
Revision submitted to the Special Issue on Software Engineering Education and Training,
Journal of Systems and Software, May 2018

Adapting Agile Practices in University Contexts

Zainab Masood1, Rashina Hoda, Kelly Blincoe
SEPTA Research, Department of Electrical and Computer Engineering,

The University of Auckland, Auckland, New Zealand

Abstract

Teaching agile practices has found its place in software engineering curricula in many universities across the globe. As a result, educators and
students have embraced different ways to apply agile practices during their courses through lectures, games, projects, workshops and more for
effective theoretical and practical learning. Practicing agile in university contexts comes with challenges for students and to counter these
challenges, they perform some adaptations to standard agile practices making them effective and easier to use in university contexts. This
study describes the constraints the students faced while applying agile practices in a university course taught at the University of Auckland,
including difficulty in setting up common time for all team members to work together, limited availability of customer due to busy schedule
and the modifications the students introduced to adapt agile practices to suit the university context, such as daily stand-ups with reduced
frequency, combining sprint meetings, and rotating scrum master from team. In addition, it summarizes the effectiveness of these
modifications based on reflection of the students. Recommendations for educators and students are also provided. Our findings and
recommendations will help educators and students better coordinate and apply agile practices on industry-based projects in university
contexts.

Keywords: Agile Software Development; Agile Practices; Teaching; University; Adapting; Contextualization

* Corresponding author. Tel.: +64 9 923 1377; Fax: 0800 61 62 64.
E-mail address: zmas690@aucklanduni.ac.nz.
Physical address: Building 903, 368 Khyber Pass, New Market, Auckland 1023, New Zealand

 2

1. Introduction

Agile courses have been taught at both the
graduate and undergraduate levels using different
approaches, such as theoretical lectures supplemented
with lab sessions [1], workshops [2], and games [3].
One of the most common techniques is providing
hands-on agile practice through team projects
implemented by the students during the course [4-8].
Though teaching agile in a university context is
acknowledged to be challenging [2, 9, 10], it is also
seen as useful due to numerous benefits, such as
gaining agile experience [5], customer coordination
and collaboration [11], and improving job prospects
[7]. It nurtures software development experience for
students and helps them embrace agile practices on
real projects [7].

Teaching agile in the university involves
constraints that directly influence the practices
followed and require adaptations to fit the university
context. In this study, we present the constraints
faced and adaptations made by university students
working on a project within the course using agile
and lean practices at the University of Auckland. We
collected data over two iterations of the course,
involving 135 students working in teams of 6-8 on 18
different projects.

This paper summarises the students’ experiences
and observations of learning agile practices through
team projects and indicates how university students
contextualized some of the agile practices during
their projects to meet the daily and weekly
challenges. We collected data through 135 individual
reflection surveys and analysis of 75 student essays.
We discuss the adaptations students made to fit their
needs and their impact on practice, including both
positive and negative. Based on the lessons learned,
recommendations are presented for educators and
students interested in tailoring agile for a tertiary
course.

The remainder of the paper is structured as
follows. Section II describes related works, section
III lists the course structure and description, Section
IV summarises the research methodology used in this
study, section V presents the findings of this research
throwing insights into constraints faced by university
students while implementing agile practices during
projects, the modifications to the agile practices made
in a university context followed by their perceived
effectiveness. Section VI discusses the findings and

compares with related work with recommendations
for educators and future students. Section VII
concludes.

2. Related Works

Though agile software development has been
around for more than a decade, teaching agile
software development has only drawn significant
attention in educational and research domains in the
last few years [3]. Many researchers have
acknowledged the need to teach agile software
development in software engineering programs [11,
12] as a means to build social and ethical skills in
addition to technical skills [12]. There is growing
awareness that traditional theoretical lectures alone
cannot help students to learn agile practices, rather
students need to practically apply them for enriching
learning and upskilling themselves [2, 13].

 Teaching agile methods to software engineering
students is reported to benefit in many ways, such as,
hands-on positive experience of applying engineering
practices such as Test Driven Development [4, 5],
students learning to communicate with a customer [3,
5], motivating them to deliver a solution [5], building
confidence and increasing the marketability of
students as novice software engineers in industry [7].
However, exposing students to agile methods and
practices in the university context comes with a set of
challenges [2] including, differing student motivation
and aims [3, 14, 15], limited availability and support
from Product Owner/Customer [14, 15], lack of
guidance from experienced coach (XP) or a scrum
master (Scrum) role [5, 15, 16]. Some other
challenges reported include short duration of courses
with half of the course time being dedicated to
teaching concepts cutting down time to work on
projects, students required to take multiple courses in
addition to their personal and professional
commitments [14, 16]. As a consequence, sometimes
students apparently gain experience in practicing
these agile methods and practices, but they may not
be able to apply them correctly [5, 15, 16].

Recent research on agile education elaborates on
how instructors at universities have taught different
agile methods and practices [2, 17] such as XP [3, 6,
18] and Scrum [1, 8], as optional or sometimes

 3

Week	1 2 3 4 5 6 7 8 9 10 11 12

Test	25% Design	docs	5%

Prototype	15%

Part	1	Theory

Part	2	Team	Project

Part	3	Research

Project	Plan	5%

Project	(15%)	+	Documentation	
(5%)

Individual	
Essay	25%

Individual	Reflection	5%

mandatory courses to graduate and undergraduate
students [19]. Some techniques adopted by these
instructors include introducing agile theory in a
traditional manner with lectures and laboratories [1]
and exposure to literature on agile practices [17]
while others include some practical experience
through games [3], workshops [2], and interactive
exercises [17]. Some universities incorporate agile
practices into the curriculum through different scaled
(small, medium and large) series of projects [6] while
others have taken the approach of introducing agile
theory in one semester followed by project course in
the next [4]. Some allowed students to learn agile
methods by working on projects under the
supervision of tutors [8]. Very few collaborated with
industry to gain practical experience of collaborating
with real customers through projects [5]. Students
working on existing industry systems is rare [20].

Many educators have shared their experiences of
teaching agile methodologies so that others can
benefit from them [2, 7, 10, 19, 21, 22]. Some
discussed their methods of teaching with challenges
and issues faced [2, 7, 19], others reported their
experiences around students’ interaction with
customers, weaknesses in teams, and imbalance in
workload [21]. Few
researchers shared challenges encountered by the
students while applying agile methods to develop real
projects and the lessons learned by the instructors
through their experiences in the process [9, 10]. Some
of these challenges reported by students are eliciting,
structuring and communicating requirements [9],
ineffective team communication due to busy
schedules and planning issues due to the lack of

experience and training [10]. In this study, we not
only covered similar constraints faced by students in
detail but also identified other constraints such as
customer related issues, personal commitments, and
the lack of students’ dedication which hindered the
embracing of agile practices in university settings.

 It is commonly acknowledged by a number of
researchers that agile must be adapted to suit the
university context [6, 24]. Some of the adaptations
while teaching agile methods and practices in
academic settings include variations to sprint lengths,
stand-up meetings, sprint meetings, and use of online
digital tools and boards [1, 5, 9, 10, 14, 24, 25].
Others include variations to roles, i.e. lecturer, tutor
or external, team member playing the role of
customer, scrum masters rotating between team
members, others had experienced coaches as their
scrum masters.

Building on this growing body of knowledge, our
study presents evidence of the types of constraints
faced by students when applying agile on quasi-real-
world projects, working in close collaboration with
industry ‘customers’ within university contexts; and
the adaptations made by student teams to agile
practices to work around the constraints.
Additionally, perceived effectiveness of these
adaptations is discussed leading to an understanding
of the impact they made on students’ learning.

Figure 1 Course structure, assessment breakdown and timeline

 4

3. Teaching Approach

3.1. Course Description

The course SoftEng761 Agile and Lean Software
Development provides theoretical agile foundations
to students and exposes them to hands-on software
development. The key components involve iterative
and incremental software development, self-
organizing teamwork, project management through
project work, and finally, invokes critical research
and reflection through comparison across theory,
project experience in the course, and industrial
practice.

The course was designed and launched by Dr.
Hoda in 2013 and has had over 250 students deliver
36 projects using agile methods over the last five
years. It is taken up by final year Bachelor of
Engineering (Honours), Master of Engineering
studies students (pre-dominantly specializing in
Software Engineering and some in Computer
Systems Engineering) and Masters of Information
Technology students. The last couple of years have
had around 75 students in the class, self-forming
teams 8-10 teams of 7-8 for the project. All students
are expected to have strong object-oriented
programming and teamwork skills which help them
to choose a project matching their skillset. In terms of
workload, the students are expected to devote
approximately 10 hours per week, for a total of 12
weeks of the semester and participate in all
assessments, test, project, and essay.

3.2. Course Plan and Structure
Figure 1 shows the course structure, assessment

breakdown and timeline. The course follows a three-
tiered learning approach as elaborated below:

3.2.1. Part 1: Theory
In the first three weeks, students learn the basics

of Agile, Scrum, XP, Lean and Kanban methods
through lectures and materials, which helps them to
adopt an agile mindset. Many hands-on simulation
games and exercises are used to impart theory in
addition to materials on slides. Students are tested on
these fundamental concepts in a test worth 25% in
week 3.

3.2.2. Part 2: Team Project
Students self-form teams for the project. In 2016,

8 teams were formed comprising 7-8 students each
while in 2017, 10 teams were formed comprising 7-8
students each. Teams work in close collaboration
with industry partners ‘customers’ to apply their
technical skills acquired from previous years and
agile practices learned in Part 1 of this course in the
form of a team project. They develop a proof-of-
concept software based on the needs of their industry
partner. They simulate a “quasi-real-world” agile
software environment escorted by teamwork, project
management, and software process experience to
implement the learned theoretical concepts. While the
projects are industry-based, we refer to them as
quasi-real-world because of their university context
(e.g. location, schedule, facilities, lack of financial
concerns or pressures of a real job) which differs
from a full industry experience. However, having
industry involved lends some of the real-world
context (e.g. managing customer expectations,
requirements engineering, regular customer
collaboration, professionalism, etc.) and prepares
them to encounter similar scenarios in the industry
after they graduate. Project teams are free to
customize the Scrum process to suit their context and
preferences. However, they are expected to follow
some basic Scrum practices including weekly sprints,
sprint planning meetings, daily/frequent stand-up
meetings, composing user stories and associated
acceptance criteria, creating and maintaining product
and sprint backlogs sprint review and retrospective
meetings. The projects count for
50% of the overall assessment.

Local industry partners serve as the customers for
these projects. We put out a yearly call for proposals
to our local industry contacts in May, with proposals
due in June. We typically receive about 15 proposals
per year. An example of a past project is CLVR, an
app that uses Artificial Intelligence to automate
Behavioural Interviews done during job recruitment,
and provides instant feedback on a job candidate’s
personality and emotional intelligence. Based on the

 5

work done by the students, CLVR was later named a
finalist in the BNZ Start-Up Alley competition2.

The course staff reviews the proposals received
from the industry partners to ensure the projects are
suitable and provide the right level of scope to be
completed during the course while still challenging
the student teams. In some cases, we will ask for
additional details or ask for minor modifications to
the proposed projects. Once this is complete, we
provide a list of all available projects to the students,
and the teams rank the projects in order of their
preference. We aim to give each team one of their
top-ranked projects to ensure the teams are invested
and motivated and also ensure the teams have the
needed skills for their project. Since we usually have
more projects than teams, the projects with the lowest
ranks are not allocated.

Once the students are assigned a project, they
work closely with the local industry representative,
who plays the role of Product Owner. The industry
partners provide, clarify, and prioritize requirements,
review demos the software, provide feedback through
acceptance tests, and contribute to final project and
team evaluations. The teams typically meet with their
industry partner once a week. Over the course of the
project, i.e. 8 weeks, the teams deliver a project plan,
design documents, and two formally assessed
releases of the software. For each of these
deliverables, the teams do brief presentations to the
class.

3.2.3. Part 3: Individual Research

In this part, students apply critical analysis and

reflection by comparing agile theory, practice (i.e.
project experiences) and related research literature on
various agile and lean topics. They produce an
individual essay worth 25% on the given research
topic, e.g. common challenges of practicing Agile
and Lean software development (2016) and
contextualizing Agile in the university context (2017).

2 http://www.webstock.org.nz/bnz-start-alley-17-
finalists/

4. Research Methodology

The goal of this study is to investigate how
university students contextualize and adapt agile
practices during a quasi-real-world project of 8 weeks
to achieve project outcomes. Our data collection
occurred through student surveys and analysis of
student essays. The study identifies the constraints
students faced and reports resulting deviations from
standard ways to apply and follow agile methods in
university settings. Not all adaptations proved useful
to the teams, but most were seen to work well in
university contexts.

The research questions driving this study are
listed below:
RQ1: What are the most common constraints faced
by students while practicing agile in a university
course?
RQ2: Which agile practices do students choose to
follow and how were those practices adapted to fit
the university context?
RQ3: Which adapted practices are perceived to be
beneficial and effective in terms of outcomes and
which are not?

4.1. Data Collection and Analysis

This research is based on data collected from two
years’ running of SoftEng761, offered in second
semester of 2016 (students = 60) and 2017 (students
= 76). This includes 291 individual responses to 4
reflection surveys contributed by 60 unique students
in 2016; and 75 individual reflection surveys and
another 75 individual essays contributed by 75
unique students in 2017 (one student did not submit
the survey and essay). The surveys were distributed
on Qualtrics and responses saved into excel sheets.
These individual surveys were used to map data to
team level results. If a majority of the team members
(>=75%) selected individual responses such as
constraint or a practice followed, then it was
perceived as team level constraint or practice.

Some of the survey questions included:
• Based on your experience in this course, what

are the challenges of agile and Lean software
development?

 6

• Please rate your overall level of satisfaction with
your customer on a scale of 1-10; where 1 is well
below standard and 10 is excellent?

• How did your team 'tweak' standard agile
practices to fit the university context?

The essays were between 4-6 pages long and

were submitted as PDFs. In these essays, students
were asked to describe, in detail, the challenges they
faced associated with applying agile practices in a
university context, the adaptations they made due to
these challenges, and how well those adaptations
worked in their experience.

The data collected was saved and analysed in

NVivo, a data analysis software, using open coding
and constant comparison procedures of Grounded
Theory data analysis [25, 26]. During the analysis
process, categories such as constraints and
adaptations emerged from the coding and constant

comparison enabling the researchers to identify the
common patterns and dissimilarities.

Table 1 lists all the agile practices the teams used

(both as standard and adapted) while implementing
their projects, where the 8 teams from 2016 are
referred to as T1-T8 and the 10 teams from 2017 are
referred to as T9-T18. It is evident that all the teams
followed some agile practices (shown in row 3) such
as scrum board, daily stand-ups, sprint planning,
review, retrospectives and using scrum masters as
recommended in the course. Of other agile practices,
5 teams used continuous integration while only one
team, T2, applied work in progress (WIP) limit
concept from Kanban.

Table 1 Agile Practices used by the student teams in SoftEng761 (SB: scrum board, DS: daily stand-up, SA: self-assignment, SP: sprint
planning, RM: review meeting, RP: release planning, Re: retrospective, CF: cross-functionality, SM: scrum master, PO: product owner, Est:
estimation, PP: pair programming, Ref: refactoring, CCO: collective code ownership, CI: continuous integration, WIP: work-in-progress
limit, DoD: definition of done)

Team #	
Scrum Practices Scrum Roles XP Practices

SB DS SA SP RM RP Re CF SM PO Est PP Ref CCO CI WIP DoD

All teams �� �� � �� �� � �� � �� �� � � � � � � �

T1 �	 �	 �	 �� �� � �� � �� �� �� �� �� � �� � �	
T2 �	 �� �	 �� �� � �� � �� �� �� �� � � � �� �
T3 �	 �� 	 �� �� � �� � �� �� �� � � � � � �

T4 �	 �� 	 �� �� � �� � �� �� � � � � � � �
T5 �	 �	 	 �� �� � �� � �� �� � �� � � � � 	
T6 �	 �	 �	 �� �	 	 �	 	 �	 �� 	 �	 	 	 	 	 	
T7 �	 �� �� �� �� � �� � �� �� �	 �	 	 	 �	 	 	
T8 �	 �	 	 �� �� � �� � �� �� � �� � �� � � �	
T9 �� �� �	 �� �� �� �� �� �� �� �� �� �� � � � ��

T10 �� �� �	 �� �� � �� � �� �� � �� � �� � � ��
T11 �� �� 	 �� �� �� �� � �� �� � �� �� �� � � �
T12 �� �� �	 �� �� �� �� � �� �� � �� �� �� �� � �

T13 �� �� �	 �� �� � �� �� �� �� � �� � �� � � �
T14 �� �� �� �� �� �� �� �� �� �� � �� � �� � � ��
T15 �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� � ��

T16 �� �� �� �� �� � �� �� �� �� � �� �� �� � � �
T17 �� �� �� �� �� �� �� �� �� �� � �� �� �� � � ��
T18 �� �� �� �� �� � �� � �� �� � �� � � �� � ��

 7

5. Findings

In this section, we describe the constraints faced
by students in practicing agile methods in a
university context, the adaptations made to work
around the constraints, and their perceived
effectiveness.

5.1. Constraints

Implementing agile practices in a university
course is an important way of learning and involves
collaboration, communication, dedication and
motivation of the students, staff and the customers.
On the other hand, it brings some constraints that
hinder the students from following these practices by
the book.

The constraints faced by the students during the
course project of SoftEng761 were collected through
an open-ended survey question from the students in
the 2016 course. In 2017, we provided the list of
constraints identified in 2016 and asked the students
to select each constraint they faced on their project.
There was also an option for the 2017 students to
write in additional constraints they faced. However,
the write-in responses from the 2017 students did not
result in any new categories. The constraints
identified by the students in both years were:

5.1.1. Schedules Constraints
Some of the constraints related to schedules. For

example, several students from 12 teams (80%) [T1-
T3, T9-T14, T16- T18] reported difficulty in setting
up a common time for all team members to work
together. Often this was because of their varying and
clashing university lecture timetables [reported by all
teams T1-T18] and conflicting due dates of
deliverables in other courses such as assignments,
tests and projects [raised by 15 teams T4-T18]. This
constraint is well captured by the following comment
from one of the students in T9.

“It was extremely challenging to organize times for
the entire team to meet for meetings and co-located
development [sessions]. This was due to the team
having different class timetables and commitments.”

In addition to these normal scheduling conflicts,
the University schedule itself fluctuates with a mid-
semester break and other University commitments
throughout the semester. For example, one student
said:

“On top of these regularly occurring limitations,

there were large University events beyond our
control that disrupted project work. These included a
two-week long study break, and ‘Systems Week’ – a
week-long project [required for all 4th year students]
which prevented students from doing other
coursework.”

5.1.2. Team Communication Issue
Teams faced difficulties while communicating

with each other [reported by three teams (16%) T3,
T8, T18]. One team T4 specified that working
remotely on separate devices led to similar
communication issues. Less visibility for peer
progress was identified as a limitation by another
team T2. Overall, communication seemed
challenging for the teams. Some quotes from the
students that reported these difficulties are:

“...students who may lack the required
communication skills for group projects.”

“…lacked transparency between each team member,
and didn’t know how much progress they’ve made on
a task.”

“…. happened to be international students, leading to
difficulties communicating due to English
incompetence”

5.1.3. Customer Related Issues
Collaborating with customers and product

owners was reported as challenging by several
students in 10 teams (56%) due to limited availability
of client due to busy schedule and business
commitments [T2, T9-T13, T15-T18], unavailability
of customer during planned meeting time was
brought up by 5 teams (28%) [T1, T2, T15-T17],
difficulty in finding meeting time suiting the product
owner/customer and students was reported by a
majority of the students in 8 teams (44%) [T2, T9,
T12- T14, T16-T18], difficulty in prioritizing due to

 8

unrealistic customer demands was noted by 3 teams
[T12-T13, T17] and distant location of product owner
was highlighted by one of the teams [T7] . Some
quotes from the students that demonstrate these
difficulties are:

“The industry client we [T9] were working with had
commitments he needed to keep at his full-time job.”

“We struggled as a team [T10] to find a time we
could coordinate with the product owner to meet for
sprint planning, retrospectives and reviews.”

5.1.4. Lack of Dedication

Some of the constraints related to dedication of
team members. For example, limited dedication of
team members due to other courses, or otherwise was
reported by half of the teams [T3, T9-T14, T17-T18]
and unavailability of some team members during
planned project time was also mentioned by 50% of
the teams [T8-T14, T16, T18]. For example, as noted
by member of team T11:

“Some students were not motivated nor proactive,
and produced low quality work (which sometimes
wasn’t tested and didn’t work).”

Another student noted:

“Not everyone turned up on time or even turned up to
the group chat without any prior notice.”

5.1.5. Personal Commitments
Personal commitments outside university was

reported as a constraint by 11 teams (61%) [T3, T5-
T6, T9-T14, T17- T18]. These commitments were
mainly related to professional activities of working
team members. For example, one member of team
T10 stated:

“Some team members had commitments outside of
University, such as work or club activities.”

5.1.6. Technical Constraints
Difficulty in estimation due to unclear scope was

reported by 9 teams (50%) [T4, T9-T13, T15-T17].
Similarly two teams specified difference in technical

skill level [T8] and difficulty in setting a
development pace for the team members [T5] as
some of the technical constraints faced by the teams.
For example, one student noted that:
“.. at university, the technically competency and
programming skills of students vary. Some students
are more proficient at coding than others.”

To better understand the frequency of these
constraints, the students in 2017 were given these
constraints as a closed list to select the ones they
faced while practicing agile in their projects. The top
five constraints chosen by the students in 2017 are
the unavailability of some team members during
planned project time [67%], difficulty in setting up
common time for all team members to work together
[67%], conflicting due dates of deliverables in other
courses like assignments, tests and projects [61.5%],
limited dedication of team members due to other
courses [52.6%] and different and clashing university
lecture timetables between team members [51.3%].

5.2. Adaptations to Agile Practices

This section describes how the teams follow, adapt
and modify agile practices during the execution of the
team project within the university context. Some of
these agile practices were adapted to overcome
coordination related hurdles, both within the team
and with the product owner, and improve the
engagement, empowerment and culture of the team.
These adaptations are presented in Table 2 and
elaborated below.

Scrum Practices
The students described adaptations to daily stand-

ups, scrum boards, sprint length and schedule and
others.

5.2.1. Daily Stand-up
In theory, Daily Stand-ups (DS) takes place every

day, face-to-face, to report updates on work done. It
is one of the most common practices followed by
agile teams in the industry. In university too, it was
the most commonly used practice but was adapted to
fit into the university context. Because of varying
student schedules during the day and throughout the
week, most teams preferred a virtual collaborative

 9

environment (e.g. Slack, WeChat, Facebook
Messenger and email) over traditional stand-up
meetings to discuss the team’s accomplished tasks,
focus areas, and blockers. A few teams were doing a
mix of in-person and virtual daily stand-ups. The
frequency of the stand-ups was also reduced in
accordance with the schedule of the team members.
Some teams opted weekly when the group planned to
meet while others some performed it on alternate
days, biweekly and triweekly. A few teams used bots
(e.g. Chatbot, Slackbot) which were configured to
collect statuses from individuals through private
messages at a pre-set time and triggered reminders
through notifications.

5.2.2. Scrum Board
All the teams opted to use online tools (Trello,

Jira, GitHub using ZenHub) as scrum boards which
could be accessed remotely at any time and enabled
both the students and customers to log activities and
track the progress easily. Given there was no
dedicated workspace for the teams, conventional
physical scrum boards were infeasible.

5.2.3. Sprint Length and Weight
Agile teams in the industry are typically seen to

maintain a consistent sprint length. However, in the
university course, the teams adapted the sprint
lengths based on their workload. Some had weekly
sprints in the beginning but then during other busy
times, such as inter-semester break, exams and other
commitments, these were changed to biweekly.
Similarly, for times when there was less load in other
courses, the teams switched to shorter sprints in the
agile course. For example, one of the teams defined
their development period over weekly sprints as a 6-
hour work week and 2-hours per week for sprint
review/planning/ retrospective.

Sprint Meetings
The majority of the teams preferred having one

physical meeting per week with additional team
meetings occurring through an online collaborative
platform (e.g. Facebook Messenger, GitHub, Slack
and email).

5.2.4. Release Planning
As a standard scrum practice, release planning is

done as an independent session for planning every

release. Due to the relatively small scale and short
duration of the projects, the teams who performed
release planning held one or two sessions at the
beginning of the project, which included planning for
all anticipated releases such as the prototype and final
product (see Fig.1). One of the teams combined
release and sprint planning into one meeting and
planned out tasks for all releases and sprints at the
start of the project.

5.2.5. Sprint Planning
Sprint planning sessions are customarily held at

the beginning of the sprint to define the sprint
backlog. In SoftEng761, sprint planning sessions
were mostly conducted as face-to-face meetings by
the teams. One of the most common modifications to
suit the university context was combining sprint
planning with the sprint review into a single weekly
session to accommodate to the team’s and product
owner’s limited availability, which is quite unlike in
standard practice.

5.2.6. Sprint Review
During a standard sprint review, the team usually

presents the sprint work to the product owner for
their feedback. In the university context, the reviews
were adapted to replicate the experience virtually
through a video-conferencing solution (e.g. Skype,
Zoom). However, sometimes the teams were unable
to demonstrate their weekly progress to the industry
partner due to technical issues.

5.2.7. Retrospective
Generally, retrospectives are run after each sprint

to suggest process improvements for the following
sprint, but many teams reported holding it before the
sprint planning and review to suit the availability of
the industry partner. Another team held retrospective
meetings before sprint review meetings as it was
convenient for the team members. Traditionally, the
Product Owner is not included in the retrospective;
however, due to the product owners’ vast agile
experience, one of the teams found it very useful to
include their product owner.

5.2.8. Cross-Functionality
In theory, scrum supports cross-functionality

within teams where every team member is open to

 10

take up any work irrespective of their skillset.
Maintaining cross-functionality in a university
context is challenging due to the limited project
duration. One of the strategies followed by the teams
was splitting teams into sub-teams (e.g. mobile and
web app teams or frontend and backend teams) which
helped to achieve cross functionality to some extent
within sub-teams. A few teams preferred
specialization, letting people work on areas where
they already had expertise instead of promoting
cross-functionality within teams.

Scrum Roles

The students reported adaptations around
traditional scrum roles i.e. Scrum Master and Product
Owner as elaborated below.

5.2.9. Scrum Master
The role of the Scrum Master (SM) is typically

played by a dedicated resource in industrial contexts.
In SoftEng761, teams were recommended to adopt a
rotating Scrum Master role to allow each team
member to gain leadership experience. Some of the
teams practiced this throughout the project. One of
the teams tailored this further by introducing an
overseer (group leader), a person with advanced
leadership skills, to assist the rotating scrum masters
as they gained experience. Some teams experimented
with having two scrum masters for each sprint to
reduce pressure on a single person and share the
responsibilities, e.g. one of the teams had a dedicated
SM with a rotating secondary SM in parallel to allow
learning opportunities amongst other team members.
One of the teams dropped the SM role toward the
end. This way team members contributed where they
could, making easy for the customer to communicate
equally with all.

5.2.10. Product Owner
In typical agile projects, a product owner is a

dedicated role in agile team responsible for defining
and prioritizing the backlog based on the customer’s
need. For the majority of the teams, a representative
of the industry partner served as the product owner.
One of the teams adapted this by introducing
collective product ownership toward the end of the
project as their industry partner was unable to be
involved to the required extent due to professional

commitments. Another team had two industry
partners as their product owners.

 11

Table 2 Constraints, Agile Adaptations and their Perceived Effectiveness

Standard
Practices

Constraints Main Adaptations Perceived Effectiveness

 Positives (+) Negatives (-)

Daily Stand-Ups
(DS)

 Reduced frequency (+) 2-3 times a week (before lecture and PO meeting with the
PO) seen as more valuable than virtual

(-) obstacles reporting delayed in bi-weekly DS

Schedule, Team
Communication,
Personal

Using virtual tools,
including bots

(+) convenient and suited team members
(+) Slack bot worked better than manual slack updates

(-) missing emotional information (-) attrition over time
 and interaction cues (-) messy log
(-) missing/delayed responses (-) untimely reminders
(-) texting fatigue (-) notifications disabled
(-) time box overruns

Scrum Board Schedule,
Team
Communication

Digital Scrum board (+) tidier than a physical scrum board
(+) phone notifications useful
(+) constant availability and sharing

(-) updating a challenge
(-) too many updates led to messy boards

Sprint Length Schedule Variable/short sprint
length

(+) improved workload balance
(+) more frequent customer collaboration due to short sprints

(-) reduced project velocity

 Working 1-2 days per
week in collocated
sessions

(+) increased focus
(+) better communication
(+) improved mutual understanding of schedule
(+) improved workload balance

Sprint Meetings Team
Communication

Combining /sequencing
meetings

(+) combining/sequencing meetings proved efficient for
customer collaboration

(-) exhaustion, loss of focus
(-) losing essence of each meeting practice
(-) underestimated user stories in early sprints due to combined
release/sprint planning

 Changing sequence

(+) moving retrospective before review followed by sprint
planning for next sprint suited PO and the team

Retrospective Schedule Presence of PO (+) PO in first few retrospectives provides direction

 12

Cross-
functionality

Technical

Subdividing into sub
teams (backend/frontend)

(+) better focus on one area

(-) lacking inter group communication led to some confusion
and delays

 Decreased cross-
functionality

(+) specialization increased productivity and efficiency of
team members in short term

Scrum Master
(SM)

Schedule, Team
communication

Dedicated SM

(+) single point of contact
(+) experienced SM effective in running retrospectives &
maintaining sustainable pace

Rotating SM

(+) everyone experienced role

(-) customer struggling to keep track
(-) some students not suited as SM
(-) reduced opportunity to consolidate learning

No SM (+) one of the teams dropped the SM role toward the end

Overseer with SM (+) having overseer with SM worked faster and efficiently

Product Owners
(PO)

Customer related
issues

Collective product
ownership

 (-) Collectively sharing product ownership added more
responsibilities so having dedicated PO would have been better
for the team to focus on work

Multiple POs

 (-) reduced velocity due to private reconciliations of (two) PO
disagreements

Condensed collaboration

(+) short (2 minute) updates appreciated by PO over full SPM
sprint planning meetings
(+) combined meetings

Pair
Programming

Technical,
Schedule

Remote Pair
Programming

(+) knowledge transfer
(+) collaborative learning
(+) remote pair programming worked via screen sharing
(+) combined with code review for improved code quality

(-) scheduling common time
(-) confusion in remote pair programming sessions sometimes

Customer
Communication

Customer related
issues

Online communication (+) easy approach to customer

(-) difficulties communicating with customer during sprints due
to technical issues
(-) Emailed tasks not accepted well by team

 13

XP Practices

5.2.11. Pair Programming
As an XP practice, two programmers sit side-by-

side at a single machine to write code; one writes
while the other reviews it simultaneously. Many
teams were seen to practice pair programming with
varying consistency. Some did this on an as-needed
basis, some only very occasionally, and some had
dedicated time slots every week for this. A few teams
performed them remotely through skype screen
sharing since it was difficult to arrange a common
time suiting all team members. It was seen that
usually the same people, and often friends, would
pair up due to similar schedules and common
understanding.

5.3. Perceived Effectiveness of Adaptations

As described in section 4, we asked the teams.
Which tweaked [adapted] practices did and did not
prove beneficial and effective in terms of outcomes
and why? In response to this, they shared their
experiences with the adapted practices and we then
synthesized the responses to determine the
effectiveness of these adaptations as summarised in
Table 2 and few elaborated below. It is evident from
the results that the adaptations had both positive and
negative effects.

To address the problem of conflicting schedules
and physically meeting each other every day, every
team adapted daily stand-ups someway to fit the
university context. Physical stand-ups were more
structured, expressive and useful for team
communication. However, virtual stand-ups replaced
physical stand-ups most of the time but some teams
had difficulties around time-boxing them, setting up a
time suiting everyone in the team, less number of
people showing up on time, etc. Additionally, teams
faced some technical issues (e.g. sometimes messages
were lost in the channel or poor voice quality when
video chatting). The strategy that was most
commonly reported to work well was having at least
1-2 physical stand-ups (typically held before or after
the weekly lectures or customer meetings)
accompanied by a few virtual meetings through an
online communication channel such as Slack,
Facebook messenger, WeChat.

Most of the teams started with rotating the scrum
master role among team members every sprint to
allow all team members to experience the role. After
a few sprints, many teams found it somewhat
confusing and counterproductive for the team due to
the following reasons:
• a single sprint was too short for the new scrum

master to understand and gain confidence in the
role,

• passive or introverted team members found it
challenging to lead the team,

• added communication confusion for the industry
partners as they were not sure which person to
contact.

Adaptations like using a digital scrum board and

having a variable sprint length were perceived as
valuable as they helped the teams overcome some of
the university constraints such as differences in
student schedules. Digital scrum board such as
Trello, Jira, Visual Studio Team Services (VSTS)
was adopted by all the teams and reported to benefit
in the university context if regularly updated by all
team members. The main benefit was that the team
members and industry partners could access it
remotely at any time, still few team members
reported keeping the digital board up to date
cumbersome.

Using online communication for meetings did not

prove beneficial at all times and email was reported
as challenging for the teams (e.g. missing details).
There were instances when technical issues led to
difficulties hearing and responding to the customer or
to each other leading to confusions. Another
constraint reported though occasionally was that the
teams were unable to demonstrate work to the
customer due to limitations of the webcam when
done virtually.

5.4. Relationship Between Constraints & Adaptations
and Outcomes

Applying agile to university projects exhibits
constraints such as balancing workload with other
courses, difficulty in setting up a common time to
work together, conflicting due dates of deliverables in

 14

other courses, and limited dedication of team
members due to demands from other courses. This
leads to students adapting agile practices to better suit
the university context.

 15

As an example, it was impossible for the students
to meet every morning to perform a stand-up
meeting. Also, due to other courses classes, tests
and assignments, it was unlikely for team members
to be able to show daily progress. Therefore, the
teams adapted the practice in many different ways
by performing standups physically but less
frequently, daily but virtually, physically once
weekly accompanied with bi/tri-weekly virtually
meetings, and only daily virtual meetings. These
adaptations had both positive and negative effects,
some of which are shown in Figure 2 (and also
summarized in Table 2 earlier).

6. Discussion

Applying agile practices to university contexts is
not a straightforward process and requires
modifications to standard ways to work around the
constraints imposed by university settings. A good
number of agile practices were adapted to suit

university settings; but not all were found effective
to students in learning agile practices. The
adaptations perceived to be most effective were
virtual stand-ups combined with 1-2 physical ones
per week, digital scrum boards, and variable sprint
lengths to suit the university’s schedule.

However, there are certain limitations to what
extent students can modify practices in a university
agile project. The short-term nature of university
projects often causes students to focus on different
aspects than would be typical in a real-world
project. For example, task estimates typically
improve over time as a team gains experience.
However, many teams noted their early estimates
were very inaccurate; and, thus, they stopped doing
estimations altogether in later sprints. Further, many
teams admitted that they optimized finishing the
project and obtaining high marks over learning new
skills. For example, team members were often
reluctant to learn new technologies when another
team member had expertise in that area and were
mostly not open to practicing cross-functionality or
collective code ownership. Thus, students may not
have invested as much time as necessary to really
learn the agile practices, rather they prioritized
project completion. This was perhaps particularly
pronounced due to the short project duration and
marks incentives that apply in a university setting.

 The scale of the modifications of agile practices
varied. Some practices introduced major tweaks
(e.g. replacing physical stand-ups by virtual stand-
ups or eliminating the role of scrum master). Others
were minor tweaks or slight variations to standard
practices such as less frequent physical standups, or
shorter sprints during peak workload.

Often, teams experimented by modifying a few
practices at the beginning of the project, but with
time they realized it did not work well and so
adapted it another way, thus being agile with their
practices. For example, one of the teams initially
started with daily virtual standup meetings, but they
found that due to other commitments they were not
working on the project every day, so the meetings
were not always productive or necessary. They later
reduced the number of standups and that worked
well for the team as each team member had
something useful and new to report at each standup.
Similarly, another team started off with a rotating

Figure 2. Relationship between Constraints, Adaptations and
their Effects for Daily Stand-ups (DS)

Constraints
• Different and clashing

university lecture
timetables

• Difficulty in setting up
common time to meet
daily

• Personal commitments
outside university

Adaptations
• Virtual DS Using

virtual tools, including
bots

• Reduced Frequency
(Weekly, Bi-Weekly,
Tri-Weekly)

Positive Effects
(+) Virtual stand-ups were convenient and suited team
members
(+) Slack bot worked better than manual slack updates
(+) Having both physical and virtual DS increased
team interaction

Negative Effects
(-) Virtual DS was difficult due to slower pace through
text typing
(-) Hard to time-box virtual DS
(-) With bi-weekly DS members were often found
waiting for next DS to report obstacles

leads to

have

have

 16

scrum master, but they found it was hard to keep
track of who was in charge for the current sprint for
both the customer and the team. They also reported
that often the new person in charge was unaware of
what was expected as it was their first time being in
such a role and that by the time they got up to speed
it was time to rotate a new scrum master. After a
couple of sprints, the team decided to assign a
dedicated scrum master, which fit well in their
context. Everyone knew who to contact when there
were any troubles, and the customer preferred
having one consistent point of contact.

Most of the adaptations were around scrum
practices. While the students followed several XP
practices, very few deviated from standard ways in
relation to these practices. Some of the adaptations
were pair programming through screen sharing, and
pair programming between friends. One clear point
that emerges here is that Scrum practices were seen
to be adapted more in the university context than
Extreme Programming (XP) practices. This could
be because Scrum practices generally involve the
whole team and/or the customer. Since schedule
conflicts and limited customer availability were
some of the biggest constraints, these collaborative
Scrum practices were most affected and needed
adaptations. Other reasons could be that XP
practices may not require any drastic changes to fit
in a university context, so teams were able to adhere
fairly closely to standard practices or due to a lack
of experience with XP practices, the teams might
have felt it was risky to adapt them as doing so
incorrectly could have a negative impact on team
performance and/or product quality. Future research
should investigate this in greater depth.

6.1. Comparison to Related Work

Prior work on contextualizing agile for
university settings highlighted how students adapted
agile to fit their needs. Some of these, e.g. [2], used
an electronic task board and dedicated working
hours every week on projects. Based on their
experiences, students suggested intensive working
week over dedicated working hours and using
physical task boards over electronic boards due to
performance issues. In another study, stand-up
meetings were conducted during class times [23],
which slightly differs from the adaptations we

identified. Our teams utilized lab times and space
for group meetings, but stand-ups did not take place
during class time as most of those were utilized for
theory and team presentations.

Some similarities are reported around the role of
scrum master in another study. In a three-sprint
scrum, students adapted the scrum master's role as
either a rotating scrum master, or with two members
sharing the role or one permanent scrum master [1].
This is quite consistent with how our teams adopted
this role in the university context. Similarly, some
previous studies reported that the customer [2, 13]
or a team member [1, 9] acted as the product owner.
In our case, industry partners were mostly the
product owners, with the exception of one team
who collectively played the role of product owner.

It is evident from related studies that sprint
length is typically kept fixed for university projects
[2, 9, 13]; however, Werner et al. [1] described a
university project with teams adapting different
sprint lengths, from 1 to 4 weeks. All our teams
started with one-week sprints. As the project
progressed, many teams increased the sprint length
to two/three weeks for a limited time. This
adaptation worked to balance the workload and
ensure the completion of planned tasks.

6.2. Implications

 Based on their experiences and lessons learned,
the students made recommendations for the course
instructors and future students to keep into account
while teaching and implementing agile practices in
similar courses through projects.

 17

6.2.1. Recommendations for Students

• ‘Daily’ stand-ups should be done face-to-face
but less frequently, starting with at least 2
stand-ups weekly. However, the frequency of
can be adjusted to suit the needs. Combining
physical and online stand-ups can serve as a
good compromise.

• Sprint length can remain fixed most of the time
but consider varying the sprint length
occasionally to balance student workloads
during busy assessment and test periods at the
university.

• Having a combined sprint review and planning
session can help make the most of the limited
customer availability.

• Utilizing online tools to simplify
communication within teams such as team
emails, messengers, chat channels, digital
scrum boards, virtual pair programming tools,
bots to update direct from chats to digital task
boards, and bots to send daily reminders for
stand-ups are by and large useful.

• Sprint planning and retrospectives should be
done in person where possible, as immediate
feedback from team members can be extremely
useful.

• Having one stable scrum master and others
rotating can benefit the teams and members
individually.

6.2.2. Recommendations for Educators

• Where resources are available, provide teams
with experienced tutors or make masters
students the Scrum Master for initial sprints if
not throughout the project.

• Adequate support should be given to the Scrum
Master by the team. They may be given a
lighter developmental role to accommodate for
management efforts.

• When sourcing industry partners, preference
should be given to the ones located close to the
University and having enough collaboration
time available.

• Where possible, teams should be provided a
dedicated place for them to arrange collocated

code sessions and have their physical Scrum
boards.

• Educate teams on best practices for virtual
communication.

• Allocating time for daily-standups during
classes and lab sessions can prove to be useful.

• Allocate a training period before the project
begins where students can practice techniques
such as Pair Programming or Test Driven
Development so they do not have to experiment
during the project.

7. Conclusion

It has long been acknowledged that learning
agile is best done through practical hands-on
projects. Yet, university projects cannot fully
replicate real-world scenarios. Students face many
constraints such as difficulty in setting up common
time for all team members to work together,
unavailability of some team members during
planned project time, limited availability of
customer due to busy schedule. This article reports
how students tailor standard agile practices to suit
the university context and mitigate these
constraints. The most common adaptations were
daily stand-ups with reduced frequency, combining
and sequencing sprint meetings, and rotating scrum
master from team. We found that many of these
adaptations helped the students to overcome the
hurdles they faced while some were not as effective
as others. In addition to the presenting the common
constraints and adaptations, we also provide a list of
recommendations for both students and educators of
future course teaching agile software development
practices for effectively adapting agile in university
contexts.

Acknowledgments

We would like extend our thanks to all the
students of SOFTENG761 for sharing their
experiences.

References

 18

1. Werner, L., D. Arcamone, and B. Ross, Using Scrum
in a quarter-length undergraduate software
engineering course. Journal of Computing Sciences in
Colleges, 2012. 27(4): p. 140-150.

2. Kropp, M. and A. Meier, Teaching Agile Software
Development at University Level: Values.
Management, and Craftsmanship, CSEE&T, 2013.

3. Goldman, A., et al., Being extreme in the classroom:
Experiences teaching XP. Journal of the Brazilian
Computer Society, 2004. 10(2): p. 5-21.

4. Muller, M.M. and W.F. Tichy. Case study: extreme
programming in a university environment. in
Software Engineering, 2001. ICSE 2001. Proceedings
of the 23rd International Conference on. 2001. IEEE.

5. Schneider, J.-G. and R. Vasa. Agile practices in
software development-experiences from student
projects. in Software Engineering Conference, 2006.
Australian. 2006. IEEE.

6. Fenwick, J.B. Adapting xp to an academic
environment by phasing-in practices. in XP/Agile
Universe. 2003. Springer.

7. Hanks, B. Becoming agile using service learning in
the software engineering course. in Agile Conference
(AGILE), 2007. 2007. IEEE.

8. Scharf, A. and A. Koch. Scrum in a software
engineering course: An in-depth praxis report. in
Software Engineering Education and Training
(CSEE&T), 2013 IEEE 26th Conference on. 2013.
IEEE.

9. Matthies, C., et al. How Surveys, Tutors and Software
Help to Assess Scrum Adoption in a Classroom
Software Engineering Project. in Software
Engineering Companion (ICSE-C), IEEE/ACM
International Conference on. 2016. IEEE.

10. Lu, B. and T. DeClue, Teaching agile methodology in
a software engineering capstone course. Journal of
Computing Sciences in Colleges, 2011. 26(5): p. 293-
299.

11. Shukla, A. and L. Williams. Adapting extreme
programming for a core software engineering course.
in Software Engineering Education and Training,
2002.(CSEE&T 2002). Proceedings. 15th Conference
on. 2002. IEEE.

12. Hazzan, O. and Y. Dubinsky, Why software
engineering programs should teach agile software
development. ACM SIGSOFT Software Engineering
Notes, 2007. 32(2): p. 1-3.

13. Bruegge, B., M. Reiss, and J. Schiller. Agile
principles in academic education: A case study. in
Information Technology: New Generations, 2009.
ITNG'09. Sixth International Conference on. 2009.
IEEE.

14. Schneider, J.-G. and L. Johnston. eXtreme
Programming at universities: an educational
perspective. in Proceedings of the 25th international
conference on Software engineering. 2003. IEEE
Computer Society.

15. Bunse, C., R.L. Feldmann, and J. Dörr. Agile methods
in software engineering education. in International
Conference on Extreme Programming and Agile
Processes in Software Engineering. 2004. Springer.

16. Wainer, M. Adaptations for teaching software
development with extreme programming: An
experience report. in XP/Agile Universe. 2003.
Springer.

17. Steghöfer, J.-P., et al. Teaching agile: addressing the
conflict between project delivery and application of
agile methods. in Proceedings of the 38th
International Conference on Software Engineering
Companion. 2016. ACM.

18. Hedin, G., L. Bendix, and B. Magnusson, Teaching
software development using extreme programming, in
Reflections on the Teaching of Programming. 2008,
Springer. p. 166-189.

19. Devedˇzic, V., Teaching agile software development:
A case study. IEEE Transactions on Education, 2011.
54(2): p. 273-278.

20. Rico, D.F. and H.H. Sayani. Use of agile methods in
software engineering education. in Agile Conference,
2009. AGILE'09. 2009. IEEE.

21. Anslow, C. and F. Maurer. An experience report at
teaching a group based agile software development
project course. in Proceedings of the 46th ACM
Technical Symposium on Computer Science
Education. 2015. ACM.

22. Campbell, J., et al. Scrum and agile methods in
software engineering courses. in Proceedings of the
47th ACM Technical Symposium on Computing
Science Education. 2016. ACM.

23. Nejmeh, B. and D.S. Weaver. Leveraging scrum
principles in collaborative, inter-disciplinary service-
learning project courses. in Frontiers in Education
Conference (FIE), 2014 IEEE. 2014. IEEE.

24. Mahnic, V., A capstone course on agile software
development using Scrum. IEEE Transactions on
Education, 2012. 55(1): p. 99-106.

25. Glaser, B.G., Basics of grounded theory analysis:
Emergence vs forcing. 1992: Sociology Press.

26. Hoda, R., J. Noble, and S. Marshall, Developing a
grounded theory to explain the practices of self-
organizing Agile teams. Empirical Software
Engineering, 2012. 17(6): p. 609-639.

