

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://doi.org/10.1016/j.jss.2017.01.007

http://hdl.handle.net/10251/99751

Elsevier

Alfonso Laguna, CD.; Calatrava Arroyo, A.; Moltó, G. (2017). Container-based Virtual Elastic
Clusters. Journal of Systems and Software. 127:1-11. doi:10.1016/j.jss.2017.01.007

Container-based Virtual Elastic Clusters

Carlos de Alfonsoa,∗, Amanda Calatravaa, Germán Moltóa

aInstituto de Instrumentación para Imagen Molecular (I3M)
Centro mixto CSIC - Universidad Politécnica de Valencia - CIEMAT

Camino de Vera s/n, 46022, Valencia

∗Corresponding author: Tel. +34963877356
Email address: caralla@upv.es (Carlos de Alfonso)

Preprint submitted to Journal of Systems and Software December 12, 2016

Abstract

eScience demands large-scale computing clusters to support the efficient execu-

tion of resource-intensive scientific applications. Virtual Machines (VMs) have

introduced the ability to provide customizable execution environments, at the

expense of performance loss for applications. However, in recent years, con-

tainers have emerged as a light-weight virtualization technology compared to

VMs. Indeed, the usage of containers for virtual clusters allows better perfor-

mance for the applications and fast deployment of additional working nodes, for

enhanced elasticity. This paper focuses on the deployment, configuration and

management of Virtual Elastic computer Clusters (VEC) dedicated to processs

scientific workloads. The nodes of the scientific cluster are hosted in contain-

ers running on bare-metal machines. The open-source tool Elastic Cluster for

Docker (EC4Docker) is introduced, integrated with Docker Swarm to create

auto-scaled virtual computer clusters of containers across distributed deploy-

ments. We also discuss the benefits and limitations of this solution and analyse

the performance of the developed tools under a real scenario by means of a

scientific use case that demonstrates the feasibility of the proposed approach.

Keywords: Computing, Containers, Cluster Computing, Elasticity

2

1. Introduction

eScience involves the execution of complex HTC (High Throughput Com-

puting), HPC (High Performance Computing) applications and long-running

workflows. This requires a significant amount of computing power and memory

capacity that can be only obtained via distributed computing. Indeed, large-5

scale Distributed Computing Infrastructures (DCIs), such as the European Grid

Infrastructure (EGI)1 have been tremendously successful in supporting the com-

putational requirements of many scientific communities across Europe [1, 2].

However, one of the main limitations of Grid infrastructures is that applica-

tions have to be ported to the execution environments provided by the ma-10

chines involved, what results in a rigid structure composed by several Virtual

Organizations (VOs) that support a set of applications. This inability to pro-

vide customized execution environments for applications is addressed by Cloud

Computing by means of Virtual Machines (VMs) that encapsulate the Operat-

ing System (OS) together with the user application and its dependences in a15

Virtual Machine Image (VMI) that can be run on a physical machine by means

of a hypervisor.

Indeed, the ability to provide ubiquitous, on-demand network access to a

set of configurable computing resources, according to the NIST definition [3]

of Cloud Computing, has paved the way for the rise of many public Cloud20

providers (such as Amazon Web Services (AWS)2, Microsoft Azure3 or Google

Cloud Platform4), different Cloud Management Frameworks (such as OpenNeb-

ula or OpenStack) and even initiatives to create large-scale community Clouds

(e.g. EGI Federated Cloud5). Cloud computing has provided researchers with

access to unprecedented customizable computing resources, either on-premises25

or on public Clouds. However, these computing resources still require a coor-

1European Grid Infrastructure: http://www.egi.eu
2Amazon Web Services: https://aws.amazon.com
3Microsoft Azure: https://azure.microsoft.com
4Google Cloud Platform: https://cloud.google.com
5EGI Federated Cloud: https://www.egi.eu/federation/egi-federated-cloud/

3

http://www.egi.eu
https://aws.amazon.com
https://azure.microsoft.com
https://cloud.google.com
https://www.egi.eu/federation/egi-federated-cloud/

dinated use for applications to efficiently use them. For that, Local Resource

Management Systems (LRMS) such as Torque [4], SLURM [5] or HTCondor [6]

are job schedulers that are commonly used to dispatch jobs across nodes [7].

Indeed, computing clusters are still widely-used computing facilities to support30

the execution of many types of applications.

A scientific computing cluster is a type of parallel or distributed processing

system, which consists of a collection of interconnected stand-alone computers

working together as a single integrated computing resource [13]. The access to a

scientific cluster is usually made by means of a SSH connection to a “front-end”35

computer, and the users submit tasks to a middleware that will coordinate the

working nodes to run these tasks. All the computers usually share filesystem to

ease the distribution of the applications and the data that they need.

Virtual Elastic scientific computer Clusters (VEC) deployed on Cloud infras-

tructures have introduced many benefits when compared to physical clusters,40

as we addressed in our previous work [8], avoiding upfront investments and the

ability to adapt the execution environment to the applications (and not vicev-

ersa). This work was later extended to create EC36 [9] an open-source tool to

create self-managed cost-efficient virtual hybrid elastic clusters across Clouds

that is currently offered as a free online service, being used for scientists to45

provision their own clusters on public, on-premises and federated Clouds.

In the quest for increased performance with respect to virtualisation tech-

niques, Linux containers appeared as a lightweight alternative to VMs. Linux

containers enable to run multiple isolated processes in a host without the over-

head caused by the hypervisor layer introduced by VMs. While hypervisors50

provide hardware abstraction, container-based virtualization is characterised by

multiple isolated user spaces running at the operating system level (see Figure

1). This provides process isolation at a fraction of the overhead introduced by

the hypervisor. Container-based virtualization proved to be an alternative to

traditional hypervisor-based systems, as it reduces the overhead caused by VMs55

6EC3 (Elastic Cloud Computing Cluster): http://www.grycap.upv.es/ec3

4

http://www.grycap.upv.es/ec3

Hardware

Hypervisor

VM VM

App App

Hardware

Hypervisor

Container Container

App App

VM

Hardware

Apps hosted in VMs Apps hosted in containers sharing

the same VM
Apps hosted in containers

Libs Libs

Libs Libs

Container Container

App App

Libs Libs

Host OS Host OS Host OS

OS OS

OS

Figure 1: Virtual Machines and Containers possible architectural configurations.

in CPU, memory and storage, as described in [10] and [11]. Linux containers

can be run on top of VMs to achieve multi-tenant isolation using the VM as

the boundary of security and containers as the boundary of resource allocation

to applications. However, the main benefits of containers arise when used on

bare metal, in order to obtain increased performance compared to VMs. Among60

the different existing container platforms, Docker7 stands out as a software con-

tainerization platform that can encapsulate an application in a complete filesys-

tem that contains all the dependences required to be executed (code, runtime,

system tools and libraries, etc.). This guarantees portability across multiple

platforms, regardless of the execution environment.65

Our hypothesis is that container-based technology can be effectively in-

tegrated with cluster-based computing to create virtual computer clusters of

Docker containers with the very same functionality as virtual clusters of VMs,

and physical clusters of PCs, but with enhanced capabilities that include: i)

7Docker: https://www.docker.com

5

https://www.docker.com

improving the performance of resource-intensive applications that will run iso-70

lated on bare metal; ii) improving the elasticity of the cluster, by reducing the

time required to spawn and terminate additional containers and iii) supporting

customised execution environments via low-footprint images.

Therefore, this paper introduces an architecture to deploy container-based

virtual scientific computer clusters that feature automated elasticity and the75

ability to provide customised virtual execution environments across a bare-metal

backend on which containers managed by a Container Orchestration Platform

(COP) are executed. Several computer clusters customised for the execution

of different scientific applications can be provisioned to share the same physi-

cal computing backend. This provides increased resource utilisation and per-80

formance while maintaining isolation across workloads coming from different

clusters.

To this aim, this paper describes EC4Docker8, an open-source tool to deploy,

configure and manage container-based virtual computer clusters that can be run

on bare-metal nodes (as well as on VMs). These virtual computer clusters expose85

the very same user interfaces expected by users (accessed via SSH, supporting

a LRMS, etc.) but they are completely backed by Docker containers that are

dynamically deployed, depending on the workload, across a distributed Docker

Swarm [12] backend that can be deployed either on bare metal or on public and

on-premises Clouds.90

After the introduction, the remainder of the paper is structured as follows.

First, section 2 introduces background information and covers the state of the

art related to containers, revising existing tools, performance studies and clus-

tering solutions of containers. Next, section 3 exposes and analyses the proposed

architecture to deploy these container-based virtual computer clusters. Then,95

section 4 addresses different scenarios in which the proposed solution is evalu-

ated and analyses the significant benefits of these approach. Finally, section 5

summarises the paper and points to future work.

8EC4Docker is available in https://github.com/grycap/ec4docker

6

https://github.com/grycap/ec4docker

2. Background and Related Work

According to Buyya [13], a computer cluster is a type of parallel or dis-100

tributed processing system, which consists of a collection of interconnected

stand-alone computers working together as a single integrated computing re-

source. The key components of a cluster include:

(i) Multiple Computers. Typically one of them (named the “front-end node”)

acts as an entry point to the computer cluster and the others execute the105

jobs (named the “working nodes”).

(ii) Operating Systems (OS). In scientific computing, the most common oper-

ating systems are Linux or Unix-based.

(iii) Interconnection network. The computers interact among them through a

local network. There may exist different networks specialised for different110

tasks (e.g. data, parallel processing, etc.) based on different technologies

for computers to communicate (e.g. Myrinet, GbE, 10GbE, etc.).

(iv) Cluster middleware. The cluster middleware, also known as LRMS, is a

set of tools to use the cluster as a single computing entity. These tools

carry out the whole lifecycle of executing a job in the cluster (e.g. staging115

the files in the working nodes, starting the applications, retrieving the

resulting files, etc.). Some examples of well known LRMS are Torque,

SLURM, or LSF.

(v) Parallel programming environments. Applications typically use well-known

libraries to communicate between processes. Some examples are Open-120

MPI, LAM/MPI or MPICH, which support the Message Passing Interface

(MPI) standard. These libraries are usually optimised for the specific net-

work interfaces (e.g. SCI, Myrinet, etc.).

(vi) Applications. These are the user applications executed in the computer

cluster.125

The main interface employed by the users of the cluster is an interactive ses-

sion to the front-end node in order to submit jobs to be executed on the working

7

nodes [14]. Indeed, computer clusters used to be huge physical infrastructures,

but advances in virtualization technologies and Cloud computing paved the way

for Virtual Clusters (VCs) to appear. A VC is comprised of VMs and a virtual130

networking environment. The other components in a VC are the very same that

those used in the physical cluster. These VCs can be deployed in on-premises

infrastructures or in commercial public Clouds.

A VC relies on VMs even if they are not used (i.e. they are idle). These

idle virtual working nodes are a problem in a Cloud environment because (a) in135

case the cluster is deployed in an on-premises infrastructure, other users cannot

take advantage from the unused resources allocated to the VC, or (b) in case

the cluster is deployed in a public Cloud, the unused resources result in an

economic cost for the user. An Elastic Virtual Cluster (EVC) avoids wasting

either resources or money, by destroying the idle working nodes and deploying140

them again when they are needed. In order to implement an EVC, an elasticity

manager is required to take care of creating or destroying the working nodes,

depending on the workload.

The work described in this paper is a step forward on computer cluster

virtualization, that builds on container-based virtualization to reduce the per-145

formance penalty introduced by VMs. The goal for a container-based EVC is

to provide the users with computer clusters to be used as if they were physical

computing clusters, with the added value of using containers instead of VMs.

Therefore, the requirements for the container-based EVC is to preserve the very

same environment and usage patters that are commonly used in this computing150

platforms, i.e. the software stack: the OS, the cluster middleware, the parallel

environments and the applications, as shown in Figure 2.

The next section includes a review of related works about the different tech-

nologies that lie within the scope of this work.

8

Container technology

Container Orchestration Platform

Container

Working node

LRMS Agent

Container

Working node

LRMS Agent

Container

Working node

LRMS Agent

Front-end node

Elasticity
Manager

LRMS

Container Container

Working node

LRMS Agent

Physical Infrastructure

SSH/Web Client

User/Admin

Launch jobs

Computer

Cluster

Figure 2: Generic architecture to deliver container-based virtual elastic computer clusters

deployed on a computing infrastructure managed by a Container Orchestration Platform.

2.1. Related work155

2.1.1. Containers

Container technologies have gained significant momentum in the last years,

introducing changes in the way applications are built, shipped, deployed, and

instantiated [15], [16]. There exists different software available to create Linux

containers, as is the case of Linux Containers (LXC) [17] and LXD [18], rkt160

[19], OpenVZ [20], Linux-VServer [21] and Docker [22]. In particular, Docker

turned containers into a mainstream technology, contributing: i) Docker Hub, a

global shared repository of Docker containers; ii) a procedure to create Docker

images out of Dockerfiles and iii) the usage of a layered file system that reduces

the footprint of Docker images. Docker containers use cgroups, a feature in the165

Linux kernel that allows to constrain the resources (e.g. CPU, memory and

network) consumed by a process together with namespaces to provide processes

with their own view of the system. In our case, the containers will correspond

to the working nodes that compose the VC.

2.1.2. Container Orchestration Platforms170

The ecosystem of applications around Docker has exploded in the last years

[23], with contributions in many areas such as Continuous Integration/Continuous

9

Delivery (CI/CD), application packaging and Container Orchestration Plat-

forms (COPs). Indeed, there are many applications to manage the execution of

containers across multiple hosts. For example, Kubernetes [24] is an open source175

orchestration system for Docker containers. It handles scheduling onto nodes

in a compute cluster and actively manages workloads to ensure that their state

matches the user’s declared intentions. The scheduling in Kubernetes is based in

Pods. These are groups of containers that are deployed and scheduled together.

Pods form the atomic unit of scheduling in Kubernetes, as opposed to single180

containers in other systems. Containers within a pod share an IP address, and

labels can be used to identify each group of containers. Apache Mesos [25] can

be used to deploy and manage applications inside containers in large-scale clus-

tered environments. The architecture of Mesos is designed to be high-available

and for that uses ZooKeeper. Mesos, in combination with a job system like185

Marathon [26] or Chronos [27], takes care of scheduling and running jobs and

tasks, that can be run in containers or directly in the nodes of the cluster. Fi-

nally, Docker Swarm [12] represents the native clustering approach proposed by

Docker, which “provides native clustering capabilities to turn a group of Docker

engines into a single, virtual Docker Engine”. This way, a container-based VC190

can be easily created on top of virtual or physical resources. The architecture

of Docker Swarm consists of hosts running a Swarm agent (working nodes) and

one host running a Swarm manager. The manager is responsible for the orches-

tration and scheduling of containers on the hosts. Moreover, Docker Swarm can

be run in a high-availability mode where either etcd, Consul or ZooKeeper is195

used to handle fail-over to a back-up manager. We opted for Docker Swarm due

to its easy integration with the Docker CLI (Command-Line Interface).

Notice that COPs are used to manage the execution of containers in a cluster.

The user describes the container, and the COP selects which of the physical

host is going to perform the execution of the container. Therefore, these tools200

represent for containers a similar concept than a LRMS (e.g. Torque, SLURM,

etc.) is for jobs in a computer cluster.

Notice that one could use the interfaces provided by a COP to directly deploy

10

containers that run their jobs on a set of computing resources. However, this

approach would be disruptive for traditional users of computer clusters since205

their usage patterns would significantly change. They would have to use client-

side tools to interact with such COPs and deal with data staging in the COP,

instead of performing an interactive session via SSH to the cluster. Instead, the

clusters deployed via EC4Docker maintain the very same user experience and

interfaces exposed by traditional computer clusters (e.g. SSH-based access to210

the front-end node).

2.1.3. Reducing overhead of VMs using Containers

There are studies in the literature that analyse the overhead of containers

for the execution of applications. In [10], the authors explore the performance of

traditional VM deployments and contrast them with the use of Linux containers215

(using Docker). Several benchmarks are used to demonstrate that containers

result in equal or better performance than VMs in terms of CPU, memory and

storage. The study covered in [28], analyzed the performance of three well known

open-source tools (KVM, OpenVZ, and Xen) in the context of HPC. The results

showed that the solution that offers near native CPU and I/O performance was220

OpenVZ. Other works in the literature have also analyzed the performance of

containers to execute scientific applications and workflows, such as [29] and [30].

Skyport [31] utilizes Docker containers to execute scientific workflows instead

of VMs, reducing the overhead caused by VM virtualization. Also, analysis

of the requirements of the applications to be executed in containers have been225

performed [32]. Because container-based virtualization works at the operating

system level, all instances (containers) share the same operational system ker-

nel. That is why container-based virtualization has a weaker isolation when

compared to hypervisor-based virtualization [33]. In order to guarantee the re-

source isolation between the host system and the containers running on, such a230

system implements kernel namespaces. However, using containers for security

isolation might not be a good idea [34]. The only way to have real isolation

with Docker is to either run one container per host, or one container per VM,

11

at the expense of a performance overhead. Nevertheless, for security reasons, it

might be worth sacrificing the performance of a pure-container deployment by235

introducing a VM to obtain true isolation.

Containers can run on VMs too, although such double virtualization imposes

performance overheads. In [35] authors investigate container-based technology

as an efficient virtualization technology for running high performance scientific

applications. They used Docker containers and VMs created using OpenStack to240

execute a molecular modeling simulation software. Results show that container-

based systems are more efficient in reducing the overall execution times for HPC

applications, because they can be deployed in a remarkable minor time and have

better memory management for multiple containers running in parallel.

2.1.4. Virtual computer Clusters245

Concerning the use of VC, several well-known tools already exist in the lit-

erature to deploy them, such as StarCluster [36], Elasticluster [37] and EC3 [9],

but all of them are based on the deployment of VMs. Concerning the creation

of VCs based on containers, studies like [38] analyzed and compared some of

the container technologies available to the community (Linux-VServer, OpenVZ250

and LXC) from the point of view of MapReduce workloads, executing several

benchmarks to test their performance and manageability. The results show

that container-based systems reached near-native performance though LXC of-

fers the best relationship of performance and isolation. The study covered in

[39] present the results of deploying Docker containers in a cluster environment255

when compared to the KVM hypervisor and an evaluation of its suitability as a

runtime for high performance parallel execution. The results showed that con-

tainers can be used to tailor the runtime environment for an MPI application

without compromising performance, and provide better Quality of Service for

users of scientific computing. The developers of a Linux-VServer address in [40]260

a container-based cluster management platform in which Docker and HTCon-

dor work together to execute scientific workflows. The results obtained from

executions of a Monte-Carlo simulation showed that Docker had a near native

12

performance comparing with a hypervisor-based virtualization solution.

To our knowledge, there are no works in the literature that feature the265

adoption of Docker containers to create VCs that provide users with the very

same execution environment (e.g. LRMS, client tools) typically available in

both physical clusters and virtual clusters of VMs. This pioneer approach allows

users to access well-known computing facilities, i.e. clusters of PCs, on top of

the lightweight virtualisation provided by containers in order to take profit from270

enhanced performance and fast elasticity.

3. Elastic Cluster for Docker (EC4Docker)

EC4Docker is an open-source tool that deploys Docker container-based Vir-

tual Elastic computer Clusters (CVEC). The cluster delivered by EC4Docker

consists of a Docker container that acts as the front-end node of the cluster,275

and a set of containers that act as the working nodes. The front-end container

behaves as a regular front-end in a cluster: it is accesible by SSH, has installed

a LRMS such as Torque or SLURM, and it shares its file system to the working

nodes using NFS (Network File System). The working nodes of the EC4Docker

cluster are also containers that behave like regular working nodes in a clus-280

ter: they are accesible from the front-end using password-less SSH, they are

integrated in the LRMS, and they mount the shared file system.

The novelty of EC4Docker is that the front-end of the cluster is able to cre-

ate and to destroy the internal nodes depending on the workload. This ability

is possible due to: i) the integration of the CLUES9 [41] elasticity manager that285

decides when to power on or off the internal nodes and ii) a plugin for CLUES

that has been developed for EC4Docker, that makes it possible to translate the

commands to power on and off of the internal nodes into the proper Docker

instructions that create and destroy Docker containers. This plugin takes ad-

vantage from the ability of Docker to be used remotely by exposing its API290

9CLUES: https://github.com/grycap/clues

13

https://github.com/grycap/clues

through a standard TCP/IP socket.

The concept of a container-based cluster as-is may be useful for prototyping,

as the containers are conceived to be ran in a specific host. However, in the

case of EC4Docker, it is integrated with Docker Swarm, which behaves as a

scheduler that manages a set of Docker hosts as a single entity. It works together295

with a discovery service, such as Consul10, that provides high availability to

the underlying Docker Swarm cluster. Using Docker Swarm, when a Docker

container is created, it is deployed in any of the Docker hosts managed by

the Swarm. Using this combination of EC4Docker and Docker Swarm, it is

possible to deploy the containers that build the CVEC across multiple hosts300

which, by the way, can be either physical or VMs. It is important to point that

other COPs could be employed instead of Docker Swarm, such as Kubernetes

or Apache Mesos as well as managed services for the deployment of containers

such as Amazon EC2 Container Service11.

3.1. Features of the Container-based Virtual Elastic Computer Cluster305

As stated earlier, using EC4Docker, the users are delivered a computer clus-

ter with the tools that they typically use, and they do not need to change the

way of interacting with the cluster. They access the cluster using SSH, where

they find the LRMS to which jobs can be submitted as usual. The LRMS is not

aware of any container and the applications require no modifications.310

However, even experienced users in traditional computing clusters can ben-

efit from the CVEC, because these are useful to create the specific execution

environment for their applications. Docker containers are commonly employed

to ease the distribution of applications: using Dockerfiles in Docker, users can

create the container images that include their application along with the re-315

quired libraries, the most appropriate OS distribution, etc. Starting from that

Docker image, the administrator will include the EC4Docker Dockerfiles that

10Consul: https://www.consul.io
11Amazon EC2 Container Service: https://aws.amazon.com/es/ecs/

14

https://www.consul.io
https://aws.amazon.com/es/ecs/

will create the EC4Docker CVEC that will be delivered to the user.

Using this approach, although the underlying infrastructure is shared by all

the CVEC, different configurations can be employed. For example, a cluster320

based on Ubuntu 16.04 and the Torque LRMS can coexist and share the same

underlying computational resources with a Scientific Linux cluster whose jobs

are scheduled by SLURM. It is important to point out that this feature can be

very beneficial for the execution of software applications that are incompatible

with each other, without needing to physically isolate the resources. Therefore,325

the bare-metal physical nodes are shared by all the clusters deployed in the

infrastructure, where the container-based working nodes will be deployed to

execute the jobs of each cluster.

EC4Docker is not only useful for CPU-oriented applications. In case the

applications require access to specific devices, such as GPGPUs, it is possi-330

ble to instruct EC4Docker to allow the Docker containers to access these de-

vices. On the one hand, in the case of homogeneous configurations where all the

physical nodes have a GPGPU, EC4Docker can be instructed to automatically

mount that device inside the container to expose it to applications. In this case,

EC4Docker will use the Docker mechanisms to enable the applications to use335

the GPGPUs available in the physical hosts. For this, the container has to sup-

port the specific libraries and drivers required to use the GPGPU. On the other

hand, in the case where only a subset of the physical nodes have a GPGPU,

rCUDA [42] can be used in order to turn those nodes into servers that provide

GPU services to the container nodes that actually execute the applications. The340

applications do not require source code modification since the rCUDA runtime

takes care of the details of routing requests to the specific hardware device.

3.2. Behaviour of a container-based virtual elastic cluster

Figure 3 describes the designed architecture employed to deploy CVECs on

top of a physical infrastructure, as an instantiation of the general architecture345

shown in 2. Therefore, the workflow to create the CVEC follows the next steps:

1. Preparation of the Docker images. The preparation of a CVEC starts with

15

the creation of the Docker images that will be used to create the front-

end and the working nodes, and its instrumentation using the EC4Docker

Dockerfile fragments.350

2. Creation of a network for the container. The CVEC needs a network for

containers to communicate. In case of using Docker Swarm, an overlay

network that spans across the different sites is required. This overlay

network enables different hosts to become part of a swarm and assign

non-overlapping IP addresses to their containers to enable communication355

among them. There is the option of using a single overlay network shared

among all the containers from all the CVECs, or to create per-cluster

networks in order to isolate the different CVEC. The overlay network

is used to virtualize the interconnection network for the creation of the

CVEC.360

3. Creation of the CVEC. The creation of the cluster consists of deploying the

container that will act as the front-end of the CVEC. Since we want the

computer clusters to span across multiple hosts, the request to create the

container will be submitted to the Docker swarm front-end. A container

will be instantiated out of a Docker image created from the EC4Docker365

Dockerfiles, which include an installation of CLUES and the LRMS chosen

by the end-user (SLURM or Torque). The containers are used to virtualize

the working nodes for the creation of the CVEC.

4. Enable external access to the cluster. In order to access the cluster using

SSH, the IP address of the front-end node of the CVEC is required. How-370

ever, the IP addresses in the Docker swarm cluster will be private to the

overlay network for the cluster and, therefore, they are not accesible from

outside networks. To solve this problem, we use IPFloater12, a tool able

to redirect the traffic from a public IP to a private IP inside a local area

network (LAN), thus, simulating the floating IPs offered by OpenStack375

[43].

12IPFloater is available at https://github.com/grycap/ipfloater

16

https://github.com/grycap/ipfloater

Docker Hub

SSH/Web Client

User’s side

Main node (Public IP)

Physical Infrastructure

Connect and launch jobs

Docker Swarm
Manager

Docker Host

Consul

Working node

Docker Host

Working node

Docker Host

Docker Swarm NodeDocker Swarm Node

EC4Docker WN

IPFloater

EC4Docker WN

EC4Docker WN
P

EC4Docker front-end

CLUES LRMS

Admin’s side

EC4Docker
client

Overlay network

Create Docker
images

1

2

3

4

2

4

5

Figure 3: Architecture of a container-based virtual elastic cluster deployed on top of a

physical infrastructure and managed with Docker Swarm and EC4Docker.

Once the workflow has finished, the user is provided with the IP address of

the front-end node of the CVEC. Then, the end users can connect to the cluster

via SSH or by means of a web browser (in case of accessing a web application

like the Galaxy Portal [44]) and submit their jobs to the selected LRMS as they380

would do with a physical cluster.

The CVEC deployed using EC4Docker dynamically manages the size of the

cluster, with the novelty of running the jobs that are going to be executed in the

container-based working nodes, instead of using the traditional VM-based work-

ing nodes. This way, jobs will enjoy the advantages of light-weight virtualization385

with a reduced overhead in CPU and memory.

The self-managed elasticity is carried out by CLUES (step 5 in Figure 3),

that forms part of the container image used by EC4Docker to deploy the front-

end of the cluster. CLUES running inside the EC4Docker container detects

job submissions to the LRMS in the container-based cluster. Then, if there390

are no available nodes to satisfy the requirements of the job, it requests an

EC4Docker node container to the Docker Swarm Manager. This container will

be deployed by Docker Swarm in one of the bare-metal nodes that compose the

infrastructure, and will act as a container-based working node of the computer

cluster, automatically integrated in the LRMS. The EC4Docker node container395

will be also connected to the overlay network specifically created for the CVEC,

17

interconnecting the new container with the rest of the CVEC.

As we have mentioned, the scheduling of the location of the containers that

represent the cluster is carried out by Docker Swarm. Docker Swarm works with

rankings to decide where to execute the container. The node with the highest400

ranking is the one that is chosen to run the new container. The policies offered

by Docker Swarm are: spread (default), binpack and random. The first two

policies care about the number of containers deployed in the node and the CPU

and RAM free for each node, while the latter policy (random) simply returns

a random value for each node. Through the spread policy, the node chosen to405

host the new container depends on the number of containers running on the

node, regardless of their status. With the same resources (CPU and RAM), the

node that has fewer containers will run the new container. The binpack policy,

on the other hand, tries to pack the containers in a node, trying to leave free

enough space in other nodes to hold containers with higher requirements. Thus,410

it avoids fragmentation. It is noteworthy that, for all the policies, if all nodes

get the same ranking, the election is performed randomly.

3.3. Elasticity Rules

As stated earlier, elasticity in EC4Docker is managed by CLUES. This soft-

ware implements different policies that aim at balancing the trade-off that arises415

when trying to minimize the waiting time for the jobs (which involves a larger

number of available nodes) and the minimization of the infrastructure cost,

which involves a reduced number of nodes, which generate a cost in electricity

(for physical infrastructures) or in resources (for public cloud providers). In

the context of containers, the creation of a container results in less available420

resources for the subsequent containers deployed on the same host. Therefore,

it is important to submit the containers only when they are really necessary.

The policies implemented by CLUES can be divided in two groups: the

policies used to decide when to increase the capacity of the cluster (scale-out)

and those used to decide when to decrease the size of the cluster (scale-in).425

Regarding the scale-out policies, CLUES can interact with the LRMS at two

18

levels. On the one hand, it intercepts the submitted jobs before they reach the

LRMS. On the other hand, CLUES also monitors the queued jobs at the LRMS

to check if these jobs require additional nodes to be added to the cluster. The

policies available are:430

• 1:1 start. For each job launched, if no working nodes are available for its

execution, then a new node is deployed. Therefore, the jobs will wait for

the deployment of the node before they start their execution.

• Group-based start. Every time a new node is required, a group of them

are started. This policy assumes a workload model in which as soon as a435

job reaches the LRMS, there is a high probability that other subsequent

jobs will be submitted in a short period of time. By over-provisioning a

larger number of nodes, the waiting time of the subsequent jobs will be

reduced.

In order to decide when to shutdown a node (scale-in policies), the strategy440

is to remove a node from the computer cluster when it has been idle for a

specified amount of time. The selection of this time depends on the workload

of the computer cluster and it is important to achieve a good trade-off between

the used resources and the waiting time of the jobs. These are the available

strategies:445

• Queued jobs. Idle working nodes are terminated when there are no

pending jobs in the LRMS.

• Delayed shutdown. Idle working nodes are terminated after a certain

amount of configurable time. This is of interest when using public Clouds

that bill by the hour, where idle nodes are kept available for job executions450

before the hour expires, even if no jobs are available to be executed at the

moment.

• Keeping some nodes always active. The computer cluster will have

a set of nodes deployed waiting for jobs. This way, the computer cluster

tries to prevent incoming jobs from waiting while nodes are started.455

19

4. Case study

In order to assess the effectiveness of the self-managed CVECs deployed with

EC4Docker, we present a case study based on a bioinformatics community of

users that need to execute several scientific tasks for their research. In partic-

ular, the application used is MrBayes [45] (Bayesian Inference of Phylogeny).460

MrBayes is a program for Bayesian inference and model choice across a wide

range of phylogenetic and evolutionary models. MrBayes uses Markov Chain

Monte Carlo (MCMC) methods to estimate the posterior distribution of model

parameters. MrBayes has several dependencies in order to work properly, like

an MPI implementation or the Beagle library. For this, we installed, among oth-465

ers, OpenMPI together with the gcc compiler. The case study also analyzes the

performance of containers comparing to VMs, trying to prove the advantages of

light-weight virtualization in contrast with traditional virtualization based on

VMs.

The overall scenario consists of three different executions of the same job470

pattern submission (represented in Figure 4 (a)) on two different computing

scenarios, but on top of the very same physical resources. On the one hand,

scenario a) involves a container-based virtual computer cluster managed by

EC4Docker. All the containers submitted during this execution were limited

to 1 CPU and 1 GiB of RAM. On the other hand, scenarios b) and c) involve475

a VM-based virtual computer cluster deployed on an OpenNebula on-premises

Cloud by means of EC3. Each one is configured with different idle times to

trigger the scale-in policy: scenario b) is configured with a maximum value for

idle nodes of 1800 seconds (30 min.), and scenario c) will power off nodes that

were idle for more than 600 seconds (10 min.). Each VM deployed has 1 CPU480

and 1 GiB of RAM. The VMI employed is based on Ubuntu 14.04 LTS. In this

case, two different executions for each configuration were carried out, one in

which the software is dynamically deployed on vanilla VMs and the other in

which the software (SLURM, OpenMPI, NFS, MrBayes and its dependencies)

is pre-installed in the VMI, thus reducing the time for contextualization, i.e.,485

20

installation and configuration of the software applications. This last option was

the one chosen to compare with the execution of the container-based cluster,

since Docker containers are created out of pre-configured Docker images.

The physical infrastructure used to deploy the case study is the same for

both scenarios for the sake of a fair comparison. It comprised eight physical490

nodes with a total of 224 cores (28 cores per node), 512 GB of RAM (64 GB of

RAM per node) and a shared storage system of 16 TB. For the scenario a) we

deployed Docker Swarm and the main node includes the IPFloater tool in order

to associate a public IP to each container-based front-end. In scenarios b) and

c), an OpenNebula 4.8.0 on-premises Cloud deployment is used.495

The limit size of the cluster was fixed to 6 nodes in all scenarios. A total of

15 Bayesian tasks with an average duration of 17.5 minutes is executed for each

test. The dataset employed is cynmix.nex [46], a partitioned dataset consisting

of data from four genes and morphology for 30 taxa of gall wasps and outgroups.

The number of generations has been fixed to 170.000. The following subsections500

describe and analyze the obtained results for this case study.

4.1. Results

First, we analyzed the time differences in the deployment and contextual-

ization processes for both containers and VMs used in our case study. Table 1

shows the average times for the deployment, configuration and execution times505

for the three scenarios. As we expected, the total average times for both the

front-end (FE) and working nodes (WN) were considerably higher with VMs,

even if we use a preconfigured VMI with SLURM, NFS, OpenMPI and Mr-

Bayes dependencies previously installed. In the last case, it was still necessary

to configure the SLURM configuration files, NFS system, and the application510

MrBayes, that takes an average time of [335-340] seconds in the case of the front-

end and [284-285] seconds for the working nodes. Even so, the time consumption

during the contextualization process was reduced significantly by starting from

a preconfigured VMI (about 65%). However, preparing a customized VMI is

not a trivial task so non-experienced users would refrain from using EC3 if they515

21

0 1000 2000 3000 4000 5000 6000 7000 8000

0

1

2

3

4

5

6

7

 Jobs

J
o

b
s

time (s)

(a) Job pattern submission of the case study.

0 1000 2000 3000 4000 5000 6000 7000 8000

0

1

2

3

4

5

6

7

 Size of the cluster

 Used Nodes

 Jobs

N
o

d
e

s

time (s)

EC3

Tiempo medio de espera

100.492308 s

(Este tiempo es calculando que si el nodo esta encendido y libre solo tarda 5 sg en asignarse y
currar)

Tiempo de trabajo

1083.1 s

EC4-Docker

Tiempo medio de espera

15.25 s

Tiempo de trabajo

994.3 s

(b) Execution on VMs (EC3 with idle time

for scale-in set to 30 min).

0 1000 2000 3000 4000 5000 6000 7000 8000

0

1

2

3

4

5

6

7

N
o

d
e

s

time (s)

 Size of the cluster

 Used Nodes

 Jobs

(c) Execution on containers (EC4Docker).

0 1000 2000 3000 4000 5000 6000 7000 8000

0

1

2

3

4

5

6

7

 Size of the cluster

 Used Nodes

 Jobs

N
o

d
e

s

time (s)

Nuevo tiempo de espera

208.933333sg

(d) Execution on VMs (EC3 with idle time

for scale-in set to 10 min).

Figure 4: Execution results for both container-based cluster (a) and VM-based cluster (b)

where light blue represents the number of virtual nodes deployed, dark blue depicts used

nodes executing jobs and the red dashed line indicates the job pattern submission. The upper

grey dotted line represents the limit size of the cluster, fixed to six nodes.

22

are required to prepare their own VMIs.

In contrast, creating a Docker container image from a Dockerfile is a much

easier process than building a VMI. It is necessary to take into account that

the container times shown in the table do not consider the time required to

generate the container image from the Dockerfile, since this task only needs520

to be performed once by the administrator or the user. It is worth to point

out that the time needed to create the container image is equivalent to the

contextualization time employed by a non-preconfigured VM. Moreover, the

time to pull the container images if they are stored in Docker Hub has not been

included in the table, as this is performed only once, but it took an average of525

150 s. in our tests.

Scen. a) Scen. b) Scen. c)

Prec. Non prec. Prec. Non prec.

Deployment avg. time 2 35 35 35 35

Active SSH avg. time 1 30 30 30 30

Total avg. time machine ready 3 65 65 65 65

FE contextualization avg. time 0 340 830 335 853

Total avg. time FE ready 3 405 895 400 918

WN contextualization avg. time 0 219 702 220 684

Total avg. time WN ready in LRMS 16 284 767 285 749

Job avg. waiting time 15.25 101 305 209 449

Job avg. execution time 994 1076 1083 1064 1128

Table 1: Time analysis, in seconds, for the different phases of the scenarios. Scenario a) refers

to the container-based execution, scenario b) refers to the VM-based execution with an idle

time configuration of 30 minutes and scenario c) refers to the VM-based execution with an

idle time configuration of 10 minutes. In b) and c) the tests are carried out with preconfigured

Virtual Machines Images (VMIs) (Prec.) and without preconfigured VMIs (Non prec.).

Second, we present in Figure 4 the results obtained from the execution of

the job pattern submission show in Figure 4(a). Scenario a) is represented in

Figure 4(c), scenario b) is shown in Figure 4(b)) and scenario c) is addressed

in Figure 4(d). For the three executions, we have used conservative elasticity530

23

policies to ensure the minimum costs for the infrastructure in terms of energy

and resources consumption. Thus, CLUES has been configured to power on

nodes according to the 1:1 start strategy, i.e. when a job arrives to the LRMS

and there is no available node to execute it, a virtual node is deployed. On

the other hand, the power off policy selected was delayed shutdown, destroying535

nodes when they are idle for 2 minutes, for the scenario a) execution, 30 minutes

for the scenario b) execution and 10 minutes for the scenario c). The differences

in time for powering off a node are based on the time that a new virtual node

needs to be ready for task execution (16 seconds in case of a container node

and 285 seconds in average for a VM node). Scenarios b) and c) involve the540

same execution but the variations in the idle time to trigger the scale-in policy

introduced differences in the behaviour of the cluster, as it can be appreciated

in the figures.

Based on the results represented in Figure 4 we can highlight that the

container-based cluster deployed in scenario a) fits almost perfectly to the work-545

load of the computing cluster. Indeed, containers only take a few seconds to be

ready to execute the jobs of the cluster since the contextualization process is

not required, and starting a container is faster than booting a VM. Therefore,

the average time that a job is queued up at the LRMS, i.e. in PENDING state,

does not exceed 15 seconds.550

In contrast, in scenarios b) and c) we can easily denote the differences de-

ploying a node, that takes an average of 285 seconds to be ready and detected

by the LRMS as an eligible node to execute jobs. This situation is represented

in Figure 4(b),(d) in light blue, and covers the time needed to deploy a new

VM, obtain SSH access to it and contextualize the job execution environment.555

For example, in Figure 4(b), for the first job this requires the initial 280 seconds

of the execution. This situation is repeated for the subsequent jobs that arrive

to the LRMS, when no available nodes are in the cluster. However, once the

cluster is fully deployed, new jobs do not need to wait for additional nodes to

be deployed. Instead, they just wait for other tasks to finish. This fact helps560

reducing the total average time of jobs waiting in the LRMS queue, which is

24

101 seconds. However, the resources are not properly exploited, because most

of the nodes were idle a long period of time.

This situation can be better addressed by reducing the idle time allowed for

nodes as it is done in scenario c). In this case, the available resources are better565

used, but the total time of execution increases (6989 seconds) like the job average

waiting time (209 seconds) in contrast with the other two scenarios a) and b).

However, despite the differences in the time required to provision new nodes

in all scenarios, the total execution time in scenarios a) and b) is very similar.

Container-based execution (scenario a)), requires 6579 seconds to complete all570

the submitted jobs while VM-based execution (scenario b)) takes 6661 seconds.

Note that, on the one hand, scenario b) is significantly impacted by requiring

to deploy additional nodes (VMs) at the beginning but the deployment and

configuration of the nodes is produced concurrently. However, once the new

nodes are up and running, jobs can be processed on a first-come-first-served575

basis. On the other hand, scenario c) is also impacted by the initial deployment

of new VMs. However, the infrastructure does not maintain the nodes active

and more time dedicated to deploy nodes os needed during the execution. These

facts reveal that in a VM-based execution, increasing the time that nodes are

idle, reduces the total execution time (no extra time is dedicated to deploy nodes580

to scale out) at the expense of wasting computational resources. Also, if the

idle time to trigger a scale in operation is reduced, the total time of execution

increases (due to the extra time required to provision additional nodes, which

increases the job waiting time) but the computational resources are better used.

It is of special relevance the differences in the average time for a single job585

execution, that is an 8.2% faster in the containers deployed in the scenario

(a) (994 seconds), than in VMs ([1064-1128] seconds). This fact confirms the

higher overheads in CPU and memory that VMs suffer, comparing with the

light-weight virtualization introduced by Docker containers.

Figure 4 does not represent the time required to deploy and configure the590

front-end of the cluster. This data is presented in Table 1, where for a container-

based cluster this task only requires deploying a container in Docker Swarm and

25

requesting a redirection to IPFloater (3 seconds). Meanwhile, for a VM-based

cluster, this task involves the creation of a new VM in OpenNebula, wait until

the SSH of the VM is active and complete the contextualization process ([895-595

918] seconds in average for a non-preconfigured VMI and [335-340] seconds for

a preconfigured VMI).

All the analyzed results suggest that containers are a proper solution to

execute groups of short HTC (High Throughput Computing) tasks, like Bag of

Tasks (BoT) applications. Indeed, for short tasks the required deployment time600

of a VM-based working node clearly outweighs the execution time of the tasks.

HPC tasks can also benefit from the reduced overheads that arise when using

containers. In contrast, for longer tasks, contextualization time may become

negligible with respect to the total execution time and, therefore, these tasks

can take advantage of the unlimited resources offered by Cloud Computing605

platforms in the shape of VMs.

4.2. Discussion

As it occurs in physical clusters, in order to use the virtual cluster it is rec-

ommended to introduce some other tools that enhance the features of the cluster

and also take benefit from virtualization techniques. One of the most noticeable610

examples is the mechanisms that ensure the availability and the reliability of

the cluster. One benefit of virtual clusters with respect to physical clusters is

that virtualization facilitates the relocation of nodes. Indeed, incidents such as

power outages or network failures can introduce a downtime for users of phys-

ical clusters. In the case of virtual clusters, any of the computing nodes (i.e.615

front-end or working nodes) can be hosted in another virtualization infrastruc-

ture, thus maintaining the service to users. Concerning high availability, this

can be achieved in EC4Docker by deploying multiple containers configured to

act as front-ends and to configure high availability middleware, such as a load

balancer that supports failover.620

It is important to point out that container-based elastic clusters improve the

overall performance compared to VM-based elastic clusters. As demonstrated

26

by the case study, the reduced footprint of the container images with respect to

the virtual machine images enhances the ability of the elastic cluster to cushion

the workload peaks. Booting the container-based virtual working nodes takes625

significant less time than the VM-based ones. Therefore, the average waiting

time for a job to be running is considerably reduced.

Regarding the performance of the scientific computing clusters, containers

executed in one host take profit from the fact that the computational resources

are not allocated to a specific container. Instead, the default behaviour for the630

containers is to share the available resources, managed by the host OS. That

means that if one container is executed in an 8-core host, the application running

in the container will be able to use the 8 cores and the whole memory if there are

no other competing containers. However, a VM deployed with a fixed number

of cores and memory, will only be able to use that number of cores and amount635

of memory even if the rest of the physical host is idle.

5. Conclusions and Future Work

This paper has analyzed the feasibility of using Docker containers to support

the creation of virtual elastic computer clusters for the execution of scientific

applications. These clusters maintain the very same interfaces for end users640

but benefit from the reduced overheads introduced by containers. For this, we

introduced the open-source EC4Docker tool to support the deployment of such

clusters on a Container Orchestration Platform managed by Docker Swarm.

We have demonstrated the feasibility of adopting containers to execute sci-

entific applications, introducing two main advantages when compared to tradi-645

tional VMs: i) the low deploying times for new working nodes, and ii) potential

reductions in the overhead caused by VMs in CPU, memory and storage, offer-

ing near-native performance. Moreover, from the discussed case study, we can

conclude that container-based virtual clusters are an appropriate solution for

the execution of short HTC tasks.650

Future work involves the automatization of the generation of the container

27

images that EC4Docker uses to deploy the cluster. Currently, the administrator

or the users need to generate their own images including the Dockerfile provided

with EC4Docker in order to deploy their own applications in the container

cluster environment. A service will be implemented to facilitate this process for655

non-experienced users. Finally, a thorough scalability testing will be carried out

to quantify the benefits of the container technology versus virtual machines for

the processing of jobs on scientific computing virtual clusters.

Acknowledgement

This work has been developed under the support of the program “Ayudas660

para la contratación de personal investigador en formación de carácter predoc-

toral, programa VALi+d”, grant number ACIF/2013/003, from the Conselleria

d’Educació of the Generalitat Valenciana. The authors wish to thank the finan-

cial support received form The Spanish Ministry of Economy and Competitive-

ness to develop the project “CLUVIEM”, with reference TIN2013-44390-R.665

References

[1] F. Vella, R. M. Cefal, A. Costantini, O. Gervasi, C. Tanci, GPU Comput-

ing in EGI Environment Using a Cloud Approach, in: 2011 International

Conference on Computational Science and Its Applications, IEEE, 2011,

pp. 150–155. doi:10.1109/ICCSA.2011.61.670

URL http://ieeexplore.ieee.org/document/5959549/

[2] S. Camarasu-Pop, T. Glatard, H. Benoit-Cattin, Simulating Application

Workflows and Services Deployed on the European Grid Infrastructure, in:

2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and

Grid Computing, IEEE, 2013, pp. 18–25. doi:10.1109/CCGrid.2013.13.675

URL http://ieeexplore.ieee.org/document/6546054/

[3] P. Mell, T. Grance, The NIST Definition of Cloud Computing. NIST

Special Publication 800-145 (Final), Tech. rep. (2011).

28

http://ieeexplore.ieee.org/document/5959549/
http://ieeexplore.ieee.org/document/5959549/
http://ieeexplore.ieee.org/document/5959549/
http://dx.doi.org/10.1109/ICCSA.2011.61
http://ieeexplore.ieee.org/document/5959549/
http://ieeexplore.ieee.org/document/6546054/
http://ieeexplore.ieee.org/document/6546054/
http://ieeexplore.ieee.org/document/6546054/
http://dx.doi.org/10.1109/CCGrid.2013.13
http://ieeexplore.ieee.org/document/6546054/
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

URL http://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-145.pdf680

[4] AdaptiveComputing, Torque resource manager, http://www.

adaptivecomputing.com/products/open-source/torque/, [Online;

accessed 12-January-2015].

[5] M. A. Jette, A. B. Yoo, M. Grondona, Slurm: Simple linux utility for re-

source management, in: In Lecture Notes in Computer Science: Proceed-685

ings of Job Scheduling Strategies for Parallel Processing (JSSPP) 2003,

Springer-Verlag, 2002, pp. 44–60.

[6] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice:

the condor experience., Concurrency - Practice and Experience 17 (2-4)

(2005) 323–356.690

[7] S. U. Ahn, S. O. Park, J. Kim, Profiling Job Activities of Batch Systems in

the Data Center, in: 2016 International Conference on Platform Technology

and Service (PlatCon), IEEE, 2016, pp. 1–5. doi:10.1109/PlatCon.2016.

7456818.

URL http://ieeexplore.ieee.org/document/7456818/695

[8] M. Caballer, C. de Alfonso, F. Alvarruiz, G. Moltó, EC3: Elastic Cloud

Computing Cluster, Journal of Computer and System Sciences 79 (2013)

1341–1351. doi:10.1016/j.jcss.2013.06.005.

URL http://authors.elsevier.com/sd/article/S0022000013001141

[9] A. Calatrava, E. Romero, G. Moltó, M. Caballer, J. M. Alonso,700

Self-managed cost-efficient virtual elastic clusters on hybrid Cloud in-

frastructures, Future Generation Computer Systems 61 (2016) 13–25.

doi:10.1016/j.future.2016.01.018.

URL http://authors.elsevier.com/sd/article/

S0167739X16300024http://linkinghub.elsevier.com/retrieve/705

pii/S0167739X16300024

29

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
http://ieeexplore.ieee.org/document/7456818/
http://ieeexplore.ieee.org/document/7456818/
http://ieeexplore.ieee.org/document/7456818/
http://dx.doi.org/10.1109/PlatCon.2016.7456818
http://dx.doi.org/10.1109/PlatCon.2016.7456818
http://dx.doi.org/10.1109/PlatCon.2016.7456818
http://ieeexplore.ieee.org/document/7456818/
http://authors.elsevier.com/sd/article/S0022000013001141
http://authors.elsevier.com/sd/article/S0022000013001141
http://authors.elsevier.com/sd/article/S0022000013001141
http://dx.doi.org/10.1016/j.jcss.2013.06.005
http://authors.elsevier.com/sd/article/S0022000013001141
http://authors.elsevier.com/sd/article/S0167739X16300024 http://linkinghub.elsevier.com/retrieve/pii/S0167739X16300024
http://authors.elsevier.com/sd/article/S0167739X16300024 http://linkinghub.elsevier.com/retrieve/pii/S0167739X16300024
http://authors.elsevier.com/sd/article/S0167739X16300024 http://linkinghub.elsevier.com/retrieve/pii/S0167739X16300024
http://dx.doi.org/10.1016/j.future.2016.01.018
http://authors.elsevier.com/sd/article/S0167739X16300024 http://linkinghub.elsevier.com/retrieve/pii/S0167739X16300024
http://authors.elsevier.com/sd/article/S0167739X16300024 http://linkinghub.elsevier.com/retrieve/pii/S0167739X16300024
http://authors.elsevier.com/sd/article/S0167739X16300024 http://linkinghub.elsevier.com/retrieve/pii/S0167739X16300024
http://authors.elsevier.com/sd/article/S0167739X16300024 http://linkinghub.elsevier.com/retrieve/pii/S0167739X16300024
http://authors.elsevier.com/sd/article/S0167739X16300024 http://linkinghub.elsevier.com/retrieve/pii/S0167739X16300024

[10] W. Felter, A. Ferreira, R. Rajamony, J. Rubio, An updated performance

comparison of virtual machines and linux containers, in: Performance Anal-

ysis of Systems and Software (ISPASS), 2015 IEEE International Sympo-

sium on, 2015, pp. 171–172. doi:10.1109/ISPASS.2015.7095802.710

[11] M. Scheepers, Virtualization and containerization of application infras-

tructure: A comparison, Vol. 21, University of Twente, 2014.

URL http://referaat.cs.utwente.nl/conference/21/paper/7449/

virtualization-and-containerization-of-application-infrastructure-a-comparison.

pdf715

[12] A. Luzzardi, V. Vieux, Swarm: a docker-native clustering system., https:

//docs.docker.com/swarm/, [Online; accessed 7-March-2016].

[13] R. Buyya, High Performance Cluster Computing: Architectures and Sys-

tems, Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.

[14] C. Prabhu, GRID an Cluster Computing, PHI Learning, 2008.720

URL https://books.google.es/books?id=evcgB7Qlix4C

[15] I. Melia, S. Puri, K. Owens, K. Thirumalai, S. Yellumahanti, L. Herrmann,

M. Coggin, J. Fernandes, K. Craven, D. Juengst, Linux containers: Why

theyre in your future and what has to happen first, Tech. rep., CISCO and

Redhat (September 2014).725

[16] C. Pahl, B. Lee, Containers and clusters for edge cloud architectures –

a technology review, in: Future Internet of Things and Cloud (FiCloud),

2015 3rd International Conference on, 2015, pp. 379–386. doi:10.1109/

FiCloud.2015.35.

[17] Linux containers, lxc, https://linuxcontainers.org/, [Online; accessed730

18-January-2016].

[18] Canonical, LXD (2016).

URL https://linuxcontainers.org/lxd/introduction/

30

http://dx.doi.org/10.1109/ISPASS.2015.7095802
http://referaat.cs.utwente.nl/conference/21/paper/7449/virtualization-and-containerization-of-application-infrastructure-a-comparison.pdf
http://referaat.cs.utwente.nl/conference/21/paper/7449/virtualization-and-containerization-of-application-infrastructure-a-comparison.pdf
http://referaat.cs.utwente.nl/conference/21/paper/7449/virtualization-and-containerization-of-application-infrastructure-a-comparison.pdf
http://referaat.cs.utwente.nl/conference/21/paper/7449/virtualization-and-containerization-of-application-infrastructure-a-comparison.pdf
http://referaat.cs.utwente.nl/conference/21/paper/7449/virtualization-and-containerization-of-application-infrastructure-a-comparison.pdf
http://referaat.cs.utwente.nl/conference/21/paper/7449/virtualization-and-containerization-of-application-infrastructure-a-comparison.pdf
http://referaat.cs.utwente.nl/conference/21/paper/7449/virtualization-and-containerization-of-application-infrastructure-a-comparison.pdf
http://referaat.cs.utwente.nl/conference/21/paper/7449/virtualization-and-containerization-of-application-infrastructure-a-comparison.pdf
https://docs.docker.com/swarm/
https://docs.docker.com/swarm/
https://docs.docker.com/swarm/
https://books.google.es/books?id=evcgB7Qlix4C
https://books.google.es/books?id=evcgB7Qlix4C
http://dx.doi.org/10.1109/FiCloud.2015.35
http://dx.doi.org/10.1109/FiCloud.2015.35
http://dx.doi.org/10.1109/FiCloud.2015.35
https://linuxcontainers.org/
https://linuxcontainers.org/lxd/introduction/
https://linuxcontainers.org/lxd/introduction/

[19] CoreOS, rkt (2016).

URL https://coreos.com/rkt/735

[20] Openvz, http://openvz.org/Main_Page, [Online; accessed 14-January-

2016].

[21] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, L. Peterson, Container-

based operating system virtualization: A scalable, high-performance alter-

native to hypervisors, SIGOPS Oper. Syst. Rev. 41 (3) (2007) 275–287.740

doi:10.1145/1272998.1273025.

URL http://doi.acm.org/10.1145/1272998.1273025

[22] Docker, https://www.docker.com/, [Online; accessed 18-January-2016].

[23] R. Peinl, F. Holzschuher, F. Pfitzer, Docker cluster management for the

cloud - survey results and own solution, Journal of Grid Computing (2016)745

1–18doi:10.1007/s10723-016-9366-y.

URL http://dx.doi.org/10.1007/s10723-016-9366-y

[24] Kubernetes, http://kubernetes.io/, [Online; accessed 7-March-2016].

[25] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,

S. Shenker, I. Stoica, Mesos: A platform for fine-grained resource sharing750

in the data center, in: Proceedings of the 8th USENIX Conference on

Networked Systems Design and Implementation, NSDI’11, USENIX Asso-

ciation, Berkeley, CA, USA, 2011, pp. 295–308.

URL http://dl.acm.org/citation.cfm?id=1972457.1972488

[26] Marathon, https://mesosphere.github.io/marathon/, [Online; ac-755

cessed 19-January-2016].

[27] Chronos, https://mesos.github.io/chronos/, [Online; accessed 19-

January-2016].

[28] N. Regola, J. C. Ducom, Recommendations for virtualization technologies

in high performance computing, in: Cloud Computing Technology and760

31

https://coreos.com/rkt/
https://coreos.com/rkt/
http://openvz.org/Main_Page
http://doi.acm.org/10.1145/1272998.1273025
http://doi.acm.org/10.1145/1272998.1273025
http://doi.acm.org/10.1145/1272998.1273025
http://doi.acm.org/10.1145/1272998.1273025
http://doi.acm.org/10.1145/1272998.1273025
http://dx.doi.org/10.1145/1272998.1273025
http://doi.acm.org/10.1145/1272998.1273025
https://www.docker.com/
http://dx.doi.org/10.1007/s10723-016-9366-y
http://dx.doi.org/10.1007/s10723-016-9366-y
http://dx.doi.org/10.1007/s10723-016-9366-y
http://dx.doi.org/10.1007/s10723-016-9366-y
http://dx.doi.org/10.1007/s10723-016-9366-y
http://kubernetes.io/
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dl.acm.org/citation.cfm?id=1972457.1972488
https://mesosphere.github.io/marathon/
https://mesos.github.io/chronos/

Science (CloudCom), 2010 IEEE Second International Conference on, 2010,

pp. 409–416. doi:10.1109/CloudCom.2010.71.

[29] D. Bernstein, Containers and cloud: From lxc to docker to kubernetes,

Cloud Computing, IEEE 1 (3) (2014) 81–84. doi:10.1109/MCC.2014.51.

[30] C. Zheng, D. Thain, Integrating containers into workflows: A case study765

using makeflow, work queue, and docker, in: Proceedings of the 8th In-

ternational Workshop on Virtualization Technologies in Distributed Com-

puting, VTDC ’15, ACM, New York, NY, USA, 2015, pp. 31–38. doi:

10.1145/2755979.2755984.

URL http://doi.acm.org/10.1145/2755979.2755984770

[31] W. Gerlach, W. Tang, K. Keegan, T. Harrison, A. Wilke, J. Bischof,

M. D’Souza, S. Devoid, D. Murphy-Olson, N. Desai, F. Meyer, Skyport:

Container-based execution environment management for multi-cloud sci-

entific workflows, in: Proceedings of the 5th International Workshop on

Data-Intensive Computing in the Clouds, DataCloud ’14, IEEE Press, Pis-775

cataway, NJ, USA, 2014, pp. 25–32. doi:10.1109/DataCloud.2014.6.

URL http://dx.doi.org/10.1109/DataCloud.2014.6

[32] A. Slominski, V. Muthusamy, R. Khalaf, Building a multi-tenant cloud

service from legacy code with docker containers., in: IC2E, IEEE, 2015,

pp. 394–396.780

[33] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, C. A. F.

De Rose, Performance evaluation of container-based virtualization for high

performance computing environments, in: Proceedings of the 2013 21st

Euromicro International Conference on Parallel, Distributed, and Network-

Based Processing, PDP ’13, IEEE Computer Society, Washington, DC,785

USA, 2013, pp. 233–240. doi:10.1109/PDP.2013.41.

URL http://dx.doi.org/10.1109/PDP.2013.41

[34] J. Petazzoni, Linux containers(lxc), docker, and

security, http://www.slideshare.net/jpetazzo/

32

http://dx.doi.org/10.1109/CloudCom.2010.71
http://dx.doi.org/10.1109/MCC.2014.51
http://doi.acm.org/10.1145/2755979.2755984
http://doi.acm.org/10.1145/2755979.2755984
http://doi.acm.org/10.1145/2755979.2755984
http://dx.doi.org/10.1145/2755979.2755984
http://dx.doi.org/10.1145/2755979.2755984
http://dx.doi.org/10.1145/2755979.2755984
http://doi.acm.org/10.1145/2755979.2755984
http://dx.doi.org/10.1109/DataCloud.2014.6
http://dx.doi.org/10.1109/DataCloud.2014.6
http://dx.doi.org/10.1109/DataCloud.2014.6
http://dx.doi.org/10.1109/DataCloud.2014.6
http://dx.doi.org/10.1109/DataCloud.2014.6
http://dx.doi.org/10.1109/DataCloud.2014.6
http://dx.doi.org/10.1109/DataCloud.2014.6
http://dx.doi.org/10.1109/PDP.2013.41
http://dx.doi.org/10.1109/PDP.2013.41
http://dx.doi.org/10.1109/PDP.2013.41
http://dx.doi.org/10.1109/PDP.2013.41
http://dx.doi.org/10.1109/PDP.2013.41
http://www.slideshare.net/jpetazzo/linux-containers-lxc-docker-and-security/4-Fear_Uncertainty_and_DoubtLXC_is
http://www.slideshare.net/jpetazzo/linux-containers-lxc-docker-and-security/4-Fear_Uncertainty_and_DoubtLXC_is

linux-containers-lxc-docker-and-security/4-Fear_Uncertainty_790

and_DoubtLXC_is, [Online; accessed 18-January-2016].

[35] T. Adufu, J. Choi, Y. Kim, Is container-based technology a winner for high

performance scientific applications?, in: Network Operations and Manage-

ment Symposium (APNOMS), 2015 17th Asia-Pacific, 2015, pp. 507–510.

doi:10.1109/APNOMS.2015.7275379.795

[36] MIT, Starcluster, http://web.mit.edu/stardev/cluster/, [Online; ac-

cessed 1-December-2014].

[37] U. of Zurich, Elasticluster, http://gc3-uzh-ch.github.io/

elasticluster/, [Online; accessed 21-January-2016].

[38] M. G. Xavier, M. V. Neves, C. A. F. de Rose, A performance comparison of800

container-based virtualization systems for mapreduce clusters, in: Parallel,

Distributed and Network-Based Processing (PDP), 2014 22nd Euromicro

International Conference on, 2014, pp. 299–306. doi:10.1109/PDP.2014.

78.

[39] H. V. Higgins J., V. C., High Performance Computing: 30th International805

Conference, ISC High Performance 2015, Frankfurt, Germany, July 12-

16, 2015, Proceedings, Springer International Publishing, Cham, 2015, Ch.

Orchestrating Docker Containers in the HPC Environment, pp. 506–513.

doi:10.1007/978-3-319-20119-1_36.

URL http://dx.doi.org/10.1007/978-3-319-20119-1_36810

[40] J.-W. Park, J. Hahm, Container-based cluster management platform for

distributed computing, in: Proceedings of the International Conference on

Parallel and Distributed Processing Techniques and Applications, 2015, pp.

34–40.

[41] F. Alvarruiz, C. de Alfonso, M. Caballer, V. Hernández, An energy manager815

for high performance computer clusters, in: Proceedings of the 2012 IEEE

10th International Symposium on Parallel and Distributed Processing with

33

http://www.slideshare.net/jpetazzo/linux-containers-lxc-docker-and-security/4-Fear_Uncertainty_and_DoubtLXC_is
http://www.slideshare.net/jpetazzo/linux-containers-lxc-docker-and-security/4-Fear_Uncertainty_and_DoubtLXC_is
http://www.slideshare.net/jpetazzo/linux-containers-lxc-docker-and-security/4-Fear_Uncertainty_and_DoubtLXC_is
http://dx.doi.org/10.1109/APNOMS.2015.7275379
http://web.mit.edu/stardev/cluster/
http://gc3-uzh-ch.github.io/elasticluster/
http://gc3-uzh-ch.github.io/elasticluster/
http://gc3-uzh-ch.github.io/elasticluster/
http://dx.doi.org/10.1109/PDP.2014.78
http://dx.doi.org/10.1109/PDP.2014.78
http://dx.doi.org/10.1109/PDP.2014.78
http://dx.doi.org/10.1007/978-3-319-20119-1_36
http://dx.doi.org/10.1007/978-3-319-20119-1_36
http://dx.doi.org/10.1007/978-3-319-20119-1_36
http://dx.doi.org/10.1007/978-3-319-20119-1_36
http://dx.doi.org/10.1007/978-3-319-20119-1_36
http://dx.doi.org/10.1007/978-3-319-20119-1_36
http://dx.doi.org/10.1007/978-3-319-20119-1_36
http://dx.doi.org/10.1109/ISPA.2012.38
http://dx.doi.org/10.1109/ISPA.2012.38
http://dx.doi.org/10.1109/ISPA.2012.38

Applications, ISPA ’12, IEEE Computer Society, Washington, DC, USA,

2012, pp. 231–238. doi:10.1109/ISPA.2012.38.

URL http://dx.doi.org/10.1109/ISPA.2012.38820

[42] J. Duato, A. J. Pena, F. Silla, R. Mayo, E. S. Quintana-Orti, rCUDA:

Reducing the number of GPU-based accelerators in high performance clus-

ters, in: 2010 International Conference on High Performance Computing &

Simulation, IEEE, 2010, pp. 224–231. doi:10.1109/HPCS.2010.5547126.

URL http://ieeexplore.ieee.org/document/5547126/825

[43] Openstack, Openstack floating ips, http://docs.openstack.org/

openstack-ops/content/floating_ips.html, [Online; accessed 21-May-

2016].

[44] J. Goecks, A. Nekrutenko, J. Taylor, T. G. Team., Galaxy: a compre-

hensive approach for supporting accessible, reproducible, and transparent830

computational research in the life sciences., Genome biology 11 (8) (2010)

R86.

[45] Mrbayes: Bayesian inference of phylogeny, http://mrbayes.

sourceforge.net/index.php, [Online; accessed 22-April-2016].

[46] M. Software, Cynmix dataset, http://mrbayes.sourceforge.net/wiki/835

index.php/Cynmix.nex, [Online; accessed 05-Jun-2016].

34

http://dx.doi.org/10.1109/ISPA.2012.38
http://dx.doi.org/10.1109/ISPA.2012.38
http://ieeexplore.ieee.org/document/5547126/
http://ieeexplore.ieee.org/document/5547126/
http://ieeexplore.ieee.org/document/5547126/
http://ieeexplore.ieee.org/document/5547126/
http://ieeexplore.ieee.org/document/5547126/
http://dx.doi.org/10.1109/HPCS.2010.5547126
http://ieeexplore.ieee.org/document/5547126/
http://docs.openstack.org/openstack-ops/content/floating_ips.html
http://docs.openstack.org/openstack-ops/content/floating_ips.html
http://docs.openstack.org/openstack-ops/content/floating_ips.html
http://mrbayes.sourceforge.net/index.php
http://mrbayes.sourceforge.net/index.php
http://mrbayes.sourceforge.net/index.php
http://mrbayes.sourceforge.net/wiki/index.php/Cynmix.nex
http://mrbayes.sourceforge.net/wiki/index.php/Cynmix.nex
http://mrbayes.sourceforge.net/wiki/index.php/Cynmix.nex

