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A B S T R A C T 

Web-based rich client applications have emerged as a solid and popular approach in both web and 

native applications. Their capability to manage their own domain model and locally verify constraints 

provides a more responsive and robust user experience. This local model is often a subset of the 

application’s global domain model (GDM) that is managed on the server. Both ends should always 

manage their entities, relationships and constraints consistently between them. Designing such client 

model manually implies identifying the GDM domain elements and constraints that should also be 

present on the client and adapting each one of them if needed. This is a complex and error-prone task, 

and any additional modification to the server model requires reviewing the client side. In our opinion, 

all the information needed for automating the client model generation can be derived from the GDM 

and the set of entities involved in the client functionality. This work includes a formal description of 

a method that, from that initial information, combines model slicing and constraint analysis 

techniques to create the client domain model, and classifies the constraints according to their server 

independency. 
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1. Introduction 

Web-based rich client applications have become very popular and 

widespread. In contrast to classic web applications in which each 

interaction from the user involves a request/response call to the server (and 

the subsequent reloading of the whole page), rich clients are focused on a 

different interaction model. In order to improve user experience by 

reducing response times during interaction, a rich client downloads part of 

the object model from the server and manipulates it locally without having 

to notify every change [7]. Once the transformation is finished, it delivers 

the new version back to the server. This provides a more interactive and 

responsive user experience, reduces the client-server communication load 

and the perceived delay [4]. Because of this, the use of rich clients has 

become quite popular in different platforms, mainly as web applications for 

browsers or native applications for different smartphone operating systems. 

However, this step back to the classic client-server strategy involves 

some drawbacks from the design point of view that turns its development 

into a complex and error-prone task. During the download-transformation-

delivery cycle, the object model on the server can also be modified by 

different clients or processes. The transformations on the client can lead to 

inconsistencies with respect to the new state of the server object model. So 

every model constraint involved needs checking once the client object 

model is reintegrated into the server object model. 



2  

 

Designing the domain model of an application with such behavior 

usually involves using UML class diagrams as well as the OCL standard to 

define the constraints. The designer must delimit both the global domain 

model (GDM) —that will be located on the server— and the client domain 

model (CDM) —a GDM subset that must be replicated in the client 

application. That involves not only identifying the classes —something 

trivial—, but also the constraints that can be checked on the client [23], the 

way they must be checked (completely or partially), and again, which of 

them can be checked on the server side once the model is delivered back to 

the server. This constraint management is not trivial at all.  

The simplest strategy to face that temporal duplication of an object 

model subset would be delaying the constraint check until the object sub-

model is integrated back into the global object model. However, to 

guarantee a consistent local manipulation on the client —so that it can be 

reintegrated properly on the server while maintaining a responsive user 

experience— it would be desirable to check as many constraints as possible 

on the client, even when they are also present on the server [20][28]. This 

would lead to a more robust client and provide a more fluid user experience, 

since the client would detect and prevent incorrect actions without waiting 

for their reintegration onto the server. Therefore, the designer must analyze 

and adjust the GDM constraints to select and adapt those that can and/or 

must be checked in the client application.  

Generally, only a subset of the GDM classes will be needed on the 

CDM. So, firstly, the designer must decide how to adapt these GDM classes 

considering that some of their relationships are linked to other classes that 

are not required on the CDM. After that, the designer must identify the OCL 

constraints that can be checked directly in the client application, and which 

of them must be adapted or split up beforehand. For example, it is not 

unusual to have an OCL constraint that involves multiple classes, some of 

which can be beyond the scope of the GDM. In this case, the designer must 

decide if it may be adapted or ignored on the CDM [18]. 

In summary, the slicing of the GDM into a CDM requires a 

considerable design effort in tasks that are usually repetitive, tedious and 

error-prone. Furthermore, this partial model replication involves a 

considerably higher product maintenance complexity, which increases the 

workload and the risk of adding errors [17]. 

This work is based on the idea that all the information needed to design 

a robust and solid CDM can be deduced from the GDM. We propose a 

method that is based on the set of GDM classes required on the CDM, and 

a full GDM with its OCL constraints. It detects the overlapping between 

CDM and GDM, and classifies the CDM OCL constraints indicating (i) the 

elements they affect, (ii) which ones are directly verifiable on the CDM, 

(iii) which are not related to the CDM at all, and (iv) which could be adapted 

to fit on the CDM.  

This information would support the automation of the CDM design and 

its maintenance through the development cycle. It would help developers 

to design CDMs maximizing the local checking of GDM constraints insofar 

as possible. 

This paper presents the following contributions: 

• A formal description of UML class diagrams based on graphs.  

• A formal graphical notation using trees for OCL invariant 

constraints that focuses on the visualization of elements from 
the class model that it constrains. These structures are called 

“instance trees”. 

• A method that, from the abstract syntax tree (AST) of an OCL 

expression, generates an instance tree. 

• Based on the class diagram formalization, we define a model 

slicing technique to generate a CDM from a GDM, using the set 

of classes that are relevant to the client as slicing criteria. 

• A formal description, based on the instance tree notation, of a 

classification algorithm according to the constraint complexity 

level. 

• A formal description based on the instance tree notation, of a 

classification algorithm according to server dependency for the 

constraints of the CDM generated. 

These methods are formally described based on graph theory, so that 

they can be not only applied to UML class models and OCL constraints, 

but also to any other modeling or notation technique as long as they can be 

formally described as a graph —such as entity-relationship diagrams. 

The rest of the paper is structured as follows. Section 2 explores the 

problems associated with designing rich clients, and provides a running 

example that will be used throughout the paper. Section 3 reviews the state 

of the art in different areas relevant to our work. Section 4 details our 

approach to address rich-client-design related issues. Sections 5 and 6 

provide a formal description for both UML class models as well as OCL 

constraints that will be required for the formal description of our method. 

This is done in sections 7 and 8, where we formally describe a method to 

automatically generate a rich client domain model from an existing server 

model, and the formal foundation for the automatic classification of 

constraints. Section 9 briefly describes the working prototype we developed 

based on this method. Section 10 addresses the limitations of the current 

proposal. Section 11 closes this paper with conclusions and future work. 
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Figure 1: SDM for a coach company that manages booking offices, managers, ticket sales, passenger information, trips and coaches. Both the class diagram and 

the OCL constraints are managed from the server. 
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2. Motivation 

In this work, the term “rich client” is used to refer to any kind of 

application —regardless of the technology used in its development or the 

platform where it is executed— that (i) is able to communicate with a server 

to send and receive data, (ii) contains its own logic that allows it to 

manipulate data locally, and (iii) offers interactivity without having to 

reload the UI or notify every single action or modification that occurs 

locally back to the server. As stated before, a client being able to both work 

with the data retrieved from the server and locally check constraints related 

to it would require, in most cases, a design where part of the CDM is a 

GDM subset. There may be other elements and constraints for the client 

model that have no relation at all to the GDM, but in this paper, when the 

term CDM is used without further specification, it refers exclusively to the 

part of the client model overlapping with the GDM. 

This paper includes a running example to illustrate the challenges 

associated to managing constraints on rich clients. This model shown in 

Figure 1 is an adaptation of an example provided by Shaikh et al. [29]. The 

model is a simplification of a coach trip management system that includes 

the organization of trips, offices, managers, coaches, passengers, and ticket 

sales. This model includes several OCL constraints that should be respected 

at all times. This running example does not focus on providing the most 

complete approach towards that type of system, but rather on showing 

clearly the main problems found when designing domain models for rich 

clients. It also contains specific features relevant to our method and it is 

simple enough so that the processes described are easy to understand and 

follow. 

Let us consider the possibility of implementing a client that the coach 

drivers could use to verify tickets and passengers as they arrive for their 

trip, as shown in Figure 2. 

The domain model elements of this client would be based on the ones 

present on the GDM. Also, all the constraints eligible to be checked over 

the CDM are already present on the GDM. The verification of GDM-related 

constraints has to be done on the server; even if a previous verification has 

been made on the client —for security and consistency reasons—, since the 

data could have been compromised during the communication [20]. 

Although this scenario implies a design that has classes and constraints 

repeated on both client and server, it is not enough to select and copy the 

client-relevant elements from the GDM. Instead, they need to be analyzed 

and adapted by the developer. 

Regarding the class model for the CDM, some of the relationships that 

on the GDM where linked to classes will cause conflict on the client. The 

developer needs to decide what to do depending on the type of relationship: 

association, aggregation, composition, or dependency. Some of these 

relationships may be eliminated and ignored on the CDM, which implies 

deciding how this affects the class, which of the methods present on the 

class are yet justified, or on the contrary, which could be ignored on the 

CDM. On the other hand, the degree of coupling in some relationships can 

be tight enough to justify the inclusion of the participant classes into the 

CDM, even though they were not initially selected for the client. 

The problem becomes more complicated when the OCL constraints 

come into play. As part of the model, they must also be validated on the 

CDM. They are originally represented as predicates over the GDM, and 

depending on their composition, they can affect one or more elements of 

different types. The more elements involved in the constraint, the more 

complicated its adaptation to the CDM will be. We can classify constraints 

according to the elements they constrain. 

• Attribute constraints: They constrain a single attribute of a class. 

Constraint 1 from the GDM (Figure 1) would be an example of 

this. 

• Object constraints: They constrain several attributes of the same 

class. Constraint 2 from the GDM (Figure 1) involves 

comparing two attributes of the same object. 

• Class constraints: They constrain several objects of a single 

class. Constraint 3 from the GDM (Figure 1) checks that there 

are not two ticket objects with the same ID. 

• Domain constraints: They constraint objects of different classes. 

Constraints 4, 5, 6 and 7 from the GDM (Figure 1) all involve 

objects from several classes.  

Domain constraints affect several classes, but eventually, some of them 

may not be required on the CDM. In those cases, the developer must decide 

(i) whether just to delegate that constraint to the GDM, (ii) if there is a way 

to divide different parts of the predicate (so that at least part of the constraint 

can be checked on the client), or (iii) if it can be checked on the client by 

retrieving certain data from the server. 

All these tasks and decisions must be taken by the developer, and are 

dependent on the information present on the GDM. Any task that requires 

duplicating logic, and eventually adapting it depending on the information 

Figure 2 Class diagram for the CDM. It would be desirable to be 

able to verify on the client as many constraints from Figure1 as 

possible. The designer must analyze carefully all existing 

constraints and verify when this is possible. 
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from the previous model, is an error-prone, tedious and difficult to 

accomplish task. Furthermore, these problems are even worse considering 

that in the development cycle, changes are frequently made to the domain 

model, which will also affect other models that are depending on it. Besides, 

different parts of a system may be carried out by different teams, adding a 

whole set of new problems, such as communication problems. 

3. Background 

3.1. Rich Client Architecture 

There have been several works proposing the reorganization of client-

server responsibilities to increase the benefits in user experience and the 

robustness of rich clients. The proposals by Zhang [33] or Leff and Rayfield 

[16] state that the mainstream approaches for rich clients do not exploit their 

full potential. Typical design architectures too often delegate too much 

functionality to the client. The consequences of this approach go beyond a 

worse user experience —for example, overly complex architectures or 

development cycles [33], or applications that do not respond well in 

situations where the server is not available at all times [16]. Although the 

local management of robustness and constraints on the client is encouraged 

by these proposals, no specific means to facilitate this task are suggested. 

Enterprise solutions for client side validation such as Struts1, jQuery 

Validation Plugin2, or Simfatic3 are limited to simple form checking and 

are not designed to cover the complexity that client side business rules 

demand. There are, however, some proposals that try to fill this gap. Hallé 

and Villemaire [8] propose a way to describe contracts for web services, 

and a monitor that checks whether these contracts are being violated 

breached before the request is sent to the server. That way, they mean to 

avoid the resource expenses on the server and the delay waiting for 

responses that will fail. Heidegger and Thiemann [9] suggest an attribute-

oriented language to define pre- and post-conditions in JavaScript. 

All these proposals provide means to help the developer define and 

implement the constraints on the client. However, in all of them it is up to 

the developer to decide which constraints are relevant on the client. 

Some authors acknowledge the need to have coordinated constraints in 

both client and server sides. Liang et al. [16] put forward a system in which 

validations are defined in a XML file on the server, managing constraints 

that involve a combination of several attributes in the client forms (attribute 

and object constraints). This automates the implementation of part of the 

client side constraints, and improves the maintenance process. However, 

they explicitly left out of their scope the most complex and problematic 

class and domain constraints. Schmidt et al. [17] designed a rule engine for 

the client side based on the RETE algorithm, where the constraints are 

defined on a file on the server. While they support the definition of complex 

constraints and even their validation by the server, the specific constraints 

affecting the client must be manually specified. Louwsma et al. [18] 

propose a framework based on UML and OCL to define constraints for GIS 

rich clients. These constraints must be manually implemented later on, and 

are delegated to the server side, acknowledging that classifying and 

 

 

 
1 Apache Struts 2 Validation: 

http://struts.apache.org/development/2.x/docs/validation.html. 

Accessed: 2016-02-24. 

evaluating some types of constraints on the client side would be useful as a 

future work. 

Apart from these, some other approaches try to address these problems 

automatically. The proposals closest to our work are focused on distributing 

the domain logic between client and server. They analyze an existing 

application and automatically redistribute its components between client 

and server, with resulting tools such as J-Orchestra [31], Coign [11], or the 

platform designed by Yang et al. based on Hilda language [32]. These 

solutions are motivated by some of the same problems that we are facing, 

but are focused on optimizing existing applications following different 

criteria —such as memory usage, client hardware capacity, or user demand 

of certain functionalities over others. None of them are focused on making 

the most of rich client capabilities with optimal user interface response and 

robustness. 

3.2. Model Slicing 

The idea of splitting up a GDM into different parts is not new. In fact, 

it has been evidenced as a useful approach in many tasks, such as 

identifying sets of dependent components, better visualization of the 

different parts of the model, or evaluating smaller parts of a complex 

system. This kind of techniques is known as model slicing, a breaking-down 

process to extract and identify relevant model parts or related elements 

across a model corresponding to a specific slicing criterion [30]. 

Some works propose the use of these techniques for better visualization 

of big and complex models, trying to automatically identify different 

subparts that can be presented visually while being cohesive enough, 

according to different criteria selected by the user. Kagdi et al. [11] use the 

selection of an initial set of the slice as a slicing criterion. Their method 

determines the dependent elements that should be showed alongside the 

initial set. Kollman and Gogolla [13] suggest extracting metrics from the 

model to detect the level of coupling and dependency of the different 

classes, and then identifying the submodels automatically. Lallchandani 

and Mall [15] define a method to analyze different model views, both static 

and behavioral, in order to generate an intermediate Model Dependency 

Graph that gathers all the information about how different elements from 

all views are related. This intermediate graph is used to generate submodels 

for different types of UML diagrams (class, sequence, …) related to the 

slicing criteria elements. 

Aside from better visualization and understanding of complex models, 

slicing techniques are useful to optimize model validations, as Saikh et al. 

[27] propose. A model using Class diagrams and OCL constraints can be 

validated on design to detect inconsistencies in the design before starting 

its implementation. Unfortunately, these techniques are computationally 

heavy in terms of time, and scale up very poorly as the models get more 

complex, even if the new additions do not affect the constraints to be 

checked. The solution that Saikh et al. propose is to use each OCL 

constraint as a slicing criterion to generate only the submodel for the class 

diagram that is required to evaluate that specific constraint. In this way, the 

model validations are applied for each constraint, but over a much smaller 

model, improving the efficiency and requiring much less time to complete. 

2 jQuery Validation Plugin: http://jqueryvalidation.org/. Accessed: 2016-

02-24. 
3 Simfatic Forms: http://www.simfatic.com/. Accessed: 2016-02-24. 
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As can be seen, there are proposals for dividing class diagrams using a 

set of core classes as slicing criteria, but these do not take into account that 

the resulting model has to be functional. They are intended to improve the 

visualization of the model, and not to generate new design elements. 

Although their algorithms serve as inspiration, under some circumstances 

necessary submodel elements are left out —such as parent classes—, so 

using them to generate a CDM from a GDM would require some adjusting. 

Furthermore, none of these proposals provides slicing criteria strategy 

over OCL constraints. Although Saikh et al. use OCL constrains as their 

main slicing criteria, they generate a submodel for that constraint. However, 

our aim is precisely the opposite, to find relevant and proper OCL 

constraints from a submodel of a class diagram. Nevertheless, their 

proposal is useful since their analysis of the elements affected by an OCL 

constraint can be used to infer whether that constraint is valid for a given 

submodel or not. 

3.3. Domain Model Formalization and Alternative Representations 

Visual representations of models have proved to be an expressive and 

intuitive way of representing information about the components of a design, 

their topology, and their interactions. On the other hand, constraints are 

often represented using languages based on predicate logic. The most 

widespread example is the UML standard, with visual representations for 

static and dynamic views of the model, and OCL predicates to represent its 

constraints. 

UML is a complex standard designed for flexibility, but lacks a formal 

description [19] that is essential to describe algorithms for automated model 

analysis and validation, metrics extraction, enabling transformations, or as 

a general representation that can be applied to different standards that share 

some similar features (as may be class diagrams and entity relationship 

diagrams). 

There are several proposals for the formalization of UML diagrams, 

but they are limited to specific parts of the language. So their formalization 

is tailored to the specific area of study that encloses their target issues. For 

instance, Liang et al. [22] provide a formalization of class, state and 

collaboration diagrams using graph theory, aiming to be compatible with 

prover tools such as PVS. With the same requirement —namely, being 

verifiable by existing tools—, Kyas et al. [34] formalize both UML models 

and OCL constraints. Kuhlmann and Gogolla [14] provide a transformation 

of both into relational logic. 

While models defining software topology, structure and behavior have 

been mainly diagram-based, constraints tend to be usually represented by 

languages based on first-order logic and set theory. Although this allows 

for accurate and precise constraint definitions, as predicates get more 

complex, it is harder to visualize the elements involved in the evaluation of 

a constraint. Many proposals for addressing this drawback using graph-

based representation of constraints have been suggested. Constraint 

diagrams [12] get inspiration from Venn diagrams and graph-like directed 

edges to represent the objects taking part in the invariants, their cardinalities 

and relationships. This concept was later extended and evolved into Spider 

diagrams [10]. Conceptual graphs [21] use different types of nodes and 

edges, labeled with logic predicates to define a model´s structure, behavior 

and constraints. Collaborations [3] seek to provide a visualization of the 

navigation paths required to evaluate a constraint, with elements to visually 

describe if a navigation is to a single object or an object collection. They 

would help developers to get a sense of the scope of the object graph 

required to evaluate a constraint, and simultaneously, define the logic 

predicate that applies to it separately. Arendt et al. [1] provide a nested 

graph-based proposal, where navigations are translated as attributed graphs. 

while Boolean operations are applied directly to these constructs. Bottoni 

et al. [2] have also proposed language-independent visual representations 

of patterns to analyze conflicts and dependencies that are usually limited to 

textual representations. Rensink [26] also provides a graphical 

representation of first-order logic based on edge-labeled graphs. 

Most of these proposals try either to analyze and automate the 

validation of models, or to provide a better visualization of the constraints. 

Formal descriptions of UML models based on graph theory can aid us in 

formally defining the slicing process to automatically generate a CDM. In 

addition, the graphical representation of constraints is useful to formally 

define the structure pattern of the instance model, the cardinality of their 

relationships and the hierarchy that an OCL constraint requires to be 

evaluable. In this way, we can map if an OCL constraint is evaluable for a 

given CDM, or (in case it is not) effectively determine which missing 

elements prevent the constraint from being evaluable. This would provide 

useful information to determine how to adapt these constraints to the client.  

To achieve this, a formal way of describing the elements affected by 

an OCL expression would allow us to address the challenges associated 

with knowing when a constraint can be evaluated and when it cannot. 

Although there are already proposals on how to represent predicates 

graphically, for our method we require only a simple representation free 

from the additional information about the operations that are going to be 

evaluated over it, which is not required for the set of challenges analyzed 

on this work. 

4. Proposal 

The main goal of this work is to provide technical support and assist 

the designer insofar as possible during the GDM slicing process. We 

propose a method consisting of three stages. The scope of the method is 

currently limited to OCL invariants, excluding other types of constraints 

such as preconditions or postconditions.  The input is an existing GDM with 

its OCL constraints, and the designer’s selection of the classes from the 

GDM that should be present on the client. With this information, a proper 

CDM will be automatically generated, including the constraints that are 

locally verifiable and an additional classification and information about 

them that can aid the designer in further decisions beyond the limitations of 

the automatic method. 

During the first stage, the class model and the relationships between 

classes will be analyzed. The cardinalities of the relationships are 

considered as implicit constraints contained within the diagram. To ease the 

analysis of the constraints related to the model, these relationships are used 

to generate explicit predicates that will be added to the rest of the model 

constraints. This will support a homogeneous processing of all of them. 

In a second stage, model slicing techniques will be applied. A specific 

CDM will be generated from the GDM, based on the sets of classes that the 

designer requires to be present on the client. 

The final stage identifies which constraints are related to the newly 

created CDM model and classifies them according to their level of 

dependency with the GDM. It also generates information for each 

constraint defining how many objects from each class, and attributes it 

requires to be checked. This information is intended to be easily accessible 

for the designer, who can use it to decide how to make further manual 

adaptations to the model, if needed. 

These processes will be described based on formal notations, so that 

the algorithms are described in a precise way independent of any specific 

notation or technology. This also has the advantage of providing a more 
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general solution, since any diagram-based notation that can be expressed in 

a similar formal way may benefit from this method, such as entity-

relationship diagrams or domain-driven design diagrams, as well as 

different graphical or predicate-based languages for constraint definitions. 

4.1. Generation of Explicit Constraints from Class Diagrams 

Class diagrams contain many implicit constraints that are expressed 

graphically without the need for additional languages such as OCL 

constraints. This approach makes these constraints easily understood and 

intuitive for designers and developers. However, when trying to apply 

constraint automatic analysis, having two different sets of representations 

(graphs and predicates) for different types of constraints makes things more 

complicated. In order to solve this, every relationship present on the class 

diagram is analyzed, and an OCL constraint generated for each of the 

cardinalities present. OCL constraints are also generated for composition 

relationships to ensure that there is compliance with the relationship 

semantics. 

Once all the constraints of the model are in predicate form, the 

simplifications proposed by Cabot et al. [5] are applied to reduce the 

amount of expressions in further analysis. 

4.2. Model Slicing 

The model slicing process can be divided into two main stages [28]. 

During the first stage, the goal is to determine the core elements relevant to 

the slice —in our case, the CDM. And during the second one, it is to 

iteratively detect the elements that are closely coupled to these core 

elements, and automatically add them to the slice. 

With the appropriate slicing criterion, we make things easier for the 

designer, since they will only need to describe their core needs, and the rest 

of the related elements will be deduced automatically. 

In our case, the core elements will be the class names from the GDM 

that will be required on the client. After this, we will detect which 

relationships and additional classes are closely coupled to those core classes 

and, therefore, will form part of the slice. With this approach, classes 

outside the initial set determined by the designer may be automatically 

included in the final slice. And elements from classes such as methods may 

be deleted if they do not meet specific criteria for the CDM. This would 

produce a valid domain model that is a subset consistent with the server 

model.  

There is no check performed over the initial selection by the designer. 

For any selection made, the method will ensure that the appropriate 

elements coupled to the selected ones are included. It is the designer’s 

responsibility to appropriately select the core client type they intend to 

model.  

The next step in the model slicing process is to determine which of the 

server constraints belong to the client slice. 

4.3. Classifying Constraints by Dependency Level 

Once we have a GDM subset, some of the constraints defined for the 

server could also be checked at runtime independently on the CDM, while 

others cannot. Three potential server dependency levels are identified for 

each constraint: (i) server-dependent, (ii) potentially server-dependent, and 

(iii) server-independent. 

OCL constraints that refer to elements that do not exist on the CDM 

are not relevant. They are server-dependent constraints and could never be 

evaluated on the client side. Constraints that only refer to elements present 

on the client can be potentially server-dependent, or server-independent. If 

a client retrieves objects from the server asynchronously on demand, and a 

constraint requires accessing several different object instances to be 

verified, but not all the required instances are currently downloaded on the 

client, it is a potentially server-dependent constraint. That constraint will 

not be completely verifiable until the client retrieves the appropriate 

information from the server. If a constraint can always be checked without 

having to communicate with the server at all, we consider it a server-

independent constraint. For instance, constraints that require a single object 

to be checked are always completely independent constraints. If the object 

is on the client, it can be verified without further communication. 

To detect the level of dependency of an OCL constraint for a given 

client, we need to evaluate its expression and detect the elements it 

constrains. It is not enough to know the classes affected by it. We also need 

to know which properties are accessed, and the minimum number of objects 

required to evaluate the constraint —given that a constraint that requires 

several objects to be checked may be potentially server-dependent. 

4.4. Formalization 

The OCL language is aimed to define constraints that any instance of 

the object graph defined by the class model must satisfy. However, the 

definition of these constraints is built by referring to the elements of the 

class model that defines its structure, but the verification of the constraints 

is done over the object graph state at any point in time. 

For an OCL constraint to be verified, it requires a minimum number of 

objects of a certain class, with a specific topography of relationships linking 

them in the object graph. In other words, any constraint could verify a set 

of potential object graphs that share certain features. If we want to identify 

which of the constraints defined for the GDM are verifiable on the client, 

we need a precise and unambiguous representation of the generic features 

of the type of object graph necessary for a specific constraint to be 

evaluated. Knowing this, if a class model can produce that variety of object 

graphs, then the constraint is verifiable in that class model. 

UML class diagrams and OCL constraints have been evidenced as 

powerful tools for model definition. Nevertheless, they are not well suited 

to easily represent different aspects of the problem we are dealing with, nor 

to reason about them, or to provide a logical foundation to classify 

constraints. We require a formal description to tackle this problem 

unambiguously. And it must be easy to translate from standards into 

formalization and the other way around. This formalization should focus on 

the representation of OCL constraints, but since they refer to the class 

diagram, a formal way to describe it would also be required. 

The graphical representation of UML class diagrams is based on nodes 

that contain different types of attributes, and various types of relationships 

between them that also may contain attributes. This kind of representation 

is easily converted into graphs with attributed nodes and edges. Regarding 

the constraints, in order to identify the level of dependency, it is necessary 

to know not only the elements from the diagram that they refer to, but also 
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the number of potential instances of each type involved, and what the 

relationships are like. The notation should be a single representation able to 

express a variety of potential valid object graph states. 

The formal description should work with the standard UML and OCL 

approach, but should be general enough to be compatible with other related 

scenarios or alternative representations where a graph structure is bounded 

by predicate constraints. Similar scenarios can fit our proposal and be 

formalized in the same way, such as entity-relationship diagrams. 

Approaches like domain-driven design define elements such as aggregates, 

value objects and entities that can be graphically expressed in ways that 

could also be adaptable to this formalization. 

The notation we will use will be mainly based on set and graph theory. 

We will define the elements in a set using the SET={a, b, c, …} notation. 

Most of the sets we will define will consist of tuples, that will use the ∀ 

element∈SET element = (aelement, belement) notation; where the elements of 

the tuple in lower case represent single values, and the elements in upper 

case represent sets. When referring to the value that has a specific attribute 

of an element that is a tuple, we will use the element[attribute] notation, 

while the number of elements present on a set will be represented by |SET|. 

5. Formalization of UML Class Models 

A class diagram can be formalized as an attributable directed graph, 

where each class is a node and each class property is an attribute of the 

node. The association, composition and inheritance relationships can be 

represented as edges with attributes that specify type, name and cardinality 

constraints of the relationship. 

The formalization used to describe our method considers only attribute 

properties for the classes, and will ignore association classes or other 

relationships like “uses”. Describing other elements such as methods would 

not make the description of our method any clearer and would result in a 

more convoluted explanation. And once the method is made clear, taking 

them into account would involve the same principles. Other authors have 

developed more complete formalizations to describe different aspects of 

UML [19][22][34][14], and their insights could be easily adaptable to our 

method, should a more complex and complete description be needed. 

A class diagram will be represented by a directed graph with attributed 

nodes. It will have two edge types (for association and inheritance 

relationships) which can also be attributed to describe the cardinality 

constraints of the relationship. 

A node will have attributes representing the attributes of the class, and 

each one of them will have a name and a type. A type is a set defining a 

range of values, for example, INTEGER is the set of integers, STRING is 

the set of all possible character strings and BOOLEAN is the set of TRUE 

and FALSE values. TYPE is the set of sets containing all possible existing 

types, TYPE = {INTEGER, STRING, BOOLEAN, DOUBLE, ...}. An 

ATTRNAME set is defined to refer to the set of all valid attribute names of 

the different elements, which will avoid confusion with the STRING type 

used as a type. 

CLASS is the set of all possible classes. Each c element of the CLASS 

set is a tuple ∀ c∈CLASS, c = (nc, Ac) tuple; nc being an ATTRNAME 

element containing the name of the class and Ac a set of pairs a representing 

the class attributes. Each attribute pair consists of a name that identifies it 

within the class, and a type, ∀ a∈Ac, a = (na, ta) type, where na∈ 

ATTRNAME, ta∈TYPE. 

Figure 3: Formal description of the class diagram depicted in Figure 1. It includes a Vcd node set, an edge set that is the union of the Acd 

associations sets and the Icd inheritance relationships set. Only some elements of the sets are shown. 
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A class diagram can be represented as a graph Gcd = (Vcd, Ecd) graph 

where Vcd is a set of nodes representing the classes and Ecd is the set of 

edges representing the relationships. Each c element of the Vcd set is an 

element of the CLASS set, Vcd⊆CLASS. Ecd is a set of edges representing 

the relationships between the classes. Ecd is the union of the sets of the two 

edge types, Ecd = Acd ∪ Icd where Acd is a set representing associations and 

Icd is a set representing inheritance relationships.   

Acd is a set representing the associations between classes. Each element 

of the set is a tuple ∀ a∈Acd , a = (na, oa, da, la, ua, ca) tuple where na∈ 

ATTRNAME contains the name of the relationship, oa∈Vcd and da∈Vcd are 

its origin and destination classes, la∈INTEGER and ua∈INTEGER ∪ * its 

lower and upper bounds representing the cardinality of the relationship (the 

symbol * represents a “many” cardinality for the upper bound), and 

ca∈BOOLEAN indicates if it is a composition relationship or not. 

Icd is a set representing the inheritance relationships between classes. 

Each element of the set ∀ i∈Icd, i = (ci, pi) is a pair that contains the child 

and parent classes, ci∈Vcd and pi∈Vcd. 

Figure 3 shows part of the description of the class diagram shown in 

Figure 1 formalized as a graph. 

6. Formalization of OCL constraints 

A constraint is a predicate that must be true for any state of the object graph. 

We can break down a constraint into two fundamental parts: the structure 

of the elements that it constrains, and the predicates that are evaluated over 

those elements. An OCL constraint always has a context, the base class of 

the instance over which it will be evaluated. Within the body of the 

constraint, this base instance is referenced using the ‘self’ variable. OCL 

expressions provide means to navigate from that instance through the 

associations and properties described on the class diagram, allowing 

flexibility to describe navigation paths that define an object graph structure. 

It does not describe a single fixed object graph, but a set of potential object 

graph states that share certain features reached through a specific navigation 

path. If an object graph is consistent with the scope of a constraint, it can 

be evaluated. If not, the constraint is ignored because it does not have the 

minimum elements required to calculate its validity. 

For example, a constraint that verifies the age of a person is not relevant 

in a state where no person instances have been created yet. A constraint that 

compares two person instances’ age cannot be evaluated unless we have a 

minimum of two person instances in the object graph. When navigating an 

association in OCL, the returning element of that expression can vary 

according to the cardinalities described in the class diagram. A relationship 

with cardinality one will result in a single object; a cardinality with a ‘many’ 

relationship will result in a collection, and several consecutive navigations 

of collections will result in a bag. 

There have been proposals to visualize these expressions as 

collaborations [3], Spider Diagrams [10], patterns [2] or nested models 

[26]. These approaches try to describe constraints in a visual way, but their 

goal is to include information about the structure and the predicates over 

them in the same diagram. For our purposes, we want to separate both 

 

 

 
4 http://www.eclipse.org/articles/printable.php?file=Article-

HowToProcessOCLAbstractSyntaxTrees/index.html 
5 http://www.omg.org/spec/OCL/2.4/ 

aspects of a constraint, so that we can analyze the elements affected by the 

constraint separately from the predicate. 

Most of the information required to understand the elements affected 

by an OCL invariant are on its expression. We can represent an OCL 

expression with an abstract syntax tree (AST) based on the OCL metamodel 
45. The task of obtaining the AST of an OCL expression is eased by existing 

modeling tools such as the Eclipse Modeling Framework 6  or Dresden 

Tools7.  

The resulting AST includes information about both the structural 

elements involved in the constraint and the operations performed over 

them. The method presented in the next sections is not affected by the 

specific logic operations involved in the evaluation; only the elements 

required for the operations are relevant. Due to this, most of the information 

represented by the AST is not relevant to us, and using that structure in the 

formal analysis of the elements affected by the constraint would only make 

our task harder. 

Our approach is, assuming a valid OCL invariant, to process its AST 

to generate a new and much simpler tree structure that contains only the 

core information relevant to our method. We will refer to this structure as 

an instance tree. Since an invariant will always come from a single ‘self’ 

instance of the context class (as described in section 7.3.3 of the OCL 2.4 

specification5), the rest of the instances evaluated will be reached by 

navigating their associations. We can represent the elements required to 

evaluate a constraint as a tree with attributed nodes and edges where the 

root node will represent the ‘self’ instance. Each node of the tree will be 

called instance node, and will represent a set of instances of a specific class, 

that is reached through a certain navigation path from the root. The edges 

that connect the instance nodes tree will have the same information as the 

associations that are defined in the class graph, including the association 

cardinality. The range of the potential amount of elements contained in each 

instance node can be assessed looking into the cardinality values defined 

for the different associations needed to reach that node, as defined in the 

following chapters.  

The aim of this representation is to serve as an intermediate structure 

to help to identify the elements required by the logical predicate to be 

evaluated. So the nodes should include additional information such as 

which attributes are used in the constraint and which variables are used to 

refer to the same class type in the same OCL expression. 

It is also important to keep track of the navigation path followed 

through the instances required to evaluate the constraint. This might be the 

case in constraints where a cycle is generated. For example, in an invariant 

with Passenger as context, the following path could be used: 

self.passengerTrips.passengers. This structure would not produce a graph 

with an edge that goes back to the initial “self” node, but a tree where the 

root node would be a Passenger type (self), then a Trip-type child and 

finally another Passenger-type child down the hierarchy. With this 

structure, we can understand the path required to evaluate the constraint. 

 It is also important to keep track of the number of variables used to 

refer to the same class type on the same OCL expression, since it is an 

indication of several instances of the same class required to evaluate the 

expression. For instance, if a predicate has two different variables, both 

6 https://www.eclipse.org/modeling/emf/ 
7 http://www.dresden-ocl.org/ 
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Person class, to compare their age attribute, it is an indication that at least 

two Person instances are required to be able to evaluate said predicate.  

We will define the INSTANCENODE set as the set of all possible 

instance nodes in the tree. Each vi element of the INSTANCENODE set is 

a tuple ∀ vi∈ INSTANCENODE, vi=(cvi, Vvi, Avi, CHvi) where cvi∈CLASS 

is the instance class, Vvi is a set of ATTRNAME elements that represents 

different variables that may represent that set of instances. Avi is a set of 

pairs representing the attributes, equal to the one described for class graphs. 

Each attribute of Avi is a pair ∀ a∈Ain, a=(na, ta) where na∈ ATTRNAME 

is the name of the attribute, and ta∈TYPE is its type. The instance nodes 

Figure 4: Instance trees for each constraint described for the GDM 
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will only contain the attributes referred to in the OCL expression, in order 

to identify the ones that are being evaluated on this expression, and not all 

the existing ones defined for that class on the class graph. 

Each element of the set CHvi is a tuple representing each child node of 

the instance node and the edge connecting them, ∀ chvi∈CHvi, chvi=(dch, 

nch, lch, uch) where dch∈INSTANCENODE is the child node, 

nch∈ATTRNAME is the name of the edge connecting both nodes, 

lch∈INTEGER is the lower cardinality constraint of the edge, and uch∈ 

INTEGER ∪ * is the upper cardinality constraint of the edge. 

As shown in Figure 4, the instance tree structure only represents the 

elements needed to verify the constraint predicate, but does not provide the 

logical predicate itself. Although many approaches and different notations 

could be used to address the formal description of the predicates over this 

type of structure, it is currently a matter out of the scope of the method 

presented in this work. 

 

6.1. Generating Instance Trees from OCL Expressions 

An AST for an OCL expression will have several types of nodes 

representing the different parts of the expression, such as operations, 

property calls, arguments, variable declarations, etc. 

Our method to generate the instance tree from the AST consists in 

traversing the AST in post-order. For each node of the tree, its children are 

always processed first, and no node is traversed until all its children have 

been already processed. As we traverse these AST nodes, we will be 

generating a separate structure of instance nodes that will be our instance 

tree. Figure 5 shows the AST for the constraint EnoughSeats, with the 

traversal order. 

With this approach, when reaching some of the terminal nodes of the 

AST, we will start generating provisional instance nodes. With this method, 

several provisional instance nodes can be generated from each child of an 

AST node. When all the children of an AST node have been traversed and 

have generated their own provisional instance nodes, these nodes can be 

merged appropriately if they meet certain conditions. When the last node 

of the AST is traversed (its root), all the provisional trees generated through 

each branch are merged into the final result. Figure 6 shows this process for 

the AST described in Figure 5. 

The way provisional instance nodes are created and merged depends 

on the type of the AST nodes reached. First we will define the process 

involved in merging two instance nodes. Once this operation is stablished, 

we will describe how the provisional nodes are created and merged 

depending on the type of AST node that is being traversed. 

We will define a merge function that will receive two instance tree 

nodes vit as parameters, and return a single instance tree node as a result. 

 

( , )a b mmerge v v v→  

(1) 

For two instance nodes to be able to merge, they must be of the same 

class, and share at least one variable name.  

 

, , [ ] [ ] [ ], [ ] /a b a vi b vi va a vi vb b i va vbv v INSTANCENODE v c v c a v V a v Vv a a =     =  

(2) 

If they share these initial conditions, the newly merged instance node 

will have an attribute and variable sets equal to the union of those same sets 

from both nodes.  

 

,, , [ ] [ ] [ ], [ ] [ ] [ ]a b m m vi a b vi m vi a vi b viv v v INSTANCENODE v A v Avi v A v V v V v V = =  

(3) 

The set of child nodes of the merged instance node will be equal to the 

union of the child sets of both nodes.  

 

,, , [ ] [ ] [ ]a b m m vi a vi b viv v v INSTANCENODE v CH v CH v CH =  

(4) 

Finally, if the two nodes share a child that has the same type and edge 

name, the merge function will be called recursively to merge both children. 

This merging process is applied only to the direct children of the two 

merged nodes. If two of these child nodes are merged, and they also have 

children, those will be treated recursively. It is important to notice that this 

way, it is possible to produce a tree that has several nodes of the same type, 

as explained in the previous section. 

 

(5) 

Once the merging process has been stablished, we can describe how 

and when the different instance nodes are created and merged as the AST 

is traversed. We will identify the AST node types that will have an effect 

on the instance tree generated. This method will only describe a few of the 

node types that represent the OCL metamodel. The ones not present here, 

are just traversed without any effect. 

We will define the ASTNODE set as the set of all possible AST nodes, 

where an AST node astn is a tuple astn=(tastn, Aastn, CHastn), where 

tastn∈ATTRNAMES is the AST node type from the OCL metamodel, each 

element of the Aastn set is an attribute describing certain properties of the 

node ∀ a∈Ain, a = (na, ta) where na∈ ATTRNAME is the name of the 

attribute, and ta∈TYPE is its type and the CHastn set contains all its 

children, which are a pair ∀ch∈ CHastm, ch = (n, astc) where n is the name 

of the edge joining parent and child n∈ATTRNAMES and 

astc∈ASTNODE is the child node. 

We will describe each AST node type relevant to our method. It is 

important to note that the following list does not include all possible 

attributes or child types, but rather the main attributes and potential child 

references that are relevant to our method. 

 

-Variable = (Aastn{type, name}, CHastn{initExpr(optional)}) 

-Property=( Aastn{type, name)}) 

-Operation=( Aastn{type, name)}) 

-TypeLiteralExp=( Aastn {type}) 

-PropertyCallExp = (Aastn{type}, CHastn{source, property}) 

-IteratorExp = (Aastn{type}, CHastn{source, body}) 

-OperationCallExp = (Aastn{type}, CHastn{source, operation, 

args(optional)...}) 

 

We will define the processNode(astn) function, where astn is the AST 

node to process. Its result is the root instance node of the provisional 

instance tree pv∈INSTANCENODE generated after processing this AST 

node and all its children. 

( ) vprocessNode astn p→  

The processNode function will behave differently depending on the 

type of AST node being processed. Since there are multiple possibilities 

while managing each node type, we will stablish some previous 

considerations to simplify the notation. 

While processing an AST node, it may be required to check the 

provisional instance trees that have been generated by the previous 

processing of each of the current AST node children. We will define a 

[ ], [ ], [ ], [ ] /

[ ] [ ] [ ] [ ] ( , )

a m vi cha a ch b m vi chb b ch

a ch b ch cha vi chb i cha chb

ch v CH v ch d ch v CH v ch d

ch n ch n v c v cv merge v v

    

=  = →
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getChildInstanceNodes() → Pv function that will provide a Pv set with the 

root instance nodes of the provisional instance trees generated by each of 

the children of the AST node being processed. In some cases, we may need 

to get the specific instance tree generated by one specific child of the current 

AST node being processed. For those situations, we will also define a 

getChildInstanceNode(edgeName) → pv, where edgeName is the name of 

the edge connecting to the AST child node. The processNode function will 

always return the provisional instance tree generated until now. 

When defining the different function behaviors for the different AST 

nodes, we will use the v variable to denote the newly generated instance 

node. 

During the process, some information may be required from the class 

graph associated to the constraint (for instance, association cardinality 

bounds). We will refer to the graph representing the class diagram as Gcd. 

Each instance node has always at least one variable name that will 

identify it. Not all AST nodes that refer to instances have an attribute that 

can be used to identify that instance, but it is rather referred to through its 

navigation path. In those cases, we will define a generateImplicitVar() →

ATTRNAME function that will generate a unique variable name for that 

instance.  

Also, while processing some provisional instance trees, we will come 

across situations where we have a root instance node with a chain of 

children, where each one of them has only a single child. We will refer to 

this type of structure as an instance chain. In some of these situations, we 

will need to access the last child of that hierarchy. We will define a 

getLastChild(vi) → vl, function that will traverse the received node to the 

last child of the chain, and return it. On other occasions, all children will 

have to be collected, from the root to the last child in the instance chain 

hierarchy. For that purpose, we will define a 

collectAllChainInstanceChildren(vi) → Vi function that will return the set 

of all the child nodes below that node. We will also need to define a function 

that collects all the direct children from a single node, but not any other 

children further down the hierarchy, collectAllDirectChildren(vi) → Vi. 

The two first functions are only intended to be used with nodes that have 

an instance chain structure, and are never used in cases where a regular tree 

with several branches can be produced. Similarly, the last function is only 

used in scenarios where the structure produced is a single node with only 

one level of children. 

After all these previous considerations, we start defining the behavior 

of the processNode function for each AST node type. 

A variable AST node will generate a single instance node v, with the 

same class as the AST type and a variable name equal to its name. This 

provisional instance node is returned within the Pv set. 

 

processNode(Variable) → pv: 

v∈INSTANCENODE/  

v[cvi]=variable[type] ^  

variable[name] ∈ v[cvi] ^ 

  pv=v 

 

A TypeLiteralExp AST node will generate a single instance node v, 

with the same class as the AST type. TypeLiteralExp does not include a 

variable to refer to the instance, so we add an implicit unique variable to 

the instance node. 

 

processNode(TypeLiteralExp) → pv: 

v∈INSTANCENODE/  

v[cvi]=variable[type] ^  

v[Avi] ∪ generateImplicitVar() ^ 

pv=v  

 

A PropertyCallExp AST node will always have two children: a source 

and a property. The property AST node does not generate any instance 

nodes when processed, but can be consulted from this node. Due to the 

nature of the AST node types allowed as source for PropertyCallExp, the 

provisional instance node generated by it will always be a single instance 

chain. If the property child of this node is of a primitive type, an attribute 

with the property name and type will be added to the last child of the 

instance chain generated by the source. If the property child of this node is 

a class, a new instance node with an implicit variable name will be created, 

and will be added as a child to the last instance node of the instance chain 

source. The child edge will have the same name as the property, and will 

have lower and upper cardinalities equal to the edge with that name on Ecd

∈Gcd. 

 

processNode(PropertyCallExp) → pv: 

vp1∈ getChildInstanceNodes(), 

if property[type] ∈TYPE →  

getLastChild(vp1)[Avi] ∪ avi=(property[name], 

property[type]) ^ 

pv=vp1 

if property[type] ∈CLASS →  

v∈INSTANCENODE,  

(  a∈Acd / a[na] = property [name]) ^ 

(  ch∈CHvi / CHvi = getLastChild(vp1) [CHvi]) →  

v[cvi]=property[type] ^  

v[Avi] ∪ generateImplicitVar()^  

ch[dch]=v ^ 

ch[nch] = property[name] ^  

ch[lch] =a[la] ^  

ch[uch] = a[uch] ^ 

pv=v 
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Figure 5: AST for the EnoughSeats OCL expression. The numbers represent the traversal order in which the processNode(astn) function 

will act. 

Figure 6: Representation of the generation of provisional instance nodes for the EnoughSeats OCL constraint. The 

nodes are generated while traversing the AST tree described in Figure 5. The numbers represent the order in which the 

nodes are generated and modified after the AST node is traversed by processNode(astn). On processing the AST nodes 9 

and 15, it can be observed how several provisional instance nodes generated by their children are merged. The resulting 

tree after processing the AST node 19 is the final result for the EnoughSeats OCL constraint. 
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An IteratorExp always has two AST children, a source and a body. 

Once processed, the source will always retrieve a single instance chain (we 

will call it source instance chain) as a provisional instance node. The 

instance nodes of the body provisional instances set will always be of the 

same classes as the ones present in the source instance chain. When an 

IteratorExp is processed, the body instances set are always merged with the 

source instance chain, but the way of doing this varies depending on the 

type of AST node found in the body of the IteratorExp. 

If the body is an OperationCallExp type, the source root node is 

compared to each root of the different body instance nodes, and when it 

finds one of the same class, the body node merges with the source node. 

This process is repeated with each child of the source instance chain, until 

all the nodes from the body are merged. This will always happen, since all 

the classes of the body nodes exist in the source instance chain. 

If the body node is of any other AST type, the body will always retrieve 

a single instance chain. And in that case the root of the body instance node 

becomes the child of the last element of the source instance chain. 

 

processNode(IteratorExp) → pv: 

sv=getChildInstanceNode[source],  

if body[type] ∈OperationCallExp →  

Bvb = getChildInstanceNode[body], 

 ∀ vs ∈collectAllInstanceChainChildren(sv),  

 ∀ bv∈Bvb, ∀ vb ∈ collectAllDirectChildren (bv),  

 vs[cvi] = vb[cvi] → vs = merge(vs, vb) ^ 

 pv = sv 

else →  

slc = getLastChild(svs), 

bv = getChildInstanceNodes[body], 

slc = merge(slc, bv), 

pv = sv 

 

Finally, the OperationCallExp AST node usually has a source child 

(which will always retrieve an instance chain), an operation child, and an 

indeterminate number of argument children. In most cases, the operation 

type is irrelevant to our method, so it can be ignored, but there is an 

exception. If the operation node is an “allInstances” type, the 

operationCallExp is processed differently. Although on the OCL 

metamodel the allInstances is treated as an operation, we will treat it as a 

special type of navigation path, that connects the ‘self’ instance to a set 

containing all the instances of a certain class. This simplifies the way of 

representing this operation´s semantics for the purposes of our method. 

When it is an allInstances operation, there are no arguments, only the 

operation source and type. In those cases, we create a provisional instance 

node with variable name self and class equal to the context, and another 

instance node with an implicit variable name and the same class as the 

source root node. The name of the edge connecting them will be 

“Class:allInstances”. Its lower cardinality bound will be 0 and the upper 

cardinality bound will be ‘many’ (*).  

In any other case, the operation type is ignored, and all the provisional 

instance nodes received from processing all the children are merged when 

they are of the same type and share a variable name. 

processNode(OperationCallExp) → pv: 

if operation[name] =”allInstances” →  

 v∈INSTANCENODE, 

 vs∈getChildInstanceNode(source), 

ch∈v[CHvi], 

 v [cvi] = context ^ 

 v[Vvi] ∪ “self” ^ 

ch[dch]=vs ^ 

ch[nch] = “vs[cvi]:allInstances” ^  

ch[lch] =0 ^  

ch[uch] = * ^ 

pv=v 

else →  

v∈INSTANCENODE, 

 ∀ Va ∈ getChildInstanceNodes(),  

 ∀ Vb ∈ getChildInstanceNodes(),  

( 

  (va[cvi] = vb[cvi]) ^  

  (  ∀ vara ∈va[Vvi],  ∀ varb ∈ vb[Vvi]) / 

va[vara]=vb[varb]) 

) → va = merge(va, vb) ^ 

V[CHv] = va ^ pv=v 

Figure 1: Resulting graph for the CDM after applying the model 

slicing from a class selection ={RegularTrip, Coach, Passenger, 

AdultTicket, ChildTicket} 
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We must take into consideration how to manage let expressions in 

invariants. With a let expression, variables can be defined and later used 

within the constraint body. A let expression has two parts, a “let” 

expression, and an “in” expression. The first one enables the definition of a 

variable and initializing it, while the second part is the body of the 

constraint that uses the previously defined variable. In our method, we need 

to manage how this variable is represented in the instance tree. Our solution 

when a let expression is used, is to modify the AST tree for the OCL 

expression before the whole process begins. Every time the variable defined 

by the “let” is used in the “in” part, instead of only including the variable 

name in the AST, we insert the full expression that initializes it. When, 

later, the AST is traversed to generate the Instance Tree and it reaches a 

“let” node, the “let” branch that defines the initialization of the variable is 

not traversed. Since we have inserted that expression already into the “in” 

branch that defines the body of the constraint whenever the variable is used, 

we can just traverse that branch generating the proper Instance Nodes. This 

simplifies the method while respecting the semantics of the let expression. 

The rest of AST node types just give their parent access to the 

provisional instance trees generated by their child nodes. The whole 

generation of the final instance tree is a process that always terminates, 

since the AST is finite, and the traversal of each AST node is done once in 

post-order. After traversing each AST node, a single provisional instance 

tree is generated by it. Since the traversing of the AST is in post-order, when 

reaching a node with children, they have already been processed; each one 

having generated a provisional instance tree. After processing a parent AST 

node, all the provisional Instance trees produced by its children will be 

merged according to the specific type of AST node, as described above. 

The merge function always produces a single instance tree, so the result 

after processing an AST with children is also a single Instance tree. In all 

cases, the complete traversal of all the AST nodes will finish at its root 

node, where the result is a single instance tree, with a root instance node 

that will be the ‘self’ variable with the context of the constraint as its class. 

The process of traversing the AST is easily implementable in any object-

oriented programming language by using the visitor pattern, which can be 

used to execute different logic depending on the AST node type reached 

through the traversal. 

7. Description and Formalization of the Model Slicing 

7.1. Method Description 
For the slicing process, we need to define the slicing criterion that will 

define the core elements that must be present on the slice. After that, the 

second step of the slicing process is recursively inferring what other 

elements of the original model must also be added to the slice. 

The designer will select, from the GDM, the classes that will be 

required for the client. From this information, a first CDM iteration will be 

created containing that initial set of classes, and the relationships that exist 

between those classes. After this, the second step of the process will 

iteratively increment the CDM depending on the type of relationships 

between those classes on the GDM and the classes not present in the 

selection made by the designer. 

• Association, aggregation or uses relationships: When, on the 

GDM, two classes hold any of these types of relationships, but, 

on the CDM, only one of both ends is present, the class present 
on the CDM will not contain that relationship. If the designer 

does not select a certain class on its initial slice, it means that it 

is not needed, so all relationships connected to those classes are 
lost, regardless of the navigability defined for it. 

• Inheritance relationships: A parent class does not require its 

child classes to make sense by themselves, but a child class is 

partly defined by its parent and depends on it. Whenever the 
CDM contains a class that, on the GDM, is a child in an 

inheritance relationship where the parent is not present on the 

CDM, that class and its inheritance relationship will be 
automatically included to the CDM. This same principle applies 

to interface relationships. We do not take into consideration the 

opposite approach, getting the child classes of a parent class, 
even in the case of abstract classes. A parent can have many 

child relationships, and the designer may not require most of 

them on the client. It is the designer’s responsibility to select the 
specific classes required. The slicing process only adds the 

elements required for that initial selection to make sense. 

• Composition relationships: A composition defines a strong 

relationship that implies a tight bond between both classes and 

their lifecycles. A component class may be independent of its 
container class, but a container class requires its components to 

make sense. If this were not the case, the relationship should 

probably be modelled by using an aggregation or association. 
When the GDM holds a composition relationship, but, on the 

CDM, only the container is present, those classes and 

relationships are also added to the CDM. 

• Methods: As we mentioned in Chapter 5, our formalization will 

not include the description of the methods of UML classes to 
provide a formalization that is cleaner and easier to understand. 

But informally, it also should be mentioned that in the cases 

were a CDM class contains a method that, in its signature, refers 
to classes only present on the GDM, that method would be 

deleted from the class. We consider that if those classes are not 

present on the CDM, that method will not be required on the 

client. It is important to notice that this approach takes only into 

account the dependencies made evident on the class diagram 

through the method signature. There could be subtler 
dependencies involved, not easy to describe unambiguously for 

each method using only class diagrams. That would require 

another whole level of analysis. 

 

7.2. Formalization of the Model Slicing Process 

The slicing criterion will be a selection of the classes of the original 

GDM that must be present on the client ClassSelection ⊆ Vcd. The slice 

will be another graph Gcd’ = (Vcd’, Ecd’) where we will define how the 

Vcd’ sets of classes and the Ecd’ relationship are generated in a recursive 

way, with a basic clause, inductive clauses and an external clause. 

The basic clause means that the class selection is a subset of the set of 

classes from the CDM diagram ClassSelection ⊆ Vcd’ ⊆ Vcd. The attributes 

of the classes in Vcd’ are the same as the ones in Vcd. In the formal definition, 

if two classes have the same name, they also have the same attributes: 

 

    , ’ ’,  ’    ’ ’c ccd cd c cc V c V c n c n A c A c    = →  =     (6) 

 

E’ consists of relationships that are equal to the association and 

inheritance relationships which both, origin and destination classes, are 

present in V’: 

   

   

 

 

 

 

 

(7) 

Once we have the basic elements of the slice, the inductive clauses 

describe how the relationships defined in Ecd add new elements to Gcd’. For 
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each element present in Vcd’ that is the child part of an inheritance 

relationship in Ecd, its relationship and parent class will also be part of Vcd’:  

 

 ’ [ ’, [ ] ]   ’cd i cd i cd cdi I c V i p V i Ii   →      (8) 

 

In the same way, for each element present in Vcd’ that is the origin of a 

composition relationship in Ecd, the relationship and the destination class of 

it will also be part of V’: 

(9) 

The final external clause states that nothing is in Gcd’ unless it is 

obtained from the basic and inductive clauses. 

If we wanted a client with a class selection ClassSelection = 

{RegularTrip, Coach, Passenger, AdultTicket, ChildTicket} the result 

would be as shown in Figure 7. The parent classes Trip and Ticket would 

be added during the process iterations, as well as their relationships to the 

rest of the classes. 

8. Description and Formalization of the Constraint 

Classification 

8.1. Method Description 
Once the CDM and GDM are defined, we need a way of classifying the 

constraints in order to help the designer to understand which of them may 

be checked on the client. The classification considers all three levels of 

server dependency based on the constraint features, the class diagram for 

the server and the resulting class diagram for the client produced after the 

model slicing process: 

• Server-independent: All the elements needed to check 

attribute and object constraints are present in the instance itself, 
so those constraints are always server-independent as long as the 

class of the object involved exists on the CDM. 

• Potentially server-dependent: Class constraints and domain 

constraints where all the classes involved are present on the 

CDM are potentially server-dependent. With only the 
information from the class diagrams and the constraint is not 

possible to know in advance how the object graph will be 

managed between client and server. The client may not always 

contain a copy of all the objects of a certain class present on the 

server required to evaluate the constraint. In those cases, 

evaluating those constraints on the client would require 
retrieving the missing objects from the server. Identifying 

constraints in this situation may help the developer to 

understand their situation, and decide how to manage them.  

• Server-dependent: When a constraint present on the GDM 

involves instances from classes that are not present on the CDM, 
that constraint will never be evaluable on the client. 

This classification is not only useful to automatically include the server-

independent constraints onto the CDM, but it also helps the developer to 

understand the relationship between constraints and client, and analyze if 

there is a way to make the potentially server-dependent constraints viable 

on the client, or modify them to fit on the client. 

 

8.2. Formal Description for Generating Explicit Constraints from 

Class Relationships 

A class diagram contains many implicit constraints regarding the 

cardinality of the relationships between different classes. To be able to 

analyze and classify all constraints in a coherent way, all of them should be 

formalized in the same way. We present here a way of transforming the 

cardinalities of the class graph into the instance trees that represent those 

constraints. 

The class graph has a Acd set that contains every association and 

composition relationship. For each of the elements of that set, an instance 

tree will be created describing the cardinality constraint:  

 

 ,cda A it IT      (10) 

 

Each instance tree created for the a relationship will be generated based 

on the following rules. As described in Section 5, each a relationship is a 

tuple a = (na, oa, da, la, ua, ca). And each instance tree is a it=(nit, vit) as 

described in Section 6. Every it element generated for each ac element will 

be generated as follows. The constraint will be named after the relationship: 

nit = na. The instance tree root node will be of the same class as the 

relationship origin class, and will only have a single child node of the same 

class as the relationship destination: 

 

 it , [ ] / [ ] [ ] [ ] [v  ] cd vi it vi it vi a ch vi aa A it ch v CH v c a o d c a d →  = =     

 (11) 

 

The single edge between the root and its child chvi=(dch, nch, lch, uch) 

will have the same name and cardinalities of the relationship, where: nch=na 

lch=la uch=ua.  

By having all the constraints in the same notation, the metrics and 

classification criteria that will be described in the following sections 

will also consider the relationships between classes and their 

cardinality. 

 

8.3. Formal Metrics: Minimum and Maximum Number of 

Instances, Classes and Attributes 

Using instance trees to represent constraints has the benefit that the 

same notation holds information about both, the constraint and the 

cardinality constraints usually present on the class diagram. This allows 

performing operations over it to retrieve metrics about the minimum 

number of object instances necessary to evaluate the constraint, the number 

of different classes involved, or the attributes required. It also lets us know 

if evaluating this constraint requires always a limited number of instances, 

or if it may potentially operate over an infinite number of elements. 

These metrics are required to be able to classify the constraints 

according to their complexity and their level of dependency upon the GDM. 

We will define some of the functions required to obtain these metrics. 

First, we need to know, for a given constraint, what is the minimum 

number of instances it requires to evaluate its predicate. It is also important 

to know which is the maximum number of instances that can be potentially 

evaluated on that constraint.  

The minI(vi) and maxI(vi) functions are recursive and receive an 

INSTANCENODE element vit∈IT, and calculate the metric for its node 

and its child nodes. The result obtained for each child is multiplied by 

the cardinality (the lower bound on the minI function, the upper bound 

on the maxI function) of the edge connecting it to the parent node. By 

passing the IT root node to these functions, the function is called over it 

and all its children until the final result are obtained. 

 

( )  0  min | [ ] min ( [ ]) ]| , [iii vi vi chi vi ch vi i vi ito nI vv ch I ch d ch v Cl HV == +  

  (12) 

  

( )  0  max | [ ] max ( [ ]) ]| , [iii vi vi chi vi ch vi i vi ito nI vv ch I ch d ch v Cu HV == +      

(13) 

  [ ]   ,

[ ’  a[ ’ 

, /

]  ] ’

acd cd a

a cd a cd cd

c V a A a o c a c true

a o V d V c A

    =  =

 →   
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Another important metric is the number of different classes the instances 

belong to. This set is obtained by recursively visiting all the instance nodes 

in the tree and joining all its class types cvi. This will result in a set with 

all the classes involved in the constraint. 

   (14) 

Finally, it is also useful to know the number of attributes involved in 

the constraint. To obtain the set of attributes we also visit each child of the 

instance tree recursively, and join all the Avi attribute sets included in each 

node. 

   (15) 

It is important to note that while minI(vi) and maxI(vi) return an integer 

as a value, c(ví) and a(vi) return a set containing classes or attributes in each 

case. These basic metrics about the constraint provide a reference to the 

complexity and nature of each one of them, and understanding the number 

of instances, classes and attributes involved in a constraint, it is possible to 

determine if a class model will be able to produce object graphs evaluable 

by that constraint. This would allow us to identify the server constraints that 

can be tested on the client. 

The resulting constraint metrics described on the example GDM are 

shown in Figure 8. 

Constraint 1: 

  minI(Con1) = 1 

  maxI(Con1) = 1 

  c(Con1) = {Passenger} 
  a(Con1) = {Passenger:age} 

Constraint 2: 

  minI(Con2) = 1 
  maxI(Con2) = 1 

  c(Con2) = {Coach} 

  a(Con2) = {Coach:type, Coach:noOfSeats} 
Constraint 3: 

  minI(Con3) = 1 

  maxI(Con3) = * 
  c(Con3) = {Ticket} 

  a(Con3) = {Ticket:number} 

Constraint 4: 

  minI(Con4) = 2 

  maxI(Con4) = 2 

  c(Con4) = {ChildTicket, Passenger} 
  a(Con4) = {Passenger:age} 

Constraint 5: 

  minI(Con5) = 1 
  maxI(Con5) = * 

  c(Con5) = {Passenger, Ticket} 

  a(Con5) = {Passenger:age} 

Constraint 6: 

  minI(Con5) = 3 

  maxI(Con5) = * 
  c(Con5) = {Trip, Coach, Passenger} 

  a(Con5) = {Coach:noOfSeats} 
Constraint 7: 

  minI(Con6) = 2 

  maxI(Con6) = * 

  c(Con6) = {BookingOffice, Coach,    VendingMachine, 

Ticket} 
  a(Con6) = {Coach:noOfSeats} 

Figure 8: Metrics for the constraints described in Figure 4 

8.4. Formalization of Constraint Classification 

As we stated before, we will classify constraints according to two 

different criteria. The first one is a quantitative classification that will assign 

a type to each constraint according to the variety of elements that it 

constraints. We described the four types informally in Section 2; attribute, 

object, class and domain constraints. We will proceed now to describe how 

to use the metrics extracted from a constraint to classify them. 

• Attribute constraints: A constraint is an attribute constraint if it only 

affects a single instance and a single attribute. This means that both 

the minimum and maximum number of instances must be one, and 

the size of the attribute set for the graph must also be one. Checking 
the number of classes is not required, since there is a single instance. 

 

 : ( ( [ ]) 1) ( ( [ ]) 1) (| ( [ ]) | 1)i i iAttribute minI IT v axI IT v a IT vm=  =  =  

 (16) 

• Object constraints: Object constraints also affect a single instance, 

but they require the evaluation of several attributes. Therefore, the 
only difference from attribute constraints is in the size of the attribute 

set. 

 

 : ( ( [ ]) 1) ( ( [ ]) 1) (| ( [ ]) | 1)i i iObject minI IT v axI IT vm a IT v=  =    

 (17) 

 

• Class constraints: Class constraints affect several instances, but all 

belonging to the same class, so it is required to check the size of the 

classes set to verify that is 1. 

 

 : ( ( [ ]) 1) (| ( [ ]) | 1)i iClass maxI IT v c IT v  =   (18) 

 

• Domain constraints: Finally, domain constraints are those that affect 

more than one class. In this case, the only thing to verify is the class 

set size. 
 

 :| ( [ ]) | 1iObject c IT v   (19) 

 

The second classification requires knowing both the CDM and GDM, 

to classify it according to their server dependency level.  

• Server-independent: Any constraint that is an attribute or object 

constraint and which class is present on the client is always 

independent. 

 

: ( ( [ ]) 1) ( ( [ ]) 1) ( ( [ ]), )i i iServerIndependent minI IT v maxI IT v c c IT v c Vcd=  =     

 (20) 

• Potentially server-dependent: When a constraint requires several 

instances, and the classes of all of them belong to the CDM, it is a 
partially dependent constraint.  

 

 : ( ( [ ]) 1) ( ( [ ]) )i iPotentiallyServerDependent maxI IT v c c IT v c Vcd     

 (21) 

• Server-dependent: When a constraint refers to elements that are 

only present on the server, they are never evaluable on the client. 
 

 : ( [ ]) / 'i cdServerDependent i c IT v i V     (22) 

   

Using these criteria, the constraints for our example would be classified as 

follows in Figure 9:  

Constraint 1: attribute, server-independent 

Constraint 2: object, server-independent 
Constraint 3: class, potentially server-dependent 

Constraint 4: domain, potentially server-dependent 
Constraint 5: domain, potentially server-dependent 

Constraint 6: domain, potentially server-dependent 
Constraint 7: domain, server-dependent 

Figure 9: Final classification of the GDM constraints. 

( ) ,0  ( ) [ ] ), [ ] ( ii ch ch vi vi i vvi i to inv c d d ch chc v c CHi v=    =

( ) ,0  ( ) [ ] ), [ ] ( ii ch ch vi vi i vvi i to inv a d d ch cha v A CHi v=    =
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This results in: constraints 1 and 2 being completely verifiable within the 

CDM; constraints 3, 4 and 5 are potentially server-dependent for this given 

CDM. Depending on how the data is managed in the system as a whole, 

these constraints could be checked on the client without further 

communication with the server, or require retrieving missing information 

from it before doing the verification. If the client stores a complete and 

updated copy of the part of the GDM object graph that is relevant to the 

CDM, then the verification can be done without further communication 

with the server. If the client works requesting information on demand, this 

could be different. In any case, this classification aids the designer to 

understand the challenges that a constraint poses, and may also help them 

to consider how data should flow between client and server. 

Finally, constraint 6 is server-dependent. Although it refers to classes 

present on the CDM, it also refers to VendingMachine and BookingOffice 

which are not. This constraint should belong to the GDM only. 

9. Testing the Method: Ecore Prototype 

To verify the validity of this method, we developed a prototype in Java 

based on the Eclipse Modeling Framework8, where we used the Ecore 

metamodel to define and manipulate the domain models. As input elements, 

the prototype receives the class model from the server, its OCL constraints, 

and the list of classes that are relevant to the client. The output is an Ecore 

file with the CDM, the OCL constraints that are completely independent to 

be used on the client, and a text file containing the metrics and classification 

extracted from each constraint, so that the designer can use this information 

to decide how the potentially dependent constraints may fit on the client, or 

which modifications can be done to adapt some of them to the client. 

The tool works in 5 stages. First, it generates the implicit constraints, 

as described in section 8.2, adding those newly generated OCL constraints 

to the ones provided by the designer. Then it analyzes all the constraints to 

extract their metrics and make the first classification (attribute, object, class 

or domain). After this, the CDM is generated, and its information is used in 

combination with the metrics previously extracted to classify them 

according to their level of dependency for that given CDM, adding the 

completely independent ones to an OCL file to be used directly with that 

class diagram. This file can be later updated by the designer after analyzing 

the potentially dependent constraints that have been temporarily left aside. 

The tool also generates documentation automatically, including the AST 

for each OCL constraint, as well as its instance tree. 

This tool serves as a proof of concept showing that the application of 

these formal methods is possible with existing and well-known tools. It also 

illustrates how a full domain model can be created easily by a designer 

using as an input only a list with the client-relevant classes. Since this is 

only a prototype, it is still limited in its functionality. Nevertheless, the 

metrics it captures to generate the CDM will allow us to expand its 

functionality in the future and provide a more solid support for client 

development. A more detailed description of this Java tool can be consulted 

in the original paper [25]. 

 

 

 
8 https://eclipse.org/modeling/emf/ 

10. Current Method Limitations 

The method is focused on OCL invariants, excluding other constraint 

types such as preconditions or postconditions. We hope to be able to build 

upon this initial foundation to include other constraint types in the future. 

Currently, we focus on the design aspects of the development cycle, 

and more specifically, on the domain model and its constraints. The whole 

development cycle of such clients presents challenges that are not addressed 

by our work. Working at the level of class diagrams also offers some 

limitations in certain cases. In modern distributed applications, RESTful 

web services [27] are one of the main paradigms adopted by the industry. 

In those cases, the state is usually maintained on the client; and the server 

acts mainly as an intermediary between client and database. Although there 

may not be a server domain model, there is still a data model on the 

database, which can have its own integrity constraints, and can be related 

to the client domain model. Although our current method is heavily based 

on the UML standard and may not yet fit this scenario, OCL constraints and 

UML models can be related to relational databases [6]. It is also important 

to notice that the formal approach we undertake makes our method general 

enough to be adapted to other ways of representing models and restrictions, 

and adjusting it to entity-relationship models. Database integrity constraints 

would be an interesting path to follow. 

One important aspect of our method is that it simplifies the designer‘s 

responsibilities, relieving them from the need to model the CDM while 

checking compliance with the server model. With the method presented 

here, the only task required would be to identify the core client-required 

classes. Still, this approach has room for improvement. In the slicing 

process, we define certain rules on how additional elements can be added 

to the initial selection. This way, the core classes can use any other element 

that is tightly coupled to them, even if the designer did not select them 

initially. However, in some cases this approach might not be enough. As 

mentioned in Section 7, there may be specific domain models where further 

coupling exists for that specific domain, or other dependencies not easily 

modelled by means of class diagrams only. In addition to this, it is possible 

for the designer to inadvertently omit some classes required for the client 

they intend to model. And while the solution would be consistent with their 

selection, it may not be the model they intended to build, requiring them to 

make the selection again to generate a new model. 

We believe this type of limitations would be very interesting to 

address, but the level of analysis to act on such cases is out of the scope of 

the currently proposed method. We believe this work is an interesting step 

towards providing a foundation for easing the development of robust rich 

clients. 

11. Conclusion and Future Work 

Designing a rich client able to maintain server consistency while being 

as independent as possible is a challenging task. It requires a careful study 

of the domain model and the constraints present on the server and a 

thoughtful adaptation. If done right, this allows the client to evaluate many 

of the constraints defined locally for the server, providing a better user 

experience. However, a task involving several interdependent diagrams, 
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and logical predicates that must be consistent on both sides is a tedious and 

error-prone task, that gets even harder as the development cycle evolves 

and server changes affect the client. 

Once the designer knows which server elements (i.e. classes) are 

fundamental for the client domain model, the rest of the information 

required is already present on the global domain model. Instead of 

burdening the designer with the task of analyzing how to adapt these classes 

and constraints to the client, we propose to use the existing information 

from the global domain model to generate it automatically. 

We provide a formal approach to describe our method, so that it can be 

implemented through any existing technology. We chose a graph-based 

approach that fits into UML class diagrams and OCL constraints. And since 

it is general enough, other diagram based standards can also be adapted. 

Our formal descriptions include a graph-based approach for class diagrams, 

an instance-tree-based approach for constraints, and a way of automatically 

generating instance trees from the abstract syntax tree of an OCL 

expression. We also describe formally how to calculate different metrics 

over the constraints, based on instance trees and logical predicates, and use 

them to classify them. We describe a method that successfully generates a 

valid client domain model based on the global domain model after the 

designer selects the client-required classes . These metrics are used to detect 

all the constraints that can be evaluated on the client, as well as the ones 

that should not be evaluated on the client. The constraints that can be 

evaluated on the client but may require communication with the server are 

detected, and metrics about the elements affected by them are provided. We 

have managed to put these formal proposals into practice through a Java 

tool based on the Ecore standard. 

In addition to addressing the limitations described in the previous 

section, this work is open to many possible improvements. We are able to 

successfully detect potentially server-dependent constraints, but right now 

it is up to the designer to decide how to deal with them. One possible 

approach towards these constraints is breaking down a constraint into 

several ones that affect fewer elements, so that at least part of its predicate 

can be checked locally on the client.  

Another possibility where communication is required, is to make a 

design between client and server where information is retrieved to the client 

in the most efficient way for the evaluation of those specific constraints. 

This efficiency could be achieved by identifying and retrieving only the 

essential objects from the server. It could also be achieved by pre-

calculating on the server the values required for the evaluation of the 

constraints on the client. That approach would avoid the need to send 

complete subparts of the object graph. These solutions, however, may be 

complex and require a thoughtful analysis of the constraints involved. A 

challenging task that may get even more complicated as the development 

cycle progresses and changes are applied to the domain model and its 

constraints.  

Currently, our method is focused on the constraint-affected elements, 

but not the predicates that will be calculated over them. By analyzing the 

operations involved in those predicates, further automated decisions could 

be made. The domain model elements required for these tasks could be 

automatically generated, which would further improve our approach and 

relieve the designer from even more decisions.  

Since this method is particularly focused on detecting the dependency 

level between client and server elements, this approach could also be 

adapted to analyze how to create proxies that manage the communication 

between client and server appropriately, and aid in maintaining client 

independency while easing the evaluation of constraints. 

Our current proposal helps the designer to generate rich clients 

consistent with the server automatically, making the design effort more 

agile, robust and adaptable to changes during development. It also avoids 

the common problems associated with designing an architecture where 

many of its elements are interdependent, and provides metrics and 

information about how the different elements are related so that the 

designer can make better informed decisions. 
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