occur in the set of sentences used to compute the language
model. This problem, known as sparse data problem, causes the maximum like-
lihood estimate to output zero probabilities for n-grams not occurring in the
training set. In order to avoid zero probabilities, a smoothing method can be
used to mitigate this problem.

Several smoothing methods have been proposed for n-gram language model-
ing [19]. Namely, methods like the Witten-Bell smoothing [20] and the Kneser-
Ney smoothing [21] are still used in state-of-the-art work [22, 23, 24]. In general,
these methods combine high-order models with lower-order ones.

In our experiments, the best results were achieved by the Witten-Bell smooth-
ing method. This method uses an interpolated model, as shown in Equation 6
(τ(tn|tn−N+1...tn−1) is the distribution used when the n-gram has a non-zero
count; γ(tn−N+1...tn−1) is a scaling factor to make the distribution sum to 1),
to perform the combination of high-order models with lower-order ones.

Psmooth(tn|tn−N+1...tn−1) =

τ(tn|tn−N+1...tn−1) + γ(tn−N+1...tn−1)Psmooth(tn|tn−N+2...tn−1) (6)

In the Witten-Bell smoothing method, Equation 6 takes the form of Equation 7
(PML is the maximum likelihood estimate).

PWB(tn|tn−N+1...tn−1) = λtn−N+1...tn−1PML(tn|tn−N+1...tn−1)

+ (1− λtn−N+1...tn−1)PWB(tn|tn−N+2...tn−1) (7)

λtn−N+1...tn−1 parameters are defined such that

(1− λtn−N+1...tn−1
) =

|{tk : C(tn−N+1...tn−1tk) > 0}|
|{tk : C(tn−N+1...tn−1tk) > 0}|+ C(tn−N+1...tn−1)

(8)

Equation 9 shows how to compute the Witten-Bell estimate.

PWB(tn|tn−N+1...tn−1) =

C(tn−N+1...tn) + |{tk : C(tn−N+1...tn−1tk) > 0}|PWB(tn|tn−N+2...tn−1)

C(tn−N+1...tn−1) + |{tk : C(tn−N+1...tn−1tk) > 0}|
(9)
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5. Evaluation

In order to evaluate our approach to code completion we carried out a quan-
titative experiment to investigate how well our API sentence models perform
against existing client source code of APIs. We evaluated our models with 4
widely used APIs, which differ in terms of vocabulary size and domain, in order
to assess if our models have similar properties across different APIs. For each
API, we trained models with different orders of n-grams using the SRLIM tool6.
This section describes this experiment in terms of goals, research questions,
method, results, and threats to validity. All the procedures and measurements
were performed on an Intel Core i5 2.5GHz machine with 4Gb of RAM running
Linux Ubuntu 15.

5.1. Goals

The following are the two main goals of our evaluation:

• Measure the performance of API sentence models against existing client
code, namely with respect to the prediction of subsequent API tokens;

• Analyze diverse APIs in order to characterize how well API sentence mod-
els can capture regularities in API usage in general.

5.2. Research questions

With respect to API sentence models and their performance, the following
are our research questions:

1. How does the order of the n-gram API sentence model relate to the max-
imization of coverage (i.e. the expected token is included in the first x
predictions of the ranking)?

2. How does the order of the n-gram API sentence model relate to the ranking
of predictions with respect to token type (different token types are given
equal weight regardless of their frequency)?

5.3. Data collection

Allamanis and Sutton [25] collected a large corpus from GitHub7 composed
of thousands of Java projects (more than 14,000). The set of projects was
harvested from the public repositories and filtered according to the Github’s
social fork system, in order to have some confidence on the code quality level,
given that low quality projects are rarely forked. We have used this corpus
to obtain projects that contained client code to the APIs under evaluation, in
order to have a set of popular APIs that vary in terms of vocabulary size and
domain.

6SRI Language Modeling Toolkit, http://www.speech.sri.com/projects/srilm
7www.github.com
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Table 2: APIs used in the experiment: vocabulary size, number of extracted sentences, number
of corpus projects, vocabulary coverage, approximated duration of extraction process.

API Vocabulary Sentences Projects Voc. Coverage Extraction
Swing 7,347 160,951 2,308 34% 21h
SWT 5,824 105,881 501 31% 17h

Jackson 551 9,306 73 33% 2h
JSoup 369 1,519 119 59% 1h

We started by analyzing the corpus to search for projects that used APIs
that were familiar to the authors. In order to determine the corpus projects that
used an API, we ran scripts to search in the projects’ source code for import
statements and fully qualified names that contain the APIs’ root package. A
preliminary analysis of the APIs was made to obtain their vocabulary from the
source code of the associated library. If the corpus projects that used the API
could cover more than 30% of its vocabulary, we considered that API for the
evaluation. Since we aimed at APIs that substantially differ in terms of vocab-
ulary size, we directed our criteria towards “filling the gaps” in with respect to
vocabulary size in order to have a wide and balanced range of vocabulary sizes.
Besides the selected APIs, we attempted to collect projects for other APIs such
as JAXP (XML processing) and JDBC (Java Database Connectivity), but the
vocabulary coverage was low. After determining which projects use the APIs,
we used the method described in Section 3 to extract the API sentences.

The result of this extraction process was a set of 4 APIs, which we summa-
rize in Table 2. APIs are sorted in the table by vocabulary size. Swing is a
library that is part of Java’s SDK to create graphical user interfaces, SWT is a
cross-platform library to develop graphical user interfaces developed by Eclipse,
Jackson8 is library to process JSON data, and JSoup9 is a library to fetch and
parse and manipulate HTML.

5.4. Language model training

The evaluation experiment consisted of a 5-fold cross-validation [26] using
the extracted set of API sentences (Ω). We randomly divided the sentences
into 5 folds for training and testing. The evaluation consisted of 5 runs, which
use 80% of the sentences for training and the remaining 20% for testing. Each
one of the 5 folds served as part of the training set in 4 out of 5 runs, and as
part of the test set in 1 out of 5 runs. The SRILM toolkit was used to train
the n-gram language models from each subset of the extracted API sentences.
The performance evaluation for each API was made under three forms: no
smoothing method, Witten-Bell smoothing, and Kneser-Ney smoothing. Given

8github.com/FasterXML/jackson
9jsoup.org
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that Witten-Bell smoothing10 yielded better results in terms of coverage (1–5%
improvements), here we only present the results using this smoothing strategy.

Each sentence of the test folds was an observation ω = (t0, t1, . . . , tn) that
gave rise to n − 1 test cases formed by the sentence itself and its subsentences
of tokens ranging from t0 to t1...n−1. The last token of each test case was the
expected token (te) against which the predictions of our model were compared.
We refer to the train/test folds as Ω1···5, and to the set expected tokens as Ve.

Given that a query to the n-gram model yields several tokens ranked by a
probability, we registered the position of the expected token in the ranking. A
value of 1 means that te appeared first in the ranking, and hence, the lower the
values are, the more accurate the model is. If the te was not proposed by the
model, it can either mean that it did not occur in the training set at all or that
the model learned it with a different context. This happens with rare tokens,
i.e. tokens that are only present in the test set, or when the API does not have
a minimum common usage pattern for that token. Finally, we did not evaluate
the model with single-token sentences, since this implies an evaluation with an
empty context in order to propose that token.

5.5. Measurements

We analyzed the API sentence models under two perspectives, coverage and
hit rank, which we detail in the following sections.

5.5.1. Coverage

Coverage is a measure that indicates the percentage of predictions that
matched the expected token within the x-top-most elements of the ranking of
predictions. As x increases, the coverage percentage can never decrease. Given
a test fold Ωi and a model trained on (Ω1···5 − Ωi), and having a function
topX(ω, x) that given a history context (ω) returns the top-most x predictions
given by that model, we calculate the coverage dividing the number of test
cases whose expected token was within the top-most x predictions by the total
number of test cases (Equation 10).

coverage(Ωi, x) =
C(ωt0···te−1te : ω ∈ Ωi ∧ te ∈ topX(ωt0···te−1 , x))

C(Ωi)
(10)

In turn, we obtain the overall coverage score of the experiment with a given
n-gram by averaging the results of all the 5 runs (Equation 11).

coveragen(Ω1..5, x) = AVG(coverage(Ω1, x), · · · , coverage(Ω5, x)) (11)

Figure 4 presents the complete results for each API and n-gram order. We
trained models with 4 orders (2-gram, 3-gram, 4-gram, 5-gram) for each API,

10with SRILM parameters: -interpolate.
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Figure 4: Coverage results for the several APIs using different n-gram orders with Witten-Bell
smoothing. X-axis: number of ranking predictions (top-most). Y-axis: coverage percentage.

and the plot displays the values of coveragen(...) for each one within the range [1,
20]. The x-axes of the plots represent the number of x-most ranking predictions,
whereas the y-axes represent the coverage obtained with the first x predictions.
We tested higher orders of n-gram (6-gram and 7-gram), however we omit those
results here given that from 5-gram on the growth trends are similar, but the
coverage becomes lower as we increase the n-gram order. This happens because
longer histories strongly condition the prediction.

High coverage within a relatively low x is important with respect to ex-
ploration in code completion because programmers will typically drive their
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attention more often to the first proposals in the code completion pop-menu.
For instance, Eclipse’s code completion pop-up menu typically displays between
10 and 15 proposals at a time.

We found that for all APIs it is possible to reach a coverage value above
90% with the 10 top-most predictions of our models. Further, 80% can be
reached with only the 5-top-most predictions. As expected, higher order n-gram
models have overall lower coverages. In principle, by obtaining more training
data, which in turn would provide more long history sentence contexts, larger
coverage could be achieved for higher-order n-gram models.

Prediction models of 2-gram and 3-gram have a similar performance in terms
of coverage in all APIs except one (JSoup), which might be due to the wide
variability of sentences that can be written for JSoup. Despite the high coverage
achieved by our models, we consider that the code completion itself (automation
of code writing) is not the central benefit of our approach. Instead, we argue that
main added value pertains to exploration and discoverability possibilities for the
API user, given that in most situations a narrow set of possible directions (∼10)
is enough to guide the developer on writing API sentences in most situations
(∼90%).

5.5.2. Hit rank

Hit rank refers to the position of the expected token in the ranking of predic-
tions. We analyze hit rank according to token type, meaning that the hits ranks
are grouped by token and statistics are computed taking into account an equal
weight for every unique expected token regardless of its frequency. This score
indicates how the model performs across all the tokens it can propose, ignoring
the fact that some combinations of API sentences will occur more often in the
train/test sets. In this way, in contrast to the coverage measurement, here we
avoid having results that are influenced positively or negatively by frequent to-
kens that are systematically predicted right or wrong (and having a significant
impact on the overall scores). We only considered the 20-top-most hits obtained
by our model.

Given a test set Ωi, a trained model on the other sets (Ω1···5 − Ωi), and as-
suming a function rankPosition(ω, te) that given a sentence (ω) and an expected
subsequent token (te) returns its position in the prediction ranking obtained
with the model, we gather the set of all positions for each unique expected
token (Equation 12).

rankSet(Ωi, te) = {rankPosition(ωt0···te−1 , te) : ωt0···te ∈ Ωi} (12)

In turn, we obtain the overall hit rank score for an expected token by cal-
culating the median of the set union of all predictions from the cross-validation
runs (Equation 13).

rankScore(Ω1···5, te) = MEDIAN

(
5⋃

k=1

rankSet(Ωk, te)

)
(13)
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Figure 5: Hit rank score per token type on several orders of n-gram for each API. APIs
are grouped by n-gram order, and within the group with the order (Swing, SWT, Jackson,
JSoup). Box plot bars describe the quartiles (Q1, median (thicker line), Q3) and the whiskers
are placed at the 10th and 90th percentiles. When certain elements are not visible is because
their values are coinciding with a quartile.

Finally, the overall hit rank score for the experiment for an n-gram model is
obtained by calculating the median of the rank scores of each unique expected
token (Equation 14).

rankScoren(Ω1···5) = MEDIAN ({rankScore(Ω1···5, te) : te ∈ Ve}) (14)

Figure 5 presents the data related to hit rank scores for every API grouped
by the different model orders. Each box in a plot represents one API trained
on a particular n-gram model, where the value of rankScoren(...) is represented
by the thick line band that divides the box. The lower and upper edges of the
boxes represent the quartiles Q1 and Q3, whereas the lower and upper whiskers
represent the 10th and 90th percentiles.

We can observe that the results are similar for every API. As the order
of n-gram increases the distribution of hit ranks narrows and the rank score
(median) decreases. This means that the expected tokens are proposed higher
up in the ranking of model predictions. Notice that with 2-gram models, 80% of
the predictions include the expected token in the top-5, while from 3-gram on,
80% of the predictions achieve the same in the top-3. However, recall that as
the order of n-gram increases, the coverage decreases, and hence, despite that
the tokens that are being proposed match the expected token high up in the
ranking, there are cases that the expected token is not being proposed at all
(at most in 100% − coverage of the cases). Notice also that from 2 to 3-gram
models there are considerable improvements, from 3 to 4-gram as well but less
expressive, and that from 4 to 5-gram there are practically no improvements.
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5.6. Threats to validity

The obtained results quantitatively demonstrate that the model proposals
would be useful to programmers when writing API sentences. However, it is
important to consider some threats that might be influencing these results.

Construct validity. We decided to evaluate our models against existing
code and we relied on a third-party previous work that gathered a corpus of
projects from Github, ensuring a reasonable level of code quality. The evaluation
is threatened by the possibility of this corpus not being representative, or not
having enough sentences for the APIs under evaluation. We mitigate this issue
by selecting APIs that were used by at least 100 projects in the corpus, ensuring
a reasonable number of sentences for training and testing the models (more than
1500 for each API). Another problem is that despite having many projects that
use an API, its usage could be narrow in terms of vocabulary coverage, and
hence, we would be dealing with a small part of the API. We addressed this
threat by ensuring that we selected API whose vocabulary had a reasonable
proportion was used in the corpus (recall Table 2).

Internal validity. The selection of the APIs for evaluation may consist of
a bias, given that the search was driven by the familiarity and knowledge that
the authors previously had about certain APIs. We proceeded in this way be-
cause we were not aware of a source or well-established criteria for obtaining an
adequate set of APIs for evaluation (to our knowledge, there are no benchmarks
available for this purpose). Nevertheless, we ensured that the selected APIs
were popular, as they were found in use on many projects.

External validity. Generalization of our results is threatened by the fact
that the evaluation was performed on few APIs. Although our results were
consistent with respect to the APIs that we tested, there might exist APIs with
different characteristics on which API sentence models may perform differently.
In other to mitigate this threat, our criteria for selecting APIs for evaluation
was to obtain a set that differed substantially in size and domain. Therefore,
we argue that it is reasonable to assume that these APIs are representative of
what is commonly found in Java development.

6. Code completion tool (APISTA)

The probabilistic models of API sentences may be used for different purposes.
In this article we focus on using the models for assisting API users, namely
through code completion. IDEs typically offer facilities for code completion,
commonly through pop-up menus in code editors containing proposals that the
user may select. The selection of a code completion proposal inserts code at the
caret position where the developer is typing, as well as additional code elsewhere
in some cases (e.g., adding required import statements). An IDE such as Eclipse
allows third-party plugins to contribute with code completion proposal engines.
Using this mechanism, we extended Eclipse with code completion proposals
provided by our API sentence model in a tool that we refer to as APISTA.
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Figure 6: User interaction with the APISTA tool. Parameters are matched with context vari-
ables (for instance, c). Unmatched parameters have to be completed manually (for instance,
parameter style).

6.1. Selecting n-gram order

Our tool has to be parameterized with respect to the n-gram order of the
API sentence models that will be used for obtaining the code completion pro-
posals. Given that higher-order n-gram models suffer more from the sparse data
problem than lower ones, they have a lower coverage (Section 5.5.1), which is not
desirable from an API exploration perspective. On the other hand, higher-order
n-gram models are more accurate in the predictions that they can generate (Sec-
tion 5.5.2). Given that increasing the n-gram order progressively decreases cov-
erage, we argue that the code completion engine should be set to use the lowest n
so that rankScoren(...) ≈ rankScoren+1(...) (i.e. there is no major improvement
regarding hit ranks when using the subsequent n-gram order available).

6.2. User interface

Figure 6 presents the user interface of our APISTA tool integrated with the
code completion menu of Eclipse. As illustrated, the proposals are adapted to
the context variables. Each proposal is accompanied by the Javadoc documen-
tation text, as in regular settings, in order to help the user to select among the
available proposals. We believe that having proposals that are adapted to the
context variables helps the user to realize how the API objects are composed,
besides accelerating code typing. For convenience, import statements are also
automatically inserted if necessary, as in regular IDE code completion features.
We extract the lines of the block in which the user is writing code that precede
the line where code completion is requested. Depending on the order of the
trained n-gram models that is being used, different context tail lengths will be
used to query the model. A list of context variables is also extracted in terms
of identifier and type so that this information can be used to adapt the code
completion proposals to match them when possible.

In addition to the illustrated usage mode, another possible way of using the
recommendations is through the existing code completion menu of Eclipse for
displaying the available operations of a type given a variable (recall Figure 1,
steps 4 and 5). We sort the Eclipse-provided results according to the ranking of
our recommendations. The same ranking is used as in the other recommendation
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mode, but only the hits pertaining to types that are compatible with the object
are considered.

The most common situation is that a software project makes use of several
APIs. Therefore, it is relevant to consider that the proposals of different APIs
have to coexist in the IDE. In our solution for Eclipse the support for each
API can be plugged independently, defining a proposal category for each API
with its own icon (as illustrated with SWT). The activation/deactivation of the
proposal categories is managed by the IDE. Given that the proposals for each
API are determined by the context, if the latter has no tokens of a certain API
there will be no proposals with respect to that API.

6.3. Integration in software development

The described process for building an API language model is always targeted
at a well-defined API. We envision that it should be a responsibility of the API
developers to build a sentence model for it, and possibly package the model
together with the libraries of that API (for instance, included as part of the
JAR files of the libraries). Another option could be based on independent
extensions that are installed separately. In either case, the owners of a software
artifact should in principle have a good notion of which projects to select for
building a model for their API. Although we currently have not designed a well-
defined format for serializing the API model, this would be straightforward to
achieve. The most important technical aspect here is to have a serialized model
that is IDE-agnostic, so that different IDEs could seamlessly make use of the
same artifact. As with our APISTA tool for Eclipse, a recommender component
that is specific to an IDE has to load the model and implement the necessary
behavior to query the model correctly. The recommender component has to
extract the context of the code editor to a token format that is compatible with
the model vocabulary.

7. Related Work

Robillard et. al. [27] present a survey of a wide range of approaches for
automated API property inference using different techniques. The approaches
also differ in terms of their goals, which may concern bug detection, documen-
tation, API navigation, and recommendations, being the latter the focus of our
work too. The survey classified the techniques into five categories, namely (1)
unordered usage patterns, (2) sequential usage patterns, (3) behavioral speci-
fications, (4) migration mappings, and (5) general information. Our approach
fits in category (2), given that our recommendation are based on API token
sequences that were mined from source code corpora. In this section we present
related work related to API usage recommendations, divided into method call
recommenders, which are the closest to our approach, snippet recommenders,
which assist API users through examples, and method chain recommenders,
which enable API users to find out how to reach a desired object type from a
source object type.
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7.1. Method call recommenders

Hindle et al. [15], applies Natural Language Processing techniques to code
and try to find evidence that software is far more regular than, for example,
English, and these techniques can be applied to code completion systems. To
evaluate this, the authors implemented a system embodying a corpus-based n-
gram [14] model suggestion engine that tries to guess the next token based on
source code corpora. This approach motivated our work since it provides evi-
dence that source code is predictable to a considerable extent. In our approach
we focus on the goal of code completion for providing usage assistance for a
well-defined API, rather than to source code in general.

SLAMC [12] is a statistical semantic language model for source code that
introduces semantic information into the language models, which represents
additional information in the language model that involves, for instance, the
global context of source files to help predict the next token. Tu et al. [28]
however, argue that code tokenization is enough for the n-gram language models.
They also argue that n-gram models will not be useful when a particular context
is not present in the source code corpora used to train the model.

SLANG [13] is a tool that uses n-gram language models and recurrent neural
networks [29] to fill holes in partial programs that use a certain API. In our work
we achieve a stepwise assistance that adapts and helps the programmer using
and discovering the API, as opposed to filling holes in partial programs. Their
approach also replaces very rare API calls with an unknown token in order
compact the language model. Since their work focus on evaluating the tool and
not the language models, we cannot compare the impact of this replacement.
The token extraction method of SLANG is superior to ours, namely with respect
to handling of parameter values.

The code completion system developed by Marcel Bruch et al. [9] mentioned
in Section 1, uses a modified k-nearest-neighbours [30] called “Best Matching
Neighbours”, that recommends method calls for particular objects, by extract-
ing the context of the variable, searching the codebase for similar situations
and synthesize method recommendations. This code completion system led to
an Eclipse Project named Code Recommenders, along with some additional
features like “Override Completion” that recommends which methods are usu-
ally overridden when extending a certain API class, “Chain Completion” that
suggests chains of method calls that return the desired type and “Adaptive
Template Completion” that recommends multiple methods that frequently oc-
cur together on an object. Being this tool the most complete, and despite that
the system provides several different recommendations programmers usually
need with a certain object, it doesn’t assist the programmer providing the next
probable tokens when writing an API sentence. Given that sequential usage
patterns are not addressed, the main limitation of Code Recommenders relates
to assist in writing sequences that involve multiple types, which is the focus of
our approach.

The Better Code Completion (BCC) system [31] sorts, filters and groups API
methods. Sorting, has two options, first is a type-hierarchy-based sorting, which

22



proposes the methods from the declared type before its super type, which is very
useful since in certain contexts methods like wait() are never used. Second is
a popularity-based sorting, that sorts based on the frequency of a method call,
similar to our and other approaches. BCC allows developers to configure groups
of methods that will be displayed together in the code completion pane, but this
is performed manually and therefore suffers from scalability issues. Moreover,
the assistance is constrained to the methods of a certain object and does not
provide any additional aid on how write API sentences.

7.2. Snippet recommenders

When using an unfamiliar API, software developers often search for exam-
ples that can usually be found in its documentation or on the web. Snippet
recommenders are tools that help on this process given that the amount of
search results might make difficult to manually browse through the search hits.
Although snippets show interactions with different objects, if they mismatch
the developer’s goal, it can become an obstacle [32]. Although snippet match-
ing might be effective to learn parts of an API, it does not consist of a stepwise
process where the programmer makes a decision on each instruction as in our
approach. Both kinds have their strengths and weaknesses. Whereas a snippet
is a ready-made sequence of instructions, it still has to be adapted to the pro-
grammer needs, and the programmers goal might be scattered among different
code snippet recommendations.

MAPO is tool [10] used to mine API usage patterns to recommend associated
code snippets, using the structural context in which the developer is writing
code. The instructions are matched to code snippets, providing a ranked list
of patterns. These are used to navigate to the existing code snippets, which
are displayed in a code viewer where the pattern appears highlighted. The user
is required to go through the suggested snippets to investigate how the API is
used and eventually learn how to achieve the desired goal. XSnippet [33] is a
tool to assist code writing, that allows programmers to query repositories for
relevant code snippets according to their context without having to explicitly
formulate a query. Although this approach does not require programmers to
formulate queries, they still need to know what to search for which implies some
knowledge about the API. The Strathcona [34] is an example recommendation
tool to help programmers locate source code examples by formulating a query
based on the code’s structural context.

7.3. Method chain recommenders

Another kind of tool consists of method chain recommenders that enable
programmers to find a path from a source to a destination type. This kind
of aid is useful in cases when a programmer has access to a certain type, and
wants to know how to reach another type, if possible. The drawback of these
tools is the requirement of having some knowledge about the API in order to be
able to query the system, i.e., the developer has to know which object type to
input and in some cases which one to expect, or otherwise the developer cannot
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benefit from the tool. In our approach, developers also need a starting point
(instruction) to benefit from code completion, but there is no need to provide
any clues regarding where one wants to reach, and hence, it provides a more
explorative type of usage.

The API Explorer tool [8] aids discoverability by recommending methods and
types that are not directly accessible from the type with which the developer
is working with. The recommendations might consist of a single method call
or a chain of object instantiations and calls to obtain a reference to a certain
type. The Prospector tool [7] helps programmers by returning code snippets,
referred to as jungloids, to obtain a certain type through a chain of method
calls given another type that is present in the code. RECOS [35] consists of
an object-instantiation and recommendation system capable of composing a
chain of method calls that returns a certain type given an input type. These
tools do not require a repository of sample code to mine snippets nor a source
code search engine. The recommendations are only based on the context and
structural relationships in the APIs. Not having to rely on source code corpora
is a strong advantage of these approaches, in contrast to ours or others that rely
on source code mining. As opposed to the previous method chain recommenders,
the PARSEWeb tool [36] uses a code search engine to gather code sample and
then analyse it statically to return the relevant method sequences, also through
a query where source and destination object type are given.

8. Limitations

Although our approach scores high on predicting subsequent tokens of an
API sentence, there are a number of limitations regarding the code completion
proposals that we detail in this section.

Tokenization ignoring overloading. As explained, our tokenization of
API sentences does not take into account method and constructor overloading.
Our intuition was that abstracting overloaded methods and constructors into a
single token would not have a significant impact on the results. However, we
are aware that making the distinction in certain cases could yield value.

Long-distance relations among tokens. The ability to recommend use-
ful API tokens is constrained by a relatively small number of previous of tokens
(e.g., previous 4 tokens using a 5-gram model). This limitation is inherent to
n-gram models [14]. The downside is that some recommendations could benefit
from tokens written far back in the context, i.e. distance greater that the order
of the n-gram.

Structural context. As opposed to other approaches (e.g., [34, 10, 9]),
ours does not take into account the structural context in which the code is
being written, for instance, if the programmer is overriding a certain method
of a particular class. Using the structural context is relevant for handling the
APIs of frameworks that are instantiated through inheritance or interface real-
ization, given that certain API calls may occur predominantly when extending
the framework at well-defined places. However, we argue that in the case of
reusable libraries that are not frameworks, the structural context is not relevant
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given that the contexts where the library is being used are independent from
the library.

Parameter values. Although our system may match parameters of the
context whose type belongs to the API vocabulary, it is not able to provide ex-
ample values for parameters of other types. We believe that one of the strengths
of snippet matching recommenders (e.g., [34, 33, 10]) relies on this aspect, given
that some parameter values might not be obvious to come up with.

9. Conclusions and Future Work

In this article we presented an approach that exploits n-gram probabilistic
language models, widely used in natural language processing, in the context
of API usage. Despite that n-grams have been used to analyze source code in
previous approaches, our approach is novel given that it is targeted at learning
a well-defined API. In the context of this work, we mainly aim at API usage
assistance from the perspective of learning and exploration by unfamiliar users.
Given the results we have obtained, we conclude that n-grams are a powerful
tool for learning API usage patterns, given that they are effective in capturing
their regularity. We also conclude that the n-gram models can effectively be
used to feed proposals to a code completion system.

We realized the approach for Java and developed an extension for the Eclipse
IDE as a proof of concept, demonstrating that the approach is feasible and
adequate for being integrated in software development practices. We plan to
conduct a user study through a controlled experiment to evaluate the usability of
our code completion system. The effectiveness of the mechanism from a human-
centered perspective may reveal other shortcomings that we did not anticipate,
as well as give rise to new ways of improvement. For example, if the results
of a user study would reveal that dealing with parameter values consists of a
significant hurdle, the sentence extractor process could be enhanced to collect
common parameter values, in order to use them in the proposals.
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