
HAL Id: hal-01905901
https://hal.science/hal-01905901

Submitted on 26 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimating the Reputation of Newcomer Web Services
Using a Regression-Based Method

Okba Tibermacine, Chouki Tibermacine, Foudil Cherif

To cite this version:
Okba Tibermacine, Chouki Tibermacine, Foudil Cherif. Estimating the Reputation of Newcomer Web
Services Using a Regression-Based Method. Journal of Systems and Software, 2018, 145, pp.112-124.
�10.1016/j.jss.2018.08.026�. �hal-01905901�

https://hal.science/hal-01905901
https://hal.archives-ouvertes.fr

Estimating the Reputation of Newcomer Web Services

Using a Regression-Based Method

Okba Tibermacinea, Chouki Tibermacineb, Foudil Cherifa

aBiskra University, LESIA, P.B. 145 R.P, Biskra 07000, Algeria
bLIRMM, CNRS and Montpellier University, France

Abstract

In this paper, we propose a novel method to estimate the initial reputation
values of newcomer web services. In fact, the reputation of web services is one
of the criteria used for recommending services in service-oriented computing
environments. The lack of evaluating the initial reputation values can subvert
the performance of a service recommendation system making it vulnerable
to different threats like whitewashing and Sybil attacks, which negatively
affect its quality of recommendation. The proposed method uses Quality
of Service (QoS) attributes from a side, and reputation values of similar
services from the second side, to estimate the reputation values of newcomer
services. Basically, it employs regression models, including Support Vector
Regression, in the estimation process of the unknown reputation values of
newcomers from their known QoS values. We demonstrate the efficiency
of the method in estimating the reputation of newcomer services through
statistical evidences gathered from experimentations conducted on a set of
real-world web services.

Keywords: Web services recommendation, reputation measurement,
support vector regression, feedback rating, honest and malicious service
raters.

Email addresses: o.tibermacine@univ-biskra.dz (Okba Tibermacine),
Chouki.Tibermacine@lirmm.fr (Chouki Tibermacine), foud_cherif@yahoo.fr (Foudil
Cherif)

Preprint submitted to Journal of Systems and Software September 9, 2017

1. Introduction

Web Service recommendation systems (WSRSs) provide a precious assis-
tance to users in selecting the best available Web Services (WS) to implement
their business processes. To recommend services, WSRSs manage different
kinds of metrics related to services, among which reputation. This sub-
jective quality metric is an aggregation of feedback ratings gathered from
service users. It reflects how a given service is perceived by its users which
is a good indicator about its Quality of Experience (QoE). The manage-
ment of reputation plays a significant role in such systems. Recently, many
reputation management models have been proposed to accurately evaluate
the reputation of web services [1–8]. Although these models have addressed
many aspects in reputation evaluation such as user credibility, time sensitiv-
ity, personalized preferences, majority ratings, The evaluation of newcomer
Web services with the absence of feedback ratings is still an important aspect
that it has not been tackled thoroughly.

Indeed, assigning reputation values to newcomer (newly published and/or
never used) services that have an empty rating history is an important and
challenging issue due to the following reasons:

• WSRSs have to assign fair reputation values to newcomer services to
enhance their visibility to users and to give these services a chance
to compete with longstanding similar services during service selection
phases. Hence, it provides a solution to the “cold start” problem,
which describes the situation in which a recommender system is unable
to make a meaningful recommendation due to an initial lack of users
feedback-ratings [12].

• Assigned reputation values attributed by a WSRS have to reflect the
non-functional characteristics (QoS values) of a particular service, and
should not be general values related to the state of the recommender
system itself, such as assigning the average reputation value assessed in
the system to all newcomer services [13], or assigning a fixed reputation
value based on the rate of maliciousness in the system such as proposed
in [14] as an elegant solution to the aforementioned problem.

• The lack of a correct estimation of initial reputation values of newcomer
services may subvert the performance of the WSRS itself, making it
vulnerable to different threats [11] (e.g., the Sybil attack [15]).

2

• WSRSs have to provide a solution to the Whitewashing problem too [9].
Whitewashing (i.e. changing the identity of a malicious user/service in
the system) occurs when an entity leaves the recommendation system,
then it reintegrates it with a new identity in order to erase its poor
reputation acquired with its previous identity [14].

Though some notable solutions have been proposed in the literature for
evaluating the reputation of newcomer services (e.g. [13, 14, 16–18]), most
of these solutions assign the same initial reputation value to every newcomer
service. Or, they do not offer a complete solution that addresses all the
previous challenges.

In this paper, we propose a new model that refines and completes our
initial proposition [19] to estimate initial reputation values of newcomer ser-
vices in WSRSs. A correct estimation of these values allows better recom-
mendations, thus a better help in selecting web services that satisfy clients’
requirements.

Even though reputation is a subjective measure, it reflects users’ satisfac-
tion about a service’s offered functionality and Quality of Service. It has been
observed that fair feedback ratings provided by the majority of honest users
are correlated, even with a slight deviation (due to differences between raters’
opinions), with the QoS of used services [20]. Hence, we use QoS and repu-
tation data of longstanding services to build a reputation estimation model
for bootstrapping the reputation of newcomer services. We mean by “long-
standing services” the services that have long feedback records constructed
from collected user feedback ratings.

In fact, QoS and reputation values could have a linear or nonlinear cor-
relations. Thus, we employ in our propositions both (i) a Linear Regression
Model as a reputation estimator to deal with linear relationships, and (ii) a
Support Vector Regression (SVR) model as a general reputation estimator to
deal with general cases (that is, cases with linear or nonlinear relationships
between reputation values and QoS).

Basically, our reputation estimation method is built on three main phases:

1. Provider reputation evaluation: The system assesses the reputa-
tion of the new service’s provider from reputation values of its previ-
ously published web services. Then, provider’s reputation is employed
in bootstrapping the reputation of the newcomer service.

2. Similarity-based estimation of newcomer’s reputation: In this
phase, the system selects among long-standing web services those which

3

are functionally similar to the newcomer service. Then, the system
selects top-K neighbor services that have high QoS value correlation.
Finally, the system evaluates the reputation of the newcomer service
based on its neighbors’ reputation values (Technique 1), or using a
multiple regression model (Technique 2) that is built from i) reputation
values and ii) QoS values of the service’s similar neighbors.

3. Support Vector Regression-based estimation of newcomers
reputation: In this phase, the system deals with general cases (e.g.
new services published by a new provider with no similar long-standing
services in the system). The system uses a Support Vector Regression
(SVR-) model [21, 22] which is largely employed for forecasting data in
both linear and nonlinear problems. The system trains the SVR-model
using the normalized QoS and reputation values of all services in the
system. Initial QoS values of newcomer services are then used by the
SVR-model to estimate their initial reputation values.

The main goal of this work is two-fold:

– First, it provides a solution to evaluate the reputation of newcomer web
services that correctly reflects their quality. This enhances their visibil-
ity to end users and improve the overall quality of the recommendation
system, by providing a solution to the cold-start problem.

– Second, it provides a solution to the whitewashing problem by looking
to functionally similar services (including services that have left the
system) which are recorded in the system registries.

We evaluated the proposed reputation estimation method on a set of
real-world web service. We compared the obtained results with competing
approaches from the state of the art.

The remaining of the paper is organized as follows. In Section 2, we
present the reputation estimation algorithm. Phases one, two and three of
the method are detailed respectively in Sections 3, 4, and 5. We show the
results of our experiments in Section 6. We discuss the related work in
Section 7, before concluding the paper in Section 8.

2. Reputation estimation method

We suppose that the estimation model is implemented by a reputation
management module of a web service recommendation system. This module

4

Input: Si // Newcomer service

Output: R̂i // Estimated Reputation

Begin

1: λ = 0.3 ; TopkBool = false;
2: if (Provider(Si) ∈ ProviderList) then
3: prReputation = providerReputation(Provider(Si)) ; // compute providers reputation

4: simServiceSet = getSimilarServices(Si,ServiceList); // get functionnaly similar services

5: if (simServiceSet 6= ∅) then
6: for all (Sj ∈ simServiceSet) do
7: QoSim [Sj .index] = PCC(normalize(Qos(Si)),normalize(Qos(Sj))); // using Eq. 4

8: if (QoSim [Sj .index] > 0) then
9: TopKset.add(Sj) ; // TopK neighbors selection

10: end if
11: end for
12: if (TopKset ==∅) then
13: TopkBool = true ; // To continue from line 33

14: else
15: RMin = MinReputation(TopKset) ;
16: RMax = MaxReputation(TopKset) ;
17: if (RMax −RMin < λ) then
18: num = denom = 0 ; // Technique 1, Using Eq. 6

19: for all (Sj ∈ TopKset) do
20: num += QoSim [Sj .index] × getReputation(Sj) ;
21: denom += QoSim [Sj .index] ;
22: end for
23: R̂i=

num
denom

;
24: else
25: MLRmodel =buildMLRegressionModel(topKset) ; //Tech. 2 - linear regression

26: R̂i= estimateReputation(Qos(Si),MLRmodel) ;
27: end if
28: end if
29: else
30: R̂i= prReputation ; // Assign provider reputation

31: end if
32: end if
33: if (!(Provider(Si) ∈ ProviderList) ‖ TopkBool) then
34: simServiceSet = getSimilarServices(Si,ServiceList);
35: if (simServiceSet 6= ∅) then
36: SimVector = Similarities(Si, simServiceSet);
37: aService =HighestScoreService(SimVector);
38: if (Max(simVector)==1 && hasLeft(aService)) then

39: R̂i =getReputation(aService);
40: else
41: MLRmodel =buildMLRegressionModel(simServiceSet) ; //Apply tech.2 for SimServSet

42: R̂i= estimateReputation(Qos(Si),MLRmodel) ;
43: end if
44: else
45: SVRModel = BuildSVRModel(serviceList); // Build Support Vector Regression model

46: R̂i = estimateSVRReputation(Qos(Si),SVRModel);
47: end if
48: end if

End
Algorithm 1: Reputation estimation algorithm

5

enables the collection of feedback ratings from service users, the assessment
of reputation values of web services, and the monitoring and/or the collection
of services’ QoS data. Moreover, the system indexes Web service descriptions
and keeps information of all services, including services that left the system.

When a newcomer Web service Si arrives to the system, we assume that
it comes with an initial QoS vector Qinit

Si
=< qi,1, qi,2, ..., qi,k >. These QoS

values (Qi,j) are provided during registration time by the service provider
(Pr(Si)) as advertised QoS data. This data can also be updated by the
system after a period of service monitoring and testing (for that propose, the
system can use one of the approaches proposed in this survey [23].)

Algorithm 1 presents the process that covers three phases to estimate the
reputation of a newcomer web service Si. First, the system checks whether
the service provider is known by the system, that is, the service provider
belongs to the list of providers ProviderList that have published services in
the system. In the positive case, the system calculates the reputation of this
provider, denoted prReputation, based on the reputation values of its long-
standing services (Line 3 in Algorithm 1). We present the details on how to
calculate the reputation of the provider in Section 3.

Afterwards, the system seeks for long-standing services that provide func-
tionalities which are similar to those provided by the newcomer (Line 4). To
evaluate the functional similarity between web services, we use the approach
proposed in [24]. If simServiceSet, which denotes the set of similar service, is
not empty, the system selects, using positive Pearson Correlation Coefficient
(PCC) values, a subset of top-K neighbors with close QoS vectors to the
newcomer’s QoS vector (Lines 6-11). Both PCC and top-K are widely and
effectively used in recommender systems for the selection of similar elements.

When the maximum distance between reputation values of neighbor ser-
vices in Top-K is relatively small (less then λ = 0.3 for instance), which means
all reputation values of neighbors are close to each other, the system esti-
mates the reputation of the newcomer service as the mean weighted reputa-
tion values of its neighbors, where weights are their PCC values (Lines 15-23).
Otherwise, the system builds a multiple regression model (see Section 4.4.2
for details) using QoS vectors and reputation values of top-K neighbors, and
therefore estimates the reputation value of Si using this model (Lines 25-26).

In the case where simServiceSet is empty then the system assigns to the
reputation of Si the reputation values of its provider “prProvider” (Line 30).
This is motivated by the fact that if the provider has a good reputation, it
is likely that its new web service will have a good starting reputation too.

6

Besides, when the provider of the service is also new to the system, we
check if it is a whitewashing situation (lines 33-38 in Algorithm 1). The
system retrieves all similar long-standing services and compares their sim-
ilarity scores with the newcomer service (similarity scores range between 0
and 1, where 1 means that services are totally similar and 0 otherwise). If
the highest similarity score equates to one, and the similar service has left
the system, then, the provider of the newcomer service becomes suspicious,
and we assign the (old) reputation value of the left service to the reputation
values of the newcomer service (line 38 in the algorithm). Otherwise, we use
Technique 2, where the system builds a multiple linear regression model from
QoS and reputation values of similar services (simServiceSet). Then, the
system estimates the reputation of Si using the built model (Lines 41-42).

When the newcomer service and its provider are both new, and there are
no similar services in the system, we go to Phase 3 (detailed in Section 5).
The system builds a Support Vector Regression model from QoS vectors and
reputation values of all long-standing Web services in the system (line 44 in
the algorithm). Similarly to Phase 2, the model gives also an estimation of
service reputation based on the service’s initial QoS. The estimated value is
assigned to the reputation of the newcomer service Si.

3. Provider reputation

The reputation of a provider mainly depends on the quality of its offered
services, thus on their reputation scores. In this phase, we calculate the
reputation of a given provider as the weighted arithmetic mean of reputation
scores of its offered services. Given a provider Prx, let Services(Prx) =
{Si}, i = 1, ..., n denote the set of n web services provided by Prx, and Ω(Si)
be the number of users who rated service Si. The reputation of a provider
Prx is calculated as follows:

RP (Prx) =

{
(
∑n

i=1 Ω(Si)∗Ri)∑n
i=1 Ω(Si)

if Services(Prx) 6= ∅
0 Otherwise

(1)

where,

• Ri is the reputation of service Si that belongs to the provider’s service
set (Si ∈ services(Prx)).

• ∅ denotes the empty set.

7

Reputation estimation

Functionally-similar

services selection

1
QoS

Normalization

2
Top-K Neighborhood

selection (Eq.4-5)

3

Neighborhood-based

estimation (Eq. 6)

A

Linear regression Based

estimation

B

Model construction

(Eq.8)

Estimation

(Eq.9)

Ȓ𝒊

𝑺𝒊
𝑹

𝑴
𝒂

𝒙 (𝑻
𝒐

𝒑
𝒌

(𝑺
𝒊))

 −
 𝑹

𝑴
𝒊𝒏 (𝑻

𝒐
𝒑

𝒌
(𝑺

𝒊))

< λ

Otherwise

4

Figure 1: The second phase for estimating the reputation of a newcomer service Si.

The reputation of a new provider, in case of introducing its new ser-
vice, will be set to the estimated reputation of its newcomer service which is
calculated using one of the following estimation phases.

4. Reputation estimation from similar services

Since users rate functionally-similar web services (i.e. services that pro-
vides same functionalities) based on the same criteria, we consider that it is
possible to estimate the reputation of newcomer web services using reputa-
tion scores of its similar services, which are calculated by aggregating users’
ratings. In this phase, a four-step technique is proposed to estimate this rep-
utation based on QoS values of the newcomer service Si and the existing long-
standing similar services (see Figure 1). As mentioned above, the initial QoS
values of Si are represented by the QoS vector Qinit

Si
=< qi,1, qi,2, ..., qi,k >.

The method for estimating the initial reputation of Si denoted R̂i is de-
tailed in the following sub-sections.

8

4.1. Step 1 - Functionally-similar service selection

First, the system selects from its databases long-standing services that
offer the same functionalities (e.g. Weather forecasting services, currency
services, transportation services, etc.) to the service Si. In the literature
many approaches that compute the similarity between web services are pro-
posed (e.g. [25–27]). In this work, we choose to use the approach proposed
in [27] to calculate the similarity between a newcomer web services and the
existing services. The approach assesses the similarity between two web ser-
vices by comparing their WSDL definitions using several lexical and semantic
metrics. The results of the similarity assessment are scores that range from
0 and 1, where 0 represents a total dissimilarity and 1 a total similarity. The
compared web services with a similarity score greater or equal than a fixed
threshold (e.g., 0.75) are considered as similar. The result of this step is a
set of similar services denoted by simServiceSet.

4.2. Step 2 - QoS normalization

Second, the system retrieves and normalizes QoS and reputation values of
each service in the simServiceSet. Let simServiceSet = {Sj}, (j = 1, ..,m)
be the set of m similar services to the newcomer service Si. Each similar
service Sj in this set has a QoS vector QSj

=< qj,1, qj,2, ..., qj,k > and a
reputation value Rj calculated by the system from user feedback ratings.
Besides, the newcomer service Si is defined by the vector Qinit

Si
that represents

its initial known QoS values, and R̂i that represents the unknown reputation
value (to be estimated).

Afterwards, the system normalizes all QoS values in the range [0, 1].
Thus, each QoS value, QosV al ∈ {qj,l, (j = 1, ..,m; l = 1, .., k)} is

replaced in its vector by its normalized value NewQosV al which is calculated
as follows:

NewQosV al =
QosV al −MinV al

MaxV al −MinV al
(2)

Where MinV al and MaxV al are respectively the minimum and maximum
recorded values in the system for that QoS metric (with the index l). Note
that some of QoS metrics have values that are interpreted inversely, i.e. the
higher is the value, the lower is the quality. This includes execution time and
price. Thus, the scaled value NewQosV al is calculated as follows:

NewQosV al = 1− (
QosV al −MinV al

MaxV al −MinV al
) (3)

9

4.3. Step 3 - QoS-similar neighborhood selection

The more the QoS values of the newcomer services are close to the QoS
values of other services, the more its reputation value is close to their rep-
utation values. Thus, the system in the third step selects the QoS-Similar
neighbors from the simServiceSet by calculating similarities between the
QoS Vectors of Web services. These similarities could be calculated using
PCC (Pearson Correlation Coefficient) or VSS (Vector Space Model Simi-
larity) estimates, which are used in recommendation systems [28–30]. PCC
can generally achieve higher performance than VSS [31]. Therefore, we em-
ploy PCC for the similarity computation between normalized QoS vectors
QSj

, (j = 1..m) and Qinit
Si

, the QoS vector of the newcomer Si, using the
following equation:

PCC(Si, Sj) =

∑k
l=1(qi,l −Qi)(qj,l −Qj)√∑k

l=1(qi,l −Qi)2

√∑k
l=1(qj,l −Qj)2

(4)

where, qi,l and qj,l are the values of l’th quality in the QoS vectors Qinit
Si

and QSj
, and Qi, Qj are the average QoS values of the previous vectors

respectively.
From Eq. 4, PCC(Si, Sj) values belong to the interval [−1, 1], where a

larger PCC value indicates higher QoS-similarity between services Si and Sj.
After calculating QoS-Similarities between the newcomer service and services
in the simServiceSet, a set of top-K neighbors is identified based on PCC
values. In this work we ignore negative PCC values because negative values
could represent a dissimilarity between compared services, which influences
greatly the accuracy of the estimation of reputation in next steps. Thus, the
top-K neighbor set of the newcomer service Si is defined as follows:

TopK(Si) = {Sj | PCC(Si, Sj) >> 0;

Sj ∈ simServiceSet}
(5)

where, PCC(Si, Sj) is computed using Eq. 4. In case TopK(Si) equates the
empty set (∅), then the system moves to Phase 3 of the method, and the
estimation of the reputation of the newcomer service R̂i is calculated using
the SVR-based model. Otherwise, its reputation is estimated in the next
step.

10

4.4. Step 4 - Reputation estimation

We propose two techniques to estimate the reputation of a newcomer
service based on the data about the services in the top-K neighbor set
(TopK(Si)). The first consists in calculating the weighted mean of neighbors
reputations (Section 4.4.1), and the second is based on the construction of a
multiple linear regression model (Section 4.4.2) from QoS vectors and their
corresponding reputation values.

The system selects the first technique when the difference between the
maximum and the minimum reputation values of services in the Top-k set is
less or equal than a threshold λ (e.g. λ = 0.3).

RMax(TopK(Si))−RMin(TopK(Si)) < λ

which is the case when all service reputation scores in the Top-K set are close
each to the other (i.e. the distance between reputation values do not exceed
λ). Otherwise, the system selects the second technique to estimate R̂i.

4.4.1. Neighborhood-based estimation

The estimation of R̂i is calculated using Eq. 6.

R̂i =

∑
j∈TopK(Si)

(PCC(Si, Sj) ∗Rj)∑
j∈TopK(Si)

PCC(Si, Sj)
(6)

where TopK(Si) is the set of neighbors that are functionally and qualita-
tively (based on their QoS values) similar to the newcomer service Si, and
PCC(Si, Sj) is the similarity between Si’s and Sj’s QoS vectors. Using PCC
as a weight in Eq. 6 means that reputation scores of services, whose QoS val-
ues are highly correlated with the QoS values of the newcomer service, are
assigned with higher weights (i.e PCC values close to 1).

4.4.2. Linear regression-based estimation

The second technique to estimate R̂i is achieved by constructing a mul-
tiple regression model, using QoS and reputation values of top-K service
neighbors.

Multiple regressions are statistical techniques used for predicting un-
known Y values (a dependent variable) corresponding to a set of X values
(independent variables). In our study, the multiple regression is expected to
give a model that could relate the reputation values of long-standing services
to their QoS values, that is, we consider the dependent variable Y to represent

11

the reputation of services as a function of multiple QoS attributes (indepen-
dent variables) such as response time, availability, throughput, latency, price,
etc. Thus, if we have m services in the TopK(Si) (Sj , j = 1, 2, ...,m), and
each service Sj has a QoS vector QSj

=< qj,1, qj,2, ..., qj,k > that holds k QoS
metrics, and each service Sj has a reputation value R(Sj) denoted Rj, the
relationships between reputation (the dependent variable) and QoS metrics
(independent variables) can be expressed by the following equation:

q1,1 q1,2 · · · q1,k

q2,1 q2,2 · · · q2,k
...

...
. . .

...
qm,1 qm,2 · · · qm,k


︸ ︷︷ ︸

X


β1

β2
...
βk


︸ ︷︷ ︸

β

+


ε1

ε2
...
εm


︸ ︷︷ ︸

ε

=


R1

R2
...
Rm


︸ ︷︷ ︸

Y

(7)

where :

• X is the design matrix that packs all regressors (predictors) ql,j, l =
1, ...,m and j = 1, ..., k.

• β is the regression coefficient vector (called also slop vector).

• ε is the error vector. Error terms εl, i = 1, ..,m capture all the factors
which influence the dependent variable (Rl, l = 1, ...,m) other than
regressors (Xl,j, l = 1, ...,m and j = 1, ..., k).

The multiple regression of the model can be simplified to:

Rl = β1ql,1 + β2ql,2 + ...+ βkql,k + εl, l = 1, ...,m (8)

where,

• Rl is the response (estimated reputation) of the linear combination of
the model terms.

• βl (l = 1, ..., k) represents the unknown coefficients.

• εl is the error term.

After model construction, the system uses solved values of the unknown
coefficients (βl (l = 1, ..., k), and the error term (ε), to estimate the reputation
of the newcomer service based on its initial QoS vector using Eq 9.

R̂i = β1qi,1 + β2qi,2 + ...+ βkqi,k + εi. (9)

12

5. SVR-based reputation estimation

In this phase, the system deals with general cases, where it is unable to
recognize the service provider and it cannot find similar services. This phase
relies on the use of a Support Vector Regression model [21, 22] to estimate
the reputation of newcomer services. The system constructs an SVR model
using QoS data and reputation values of all long-standing services.

As a learning algorithm based on statistical learning theory [32], SVR
has been applied extensively in non-linear regression/prediction problems
(e.g. [33–37]). The essence of the application of this algorithm in our context
is to map QoS and reputation values of long-standing services into a higher
dimensional space via a non-linear mapping and then to do linear regres-
sion in this space (i.e. to find the relationship between QoS and reputation
values). The main idea in SVR is summarized as follows:

Given a training set D = (xi, yi); i = 1, 2, ..., N , yi ∈ R, xi ∈ RN , where
xi is the ith input in the N-dimension space, and yi is the output value
corresponding to xi.

Through a mapping function Φ(x), SVR maps input data xi to a high
dimension feature space F , which can describe the relationships between
inputs xi and outputs yi. This linear function is formulated as an SVR
function (Eq. 10).

f(x) = ωTΦ(x) + b , Φ : R→ F , ω ∈ F (10)

Note that the dimension of Φ is not specified. The training with the set D
consists in estimating the optimal coefficients ω and b which are determined
by minimizing a risk function as follows:

Rω =
1

2
‖ω‖2 +Remp =

1

2
‖ω‖2 + C × 1

2

N∑
i=1

|yi − f(xi)|ε (11)

where :

• Remp represents the empirical risks;

• 1
2
‖ω‖2 and C denote the Euclidean norm and a cost parameter mea-

suring the empirical risks respectively;

• N is the number of samples;

13

• |yi − f(xi)|ε is an ε-insensitive loss function, which controls deviation
and makes the estimation robust.

The ε-insensitive loss function is formulated by Eq. 12.

|y − f(x)|ε =

{
0 , if |y − f(x)| ≤ ε
|y − f(x)| , else

(12)

From Eqs. 10, 11 and 12, the coefficient ω and b are determined through
the support vector regression method by minimizing the objective function
R(ω) :

R(ω, ξi, ξ
∗
i) = 1

2‖ω‖
2 + C

∑N
i=1(ξi, ξ

∗
i)

s.t.


yi − ωTΦ(x)− b ≤ ε+ ξ∗i , i = 1, 2, ..., N
ωTΦ(x) + b− yi ≤ ε+ ξi, i = 1, 2, ..., N
ξi, ξ

∗
i ≥ 0, i = 1, 2, ..., N

(13)

where, ξi, ξ
∗
i are slack variables (relaxation factors) used to represent the

stated excess positive and negative deviation. In Eq. 13, 1
2
‖ω‖2 makes the

regression function more flat and has better generalization ability. The sec-
ond part of Eq. 13 is used to reduce the error. The C parameter is a constant
number C ≥ 0. It is used to control the degree of “punishment” of samples
beyond the error ε. Then we establish the Lagrange’s equation:

L(ω, ξi, ξ
∗
i) = 1

2
‖ω‖2 + C

∑N
i=1(ξi, ξ

∗
i)

−
∑N

i=1 αi[(ε+ ξi) + yi + ωTΦ(xi) + b]

−
∑N

i=1 α
∗
i [(ε+ ξ∗i) + yi + ωTΦ(xi)− b]

−
∑N

i=1(λiξi + λ∗i ξ
∗
i)

(14)

To optimize Eq. 14, the function L(ω, ξi, ξ
∗
i) has to be minimal. Then,

14

we obtain the following dual optimization problem:

min{1
2

∑N
i=1

∑N
j=1(αi − α∗i)(αj − α∗j)[Φ(xi).Φ(xj)]

+
∑N

i=1 αi(ε− yi) +
∑N

i=1 α
∗
i (ε+ yi)}

s.t.


∑N

i=1(αi − α∗i) = 0

αi, α
∗
i ∈ [0, C]

(15)

The support vector regression problem can be summed up in a quadratic
programming problem. By solving the quadratic problem in Eq. 15, the
parameter vector ω in Eq. 10 is obtained as follows:

ω =
N∑
i=1

(αi − α∗i)Φ(xi) (16)

where αi and α∗i are the Lagrangian multipliers which are the solution of
R(ω, ξi, ξ

∗
i). Thus, the SVR regression function is obtained in the dual space

shown below:

f(x) =
N∑
i=1

(αi − α∗i)k(x, xi) + b (17)

where k(x, xi) = Φ(x).Φ(xi) is a kernel function. Different SVR models
can be elaborated by selecting different kernel functions. One of the widely
used kernels is the Gaussian Radial Basis Function (RBF) which performs a
nonlinear mapping between the input space and a high dimensional space,
and which is easy to implement at the same time [34]. Under the uncertainty
that reputation is collinear with QoS data, we choose the RBF Kernel to
develop our reputation estimatation SVR model. Thus Eq. 17 is rewritten
as follows:

f(x) =
N∑
i=1

(αi − α∗i) exp

(
−‖xi − x‖2

2σ2

)
+ b (18)

where σ (kernel parameter) is the width of the RBF kernel function. xi is
the input vector of the training data, i.e. the QoS vector of long-standing
services in our case. x is the vector of testing data, i.e. the initial QoS vector
of the newcomer Web service. The reputation of the newcomer service R̂i

equates to f(x).

15

Number Quality Description Unit

1 Response time Time taken to send a request and receive a response ms
2 Availability Number of successful invocations / total invocations %
3 Throughput Total Number of invocations for a given period of time invocations/second
4 Successability Number of response messages / number of request messages %
5 Reliability Number of error messages / total number of messages %
6 Compliance The extent to which a WSDL document follows WSDL specification %
7 Best Practices The extent to which a Web service follows WS-I Basic Profile %
8 Latency Time taken for the server to process a given request ms
9 Documentation Measure of documentation (i.e. description tags) in WSDL %

Table 1: QoS metrics selected from QWS dataset

6. Experiments and Evaluation

To evaluate the proposed reputation estimation method, we conducted
an experiment on a set of real web services collected from WSDream [38]
and QWS [39] datasets. Our experiment has been conducted through three
steps, in which we evaluated the three proposed estimation phases. Different
accuracy metrics are used to compare the results obtained by our estimation
method against results obtained by related state-of-the-art methods.

6.1. Data description and preparation

WSDream dataset holds 5825 web service QoS data evaluated by 339
users in different geographical locations (we have chosen the dataset 2 in
WSDream). This dataset holds 339*5825*2 (2 QoS characteristics: response
time and throughput). QWS dataset holds 365 web services with 9 QoS
characteristics listed in Table 1.

To use a maximum number of QoS metrics with different monitored val-
ues of response time and throughput, we selected the services that belong
to the two datasets. We matched web services based on their URIs, Names,
and WSDL file size. We obtained 409 WSDL files for 356 services, where
53 files from the 409 are redundant WSDL with different endpoint and QoS
metrics. Each service in this set has 7 fixed QoS metrics from QWS, and 2
QoS metrics (response time and throughput) that vary based on the obser-
vation of 339 users from WSDream. This final web service set is used in the
experimentation.

6.2. Evaluation metrics

Statistical accuracy metrics are performance metrics that are used for
the evaluation of recommender systems. In this experiment, we use Mean

16

Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Root-
Mean-Squared-Error (RMSE) metrics to measure the quality of the estima-
tion provided by our method in comparison with similar methods.

MAE is a quantity that measures how close are the estimations (predic-
tions) to the eventual outcomes. MAE is defined as follows:

MAE =

∑n
i=1|Ri − R̂i|

n
(19)

MAPE expresses the accuracy as a percentage of the error (e.g. if MAPE
is 5, the estimation is off by 5 %). MAPE is defined as follows:

MAPE =
1

n

n∑
i=1

∣∣∣∣∣Ri − R̂i

Ri

∣∣∣∣∣× 100 (20)

RMSE is a quantity to measure the difference between predictions and
eventual outcomes. RMSE gives a relatively high weight to larger errors. It
is defined as follows:

RMSE =

√∑n
i=1(R̂i −Ri)2

n
(21)

In Eqs. 19 and 21, Ri denotes the actual reputation (Reputation which
is calculated by aggregating simulated feedback ratings), and R̂i denotes
the estimated (predicted) reputation calculated by the proposed method (or
similar methods), and n is the number of tested services.

In addition, we use the correlation coefficient (R) that measures the
strength and the direction of a linear relationship between variables (Rep-
utaion and Qos metrics in this case), and the coefficient of determination
(R2) that gives the proportion of the variance of reputation variable that is
predictable from QoS metric variables.

6.3. Comparison

To show the efficiency of the proposed method, we compare our Reputa-
tion Estimation Method (labeled REM) with the following two competing
methods (1 and 2) and the three baseline methods (3 to 5):

1. The method based on Malicious user Density (labeled MDBM) pro-
posed by Malik et al. [14]: this adaptive bootstrapping approach cal-
culates the initial trust value based on the rate of maliciousness in the

17

system. It assigns a high initial reputation value when R, the mali-
ciousness rate, is low, and a low reputation value when R is high.

2. “Artificial Neural Network”-based method (labeled ANN) proposed by
Wu et al. [16]. This machine learning method estimates the reputation
of newcomer Web services using an artificial neural network model built
from Quality of Service values.

3. Minimum Value Method (labeled MVM): this approach is used by
Zacharia et al. [40], it assigns the minimum possible reputation value
to all newcomers.

4. Neutral Method (labeled NM) used by Wang et al. [41]. This method
assigns the neutral value (0.5) to the reputation of newcomers.

5. Average Reputation Method (labeled ARM) used by Huang et al. [13].
This method assigns the average reputation in the system (i.e. the mean
reputation value of longstanding services)

6.4. Feedback rating simulation

Due to the current limited availability of feedback rating data, many web
service reputation management approaches (e.g. [10, 14, 20]) have used sim-
ulation for generating user feedback ratings for assessing service reputation
values. Likewise, we have built a Java program that simulates interactions
between a set of 409 web services and a set of 339 users.

Each service has an actual performance (overall quality) level (from 1 to
10), denoted PerfVal, that represents on a scale of 10 how good is the overall
quality provided by the service. PerfVal is calculated based on a utility
function (i.e., a single scalar metric to quantify quality perception) of the
delivered service, as suggested in [42]. However, in our work, we propose to
calculate the utility function with the root mean square, which is a measure
of the magnitude of the scaled QoS metrics.

Thus, PerfVal of service Si is assessed as follows:

PerfV al(Si) = 10×

√√√√√ k∑
j=1

Scal(Qi,j)2

k
(22)

where, k is the number of used QoS metrics (Qj, j = 1, .., k). And, Scal(Qi,j)
is the scaling function, which is defined by Eq. 23, if the quality is positive

18

(i.e., the higher is the value the higher is the quality), and by 1 - the same
formula otherwise.

Scal(Qi,j) =
Qi,j −Min(Qj)

Max(Qi)−Min(Qj)
(23)

Min(Qj) and Max(Qj) are respectively the minimum and maximum
recorded values of the quality Qj.

The program simulates two kinds of users: honest and malicious users.
Honest users randomly rate a service based on its PerfVal within the interval
[Max(0,PerfVal − 2),Min(PerfVal + 2, 10)]. For example, if PerfVal=7,
honest feedback ratings could be 5, 6, 7, 8, and 9. The deviation with±2 from
PerfVal represents the natural variation between user opinions. Malicious
users randomly rate the same service outside the previous interval, always
on a scale of 10. For instance, if PerfVal=7, malicious feedback ratings could
be 0, 1, 2, 3, 4 and 10.

In this simulation, we consider different malicious user densities. Whitby
et al. [43] and Malik et al. [20] claim that high maliciousness densities are
unrealistic in real world applications. Thus we have considered maliciousness
densities in the interval [10% - 30 %].

Finally, the reputation of web services is calculated as the mean of the
collected feedback ratings. The final reputation values are averages of 10
round-simulation results.

6.5. Provider-based reputation

In this section, we evaluate the accuracy of the reputation estimation of
newcomers using the reputation of their providers. We have selected a list
of providers that have more than one service in the working dataset. For
each provider, the program takes randomly one or more services, depending
on the number of its published services and the rate of test, to construct
the test-set (i.e. the set of services that are considered as newcomers to the
system). The program does the following:

1. Calculate the reputation from simulated feedbacks for all services.

2. Randomly select services to construct the test-set based on a given
ratio. This ratio indicates how many services will be considered as
a newcomer. Note that each service in the test-set has a calculated
reputation.

19

Number of Tested Services

0 20 40 60 80

M
A

E

0

1

2

3

4

MDBM

NM

MVM

ARM

REM

Figure 2: Comparing MEA results between our provider-based estimation and other meth-
ods.

3. For each element in the test-set, calculate its provider reputation and
assign it to the newcomer’s estimated reputation.

4. Evaluate the reputation of the tested service using other methods.

5. For each method, compute the MAE, MAPE and MRSE based on the
calculated (from simulated feedbacks) and the estimated reputation
(evaluated by the method).

6. Print results.

7. Repeat steps (1-6) for different test-set rates.

The program identified 55 providers that publish more than one service
from a total of 251 providers in the working dataset. We have performed
several runs, varying the number or tested services (i.e. newcomers). Figure 2
shows the obtained MAE for our method (REM) and other methods. Similar
results are obtained with MAPE and RMSE. As we can see, the MAE values
given by our method are very close to 0, which means that there is a very
slight variation between the calculated reputation from simulation and the
estimated reputation from newcomers’ providers. In addition, we can see that
the assignment of the average reputation in the system (ARM) gives also
a good result in estimating the reputation of newcomers. However, REM
still gives better results. It is obvious that the system could not apply this
method, especially if the provider of the newcomer service is new too.

20

Group
Nbr

Services
Nbr
Tests

MAE MAPE% RMSE

Booking 3 1 0.032 0.504 0.045
Calendar 11 4 0.036 0.567 0.056
Currency 7 3 0.162 2.716 0.201
Email 5 1 0.044 0.714 0.087
Financial 3 1 0.067 1.089 0.095
Game 4 1 0.002 0.031 0.003
Geolocation 36 10 0.063 0.970 0.135
Languages 4 1 0.063 1.063 0.108
Login and security 15 5 0.024 0.394 0.042
Lookup 12 4 0.065 1.017 0.136
Math 15 5 0.107 1.850 0.200
News 18 5 0.034 0.539 0.081
Phone and SMS 17 6 0.057 0.901 0.093
Religion 3 1 0.012 0.190 0.017
Trade 10 3 0.044 0.677 0.096
Versioning 4 1 0.015 0.244 0.026
Weather 6 1 0.034 0.538 0.077

MEAN 0.051 0.824 0.088

Table 2: MEA, MAPE and RMSE results using the Neighborhood-based estimation

6.6. Similarity-based reputation

In this section, we present an experiment we have conducted to evaluate
the efficiency of Phase 2: similarity-based reputation estimation.

Only services that have similar services are evaluated during this phase.
Hence, the program eliminates from the working dataset, all services that
have none, one or two similar services. That is, we need at least 3 services
(i.e. one for test and two at least to apply Eq. 6) to evaluate one of them
using Technique 1 (Section 4.4.1). We need at least 10 similar services (i.e.
one service for a test, and at least 9 services data to build the linear regression
model with 9 known QoS attributes) to evaluate newcomer reputation using
Technique 2.

First, the program analyzed the initial working dataset. It identified 17
groups (clusters) of services with 173 services, as it is shown in Table 2.
Elements of each group are functionally similar to each other. Column ”Nbr
Services” shows the total number of services in the group, and column ”Nbr
tests” depicts the number of services considered as newcomers.

After several runs, we found that the program, with this working dataset,

21

always finds Top-K elements for each service, with a small distance be-
tween reputation values of these Top-K elements. Thus, it always uses the
neighborhood-based estimation technique (1). The obtained MEA, MAPE
and RMSE are given in Table 2. We note that these values are the mean
values of 10 execution rounds. We can see that the estimated reputations
are very close to the actual values with MEA of 0.51 in average. In addition,
Technique 1 estimates accurately the initial reputation with a percentage
error of 0.824%, which is a good score.

Besides, we applied the “Multiple Linear Regression”-based estimation
technique (2) on some groups to test their estimation accuracy. To construct
the multiple linear model we need a dataset of at least 9 services. Thus, we
limited the use of this technique on groups with a high number of services.
Test services were selected randomly, and the construction of the multiple
linear model was with 80% of services.

Table 3 provides the obtained MAE, MAPE, RMSE, R and R2. As we
can see, there is a deviation between the estimated reputation values and the
calculated values represented by MAE value (0.8464 for example in group
“Trade”). This deviation is caused by the size of the trained data. All these
groups hold basically a small number of services. However, these values are
still close to the calculated values, and the percentage error does not exceed
14% in the worst case. The correlation coefficient (Multiple R) for all groups
ranges in [0.78 - 1] which indicates a positive relationship between reputation
values and QoS data (where 1 indicates a perfect positive relationship). We
see also from R2 that most of the trained values fit the model (e.g., for Math
group 0.87% of the values fit the model). From this experimentation, we can
say that the largest the data we use for training, the best the accuracy we
obtain during the estimation of newcomer reputation. We conclude that we
may safely use this technique too to estimate the reputation of newcomers
from their functionally-similar services.

6.7. SVR-based reputation

To construct the Support Vector Regression models, we used the LibSVM
API [44] in our Java program. Since we want to construct a model that
covers both linear and non-linear relationships between QoS and reputation
values in the system, the Gaussian Radial Basis Function (RBF) is chosen,
with the kernel parameter σ = 1, Cost (regularization) parameter C=1, and
insensitive coefficient ε= 0.00001.

22

Category MAE MAPE(%) RMSE R R2

News 0.4427 7.0962 0.4677 0.9211 0.8484
Currency 0.0755 0.7257 0.0057 0.9820 0.8633
Trade 0.8646 13.6597 0.9120 1.0000 1.0000
Math 0.1815 2.8735 0.2090 0.9364 0.8768
Login and security 0.7195 11.5262 1.1858 0.9152 0.8377
Geolocation 0.0751 1.2063 0.0991 0.7845 0.5741

Table 3: MEA, MAPE, RMSE, R and R2 results using linear multiple regression

Service number

0 20 40 60 80

R
e

p
u
ta

ti
o

n

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Service Number

0 10 20 30 40

R
e

p
u
ta

ti
o

n

0.3

0.4

0.5

0.6

0.7

0.8

Estimated Reputation

Calculated Reputation

Test-set Ratio = 20 %Test-set Ratio = 10 %

Figure 3: Comparison samples between calculated and estimated reputation with different
test-set rates

23

Maliciousness
Rate

Methods
Test set = 10% Test set = 20% Test set = 30%

MAE MAPE% RMSE MAE MAPE% RMSE MAE MAPE% RMSE

10%

MDBM 2.3972 35.8519 2.4276 2.3462 35.4418 2.4035 2.3584 35.5623 2.4007
NM 1.7751 25.9447 1.8159 1.7708 25.7156 1.8483 1.747 25.559 1.8037

MVM 0.4646 7.2283 0.6019 2.4209 36.5599 2.4782 2.1621 32.6404 2.2082
ARM 0.3231 4.8924 0.3827 0.3923 5.8474 0.5299 0.3625 5.4674 0.4488
ANN 0.1692 2.7067 0.2565 0.2316 3.7305 0.5394 0.2921 4.6433 1.0462
REM 0.149 2.2909 0.2156 0.1863 2.6774 0.3293 0.2096 3.1235 0.3121

20%

MDBM 1.5768 24.1388 1.5828 1.606 24.8715 1.633 1.6747 26.167 1.7141
NM 1.5472 23.5976 1.5533 1.5252 23.214 1.5537 1.5042 22.8621 1.5521

MVM 0.291 4.4908 0.3219 1.4938 23.1493 1.5229 1.9087 29.7898 1.9466
ARM 0.1119 1.7174 0.1377 0.1856 2.8964 0.2961 0.2418 3.7897 0.3826
ANN 0.1257 2.3816 0.163 0.2866 4.5611 1.0624 0.2024 3.2893 0.4431
REM 0.1023 1.5762 0.1262 0.1294 1.9917 0.2296 0.1424 2.1825 0.2763

30%

MDBM 0.8668 13.9253 0.8843 0.9315 15.1109 0.9603 0.8968 14.5174 0.9207
NM 1.2654 20.133 1.2774 1.2362 19.7015 1.2581 1.2387 19.7385 1.2617

MVM 0.3038 4.9322 0.3506 0.4767 7.8072 0.5308 1.374 22.2013 1.3948
REM 0.0808 1.2883 0.1039 0.1119 1.8537 0.1981 0.1301 2.0633 0.2052
ARM 0.1376 2.2128 0.175 0.1484 2.4561 0.2334 0.1538 2.4737 0.2399

Table 4: MEA, MAPE and RMSE comparison between different methods using various
malicious density and test-set rate

24

We divided the working dataset into two sets; the training-set to train
the SVR-model, and the test-set to consider their elements as newcomers and
thus, to estimate their initial reputation.

Many runs have been performed varying the maliciousness rate and test-
set ratio. For instance, Figure 3 depicts a sample of newcomers’ estimated
reputation values versus the calculated reputation values for two test-sets.
As we can see, there is a small variation (less than 0.2 in the worst cases)
between the SVR-estimated value and the actual value calculated by feedback
ratings.

Besides, we made a comparison between our SVR-model and other meth-
ods, using different maliciousness rates and different test-set ratios. The
obtained MEA, MAPE, and RMSE are summarized in Table 4. From this
table, we can observe that our method (REM) gave smaller MAE, MAPE
and RMSE values (indicating better accuracy) consistently, with a Percent-
age error that does not exceed 2.6%. The ANN method gives results relatively
close to ours. The ARM method gives also a good result with an error rate
that ranges between 1.44 % and 4.5 %. In addition, we observe that the more
the data we use for training (i.e. small test-set ratios) the better results we
obtain.

7. Related Work

Reputation management has been successfully studied in different com-
puter science domains such as in e-commerce and online information systems
(e.g. [45–49]), multi-agent systems (e.g. [50–53]), peer to peer (P2P) and
social networks (e.g. [54–56]), and mobile and ad-hoc networking (e.g. [57–
59]). For cloud and service-oriented computing systems, many reputation
management methods have been proposed (e.g. [1–7, 11, 60–63]). However,
little efforts have been dedicated to the study of newcomer reputation esti-
mation.

In fact, most of the proposed reputation approaches do not consider thor-
oughly this aspect, and a few of them provide default bootstrapping tech-
niques [16, 17, 40, 41, 64], i.e. they assign a default constant reputation score,
such as a low (0), a neutral (0.5), a high (the maximum) or no reputation
value, to all newcomers. For instance, Zacharia et al. [40] give the minimum
possible trust value, and [41] assigns a neutral value (0.5). However, in such
situation, newcomers may never have a chance to get selected. Even in the

25

case of assigning high trust values, the problem of “whitewashers” (i.e. mali-
cious participants that leave the system and come back with new identities)
could raise.

The framework proposed by Jin-Dian et al. [65] assigns the provider rep-
utation to its newly posted services. The authors suggest assessing the rep-
utation of the provider based on its past experiences. However, the problem
appears if the provider is a newcomer in the recommendation system.

Feldman and Chuang [18] propose a solution for bootstrapping the rep-
utation of newcomer services based on its probability of deceiving. This
probability is computed by collecting all transaction information of the new-
comer’s first-time interaction. This approach is community-based, and new-
comer reputation is adjusted to the reputation of others. However, initial
reputation scores are still not fair and they do not reflect the actual reputa-
tion of newcomers.

Malik and Bouguettaya [14] propose two bootstrapping techniques for es-
tablishing the reputation of newcomer web services. The first is an adaptive
technique that assigns the initial reputation value based on the rate of ma-
liciousness in the system. The second approach assigns a default reputation
score to a newcomer service, where the initial reputation is purchased from
the community provider. Or, the community requests some evaluators (elder
service with high reputation) to evaluate the newcomer service in a short
period of time. In the first technique, the reputation of a specific web service
is related to the maliciousness rate in the community, which seems penalizing
or rewarding based on a factor that is unrelated to the service itself. In the
second technique, the contribution and the impact of requesters on the rep-
utation of web services are very high, which raises the problem of the trust
of evaluators themselves.

Huang et al. [13] propose an equitable trustworthy mechanism that en-
ables new services to startup and grow in an ecosystem environment. The
mechanism distinguishes between novice and mature services during service
recommendation. The approach considers two trust bootstrapping strate-
gies: i) default strategy where they assign to the newcomer a default initial
trust value, and ii) an adaptive bootstrapping strategy where they assign to
the newcomer the average trust value in the system. The first strategy does
not provide a solution for the cold-start problem and for the whitewashing
problem in the case of assigning a high value. Moreover, the second tech-
nique assigns the average trust in the system to newcomer services, which is
not always an accurate solution (e.g. the case where the average is high and

26

the service is bad or the inverse).
Wu et al. [16] introduce a neural network based approach for bootstrap-

ping the reputation of web services. The approach builds a model that learns
possible correlations between features and performances of existing services
using Artificial Neural Networks. Then, it generalizes findings to establish
tentative reputation values when it evaluates new and unknown services.
This approach depends on features that are gathered from service providers
by filling a specific form without taking into consideration the whitewashing
cases.

The main differences between our solution and the previous solutions
can be summarized as follows. First, instead of assigning the same reputa-
tion value to all newcomer web services, we propose to estimate the initial
reputation value of a newcomer service based on its provider’s reputation,
reputation values of its similar long-standing services, and its initial QoS
values. When all the previous values are not present, we make an estimation
using a Support vector regression model built from the reputation and QoS
values of long-standing services. In addition, we propose a solution to over-
come the whitewashing problem based on similarity of the newcomer service
with registered services that have left the system.

8. Conclusion

In this work, we proposed a method that estimates reputation values
of newcomer web services. Initial reputation values assigned to newcomer
web services have an impact on the performance of web service recommen-
dation systems. Our proposed method uses (i) provider reputation values,
(ii) neighbor services’ reputation values, and (iii) SVR-based reputation es-
timation model, trained by QoS and reputation values of long-standing web
services, to correctly estimate reputation values of newcomer web services.
This method addresses both the cold start and the whitewashing problems
often encountered in online recommendation systems.

We conducted several experiments on a real Web service dataset to eval-
uate the efficiency of the proposed method. Through experimental evidence,
we showed that the proposed method outperforms existing methods and may
be safely applied to estimate the reputation of newcomers in Web service rec-
ommendation systems.

Our future research work includes the proposition of a complete service
recommendation system with a unified reputation management and security

27

model for both single, composite, and community-based Web services. These
models target more online attacks such as the request drop, denial of service,
outage, and eavesdropping attacks.

References

[1] Y. Wang, C. Guo, T. Li, Q. Xu, Secure Two-Party Computation in So-
cial Cloud Based on Reputation, in: Advanced Information Networking
and Applications Workshops (WAINA), 2015 IEEE 29th International
Conference on, IEEE, 242–245, 2015.

[2] Z. Maamar, G. Costantino, M. Petrocchi, F. Martinelli, Business Repu-
tation of Social Networks of Web Services, Procedia Computer Science
56 (2015) 18 – 25, ISSN 1877-0509, the 10th International Conference
on Future Networks and Communications (FNC 2015) / The 12th In-
ternational Conference on Mobile Systems and Pervasive Computing
(MobiSPC 2015) Affiliated Workshops.

[3] F. Moyano, C. Fernandez-Gago, J. Lopez, A Model-driven Approach
for Engineering Trust and Reputation into Software Services, Journal of
Network and Computer Applications (2016) –ISSN 1084-8045.

[4] M. Mehdi, N. Bouguila, J. Bentahar, Trust and Reputation of Web
services Through QoS Correlation Lens, IEEE Transactions on Services
Computing PP (99) (2015) 1–1.

[5] S. Wang, Z. Zheng, Z. Wu, M. R. Lyu, F. Yang, Reputation Measure-
ment and Malicious Feedback Rating Prevention in Web Service Rec-
ommendation Systems, IEEE Transactions on Services Computing 8 (5)
(2015) 755–767, ISSN 1939-1374.

[6] T. H. Noor, Q. Z. Sheng, S. Zeadally, J. Yu, Trust management of
services in cloud environments: Obstacles and solutions, ACM Comp.
Surveys 46 (1) (2013) 12.

[7] F. Hendrikx, K. Bubendorfer, R. Chard, Reputation systems: A survey
and taxonomy, Journal of Parallel and Distributed Computing 75 (2015)
184–197.

28

[8] O. A. Wahab, J. Bentahar, H. Otrok, A. Mourad, A survey on trust and
reputation models for Web services: Single, composite, and communi-
ties, Decision Support Systems 74 (2015) 121–134.

[9] Z. M. Aljazzaf, Trust-based service selection, Ph.D. thesis, The Univer-
sity of Western Ontario, 2011.

[10] H. T. Nguyen, J. Yang, W. Zhao, Bootstrapping trust and reputation
for Web services, in: Commerce and Enterprise Computing (CEC), 2012
IEEE 14th International Conference on, IEEE, 41–48, 2012.

[11] F. G. Mármol, M. Q. Kuhnen, Reputation-based Web service orches-
tration in cloud computing: A survey, Concurrency and Computation:
Practice and Experience 27 (9) (2015) 2390–2412.

[12] J. B. Schafer, D. Frankowski, J. Herlocker, S. Sen, Collaborative filtering
recommender systems, in: The adaptive web, Springer, 291–324, 2007.

[13] K. Huang, Y. Liu, S. Nepal, Y. Fan, S. Chen, W. Tan, A Novel Equitable
Trustworthy Mechanism for Service Recommendation in the Evolving
Service Ecosystem, in: Service-Oriented Computing, Springer, 510–517,
2014.

[14] Z. Malik, A. Bouguettaya, Reputation bootstrapping for trust estab-
lishment among web services, Internet Computing, IEEE 13 (1) (2009)
40–47.

[15] J. R. Douceur, The sybil attack, in: Peer-to-peer Systems, Springer,
251–260, 2002.

[16] Q. Wu, Q. Zhu, P. Li, A neural network based reputation bootstrap-
ping approach for service selection, Enterprise Information Systems 9 (7)
(2015) 768–784.

[17] M. Chen, L. He, X. Cai, W. Xia, Trust evaluation model for composite
service based on subjective logic, in: Proc. of IIHMSP’08, IEEE, 1482–
1485, 2008.

[18] M. Feldman, J. Chuang, The evolution of cooperation under cheap
pseudonyms, in: Proc. of CEC’05, IEEE, 284–291, 2005.

29

[19] O. Tibermacine, C. Tibermacine, F. Cherif, Regression-Based Boot-
strapping of Web Service Reputation Measurement, in: Web Services
(ICWS), 2015 IEEE International Conference on, IEEE, 377–384, 2015.

[20] Z. Malik, A. Bouguettaya, Rateweb: Reputation assessment for trust
establishment among web services, VLDB Journal 18 (4) (2009) 885–
911.

[21] A. J. Smola, B. Schölkopf, A tutorial on support vector regression,
Statistics and computing 14 (3) (2004) 199–222.

[22] M. Awad, R. Khanna, Support Vector Regression, in: Efficient Learning
Machines, Springer, 67–80, 2015.

[23] M. H. Hasan, J. Jaafar, M. F. Hassan, Monitoring web services quality of
service: a literature review, Artificial Intelligence Review 42 (4) (2014)
835–850.

[24] O. Tibermacine, C. Tibermacine, F. Cherif, A Practical Approach to
the Measurement of Similarity between WSDL-based Web Services, Re-
vue des Nouvelles Technologies de l’Information 6th French-speaking
Conference on Software Architectures, RNTI-L-7 (2014) 03–18.

[25] M. Garriga, A. Flores, C. Mateos, A. Zunino, A. Cechich, Service se-
lection based on a practical interface assessment scheme, International
Journal of Web and Grid Services 9 (4) (2013) 369–393, ISSN 1741-1106.

[26] N. Kokash, A comparison of web service interface similarity measures,
Frontiers in Artificial Intelligence and Applications 142 (2006) 220, ISSN
0922-6389.

[27] O. Tibermacine, C. Tibermacine, F. Cherif, WSSim: a Tool for the
Measurement of Web Service Interface Similarity, in: French-speaking
Conference on Software Architectures (CAL’13), 2013.

[28] D. Jannach, M. Zanker, A. Felfernig, G. Friedrich, Recommender Sys-
tems: An Introduction–Cambridge University Press, New York, 2010.–
352 P .

[29] M. Deshpande, G. Karypis, Item-based top-n recommendation algo-
rithms, ACM Transactions on Information Systems (TOIS) 22 (1) (2004)
143–177.

30

[30] Z. Zheng, H. Ma, M. R. Lyu, I. King, Collaborative web service qos
prediction via neighborhood integrated matrix factorization, Services
Computing, IEEE Transactions on 6 (3) (2013) 289–299.

[31] H. Ma, I. King, M. R. Lyu, Effective missing data prediction for collab-
orative filtering, in: Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in information retrieval,
ACM, 39–46, 2007.

[32] V. Vapnik, The nature of statistical learning theory, Springer Science &
Business Media, 2013.

[33] W. Zhao, T. Tao, E. Zio, System reliability prediction by support vec-
tor regression with analytic selection and genetic algorithm parameters
selection, Applied Soft Computing 30 (2015) 792–802.

[34] R. Chen, C.-Y. Liang, W.-C. Hong, D.-X. Gu, Forecasting holiday daily
tourist flow based on seasonal support vector regression with adaptive
genetic algorithm, Applied Soft Computing 26 (2015) 435–443.

[35] J. Hu, J. Qi, Y. Peng, Q. Ren, Predicting electrical evoked potential
in optic nerve visual prostheses by using support vector regression and
case-based prediction, Information Sciences 290 (2015) 7–21.

[36] A. Kavousi-Fard, H. Samet, F. Marzbani, A new hybrid modified firefly
algorithm and support vector regression model for accurate short term
load forecasting, Expert systems with applications 41 (13) (2014) 6047–
6056.

[37] L. Ghelardoni, A. Ghio, D. Anguita, Energy load forecasting using em-
pirical mode decomposition and support vector regression, Smart Grid,
IEEE Transactions on 4 (1) (2013) 549–556.

[38] Z. Zheng, Y. Zhang, M. R. Lyu, Distributed qos evaluation for real-world
web services, in: Proc. of ICWS’10, IEEE, 83–90, 2010.

[39] E. Al-Masri, Q. H. Mahmoud, Qos-based discovery and ranking of web
services, in: Computer Communications and Networks, 2007. ICCCN
2007. Proceedings of 16th International Conference on, IEEE, 529–534,
2007.

31

[40] G. Zacharia, A. Moukas, P. Maes, Collaborative reputation mechanisms
for electronic marketplaces, Decision Support Systems 29 (4) (2000) 371–
388.

[41] X. Wang, K. Govindan, P. Mohapatra, Provenance-based information
trustworthiness evaluation in multi-hop networks, in: Global Telecom-
munications Conference (GLOBECOM 2010), 2010 IEEE, IEEE, 1–5,
2010.

[42] N. Limam, R. Boutaba, Assessing software service quality and trustwor-
thiness at selection time, IEEE Transactions on Software Engineering,
36 (4) (2010) 559–574.

[43] A. Whitby, A. Jøsang, J. Indulska, Filtering out unfair ratings in
bayesian reputation systems, in: Proc. 7th Int. Workshop on Trust in
Agent Societies, vol. 6, 2004.

[44] C.-C. Chang, C.-J. Lin, LIBSVM: A library for support vector machines,
ACM Transactions on Intelligent Systems and Technology (TIST) 2 (3)
(2011) 27.

[45] B. Tian, J. Han, K. Liu, Closed-Loop Feedback Computation Model of
Dynamical Reputation Based on the Local Trust Evaluation in Business-
to-Consumer E-Commerce, Information 7 (1) (2016) 4.

[46] D. Isherwood, M. Coetzee, Trust CV: Reputation-based trust for collec-
tivist digital business ecosystems, in: Privacy, Security and Trust (PST),
2014 Twelfth Annual International Conference on, IEEE, 420–424, 2014.

[47] M.-H. Peetz, M. de Rijke, R. Kaptein, Estimating Reputation Polar-
ity on Microblog Posts, Information Processing & Management 52 (2)
(2016) 193 – 216, ISSN 0306-4573.

[48] J. Hu, Y. Zhang, Research patterns and trends of Recommendation Sys-
tem in China using co-word analysis, Information Processing & Man-
agement 51 (4) (2015) 329 – 339, ISSN 0306-4573.

[49] A. J. Bidgoly, B. T. Ladani, Benchmarking reputation systems: A quan-
titative verification approach, Computers in Human Behavior 57 (2016)
274–291.

32

[50] A. Comi, L. Fotia, F. Messina, G. Pappalardo, D. Rosaci, G. M. Sarné,
A Distributed Reputation-Based Framework to Support Communication
Resources Sharing, in: Intelligent Distributed Computing IX, Springer,
211–221, 2016.

[51] L. Barakat, S. Mahmoud, P. Taylor, N. Griffiths, S. Miles, Reputation-
based provider incentivisation for provenance provision, in: Proceedings
of the 14th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2016), 2016.

[52] W. Itani, C. Ghali, A. Kayssi, A. Chehab, Reputation as a Service: A
System for Ranking Service Providers in Cloud Systems, in: Security,
Privacy and Trust in Cloud Systems, Springer, 375–406, 2014.

[53] E. Majd, V. Balakrishnan, A trust model for recommender agent sys-
tems, Soft Computing (2016) 1–17.

[54] H. Zhao, X. Li, VectorTrust: trust vector aggregation scheme for trust
management in peer-to-peer networks, The Journal of Supercomputing
64 (3) (2013) 805–829.

[55] A. Louati, J. El Haddad, S. Pinson, A Multi-Agent Approach for Trust-
based Service Discovery and Selection in Social Networks, Scalable Com-
puting: Practice and Experience 16 (4) (2016) 381–402.

[56] B. Zhang, Q. Song, T. Yang, Z. Zheng, H. Zhang, A Fuzzy Collusive At-
tack Detection Mechanism for Reputation Aggregation in Mobile Social
Networks: A Trust Relationship Based Perspective, Mobile Information
Systems 2016.

[57] J.-H. Cho, A. Swami, R. Chen, A survey on trust management for mobile
ad hoc networks, Communications Surveys & Tutorials, IEEE 13 (4)
(2011) 562–583.

[58] S. Sutariya, P. Modi, A Review of Different Reputation Schemes to
Thwart the Misbehaving Nodes in Mobile Ad Hoc Network., Interna-
tional Journal of Computer Science & Information Technologies 5 (3).

[59] W. Zheng, L. Jin, A Consumer Decision-Making Model in M-Commerce:
The Role of Reputation Systems in Mobile App Purchases, Information
Resources Management Journal (IRMJ) 29 (2) (2016) 37–58.

33

[60] Z. Liu, J. Ma, Z. Jiang, Y. Miao, C. Gao, IRLT: Integrating Reputation
and Local Trust for Trustworthy Service Recommendation in Service-
Oriented Social Networks, PloS one 11 (3) (2016) e0151438.

[61] J. Yao, W. Tan, S. Nepal, S. Chen, J. Zhang, D. D. Roure, C. Goble,
ReputationNet: Reputation-Based Service Recommendation for e-
Science, IEEE Transactions on Services Computing 8 (3) (2015) 439–
452, ISSN 1939-1374.

[62] Z. Yan, X. Li, R. Kantola, Controlling Cloud Data Access Based on
Reputation, Mobile Networks and Applications 20 (6) (2015) 828–839.

[63] C. Zhu, H. Nicanfar, V. Leung, L. T. Yang, An authenticated trust and
reputation calculation and management system for cloud and sensor
networks integration, Information Forensics and Security, IEEE Trans-
actions on 10 (1) (2015) 118–131.

[64] T. D. Huynh, N. R. Jennings, N. R. Shadbolt, Certified reputation: how
an agent can trust a stranger, in: Proceedings of the fifth international
joint conference on Autonomous agents and multiagent systems, ACM,
1217–1224, 2006.

[65] S. Jin-dian, G. He-qing, G. Yin, An adaptive trust model of Web ser-
vices, Wuhan University Journal of Natural Sciences 10 (1) (2005) 21–25.

34

	Introduction
	Reputation estimation method
	Provider reputation
	Reputation estimation from similar services
	Step 1 - Functionally-similar service selection
	Step 2 - QoS normalization
	Step 3 - QoS-similar neighborhood selection
	Step 4 - Reputation estimation
	Neighborhood-based estimation
	Linear regression-based estimation

	SVR-based reputation estimation
	Experiments and Evaluation
	Data description and preparation
	Evaluation metrics
	Comparison
	Feedback rating simulation
	Provider-based reputation
	Similarity-based reputation
	SVR-based reputation

	Related Work
	Conclusion

