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Traits were proposed as a mechanism for fine-grained code reuse to overcome many limitations of class- 

based inheritance. A trait is a set of methods that is independent from any class hierarchy and can be 

flexibly used to build other traits or classes by means of a suite of composition operations. In this paper 

we present the new version of Xtraitj , a trait-based programming language that features complete com- 

patibility and interoperability with the Java platform. Xtraitj is implemented in Xtext and Xbase , and it 

provides a full Eclipse IDE that supports an incremental adoption of traits in existing Java projects. The 

new version of Xtraitj allows traits to be accessed from any Java project or library, even if the original 

Xtraitj source code is not available, since traits can be accessed in their byte-code format. This allows 

developers to create Xtraitj libraries that can be provided in their binary only format. We detail the 

technique we used to achieve such an implementation; this technique can be reused in other languages 

implemented in Xtext for the Java platform. We formalize our traits by means of flattening semantics 

and we provide some performance benchmarks that show that the runtime overhead introduced by our 

traits is acceptable. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

The problems of class-based inheritance and in particular its

oor support for code reuse were emphasized by Schärli et al.

2003) (see also Ducasse et al. (2006) ): both single and multiple

lass-based inheritance are often inappropriate as a reuse mech-

nism. The main reason is that classes play two competing roles:

 class is both a generator of instances and a unit of reuse . To

ccomplish the first role, a class must provide a complete set of

asic features, and to accomplish the second role it must provide a

inimal set of sensibly reusable features. Schärli et al. (2003) also

bserved that mixins ( Hendler, 1986; Bracha and Cook, 1990; Lim-

erghen and Mens, 1996; Flatt et al., 1998; Bettini et al., 2003a;

ncona et al., 2003 ), which are subclasses parametrized over their

uperclasses, are not necessarily appropriate for composing units

f reuse. Indeed, mixin composition is linear, because it is still

ased on the ordinary single inheritance operator—note that the
� This work has been partially supported by: project HyVar ( www.hyvar-project. 

u ), which has received funding from the European Union’s Horizon 2020 research 

nd innovation programme under grant agreement No. 644298; by ICT COST Ac- 

ion IC1402 ARVI (www.costarvi. eu); and by Ateneo/CSP D16D150 0 0360 0 05 project 

unVar. 
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ormulation of mixins given by Bracha in Jigsaw ( Bracha, 1992 )

oes not suffer from this problem, but most of the subsequent

ormulations of the mixin construct do. 

For the above reasons, traits were proposed by Schärli et al.

2003) as pure units of behavior, aiming to support fine-grained

euse. The goal of traits is to provide a flexible solution to the

roblems of class-based inheritance with respect to code reuse,

voiding the two traditional competing roles of classes as ob-

ect generators and units of code reuse mentioned above (see

lso Ducasse et al., 2006; Murphy-Hill et al., 2005; Cassou et al.,

009 for discussions and examples). A trait provides a set of meth-

ds that is completely independent of any class hierarchy. The

ationale is that the common methods of a set of classes can be

actored into a trait. The distinguishing features of traits are that: 

• Traits can be composed in an arbitrary order (leading to a class

or another trait); and 

• The resulting composite unit has complete control over the

conflicts that may arise in the composition, and must solve

these conflicts explicitly. 

These features make traits simpler and more flexible than

ixins —the “trait” construct incorporated in Scala ( Odersky, 2007 )

s indeed a form of mixin. The original proposal of traits ( Schärli

t al., 2003; Ducasse et al., 2006 ) was given in Squeak/Smalltalk ,

hat is, in a dynamically typed setting. Various formulations of

raits in a Java -like statically typed setting can be found in the

http://dx.doi.org/10.1016/j.jss.2016.07.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.07.035&domain=pdf
http://www.hyvar-project.eu
mailto:lorenzo.bettini@unifi.it
mailto:ferruccio.damiani@unito.it
http://dx.doi.org/10.1016/j.jss.2016.07.035
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1 Indeed, during the development of this new version we found a few issues with 

some internals of Xbase , in particular, related to the implementation of generics un- 

der certain circumstances, which had not been considered. In our implementation, 

we solved them by customizing many parts of the Xbase type system concerning 

generics, but we are also working on fixing these issues in the Xbase code base as 
literature (see, e.g., Quitslund, 2004; Smith and Drossopoulou,

2005; Nierstrasz et al., 2006; Bono et al., 2007; Reppy and Turon,

20 07; Bono et al., 20 08; Liquori and Spiwack, 20 08; Bettini et al.,

2013d; 2013b ). 

In most of the above proposals, trait composition and class-

based inheritance live together. In some formulations ( Smith and

Drossopoulou, 2005; Nierstrasz et al., 2006; Liquori and Spiwack,

2008 ) trait names are types, just like class names and interface

names in Java —this choice limits the reuse potential of traits, since

the role of unit of reuse and the role of type are competing (see,

e.g., Snyder (1986) and Cook et al. (1990) ). This does not happen

in pure trait-based programming languages ( Bono et al., 20 07, 20 08;

Bettini et al., 2013d ), where: 

• Class-based inheritance is not present, and 

• Traits are not types. 

The rationale for these choices is that pure trait-based pro-

gramming languages aim to maximize the opportunity for reuse:

class-based inheritance is ruled out in order to prevent program-

mers from writing code that might be difficult to reuse, and traits

are not types to rule out the interplay between the competing

roles of unit of reuse and type that would restrict traits’ flexibility.

These design choices do not reduce the expressivity and usability

of the language. In fact, even though class-based inheritance

is not present, type subsumption is still supported by Java -like

interfaces. Moreover, not using trait names as types in the source

program does not prevent us from analyzing each trait definition

in isolation from the classes and the traits that use it. This way,

it is not necessary to reanalyze a trait whenever it is used by a

different class. 

In previous work ( Bettini and Damiani, 2013; 2014 ) we in-

troduced the prototype implementation of Xtraitj , a language

for pure trait-based programming interoperable with the Java

type system without reducing the flexibility of traits ( Bettini and

Damiani, 2013 ), and extended Xtraitj and its implementation with

full support for Java generics and Java annotations ( Bettini and

Damiani, 2014 ). Such extensions allowed us to implement generic

traits, classes and generic trait methods. Xtraitj programs are

compiled into Java programs, which can then be compiled with a

standard Java compiler. 

Xtraitj is implemented with Xtext (2015), Bettini (2013) . Xtext

is a language workbench (such as MPS ( Voelter, 2011 ) and Spoofax

( Kats and Visser, 2010 )): it takes as input a grammar definition

and it generates a parser, an abstract syntax tree, and a full

Eclipse-based IDE. Thus, by using Xtext we implement not only

the compiler of Xtraitj , but also its Eclipse integration. Further-

more, for the syntax of our trait method bodies, we use Xbase

( Efftinge et al., 2012 ), a reusable Java -like expression language that

facilitates full interoperability with the Java type system. Since

Xtraitj code can coexist with Java code, single parts of a project

can be refactored to use traits, without requiring a complete

rewrite of the whole code-base. This allows incremental adoption

of traits in existing Java projects. 

In spite of the nice integration of Xtraitj with Eclipse and Java ,

the implementation of Xtraitj ( Bettini and Damiani, 2014 ) still

suffered from a crucial issue that would prevent the adoption of

Xtraitj in a production environment: all the Xtraitj sources have

to be available in a project that uses Xtraitj . This leads to the

following drawbacks: 

• All Xtraitj source files have to be loaded in a Xtraitj program.

While this does not prevent us from type checking traits in iso-

lation, it still forces us to compile Xtraitj sources that are pro-

vided as libraries. 
• Connected to the previous issue, trait libraries cannot be pro-
vided in a binary only format. w
These are in contrast with the very concept of library. In

articular, library artifacts should not be recompiled when used in

 program. In industry, shipping libraries with sources might not

e acceptable. 

ontributions of the paper. We present a new version of Xtraitj

hat addresses the above limitations. We rewrote most of the

mplementation of Xtraitj in order to achieve full integration of

raits with the Java platform, including accessibility of traits in

yte-code only format. This removes the above limitations, allows

rait libraries to be provided in a binary only format, and makes

traitj effectively usable in production. Besides the increased

sability of Xtraitj , we believe that the technique that we use

o achieve full integration with Java could be easily re-used in

ther languages that aim at such integration, using Xtext / Xbase .

o the best of our knowledge, Xtraitj is the first DSL with non

rivial linguistic features that uses such technique. 1 Since Xtext is

he de-facto standard for implementing languages in the Eclipse

co-system, and since Xbase is a powerful framework for imple-

enting languages interoperable with Java , we think that our

mplementation could be useful to Xtext / Xbase users. Further-

ore, we formally specify the semantics of Xtraitj by means of a

attening translation ( Ducasse et al., 2006; Nierstrasz et al., 2006 ).

he flattening translation specifies that the semantics of a class

hat uses traits is equivalent to the semantics of the class obtained

y inlining into the body of the class the methods provided by

he traits that it uses. Finally, we evaluate Xtraitj in terms of

he overhead introduced by method forwarding, which is used

n the generated Java code to implement traits. The performance

ests show that the overhead introduced is an acceptable tradeoff

ith respect to the code reuse of traits. We also evaluate the

erformance of the compiler of this new version of Xtraitj , which

s improved with respect to the previous versions. 

A preliminary version of some of the material presented in

his paper appeared in Bettini and Damiani (2013, 2014) . The

pecification of the semantics of Xtraitj ( Section 3 ) and the tech-

ique to achieve binary level accessibility of traits ( Section 4 ) are

ompletely new, and both the description of the implementation

 Section 5 ) and the evaluation of the achieved benefits ( Section 6 )

ave been revised and extended to reflect the new implemen-

ation, to provide more details, and (in Section 6.2 ) to illustrate

erformance results. 

The implementation is available as an open source project and

eady-to-use update site at http://xtraitj.-sf.net . We also provide

re-configured Eclipse distributions with Xtraitj installed, for sev-

ral architectures. Moreover, Xtraitj programs can be processed

ith typical Java build tools, like Maven and Gradle, by relying

n the Maven integration provided in recent versions of Xtext

 Oehme, 2015 ). Xtraitj has been developed with Test Driven

evelopment technologies, with almost 100% code coverage, using

ontinuous Integration systems ( Jenkins and Travis-CI ) and code

uality tools, such as SonarQube . 

rganization of the paper. Section 2 illustrates the syntax and,

nformally, the semantics of the Xtraitj programming language

hrough examples. Section 3 formally specifies the semantics

f Xtraitj by means of a translation that compiles traits away.

ection 4 describes how Xtraitj has been fully integrated with

ava and how binary only accessibility of traits has been achieved.
ell—see https://bugs.eclipse.org/bugs/show _ bug.cgi?id=468174 . 

http://xtraitj.-sf.net
https://bugs.eclipse.org/bugs/show_bug.cgi?id=468174
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ection 5 describes our implementation: discusses the main

esign choices, the strategy used to generate the Java code, the

upport for Xtraitj code validation and the integration of Xtraitj

n Eclipse. Section 6 discusses the pros and cons of the implemen-

ation and presents some performance tests, concerning both the

untime and the compiler of Xtraitj . Related work is discussed

n Section 7 . Section 8 concludes the paper by outlining possible

irections for future work. 

. The XTRAITJ programming language 

In this section we describe the main features of Xtraitj by

xamples. An Xtraitj program consists of trait declarations and

lass declarations. As a demonstration of the complete integration

ith Java , in the implementation of Xtraitj we did not include

nterface specifications: Xtraitj programs can seamlessly use

xisting Java interfaces. 2 

In Xtraitj , method headers, field declarations, method decla-

ations, and class constructors have a syntax similar to Java , but

gnoring visibility modifiers and checked exception declarations,

hich we currently do not support. As shown later, all method

eclarations are public by default, if not declared as private . All

ype references can contain type arguments, and traits, classes and

ethod headers can specify type parameters. The syntax of generic

ypes and type parameter declarations is exactly the same as in

ava (including bounded quantifications and wildcards). 

In Xtraitj a trait consists of provided methods (the methods de-

ned in the trait), required methods (abstract methods assumed to

e available in a trait or a class using the trait) and required fields

fields assumed to be available in a class using the trait—traits do

ot provide fields). A method m is declared by a trait T if and only

f m is either required or provided by T . A field f is declared by T

f and only if f is required by T . The declared fields and the de-

lared methods of a trait can be directly accessed in the body of

he trait’s provided methods. For example, 

Qualifying a method m as private in a trait, hides the name m

nd statically binds the method m to the trait. Since the name of

 private method is bound, the actual name of a private method

s immaterial. When two or more traits are summed, the names

f private methods never generate a conflict. It would not make

ense (and hence it is forbidden) to declare a required method as

rivate . Currently, apart from private , there are no other qualifiers

n Xtraitj . We plan to add other qualifiers in the future. 

A class in Xtraitj can implement Java interfaces by using traits,

nd can define fields (possibly with initialization expressions) and

onstructors (possibly overloaded), but it cannot define methods.

or example, 
2 The syntax and semantics of interfaces in Xtraitj is exactly the same as Java 

nterfaces, thus, if we added them to the implementation we would have duplicated 

ffort without any further benefits. m
Traits can be used to compose classes and other traits by means

f uses clauses, which implement the trait sum operation described

n Section 2.1 , and a suite of trait alteration operations (described

n Section 2.2 ). Note that traits do not introduce any state, thus, a

lass has to provide all the fields required by the traits it uses. In a

rait, any field that is used by a provided method must be declared

nd any method that is used by a provided method must be either

equired or provided. However, a trait can also require fields and

ethods that are not used by any of its provided methods. Cur-

ently, there is no method overloading in Xtraitj . We plan to add

ethod overloading in future releases (see also Section 8 ). 

As stated in Section 1 , Xtraitj is a pure trait-based program-

ing language, thus, class-based inheritance is not present, so

lasses play only the roles of object generators and types. Traits

lay only the role of units of code reuse and are not types. 

Xtraitj programs are compiled into Java source code, which

hen must be compiled using a standard Java compiler. Since we

rovide Eclipse IDE tooling, when editing Xtraitj programs from

clipse, using the Xtraitj editor, the generated Java sources will

e automatically compiled inside Eclipse, using the standard auto-

atic building mechanism of Eclipse: saving an Xtraitj source file

ill automatically trigger the generation of the corresponding Java

ode and this, in turn, will automatically trigger the compilation of

uch Java code into byte-code. This automatic building mechanism

lso takes care of recompiling other possible dependencies of the

traitj files. 

The semantics of traits can be specified in terms of the so called

attening principle ( Ducasse et al., 2006; Nierstrasz et al., 2006 )

hat prescribes that the semantics of a class that uses traits is

quivalent to the semantics of the class obtained by inlining into

he body of the class the methods provided by the traits that it

ses. A flattening semantics provides a specification of the seman-

ics of traits according to the flatting principle by describing a way

o transform classes and traits that use other traits into equivalent

ormulations that do not use traits. In the rest of this section we

ill informally use the flattening principle in the examples to ex-

lain the features of Xtraitj . The flattening semantics of Xtraitj is

ormally described in Section 3 . Note that a flattening semantics

ims to provide a specification and it is not an especially effec-

ive implementation technique. In fact, our compilation into Java

 Section 5 ) does not implement flattening directly and this has sev-

ral advantages, described in Section 6 . 

The method bodies in Xtraitj are not written in Java : we use

base for that. Xbase ( Efftinge et al., 2012 ) is an extendable and

eusable expression language developed with Xtext , which inte-

rates with the Java platform and JDT (Eclipse Java development

ools). In particular, Xbase reuses the Java type system (including

enerics) without modifications, thus, when a language uses Xbase

t can automatically and transparently access any Java type. Xbase

emoves much “syntactic noise” from Java (e.g., types of variable

eclarations can be inferred by Xbase itself) and provides advanced

eatures (e.g., lambda expressions and extension methods). In this

aper, the Xbase syntax that we will use is that fragment that is

xactly the same as Java syntax. 3 

Xtraitj code can seamlessly refer to any existing Java type.

oreover, since Xtraitj programs are compiled into Java source

ode, we can also seamlessly use Xtraitj classes in standard Java

rograms. This means that we can use existing frameworks like JU-

it , and write Java unit tests for our Xtraitj code (we previously

howed ( Bettini and Damiani, 2014 ) that we can write JUnit tests

irectly in Xtraitj ). 
3 Note that Xbase is neither a superset nor a subset of Java : only a few state- 

ents and expressions are common to both languages. 



422 L. Bettini, F. Damiani / The Journal of Systems and Software 131 (2017) 419–441 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

i

 

i

 

t

 

i

 

a  

c  

p  

t  

o  

2  
2.1. Trait sum operation and uses clause 

The symmetric sum operation merges two traits to form a new

trait. The summed traits must be disjoint (i.e., they must not pro-

vide identically named methods) and consistent (i.e., identically

named declared fields and identically named required methods

must have the same type). 

Traits can be used to build another trait via the uses clause.

All the traits that are listed in a uses clause are added to the

body of the trait declaration. For example, given these two trait

declarations: 

the following trait declaration creates a new trait by merging the

two traits above 

This means that T3 is equivalent to the “flattened” trait

declaration: 

Note that this trait sum is well-formed: both T1 and T2 require

the method m with the same signature. 

All required fields and required/provided methods of any of the

traits listed in the uses clause are visible in the body of the trait

T3 . Therefore it would be useless (and hence forbidden) to declare

any of them as required in T3 . 

2.2. Trait alteration operations 

Consider the task of developing a class CStack that

implements the generic interface: 4 

In a trait-based programming language like Xtraitj , we imple-

ment a generic trait, TStack that requires a field (to store the
4 Whether we are using T to refer to a trait name or to a type parameter should 

be clear from the context. We prefer to use T as mush as possible since it is the 

standard letter for trait names and, in Java , for type arguments. 

8  

p  

S  

h  

c

ctual stack data in memory) and provides all the methods of the

nterface: 

We then define the generic class CStack that implements the

nterface IStack using the above trait as follows: 

The class defines the field collection required TStack and

wo constructors. 

Let us now suppose that we need to develop a class implement-

ng the following interface: 

If we implemented the previous interface IStack directly in

 Java class there would be no straightforward way to reuse the

ode in such class, as it would not be possible to override the

op method changing the return type to void —this would not

ype-check. The same problem would arise with the formulations

f traits where traits are types (see, e.g., Smith and Drossopoulou,

0 05; Nierstrasz et al., 20 06; Liquori and Spiwack, 20 08 ), with Java

 interfaces with default methods (see the programming patterns

roposed by Bono et al., 2014 ), and with the “trait” construct of

cala —c.f. the discussion in Section 1 . In the following we show

ow we can employ Xtraitj trait alteration operations to reuse

ode and avoid method conflicts. 
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ethod hiding. In Xtraitj e can write a new trait TLifo as fol-

ows: 

This trait uses the trait TStack , but it “hides” the method

op : the expression T [ hide m ], where the method m must be pro-

ided by T , denotes the trait obtained from T by making the

ethod m private to the trait. By hiding that method we avoid a

onflict with the method pop provided in this new trait (the two

ethods have different return types). Note that a trait “inherits”

ll the field and method requirements of the used traits. 

It is now straightforward to write a class CLifo implementing

Lifo using the trait TLifo : 

ethod/field rename. We can make further improvements to

he implementation of TLifo . In the above implementation of

Lifo ’s pop method, we do not reuse the implementation of

Stack ’s pop . 5 Another thing that does not look right is that

sNotEmpty does not make sense in TLifo (the only reason we

ut it there is because we need it to declare a class implementing

he interface ILifo ). We will fix these issues in the following. 

We can reuse the implementation of TStack ’s pop by using

he rename operation: The expression T [ rename m1 to m2 ], where

he method m1 must be declared by T and the method m2 must

ot be declared by T , denotes the trait obtained from T by replac-

ng all the references to m1 with (possibly implicit) receiver this

y references to m2 and by changing the declaration of m1 into a

eclaration of m2 . Thus, we write this alternative version: 

With this implementation of TLifo we reuse the implemen-

ation of TStack ’s provided method pop , after renaming it to

ld_pop . Note that, since rename acts both on method declara-

ions and on method references, possible recursive occurrences in

he original pop implementation will be renamed too. 

When we declare the class implementing ILifo using the trait

Lifo we can even hide the renamed version of pop as follows: 
5 While this might not be a real problem in this simple example, in more com- 

lex scenarios reusing entire methods would really improve code maintainability. 

M  

m  

r

The rename operation can be applied also to fields; the addi-

ional keyword field is used to distinguish it from the correspond-

ng operation on methods. This distinction provides better tooling

upport and allows users to be more specific about their inten-

ions. 

To further demonstrate Xtraitj programming features, we now

actor the pattern of negating a boolean method into a trait: 

This trait requires a boolean method op and provides the

ethod notOp that simply returns the negation of the result of

p . 
We can now remove the implementation of isNotEmpty from

Lifo , and in the class CLifo we use the trait TNegate after

enaming op to isEmpty and notOp to isNotEmpty : 

This example shows the flexible compositional nature of Xtraitj

perations: 

• The method op is required by TNegate ; after renaming, the

required method isEmpty is provided by the other trait in the

uses clause, TLifo ; 
• TNegate provides the method notOp , but since we rename it

to isNotEmpty , the class is able to implement all the ILifo ’s
methods; 

• Since rename acts both on method declarations and on method

references, isNotEmpty (i.e., the original notOp ) is effectively

implemented in terms of isEmpty . 

ethod alias. The expression T [ alias m1 as m2 ], where the method

1 must be provided by T and the method m2 must not be de-

lared by T (i.e., neither required nor provided), denotes the trait

btained from T by adding a new provided method that is a copy

f m1 with name m2 . When the aliased method m1 is recursive, its

ecursive invocation within m2 refers to the original method. This

s the main difference between alias and rename . 

ethod restrict. The expression T [ restrict m ], where the method m

ust be provided by T , denotes the trait obtained from T by mak-

ng m a required method. 

ethod/field redirect. The expression The expression T [ redirect m1
o m2 ], where both the distinct methods m1 and m2 must be de-

lared by T , denotes the trait obtained from T by removing the dec-

aration of m1 and replacing all the references to m1 with (possibly

mplicit) receiver this by references to m2 . Similarly, for redirect

eld . 

ethod override. Xtraitj does not provide an operation to imple-

ent method override, since the same result can be achieved using

estrict . For instance, 
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Table 1 

Xtraitj syntax. 
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This can be seen as T2 overriding m . Indeed, this also implies

standard Java semantics for method invocation with dynamic bind-

ing: if a method in T1 invokes m , then, in the flattened code, the

version of the method defined in T2 will be invoked. The origi-

nal implementation can still be accessed in the new version of the

method either by aliasing or by renaming. The programmer will

decide which operation to use, taking into consideration how alias

and rename act differently on possible recursive invocations. 

3. Flattening semantics 

This section formally specifies the semantics of Xtraitj by

means of a flattening translation ( Ducasse et al., 2006; Nierstrasz

et al., 2006 ). The flattening translation specifies that the semantics

of a class that uses traits is equivalent to the semantics of the class

obtained by inlining into the body of the class the methods pro-

vided by the traits that it uses. It is described by a function that

looks up the named traits listed in the uses clause and compiles

traits away by evaluating all trait composition operations. 

The syntax of Xtraitj classes and traits is given in Table 1 ,

where the big square brackets ‘ 
[
‘ and ‘ 

]
‘ are part of the Ex-

tended BNF notation, and the overline notation for (possibly

empty) sequences is borrowed from the definition of Feather-

weight Java ( Igarashi et al., 2001 ). The empty sequence is denoted

by •. Since the syntax and semantics of interfaces in Xtraitj is

exactly the same as in Java , the syntax of interfaces is not in-

cluded (cf. the discussion at the beginning of Section 2 ). The syn-
ax of type arguments (denoted by GA ) and parameter declarations

denoted by GP ), which is exactly the same as in Java (including

ounded quantifications and wildcards), and the syntax of method

odies (denoted by MB ) and class constructors (denoted by K ) as

ell as the syntax of expressions used to initialize fields, which is

he same as in Xbase , are omitted. 

Method headers are equated modulo renaming of de-

lared parameters and type parameters, e.g., we consider

 X > int m ( List < X > x ) and < X ′ > int m ( List < X ′ > x ′ ) as equal. 

Following Featherweight Java ( Igarashi et al., 2001 ), we as-

ume that sequences D of field declarations and method decla-

ations do not contain two (or more) declarations for the same

ember (field or method), and we use a set-based notation

or operators over sequences of declarations. For instance, M =
 GP > RT m ( GT x MB ) ∈ D means that the method definition M occurs

n D . Let names ( D ) denote the sequence of the names of the mem-

ers declared in D , let keep ( D , n ) denote the subsequence of D that

ontains only the declarations for the names n , and let drop ( D , n )

enote the subsequence of D obtained by removing the declara-

ions for the names n . In the union, in the intersection and in the

ifference of sequences, denoted by D ∪ D 
′ 
, D ∩ D 

′ 
and D − D 

′ 
, re-

pectively, it is assumed that if n ∈ names ( D ) and n ∈ names ( D 
′ 
)

hen keep ( D , n ) = keep ( D 
′ 
, n ) . In the disjoint union of sequences,

enoted by D � D 
′ 
, it is assumed that names ( D ) ∩ names ( D 

′ 
) = •. 

The flattening function, � ·� , is given in Table 2 . It transforms

n Xtraitj class declaration by inlining into the body of the class

he methods provided by the traits that the class uses. Flatten-

ng transforms a sequence of trait alteration expressions that oc-

urs in a uses clause (i.e., that describes how some traits are

sed by a class or trait) into a sequence of trait member declara-

ions (the required fields, the required methods, and the provided

ethods). Note that in Table 2 (and in Table 3 ) there are no ex-

licit clauses for dealing with classes, traits, interfaces and meth-

ds without type parameters, since they are implicitly handled by

sing the empty list of type parameters/argument—i.e., by consid-

ring C < • > , T < • > , I < • > and < • > H denoting C , T , I and H , re-

pectively. 
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Table 2 

Flattening Xtraitj to Java (the auxiliary functions fields , sum , replaceTypeParameters , renameMethod , headers and renameField are defined 

in Table 3 ). 
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o

 

The clauses in Table 2 assume, without loss of generality, that

he names of the private methods occurring in the Xtraitj pro-

ram to be flattened satisfy the Barendregt convention ( Barendregt,

984 ) (i.e., they are distinctly named), 6 and that the body of each

lass declaration and trait declaration do not contain multiple dec-
6 The Barendregt convention can be enforced by a straightforward preprocessing 

tep. 

 

arations for the same field or method. 7 Flattening fails (meaning

hat the source program is ill formed) whenever a non applicable

peration is encountered, e.g.: 

1. A trait alteration operation that tries to alias a non-existent

method; 

2. A trait alteration operation that tries to alias a method to a

name that is already declared as provided; 
7 This condition can be checked by a straightforward preprocessing step. 
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Table 3 

Auxiliary functions used by flattening translation (given in Table 2 ). 
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3. A trait alteration operation that tries to alias a method to a

name that is already declared as required. 

The flattening translation specified by the clauses in

Table 2 also models, by means of the parts highlighted in gray,

the effect of the trait operations on required field and required

method declarations—this makes the specification more useful to

both Xtraitj users and developers. If we ignore the parts high-

lighted in gray, we obtain a variant of the flattening translation

where the flattening of a trait expression just returns the set of

method definitions provided by the trait (as is done by Nierstrasz

et al. (2006) and Bettini et al. (2013d) ). Such a variant of the

flattening translation models less errors. For instance, the third

error listed above is not modeled. Both versions of the flattening

translation will succeed and produce the same result whenever

applied to a well-typed Xtraitj program (the Xtraitj type system

is briefly discussed in Section 5.3 ). 

The clauses in Tables 2 and 3 should be mostly self-

explanatory—note that the resulting flattened code can be straight-
orwardly transformed into Java code by translating the bodies of

ethods from Xbase to Java . 

. JAVA integration 

In this section we describe how Xtraitj is completely integrated

ith Java . In particular, we describe the technique we used to

chieve such complete integration. This implementation technique

an be re-used to achieve the same level of integration in other

SLs implemented with Xtext / Xbase . To the best of our knowl-

dge, Xtraitj is the first DSL with non trivial linguistic features

hat use this technique. By “non trivial” we mean that for each

lement of our language, e.g., traits, methods and alteration op-

rations, there exist several generated Java artifacts. Instead, most

SLs based on Xbase have a one-to-one mapping in the model in-

errer (described in Section 4.1 ). 

In order to describe this technique, it is not necessary to go

nto the details of our translation (which will be described in
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ection 5.2 ). We first briefly describe the Xbase model inferrer

 Section 4.1 ), which is the main mechanism to use the Xbase type

ystem. Then, after showing the features of Xtraitj with respect to

ts integration with Java ( Section 4.2 ), we describe the main steps

o achieve it, using the Xbase framework ( Section 4.3 ). 

.1. The XBASE model inferrer 

In this section we sketch the main steps to use Xbase in a lan-

uage, so that the reader can understand how we implemented

traitj . A language that uses Xbase will inherit, besides the Java -

ike expression syntax, also all its language infrastructure compo-

ents, like its type system implementation and the Java code gen-

rator. The Xbase type system is interoperable with the Java type

ystem: the language will be able to seamlessly access all the Java

ypes, i.e., any existing Java library. 

In order to reuse the Xbase Java type system in Xtraitj , we

ave to map the concepts of our language (e.g., traits, required

elds, required and provide methods, etc.) into the Java model

lements of Xbase (e.g., classes, fields, methods, etc.). This map-

ing is performed by implementing a model inferrer . The Xbase ex-

ressions used in Xtraitj , i.e., the body of trait provided methods,

ill then have to be associated with the corresponding mapped

ava model method, which becomes the expression’s logical con-

ainer. Such mapping will let Xbase automatically implement type

hecking for the expressions ( Xbase will also be able to define the

roper scope for this ). This means that the whole type system

f Xbase , which corresponds to the type system of Java , will be

utomatically part of Xtraitj . 8 

With this mapping implemented by the model inferrer, Xbase

ill also be able to automatically generate Java code starting from

he mapped Java model. Thus, the translation of Xtraitj to Java

ketched in Section 5.2 is implied by our implementation of the

odel inferrer for Xtraitj . 

.2. XTRAITJ access to the JAVA type system 

The main novelty of the new implementation of Xtraitj we

resent in this paper is the way traits are referred to from within

n Xtraitj program. In the previous versions ( Bettini and Damiani,

013, 2014 ), when we specified that a Xtraitj trait (or a class) uses

 trait, we actually referred to a trait element of the Xtraitj AST

odel. In the new version, we refer to the corresponding gener-

ted Java interface (as described in Section 5.2.1 , a trait will corre-

pond to a generated Java interface and a generated Java class). 

This small difference has a huge consequence: we can access

raits in any Java project or library, even if the original Xtraitj

ource is not available. Moreover, we can access traits even in their

yte-code format. This way, Xtraitj libraries can be provided in

inary-only format. 

This important feature has been achieved by annotating the

enerated Java code with Java annotations ( Sun Microsystems, Inc.,

007 ), with runtime retention policy . Such annotations are kept in

he byte-code. When a trait is referred to in an Xtraitj program

recall that this actually corresponds to a reference to a Java class

r interface), our compiler checks that the corresponding Java type

s annotated with our annotations. This allows us to check that

uch references are valid trait references. This is possible since

base provides an API to access annotation information on Java

ode, even in byte-code format. Also generated Java methods are

nnotated with information about the corresponding methods in

he original Xtraitj source code. For example, in the generated
8 There are frameworks to easily implement a type system for Xtext languages, 

 Bettini, 2015 ), but when the target platform is Java , the best choice is to use Xbase , 

or the above mentioned reasons. 

 

 

 

ava interface we annotate methods depending on whether they

orrespond to required or provided methods. We also annotate

ava interface methods with information to say whether they cor-

espond to renamed and aliased methods. In the presence of re-

amed and aliased methods, the annotations also contain informa-

ion about the original method names. This allows us to perform

ater validation (as described in Section 5.3 ). 

Referring to Java types instead of Xtraitj trait model elements

ntroduces some additional programming tasks in the implementa-

ion, especially concerning validation: in the previous implementa-

ions, given a trait reference, we used to have direct access to all its

lements (i.e., fields, required methods, defined methods). In the

urrent implementation, we have access to the referred Java inter-

ace methods, and we have to use such methods’ annotations to

nderstand which original elements they correspond to. We need

uch information to check for conflicts, for example. 

However, this new technique has an important advantage: in

he previous versions we needed to walk up the uses relation

raph to collect all the visible fields and methods of a trait, and

e needed to do that for all the uses relations in a program. In

he current version, since we are actually referring to Java types,

e can reuse the Xbase type system infrastructure to collect such

lements, since they will correspond to methods in a standard Java

nterface inheritance hierarchy. Xbase already caches such informa-

ion, so this is also more efficient, besides requiring less program-

ing. Of course, we had to customize a few parts of the Xbase

echanisms for inspecting a Java type hierarchy, since we have to

reat modifications introduced by the alteration operations. We im-

lement such a customization by using the information we put in

he generated Java code in the form of the Java annotations we

escribed above. 

Since we will not have to inspect the uses relations repeatedly

uring the validation, we have a higher level of compositionality,

ot to mention that we achieve type checking of traits in complete

solation. This improved the performance of the compiler, as shown

n Section 6.2 . 

Note that, if one writes standard Java interfaces and classes, us-

ng our annotations, Xtraitj programs could refer to such man-

ally written Java code as if they were traits, and our validator

ould handle them accordingly. Of course, this is not the intended

se case, but it is important to stress that trait references in this

ew versions of Xtraitj are really completely integrated with Java

ypes, since our compiler uses such Java annotations only for vali-

ating traits. 

We can verify the above-mentioned features by performing this

xperiment (Note that the Xtraitj compiler generates Java files

nto the source directory xtraitj-gen ): 

• We create an Xtraitj project with two Xtraitj files: the first

one is to be considered a library trait, MyLibraryTrait , and

the other one is the client of this trait. Using an import , the

client can refer to the library trait (which is available in source

format), Fig. 1 . 
• Now we manually copy the generated Java source files

corresponding to MyLibraryTrait (as we will show in

Section 5.2.1 , for each trait we generate a Java interface and a

Java class), and remove the original Xtraitj sources. The client

trait can still refer to MyLibraryTrait , even if the original

Xtraitj sources are not there anymore, Fig. 2 . 
• Finally, we manually copy the generated .class files cor-

responding to MyLibraryTrait into a different folder

of the project and set it as part of the classpath, and

then we remove the generated Java source files corre-

sponding to MyLibraryTrait . The client can still refer
MyLibraryTrait , in binary-only format, Fig. 3 . 
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Fig. 1. Accessing a trait (in source format). 

Fig. 2. Accessing a trait (in Java source format). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Achieving JAVA integration 

As we anticipated at the beginning of the section, this tech-

nique can be reused in other DSLs for achieving the complete

level of Java integration, since it is not particularly coupled

with our implementation. The main steps can be summarized as

follows: 

• Annotate the generated Java code with all the information nec-

essary to recover features of the original model elements of

your DSL (in our case, traits, fields, required and declared meth-

ods, modifications introduced by alteration operations); 
• References to other DSL elements should be implemented as

references to the corresponding Java types. If, as in our case,

a DSL element has more than one Java element associated with

it, you should choose one that represents its public “interface”,

not its implementation (in our case, it is the corresponding Java

interface). Note that it is not mandatory that such correspond-

ing Java type is effectively generated and compiled: Xbase is

able to refer to Java types inferred in the model inferrer that

have not been yet generated into Java files. 
• Check that the referred Java types (and possibly the methods

therein) are annotated with the information about the original

DSL elements; 
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Fig. 3. Accessing a trait (in binary format). 
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• Use such Java annotations for retrieving the information about

the original DSL elements; 
• Exploit Xbase mechanisms for collecting all the elements of

your DSL relations that should be mapped to Java inheritance

relations in the generated Java code. 

This complete Java integration also brings many benefits in the

DE tooling, as described in Section 5.4 . 

. Implementation 

In this section we describe the main parts of the implementa-

ion of Xtraitj , including some design choices and the integration

ith the Eclipse IDE. 

.1. Design choices 

Xtraitj traits have been designed with the goals of being

ompliant to the characteristics of the original formulation of

raits (Ducasse et al., 2006) , namely complete conflict control on

omposition of traits, and their lightweight mechanisms with an

ntuitive semantics. Our main goal is the complete integration with

he Java platform. Java is a mainstream language, with a huge

cosystem of libraries and many tools. We believe that it is cru-

ial to be completely compatible and interoperable with the Java

latform: this allows us to seamlessly reuse all existing Java li-

raries and frameworks and to target any JVM compatible plat-

orm (including Android). In order to achieve this, we chose Xtext

2015) (see also ( Bettini, 2013 )) and Xbase ( Efftinge et al., 2012 ). 

For similar reasons, we adopted full Java generics. Java Gener-

cs are known to have several limitations, especially when com-

ared to C++ templates (we refer to Ghosh (2004) and Batov’s

ork ( Batov, 2004 ) for a broader comparison between Java gener-

cs and C++ templates). However, Java generics have already been

ccepted by a huge community, and we want to target full Java

ompatibility. Similarly, in Xtraitj we introduced Java annotations,

o that we are able to use all the Java frameworks based on Java

nnotations. A clear example is the possibility to write JUnit tests

n Xtraitj , as shown by Bettini and Damiani (2014) . 
We translate Xtraitj programs into Java source code, which will

hen be compiled with the standard Java compiler, so there are

o backward binary compatibility issues with the resulting output.

ur implementation allows for incremental adoption of traits in

n existing Java project: single parts of the project can be refac-

ored to use our traits, without requiring a complete rewrite of the

hole existing code-base. Actually, it is not even mandatory to use

raits everywhere, since Xtraitj code seamlessly coexists with Java

ode. 

Although an IDE is not a strict requirement to develop applica-

ions, it helps programmers a lot with features like syntax aware

ditor, compiler and debugger integration, build automation and

ode completion, just to mention a few. Indeed, in an agile ( Martin,

003 ) and test-driven context ( Beck, 2003 ) the features of an IDE

ike Eclipse become essential and dramatically increase productiv-

ty. In this respect, Xtext provides a complete solution for the de-

elopment of new languages, since it also provides the integration

f the language in Eclipse with all the editing and programming

ooling. In particular, by using Xbase , our language also supports

ebugging in Eclipse: one can debug both the generated Java code

nd the original Xtraitj code (see Section 5.4 ). 

.2. Translation to JAVA 

In this section we sketch the main steps we used to implement

traitj . As described in Section 4.1 , in order to reuse the Xbase

ava type system in Xtraitj , we have to map the concepts of our

anguage into the Java model elements of Xbase by implement-

ng a model inferrer . Since Xbase is able to automatically generate

ava code starting from the mapped Java model implemented by

he model inferrer, the translation of Xtraitj to Java sketched in

he following is implied by our implementation of the model in-

errer for Xtraitj . Note however that Xbase only deals with typing

nd validation of expressions: language features like traits, classes,

eld and method declarations are dealt with directly by Xtraitj by

mplementing specific validation checks (see Section 5.3 ). 

We observe that the basic idea of the translation is not differ-

nt from the previous versions of Xtraitj ( Bettini and Damiani,

013, 2014 ). Thus, the final generated Java code is basically the
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same as in the previous implementations, apart from the gener-

ated Java annotations. What has been completely rewritten is the

model inferrer, in order to refer to achieve the complete Java inte-

gration described in Section 4 . 

5.2.1. The basic idea of the translation 

We will now informally sketch the generated Java code cor-

responding to Xtraitj programs using some examples. Note that

the Java code is generated only if the Xtraitj program has passed

the validation phase; thus, the generated Java code is always well-

typed. 

The translation of generics from Xtraitj programs into Java pro-

grams is rather straightforward. We will use generics in the first

example of the translation, and then we drop them in further ex-

amples. 

Our strategy for generating the Java code for traits and classes

is based on a few crucial properties: 

• There will be exactly one Java interface and one Java class for

each trait; 
• There will be exactly one Java class for each Xtraitj class; 
• Each method body in each trait will have exactly one corre-

sponding generated Java method; 
• Trait compositions are implemented through Java object com-

position and method forwarding. 

The generated Java code then will enjoy compositionality . 

Using object composition and method forwarding we achieve

the semantics of delegation . Note that in the literature (e.g., in de-

sign patterns by Gamma et al. (1995) ), the term delegation , origi-

nally introduced by Lieberman (1986) , is given different interpreta-

tions and it is often confused with the term consultation ( Kniesel,

20 0 0 ), which corresponds to method forwarding in Java . When A

delegates to B the execution of a method m , this is bound to

the sender ( A ). Thus, if in the body of the method m (defined in

B ) there is a method call this.n , then n will be executed bind-

ing this to A . In contrast, with standard Java method forwarding,

this is always bound to the receiver B . Delegation is a much more

powerful mechanism, since it allows us to achieve the semantics of

dynamic binding, as we will see in the rest of the section. 

Let us consider this trait definition (here we are considering

only required fields and provided methods): 

From this trait definition the following Java interface is

generated: 

Let us explain the generated code: 

• A (required) field in a trait corresponds to the getter and setter

methods in the generated Java interface. 
• This interface also contains the signatures of all the method

declarations of the traits, i.e., both provided and required meth-

ods. Thus, the generated interface implicitly contains all the re-

quirements of the corresponding trait. Of course, private meth-

ods in a trait will not be part of the generated Java interface. 
• The generated methods are annotated with Java annota-

tions, which are part of our Xtraitj runtime library (re-

quired methods, if present in a trait, are annotated with

@XtraitjRequiredMethod in the generated Java interface).

Such annotations are crucial to achieve full Java integration, as

explained in Section 4 . 

Convention: Note that from now on, unless it is strictly neces-

ary for the explanation, we will not show Java annotations in the

enerated code. 

Then, a Java class is generated implementing such interface: 

The important thing in the generated Java class is the

delegator field, of type T1 , i.e., the Java interface gener-

ted for the trait. Recall that this interface contains all the re-

uired methods (including getter and setter methods for fields)

nd all the provided methods. The actual implementation for

his field will be passed to the constructor of this Java class. In

his class, all the methods defined in T1 are forwarded to the

eld _delegator , even the ones corresponding to methods pro-

ided by the trait. In fact, for each method provided in the trait

here will be a method with the same name but prefixed with

 that contains the translation into Java of the original method’s

ody. Both read and write access to fields are translated into

alls to getter and setter methods, respectively, in the generated

ava code. Of course, private methods will be directly translated

o corresponding Java private methods without any additional

ethod forwarding. Indeed, private methods are always statically

ound. 

We also forward provided methods to the _delegator be-

ause this allows a standard Java class to override methods and

uarantees that the standard Java dynamic binding mechanism for

verridden methods still works. This will also allow us to imple-

ent restrict (as shown at the end of Section 2.2 , restrict can be

sed to achieve in a trait the same mechanism of standard Java

ethod overriding). 

Let us now consider the Xtraitj class definition: 

First of all, note that the type arguments for T1 in the uses

lause respect the bounds of the original trait’s type parameters.

imilarly, the defined field f fulfills the requirements of T1 (with
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v  
he specified type arguments). Thus, the Xtraitj compiler accepts

his class as well-formed. 

The Java class that is generated from the above Xtraitj class

efinition is: 

This shows that the generated Java class implements the gen-

rated Java interface of the used trait (including getter and setter

ethods for defined fields) with the corresponding type parame-

ers instantiation. The generated Java class defines a field for each

sed trait and creates an object for such field, in this example it

s T1Impl , passing itself to the trait’s class constructor. This is

ell-typed in Java since the class implements the interface T1 , and

1Impl ’s constructor expects such a type. Note the use of type ar-

uments for generics and the corresponding type parameters cor-

ectly instantiated in the generated class. The class forwards each

ethod defined in the trait to the T1Impl instance, in particular,

t calls the method with name prefixed with the underscore (recall

hat such method contains the translation into Java of the original

ethod’s body). 

Summarizing, the main idea of the translation of an Xtraitj

lass into a Java class is: 

• C forwards to T1Impl the methods defined in the trait T1 , 
• T1Impl forwards to C the fields required in the trait (actually,

the corresponding getter/setter methods). 

The generated Java class can be used in any Java program and

an be itself subclassed. In particular, thanks to our method for-

arding, dynamic binding will be correctly implemented. 

To demonstrate this last point, let us consider a much simpler

xample: 

According to our translation strategy, the generated Java class

or the trait will be: 
If we execute the following Java snippet that uses the generated

ava code corresponding to the above Xtraitj code: 

hen the string ‘‘a String, Modified’’ will be printed on

he screen. 

Let us now override the original method m in a Java subclass: 

If we execute the following Java snippet 

he string ‘‘a String, Modified, Redefined’’ will be

rinted on the screen. This shows that the use of _delegator
nsures that standard Java classes can override methods and that

he standard Java dynamic binding mechanism for overridden

ethods still works. 

This is shown in the sequence diagram of Fig. 4 . 

.2.2. Dealing with required methods and Trait Sum 

Let us now consider a trait with a required method: 

As we saw above, the generated Java interface has a method

efinition for each method declaration in the trait, even required

ethods: 

The generated Java class follows the same scheme of the pre-

ious example: the only exception is that there will be no _m in
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9 In the actual implementation, the name has also an additional suffix, since a 

trait can use the same trait more than once with different alteration operations. 
T2Impl since m is required. Of course, m will be forwarded to

_delegator : 

Let us now consider the following trait and class: 

This class definition is well-formed since all the requirements

of the used traits are fulfilled: T1 provides the method m required

by T2 and fields requirements are fulfilled as well. 

The corresponding generated Java class is 

The generated Java class implements both generated Java in-

terfaces of the used traits. This class defines a field for each used

traits passing itself to the trait’s class constructor. Also in this case,

this is well-typed in Java since the class implements both the in-

terface T1 and T2 . The class forwards each method defined in a

used trait to the corresponding instance (by calling the method

prefixed with the underscore). 

Running the following Java snippet: 

will call the Java method corresponding to the one defined in trait

T2 , which will forward the method m to _delegator ; this field

refers to the instance of C , and C.m will call T1Impl._m , which

corresponds to the method m provided by T1 . This is shown in the

sequence diagram of Fig. 5 . 

Thus, trait method requirements are fulfilled in the generated

Java code using method forwarding. 
Let us consider an example where a trait uses another trait. This

s a variation of the previous example ( T1 and T2 are the same): 

The generated Java class for T3 follows the same pattern we

ave already seen. Moreover, it forwards the methods defined in

2 to the corresponding instance: 

Note that when the instance for T2Impl is created inside

3Impl ’s constructor the delegator that is passed to T3Impl ’s
onstructor is also passed to T2Impl ’s constructor. This means

hat, at runtime, all the fields in a class that correspond to used

raits will share the same instance for _delegator . 

.2.3. Dealing with alteration operations 

If a trait or a class uses a trait with some alteration operations,

hen, in the generated Java code, we cannot simply use the gen-

rated Java interface (and class) of the referred trait, since such

n interface will be different. Indeed, if we exclude restrict , which

oes not alter the interface, and alias , which adds a method in the

ew interface, all the other alteration operations introduce changes

n the interface of the new trait that make it incompatible with the

nterface of the original trait. This is consistent with the fact that

raits are not types in Xtraitj . 

We do not implement alteration operations by cloning a trait

ethod and applying source-level modifications: alterations corre-

pond to an additional Java interface and class which act as an

dapter between the original used trait and the trait or class that

lters the trait. 

To give an idea of the translation, let us consider an example

hat uses rename : 

The generated additional Java class and interface for the

dapter and the relations with the other generated Java elements

re shown in Fig. 6 . The name for the adapter’s Java elements is

uilt using the name of the two traits. 9 The additional adapter
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Fig. 4. Sequence diagram of the generated Java code for classes and traits. 
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nterface corresponds to the original trait’s interface after the

lteration operations have been applied. However, there is no

ubtyping relation between the two interfaces. The adapter class

mplements both the adapter interface and the original trait

nterface by appropriately forwarding method invocations: 

The crucial point in this class is that when it creates the in-

tance for T1Impl it passes itself (i.e., this ) to T1Impl ’s con-

tructor. Since this class implements T1 , the constructor invocation

s well-typed. 

This generated adapter class also implements the semantics of

enaming: it forwards the original method to the renamed one. In

his example, _renamedM is forwarded to _m , which represents

he translation into Java of the original trait method. 

Consider this class using T2 

Then executing this Java code will print ‘‘m’’ twice: 

The sequence diagram of the invocation c.callM() is shown

n Fig. 7 . 

As hinted above, the additional forwarding to _delegator is

equired in order to implement the dynamic binding semantics for
ethod invocation. We have already showed this behavior by using

 standard Java derived class with method overriding. The same

olds if we use restrict . For instance, consider this trait 

hich “redefines” renamedM by restricting it and by providing a

ew implementation; then consider this class 

Executing this Java code will print ’’new m’’ twice: 

This is another example of the compositionality of our gener-

ted code. 

.3. Validation 

Since we provide a mapping from a trait method to a Java

ethod, Xbase is able to automatically type-check the expression

f the trait method (e.g., using the return type of the method

nd the types of the parameters). This works because the types

hat we use in a Xtraitj program are actually references to Java

ypes. Thus, we completely delegate the type-checking of method

odies to Xbase . Reusing the type system of Xbase is straightfor-

ard when the mapping between the language model and the

ava model is one-to-one, i.e., each element of your language cor-

esponds to exactly one element in the Java model. This is not the

ase for Xtraitj : as shown in Section 5.2.1 , we map each Xtraitj

rait in several Java model elements. The introduction of gener-

cs in Xtraitj raised many issues in that respect, since we need

o make sure that type parameters and the corresponding type ar-

uments are correctly translated. This required us to tweak the de-

ault scoping mechanism of Xtext in many places to make Xbase ’s

ype system work in the presence of generics (see footnote 1 in

ection 1 . 

In Fig. 8 we show some type errors reported by Xbase . Note

hat Xbase deals only with expressions: language features like

raits, classes, field and method declarations are dealt with di-

ectly by Xtraitj ; method bodies, in contrast, completely rely on

base expressions. Thus, all the checks concerning method con-

icts are implemented by us. These also include the check that a

lass provides all fields and methods required by the used traits (in

ig. 8 we issue an error since the trait requires String f while

he class defines int f ). Moreover, we also implement the checks

elated to the correct usage of trait alteration operations (e.g., re-

uired methods and fields cannot be hidden). 

.4. IDE 

One of our main design choices and goals is the integration of

ur language in Eclipse (see Section 5.1 ). In this respect, Xtext and

base enhance the Eclipse tooling for Java . For instance, we can

avigate to a Java type definition directly from an Xtraitj program,

ee its type hierarchy, and use other features that are present

n the Eclipse Java editor. This also holds the other way round:

rom a Java program that uses code generated from a Xtraitj

rogram we can navigate directly to the original Xtraitj method

efinition. 
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Fig. 5. Sequence diagram of the generated Java code for classes and traits in the 

presence of required methods. 

Fig. 6. Generated Java interfaces and classes in the presence of rename . Interface 

names are in italics font. 

 

 

 

 

Fig. 7. Sequence diagram of the generated Java code for classes and traits in the 

presence of a renamed method invocation. 
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In this new implementation of Xtraitj , thanks to the complete

integration with Java described in Section 4 , we have full support

of Java -like packages and automatic import management. The lat-

ter feature consists in the editor automatically inserting an import
Fig. 8. Errors report
tatement during content assist usage. This is shown in Fig. 9 : after

election in the content assist, the import statement correspond-

ng to the chosen trait is automatically inserted. This was possible

ince trait references are actually references to the corresponding

enerated Java interfaces. Similarly, the “Organize Imports” context

enu is available as well. These are mechanisms a Java Eclipse

ser is accustomed to. 

Another advantage of this new version of Xtraitj is the

omplete integration with the Eclipse building infrastructure.

clipse provides a very nice incremental building mechanism and

text / Xbase leverage these mechanisms too. In particular, they

ely on the Java types indexing to achieve the incremental build-

ng concerning dependencies across programs and, more impor-

antly, across projects. In the previous version, we did not exploit

uch mechanisms completely, since we relied on references to trait

odel elements. Since now we refer to traits using Java type refer-

nces, Xtraitj correctly integrates with the Xtext Eclipse building

echanisms. 
ed in the IDE. 



L. Bettini, F. Damiani / The Journal of Systems and Software 131 (2017) 419–441 435 

Fig. 9. Automatic import insertion during content assist: (right) the content assist proposes trait references for the uses clause; (left) the user selects one and the corre- 

sponding import statement is automatically inserted. 
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A well-known problem with implementations that generate

ava code is that you can only debug the generated Java code,

hich is usually quite different from the original program. Our

traitj implementation does not have this drawback: thanks to

base we can debug the original Xtraitj code. In Fig. 10 we

how a debug session of a Java program that uses code gen-

rated by Xtraitj : we have set a breakpoint on an Xtraitj file,

nd when the Java program hits the corresponding Java code

he debugger automatically switches to the original Xtraitj code

see the file names in the thread stack, the “Breakpoint” view

nd the “Variables” view). Note that the debugger will automati-

ally skip the additional forward methods generated by our com-

iler. However, it is always possible to switch between the gen-

rated Java code and Xtraitj code. When switching to generated

ava code, the programmer can debug the additional forwarding

ethods. 

Currently, there is also refactoring support for names, including

ames of methods, traits and classes, and generic type parameters

enaming. This is the default renaming support provided by Xtext

nd Xbase ; it also works across files. We are investigating adding

urther refactoring mechanisms to extract methods into separate

raits (possibly by integrating such mechanisms with the ones pro-

osed by Bettini et al. (2008) , see also Section 8 ). 

. Evaluation 

In this section we first discuss the pros and cons of the im-

lementation ( Section 6.1 ); then we present some performance

ests, concerning both the runtime and the compiler of Xtraitj

 Section 6.2 ). 

.1. Pros and cons of the implementation 

The flattening translation presented in Section 3 provides a sim-

le and intuitive way to specify the semantics of traits, but it is not

n effective im plementation technique. Im plementing the flatten-

ng semantics directly would lead to a huge amount of duplicated

ode, increasing the size of the final Java program. Moreover, this

ould break modularity and traits could not be used to implement

ibraries, because the clients’ code would need to be regenerated.

n particular, if the body of a trait’s method is changed by the

rogrammer, then all the flattened classes that use that method

ould need to be regenerated (for instance, this is the approach

resented by Quitslund et al. (2004) ). 

Instead, our implementation is modular in this respect. In

act, as stated in Section 5.2 , each method body is translated

nto exactly one Java method body. Even alteration operations
 Section 2.2 ) do not require us to copy the original method body:

n additional adapter class is generated so that the generated Java

ethods behave according to the semantics of the alteration oper-

tions ( Section 5.2.3 ). This implies that our Java code generation is

ompositional in the presence of alteration operations: we reuse

he previously generated Java code and we forward method in-

ocation differently (through an adapter). Note also that copying

nd modifying the body of a method (i.e., an Xbase expression) of

 Xtraitj program would not allow us to reuse all the automatic

echanisms of Xbase , including the Xbase implementation of the

ava type system. Moreover, we would not be able to seamlessly

euse the automatic integration in Eclipse provided by Xbase , in-

luding the debugging mechanisms. 

Summarizing, we think that an approach that applies flatten-

ng for the implementation would simply not scale: in a project

ith a big code base a single modification would require the gen-

ration of too many artifacts. Our approach does not suffer from

his problem, especially in this new implementation that fully ex-

loits the mechanisms already implemented by Xtext and Eclipse

DT. In fact, dependencies among files and among projects are al-

eady handled in an efficient way by Xtext . On modifications on

 file, only the dependent files will be recompiled by Xtraitj . In

ontrast, a solution based on flattening would not exploit Xtext ’s

uilding mechanisms. 

The Java code generated by Xtraitj depends on the runtime li-

rary of Xtraitj , which includes only the Java annotations that we

se in the generated code. Moreover, the generated code depends

n the Xbase library and on the Google Guava library. Altogether,

hese dependencies are less than 2 MB in size, so they can be eas-

ly deployed together with the generated Java code. Thus the gen-

rated Java code can run on any Java platform, and thanks to the

educed size of the required Java libraries, it can be installed on

ava devices, such as Android devices. 

The only drawback of our translation based on object compo-

ition and method forwarding is the overhead of method forward-

ng. However, to achieve the same flexibility supported by traits in

 pure Java application the programmers usually resort to design

atterns based on object composition and forwarding (including

echniques to simulate multiple inheritance, such as the one pre-

ented by Bettini et al. (2003b )). Note that generics in Xtraitj do

ot introduce any additional overhead: our generics are translated

xactly into Java generics, thus they have the same performance as

n a standard Java program using generics. In this respect, accord-

ng to the type erasure model ( Bracha et al., 1998 ), generic types

re removed during compilation and are not present in the gener-

ted byte-code. The performance will thus be the same as a pro-

ram using raw types. 
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Fig. 10. Debugging Xtraitj code. 
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6.2. Performance tests 

To measure the overhead of method forwarding, we ran a few

JUnit tests. All these JUnit tests are available in the Xtraitj source

repository, https://github.com/LorenzoBettini/xtraitj . We will show

the measured time for executing these tests reported by JUnit it-

self. The measurements we report in this section were taken on a

quad-core 2.20GHz Intel i7-4702HQ CPU, with 16 GiB RAM, run-

ning Linux Kubuntu 15.10 64bit, kernel 4.2, Oracle Java 8. We ex-

ecuted such tests several times, to make sure that the divergence

of the results of each run was negligible. When we executed the

tests there were no other programs running on the computer,

apart from Eclipse, from which we ran the JUnit tests (the figures

with measurements shown in the following are screenshots of the

Eclipse JUnit view). 10 

We ran a few JUnit tests using the CStack we implemented in

Section 2.2 . We ran the same tests using a manually implemented

stack, which mimics what we would obtain by flattening the class

and traits of Section 2.2 . The results are shown in Fig. 11 -left. The

number in the name of the test represents the number of elements

pushed onto the stack and then popped. JUnit reports the execu-

tion time for each test case. The test method aWarmUp should be

ignored; it is used to make sure that both the JVM and the Xtext

internal mechanisms are started and they do not interfere with the
10 We execute all these performance tests also as part of our Continuous Integra- 

tion Maven build on the public instance of Travis-CI , available at https://travis-ci. 

org/LorenzoBettini/xtraitj . On Travis-CI we use a multi-os build, so that we run the 

Maven build and all the tests both on Linux and MacOSX virtual machines provided 

by Travis-CI. At the time of writing the specifications for such virtual machines are 

Linux Ubuntu 12.04.5 LTS 64bit, kernel 3.13.0, Oracle Java 8 and Mac OS X 10.11, 

Xcode 8, Oracle Java 8—these are the only details that we found on Travis-CI spec- 

ifications. The performance results on Travis-CI virtual machines reflect the ones 

executed on our machine concerning the slowdown factors. 

o  

o  

i  

(  

n  

t  

b

 

v  
ime measurements. Recall that in this example, there is no alter-

tion operation. We performed the same tests for the lifo example

f Section 2.2 using the CLifo class, in particular, the alternate

ersion that uses two traits and several alteration operations. We

lso compared the performance of CLifo with a manually flat-

ened version. The results are shown in Fig. 11 -right. Since in this

xample we use some alteration operations, the number of method

orwards is higher than in the previous example. 

From the results of the above tests, we see that the slow-

own factors gets smaller when the larger number of elements are

dded/removed. For example, the slowdown factors of CStack are

.0, 3.5 and 1.9 for 10 0 0, 10,0 0 0 and 10 0,0 0 0 elements, respec-

ively. Thus, the overhead of single method invocation can be sig-

ificant. Nevertheless, we believe this overhead is acceptable, and

t is compensated by the high degree of code reuse provided by

raits. 

We performed additional performance tests using our Xtraitj

tility methods for collections that we showed in a previous pa-

er ( Bettini and Damiani, 2014 ); these examples are also available

n the Xtraitj source repository, https://github.com/LorenzoBettini/

traitj . Such utility methods mimic the methods for collections

rovided by the Google Guava Java library. In our performance tests

e create a list of n integers and we process that list with our map
ethod and then with join . We compared the performance of

ur generated code with code that uses the corresponding meth-

ds of the com.google.common.collect.Iterables class

n the Google Guava Java library. The results are shown in Fig. 12

again, the number in the name of the test corresponds to the

umber n of elements in the list being processed). In this case, the

ime increases by 26% over that of the Google Guava library, for a

ig collection. 

Finally, we performed some tests for the compiler of the pre-

ious version of Xtraitj ( Bettini and Damiani, 2014 ) compared to

https://github.com/LorenzoBettini/xtraitj
https://travis-ci.org/LorenzoBettini/xtraitj
https://github.com/LorenzoBettini/xtraitj
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Fig. 11. JUnit results for the trait example of stack (left) and of lifo (right). 

Fig. 12. JUnit results for the trait example of utility methods for collections imple- 

mented in Xtraitj and the corresponding ones from the Google Guava library. 
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he current version of Xtraitj . The results are shown in Fig. 13 : 11 

he number n in the name of the test represents the number of

raits in the program used as input; each trait T i uses T i −1 and

enames a method. The current compilation strategy in Xtraitj il-

ustrated in this paper performs better than the previous version

f the compiler. In fact, we avoid rescanning the whole trait “uses”

elation when checking and compiling the traits and we reuse the

ached information of the Java model elements already created by

ur model inferrer. 

.3. Summary of the evaluation 

We believe that the properties of our implementation (see

ection 6.1 ), namely, compositionality, modularity and IDE tool-

ng, compensate for the runtime overhead of method forward-
11 These JUnit tests are executed in two different versions of Eclipse: one with the 

ld version of Xtraitj and the other one with the current version. That is why they 

re reported in two different JUnit executions. 

i  

t  

a  

m  

m  
ng (see Section 6.2 ). The implementation described by Smith

nd Drossopoulou (2005) also uses method forwarding to enjoy

he mentioned advantages. The current implementation of Pharo

Black et al., 2010) , relies on flattening (i.e, the methods provided

y a trait are inlined into the body of the classes that use it). How-

ver, most of the drawbacks described above do not apply since in

he Pharo environment the IDE and the language system rolled

nto one in order to provide automatic immediate feedback on any

hange introduced by the user (i.e., there are no compiling and de-

loying steps). 

. Related work 

The literature on traits and JVM-compatible languages has

een partially compared throughout the paper. In Section 6 we

lso compared our implementation strategy with other imple-

entations of traits. Note that we only considered implementa-

ions where “traits” refers to constructs that are compliant with

he distinguished features listed in the original formulation of

raits ( Ducasse et al., 2006 ) (cf. the discussion in Section 1 ); thus,

e have not compared our implementation with languages where

traits” denotes a substantially different construct (e.g., traits in

cala ( Odersky, 2007 ) or traits in C++). We refer to out previous

aper ( Bettini and Damiani, 2013 ) for a comparison with the core

anguage TraitRecordJ ( Bettini et al., 2013d ), which was the start-

ng point for the implementation of Xtraitj and was implemented

y flattening. In the rest of this section we add further discussions

nd comparisons. 

In the original formulation of traits ( Ducasse et al., 2006 ), the

ethods provided by a trait can access state only by using acces-

or methods, which become required methods of the trait. A pos-

ible way to overcome this limitation is to make traits stateful (as

roposed by Bergel et al. (2008) for Smalltalk/Squeak ) by adding

rivate fields that can be accessed from the clients (possibly under

 new name), or merged with other variables. 

We believe that keeping traits stateless and introducing re-

uired fields, as in the formulation of traits in a structurally-typed

etting by Fisher and Reppy (2004) , provides a more lightweight

ay to address the problem. Therefore, we adopted this solution

n Xtraitj : required methods/fields have to be explicitly declared

ogether with their type. This explicit declaration of requirements

llows for a better IDE integration and provides the program-

er with better tooling experience, which was also one of the

ain goals of Xtraitj . We decided to require the programmer to
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Fig. 13. Compiler tests. Left: previous version, right: current version 
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B  
declare the fields in the classes since, on the one hand, we be-

lieve that these field declarations provide a better support for code

documentation and, on the other hand, the IDE support of Xtraitj

eliminates any burden on the programmer by a quickfix to auto-

matically generate the declarations of all the fields required by the

traits used by a class. 

Some of the module composition operations present in Bracha’s

Jigsaw framework ( Bracha, 1992 ) have been adapted to traits.

In particular, an instantiation of the Jigsaw framework within

a Java -like nominal type system has been proposed by Lagorio

et al. (2012) . Jigsaw models field and method renaming opera-

tions, which are present in Xtraitj and are not present in most

formulations of traits. Method renaming in the context of multi-

ple class-based inheritance is also present in Meyer’s Eiffel lan-

guage ( Meyer, 1997 ). Method renaming for traits was introduced

by Reppy and Turon (2006) . 

Reppy and Turon (2007) also proposed a variant of traits that

can be parametrized by member names (field and methods), types

and values. Thus, the programmer can write trait functions that can

be seen as code templates to be instantiated with different param-

eters. 

Reverse generics ( Bergel and Bettini, 2011 ) are a general linguis-

tic mechanism to define a generic type from a non-generic type.

For a given set of types, a generic is formed by unbinding static

dependencies contained in these types. 

In a previous paper ( Bettini et al., 2015 ), we introduced para-

metric traits , that is, traits that are parametrized by interface names

and class names. Parametric traits are applied to interface names

and class names to generate traits that can be assembled in other

(possibly parametric) traits or in classes. This mechanism pro-

vides both features similar to trait functions and features similar

to reverse generics. Mechanisms like parametric traits and reverse

generics could be partially implemented in Xtraitj , for instance,

by introducing an alteration operation to specify which types must

become type parameters in the new traits. However, we would not

be able to abstract types in method body expressions such as ob-

ject instantiations: due to the type erasure model ( Bracha et al.,

1998 ), generic types cannot be instantiated in Java . In C++ (us-

ing template generic programming) and in dynamically typed lan-

guages, adding such mechanisms is easier (see, e.g., Bergel and Bet-

tini (2012, 2013) ). Since Xtraitj targets the Java platform, we have

to share its limitations. 

8. Conclusions and future work 

In this paper we present Xtraitj , a trait-based programming

language that features complete compatibility and interoperabil-

ity with the Java platform. We chose to implement Xtraitj by
 i  
elying on Xtext since it is the de-facto standard framework for

mplementing DSLs in the Eclipse ecosystem, it is continuously

upported, and it has a wide community. Xtext is continuously

volving, and the main forthcoming features will be the inte-

ration in other IDEs (mainly, IntelliJ), and the support for pro-

ramming on the Web (i.e., allowing programming directly in a

rowser) ( Efftinge and Zarnekow, 2015 ). 

Bettini et al. (2008) presented a tool for identifying the meth-

ds in a Java class hierarchy that could be good candidates to be

efactored in traits. This tool is an adaptation of the Smalltalk

nalysis tool presented by Lienhard et al. (2005) to a Java set-

ing. It will be interesting to investigate how to apply this ap-

roach for porting and refactoring existing Java code to Xtraitj

ode, for instance, the Java stream library (as in the context of

malltalk ( Cassou et al., 2009 )). 

Damiani et al. (2011 , 2014a) presented a compositional proof

ystems for the verification of pure traits. We plan to extend a dif-

erent verification system, the KeY system ( Beckert et al., 2007 ), for

eductive verification of Java programs to Xtraitj by implement-

ng a proof system similar to the one proposed by Damiani et al.

2014a ). 

We also plan to add method overloading for trait definitions

n future releases of Xtraitj . In the presence of overloaded meth-

ds, trait alteration operations could be extended in order to spec-

fy the complete signature of methods to avoid ambiguities. Note

hat, even though in the current version one cannot define over-

oaded methods in a trait definition, it is still possible to invoke

verloaded methods of existing Java classes in Xtraitj method

odies. 

Another interesting subject for future work is the expression

anguage. In Xtraitj we use Xbase , which provides a nice Java -like

xpression language, which is easy to learn for Java programmers,

as a clean syntax, avoiding much verbosity of Java , and has other

dvanced features. However, Xbase is not Java , and this might un-

ermine the usability of Xtraitj when porting legacy code to traits.

ettini and Crescenzi (2015, 2016) presented a customization of

base which has the full Java syntax, while keeping all the fea-

ures provided by Xbase (both from the type system and the IDE

ooling point of view). It will be interesting to extract from the im-

lementation presented by Bettini and Crescenzi (2015, 2016) such

arts to have an implementation of Xtraitj that supports the full

ava expression syntax for the expressions (i.e., the body of meth-

ds). This will make it easier to port existing Java code to traits,

nd to adapt the refactoring framework presented by Bettini et al.

2008) . 

Dynamic trait replacement ( Smith and Drossopoulou, 2005;

ettini et al., 2013a ) is a programming language feature for chang-

ng the objects’ behavior at runtime by replacing some of the
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bjects’ methods. In future work we would like to integrate a form

f dynamic trait replacement in Xtraitj . 

Delta-trait programming ( Damiani et al., 2014b ) is a re-

ently proposed approach for implementing software product

ines ( Clements and Northrop, 2001; Pohl et al., 2005 ) by smoothly

ntegrating the modularity mechanisms provided by delta-oriented

rogramming ( Bettini et al., 2013c; Koscielny et al., 2014 ) and pure

rait-based programming (see the discussion in Section 1 ). In fu-

ure work we would like to implement delta-trait programming on

op of Xtraitj . 
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