

* Corresponding author. Tel.: +34 985103397

E-mail address: quintelamanuel@uniovi.es

Peer review under responsibility of xxxxx.

xxxx-xxxx/$ – see front matter © 2013 xxxxxxxx. Hosting by Elsevier B.V. All rights reserved.

http://dx.doi.org/xxxxxxx

Journal of Systems and Software

Domain Model Slicing and Constraint Classification for Local Validation
on Rich Clients

Manuel Quintela-Pumaresa*, Daniel Fernández-Lanvina, Alberto-Manuel Fernandez-Alvareza

aComputer Science Department, University of Oviedo, Oviedo, Spain.

A R T I C L E I N F O

Article history:

Keywords:

Constraints

Domain modeling

Rich client

UML

OCL

Model slicing

A B S T R A C T

Web-based rich client applications have emerged as a solid and popular approach in both web and

native applications. Their capability to manage their own domain model and locally verify constraints

provides a more responsive and robust user experience. This local model is often a subset of the

application’s global domain model (GDM) that is managed on the server. Both ends should always

manage their entities, relationships and constraints consistently between them. Designing such client

model manually implies identifying the GDM domain elements and constraints that should also be

present on the client and adapting each one of them if needed. This is a complex and error-prone task,

and any additional modification to the server model requires reviewing the client side. In our opinion,

all the information needed for automating the client model generation can be derived from the GDM

and the set of entities involved in the client functionality. This work includes a formal description of

a method that, from that initial information, combines model slicing and constraint analysis

techniques to create the client domain model, and classifies the constraints according to their server

independency.

© 2016 xxxxxxxx. Hosting by Elsevier B.V. All rights reserved.

1. Introduction

Web-based rich client applications have become very popular and

widespread. In contrast to classic web applications in which each

interaction from the user involves a request/response call to the server (and

the subsequent reloading of the whole page), rich clients are focused on a

different interaction model. In order to improve user experience by

reducing response times during interaction, a rich client downloads part of

the object model from the server and manipulates it locally without having

to notify every change [7]. Once the transformation is finished, it delivers

the new version back to the server. This provides a more interactive and

responsive user experience, reduces the client-server communication load

and the perceived delay [4]. Because of this, the use of rich clients has

become quite popular in different platforms, mainly as web applications for

browsers or native applications for different smartphone operating systems.

However, this step back to the classic client-server strategy involves

some drawbacks from the design point of view that turns its development

into a complex and error-prone task. During the download-transformation-

delivery cycle, the object model on the server can also be modified by

different clients or processes. The transformations on the client can lead to

inconsistencies with respect to the new state of the server object model. So

every model constraint involved needs checking once the client object

model is reintegrated into the server object model.

2

Designing the domain model of an application with such behavior

usually involves using UML class diagrams as well as the OCL standard to

define the constraints. The designer must delimit both the global domain

model (GDM) —that will be located on the server— and the client domain

model (CDM) —a GDM subset that must be replicated in the client

application. That involves not only identifying the classes —something

trivial—, but also the constraints that can be checked on the client [23], the

way they must be checked (completely or partially), and again, which of

them can be checked on the server side once the model is delivered back to

the server. This constraint management is not trivial at all.

The simplest strategy to face that temporal duplication of an object

model subset would be delaying the constraint check until the object sub-

model is integrated back into the global object model. However, to

guarantee a consistent local manipulation on the client —so that it can be

reintegrated properly on the server while maintaining a responsive user

experience— it would be desirable to check as many constraints as possible

on the client, even when they are also present on the server [20][28]. This

would lead to a more robust client and provide a more fluid user experience,

since the client would detect and prevent incorrect actions without waiting

for their reintegration onto the server. Therefore, the designer must analyze

and adjust the GDM constraints to select and adapt those that can and/or

must be checked in the client application.

Generally, only a subset of the GDM classes will be needed on the

CDM. So, firstly, the designer must decide how to adapt these GDM classes

considering that some of their relationships are linked to other classes that

are not required on the CDM. After that, the designer must identify the OCL

constraints that can be checked directly in the client application, and which

of them must be adapted or split up beforehand. For example, it is not

unusual to have an OCL constraint that involves multiple classes, some of

which can be beyond the scope of the GDM. In this case, the designer must

decide if it may be adapted or ignored on the CDM [18].

In summary, the slicing of the GDM into a CDM requires a

considerable design effort in tasks that are usually repetitive, tedious and

error-prone. Furthermore, this partial model replication involves a

considerably higher product maintenance complexity, which increases the

workload and the risk of adding errors [17].

This work is based on the idea that all the information needed to design

a robust and solid CDM can be deduced from the GDM. We propose a

method that is based on the set of GDM classes required on the CDM, and

a full GDM with its OCL constraints. It detects the overlapping between

CDM and GDM, and classifies the CDM OCL constraints indicating (i) the

elements they affect, (ii) which ones are directly verifiable on the CDM,

(iii) which are not related to the CDM at all, and (iv) which could be adapted

to fit on the CDM.

This information would support the automation of the CDM design and

its maintenance through the development cycle. It would help developers

to design CDMs maximizing the local checking of GDM constraints insofar

as possible.

This paper presents the following contributions:

• A formal description of UML class diagrams based on graphs.

• A formal graphical notation using trees for OCL invariant

constraints that focuses on the visualization of elements from
the class model that it constrains. These structures are called

“instance trees”.

• A method that, from the abstract syntax tree (AST) of an OCL

expression, generates an instance tree.

• Based on the class diagram formalization, we define a model

slicing technique to generate a CDM from a GDM, using the set

of classes that are relevant to the client as slicing criteria.

• A formal description, based on the instance tree notation, of a

classification algorithm according to the constraint complexity

level.

• A formal description based on the instance tree notation, of a

classification algorithm according to server dependency for the

constraints of the CDM generated.

These methods are formally described based on graph theory, so that

they can be not only applied to UML class models and OCL constraints,

but also to any other modeling or notation technique as long as they can be

formally described as a graph —such as entity-relationship diagrams.

The rest of the paper is structured as follows. Section 2 explores the

problems associated with designing rich clients, and provides a running

example that will be used throughout the paper. Section 3 reviews the state

of the art in different areas relevant to our work. Section 4 details our

approach to address rich-client-design related issues. Sections 5 and 6

provide a formal description for both UML class models as well as OCL

constraints that will be required for the formal description of our method.

This is done in sections 7 and 8, where we formally describe a method to

automatically generate a rich client domain model from an existing server

model, and the formal foundation for the automatic classification of

constraints. Section 9 briefly describes the working prototype we developed

based on this method. Section 10 addresses the limitations of the current

proposal. Section 11 closes this paper with conclusions and future work.

3

Figure 1: SDM for a coach company that manages booking offices, managers, ticket sales, passenger information, trips and coaches. Both the class diagram and

the OCL constraints are managed from the server.

4

2. Motivation

In this work, the term “rich client” is used to refer to any kind of

application —regardless of the technology used in its development or the

platform where it is executed— that (i) is able to communicate with a server

to send and receive data, (ii) contains its own logic that allows it to

manipulate data locally, and (iii) offers interactivity without having to

reload the UI or notify every single action or modification that occurs

locally back to the server. As stated before, a client being able to both work

with the data retrieved from the server and locally check constraints related

to it would require, in most cases, a design where part of the CDM is a

GDM subset. There may be other elements and constraints for the client

model that have no relation at all to the GDM, but in this paper, when the

term CDM is used without further specification, it refers exclusively to the

part of the client model overlapping with the GDM.

This paper includes a running example to illustrate the challenges

associated to managing constraints on rich clients. This model shown in

Figure 1 is an adaptation of an example provided by Shaikh et al. [29]. The

model is a simplification of a coach trip management system that includes

the organization of trips, offices, managers, coaches, passengers, and ticket

sales. This model includes several OCL constraints that should be respected

at all times. This running example does not focus on providing the most

complete approach towards that type of system, but rather on showing

clearly the main problems found when designing domain models for rich

clients. It also contains specific features relevant to our method and it is

simple enough so that the processes described are easy to understand and

follow.

Let us consider the possibility of implementing a client that the coach

drivers could use to verify tickets and passengers as they arrive for their

trip, as shown in Figure 2.

The domain model elements of this client would be based on the ones

present on the GDM. Also, all the constraints eligible to be checked over

the CDM are already present on the GDM. The verification of GDM-related

constraints has to be done on the server; even if a previous verification has

been made on the client —for security and consistency reasons—, since the

data could have been compromised during the communication [20].

Although this scenario implies a design that has classes and constraints

repeated on both client and server, it is not enough to select and copy the

client-relevant elements from the GDM. Instead, they need to be analyzed

and adapted by the developer.

Regarding the class model for the CDM, some of the relationships that

on the GDM where linked to classes will cause conflict on the client. The

developer needs to decide what to do depending on the type of relationship:

association, aggregation, composition, or dependency. Some of these

relationships may be eliminated and ignored on the CDM, which implies

deciding how this affects the class, which of the methods present on the

class are yet justified, or on the contrary, which could be ignored on the

CDM. On the other hand, the degree of coupling in some relationships can

be tight enough to justify the inclusion of the participant classes into the

CDM, even though they were not initially selected for the client.

The problem becomes more complicated when the OCL constraints

come into play. As part of the model, they must also be validated on the

CDM. They are originally represented as predicates over the GDM, and

depending on their composition, they can affect one or more elements of

different types. The more elements involved in the constraint, the more

complicated its adaptation to the CDM will be. We can classify constraints

according to the elements they constrain.

• Attribute constraints: They constrain a single attribute of a class.

Constraint 1 from the GDM (Figure 1) would be an example of

this.

• Object constraints: They constrain several attributes of the same

class. Constraint 2 from the GDM (Figure 1) involves

comparing two attributes of the same object.

• Class constraints: They constrain several objects of a single

class. Constraint 3 from the GDM (Figure 1) checks that there

are not two ticket objects with the same ID.

• Domain constraints: They constraint objects of different classes.

Constraints 4, 5, 6 and 7 from the GDM (Figure 1) all involve

objects from several classes.

Domain constraints affect several classes, but eventually, some of them

may not be required on the CDM. In those cases, the developer must decide

(i) whether just to delegate that constraint to the GDM, (ii) if there is a way

to divide different parts of the predicate (so that at least part of the constraint

can be checked on the client), or (iii) if it can be checked on the client by

retrieving certain data from the server.

All these tasks and decisions must be taken by the developer, and are

dependent on the information present on the GDM. Any task that requires

duplicating logic, and eventually adapting it depending on the information

Figure 2 Class diagram for the CDM. It would be desirable to be

able to verify on the client as many constraints from Figure1 as

possible. The designer must analyze carefully all existing

constraints and verify when this is possible.

5

from the previous model, is an error-prone, tedious and difficult to

accomplish task. Furthermore, these problems are even worse considering

that in the development cycle, changes are frequently made to the domain

model, which will also affect other models that are depending on it. Besides,

different parts of a system may be carried out by different teams, adding a

whole set of new problems, such as communication problems.

3. Background

3.1. Rich Client Architecture

There have been several works proposing the reorganization of client-

server responsibilities to increase the benefits in user experience and the

robustness of rich clients. The proposals by Zhang [33] or Leff and Rayfield

[16] state that the mainstream approaches for rich clients do not exploit their

full potential. Typical design architectures too often delegate too much

functionality to the client. The consequences of this approach go beyond a

worse user experience —for example, overly complex architectures or

development cycles [33], or applications that do not respond well in

situations where the server is not available at all times [16]. Although the

local management of robustness and constraints on the client is encouraged

by these proposals, no specific means to facilitate this task are suggested.

Enterprise solutions for client side validation such as Struts1, jQuery

Validation Plugin2, or Simfatic3 are limited to simple form checking and

are not designed to cover the complexity that client side business rules

demand. There are, however, some proposals that try to fill this gap. Hallé

and Villemaire [8] propose a way to describe contracts for web services,

and a monitor that checks whether these contracts are being violated

breached before the request is sent to the server. That way, they mean to

avoid the resource expenses on the server and the delay waiting for

responses that will fail. Heidegger and Thiemann [9] suggest an attribute-

oriented language to define pre- and post-conditions in JavaScript.

All these proposals provide means to help the developer define and

implement the constraints on the client. However, in all of them it is up to

the developer to decide which constraints are relevant on the client.

Some authors acknowledge the need to have coordinated constraints in

both client and server sides. Liang et al. [16] put forward a system in which

validations are defined in a XML file on the server, managing constraints

that involve a combination of several attributes in the client forms (attribute

and object constraints). This automates the implementation of part of the

client side constraints, and improves the maintenance process. However,

they explicitly left out of their scope the most complex and problematic

class and domain constraints. Schmidt et al. [17] designed a rule engine for

the client side based on the RETE algorithm, where the constraints are

defined on a file on the server. While they support the definition of complex

constraints and even their validation by the server, the specific constraints

affecting the client must be manually specified. Louwsma et al. [18]

propose a framework based on UML and OCL to define constraints for GIS

rich clients. These constraints must be manually implemented later on, and

are delegated to the server side, acknowledging that classifying and

1 Apache Struts 2 Validation:

http://struts.apache.org/development/2.x/docs/validation.html.

Accessed: 2016-02-24.

evaluating some types of constraints on the client side would be useful as a

future work.

Apart from these, some other approaches try to address these problems

automatically. The proposals closest to our work are focused on distributing

the domain logic between client and server. They analyze an existing

application and automatically redistribute its components between client

and server, with resulting tools such as J-Orchestra [31], Coign [11], or the

platform designed by Yang et al. based on Hilda language [32]. These

solutions are motivated by some of the same problems that we are facing,

but are focused on optimizing existing applications following different

criteria —such as memory usage, client hardware capacity, or user demand

of certain functionalities over others. None of them are focused on making

the most of rich client capabilities with optimal user interface response and

robustness.

3.2. Model Slicing

The idea of splitting up a GDM into different parts is not new. In fact,

it has been evidenced as a useful approach in many tasks, such as

identifying sets of dependent components, better visualization of the

different parts of the model, or evaluating smaller parts of a complex

system. This kind of techniques is known as model slicing, a breaking-down

process to extract and identify relevant model parts or related elements

across a model corresponding to a specific slicing criterion [30].

Some works propose the use of these techniques for better visualization

of big and complex models, trying to automatically identify different

subparts that can be presented visually while being cohesive enough,

according to different criteria selected by the user. Kagdi et al. [11] use the

selection of an initial set of the slice as a slicing criterion. Their method

determines the dependent elements that should be showed alongside the

initial set. Kollman and Gogolla [13] suggest extracting metrics from the

model to detect the level of coupling and dependency of the different

classes, and then identifying the submodels automatically. Lallchandani

and Mall [15] define a method to analyze different model views, both static

and behavioral, in order to generate an intermediate Model Dependency

Graph that gathers all the information about how different elements from

all views are related. This intermediate graph is used to generate submodels

for different types of UML diagrams (class, sequence, …) related to the

slicing criteria elements.

Aside from better visualization and understanding of complex models,

slicing techniques are useful to optimize model validations, as Saikh et al.

[27] propose. A model using Class diagrams and OCL constraints can be

validated on design to detect inconsistencies in the design before starting

its implementation. Unfortunately, these techniques are computationally

heavy in terms of time, and scale up very poorly as the models get more

complex, even if the new additions do not affect the constraints to be

checked. The solution that Saikh et al. propose is to use each OCL

constraint as a slicing criterion to generate only the submodel for the class

diagram that is required to evaluate that specific constraint. In this way, the

model validations are applied for each constraint, but over a much smaller

model, improving the efficiency and requiring much less time to complete.

2 jQuery Validation Plugin: http://jqueryvalidation.org/. Accessed: 2016-

02-24.
3 Simfatic Forms: http://www.simfatic.com/. Accessed: 2016-02-24.

6

As can be seen, there are proposals for dividing class diagrams using a

set of core classes as slicing criteria, but these do not take into account that

the resulting model has to be functional. They are intended to improve the

visualization of the model, and not to generate new design elements.

Although their algorithms serve as inspiration, under some circumstances

necessary submodel elements are left out —such as parent classes—, so

using them to generate a CDM from a GDM would require some adjusting.

Furthermore, none of these proposals provides slicing criteria strategy

over OCL constraints. Although Saikh et al. use OCL constrains as their

main slicing criteria, they generate a submodel for that constraint. However,

our aim is precisely the opposite, to find relevant and proper OCL

constraints from a submodel of a class diagram. Nevertheless, their

proposal is useful since their analysis of the elements affected by an OCL

constraint can be used to infer whether that constraint is valid for a given

submodel or not.

3.3. Domain Model Formalization and Alternative Representations

Visual representations of models have proved to be an expressive and

intuitive way of representing information about the components of a design,

their topology, and their interactions. On the other hand, constraints are

often represented using languages based on predicate logic. The most

widespread example is the UML standard, with visual representations for

static and dynamic views of the model, and OCL predicates to represent its

constraints.

UML is a complex standard designed for flexibility, but lacks a formal

description [19] that is essential to describe algorithms for automated model

analysis and validation, metrics extraction, enabling transformations, or as

a general representation that can be applied to different standards that share

some similar features (as may be class diagrams and entity relationship

diagrams).

There are several proposals for the formalization of UML diagrams,

but they are limited to specific parts of the language. So their formalization

is tailored to the specific area of study that encloses their target issues. For

instance, Liang et al. [22] provide a formalization of class, state and

collaboration diagrams using graph theory, aiming to be compatible with

prover tools such as PVS. With the same requirement —namely, being

verifiable by existing tools—, Kyas et al. [34] formalize both UML models

and OCL constraints. Kuhlmann and Gogolla [14] provide a transformation

of both into relational logic.

While models defining software topology, structure and behavior have

been mainly diagram-based, constraints tend to be usually represented by

languages based on first-order logic and set theory. Although this allows

for accurate and precise constraint definitions, as predicates get more

complex, it is harder to visualize the elements involved in the evaluation of

a constraint. Many proposals for addressing this drawback using graph-

based representation of constraints have been suggested. Constraint

diagrams [12] get inspiration from Venn diagrams and graph-like directed

edges to represent the objects taking part in the invariants, their cardinalities

and relationships. This concept was later extended and evolved into Spider

diagrams [10]. Conceptual graphs [21] use different types of nodes and

edges, labeled with logic predicates to define a model´s structure, behavior

and constraints. Collaborations [3] seek to provide a visualization of the

navigation paths required to evaluate a constraint, with elements to visually

describe if a navigation is to a single object or an object collection. They

would help developers to get a sense of the scope of the object graph

required to evaluate a constraint, and simultaneously, define the logic

predicate that applies to it separately. Arendt et al. [1] provide a nested

graph-based proposal, where navigations are translated as attributed graphs.

while Boolean operations are applied directly to these constructs. Bottoni

et al. [2] have also proposed language-independent visual representations

of patterns to analyze conflicts and dependencies that are usually limited to

textual representations. Rensink [26] also provides a graphical

representation of first-order logic based on edge-labeled graphs.

Most of these proposals try either to analyze and automate the

validation of models, or to provide a better visualization of the constraints.

Formal descriptions of UML models based on graph theory can aid us in

formally defining the slicing process to automatically generate a CDM. In

addition, the graphical representation of constraints is useful to formally

define the structure pattern of the instance model, the cardinality of their

relationships and the hierarchy that an OCL constraint requires to be

evaluable. In this way, we can map if an OCL constraint is evaluable for a

given CDM, or (in case it is not) effectively determine which missing

elements prevent the constraint from being evaluable. This would provide

useful information to determine how to adapt these constraints to the client.

To achieve this, a formal way of describing the elements affected by

an OCL expression would allow us to address the challenges associated

with knowing when a constraint can be evaluated and when it cannot.

Although there are already proposals on how to represent predicates

graphically, for our method we require only a simple representation free

from the additional information about the operations that are going to be

evaluated over it, which is not required for the set of challenges analyzed

on this work.

4. Proposal

The main goal of this work is to provide technical support and assist

the designer insofar as possible during the GDM slicing process. We

propose a method consisting of three stages. The scope of the method is

currently limited to OCL invariants, excluding other types of constraints

such as preconditions or postconditions. The input is an existing GDM with

its OCL constraints, and the designer’s selection of the classes from the

GDM that should be present on the client. With this information, a proper

CDM will be automatically generated, including the constraints that are

locally verifiable and an additional classification and information about

them that can aid the designer in further decisions beyond the limitations of

the automatic method.

During the first stage, the class model and the relationships between

classes will be analyzed. The cardinalities of the relationships are

considered as implicit constraints contained within the diagram. To ease the

analysis of the constraints related to the model, these relationships are used

to generate explicit predicates that will be added to the rest of the model

constraints. This will support a homogeneous processing of all of them.

In a second stage, model slicing techniques will be applied. A specific

CDM will be generated from the GDM, based on the sets of classes that the

designer requires to be present on the client.

The final stage identifies which constraints are related to the newly

created CDM model and classifies them according to their level of

dependency with the GDM. It also generates information for each

constraint defining how many objects from each class, and attributes it

requires to be checked. This information is intended to be easily accessible

for the designer, who can use it to decide how to make further manual

adaptations to the model, if needed.

These processes will be described based on formal notations, so that

the algorithms are described in a precise way independent of any specific

notation or technology. This also has the advantage of providing a more

7

general solution, since any diagram-based notation that can be expressed in

a similar formal way may benefit from this method, such as entity-

relationship diagrams or domain-driven design diagrams, as well as

different graphical or predicate-based languages for constraint definitions.

4.1. Generation of Explicit Constraints from Class Diagrams

Class diagrams contain many implicit constraints that are expressed

graphically without the need for additional languages such as OCL

constraints. This approach makes these constraints easily understood and

intuitive for designers and developers. However, when trying to apply

constraint automatic analysis, having two different sets of representations

(graphs and predicates) for different types of constraints makes things more

complicated. In order to solve this, every relationship present on the class

diagram is analyzed, and an OCL constraint generated for each of the

cardinalities present. OCL constraints are also generated for composition

relationships to ensure that there is compliance with the relationship

semantics.

Once all the constraints of the model are in predicate form, the

simplifications proposed by Cabot et al. [5] are applied to reduce the

amount of expressions in further analysis.

4.2. Model Slicing

The model slicing process can be divided into two main stages [28].

During the first stage, the goal is to determine the core elements relevant to

the slice —in our case, the CDM. And during the second one, it is to

iteratively detect the elements that are closely coupled to these core

elements, and automatically add them to the slice.

With the appropriate slicing criterion, we make things easier for the

designer, since they will only need to describe their core needs, and the rest

of the related elements will be deduced automatically.

In our case, the core elements will be the class names from the GDM

that will be required on the client. After this, we will detect which

relationships and additional classes are closely coupled to those core classes

and, therefore, will form part of the slice. With this approach, classes

outside the initial set determined by the designer may be automatically

included in the final slice. And elements from classes such as methods may

be deleted if they do not meet specific criteria for the CDM. This would

produce a valid domain model that is a subset consistent with the server

model.

There is no check performed over the initial selection by the designer.

For any selection made, the method will ensure that the appropriate

elements coupled to the selected ones are included. It is the designer’s

responsibility to appropriately select the core client type they intend to

model.

The next step in the model slicing process is to determine which of the

server constraints belong to the client slice.

4.3. Classifying Constraints by Dependency Level

Once we have a GDM subset, some of the constraints defined for the

server could also be checked at runtime independently on the CDM, while

others cannot. Three potential server dependency levels are identified for

each constraint: (i) server-dependent, (ii) potentially server-dependent, and

(iii) server-independent.

OCL constraints that refer to elements that do not exist on the CDM

are not relevant. They are server-dependent constraints and could never be

evaluated on the client side. Constraints that only refer to elements present

on the client can be potentially server-dependent, or server-independent. If

a client retrieves objects from the server asynchronously on demand, and a

constraint requires accessing several different object instances to be

verified, but not all the required instances are currently downloaded on the

client, it is a potentially server-dependent constraint. That constraint will

not be completely verifiable until the client retrieves the appropriate

information from the server. If a constraint can always be checked without

having to communicate with the server at all, we consider it a server-

independent constraint. For instance, constraints that require a single object

to be checked are always completely independent constraints. If the object

is on the client, it can be verified without further communication.

To detect the level of dependency of an OCL constraint for a given

client, we need to evaluate its expression and detect the elements it

constrains. It is not enough to know the classes affected by it. We also need

to know which properties are accessed, and the minimum number of objects

required to evaluate the constraint —given that a constraint that requires

several objects to be checked may be potentially server-dependent.

4.4. Formalization

The OCL language is aimed to define constraints that any instance of

the object graph defined by the class model must satisfy. However, the

definition of these constraints is built by referring to the elements of the

class model that defines its structure, but the verification of the constraints

is done over the object graph state at any point in time.

For an OCL constraint to be verified, it requires a minimum number of

objects of a certain class, with a specific topography of relationships linking

them in the object graph. In other words, any constraint could verify a set

of potential object graphs that share certain features. If we want to identify

which of the constraints defined for the GDM are verifiable on the client,

we need a precise and unambiguous representation of the generic features

of the type of object graph necessary for a specific constraint to be

evaluated. Knowing this, if a class model can produce that variety of object

graphs, then the constraint is verifiable in that class model.

UML class diagrams and OCL constraints have been evidenced as

powerful tools for model definition. Nevertheless, they are not well suited

to easily represent different aspects of the problem we are dealing with, nor

to reason about them, or to provide a logical foundation to classify

constraints. We require a formal description to tackle this problem

unambiguously. And it must be easy to translate from standards into

formalization and the other way around. This formalization should focus on

the representation of OCL constraints, but since they refer to the class

diagram, a formal way to describe it would also be required.

The graphical representation of UML class diagrams is based on nodes

that contain different types of attributes, and various types of relationships

between them that also may contain attributes. This kind of representation

is easily converted into graphs with attributed nodes and edges. Regarding

the constraints, in order to identify the level of dependency, it is necessary

to know not only the elements from the diagram that they refer to, but also

8

the number of potential instances of each type involved, and what the

relationships are like. The notation should be a single representation able to

express a variety of potential valid object graph states.

The formal description should work with the standard UML and OCL

approach, but should be general enough to be compatible with other related

scenarios or alternative representations where a graph structure is bounded

by predicate constraints. Similar scenarios can fit our proposal and be

formalized in the same way, such as entity-relationship diagrams.

Approaches like domain-driven design define elements such as aggregates,

value objects and entities that can be graphically expressed in ways that

could also be adaptable to this formalization.

The notation we will use will be mainly based on set and graph theory.

We will define the elements in a set using the SET={a, b, c, …} notation.

Most of the sets we will define will consist of tuples, that will use the ∀

element∈SET element = (aelement, belement) notation; where the elements of

the tuple in lower case represent single values, and the elements in upper

case represent sets. When referring to the value that has a specific attribute

of an element that is a tuple, we will use the element[attribute] notation,

while the number of elements present on a set will be represented by |SET|.

5. Formalization of UML Class Models

A class diagram can be formalized as an attributable directed graph,

where each class is a node and each class property is an attribute of the

node. The association, composition and inheritance relationships can be

represented as edges with attributes that specify type, name and cardinality

constraints of the relationship.

The formalization used to describe our method considers only attribute

properties for the classes, and will ignore association classes or other

relationships like “uses”. Describing other elements such as methods would

not make the description of our method any clearer and would result in a

more convoluted explanation. And once the method is made clear, taking

them into account would involve the same principles. Other authors have

developed more complete formalizations to describe different aspects of

UML [19][22][34][14], and their insights could be easily adaptable to our

method, should a more complex and complete description be needed.

A class diagram will be represented by a directed graph with attributed

nodes. It will have two edge types (for association and inheritance

relationships) which can also be attributed to describe the cardinality

constraints of the relationship.

A node will have attributes representing the attributes of the class, and

each one of them will have a name and a type. A type is a set defining a

range of values, for example, INTEGER is the set of integers, STRING is

the set of all possible character strings and BOOLEAN is the set of TRUE

and FALSE values. TYPE is the set of sets containing all possible existing

types, TYPE = {INTEGER, STRING, BOOLEAN, DOUBLE, ...}. An

ATTRNAME set is defined to refer to the set of all valid attribute names of

the different elements, which will avoid confusion with the STRING type

used as a type.

CLASS is the set of all possible classes. Each c element of the CLASS

set is a tuple ∀ c∈CLASS, c = (nc, Ac) tuple; nc being an ATTRNAME

element containing the name of the class and Ac a set of pairs a representing

the class attributes. Each attribute pair consists of a name that identifies it

within the class, and a type, ∀ a∈Ac, a = (na, ta) type, where na∈

ATTRNAME, ta∈TYPE.

Figure 3: Formal description of the class diagram depicted in Figure 1. It includes a Vcd node set, an edge set that is the union of the Acd

associations sets and the Icd inheritance relationships set. Only some elements of the sets are shown.

9

A class diagram can be represented as a graph Gcd = (Vcd, Ecd) graph

where Vcd is a set of nodes representing the classes and Ecd is the set of

edges representing the relationships. Each c element of the Vcd set is an

element of the CLASS set, Vcd⊆CLASS. Ecd is a set of edges representing

the relationships between the classes. Ecd is the union of the sets of the two

edge types, Ecd = Acd ∪ Icd where Acd is a set representing associations and

Icd is a set representing inheritance relationships.

Acd is a set representing the associations between classes. Each element

of the set is a tuple ∀ a∈Acd , a = (na, oa, da, la, ua, ca) tuple where na∈

ATTRNAME contains the name of the relationship, oa∈Vcd and da∈Vcd are

its origin and destination classes, la∈INTEGER and ua∈INTEGER ∪ * its

lower and upper bounds representing the cardinality of the relationship (the

symbol * represents a “many” cardinality for the upper bound), and

ca∈BOOLEAN indicates if it is a composition relationship or not.

Icd is a set representing the inheritance relationships between classes.

Each element of the set ∀ i∈Icd, i = (ci, pi) is a pair that contains the child

and parent classes, ci∈Vcd and pi∈Vcd.

Figure 3 shows part of the description of the class diagram shown in

Figure 1 formalized as a graph.

6. Formalization of OCL constraints

A constraint is a predicate that must be true for any state of the object graph.

We can break down a constraint into two fundamental parts: the structure

of the elements that it constrains, and the predicates that are evaluated over

those elements. An OCL constraint always has a context, the base class of

the instance over which it will be evaluated. Within the body of the

constraint, this base instance is referenced using the ‘self’ variable. OCL

expressions provide means to navigate from that instance through the

associations and properties described on the class diagram, allowing

flexibility to describe navigation paths that define an object graph structure.

It does not describe a single fixed object graph, but a set of potential object

graph states that share certain features reached through a specific navigation

path. If an object graph is consistent with the scope of a constraint, it can

be evaluated. If not, the constraint is ignored because it does not have the

minimum elements required to calculate its validity.

For example, a constraint that verifies the age of a person is not relevant

in a state where no person instances have been created yet. A constraint that

compares two person instances’ age cannot be evaluated unless we have a

minimum of two person instances in the object graph. When navigating an

association in OCL, the returning element of that expression can vary

according to the cardinalities described in the class diagram. A relationship

with cardinality one will result in a single object; a cardinality with a ‘many’

relationship will result in a collection, and several consecutive navigations

of collections will result in a bag.

There have been proposals to visualize these expressions as

collaborations [3], Spider Diagrams [10], patterns [2] or nested models

[26]. These approaches try to describe constraints in a visual way, but their

goal is to include information about the structure and the predicates over

them in the same diagram. For our purposes, we want to separate both

4 http://www.eclipse.org/articles/printable.php?file=Article-

HowToProcessOCLAbstractSyntaxTrees/index.html
5 http://www.omg.org/spec/OCL/2.4/

aspects of a constraint, so that we can analyze the elements affected by the

constraint separately from the predicate.

Most of the information required to understand the elements affected

by an OCL invariant are on its expression. We can represent an OCL

expression with an abstract syntax tree (AST) based on the OCL metamodel
45. The task of obtaining the AST of an OCL expression is eased by existing

modeling tools such as the Eclipse Modeling Framework 6 or Dresden

Tools7.

The resulting AST includes information about both the structural

elements involved in the constraint and the operations performed over

them. The method presented in the next sections is not affected by the

specific logic operations involved in the evaluation; only the elements

required for the operations are relevant. Due to this, most of the information

represented by the AST is not relevant to us, and using that structure in the

formal analysis of the elements affected by the constraint would only make

our task harder.

Our approach is, assuming a valid OCL invariant, to process its AST

to generate a new and much simpler tree structure that contains only the

core information relevant to our method. We will refer to this structure as

an instance tree. Since an invariant will always come from a single ‘self’

instance of the context class (as described in section 7.3.3 of the OCL 2.4

specification5), the rest of the instances evaluated will be reached by

navigating their associations. We can represent the elements required to

evaluate a constraint as a tree with attributed nodes and edges where the

root node will represent the ‘self’ instance. Each node of the tree will be

called instance node, and will represent a set of instances of a specific class,

that is reached through a certain navigation path from the root. The edges

that connect the instance nodes tree will have the same information as the

associations that are defined in the class graph, including the association

cardinality. The range of the potential amount of elements contained in each

instance node can be assessed looking into the cardinality values defined

for the different associations needed to reach that node, as defined in the

following chapters.

The aim of this representation is to serve as an intermediate structure

to help to identify the elements required by the logical predicate to be

evaluated. So the nodes should include additional information such as

which attributes are used in the constraint and which variables are used to

refer to the same class type in the same OCL expression.

It is also important to keep track of the navigation path followed

through the instances required to evaluate the constraint. This might be the

case in constraints where a cycle is generated. For example, in an invariant

with Passenger as context, the following path could be used:

self.passengerTrips.passengers. This structure would not produce a graph

with an edge that goes back to the initial “self” node, but a tree where the

root node would be a Passenger type (self), then a Trip-type child and

finally another Passenger-type child down the hierarchy. With this

structure, we can understand the path required to evaluate the constraint.

 It is also important to keep track of the number of variables used to

refer to the same class type on the same OCL expression, since it is an

indication of several instances of the same class required to evaluate the

expression. For instance, if a predicate has two different variables, both

6 https://www.eclipse.org/modeling/emf/
7 http://www.dresden-ocl.org/

10

Person class, to compare their age attribute, it is an indication that at least

two Person instances are required to be able to evaluate said predicate.

We will define the INSTANCENODE set as the set of all possible

instance nodes in the tree. Each vi element of the INSTANCENODE set is

a tuple ∀ vi∈ INSTANCENODE, vi=(cvi, Vvi, Avi, CHvi) where cvi∈CLASS

is the instance class, Vvi is a set of ATTRNAME elements that represents

different variables that may represent that set of instances. Avi is a set of

pairs representing the attributes, equal to the one described for class graphs.

Each attribute of Avi is a pair ∀ a∈Ain, a=(na, ta) where na∈ ATTRNAME

is the name of the attribute, and ta∈TYPE is its type. The instance nodes

Figure 4: Instance trees for each constraint described for the GDM

11

will only contain the attributes referred to in the OCL expression, in order

to identify the ones that are being evaluated on this expression, and not all

the existing ones defined for that class on the class graph.

Each element of the set CHvi is a tuple representing each child node of

the instance node and the edge connecting them, ∀ chvi∈CHvi, chvi=(dch,

nch, lch, uch) where dch∈INSTANCENODE is the child node,

nch∈ATTRNAME is the name of the edge connecting both nodes,

lch∈INTEGER is the lower cardinality constraint of the edge, and uch∈

INTEGER ∪ * is the upper cardinality constraint of the edge.

As shown in Figure 4, the instance tree structure only represents the

elements needed to verify the constraint predicate, but does not provide the

logical predicate itself. Although many approaches and different notations

could be used to address the formal description of the predicates over this

type of structure, it is currently a matter out of the scope of the method

presented in this work.

6.1. Generating Instance Trees from OCL Expressions

An AST for an OCL expression will have several types of nodes

representing the different parts of the expression, such as operations,

property calls, arguments, variable declarations, etc.

Our method to generate the instance tree from the AST consists in

traversing the AST in post-order. For each node of the tree, its children are

always processed first, and no node is traversed until all its children have

been already processed. As we traverse these AST nodes, we will be

generating a separate structure of instance nodes that will be our instance

tree. Figure 5 shows the AST for the constraint EnoughSeats, with the

traversal order.

With this approach, when reaching some of the terminal nodes of the

AST, we will start generating provisional instance nodes. With this method,

several provisional instance nodes can be generated from each child of an

AST node. When all the children of an AST node have been traversed and

have generated their own provisional instance nodes, these nodes can be

merged appropriately if they meet certain conditions. When the last node

of the AST is traversed (its root), all the provisional trees generated through

each branch are merged into the final result. Figure 6 shows this process for

the AST described in Figure 5.

The way provisional instance nodes are created and merged depends

on the type of the AST nodes reached. First we will define the process

involved in merging two instance nodes. Once this operation is stablished,

we will describe how the provisional nodes are created and merged

depending on the type of AST node that is being traversed.

We will define a merge function that will receive two instance tree

nodes vit as parameters, and return a single instance tree node as a result.

(,)a b mmerge v v v→

(1)

For two instance nodes to be able to merge, they must be of the same

class, and share at least one variable name.

, , [] [] [], [] /a b a vi b vi va a vi vb b i va vbv v INSTANCENODE v c v c a v V a v Vv a a =     =

(2)

If they share these initial conditions, the newly merged instance node

will have an attribute and variable sets equal to the union of those same sets

from both nodes.

,, , [] [] [], [] [] []a b m m vi a b vi m vi a vi b viv v v INSTANCENODE v A v Avi v A v V v V v V = =

(3)

The set of child nodes of the merged instance node will be equal to the

union of the child sets of both nodes.

,, , [] [] []a b m m vi a vi b viv v v INSTANCENODE v CH v CH v CH =

(4)

Finally, if the two nodes share a child that has the same type and edge

name, the merge function will be called recursively to merge both children.

This merging process is applied only to the direct children of the two

merged nodes. If two of these child nodes are merged, and they also have

children, those will be treated recursively. It is important to notice that this

way, it is possible to produce a tree that has several nodes of the same type,

as explained in the previous section.

(5)

Once the merging process has been stablished, we can describe how

and when the different instance nodes are created and merged as the AST

is traversed. We will identify the AST node types that will have an effect

on the instance tree generated. This method will only describe a few of the

node types that represent the OCL metamodel. The ones not present here,

are just traversed without any effect.

We will define the ASTNODE set as the set of all possible AST nodes,

where an AST node astn is a tuple astn=(tastn, Aastn, CHastn), where

tastn∈ATTRNAMES is the AST node type from the OCL metamodel, each

element of the Aastn set is an attribute describing certain properties of the

node ∀ a∈Ain, a = (na, ta) where na∈ ATTRNAME is the name of the

attribute, and ta∈TYPE is its type and the CHastn set contains all its

children, which are a pair ∀ch∈ CHastm, ch = (n, astc) where n is the name

of the edge joining parent and child n∈ATTRNAMES and

astc∈ASTNODE is the child node.

We will describe each AST node type relevant to our method. It is

important to note that the following list does not include all possible

attributes or child types, but rather the main attributes and potential child

references that are relevant to our method.

-Variable = (Aastn{type, name}, CHastn{initExpr(optional)})

-Property=(Aastn{type, name)})

-Operation=(Aastn{type, name)})

-TypeLiteralExp=(Aastn {type})

-PropertyCallExp = (Aastn{type}, CHastn{source, property})

-IteratorExp = (Aastn{type}, CHastn{source, body})

-OperationCallExp = (Aastn{type}, CHastn{source, operation,

args(optional)...})

We will define the processNode(astn) function, where astn is the AST

node to process. Its result is the root instance node of the provisional

instance tree pv∈INSTANCENODE generated after processing this AST

node and all its children.

() vprocessNode astn p→

The processNode function will behave differently depending on the

type of AST node being processed. Since there are multiple possibilities

while managing each node type, we will stablish some previous

considerations to simplify the notation.

While processing an AST node, it may be required to check the

provisional instance trees that have been generated by the previous

processing of each of the current AST node children. We will define a

[], [], [], [] /

[] [] [] [] (,)

a m vi cha a ch b m vi chb b ch

a ch b ch cha vi chb i cha chb

ch v CH v ch d ch v CH v ch d

ch n ch n v c v cv merge v v

    

=  = →

12

getChildInstanceNodes() → Pv function that will provide a Pv set with the

root instance nodes of the provisional instance trees generated by each of

the children of the AST node being processed. In some cases, we may need

to get the specific instance tree generated by one specific child of the current

AST node being processed. For those situations, we will also define a

getChildInstanceNode(edgeName) → pv, where edgeName is the name of

the edge connecting to the AST child node. The processNode function will

always return the provisional instance tree generated until now.

When defining the different function behaviors for the different AST

nodes, we will use the v variable to denote the newly generated instance

node.

During the process, some information may be required from the class

graph associated to the constraint (for instance, association cardinality

bounds). We will refer to the graph representing the class diagram as Gcd.

Each instance node has always at least one variable name that will

identify it. Not all AST nodes that refer to instances have an attribute that

can be used to identify that instance, but it is rather referred to through its

navigation path. In those cases, we will define a generateImplicitVar() →

ATTRNAME function that will generate a unique variable name for that

instance.

Also, while processing some provisional instance trees, we will come

across situations where we have a root instance node with a chain of

children, where each one of them has only a single child. We will refer to

this type of structure as an instance chain. In some of these situations, we

will need to access the last child of that hierarchy. We will define a

getLastChild(vi) → vl, function that will traverse the received node to the

last child of the chain, and return it. On other occasions, all children will

have to be collected, from the root to the last child in the instance chain

hierarchy. For that purpose, we will define a

collectAllChainInstanceChildren(vi) → Vi function that will return the set

of all the child nodes below that node. We will also need to define a function

that collects all the direct children from a single node, but not any other

children further down the hierarchy, collectAllDirectChildren(vi) → Vi.

The two first functions are only intended to be used with nodes that have

an instance chain structure, and are never used in cases where a regular tree

with several branches can be produced. Similarly, the last function is only

used in scenarios where the structure produced is a single node with only

one level of children.

After all these previous considerations, we start defining the behavior

of the processNode function for each AST node type.

A variable AST node will generate a single instance node v, with the

same class as the AST type and a variable name equal to its name. This

provisional instance node is returned within the Pv set.

processNode(Variable) → pv:

v∈INSTANCENODE/

v[cvi]=variable[type] ^

variable[name] ∈ v[cvi] ^

 pv=v

A TypeLiteralExp AST node will generate a single instance node v,

with the same class as the AST type. TypeLiteralExp does not include a

variable to refer to the instance, so we add an implicit unique variable to

the instance node.

processNode(TypeLiteralExp) → pv:

v∈INSTANCENODE/

v[cvi]=variable[type] ^

v[Avi] ∪ generateImplicitVar() ^

pv=v

A PropertyCallExp AST node will always have two children: a source

and a property. The property AST node does not generate any instance

nodes when processed, but can be consulted from this node. Due to the

nature of the AST node types allowed as source for PropertyCallExp, the

provisional instance node generated by it will always be a single instance

chain. If the property child of this node is of a primitive type, an attribute

with the property name and type will be added to the last child of the

instance chain generated by the source. If the property child of this node is

a class, a new instance node with an implicit variable name will be created,

and will be added as a child to the last instance node of the instance chain

source. The child edge will have the same name as the property, and will

have lower and upper cardinalities equal to the edge with that name on Ecd

∈Gcd.

processNode(PropertyCallExp) → pv:

vp1∈ getChildInstanceNodes(),

if property[type] ∈TYPE →

getLastChild(vp1)[Avi] ∪ avi=(property[name],

property[type]) ^

pv=vp1

if property[type] ∈CLASS →

v∈INSTANCENODE,

( a∈Acd / a[na] = property [name]) ^

( ch∈CHvi / CHvi = getLastChild(vp1) [CHvi]) →

v[cvi]=property[type] ^

v[Avi] ∪ generateImplicitVar()^

ch[dch]=v ^

ch[nch] = property[name] ^

ch[lch] =a[la] ^

ch[uch] = a[uch] ^

pv=v

13

Figure 5: AST for the EnoughSeats OCL expression. The numbers represent the traversal order in which the processNode(astn) function

will act.

Figure 6: Representation of the generation of provisional instance nodes for the EnoughSeats OCL constraint. The

nodes are generated while traversing the AST tree described in Figure 5. The numbers represent the order in which the

nodes are generated and modified after the AST node is traversed by processNode(astn). On processing the AST nodes 9

and 15, it can be observed how several provisional instance nodes generated by their children are merged. The resulting

tree after processing the AST node 19 is the final result for the EnoughSeats OCL constraint.

14

An IteratorExp always has two AST children, a source and a body.

Once processed, the source will always retrieve a single instance chain (we

will call it source instance chain) as a provisional instance node. The

instance nodes of the body provisional instances set will always be of the

same classes as the ones present in the source instance chain. When an

IteratorExp is processed, the body instances set are always merged with the

source instance chain, but the way of doing this varies depending on the

type of AST node found in the body of the IteratorExp.

If the body is an OperationCallExp type, the source root node is

compared to each root of the different body instance nodes, and when it

finds one of the same class, the body node merges with the source node.

This process is repeated with each child of the source instance chain, until

all the nodes from the body are merged. This will always happen, since all

the classes of the body nodes exist in the source instance chain.

If the body node is of any other AST type, the body will always retrieve

a single instance chain. And in that case the root of the body instance node

becomes the child of the last element of the source instance chain.

processNode(IteratorExp) → pv:

sv=getChildInstanceNode[source],

if body[type] ∈OperationCallExp →

Bvb = getChildInstanceNode[body],

 ∀ vs ∈collectAllInstanceChainChildren(sv),

 ∀ bv∈Bvb, ∀ vb ∈ collectAllDirectChildren (bv),

 vs[cvi] = vb[cvi] → vs = merge(vs, vb) ^

 pv = sv

else →

slc = getLastChild(svs),

bv = getChildInstanceNodes[body],

slc = merge(slc, bv),

pv = sv

Finally, the OperationCallExp AST node usually has a source child

(which will always retrieve an instance chain), an operation child, and an

indeterminate number of argument children. In most cases, the operation

type is irrelevant to our method, so it can be ignored, but there is an

exception. If the operation node is an “allInstances” type, the

operationCallExp is processed differently. Although on the OCL

metamodel the allInstances is treated as an operation, we will treat it as a

special type of navigation path, that connects the ‘self’ instance to a set

containing all the instances of a certain class. This simplifies the way of

representing this operation´s semantics for the purposes of our method.

When it is an allInstances operation, there are no arguments, only the

operation source and type. In those cases, we create a provisional instance

node with variable name self and class equal to the context, and another

instance node with an implicit variable name and the same class as the

source root node. The name of the edge connecting them will be

“Class:allInstances”. Its lower cardinality bound will be 0 and the upper

cardinality bound will be ‘many’ (*).

In any other case, the operation type is ignored, and all the provisional

instance nodes received from processing all the children are merged when

they are of the same type and share a variable name.

processNode(OperationCallExp) → pv:

if operation[name] =”allInstances” →

 v∈INSTANCENODE,

 vs∈getChildInstanceNode(source),

ch∈v[CHvi],

 v [cvi] = context ^

 v[Vvi] ∪ “self” ^

ch[dch]=vs ^

ch[nch] = “vs[cvi]:allInstances” ^

ch[lch] =0 ^

ch[uch] = * ^

pv=v

else →

v∈INSTANCENODE,

 ∀ Va ∈ getChildInstanceNodes(),

 ∀ Vb ∈ getChildInstanceNodes(),

(

 (va[cvi] = vb[cvi]) ^

 ( ∀ vara ∈va[Vvi],  ∀ varb ∈ vb[Vvi]) /

va[vara]=vb[varb])

) → va = merge(va, vb) ^

V[CHv] = va ^ pv=v

Figure 1: Resulting graph for the CDM after applying the model

slicing from a class selection ={RegularTrip, Coach, Passenger,

AdultTicket, ChildTicket}

15

We must take into consideration how to manage let expressions in

invariants. With a let expression, variables can be defined and later used

within the constraint body. A let expression has two parts, a “let”

expression, and an “in” expression. The first one enables the definition of a

variable and initializing it, while the second part is the body of the

constraint that uses the previously defined variable. In our method, we need

to manage how this variable is represented in the instance tree. Our solution

when a let expression is used, is to modify the AST tree for the OCL

expression before the whole process begins. Every time the variable defined

by the “let” is used in the “in” part, instead of only including the variable

name in the AST, we insert the full expression that initializes it. When,

later, the AST is traversed to generate the Instance Tree and it reaches a

“let” node, the “let” branch that defines the initialization of the variable is

not traversed. Since we have inserted that expression already into the “in”

branch that defines the body of the constraint whenever the variable is used,

we can just traverse that branch generating the proper Instance Nodes. This

simplifies the method while respecting the semantics of the let expression.

The rest of AST node types just give their parent access to the

provisional instance trees generated by their child nodes. The whole

generation of the final instance tree is a process that always terminates,

since the AST is finite, and the traversal of each AST node is done once in

post-order. After traversing each AST node, a single provisional instance

tree is generated by it. Since the traversing of the AST is in post-order, when

reaching a node with children, they have already been processed; each one

having generated a provisional instance tree. After processing a parent AST

node, all the provisional Instance trees produced by its children will be

merged according to the specific type of AST node, as described above.

The merge function always produces a single instance tree, so the result

after processing an AST with children is also a single Instance tree. In all

cases, the complete traversal of all the AST nodes will finish at its root

node, where the result is a single instance tree, with a root instance node

that will be the ‘self’ variable with the context of the constraint as its class.

The process of traversing the AST is easily implementable in any object-

oriented programming language by using the visitor pattern, which can be

used to execute different logic depending on the AST node type reached

through the traversal.

7. Description and Formalization of the Model Slicing

7.1. Method Description
For the slicing process, we need to define the slicing criterion that will

define the core elements that must be present on the slice. After that, the

second step of the slicing process is recursively inferring what other

elements of the original model must also be added to the slice.

The designer will select, from the GDM, the classes that will be

required for the client. From this information, a first CDM iteration will be

created containing that initial set of classes, and the relationships that exist

between those classes. After this, the second step of the process will

iteratively increment the CDM depending on the type of relationships

between those classes on the GDM and the classes not present in the

selection made by the designer.

• Association, aggregation or uses relationships: When, on the

GDM, two classes hold any of these types of relationships, but,

on the CDM, only one of both ends is present, the class present
on the CDM will not contain that relationship. If the designer

does not select a certain class on its initial slice, it means that it

is not needed, so all relationships connected to those classes are
lost, regardless of the navigability defined for it.

• Inheritance relationships: A parent class does not require its

child classes to make sense by themselves, but a child class is

partly defined by its parent and depends on it. Whenever the
CDM contains a class that, on the GDM, is a child in an

inheritance relationship where the parent is not present on the

CDM, that class and its inheritance relationship will be
automatically included to the CDM. This same principle applies

to interface relationships. We do not take into consideration the

opposite approach, getting the child classes of a parent class,
even in the case of abstract classes. A parent can have many

child relationships, and the designer may not require most of

them on the client. It is the designer’s responsibility to select the
specific classes required. The slicing process only adds the

elements required for that initial selection to make sense.

• Composition relationships: A composition defines a strong

relationship that implies a tight bond between both classes and

their lifecycles. A component class may be independent of its
container class, but a container class requires its components to

make sense. If this were not the case, the relationship should

probably be modelled by using an aggregation or association.
When the GDM holds a composition relationship, but, on the

CDM, only the container is present, those classes and

relationships are also added to the CDM.

• Methods: As we mentioned in Chapter 5, our formalization will

not include the description of the methods of UML classes to
provide a formalization that is cleaner and easier to understand.

But informally, it also should be mentioned that in the cases

were a CDM class contains a method that, in its signature, refers
to classes only present on the GDM, that method would be

deleted from the class. We consider that if those classes are not

present on the CDM, that method will not be required on the

client. It is important to notice that this approach takes only into

account the dependencies made evident on the class diagram

through the method signature. There could be subtler
dependencies involved, not easy to describe unambiguously for

each method using only class diagrams. That would require

another whole level of analysis.

7.2. Formalization of the Model Slicing Process

The slicing criterion will be a selection of the classes of the original

GDM that must be present on the client ClassSelection ⊆ Vcd. The slice

will be another graph Gcd’ = (Vcd’, Ecd’) where we will define how the

Vcd’ sets of classes and the Ecd’ relationship are generated in a recursive

way, with a basic clause, inductive clauses and an external clause.

The basic clause means that the class selection is a subset of the set of

classes from the CDM diagram ClassSelection ⊆ Vcd’ ⊆ Vcd. The attributes

of the classes in Vcd’ are the same as the ones in Vcd. In the formal definition,

if two classes have the same name, they also have the same attributes:

    , ’ ’, ’ ’ ’c ccd cd c cc V c V c n c n A c A c    = →  =  (6)

E’ consists of relationships that are equal to the association and

inheritance relationships which both, origin and destination classes, are

present in V’:

(7)

Once we have the basic elements of the slice, the inductive clauses

describe how the relationships defined in Ecd add new elements to Gcd’. For

16

each element present in Vcd’ that is the child part of an inheritance

relationship in Ecd, its relationship and parent class will also be part of Vcd’:

 ’ [’, []] ’cd i cd i cd cdi I c V i p V i Ii   →    (8)

In the same way, for each element present in Vcd’ that is the origin of a

composition relationship in Ecd, the relationship and the destination class of

it will also be part of V’:

(9)

The final external clause states that nothing is in Gcd’ unless it is

obtained from the basic and inductive clauses.

If we wanted a client with a class selection ClassSelection =

{RegularTrip, Coach, Passenger, AdultTicket, ChildTicket} the result

would be as shown in Figure 7. The parent classes Trip and Ticket would

be added during the process iterations, as well as their relationships to the

rest of the classes.

8. Description and Formalization of the Constraint

Classification

8.1. Method Description
Once the CDM and GDM are defined, we need a way of classifying the

constraints in order to help the designer to understand which of them may

be checked on the client. The classification considers all three levels of

server dependency based on the constraint features, the class diagram for

the server and the resulting class diagram for the client produced after the

model slicing process:

• Server-independent: All the elements needed to check

attribute and object constraints are present in the instance itself,
so those constraints are always server-independent as long as the

class of the object involved exists on the CDM.

• Potentially server-dependent: Class constraints and domain

constraints where all the classes involved are present on the

CDM are potentially server-dependent. With only the
information from the class diagrams and the constraint is not

possible to know in advance how the object graph will be

managed between client and server. The client may not always

contain a copy of all the objects of a certain class present on the

server required to evaluate the constraint. In those cases,

evaluating those constraints on the client would require
retrieving the missing objects from the server. Identifying

constraints in this situation may help the developer to

understand their situation, and decide how to manage them.

• Server-dependent: When a constraint present on the GDM

involves instances from classes that are not present on the CDM,
that constraint will never be evaluable on the client.

This classification is not only useful to automatically include the server-

independent constraints onto the CDM, but it also helps the developer to

understand the relationship between constraints and client, and analyze if

there is a way to make the potentially server-dependent constraints viable

on the client, or modify them to fit on the client.

8.2. Formal Description for Generating Explicit Constraints from

Class Relationships

A class diagram contains many implicit constraints regarding the

cardinality of the relationships between different classes. To be able to

analyze and classify all constraints in a coherent way, all of them should be

formalized in the same way. We present here a way of transforming the

cardinalities of the class graph into the instance trees that represent those

constraints.

The class graph has a Acd set that contains every association and

composition relationship. For each of the elements of that set, an instance

tree will be created describing the cardinality constraint:

 ,cda A it IT    (10)

Each instance tree created for the a relationship will be generated based

on the following rules. As described in Section 5, each a relationship is a

tuple a = (na, oa, da, la, ua, ca). And each instance tree is a it=(nit, vit) as

described in Section 6. Every it element generated for each ac element will

be generated as follows. The constraint will be named after the relationship:

nit = na. The instance tree root node will be of the same class as the

relationship origin class, and will only have a single child node of the same

class as the relationship destination:

 it , [] / [] [] [] [v] cd vi it vi it vi a ch vi aa A it ch v CH v c a o d c a d →  = =   

 (11)

The single edge between the root and its child chvi=(dch, nch, lch, uch)

will have the same name and cardinalities of the relationship, where: nch=na

lch=la uch=ua.

By having all the constraints in the same notation, the metrics and

classification criteria that will be described in the following sections

will also consider the relationships between classes and their

cardinality.

8.3. Formal Metrics: Minimum and Maximum Number of

Instances, Classes and Attributes

Using instance trees to represent constraints has the benefit that the

same notation holds information about both, the constraint and the

cardinality constraints usually present on the class diagram. This allows

performing operations over it to retrieve metrics about the minimum

number of object instances necessary to evaluate the constraint, the number

of different classes involved, or the attributes required. It also lets us know

if evaluating this constraint requires always a limited number of instances,

or if it may potentially operate over an infinite number of elements.

These metrics are required to be able to classify the constraints

according to their complexity and their level of dependency upon the GDM.

We will define some of the functions required to obtain these metrics.

First, we need to know, for a given constraint, what is the minimum

number of instances it requires to evaluate its predicate. It is also important

to know which is the maximum number of instances that can be potentially

evaluated on that constraint.

The minI(vi) and maxI(vi) functions are recursive and receive an

INSTANCENODE element vit∈IT, and calculate the metric for its node

and its child nodes. The result obtained for each child is multiplied by

the cardinality (the lower bound on the minI function, the upper bound

on the maxI function) of the edge connecting it to the parent node. By

passing the IT root node to these functions, the function is called over it

and all its children until the final result are obtained.

()  0 min | [] min ([])]| , [iii vi vi chi vi ch vi i vi ito nI vv ch I ch d ch v Cl HV == +  

 (12)

()  0 max | [] max ([])]| , [iii vi vi chi vi ch vi i vi ito nI vv ch I ch d ch v Cu HV == +  

(13)

  [] ,

[’ a[’

, /

]] ’

acd cd a

a cd a cd cd

c V a A a o c a c true

a o V d V c A

    =  =

 →   

17

Another important metric is the number of different classes the instances

belong to. This set is obtained by recursively visiting all the instance nodes

in the tree and joining all its class types cvi. This will result in a set with

all the classes involved in the constraint.

 (14)

Finally, it is also useful to know the number of attributes involved in

the constraint. To obtain the set of attributes we also visit each child of the

instance tree recursively, and join all the Avi attribute sets included in each

node.

 (15)

It is important to note that while minI(vi) and maxI(vi) return an integer

as a value, c(ví) and a(vi) return a set containing classes or attributes in each

case. These basic metrics about the constraint provide a reference to the

complexity and nature of each one of them, and understanding the number

of instances, classes and attributes involved in a constraint, it is possible to

determine if a class model will be able to produce object graphs evaluable

by that constraint. This would allow us to identify the server constraints that

can be tested on the client.

The resulting constraint metrics described on the example GDM are

shown in Figure 8.

Constraint 1:

 minI(Con1) = 1

 maxI(Con1) = 1

 c(Con1) = {Passenger}
 a(Con1) = {Passenger:age}

Constraint 2:

 minI(Con2) = 1
 maxI(Con2) = 1

 c(Con2) = {Coach}

 a(Con2) = {Coach:type, Coach:noOfSeats}
Constraint 3:

 minI(Con3) = 1

 maxI(Con3) = *
 c(Con3) = {Ticket}

 a(Con3) = {Ticket:number}

Constraint 4:

 minI(Con4) = 2

 maxI(Con4) = 2

 c(Con4) = {ChildTicket, Passenger}
 a(Con4) = {Passenger:age}

Constraint 5:

 minI(Con5) = 1
 maxI(Con5) = *

 c(Con5) = {Passenger, Ticket}

 a(Con5) = {Passenger:age}

Constraint 6:

 minI(Con5) = 3

 maxI(Con5) = *
 c(Con5) = {Trip, Coach, Passenger}

 a(Con5) = {Coach:noOfSeats}
Constraint 7:

 minI(Con6) = 2

 maxI(Con6) = *

 c(Con6) = {BookingOffice, Coach, VendingMachine,

Ticket}
 a(Con6) = {Coach:noOfSeats}

Figure 8: Metrics for the constraints described in Figure 4

8.4. Formalization of Constraint Classification

As we stated before, we will classify constraints according to two

different criteria. The first one is a quantitative classification that will assign

a type to each constraint according to the variety of elements that it

constraints. We described the four types informally in Section 2; attribute,

object, class and domain constraints. We will proceed now to describe how

to use the metrics extracted from a constraint to classify them.

• Attribute constraints: A constraint is an attribute constraint if it only

affects a single instance and a single attribute. This means that both

the minimum and maximum number of instances must be one, and

the size of the attribute set for the graph must also be one. Checking
the number of classes is not required, since there is a single instance.

 : (([]) 1) (([]) 1) (| ([]) | 1)i i iAttribute minI IT v axI IT v a IT vm=  =  =

 (16)

• Object constraints: Object constraints also affect a single instance,

but they require the evaluation of several attributes. Therefore, the
only difference from attribute constraints is in the size of the attribute

set.

 : (([]) 1) (([]) 1) (| ([]) | 1)i i iObject minI IT v axI IT vm a IT v=  =  

 (17)

• Class constraints: Class constraints affect several instances, but all

belonging to the same class, so it is required to check the size of the

classes set to verify that is 1.

 : (([]) 1) (| ([]) | 1)i iClass maxI IT v c IT v  = (18)

• Domain constraints: Finally, domain constraints are those that affect

more than one class. In this case, the only thing to verify is the class

set size.

 :| ([]) | 1iObject c IT v  (19)

The second classification requires knowing both the CDM and GDM,

to classify it according to their server dependency level.

• Server-independent: Any constraint that is an attribute or object

constraint and which class is present on the client is always

independent.

: (([]) 1) (([]) 1) (([]),)i i iServerIndependent minI IT v maxI IT v c c IT v c Vcd=  =   

 (20)

• Potentially server-dependent: When a constraint requires several

instances, and the classes of all of them belong to the CDM, it is a
partially dependent constraint.

 : (([]) 1) (([]))i iPotentiallyServerDependent maxI IT v c c IT v c Vcd   

 (21)

• Server-dependent: When a constraint refers to elements that are

only present on the server, they are never evaluable on the client.

 : ([]) / 'i cdServerDependent i c IT v i V   (22)

Using these criteria, the constraints for our example would be classified as

follows in Figure 9:

Constraint 1: attribute, server-independent

Constraint 2: object, server-independent
Constraint 3: class, potentially server-dependent

Constraint 4: domain, potentially server-dependent
Constraint 5: domain, potentially server-dependent

Constraint 6: domain, potentially server-dependent
Constraint 7: domain, server-dependent

Figure 9: Final classification of the GDM constraints.

() ,0 () []), [] (ii ch ch vi vi i vvi i to inv c d d ch chc v c CHi v=    =

() ,0 () []), [] (ii ch ch vi vi i vvi i to inv a d d ch cha v A CHi v=    =

18

This results in: constraints 1 and 2 being completely verifiable within the

CDM; constraints 3, 4 and 5 are potentially server-dependent for this given

CDM. Depending on how the data is managed in the system as a whole,

these constraints could be checked on the client without further

communication with the server, or require retrieving missing information

from it before doing the verification. If the client stores a complete and

updated copy of the part of the GDM object graph that is relevant to the

CDM, then the verification can be done without further communication

with the server. If the client works requesting information on demand, this

could be different. In any case, this classification aids the designer to

understand the challenges that a constraint poses, and may also help them

to consider how data should flow between client and server.

Finally, constraint 6 is server-dependent. Although it refers to classes

present on the CDM, it also refers to VendingMachine and BookingOffice

which are not. This constraint should belong to the GDM only.

9. Testing the Method: Ecore Prototype

To verify the validity of this method, we developed a prototype in Java

based on the Eclipse Modeling Framework8, where we used the Ecore

metamodel to define and manipulate the domain models. As input elements,

the prototype receives the class model from the server, its OCL constraints,

and the list of classes that are relevant to the client. The output is an Ecore

file with the CDM, the OCL constraints that are completely independent to

be used on the client, and a text file containing the metrics and classification

extracted from each constraint, so that the designer can use this information

to decide how the potentially dependent constraints may fit on the client, or

which modifications can be done to adapt some of them to the client.

The tool works in 5 stages. First, it generates the implicit constraints,

as described in section 8.2, adding those newly generated OCL constraints

to the ones provided by the designer. Then it analyzes all the constraints to

extract their metrics and make the first classification (attribute, object, class

or domain). After this, the CDM is generated, and its information is used in

combination with the metrics previously extracted to classify them

according to their level of dependency for that given CDM, adding the

completely independent ones to an OCL file to be used directly with that

class diagram. This file can be later updated by the designer after analyzing

the potentially dependent constraints that have been temporarily left aside.

The tool also generates documentation automatically, including the AST

for each OCL constraint, as well as its instance tree.

This tool serves as a proof of concept showing that the application of

these formal methods is possible with existing and well-known tools. It also

illustrates how a full domain model can be created easily by a designer

using as an input only a list with the client-relevant classes. Since this is

only a prototype, it is still limited in its functionality. Nevertheless, the

metrics it captures to generate the CDM will allow us to expand its

functionality in the future and provide a more solid support for client

development. A more detailed description of this Java tool can be consulted

in the original paper [25].

8 https://eclipse.org/modeling/emf/

10. Current Method Limitations

The method is focused on OCL invariants, excluding other constraint

types such as preconditions or postconditions. We hope to be able to build

upon this initial foundation to include other constraint types in the future.

Currently, we focus on the design aspects of the development cycle,

and more specifically, on the domain model and its constraints. The whole

development cycle of such clients presents challenges that are not addressed

by our work. Working at the level of class diagrams also offers some

limitations in certain cases. In modern distributed applications, RESTful

web services [27] are one of the main paradigms adopted by the industry.

In those cases, the state is usually maintained on the client; and the server

acts mainly as an intermediary between client and database. Although there

may not be a server domain model, there is still a data model on the

database, which can have its own integrity constraints, and can be related

to the client domain model. Although our current method is heavily based

on the UML standard and may not yet fit this scenario, OCL constraints and

UML models can be related to relational databases [6]. It is also important

to notice that the formal approach we undertake makes our method general

enough to be adapted to other ways of representing models and restrictions,

and adjusting it to entity-relationship models. Database integrity constraints

would be an interesting path to follow.

One important aspect of our method is that it simplifies the designer‘s

responsibilities, relieving them from the need to model the CDM while

checking compliance with the server model. With the method presented

here, the only task required would be to identify the core client-required

classes. Still, this approach has room for improvement. In the slicing

process, we define certain rules on how additional elements can be added

to the initial selection. This way, the core classes can use any other element

that is tightly coupled to them, even if the designer did not select them

initially. However, in some cases this approach might not be enough. As

mentioned in Section 7, there may be specific domain models where further

coupling exists for that specific domain, or other dependencies not easily

modelled by means of class diagrams only. In addition to this, it is possible

for the designer to inadvertently omit some classes required for the client

they intend to model. And while the solution would be consistent with their

selection, it may not be the model they intended to build, requiring them to

make the selection again to generate a new model.

We believe this type of limitations would be very interesting to

address, but the level of analysis to act on such cases is out of the scope of

the currently proposed method. We believe this work is an interesting step

towards providing a foundation for easing the development of robust rich

clients.

11. Conclusion and Future Work

Designing a rich client able to maintain server consistency while being

as independent as possible is a challenging task. It requires a careful study

of the domain model and the constraints present on the server and a

thoughtful adaptation. If done right, this allows the client to evaluate many

of the constraints defined locally for the server, providing a better user

experience. However, a task involving several interdependent diagrams,

19

and logical predicates that must be consistent on both sides is a tedious and

error-prone task, that gets even harder as the development cycle evolves

and server changes affect the client.

Once the designer knows which server elements (i.e. classes) are

fundamental for the client domain model, the rest of the information

required is already present on the global domain model. Instead of

burdening the designer with the task of analyzing how to adapt these classes

and constraints to the client, we propose to use the existing information

from the global domain model to generate it automatically.

We provide a formal approach to describe our method, so that it can be

implemented through any existing technology. We chose a graph-based

approach that fits into UML class diagrams and OCL constraints. And since

it is general enough, other diagram based standards can also be adapted.

Our formal descriptions include a graph-based approach for class diagrams,

an instance-tree-based approach for constraints, and a way of automatically

generating instance trees from the abstract syntax tree of an OCL

expression. We also describe formally how to calculate different metrics

over the constraints, based on instance trees and logical predicates, and use

them to classify them. We describe a method that successfully generates a

valid client domain model based on the global domain model after the

designer selects the client-required classes . These metrics are used to detect

all the constraints that can be evaluated on the client, as well as the ones

that should not be evaluated on the client. The constraints that can be

evaluated on the client but may require communication with the server are

detected, and metrics about the elements affected by them are provided. We

have managed to put these formal proposals into practice through a Java

tool based on the Ecore standard.

In addition to addressing the limitations described in the previous

section, this work is open to many possible improvements. We are able to

successfully detect potentially server-dependent constraints, but right now

it is up to the designer to decide how to deal with them. One possible

approach towards these constraints is breaking down a constraint into

several ones that affect fewer elements, so that at least part of its predicate

can be checked locally on the client.

Another possibility where communication is required, is to make a

design between client and server where information is retrieved to the client

in the most efficient way for the evaluation of those specific constraints.

This efficiency could be achieved by identifying and retrieving only the

essential objects from the server. It could also be achieved by pre-

calculating on the server the values required for the evaluation of the

constraints on the client. That approach would avoid the need to send

complete subparts of the object graph. These solutions, however, may be

complex and require a thoughtful analysis of the constraints involved. A

challenging task that may get even more complicated as the development

cycle progresses and changes are applied to the domain model and its

constraints.

Currently, our method is focused on the constraint-affected elements,

but not the predicates that will be calculated over them. By analyzing the

operations involved in those predicates, further automated decisions could

be made. The domain model elements required for these tasks could be

automatically generated, which would further improve our approach and

relieve the designer from even more decisions.

Since this method is particularly focused on detecting the dependency

level between client and server elements, this approach could also be

adapted to analyze how to create proxies that manage the communication

between client and server appropriately, and aid in maintaining client

independency while easing the evaluation of constraints.

Our current proposal helps the designer to generate rich clients

consistent with the server automatically, making the design effort more

agile, robust and adaptable to changes during development. It also avoids

the common problems associated with designing an architecture where

many of its elements are interdependent, and provides metrics and

information about how the different elements are related so that the

designer can make better informed decisions.

Acknowledgements

This work has been funded by the European Union, through the

European Regional Development Funds (ERDF); and the Principality of

Asturias, through its Science, Technology and Innovation Plan

(grantGRUPIN14-100).

REFERENCES

[1] Arendt, T. et al. 2014. From core OCL invariants to nested

graph constraints. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). 8571 LNCS, (2014), 97–112.

[2] Bottoni, P. et al. 2010. A language-independent and formal
approach to pattern-based modelling with support for

composition and analysis. Information and Software
Technology. 52, 8 (2010), 821–844.

[3] Bottoni, P. et al. 2001. A Visualization of OCL using

Collaborations. ≪UML≫ 2001 - The Unified Modeling

Language. Modeling Languages, Concepts, and Tools. 2185,
(2001), 257–271.

[4] Bozzon, A. et al. 2006. Conceptual modeling and code

generation for rich internet applications. Proceedings of the 6th
international conference on Web engineering ICWE 06 (2006),
353.

[5] Cabot, J. and Teniente, E. 2009. Incremental integrity checking

of UML/OCL conceptual schemas. Journal of Systems and
Software. 82, 9 (Sep. 2009), 1459–1478.

[6] Demuth, Birgit, H.H. Using UML/OCL Constraints for
Relational Database Design. 6.

[7] Duhl, J. 2003. White paper: Rich internet applications. Avail-
able at http://wwwmacromedia. comn/ …. (2003).

[8] Hallé, S. and Villemaire, R. 2009. Browser-based enforcement
of interface contracts in web applications with BeepBeep.
Computer Aided Verification. (2009), 648–653.

[9] Heidegger, P. and Thiemann, P. 2012. JSConTest: Contract-

Driven Testing and Path Effect Inference for JavaScript. The
Journal of Object Technology. 11, 1 (2012), 6:1.

[10] Howse, J. et al. 2001. Spider Diagrams: A Diagrammatic

Reasoning System. Journal of Visual Languages & Computing.
12, 3 (2001), 299–324.

[11] Hunt, G. and Scott, M. 1999. The Coign automatic distributed
partitioning system. OSDI ’99 Proceedings of the third

symposium on Operating systems design and implementation
(1999), 187–200.

[12] Kagdi, H. et al. 2005. Context-free slicing of UML class

models. IEEE International Conference on Software
Maintenance, ICSM. 2005, (2005), 635–638.

[13] Kent, S. 1997. Constraint Diagrams: Visualizing Invariants in
Object-Oriented Models. ACM SIGPLAN Notices. 32, 10
(1997), 327–341.

20

[14] Kollmann, R. and Gogolla, M. 2002. Metric-based selective
representation of UML diagrams. Proceedings of the European

Conference on Software Maintenance and Reengineering,
CSMR. (2002), 89–98.

[15] Kuhlmann, M. and Gogolla, M. 2012. From UML and OCL to
relational logic and back. 15th International Conference on

Model Driven Engineering Languages and Systems, MODELS
2012. 7590 LNCS, (2012), 415–431.

[16] Lallchandani, J.T. et al. 2011. for UML Architectural Models.
Most. 37, 6 (2011), 737–771.

[17] Leff, A. and Rayfield, J. 2006. Programming model alternatives

for disconnected business applications. Internet Computing,
IEEE. June (2006), 50–57.

[18] Liang, Z.L.Z. and Jianling, S.J.S. 2009. A field-oriented
approach to web form validation for Database-Isolated Rule.

2009 IEEE International Conference on Systems Man and
Cybernetics (2009), 4607–4612.

[19] Louwsma, J. et al. 2007. Specifying and Implementing

Constraints in GIS—with Examples from a Geo-Virtual Reality
System. GeoInformatica. 10, 4 (Jan. 2007), 531–550.

[20] McUmber, W. and Cheng, B. 2001. A general framework for
formalizing UML with formal languages. … of the 23rd
international conference on …. (2001), 433–442.

[21] Mesbah, A. and Van Deursen, A. 2006. An Architectural Style

for Ajax. 2007 Working IEEEIFIP Conference on Software
Architecture WICSA07 (2006), 9–9.

[22] Mineau, G. et al. 2000. Conceptual Modeling Using Conceptual

Graphs. Krdb. JULY 2000 (2000), 73–86.

[23] Peng Liang, Annya Romanczuk Réquilé, J.-C.R. 2003. A
translation of UML components into Formal S pecifications.

[24] Preciado, J. and Linaje, M. 2007. Designing rich internet

applications with web engineering methodologies. Web Site
Evolution. (2007), 23–30.

[25] Quintela-Pumares, M. et al. 2014. Automatic Classification of
Domain Constraints for Rich Client Development. ICSEA 2014,

The Ninth International Conference on Software Engineering
Advances (Nice, France, 2014), 570 to 576.

[26] Rensink, A. 2004. Representing first-order logic using graphs.

Graph Transformations: Second International Conference,
ICGT 2004, Rome, Italy, September 28--October 1, 2004.
Proceedings. (2004), 319--335.

[27] Rodriguez, A. 2008. Restful web services: The basics. Online

article in IBM DeveloperWorks Technical Library. November
(2008), 1–11.

[28] Schmidt, K. et al. 2009. Gaining reactivity for rich internet

applications by introducing client-side complex event
processing and declarative rules. AAAI 2009 Spring Symposium:
Intelligent Event Processing (2009), 67–72.

[29] Shaikh, A. et al. 2011. Evaluation of Tools and Slicing

Techniques for Efficient Verification of UML/OCL Class
Diagrams. Advances in Software Engineering. 2011, (2011), 5.

[30] Shaikh, A. et al. 2011. UOST: UML/OCL aggressive slicing

technique for efficient verification of models. Lecture Notes in
Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics).
6598 LNCS, (2011), 173–192.

[31] Shaikh, A. et al. 2010. Verification-driven slicing of UML/OCL
models. Proceedings of the IEEE/ACM international conference

on Automated software engineering - ASE ’10. November 2015
(2010), 185.

[32] Singh, R. 2013. Literature Analysis on Model based Slicing.

Internatonal journal of Computer Applications. 70, 16 (2013),
45–51.

[33] Tilevich, E. and Smaragdakis, Y. 2002. J-orchestra: Automatic
java application partitioning. ECOOP ’02 Proceedings of the

16th European Conference on Object-Oriented Programming
(2002), 178–204.

[34] Yang, F. et al. 2007. A unified platform for data driven web
applications with automatic client-server partitioning.

Proceedings of the 16th international conference on World

Wide Web - WWW ’07 (New York, New York, USA, 2007),
341.

[35] Zhang, W.Z.W. 2010. 2-Tier Cloud Architecture with
maximized RIA and SimpleDB via minimized REST. Computer

Engineering and Technology ICCET 2010 2nd International
Conference on. 6, (2010), V6-52-V6-56.

[36] 2004 - Marcel Kyas, Harald Fecher, Frank S. de Boer, Joost

Jacob, Jozef Hooman, Mark van der Zwaag, Tamarah Arons,
Hillel Kugler - Formalizing UML Models and OCL Constraints
in PVS.pdf.

