
1

A training process for improving the quality of software projects

developed by a practitioner

Cuauhtémoc López-Martín

Department of Information Systems

Universidad de Guadalajara

Periférico Norte N° 799, C.P.

45100, Zapopan, Jalisco, México

(+52) 33 37-70-33-00 ext. 25717

cuauhtemoc@cucea.udg.mx

Ali Bou Nassif

Department of Electrical and

Computer Engineering

University of Sharjah

Sharjah, UAE

anassif@sharjah.ac.ae

Alain Abran

Department of Software Engineering

and Information Technology

École de technologie supérieure

Université du Québec, Canada

alain.abran@etsmtl.ca

Abstract.

Background: The quality of a software product depends on the quality of the software process followed in

developing the product. Therefore, many higher education institutions (HEI) and software organizations have

implemented software process improvement (SPI) training courses to improve the software quality.

Objective: Because the duration of a course is a concern for HEI and software organizations, we investigate

whether the quality of software projects will be improved by reorganizing the activities of the ten assignments

of the original personal software process (PSP) course into a modified PSP having fewer assignments (i.e.,

seven assignments).

Method: The assignments were developed by following a modified PSP with fewer assignments but including

the phases, forms, standards, and logs suggested in the original PSP. The measurement of the quality of the

software assignments was based on defect density.

Results: When the activities in the original PSP were reordered into fewer assignments, as practitioners

progress through the PSP training, the defect density improved with statistical significance.

Conclusions: Our modified PSP could be applied in academy and industrial environments which are

concerned in the sense of reducing the PSP training time.

Keywords: Software engineering education and training, software process improvement, software quality

improvement, personal software process.

1. Introduction

In 2013, the $407.3 billion software industry [1] was forecast to have a 9.4% compound annual growth

rate through 2018 [2]. The quality of the software product is a major ongoing concern in the industry. It relies

on the degree of compliance to specified requirements that are related to the features and functions to be

developed [3]. A study based on an analysis of 50,000 software projects developed between 2003 and 2012,

reported that only 39% of the projects were delivered with the required quality, 43% delivered less than the

quality required, and the remaining 18% were cancelled prior to completion or delivered and never used [4].

Another survey based on 8,380 projects and involving 365 information technology executive managers of

large, medium, and small companies (from banking, securities, manufacturing, retail, wholesale, heath care,

insurance, services, and local, state, and federal organizations), reported that more than a quarter of the

software projects were completed with only 25% to 49% of the originally specified features and functions. On

average, only 61% of the originally specified features and functions were available at project completion.

More specifically, large companies reported that the end product contained 42% of the features and functions,

medium companies 65%, and small companies, 74% [5].

Software engineering research aims to improve practice in any of its areas such that research results are

useful [6]. The software process is a set of activities, methods, and practices that software engineers and users

use to develop and maintain software products [7]. Software process improvement (SPI) aims to understand

the software process that is used within an organization and to drive the implementation of changes to that

process to achieve objectives such as higher product quality or reduced costs [8].

2

A systematic literature review of 148 SPI studies published between 1991 and 2008 reported the following

findings [9]:

1) Seven distinct evaluation strategies were identified: the most common type, a pre-post comparison (i.e.,

the SPI strategy was evaluated by comparing the success indicators before and after the SPI strategy took

place) was found in 49% of the studies.

2) In 62% of the 148 studies, the process quality was the most measured attribute.

The quality of a software product depends on the quality of the software process used to build the product

[10]; hence, software development organizations strive to improve their software processes [10]. Training is

one of the most important and reliable human resource techniques to enhance organizations and individual

productivity [11]. Furthermore, training in SPI requires an effort that should be addressed three levels of

training: the organization, team, and individual [12]. There have been SPI proposals focused on software

organizations such as capability maturity model (CMMI) [13], on teams of developers such as team software

process (TSP) [14], and at the level of the individual, personal software process (PSP) [15][16]. PSP, which is

applied at individual level, was designed to tackle some of the difficulties organizations and teams had in

applying CMM practices [17]. CMM has five maturity levels and contains 18 key process areas (KPAs); PSP

involves 12 of those KPAs [15].

While there are many claimed benefits for SPI, this study is related to quality improvement at the

individual level (in this study, the term practitioner is equivalent to participant, software developer, software

engineer, and graduate student). Other benefits include reductions in the cost of delivering poor quality and

software development, and improvements in productivity, on-time delivery, consistency of budget and

schedule delivery, customer satisfaction, and employee morale [18].

Software quality starts with the individual software developer: if any of the software project modules

developed by a software developer has numerous defects, the modules will be difficult to test and require time

to integrate into the system [16]. Our study focuses on the application of SPI specifically designed to improve

the quality of a software developer: the PSP, which presents a disciplined process that includes defect

management and allows a software developer to produce high-quality software [16].

PSP first scales down industrial software practices to fit the needs of a module-sized software project

development, then it guides the software developers through a progressive sequence of practices that provide

a foundation for large-scale software development [16].

To analyze the benefits of PSP when used in industrial software projects, Green et al. [19] surveyed 63

software developers who had been trained in PSP and were using it in software development projects. The 63

participants belonged to 24 different organizations and 40% had master degrees. The quantitative part of the

study examined whether a perceived gain in software quality is a significant factor in determining the value of

PSP to software developers. A seven-point Likert scale was used to investigate responses to the statement

“Use of PSP has decreased the number of errors in the software products I build” and Cronbach alpha test was

applied to determine the reliability of the scale. After a quantitative analysis, the perceived quality benefits

explained 66% of the variance in the perceived usefulness of PSP at a 99% confidence level; therefore, Green

et al. [19] encouraged project managers to adopt formal SPI methods to obtain positive impacts on their

quality.

The original PSP course training consists of ten assignments [15]. In our study, the PSP practices involved

were reordered in accordance with Lopez-Martin and Abran [20] and applied on a smaller number of

assignments. Our study was based upon the following observations or conclusions from the literature:

1) Course duration is a principal concern for organizations [16].

2) SPI has often been taught in a few weekly sessions to software development professionals who work

in software development and do not have formal education in software engineering [21].

3) The redesign of SPI courses has been encouraged for several years [22].

4) A research topic has been suggested about how the PSP benefits can be obtained with a much smaller

training program than the standard PSP course [23].

5) The classroom is a good place to begin acquainting students with the principles of process

management in software engineering, and inculcating in students the habit of adhering to these

principles as a matter of routine practice [24].

6) An individual disciplined process affects software quality at a 95% confidence level [30], and the

later the defects are found, the more costly it is to remove them [25].

7) The PSP, and not repetition of programming assignments, is the most plausible cause of important

software quality improvements [26].

3

The study reported here uses the same process as in a previous study: it is, therefore, necessary to

distinguish between replication and reproduction in a research context. A replication of an experiment has

been defined as follows [27]:

1) “A conscious and systematic repeat of an original study.”

2) “The repetition of an experiment to double-check its results.”

3) “A repetition of a research procedure to check the accuracy or truth of the findings reported.”

These three definitions imply an explicit relationship with “a previous study” [27]. On one hand, the goal

of replication in empirical sciences is to test the same hypothesis in a different study [27]. On the other hand,

reproduction re-examines the results from a previous experiment, using a different experimental protocol

[28]. In other words, a replication assesses the confidence level for the results of the original experiment to

improve the internal validity and reliability of the conclusions, while generalizability is studied by

reproduction, improving the external validity [28]. Our study is a reproduction since the same process

proposed in Lopez-Martin & Abran [20], whose goal was to improve effort prediction, was applied in our

study with the goal of improving quality.

The main objective of our study was to demonstrate that as a software developer progresses through the

PSP training assignments, the quality of his/her assignments improves, but this can be done with fewer

assignments than the ten in the original PSP set. In our study, the phases, reviews, forms, standards, and logs

used in the original PSP depicted in Appendix A, have been reordered into a modified software process of

seven assignments described in Table 4.

The null (H0) and alternative (H1) hypotheses that were tested in the study and are reported here are the

following:

H0: When the activities in the original PSP are reordered into a modified software process having fewer

assignments, as practitioners progress through the PSP training, the defect density does not improve

with statistical significance.

H1: When the activities in the original PSP are reordered into a modified software process having fewer

assignments, as practitioners progress through the PSP training, the defect density improves with

statistical significance.

Considering the recommendation by Paulk [29] [30] that the programming language should be taken into

account when analyzing software quality when PSP is applied, we set out the following secondary research

question:

Does the programming language used influence the quality (defect density) of assignments?

Based upon this question, the hypotheses were also tested taking into account the defect density by two

programming languages.

The sample dataset size was 181 practitioners who developed 1,267 software assignments written in C++

and Java. Defect density data of these assignments are included in the Appendix B of this study. The quality

of the assignments was measured from the defect density, which was calculated by dividing the number of

defects removed by the software assignment size measured in added and modified 1000 lines of code (KLOC)

[15].

The contribution of our study is to investigate whether the quality of individually developed software

projects improved by reordering and reducing the assignments in the original PSP.

The rest of this paper is organized as follows: Section 2 briefly describes the phases, standards, logs, and

reports in the PSP. Section 3 presents related work on PSP. Section 4 presents the experimental design. Section

5 contains the analysis of quality across assignments. Finally, Section 6 presents a discussion, conclusions, the

limitations of the study, and suggestions for future work.

2. Personal Software Process (PSP)

The PSP was proposed by Humphrey in 1995 [15] to provide engineers with a disciplined personal

framework for developing software projects. From a quality perspective, the goal of PSP is not only to reduce

defect density but also to find defects at an earlier stage in the development cycle [25].

An advantage of PSP is that its structure is simple and independent of technology. PSP prescribes no

specific languages, tools, or design methods [17] but rather consists of a set of phases, standards, logs, and

reports that teach software engineers how to plan, measure, and manage their work. A brief description

follows [15]:

4

Phases: (1) Plan: estimate the size, time, and defects for the project; (2) Design: design the program; (3)

Design review; (4) Code: implement the design in any programming language; (5) Code review; (6) Compile:

compile the program and fix and log all defects found; (7) Test: execute the program and fix and log all

defects found; and (8) Post-mortem: record actual time, defect, and size data on the plan.

Reviews: design review and code review are structured, data-driven processes that are guided by

checklists derived from the historical defect data as recorded in the defect recording log.

Forms: a plan summary form is used to document planned and actual results, a test form is used to record

data on each of the tests, and a process improvement proposal form is used to record process problems and

proposed solutions.

Standards:

1) Defect type – each defect is classified according to documentation (comments, messages),

syntax (spelling, punctuation, typos, instruction formats), build and package (change

management, library, version control), assignment (declaration, duplicate names, scope, limits),

interface (procedure calls and references, I/O, user formats), checking (error messages,

inadequate checks), data (structure, content), function (logic, pointers, loops, recursion,

computation), system (configuration, timing, memory), environment (design, compile, test, or

other support system problems).

2) Coding – a guide to code each assignment. This guide establishes a consistent set of coding

practices, provides criteria for judging the quality of the code produced in each assignment, and

facilitates the lines of code (LOC) counting. This standard includes how the following issues

should be written: header format, identifiers, comments, blank spaces, and indenting [15].

3) Counting – a framework for describing software size measurements.

Logs: (1) A time recording log that tracks the number of minutes software developers spend in each PSP

phase, and (2) A defect recording log, which records for each defect the date, sequence number, defect type,

phase in which the defect was injected, the phase in which it was removed, the fix time, and a description of

the problem.

Regarding the size of assignments, the PSP uses LOC. There are two of them: physical and logical [15].

The counting of physical LOC gives the size in terms of the physical length of the code as it appears when

printed. PSP considers New, Changed, and Reused LOC and all of them were considered as physical LOC for

this study. N&C is composed of added (new) and modified (changed) code. The added code is the LOC

written during the current programming process, while the modified code is the LOC changed in the base

program when modifying a previously developed program. The base program is the total LOC of the previous

project while the reused code is the LOC of previously developed assignments that are used without any

modification [15].

PSP involves ten assignments distributed in four levels labeled PSP0, PSP1, PSP2, and PSP3. Each of the

first three levels (PSP0, PSP1, and PSP2) consists of three assignments and the last (PSP3), of only one.

These levels incrementally introduce the set of phases, forms, standards, and logs through ten assignments.

PSP0 provides an introduction to the PSP and establishes an initial base of historical size, time, and defect

data. PSP1 focus on personal project management techniques, introducing size and effort estimating, schedule

planning, and schedule tracking methods. PSP2 adds quality management methods by means of personal

design and code reviews, a design notation, design templates, design verification techniques, and measures for

managing process and product quality. PSP3 addresses the need to efficiently scale the PSP up to larger

projects [48].

In addition to the original PSP of ten assignments, there are two versions of PSP courses consisting of

eight (PSPI/II) and seven (PSP Fund/Adv) assignments. These two versions consist of the following six PSP

levels: PSP0 describes the current software process, basic collection of time and defect data. PSP0.1 defines a

coding standard, basic technique to measure size, and a basic technique to collect process improvement

proposals. PSP1 includes techniques to estimate size and effort, and documentation of test results. PSP1.1

involves task and schedule planning. PSP2 includes techniques to review code and design, and PSP2.1

introduces design templates [43].

5

3. Related work

In addition to studies focusing on PSP and quality improvement, other studies show that PSP has been

used to develop specific technologies [31] [32] [33] [34]. Moreover, in a number of studies several tools have

been proposed for managing PSP [35] [36] [37] [38] [39] [40].

Within the studies specifically related to the quality of software developed following PSP, we searched for

those having the following four features:

1) Several software assignments developed by any participant.

2) Involving several participants.

3) Results based upon statistical significance.

4) Application of all practices suggested in the original PSP.

Table 1 shows features of the seven identified studies having these four features, whereas Table 2 presents

statistical comparison across PSP quality of studies of Table 1. The conclusions of Rombach et al. [44], Shen

et al. [45], Runeson [46], Hayes [47] [48], and Wesslén [25] were based on an overall defect density, whereas

that of Paulk [29] [30], and Grazioli & William [43] were based on test defect density.

Grazioli & William [43] used the PSPI/II and PSP Fund/Adv versions. They grouped PSP0 and PSP0.1 in

PSP0, PSP1 and PSP1.1 in PSP1, and they analyzed PSP2 and PSP2.1 separately. The assignments by PSP

level were distributed as follows [43]:

a) PSP Fund/Adv

PSP0: first assignment, PSP1: second assignment, PSP2: third and fourth assignments, and PSP2.1: fifth

to seventh assignments.

b) PSPI/II

PSP0 and PSP0.1: first and second assignments, PSP1 and PSP1.1: third and fourth assignments, PSP2:

fifth assignment, PSP 2.1: sixth to eight assignments.

 The results showed in Table 2 related to Grazioli & William [43] correspond to those obtained in both

courses (i.e., the PSPI/II and PSP Fund/Adv versions).

 Table 3 shows the programming languages used by each study. In studies on defect density analysis by

programming language, Paulk [30] did not find a statistically significant difference when comparing the

defect density among the programming languages used (i.e., C, C++, Java, and Visual Basic). Rombach et al.

[44] clustered developers by paradigm and did not specify the names of programming languages. Their

conclusions illustrate similar trends for each cluster. Shen et al. [45], Runeson [46], Hayes [47], and Wesslén

[25] did not report defect density analysis by programming language.

Table 1. Studies involving PSP quality analysis (U: Undergraduate, G: Graduate, “NR" means none reported)

Topic

Study

Test defect density Overall defect density

Grazioli &

William

[43]

Paulk

[30]

Rombach et al.

[44]

Shen et al.

[45]

Runeson

[46]

Hayes

[47]

Wesslen

[25]

Publication year 2012 2006 2008 2011 2001 1998 2000

Number of participants 93 1345 1636 16 131 181 131

Academic level of participants NR U, G U, G G G U, G G

Number of assignments developed by

participants

7,8 10 10 10 9 9 9

Comparison among programming

languages used

No Yes Yes No No No No

Table 2. Statistical comparison across PSP quality studies (D95 and D99 means a significant

difference with α < 0.05 and α < 0.01, respectively. “NR" means none reported). *PSP2.1 is only used in [43]

PSP level comparison

Study

Grazioli &

William [43]

Paulk

[30]

Rombach et al.

[44]

Shen et al.

[45]

Runeson

[46]

Hayes

[47]

Wesslen

[25]

PSP0 vs. PSP1 D95 D95 D99 D99 D95 D99 D99

PSP1 vs. PSP2 D95 D95 - D99 - - -

PSP2 vs. (PSP3 or PSP2.1) - D95 D99 NR NR NR NR

6

Table 3. Programming languages used in study (“NR" means none reported)

Study Programming languages

Grazioli & William [43] NR

Paulk [30] C, C++, Java, and Visual Basic

Rombach et al. [44] Object-oriented, structured, and other languages

Shen et al. [45] C++, and Java

Runeson [46] C, and Java

Hayes [47] NR

Wesslen [25] Ada, C, C++, Java, Lisp, Pascal, and Simula

As for PSPI/II and PSP Fund/Adv versions, we only identified one study analyzing data obtained from

these two versions of PSP courses [43]; however, we cannot access to raw data analyzed in their study such

that we could calculate overall defects/KLOC.

We found three additional studies whose conclusions were not based on a statistically significant

difference [23] [41] [42] and one study, in which a statistically significant difference was obtained [17];

however, statistical significance analyses involving the defect density values from the second to ninth

assignments were not reported [17].

Humphrey [17] compared the quality of software assignments developed by 104 participants, not all of

whom worked in software organizations: 80 took PSP in university courses and the rest in organizational

courses. Ten assignments were developed by engineers using six different programming languages: Ada, C,

C++, Fortran, Pascal, and Visual Basic; however, only Ada, C, and C++ were statistically compared for defect

density. Humphrey did not find a statistically significant difference in defect density among the three

languages. Results showed that defect density improved, with statistical significance, between the first and

tenth assignments with 116.4 defects/KLOC in the first assignment and 48.9 defects/KLOC in the tenth.

Phipps [41] compared individual software assignments developed following PSP using C++ and Java

programming languages. Phipps involved only one developer, two software assignments and one assignment

by programming language used. In addition, the developer was learning PSP when he developed his first

assignment (coded in C++).

Prechelt and Unger [23] compared two groups of undergraduate students: a first group of 24 PSP-trained

developers and a second non-trained group of 16. Both groups developed a single software assignment. PSP-

trained students were not specifically asked to use PSP techniques. The programming language used by

developers in the first group was Java, C, C++, Sather-K, and Modula-2, whereas the second group used Java

and C++. The experiment was designed to be independent of the programming language used. Prechelt and

Unger concluded that the performance improvements for the PSP-trained group were smaller than the results

from PSP proponents usually had assumed, possibly due to the low usage of PSP practices by the PSP trained

group.

Ramingwong and Ramingwong [42] compared the defect density of software assignments developed by

13 undergraduate students who followed PSP. Each student developed seven assignments using C++, PHP,

Java, and Visual Basic. Comparison was based on an average defect density by assignment. The averages

reported from the second to seventh assignment were 97, 70, 69, 60, 98, and 63 defects/KLOC, respectively.

4. Experimental design

The 181 software developers in our study were registered in a university master degree program (all of

them had gained a bachelor degree). The course was elective (or optional) and it was taught in either public or

private universities. In the private ones, the participants paid for the course as part of their set of semester

subjects. Graduate students were selected because the original PSP training course was aimed at graduate

software engineers who had the required programming language proficiency and software development

competence [17]. The course was part of a semester subject, the duration by course was dependent of the

university (from twelve to sixteen weeks), one day per week was assigned to the course, and four hours were

allocated per day (one lecture-hour and three practical-hours). Introduction to PSP, code and counting

standards were taught in the first day. One assignment was performed daily from the second to the eighth day.

The ninth day was allocated to the final report, and the tenth day to analyze the data obtained from all

assignments of developers. The rest of the semester-course was allocated to theoretical topics related to

software processes and their statistical analysis.

7

The 1,267 software assignments in our study were developed between 2005 and the second semester of

2012. Each student selected his own programming language. The 1,267 assignments were coded in C++ and

Java. They were selected because they corresponded to the two larger data sets with 686 (Java) and 581 (C++)

assignments (see Table 5).

The measurement of the quality of the software assignments was based on defect density calculated by

dividing the number of defects removed by the program size measured in KLOC [15]. This normalization

offsets the size differences among assignments [15]. Three measures are typically proposed to study the effect

of PSP practices on the defect density: the overall, compile, and test [15]. Our study was related to the overall

defect density as reported in [25] [44] [45] [46] [47] [48]. Furthermore, to determine the quality of the

development process, it is recommended to use the added and modified LOC for calculating the defect density

[15], not taking reused lines of code into account: i.e., in our study defect density = overall defects/KLOC,

where KLOC means added and modified KLOC.

In our study, only data of participants who followed all the phases, forms, standards, and logs suggested

in the original PSP [15] were selected. Those ones who did not follow them could continue the course;

however, their data were not considered for our study. Eighteen developers were excluded because they did

not follow the correct process. Therefore, since participants were not selected randomly, the experimental

design was considered quasi-experimental [49].

Our study was based on a modified PSP with fewer assignments but it included the phases, forms,

standards, and logs suggested in the original ten assignments. Table 4 describes them in terms of the sequence

number of the assignment in which a given activity is used. In Table 4, expert judgment estimation refers to

that technique based on intuition and derived of the experience of practitioners on similar projects [20];

moreover, with PROBE (PROxy-based estimating), developers used the relative size of a proxy to make their

initial estimate, then used historical data to convert the relative size of the proxy to LOC [15].

Another exception is the generation of a simple linear regression (SLR) in assignment six from a

regression analysis involving more pairs of data: five assignments instead of three as in the original PSP. This

SLR is used for predicting the development effort and it includes to N&C lines of code as independent

variable and effort as dependent variable. The SLR analysis is based on identification and exclusion of

outliers from scatter plots, as well as the interpretation of correlation (r) and determination (r
2
) coefficients.

The identification of outliers was based on observations which had either Studentized residuals greater than 2

in absolute value, or leverage values greater than 3 times that of an average data point. Besides of these two

cases, an assignment was only excluded when a non-statistical specific reason was identified by the

practitioner, such as by using a function or a library not used before which spent more effort. A SLR was used

when its r
2
≥0.5 [15].

The effort prediction using a multiple linear regression (MLR) in assignment seven represents a new

proposal (it is not applied for predicting the effort of any of the assignments in the original PSP). The MLR

includes the analysis of N&C and Reused lines of code as independent variables, and effort as dependent

variable. The MLR is generated from the data analysis of six assignments.

The experiment was performed in a controlled environment with the following characteristics [20]:

 All participants were working on software development in organizations, and none of them had

previously taken a course related to PSP.

 All the participants were registered in a postgraduate program in computer science.

 Participation in the study was not mandatory, and the participants did not receive any payment for

attending the course.

 Each participant selected the programming language he/she wanted to use in the assignments, based on

his/her expertise. They were warned that the PSP course was not suitable to simultaneously learn a new

programming language.

 Participants had already taken at least one course on the programming language used in the assignments.

 To reduce bias, participants were neither informed of our experimental objective, nor penalized for their

performance regarding quality of their assignments (i.e., in the sense of obtaining a lower or higher

defect density). They were penalized if they did not follow the guidelines of the PSP process.

 With the goal of practicing the data records on forms and logs, participants manually filled in a

spreadsheet for each assignment instead of using any PSP tool. This spreadsheet was submitted for

review.

 There were no more than 15 participants in each course.

8

 Participants were supervised and mentored on the process during the assignments: after each assignment,

their documentation was reviewed and they received feedback when requested, about any issue before

starting their next assignment.

 Only one assignment was performed by day as suggested in the original PSP course.

 All the participants adopted a coding and counting standard.

 The code written in each assignment was designed by the participant such that it could be reused in

subsequent assignments.

 The assignments had a complexity similar to that suggested in [15]. In each course, from a set of 18

assignments, a subset of seven was randomly assigned to each of the participants.

Data from 1,575 software assignments developed by 225 software developers were gathered from 2005 to

the second semester of 2012. Table 5 presents the number of participants and software assignments by

programming language used. Of the assignments in Table 5, only those coded in Java or in C++ were selected

for study because of the large number of software assignments.

Regarding the secondary research question written in the Introduction section, the following hypotheses to

be tested were formulated:

H0CJ: There is not a statistically significant difference in the defect density between the assignments
coded in C++ and those coded in Java at a 95% confidence level.

H1CJ: There is a statistically significant difference in the defect density between the assignments coded

in C++ and those coded in Java at a 95% confidence level.

These two hypotheses are formulated because in our study, the developers used an Integrated

Development Environments (IDEs) which had features such as automatic code completion, and automatic

compilation of individual Java statements. That is, in our study, Java developers did not record defects in the

compile phase.

If H0CJ is rejected, defect density analysis should be carried out separately for C++ and Java

assignments. Otherwise, the assignments can be pooled for the quality analysis.

Table 6 presents the adopted counting standard for C++ and Java lines of code.

Table 4. Description of the modified PSP for this study

(a “√” means a given activity used in the assignment)

 Assignment

 First Second Third Fourth Fifth Sixth Seventh

Phases Plan

 Total N&C size planning √ √ √ √ √ √ √

 Time estimation from expert judgment √ √ √ √ √ √ √

 N&C, reused, and deleted LOC size planning √ √ √ √ √ √

 Defect planning √ √ √

 PROBE method √ √

 Effort estimation from simple linear regression √ √

 Effort estimation from multiple linear regression √

 Design √ √ √ √ √ √ √

 Design review √ √ √ √

 Code √ √ √ √ √ √ √

 Code review √ √ √ √ √

 Compile √ √ √ √ √ √ √

 Testing √ √ √ √ √ √ √

 Postmortem √ √ √ √ √ √ √

Reviews Code review checklist √ √ √ √ √

 Design review checklist √ √ √ √

Forms Project plan summary √ √ √ √ √ √ √

 Process improvement proposal √ √ √ √ √ √ √

 Test report template √ √ √ √ √ √

Standards Defect type √ √ √ √ √ √ √

 Coding standard √ √ √ √ √ √ √

 LOC counting standard √ √ √ √ √ √ √

Logs Time recording log √ √ √ √ √ √ √

 Defect recording log √ √ √ √ √ √ √

9

Table 5. Number of assignments by programming language

Language Participants Assignments

Java 98 686

C++ 83 581

Visual Basic 28 196

Delphi 7 49

PHP 6 42

ABAP 1 7

Visual FoxPro 1 7

Perl 1 7

Table 6. Counting standard for C++ and Java lines of code

1) Count type

Physical/logical Physical

2) Statement type Included

3) Executable Yes

4) No executable

Declarations Yes, one by text line

Compiler directives Yes, one by text line

Comments No

Blank lines No

5) Clarifications

{ and } Yes

5. Quality analysis of assignments

The H0CJ and H1CJ hypotheses on defect density were tested with 686 and 581 projects coded in Java and

C++, respectively, by comparing the two sets of assignments (one set by programming language), assignment

by assignment. Table 7 presents the mean and median values of defect density for each assignment.

A suitable statistical test was selected, taking into account the number and size of sets to be compared, as

well as the dependence, normality and variance of the data [50]. The two sets (each corresponding to a

programming language) were independent of each other as each set of developers, made up of individual

software developers, developed their own assignments. Table 8 shows the normality statistical analysis by

programming language for the seven assignments.

Table 7. Defect density by programming language

Assignment
Mean Median

C++ Java C++ Java

First 148 89 125 74

Second 125 88 115 68

Third 99 75 85 49

Fourth 95 52 70 36

Fifth 79 43 65 31

Sixth 59 32 48 18

Seventh 53 32 40 0

Table 8. P-values of normality tests by assignment for C++ and Java

Normality

test

Assignment

First Second Third Fourth Fifth Sixth Seventh

C++ Java C++ Java C++ Java C++ Java C++ Java C++ Java C++ Java

Chi-squared 0.0928 0.0160 0.0822 0.0000 0.0000 0.0000 0.0001 0.0000 0.0035 0.0000 0.0000 0.0000 0.0000 0.0000

Shapiro-Wilk 0.0003 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Skewness 0.0245 0.0250 0.1322 0.0192 0.0141 0.0003 0.0015 0.0000 0.0045 0.0197 0.0000 0.0003 0.0004 0.0000

Kurtosis 0.2231 0.9629 0.2480 0.5545 0.2763 0.0043 0.0138 0.0000 0.0792 0.8193 0.0000 0.0016 0.0001 0.0000

10

As for variance data, Table 9 shows results of the Levene test which compared the two sets of software

projects by programming language. The Levene test tests the null hypothesis that the standard deviations of

defect density within each of the two programming languages are the same. Figure 1 shows the residual plot

for the first assignment. From the p-values in Table 9, it was concluded that there are not statistically

significant differences between the standard deviations at the 99% confidence level from the second to

seventh assignments, and that there is statistically significant difference between the standard deviations at the

99% for the first assignment.

Table 9. Levene test between C++ and Java sets grouped by assignment

Assignment p-value

First 0.0011

Second 0.2067

Third 0.7191

Fourth 0.0291

Fifth 0.0210

Sixth 0.0492

Seventh 0.0556

Figure 1. First assignment residual plot for defect density

As two sets of projects were compared (corresponding to the two programming languages), the two sets

were independent, the size of them are different (i.e., 98 vs. 83 assignments), the first assignment skewness p-

values for C++ and Java sets are greater than 0.01 (Table 8), that is, both sets are symmetric with 99%

confidence, there are not differences between the variances from the second to seventh assignments (Table 9),

and since a t-test statistical test is sufficiently robust, except when skew is severe or when variances and data

set sizes both differ [50], a t-test, which tests the null hypothesis that the mean of defect density within each

of the two programming languages are the same, was used to compare the two sets by assignments. Table 10

shows the p-values for each assignment. It shows that there was a statistically significant difference between

the mean at 99% confidence level for five sets of assignments, 95% confidence for the seventh assignment,

and 90% confidence for the third assignment. As a graphical example, Figure 2 shows a box-and-whisker for

C++ and Java for the first assignment.

Based on the results presented in Table 7 and Table 10, the following hypothesis for six of the seven

assignments was accepted (the third assignment was accepted with 90% confidence level):

H1CJ: There is a statistically significant difference in the defect density between the assignments coded

in C++ and those coded in Java at a 95% confidence level.

Table 10. Defect density statistical comparison between C++ and Java by assignment

Assignment t-test p-value

First 0.0000

Second 0.0009

Third 0.0747

Fourth 0.0001

Fifth 0.0000

Sixth 0.0005

Seventh 0.0133

11

Figure 2. First assignment (from Table 10) box-and-whisker plot for C++ and Java assignments

Since H0CJ was rejected, the defect density analysis should be carried out by individual programming

language for C++ and Java software projects. Therefore, the following additional hypotheses were derived

from those formulated in the introduction section of our study:

H0C++: When the activities in the original PSP are reordered into a modified software process having

fewer C++ assignments, as practitioners progress through the PSP training, the defect density

does not improve with statistical significance.

H1C++: When the activities in the original PSP are reordered into a modified software process having

fewer C++ assignments, as practitioners progress through the PSP training, the defect density

improves with statistical significance.

H0Java: When the activities in the original PSP are reordered into a modified software process having

fewer Java assignments, as practitioners progress through the PSP training, the defect density

does not improve with statistical significance.

H1Java: When the activities in the original PSP are reordered into a modified software process having

fewer Java assignments, as practitioners progress through the PSP training, the defect density

improves with statistical significance.

There are seven assignments that each software developer made: that is, each pair of data sets to be

compared is dependent (also termed related or paired). Therefore, in addition to the number of sets to be

compared and dependence of data, a suitable statistical test to compare the defect density of assignments was

selected taking into account a normality analysis of the set of defect density differences by pair of

assignments: if these set of differences were normally distributed, then a t-paired statistical test was used,

otherwise, a Wilcoxon test was applied.

Table 11 shows the normality test that had the smallest p-value among the kurtosis, skewness, chi-

squared, and Shapiro-Wilk normality tests by pair of assignments: if this p-value is greater than or equal to

0.01, we cannot reject the idea that the set of differences comes from a normal distribution with 99%

confidence, otherwise we can reject the idea that the set of differences comes from a normal distribution with

99% confidence. From Table 11 we can interpret that the t-paired test had to be applied in six of the 21 pairs

for C++, and only two cases for Java.

Results from Table 7 and Table 12 allowed us to accept the following hypotheses (except for three pairs

related to C++: Third – Fourth, Fourth – Fifth, and Sixth – Seventh, and for three Java cases: First – Second,

Fourth – Fifth, and Sixth – Seventh):

H1C++: When the activities in the original PSP are reordered into a modified software process having

fewer C++ assignments, as practitioners progress through the PSP training, the defect density

improves with statistical significance.

H1Java: When the activities in the original PSP are reordered into a modified software process having

fewer Java assignments, as practitioners progress through the PSP training, the defect density

improves with statistical significance.

12

Table 11. Smallest p-value among normality tests by pair of assignments for C++ and Java

Pair
C++ Java

Normality test p-value Normality test p-value

First – Second Kurtosis 0.1118 Chi-Squared 0.0767

First – Third Kurtosis 0.1451 Shapiro-Wilk 0.0003

First – Fourth Chi-Squared 0.2730 Shapiro-Wilk 0.0000

First– Fifth Kurtosis 0.2795 Shapiro-Wilk 0.0047

First– Sixth Skewness 0.1283 Chi-Squared 0.0856

First – Seventh Kurtosis 0.0082 Kurtosis 0.0000

Second – Third Kurtosis 0.0088 Chi-Squared 0.0001

Second – Fourth Chi-Squared 0.0002 Shapiro-Wilk 0.0000

Second – Fifth Chi-Squared 0.1176 Shapiro-Wilk 0.0000

Second – Sixth Chi-Squared 0.3880 Shapiro-Wilk 0.0018

Second – Seventh Kurtosis 0.0873 Chi-Squared 0.0003

Third – Fourth Kurtosis 0.0593 Chi-Squared 0.0000

Third – Fifth Skewness 0.3093 Chi-Squared 0.0000

Third – Sixth Kurtosis 0.0604 Chi-Squared 0.0000

Third – Seventh Shapiro-Wilk 0.2363 Chi-Squared 0.0000

Fourth – Fifth Chi-Squared 0.0000 Shapiro-Wilk 0.0000

Fourth – Sixth Shapiro-Wilk 0.0213 Shapiro-Wilk 0.0000

Fourth – Seventh Shapiro-Wilk 0.0018 Chi-Squared 0.0000

Fifth – Sixth Chi-Squared 0.0251 Chi-Squared 0.0000

Fifth – Seventh Kurtosis 0.0264 Chi-Squared 0.0000

Sixth – Seventh Chi-Squared 0.0002 Chi-Squared 0.0000

Results reported in previous PSP studies (see Table 2) were based on four groups of assignments named

PSP levels (each of the first three levels consisted of three assignments, while the last level had only one);

hence, the assignments of our study were also grouped into four sets of assignments with the goal of

comparing our results with the studies in Table 2. The first three groups of our study include two assignments,

and the fourth group the seventh assignment. The second group includes the design and code reviews

introduced in the third and fourth assignments of our study (the PSP2 level of Table 2 also includes these two

reviews), which allows analysing the influence of these two reviews on the quality of assignments. Based on

this, the following additional hypotheses were derived:

H0GC++: When the activities in the original PSP are reordered into a modified software process having

fewer C++ grouped assignments, as practitioners progress through the PSP training, the defect

density does not improve with statistical significance.

H1GC++: When the activities in the original PSP are reordered into a modified software process having

fewer C++ grouped assignments, as practitioners progress through the PSP training, the defect

density improves with statistical significance.

H0GJava: When the activities in the original PSP are reordered into a modified software process having

fewer Java grouped assignments, as practitioners progress through the PSP training, the defect

density does not improve with statistical significance.

H1GJava: When the activities in the original PSP are reordered into a modified software process having

fewer Java grouped assignments, as practitioners progress through the PSP training, the defect

density improves with statistical significance.

Table 13 includes the mean and median values for the four groups by programming language. A

repeated measures ANOVA test for defect density among PSP groups (which is a test for more than two

dependent data sets) had a p-value equal to 0.0000 for C++ and Java, which signifies that there was a

statistically significant difference among the four groups for the two programming languages.

Table 14 shows the results of a Wilcoxon test (which is a test for two dependent data sets) that involved

pairs of PSP groups. In each case, the p-values were less than 0.01; therefore, there was a statistically

significant difference at the 99% confidence level. Figures 3 and 4 show box-and-whisker plots, including a

median notch, for the C++ and Java programming languages, respectively.

13

Table 12. Wilcoxon and t-paired p-values by pairs of assignments for C++ and Java (D90, D95 and D99 means a significant

difference with α ≤ 0.10, α ≤ 0.05 and α ≤ 0.01, respectively)

Pair
C++ Java

p-value Difference p-value Difference

First – Second 0.0308 D95 0.9817 –

First – Third 0.0002 D99 0.0088 D99

First – Fourth 0.0000 D99 0.0000 D99

First – Fifth 0.0000 D99 0.0000 D99

First – Sixth 0.0000 D99 0.0000 D99

First – Seventh 0.0000 D99 0.0000 D99

Second – Third 0.0168 D95 0.0513 D90

Second – Fourth 0.0042 D99 0.0000 D99

Second – Fifth 0.0000 D99 0.0000 D99

Second – Sixth 0.0000 D99 0.0000 D99

Second – Seventh 0.0000 D99 0.0000 D99

Third – Fourth 0.6293 - 0.0059 D99

Third – Fifth 0.0601 D90 0.0016 D99

Third – Sixth 0.0000 D99 0.0000 D99

Third – Seventh 0.0000 D99 0.0000 D99

Fourth – Fifth 0.1811 – 0.3824 –

Fourth – Sixth 0.0002 D99 0.0010 D99

Fourth – Seventh 0.0000 D99 0.0003 D99

Fifth – Sixth 0.0205 D95 0.0011 D99

Fifth – Seventh 0.0009 D99 0.0010 D99

Sixth – Seventh 0.2355 – 0.5377 –

Table 13. Defect density of PSP groups

by programming language

PSP groups
Mean Median

C++ Java C++ Java

First – Second 137 88 121 71

Third – Fourth 97 64 75 44

Fifth – Sixth 69 37 52 26

Seventh 53 32 40 0

Table 14. Statistical comparison (D99 means a significant

difference with α ≤ 0.01).

PSP groups
Programming language

C++ Java

First – Second vs. Third – Fourth D99 D99

Third – Fourth vs. Fifth – Sixth D99 D99

Fifth – Sixth vs. Seventh D99 D99

Figure 3. Box-and-whisker plot for C++ software assignments

14

Figure 4. Box-and-whisker plot for Java software assignments

6. Discussion

The quality of software is a significant concern for organizations. Recent reports reveal that a low

percentage of projects are actually delivered with the required quality.

An aim of software engineering is to deliver software of high quality, and the SPI is a recommended

approach to improve software processes and produce high-quality software [8], which can be implemented at

the individual, team, or organizational level. The goal of PSP is to provide software engineers the needed

training/expertise required to deliver high quality products [15] [16]. Training is one of the most important

and reliable human resource techniques to enhance organization and individual productivity [11] and the

quality of a software product begins at the individual process level. Training duration has been, however, an

industry and HEI concern and in this study we proposed a process containing the same activities as the

original PSP but with fewer numbers of assignments (i.e., reduced from ten to seven).

The dataset included 181 practitioners who each developed seven PSP assignments following the same

software process, for a total of 1,267 assignments, which were separated for analysis into those coded in C++

and those in Java. The 1,267 assignments, separated by programming language, presented a statistical

difference in defect density.

In accordance with Tables 7 and 12, the following hypotheses were accepted (except for three pairs

related to C++, and for three Java pairs):

H1C++: When the activities in the original PSP are reordered into a modified software process having

fewer C++ assignments, as practitioners progress through the PSP training, the defect density

improves with statistical significance.

H1Java: When the activities in the original PSP are reordered into a modified software process having

fewer Java assignments, as practitioners progress through the PSP training, the defect density

improves with statistical significance.

Once the assignments were grouped, according to Tables 13 and 14, the hypotheses accepted in our

research were the following:

H1GC++: When the activities in the original PSP are reordered into a modified software process having

fewer C++ grouped assignments, as practitioners progress through the PSP training, the defect

density improves with statistical significance.

H1GJava: When the activities in the original PSP are reordered into a modified software process having

fewer Java grouped assignments, as practitioners progress through the PSP training, the defect

density improves with statistical significance.

 Table 14 also allowed observing the favorable influence with statistical significance, of the design and

code reviews on quality by grouping the third and fourth assignments.

 The aim of a course is to improve the skills of students. This is, however, never guaranteed, and it must

be verified whether or not the aim has been achieved. There are three possible outcomes: skills not modified,

skills improved, and skills degraded. This study has confirmed that indeed the skills have improved by using

the defect density as criterion.

 The main objective of our study was achieved: we demonstrated that as a software developer progressed

through PSP training assignments, software quality improved.

15

 This result is also relevant for the software engineering academic and industrial community because (1) it

suggests that software engineering development practices such as plan, design, design review, code, code

review, testing, and postmortem are related to software quality improvement, and (2) academy and industrial

environments want to reduce the PSP training time.

Six of the seven studies in Table 1 applied the original PSP for analyzing the quality performance across

the assignments: three involved graduate and undergraduate students [30] [44] [47], and three only graduate

students [25] [45] [46]. In comparison, our study involved only students registered in a graduate course. Only

two of the previous six studies analyzed performance by taking into account the programming language:

Paulk [30] did not find a statistically significant difference in defect density among the programming

languages used (C, C++, Java, and Visual Basic), while Rombach et al. [44], in spite of having clustered the

software projects by programming language paradigm (object-oriented, structured, and other languages),

concluded that defect density had similar trends for each cluster. In comparing Table 2 versus Table 14, only

one of the seven studies [30] achieved a statistical result similar to ours. This study was based on test defect

density [30], whereas ours was based on overall defect density.

 The limitations of our study include the following: the defects analyzed were pooled, that is, they were not

analyzed by defect types nor by the phase in which they were injected (plan, design, design review, code,

code review, compile, testing). In addition, our study involved only two programming languages.

 A first validity threat of our experiment is related to the use of a spreadsheet instead of a PSP software tool

for registering data of logs and forms. It could be a threat since a previous study concluded the data quality

problems could be presented when data are manually collected [51]. Based upon this precedent, we controlled

that the participants correctly filled their forms and logs. Although all practitioners adopted a same counting

standard for C++ and Java lines of code, a second validity threat is that each practitioner designed its own

coding standard. A third validity threat could be related to the randomly assigned assignments to each of the

developers, making our results less comparable.

In future work, we plan to investigate whether the productivity of developers (LOC/hour) improves by

applying the process used in this study; moreover, it would be interesting to develop software tools that help

improve the quality of individually developed software assignments, as well as identify the types of defects

frequently injected as participants develop their software assignments.

Acknowledgments

The authors thank the CUCEA of Universidad de Guadalajara, México, and the Consejo Nacional de

Ciencia y Tecnología (CONACyT), the University of Sharjah, and the Ecole de technologie supérieure -

Université du Québec (Canada), for their support during the development of this work. This work has been

partially funded by the National Research Council of Canada.

References

[1] Gartner Research Inc., Worldwide Software Market Grew 4.8 Percent in 2013,

http://www.gartner.com/newsroom/id/2696317, available: Jun 26th, 2016

[2] IDC Research, Inc., Worldwide Marketing Software Forecast 2014-2018, https://www.idc.com/, available: Jun

26th, 2016

[3] IEEE Standard 610.12-1990 IEEE Standard Glossary of Software Engineering Terminology, 1990.

[4] The Standish Group. Chaos Report, 2013.

[5] The Standish Group, Chaos Report, 2014.

[6] Pino, F.J., Garcıa, F., Piattini, M., & Oktaba, H. 2015. A research framework for building SPI proposals in small

organizations: the COMPETISOFT experience, Software Qualilty Journal, Springer, In Press, DOI

10.1007/s11219-015-9278-2

[7] Tanrıöver, Ö.Ö., Demirörs, O., 2015. A process capability based assessment model for software workforce in

emergent software organizations, Computer Standards & Interfaces, Elsevier, 37, 29 – 40, DOI:

10.1016/j.csi.2014.05.003

[8] Sanchez-Gordon, M.L., O’Connor, R. V., 2015. Understanding the gap between software process practices and

actual practice in very small companies, Software Qualilty Journal, Springer, In Press, DOI 10.1007/s11219-

015-9282-6

[9] Unterkalmsteiner, M., Gorschek, T., Islam, A.K.M.M., Cheng, C.K., Permadi, R.B., Feldt, R., 2012. Evaluation

and measurement of software process improvement— a systematic literature review, IEEE Transactions on

Software Engineering, 38 (2), 398-428, DOI: 10.1109/TSE.2011.26

[10] Iqbal, J., Ahmad, R.B., Nasir, M.H.N.M., Niazi, M., Shahaboddin, S., Noor, M.A., 2015. Software SMEs’

16

unofficial readiness for CMMI-based software process improvement, Software Qualilty Journal, Springer, In

Press, DOI 10.1007/s11219-015-9277-3

[11] Zhao, J., Qi, Z., Ordóñez-de-Pablos, P., 2014. Enhancing enterprise training performance: perspectives from

knowledge transfer and integration, Computers in Human Behavior, Elsevier, 30, 567–573. DOI:

10.1016/j.chb.2013.06.041

[12] Humphrey, W.S., (2002) Three process perspectives: organizations, teams, and people, Annals of Software

Engineering, Springer, 14, 39–72. DOI: 10.1023/A:1020593305601

[13] Chrissis, M.B., Konrad, M., Shrum, S., 2011. CMMI for Development: Guidelines for Process Integration and

Product Improvement, SEI Series in Software Engineering, Pearson.

[14] Humphrey, W.S., 2005. TSP: Leading a development team. The SEI series in software engineering, Pearson.

[15] Humphrey, W.S., 1995. A discipline for software engineering, The SEI series in software engineering, Pearson.

[16] Humphrey, W.S., 2005. PSP(sm): A self-improvement process for software engineers, Pearson.

[17] Humphrey, W.S., 1996. Using a defined and measured personal software process, IEEE Software, 13(3), 77-88.

DOI: 10.1109/52.493023

[18] O’Regan, G., 2014. Introduction to Software Quality, Springer, Chapter 12: Software Process Improvement. DOI

10.1007/978-3-319-06106-1_12.

[19] Green, G.C., Hevner, A.R., Collins, R.W., 2005. The impacts of quality and productivity perceptions on the use of

software process improvement innovations, Information and Software Technology, Elsevier, 47, 543–553.

DOI: 10.1016/j.infsof.2004.10.004

[20] Lopez-Martin, C., Abran, A., 2012. Applying expert judgment to improve an individual’s ability to predict

software development effort, International Journal of Software Engineering and Knowledge Engineering

(IJSEKE), 22(4), 467–483. DOI: 10.1142/S0218194012500118

[21] Eterovic, Y., Grau, G., Bozo, J., 2013. Teaching software processes to professionals: the approach taken by an

evening master’s degree program, IEEE 26th Conference on Software Engineering Education and Training.

DOI: 10.1109/CSEET.2013.6595267

[22] Jaccheri, M.L., 2002. Software quality and software process improvement course based on interaction with the

local software industry, Computer Applications in Engineering Education, Wiley, 9(4), 265-272. DOI:

10.1002/cae.10000

[23] Prechelt, L., Unger, B., 2000, An experiment measuring the effects of PSP training, IEEE Transactions on

Software Engineering 27(5), 465-472. DOI: 10.1109/32.922716

[24] Tchier, F., Rabai, L.B.A., Mili, A., 2015. Putting engineering into software engineering: upholding software

engineering principles in the classroom, Computers in Human Behavior, Elsevier, 48, 245–254.

DOI:10.1016/j.chb.2015.01.054

[25] Wesslén, A., 2000. A replicated empirical study of the impact of the methods in the PSP on individual engineers,

Empirical Software Engineering, Springer, 5, 93-123. DOI: 10.1023/A:1009811222725

[26] Grazioli, F., Vallespir, D., Pérez, L., Moreno, S., 2014. The impact of the PSP on software quality: eliminating the

learning effect threat through a controlled experiment, Advances in Software Engineering, Hindawi Publishing

Corporation, Article ID 861489. DOI: 10.1155/2014/861489

[27] F.Q.B. Da Silva, M. Suassuna, A.C.C. França, A.M. Grubb, T.B. Gouveia, C.V.F. Monteiro, I.E. Dos Santos,

Replication of empirical studies in software engineering research: a systematic mapping study, Empirical

Software Engineering, 19 (2014) 501–557. DOI 10.1007/s10664-012-9227-7

[28] Runeson, P., Stefik, A., 2014. A. Andrews, Variation factors in the design and analysis of replicated controlled

experiments, three (dis)similar studies on inspections versus unit testing, Empirical Software Engineering,

Springer, 19, 1781–1808. DOI 10.1007/s10664-013-9262-z

[29] Paulk, M.C., 2005. An Empirical Study of Process Discipline and Software Quality. Ph.D. diss., University of

Pittsburgh.

[30] Paulk, M.C., 2006. Factors Affecting Personal Software Quality, Carnegie Mellon University.

[31] Ji, Z., Ganchev, I., O’Droma, M., Zhao, L., Zhang, X., 2014. A cloud-based car parking middleware for IoT-

based smart cities: design and implementation, Sensors, 14, 22372-22393. DOI:10.3390/s141222372

[32] Ji, Z., Ganchev, I., O’Droma, M., 2014, An InfoStation-based distributed mLearning system, Eighth IEEE

International Conference on Next Generation Mobile Applications, Services and Technologies, DOI:

10.1109/NGMAST.2014.22

[33] Ji, Z., Ganchev, I., O’Droma, M., Zhang, X., 2014. A cloud-based intelligent car parking services for smart cities,

IEEE XXXIth URSI General Assembly and Scientific Symposium. DOI: 10.1109/URSIGASS.2014.6929280

[34] Ganchev, I., Ji, Z., O’Droma, M., 2014. A cloud-based service recommendation system for use in UCWW, IEEE

11th International Symposium on Wireless Communications Systems. DOI: 10.1109/ISWCS.2014.6933461

[35] Shin, H., Jung, K., Song, I., Choin, H., Baik, J., 2007. A tool to support personal software process, Journal of

KISS: Software and Applications, 34(8), 752-62.

[36] Chien-Hung, L., Shu-Ling, C., Chia-Jung, W., 2008. Applying PSP to support teaching of programming courses,

Journal of Computers, 19 (3), 55–65

17

[37] Barbosa-Duarte, C., Faria, J.P., Raza, M., 2012. PSP PAIR: Automated personal software process performance

analysis and improvement recommendation, Eighth International Conference on the Quality of Information

and Communications Technology, 131-136. DOI 10.1109/QUATIC.2012.46

[38] Matsuzawa, Y., Okada, K., Sakai, S., 2013. Programming process visualizer: a proposal of the tool for students to

observe their programming process, 18th ACM conference on innovation and technology in computer science

education, 46-51. DOI: 10.1145/2462476.2462493

[39] Thisuk, S., Ramingwong, S., 2014. ,WBPS: A new web based tool for personal software process, 11th IEEE

International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and

Information Technology. DOI: 10.1109/ECTICon.2014.6839821

[40] Raza, M., Faria, J.P., 2014. A model for analyzing estimation, productivity, and quality performance in the

personal software process, ACM International Conference on Software and System Process. DOI:

10.1145/2600821.2600828

[41] Phipps, G., 1999. Comparing observed bug and productivity rates for Java and C++, Software—Practice and

Experience, Wiley, 29(4), 345–358. DOI: 10.1002/(SICI)1097-024X(19990410)29:4<345::AID-

SPE238>3.0.CO;2-C

[42] Ramingwong, S., Ramingwong, L., 2012. Implementing a personal software process (PSPSM) course: a case

study, Journal of Software Engineering and Applications, 5, 639-644. DOI: 10.4236/jsea.2012.58074

[43] Grazioli, F., William, N., 2012. A Cross Course Analysis of Product Quality Improvement with PSP, TSP

Symposium, Special Report, CMU/SEI-2012-SR-015, 76—89.

[44] Rombach, D., Münch, J., Ocampo, A., Humphrey, W.S., Burton, D., 2008. Teaching disciplined software

development, Journal Systems and Software, Elsevier, 81(5), 747–763. DOI:10.1016/j.jss.2007.06.004

[45] Shen, W.H., Hsueh, N.L., Lee, W.M., 2011. Assessing PSP effect in training disciplined software development: A

plan-track-review model, Journal of Information and Software Technology, Elsevier, 53,137-148. DOI:

10.1016/j.infsof.2010.09.004

[46] Runeson, P., 2001. Experiences from teaching PSP for freshmen, 14th IEEE Conference on Software Engineering

Education and Training. DOI: 10.1109/CSEE.2001.913826

[47] Hayes, W., 1998, Using a personal software process to improve performance. Proceedings Fifth International

Software Metrics Symposium, 61–71. DOI: 10.1109/METRIC.1998.731227

[48] Hayes, W.J., Over, W., 1997. The Personal Software Process, An Empirical Study of the Impact of PSP on

Individual Engineers, Software Engineering Institute, Carnegie Mellon University, Technical Report,

CMU/SEI-97-TR-001.

[49] Kampenes, V.B, Dybå, T., Hannay, J.E., Sjøberg, D.I.K., 2009. A systematic review of quasi-experiments in

software engineering, Information and Software Technology, Elsevier, 51, 71–82.

DOI:10.1016/j.infsof.2008.04.006

[50] Stonehouse, J.M, Forrester, G.J., 1998. Robustness of the t and U tests under combined assumption violations,

Journal of Applied Statistics, Taylor & Francis, 25(1), 63–74. DOI: 10.1080/02664769823304

[51] Johnson, P.M., Disney, A.M., 1999. A Critical Analysis of PSP Data Quality: Results from a Case Study.

Empirical Software Engineering, 4 (4), 317-349. Doi: 10.1023/A:1009801218527

18

Appendix A: Description of the original PSP (a “√” means a given activity used in the assignment; LOC: lines of code; N&C:

new and changed LOC)

 Assignment

 First Second Third Fourth Fifth Sixth Seventh Eight Ninth Tenth

Phases Plan

 Total N&C size planning √ √ √ √ √ √ √ √ √

 Time estimation from expert judgment √ √ √ √ √ √ √ √ √ √

 N&C, reused, and deleted LOC size

planning
 √ √ √ √ √ √ √

 Defect planning √ √ √ √

 PROBE method √ √ √ √ √ √ √

 Effort estimation from simple linear

regression
 √ √ √ √ √ √ √

 Design √ √ √ √ √ √ √ √ √ √

 Design review √ √ √ √

 Code √ √ √ √ √ √ √ √ √ √

 Code review √ √ √ √

 Compile √ √ √ √ √ √ √ √ √ √

 Testing √ √ √ √ √ √ √ √ √ √

 Postmortem √ √ √ √ √ √ √ √ √

Reviews Code review checklist √ √ √ √

 Design review checklist √ √ √ √

Forms Project plan summary √ √ √ √ √ √ √ √ √ √

 Process improvement proposal √ √ √ √ √ √ √ √ √

 Test report template √ √ √ √ √ √ √

Standards Defect type √ √ √ √ √ √ √ √ √ √

 Coding standard √ √ √ √ √ √ √ √ √

 LOC counting standard √ √ √ √ √ √ √ √ √

Logs Time recording log √ √ √ √ √ √ √ √ √ √

 Defect recording log √ √ √ √ √ √ √ √ √ √

Appendix B: Defect density by assignment by programming language

C++ Java

First Second Third Fourh Fifth Sixth Seventh First Second Third Fourh Fifth Sixth Seventh

258 222 182 129 143 333 143 173 80 88 47 38 20 0

85 83 53 33 37 0 0 33 91 0 0 43 0 0

125 190 87 172 60 53 273 26 20 47 32 17 29 23
200 94 69 83 67 69 0 71 63 0 0 0 0 0

231 133 0 56 222 63 143 129 147 128 167 162 154 171

128 167 91 154 54 41 95 75 152 389 400 52 26 51
122 267 0 0 56 34 53 68 56 0 59 24 34 38

159 217 250 42 37 23 0 162 59 0 0 40 0 0

63 64 125 29 40 57 100 200 188 364 222 116 71 250
32 111 100 0 0 0 0 122 0 0 0 0 0 0

120 52 26 65 11 7 11 93 45 0 0 0 0 0

364 231 250 367 192 200 143 53 0 67 0 25 59 26
182 38 59 56 59 17 48 32 46 32 0 0 6 29

59 49 25 23 24 113 68 100 105 104 43 74 83 0

143 111 85 104 89 62 25 52 68 38 23 11 0 0
444 114 77 167 179 63 52 77 53 100 59 95 111 45

303 211 111 118 38 56 83 38 0 0 37 0 0 0
172 135 333 125 111 250 65 53 0 45 59 26 15 38

80 57 107 71 102 88 89 115 63 91 100 100 88 100

211 146 250 91 78 32 97 127 120 59 11 19 13 20
132 250 182 56 133 50 27 44 57 111 45 130 47 0

208 45 56 50 34 45 0 32 143 0 67 0 0 0

121 147 267 105 93 148 111 240 77 0 34 91 25 125
152 167 50 67 125 38 0 22 0 0 0 27 0 0

91 148 125 20 0 50 67 100 104 250 100 67 50 57

19

161 83 120 217 74 29 125 77 0 50 42 38 0 0

111 222 143 129 176 54 0 111 148 82 54 56 50 125

175 79 91 27 14 51 19 200 250 105 53 54 32 83
233 65 94 108 125 41 33 109 250 63 63 0 56 71

125 143 0 56 23 29 0 10 0 0 0 9 0 0

47 38 71 51 31 21 0 13 0 0 28 0 65 0
183 115 0 364 90 67 73 74 59 71 105 0 45 0

38 0 0 50 49 0 0 52 56 0 0 17 37 37

42 41 45 57 56 50 0 24 0 0 0 0 0 0
83 0 0 125 83 0 0 83 65 0 0 0 0 0

75 64 0 34 77 5 0 172 267 34 118 26 0 0

340 121 91 40 59 194 150 81 26 57 69 45 52 34
129 139 182 100 37 26 0 30 65 0 0 0 0 0

75 50 59 23 19 80 95 82 100 59 0 0 0 0

286 158 38 24 100 12 12 148 167 0 0 0 0 0
194 115 214 0 154 40 0 67 0 31 24 32 23 0

105 174 77 42 67 0 0 238 188 59 125 125 48 83

77 263 364 273 235 61 136 56 48 78 68 33 89 74
229 71 79 43 31 48 11 64 222 53 111 83 40 0

77 118 50 100 200 77 77 26 34 250 273 50 15 31

70 44 0 55 43 100 0 121 0 0 0 0 0 0
154 28 19 211 38 217 91 143 0 0 0 0 0 0

185 206 167 263 65 74 48 68 143 79 83 54 0 0

30 63 0 0 26 0 0 0 56 0 29 50 19 23
191 207 267 75 48 128 59 86 57 158 45 87 69 33

300 286 0 25 26 0 0 11 36 27 22 8 0 0

267 242 115 333 120 259 73 63 167 167 100 31 18 0
95 81 182 91 69 91 0 104 0 0 34 86 14 115

70 182 0 87 167 41 67 106 71 200 47 0 30 91

241 154 100 91 200 0 42 225 278 250 15 44 60 111
116 89 0 27 23 10 26 207 167 154 19 56 125 0

220 80 45 141 103 0 129 171 100 93 82 156 102 43

50 120 100 40 68 59 0 98 100 154 133 136 74 0
50 129 0 200 0 16 0 167 68 125 48 31 53 0

119 280 0 62 53 0 74 19 0 0 29 0 0 0

200 48 158 75 0 133 60 192 56 333 83 67 0 28
107 82 53 35 30 0 0 97 97 0 19 42 0 0

130 33 0 47 44 61 31 50 56 40 36 0 0 0

83 157 300 46 100 67 0 61 94 91 61 65 188 357

87 65 87 37 81 81 25 33 35 21 13 22 19 7

24 87 48 70 87 26 71 48 45 42 0 0 24 0
213 200 63 211 52 32 154 16 0 0 36 0 0 0

176 308 143 79 269 83 40 35 133 0 0 0 0 0

320 250 200 0 43 24 0 133 63 0 83 111 100 67
98 51 125 138 11 4 108 163 150 125 27 125 39 75

9 30 33 27 31 0 0 43 200 92 14 57 24 78

68 24 86 75 33 48 0 156 231 167 136 98 91 77
205 190 222 54 37 17 67 28 143 0 0 53 0 0

324 60 91 74 74 61 100 200 158 91 136 71 43 0

82 67 320 222 39 34 31 86 57 158 45 87 69 33
64 102 167 118 95 143 34 51 200 308 182 59 0 0

107 300 0 222 65 48 77 64 71 56 0 23 18 25

57 68 167 231 261 48 313 105 94 48 111 118 121 71
163 150 75 13 16 18 0 47 100 0 0 24 0 0

95 24 37 0 83 0 0 61 83 0 20 0 11 0

261 167 111 216 125 43 53 105 77 0 45 0 0 25
200 125 73 0 184 41 125 45 103 214 87 80 80 63

80 105 0 111 80 100 107 63 91 273 74 26 13 53

 194 133 222 59 38 41 87

 64 240 69 36 0 10 24

 29 95 0 0 0 45 0

 97 21 91 0 24 11 0

 130 107 34 62 20 12 23

 115 67 29 28 81 0 0

 57 34 33 0 30 44 0

 33 121 63 111 0 36 0

 17 43 0 57 68 78 31

 74 250 91 0 95 0 0

 51 91 182 91 28 0 0

 61 37 133 71 26 0 0

20

 52 53 43 0 74 0 0

 87 36 0 9 43 9 13

 188 68 15 58 104 48 63

