Copyright © 2018 Elsevier B.V.. This is a post-print version of the article:

Barricelli, B. R, Cassano, F., Fogli, D., & Piccinno, A. (2019). End-User Development, End-User Programming and
End-User Software Engineering: A Systematic Mapping Study. Journal of Systems and Software, , Volume 149,
2019, pp. 101-137. https:/doi.org/10.1016/jjs5.2018.11.041

End-User Development, End-User Programming and End-User Software

Engineering: a Systematic Mapping Study

Barbara Rita Barricelli', Fabio Cassano?, Daniela Fogli®, Antonio Piccinno?

lDip. di Informatica, Universita degli Studi di Milano, Italy, barricelli@di.unimi.it
?Dip. di Informatica, Universita di Bari “Aldo Moro™, Italy, {fabio.cassanol, antonio.piccinno}@uniba.it
*Dip. di Ingegneria dell’Informazione, Universita degli Studi di Brescia, Italy, daniela.fogli@unibs.it (corresponding author)

Abstract

End-User Development (EUD), End-Programming (EUP) and End-User Software Engineering (EUSE) are three
related research fields that study methods and techniques for empowering end users to modify and create digital
artifacts. This paper presents a systematic mapping study aimed at identifying and classifying scientific literature
about EUD, EUP and EUSE in the time range January 2000 - May 2017. We selected 165 papers found through
a manual selection of papers from specific conferences, journal special issues, and books, integrated with an
automatic search on the most important digital libraries. The answer to our research question was built through a
classification of the selected papers on seven dimensions: type of approach, interaction technique, phase in
which the approach is adopted, application domain, target use, class of users, and type of evaluation. Our find-
ings suggest that EUD, EUP and EUSE are active research topics not only in Human-Computer Interaction, but
also in other research communities. However, little cross-fertilization exists among the three themes, as well as
unifying frameworks and approaches for guiding novice designers and practitioners. Other findings highlight
trends and gaps related to the analysis’ dimensions, which have implications on the design of future tools and

suggest open issues for further investigations.

Keywords: systematic mapping study, end-user development, end-user programming, end-user software engineering.

1. Introduction

Since the last twenty years, researchers from all over the world have studied several different approaches on how
end users can tailor software programs to their needs or create new software artifacts, to solve their professional
or personal problems. Most of these techniques have been proposed in the Human-Computer Interaction (HCI)
field, and in particular they refer to End-User Programming (EUP), End-User Development (EUD), and End-

User Software Engineering (EUSE).

mailto:daniela.fogli@unibs.it
Antonio Piccinno
Text Box
Copyright © 2018 Elsevier B.V.. This is a post-print version of the article:
-
Barricelli, B. R., Cassano, F., Fogli, D., & Piccinno, A. (2019). End-User Development, End-User Programming and End-User Software Engineering: A Systematic Mapping Study. Journal of Systems and Software, , Volume 149, 2019, pp. 101-137. https://doi.org/10.1016/j.jss.2018.11.041

Burnett and Scaffidi consider EUP as the subset of EUD that is the most mature (Burnett & Scaffidi, 2013). Also
on the basis of the definition provided in (Ko et al., 2011), they regard EUP as a set of techniques that enable end
users to create their own programs. In this way, EUP aims at empowering end users to be able to write programs
by adopting special-purpose programming languages, such as those included in spreadsheets or web authoring
tools, or professional programming languages, such as C or Java (Myers et al., 2006). EUP also encompasses
techniques such as programming by demonstration, visual programming, and scripting languages.

EUD, on the other hand, aims at empowering end users to develop and adapt systems at a level of complexity
that is adequate to their practices, background and skills (Lieberman et al., 2006a). Therefore, it pays attention to
system flexibility and modifiability, as well as it encompasses domain-specific environments for software crea-
tion. Therefore, EUD is not only concerned with programming activities, like EUP, but it spans the entire soft-
ware development lifecycle. In other words, the goal of EUD is to make users able to participate in their own
software artifacts design and development, not only at design time, but also during their actual use. This distin-
guishes EUD from participatory design that in turn foresees users’ participation at design time only (Simonsen &
Robertson, 2013). Moreover, thanks to the many possibilities provided by recent technology, such as Internet of
Things and smart devices, the term EUD has acquired a broader meaning covering methods, situations, and so-
cio-technical environments that allow and empower end users to express themselves and being independent of
high-tech scribes (Fischer et al., 2017) in crafting both software artifacts and hardware technology (e.g., smart
objects). For this reason, in the following we use the general term digital artifacts.

EUSE is another concept overlapping with EUD (Burnett & Scaffidi, 2013). It takes a different perspective with
respect to EUP and EUD because it focuses on systematic and disciplined activities carried out throughout the
system lifecycle to guarantee the quality of the code created by end users. In particular, EUSE proposes tech-
niques derived from traditional software engineering, which are aimed at fostering reliability, efficiency, reuse,
debugging support, maintainability, and version control (Burnett, 2009).

A few studies have been conducted in recent years aimed at scrutinizing and comparing different approaches to
EUP, EUD and EUSE, e.g. Ko et al. (2011), Maceli, (2017), Paterno (2013), Tetteroo & Markopoulos (2015).
However, a limited number of approaches and techniques have been found and analyzed, since paper retrieval
was mainly guided by researchers’ a priori knowledge of these fields. For example, the work of Ko et al. (2011)
is mainly focused on studies on EUSE, whilst the other authors principally investigate EUD with reference to

EUD-related conferences and journals only.

There is thus a need for a more systematic identification of papers describing and evaluating approaches and
techniques related to the above-mentioned fields, in order to obtain an in-depth analysis and classification of the
research. To this end, this paper presents a systematic mapping study that aims at answering this general Re-

search Question (RQ):

RQ: What approaches and techniques have been proposed in literature to support end users in tailoring, extend-

ing and creating digital artifacts?

The final goal is to categorize and summarize the knowledge currently available in literature around the field of
“development by end users”, in order to identify gaps in current research for suggesting areas of investigation
and for providing knowledge to novice research practitioners in this field.

The adopted methodology is inspired to the work reported in (Budgen et al., 2008; Fernandez et al., 2011;
Kitchenham et al., 2009) and is based on a mixture of manual selection and automatic search. Our study pays
attention to a variety of conferences and journal special issues on EUD, even though the automatic search con-
siders also “end-user programming” and “end-user software engineering” as search keywords.

The paper is structured as follows: Section 2 presents related work; Section 3 describes the methodology adopted
to carry out the systematic mapping study; Section 4 presents the results of the study; Section 5 discusses the

main findings and the limitations of the work; Section 6 provides the conclusions of the paper.

2. Related Work

An interesting introduction to the motivations and concepts related to EUD can be found in (Burnett & Scaffidi,
2013). These authors underline how EUD is inherently different from traditional software development and that
it is often not enough to support EUD by simply mimicking traditional software engineering approaches. Indeed,
end users are usually expert in some particular domain, but they do not have training in programming languages
and development processes, nor are interested in learning them. Consequently, to support EUD activities, one
must provide end users with appropriate tools, communication infrastructures and development frameworks that
are easy to use and to learn, and that are also easily integrated into the domain practice.

The introduction to the first book on EUD by Lieberman et al. (2006a) is one of the first attempts to classify

different types of techniques for supporting end-user development, by exploiting the classification of end-user

activities proposed by Costabile et al. (2003). EUD research is then analyzed by distinguishing between research
on end-user participation at design time and end-user development at use time. As to the latter, the authors dis-
cuss the different modification levels with increasing complexity and power of expression that systems may
support. Another aspect is concerned with the creation of languages that are suited to non-programmers, in par-
ticular domain-specific languages and graphical languages. Related to this theme, Kelleher and Pausch (2005)
presents a survey of programming environments and languages for novice programmers, by creating a taxonomy
that focuses largely on learning goals. The analysis of the systems is carried out by considering the programming
constructs they support and how they make programming more accessible to novice programmers. Therefore, the
perspective is not on end users and their work practices, but on the facilitation of teaching and learning pro-
gramming languages. However, Paterno (2013) observes that the idea of simplifying development through, for
example, visual programming has not always led to provide end users with the skills and capabilities necessary
for developing their own applications.

As mentioned before, the survey presented in (Ko et al., 2011) is focused on EUSE methods. The authors start
from the consideration that, beyond professional programmers, a huge number of people, not expert in pro-
gramming, use spreadsheets and databases at work by writing formulas and queries that facilitate their daily
activities (Scaffidi et al., 2005), as well as writing simulations in MATLAB (Gulley, 2006) or scripts to process
scientific data (Fischer et al., 2009). In all these cases, end users often create programs containing errors that
they are not aware of or that are difficult to discover. As a consequence, the software engineering community
raises many doubts on the value of EUP, by underlining the role of skilled, professional software developers in
guaranteeing software correctness, efficiency, maintainability, and security (Harrison, 2004). Because of these
quality issues, EUSE has been proposed as an umbrella encompassing EUP practices and technologies that sup-
port end users to improve software quality (Ko et al., 2011). Therefore, the survey of Ko et al. presents an analy-
sis based on the software lifecycle, by organizing more than one decade of research on end-user oriented meth-
ods for requirements specification, design, testing, verification, and debugging. Several issues related to EUSE
are also discussed, such as the role of risk and reward on end users’ decision making, as well as individual fac-
tors like self-efficacy and gender (Ko et al., 2011).

The first survey specifically focused on end-user development is proposed by Paterno (2013). This paper pre-
sents the different motivations for EUD, a brief history of EUD, and the key concepts related to EUD including,

among others, domain-oriented design environments (Eisenberg & Fischer, 1994), mutual development

(Andersen & Mgrch, 2009), co-development (Costabile et al., 2009) and participatory design (Muller & Kuhn,
1993). The survey by Paternd then addresses recent developments in EUD, such as EUD for web and mobile
applications, which are not considered in (Ko et al., 2011). Today, new scenarios are opening up for EUD, from
Ambient Intelligence (Cabitza et al., 2017; Desolda et al., 2017; Fogli et al., 2016; Martin et al., 2015; van
Doorn et al., 2008) to the Internet of Things (Akiki et al., 2017; Barricelli & Valtolina, 2015; Hafidh et al., 2017,
Kim et al., 2017) from tangible and ubiquitous computing (Bellucci et al., 2017; Garzotto & Gonella, 2011; Lee
et al., 2013; Turchi et al., 2017) to the Do-It-Yourself movement (Anderson, 2012; Sas & Neustaedter, 2017). In
our systematic mapping study, we consider the most current trends of EUD and novel domains where it is ap-
plied. In addition, we extend the analysis provided in (Paterno, 2013) by defining several dimensions to explore
the general RQ and map the works according to such dimensions.

Our study mainly aims at analyzing and classifying the approaches and techniques proposed in literature for
supporting end users in developing activities. Therefore, it complements the review presented in (Tetteroo &
Markopoulos, 2015), which instead focuses on the research methods applied in the fields of EUD, EUP, EUSE
and meta-design in the period 2004-2013. That review includes meta-design, which is one of the most influential
frameworks for supporting EUD (Fischer & Giaccardi, 2006): it is aimed at creating the socio-technical condi-
tions that allow the owners of problems (end users) to be actively engaged in the continuous development of
personally meaningful socio-technical systems and act as designers at use time (Fischer & Giaccardi, 2006;
Fischer et al., 2004). Tetteroo and Markopoulos’s review analyses a total of 93 papers manually retrieved from
relevant conferences and journals. To this end, it adopts the classification scheme for HCI research proposed in
(Kjeldskov & Graham, 2003), which is articulated according to two dimensions: research methods and research
purposes. Eight research methods are considered, namely, case studies, field studies, action research, laboratory
experiments, applied research, basic research, and normative writings; whilst, research purposes include under-
standing, engineering, re-engineering, evaluating, and describing. Findings of the review suggest that research is
dominated by the engineering of systems and laboratory evaluations, whilst there is an evident lack of action
research and basic research. The authors underline how action research could be particularly suitable to the eval-
uation of EUD systems in natural environments (Tetteroo & Markopoulos, 2015); therefore, it points to a lack of
understanding the very nature of EUD activities in end users' personal and work life. Some of our RQ dimen-

sions aim at investigating this issue more deeply.

The work that is most similar to ours, but at a more preliminary stage, is that one presented by Maceli (2017).
Maceli’s survey focuses on technologies proposed in EUD literature and to this purpose it analyses in detail 73
papers from 2004 to 2016 that fall in the categories “engineering” and “re-engineering” discussed in (Tetteroo &
Markopoulos, 2015). The list of selected papers is derived from four EUD-related conference proceedings and
five journals, by considering authors’ keywords “end-user development”, “end-user programming”, “end-user
software engineering” and/or “meta-design”. Of the 73 papers, 48 were considered also in the survey of Tetteroo
and Markopoulos (2015), whilst other 25 were added in Maceli’s study. Each paper has been analyzed by the
author and her graduate assistant, in order to identify the purpose of the work, the tool proposed, the general
category of the tool and the means of its evaluation (if any). Thirteen broad categories of technology tools have
thus been obtained through inductive qualitative analysis; among them, mashup tools, programming environ-
ments and frameworks, spreadsheet tools, and web authoring tools represent the clear areas of research that
emerge from paper analysis, since most of the tools fall in these categories. The findings also suggest that the
types of tools do not vary significantly over time and that there is relative little research on novel user interface
paradigms, such as tangible or voice interfaces, and social and crowdsourcing applications. An interesting hy-
pothesis by Maceli is that researchers publish EUD-related papers in different venues, known to the wider HCI
community and also outside this community. Such important literature work is not considered in Maceli’s survey
and thus represents a limitation that we aim to overcome with our systematic mapping study.

Finally, Fischer et al. (2004) have mainly explored the concept of meta-design for socio-technical environments,
which require to be open, flexible and capable to evolve at the hands of the end users. In this way, meta-design
extends the traditional notion of system design to encompass support for system evolution at use time, namely
social and technical mechanisms for EUD. Fischer and Giaccardi (2006) describe a set of conceptual frameworks
and environments, including the Seeding, Evolutionary growth and Reseeding (SER) process model (Fischer &
Ostwald, 2002) and the Domain-Oriented Design Environments (DODES) (Eisenberg & Fischer, 1994), as well
as some interesting applications of meta-design in different domains, such as interactive art, social creativity and
learning communities. The concept of meta-design has been recently revisited and broadened in (Fischer et al.,
2017): here meta-design is conceived not only as the study and development of enabling technologies for EUD,
but also as all mechanisms that sustain a cultural transformation (Fischer, 2013). Therefore, the primary objec-
tive of meta-design is to allow and support end users to become end-user developers of all software and hard-

ware systems that pervade their everyday life, such as smartphones, smart watches, interactive displays, and all

other smart devices that they may find in their houses or offices (Fischer et al., 2017). These recent trends in the

application of the EUD idea are considered in the present systematic mapping study.

3. Methodology

This study has been carried out by following the guidelines for systematic mapping studies proposed in (Budgen
et al., 2008; Kitchenham et al., 2009). A systematic mapping study provides an objective procedure for identify-
ing and classifying the papers published in a given research field. Therefore, after defining the research question
of the study and the search process, exclusion criteria are defined for data selection. Selected papers are then

analyzed for the sake of classification and findings about trends and gaps are finally discussed.

3.1 Research Question

Given the general RQ: “What approaches and techniques have been proposed in literature to support end users in
tailoring, extending and creating digital artifacts?”, introduced in Section 1, the following dimensions have been
considered for organizing the mapping study:

D1: Types of approaches proposed.

This dimension would like to find which approach, among EUD, EUP and EUSE, has been proposed to support
end users in tailoring, modifying or creating digital artifacts.

D2: Types of techniques proposed.

This dimension would like to discover the types of techniques proposed and applied in the frame of the ap-
proaches identified with D1. By “technique” we mean the way made available to the user to carry out the system
shaping activity: it may be a particular interaction style, or a metaphor adopted in the user interface.

D3: Phase in which the shaping activities are carried out.

This dimension aims to analyze when the shaping activities are most frequently carried out by end users, i.e.,
design time, use time or both.

D4: Application domain in which the shaping activities are employed.

This dimension is related to discovering the different application domains where the shaping activities have been
supported.

D5: Target use of the shaping activities.

This dimension would like to discover the addressed target uses of the shaping activities.

D6: Classes of end users to which the proposed solutions are addressed.

This dimension aims to analyze which are the classes of users that have been supported by the proposed solu-
tions.

D7: Empirical validation of proposed solutions.

This final dimension is aimed to find out which kinds of empirical evaluation have been adopted to validate the

proposed solutions.

3.2 Search Process

The study has been carried out by selecting the papers of interest through a manual search on important related
venues and then through an automatic search performed on the main digital libraries. In the following the two

searches are reported.

3.2.1 Manual Search

To perform the manual search, we first considered the following sources (Table 1):
e Proceedings of International conferences specifically focused on EUD, EUP, and EUSE themes;
e Special issues of scientific journals on EUD, EUP, and EUSE;
e Books (collections of multi-authored chapters) on EUD, EUP, and EUSE.

230 papers were manually extracted from the above sources.

Table 1. Conferences Proceedings, Journal (special issues) and Books (collections of multi-authored chapters) on EUD, EUP,
and EUSE.

Source Year Type
Special Issue, Computer-Supported Cooperative Work, 9(1), Springer 2000 Journal
Special Issue, Communications of the ACM, 47(9), ACM Press 2004 Journal

End-User Development, Book Series “Human-Computer Interaction”, Springer 2006 Book
éﬁ)g;ﬁl Issue, Journal of Organization and End-User Computing, 18(4), I1GI 2006 Journal
\r;V;an;:st)é)'\c/)lnPEgsi-User Software Engineering (WEUSE 2008), Leipzig, Ger- 2008 Proceedings
rﬁjég?ﬁ;:usrgr?:ggpd—mer ID.eve.Iopment (IS-EUD 2009), S-legen, Germany, 2009 Proceedings
(S;pl)ggzl Issue, Journal of Organization and End-User Computing, 22(2), I1GI 2010 Journal
rﬁjggrgggzzusrgr?:ggpd—User Development (IS-EUD 2011), Torre Canne, Italy, 2011 Proceedings
Iljnén ﬁ%r:]lgoi;\tl@so?sggfj—SLFJ)??rzglgfvelopment (IS-EUD 2013), Copeﬁhagenj 2013 Proceedings
rﬁjggrggggzusmpr?:ggpd—User Development (IS-EUD 2015), Madrld, Spain, 2015 Proceedings
Lr;lté:gSTEcliflcusrnlggOEsrjds—;Jr?ﬁgEreveIopment (IS-EUD 2017), Eindhoven, Neth- 2017 Proceedings
Special Issue, Journal of Visual Languages and Computing, 40, Elsevier 2017 Journal
Special issue, ACM Transactions on Human-Computer Interaction, 24(2), 2017 Journal

ACM Press

3.2.2 Automatic Search

We used the web application SEOBook Keyword Density Analyzer® to detect the most recurrent words, 2-word

phrases and 3-word phrases in titles and abstract of the papers selected through the manual search.

On the basis of the results of the keywords extraction, we composed the following query:

((End-User Development OR End User Development OR EUD)

OR

(End-User Programming OR End User Programming OR EUP)

OR

(End-User Software Engineering OR End User Software Engineering OR EUSE)

We used this search string to perform automatic searches on the following digital libraries:

- ACM Digital Library?
- IEEE Xplore Digital Library?

- Springer Link*

! SEOBook Keyword Density Analyzer: http://tools.seobook.com/general/keyword-density/

2 ACM Digital Library: dl.acm.org
® IEEE Xplore Digital Library: http://ieeexplore.ieee.org/Xplore/home.jsp

- ScienceDirect®
We restricted the research on a specific period of time: January 2000 - May 2017.
The automatic search provided 2487 results. Therefore, as a whole, 2717 papers (230 manually selected papers

plus 2487 resulted from the automatic search) were selected for subsequent analysis.

3.3 Paper Selection

We considered each of the 2717 papers in order to decide whether or not it was to be included in this study. The
paper selection phase consisted in the application of two sets of exclusion criteria we defined at the beginning of
the study.
An exclusion process like the one we decided to apply in this study may suffer from a bias due to the presence of
researchers with different expertise in this domain. To avoid the most of inaccuracy in data extraction and mis-
classification of papers, in both exclusion stages we crosschecked the obtained results as follows: each one of the
four involved researchers was assigned with 1/4 of the papers to be analyzed, and once the analysis was con-
cluded, another researcher revised the results. The set of papers assigned to each researcher during the first stage
of the selection was then changed during the second stage. Moreover, every time a researcher felt unsure about
the evaluation of a paper, the discussion was opened to one or two other researchers.
The first stage of the selection was based on the analysis of title, abstract, keywords, source, and type of each
paper. At this stage, we excluded the papers that met at least one of the following exclusion criteria:

e Duplicated results

e Off-topic papers

e Monographs

e Papers published as Technical Reports

e PhD dissertations and Master theses

e Papers published in doctoral consortium venues

e Introductory papers for special issues, books and workshops

e Papers included in conference proceedings but classified as posters, demos or panels

e Papers republished (as-is) on other journals or as book chapters or in collections of papers

* Springer Link: https://link.springer.com/
% ScienceDirect: https://www.sciencedirect.com/

10

https://link.springer.com/

e Papers not written in English

e Invited papers.

Discrepancies in the exclusion decision were solved by searching for consensus among the researchers with a
shallow reading of the papers under analysis.

At the end of the first stage of selection we excluded 964 papers, thus 1753 papers out of 2717 were still under
consideration.

Then, a second stage of the selection was applied in order to select papers that most probably could answer our

research question. It therefore consisted in the application of a second set of exclusion criteria:

e Papers presenting only recommendations, guidelines, or principles for end-user development, end-user
programming, end-user software engineering.

e Papers presenting only conceptual models, comparative studies or surveys.

e Papers presenting preliminary ideas on tools or interaction techniques.

e Papers in which the addressed end users are professional developers.

e Papers presenting studies without any evaluations.

e Papers reporting the same approaches or techniques in different venues (only the most important venue
was taken into account, possibly considering the most recent publication).

e Papers reporting the same approaches or techniques in different stages (only the most complete one was

kept).

Specifically, in order to successfully apply the last two criteria, we developed a script that analyzed the list of
papers and automatically highlighted all the papers written by the same authors. In this way, it was easier to
check if the same author contributed to the publication of the same approach/technique in more than a venue or
if the same approaches and techniques were published in different stages.

After the second stage, 165 papers out of 2717 were selected for our mapping study (we excluded other 1588
papers). Table 2 reports the distribution of such papers according to type of source (conference proceedings,

book or journal).

Table 2. Distribution of selected papers.

Publication type # papers
Papers in Conference proceedings 101
Book chapters 4

11

Papers in Journals (special issues) 60
Total 165

Fig. 1 summarizes the search strategy and the selection carried out at the different stages of evaluation.

Manual selection of papers from Conferences, : Automatic search of papers on ACM Digital Library, !
Journal special issues, and books on EUD, EUP, and | IEEE Xplore Digital Library, Springer Link, and ;
EUSE | | ScienceDirect between 2000 and 2017 |

230 papers 2487 papers

2717 papers

A 4

First stage of paper selection (criteria: duplicated results, off-topic papers, monographs, technical reports,
dissertations, doctoral consortium, introductory papers for special issues, books and workshops, posters, demo, panels,
republished (as-is), not written in English, out of timerange, invited papers)

1753 papers

A

Second stage of paper selection (criteria: papers presenting only recommendations, guidelines, or principles, papers
presenting only conceptual models, comparative studies or surveys, papers presenting preliminary ideas, papers in
which the addressed end users are professional developers acting as developers in their work domain, same content in

different venues, same content at different stages, papers presenting studies with no evaluation)

165 final papers

Fig. 1. Search and selection process.

3.4 Data Extraction Strategy

The 165 papers selected in the selection phase represent the set of documents to be analyzed for finding an an-

swer to the RQ. They have been read and analyzed in detail. Specifically, we analyzed and classified each paper

according to the seven RQ dimensions:

D1. Type of approach: each paper could present one or more approaches among End-User Development,

12

End-User Programming, and End-User Software Engineering. We based this classification on what the
papers’ author(s) declared in the papers, i.e. we did not decide about the assignment of a specific ap-
proach — we trusted the author(s) judgement/opinion. This choice reflects our intention to estimate also
the perception that the researchers in this field have about EUD, EUP and EUSE potentials and their

application in practice.

D2. Type of technique: we identified one or more techniques proposed in the paper for enabling end users to
modify and/or create digital artifacts.

D3. Phase: we classified the paper according to the time in which EUD, EUP, or EUSE was adopted, i.e.,
design time, use time, or both.

D4. Application domain: we identified the application domain in which the proposed solution was adopted.

D5. Target use: for this classification, we identified the purpose of the proposed solution, for instance,
whether it was for personal use or educational purpose, by possibly considering the examples provided
by the authors or, if missing, the applicability of the solution according to our interpretation.

D6. Class of users: with this classification, we specified which community of users was addressed by the
proposed solution.

D7. Empirical validation: according to our exclusion criteria, we considered only papers presenting empiri-
cal validation of the research. Then, we classified each of them considering the following three catego-
ries: formal experiment with users, informal experiment with users, and pilot study. In particular, “for-
mal experiments” are rigorous user studies with several participants, which provide qualitative and
guantitative results. With “informal experiment” we mean a workshop, or a user study aimed at gather-
ing qualitative data, namely feedback on pros and cons of the application, or an empirical investigation
carried out by simulating users’ behavior. Pilot studies are instead preliminary evaluations with few us-
ers aimed at measuring some usability attributes (e.g., efficiency, effectiveness, etc.); this type of vali-

dation was explicitly indicated in the considered papers.

To carry out the analysis, papers have been equally divided among the four authors. The classification process
was conducted by each researcher on the assigned subset of 41 or 42 papers and reported by filling in Excel
sheets with all data related to the seven dimensions. First, each researcher independently analyzed her/his subset
of papers and proposed a classification. Then, the subsets were exchanged among the researchers and analyzed
again by a different researcher. Double-scoring was conducted on the results of the classification process yield-
ing an initial value of the inter-rater reliability superior to .85. Doubtful situations have been solved through
videoconference or face-to-face meetings and all differences were solved by discussion. A unique Excel sheet

was finally created.

13

Then, a videoconference meeting involving the four researchers was taken with the aim of making terminology
coherent; in particular, limited sets of classes were defined for techniques (D2), application domains (D4), target
use (D5) and classes of users (D6) (see Table 3). This activity was performed a posteriori, because it was guided

by the preliminary classification individually carried out by each researcher.

Table 3. Classes of techniques, application domains, target uses and target users.

Techniques Application domains Target uses Classes of users
Annotation-based Business and data management Personal Generic users
Assertion-based Education and teaching Utilitarian Domain experts
Component-based Games and Entertainment Educational Students
Digital sketching Healthcare and wellness Playful
Gesture-based Interaction Design Assistive tech-

Model-based Mobile applications nology
Natural language Robotics

Programming by demonstra- Smart objects and environments
tion/example Web applications and mashups
Rule-based

Spreadsheet-based

Template-based

Text-based

Wizard-based

Workflow and dataflow dia-

grams

In order to identify representative studies useful to provide examples during the analysis of results, papers have
been also qualitatively assessed. In particular, we classified journal papers according to the quartile (Q1, Q2, Q3,
and Q4 quartiles) assigned by Scimago Journal & Country Ranking (SJR) database®, by choosing the highest
quartile assigned to the considered journal in the year of the article among the possible different subject areas.
As far as conference papers are concerned, we used the GII-GRIN-SCIE (GGS) Conference Rating: Class 1,
Class 2, Class 3, and Work in progress conferences’. This is an initiative sponsored by GI1 (Group of Italian
Professors of Computer Engineering), GRIN (Group of Italian Professors of Computer Science), and SCIE
(Spanish Computer-Science Society) to develop a unified rating of computer science conferences. The proposed
ranking is based on three international and well-known rankings/ratings of computer science conferences: the
Australian CORE Conference Rating, Microsoft Academic and LiveSHINE (that is the successor to the SHINE
Google-Scholar-Based Conference Ranking). For each paper published on a journal, conference proceedings or
another venue, the number of citations on Google Scholar (accessed in the last week of September 2017) was

also retrieved.

® http://www.scimagojr.com
7 http://gii-grin-scie-rating.scie.es

14

At the end, we preferably selected as example papers to be discussed in the following sections those ones with at
least 10 citations on Google Scholar, which have been published on Q1/Q2 ranked journals and Class 1/2 con-
ferences. However, in some cases, we also considered papers published recently (in 2016 and 2017) on a high-

ranking journal or conference, even though, due to their recent publication date, they had less than 10 citations.

25

20

10
il 5
8
2
7
10 2
1
5 7
4
2 4
11 11
5
3 9 2)
7
6 6
5 5
1 3
i 2 2 2
0
2002 2003 2004 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

EUD EUP EUSE m Hybrid
Fig. 2. Number of papers selected in the period 2000-2017.

4. Results

This section discusses in detail the analysis carried out on the 165 selected papers. Fig. 2 shows the distribution
of the papers over the time range 2000-2017: as one may observe, no paper has been selected before 2002, and
there is a general increase in volume, especially in the last two years (also considering that our analysis ended in
May 2017). One may observe that there is a first peak in 2006, which is related to the publication of the Springer
book on EUD (see Table 1); then, there are three peaks in correspondence to dedicated events (WEUSE 2008,
IS-EUD 2009 and I1S-EUD 2011 respectively). The peaks in 2014 and 2016 are neither related to specific confer-

ences nor to special issues.

In the following sub-sections, the results of the analysis conducted according to the seven dimensions are report-

ed.

15

mEUD
mEUP

Number of papers

2 EUSE
m Hybrid

1

10

5
114
14|
4
5]
1
5 5 1
El 1 1
. . 2 4 B B
o 1 1 [1] 1] 1] [1] 1] 1]
e o) & > ¢] B 3 o > > -3 & & ¢ & o N
& F & F & 34 & &F & ® 4 & & £ & 3 & 3 & B
oF & & ¢ A . S R P L S & & E
& & F o P & GF kit [s s & o Iz & P 3 e

&

& ¢ 5 & o & f 3 »
oF & o\;b o &
& <
<

Countries

Fig. 3. Number of papers according to the geographical distribution based on the first author’s affiliation.

4.1 Types of approaches

As underlined in the Introduction, approaches proposed in this research field are usually classified by their au-
thors as EUD, EUP, or EUSE. We refer to such terms exclusively according to what is reported by the authors of
each analyzed article, regardless of the actual meaning or if the term has been used properly or not.

Fig. 2 shows the temporal distribution of papers and their related classification according to the type of ap-
proach. As one may observe, EUP and EUD are almost equally distributed with respect to time (except for
2015); interestingly enough, even though EUP was born before EUD, it keeps on being a widely adopted term to
denote this kind of support for creation and modification of digital artifacts offered to end users.

To investigate the use of the EUP and EUD terms, we carried out a geographical analysis of selected papers on
the basis of the authors” affiliation. Fig. 3 shows that in US (the country with more selected papers) the EUP
term is much more used than EUD, whilst in papers coming from European countries, such as Italy and Germa-
ny, EUD is the preferred term. The former result could depend on the fact that US is the country where the re-
search on EUP is born, dating back to the works by Bonnie Nardi (1993) and Alan Cypher (1993). The latter

probably derives from the experience gathered in the frame of the European Network of Excellence on End-User

16

Development (EUD-Net) funded by the European Commission in 2003; among the members of this network,
there were different Italian and German research institutions, and their scholars have kept on working on EUD
till now. Regardless of terminology preferences, by analyzing the papers’ content we discovered that proposals
discussing EUP and EUD approaches generally pursue distinct goals, as it will be illustrated next in this section
and in the mapping results (Section 4.8).

More precisely, in the analysis of the selected papers according to D1, we identified just 8 papers that propose a
pure EUSE approach (around 5% of the papers). This limited number of papers might be due to the fact that
almost only the community from the US universities that participated in the EUSES Consortium® is actually
working on this theme. The main outcomes of this community is reported in the already mentioned survey (Ko et
al., 2011). These papers recognize the need to provide end users with better support for software development
activities, in order to improve the dependability of their software products. One of the first attempts in this direc-
tion is proposed in [a45], where the authors applied to spreadsheets (and to end-user programmers) the method
adopted in professional programming of adding assertions in the form of preconditions, post-conditions, and
invariants for making explicit the properties expected for a program. The HCI aspects of this method are better
explained in [a125], which presents a curiosity-centered approach to eliciting assertions from end users, built on
a surprise-explain-reward strategy; in this work, the authors also demonstrate the effectiveness of this approach
in encouraging end users to enter assertions that help them find errors. The paper [a144] investigates fault locali-
zation methods through an empirical study that examines the impact of two specific factors on the effectiveness
of the proposed methods. The obtained results provide suggestions to researchers and practitioners on the design
and evaluation of fault localization methods. The paper [a46], instead, presents an empirical study aimed at
demonstrating the usefulness of versioning support in web mashups: the authors have integrated the popular
mashup environment Yahoo! Pipes with versioning support and carried out experiments that provide evidence
on how this advanced feature may help pipe developers create and debug mashups.

In another 42% of the selected papers authors refer to their approach as EUP, usually proposing visual languages
suitable to a programming activity carried out by non-professional programmers. For instance, the proposal in
[a38] aims to support EUP of robot technologies to be used in therapies for training social skills to autistic chil-
dren. With the developed tool, therapists with general computer skills may create training or behavioral scenari-

0s by connecting existing behavioral blocks and by typing textual robot commands. Other EUP approaches aim

8 http://eusesconsortium.org

17

http://eusesconsortium.org/

at making programming activity easier by providing simplified programming languages. For instance, the paper
[a50] explores the use of a Domain-Specific Language (DSL), based on JavaScript, to carry out web augmenta-
tion, namely layering relevant content, layout or navigation features over a website. The proposed language tar-
gets hobby programmers and computer literates by allowing them to easily create scripts in a more domain-
oriented and declarative way than using JavaScript. The paper [a82] proposes the use of natural language to sup-
port end users in performing tasks — e.g., filtering, reducing, and joining - over tabular spreadsheet data. The key
component of this system, implemented as an Excel add-in, is a translation algorithm for converting a natural
language specification to a ranked set of programs in a DSL proposed by the authors, which is expressive
enough to represent the desired categories of tasks.

In the 51% of papers the authors characterize the approach as EUD. Most of EUD approaches are specifically
oriented to empower end users to create new digital artifacts (forms, mashups, simulations, video games, etc.)
separated from the EUD environment they are using. For instance, the paper [a49] proposes a mashup develop-
ment framework characterized by a WYSIWYG (What You See Is What You Get) interface that facilitates data
integration and service orchestration, by hiding the technology and implementation complexity of mashups.
Marchiori et al. presents a methodology and a EUD tool for game authoring aimed at educators who can thus
collaborate in the development process of educational games [a58]. The paper [a27] proposes a framework based
on the jigsaw metaphor, named Puzzle, which allows end users to create, modify and execute mobile applica-
tions able to interact with smart things and web services.

In principle, approaches can be applied in conjunction with others: for instance, a EUD approach could integrate
techniques to guarantee the quality of the created digital artifact and thus implement EUSE technigques. Howev-
er, among the papers analyzed, only two papers [a91][a108] mention the fact that both EUD and EUP are im-
plemented, whilst only the paper [a154] declared to adopt all the three approaches. Thus, the papers proposing a

hybrid approach are only 2% of all papers.

4.2 Types of techniques

To investigate dimension D2, the analysis of papers revealed that several different types of techniques are pro-
posed in the frame of the approaches identified with D1. After various discussions within the research group, we

propose here a classification of such techniques.

18

Component-based | 21
Rule-based | 1°
Programming by demonstration/example | N 19
Spreadsheet-based [N 13
Wizard-based | 1:
Template-based [N 10
Natural language | °

Technique

Workflow and dataflow diagrams [N 7
Model-based | 6
Text-based [4
Digital sketching | 4
Annotation-based [l 4
Assertion-based [3
Gesture-based [l 2

0 10 20 30 40 50 60 70 80 90 100
n. of papers

Fig. 4. Classification of techniques proposed in the selected papers (D2).

Fig. 4 illustrates the identified classes of techniques and their frequencies in the selected papers (please note that
the total number of techniques found in the papers is more than 165 since some proposals adopt more than one
technique). In the following subsections the 14 techniques identified in the selected papers are presented, ordered

by their frequencies in the papers.

Component-based

This technique is the most frequent in the selected papers (48%). This is probably because software designers are
used to address the design of modern complex systems by following the modularity principle of software engi-
neering, which allows achieving extendibility, reusability and compatibility. Systems are divided into modules
based on functionality and developers may use prewritten code and program new functionalities in separate
modules. A component is a module with additional restrictions of substitutability using a specific interface. Rea-
soning in terms of components that can be easily assembled to create a program is thus transferred to end users.
This technique encompasses composition of digital artifacts by means of visual programming environments
based on domain-specific concepts represented either as 2D or 3D objects. The composition activity is usually
performed through direct manipulation and the interaction metaphor may vary from jigsaw puzzle [a20] to box-

es-and-wires [a147], from pipes [a17] to 3D blocks [a165]. For instance, the paper by Dérner and colleagues

19

presents a EUD environment that supports business process experts to model and adapt business processes of an
Enterprise Resource Planning system [a147]. To this purpose, its graphical user interface employs the box-and-
wire interaction metaphor that, by means of visual composition, allows creating visualizations and automations
of business processes, and calculations using data from different systems and sources. Another solution that
exploits a component-based interaction is that proposed in [a156]: it presents a platform that allows end users to
extract contents from heterogeneous sources and compose Personal Information Spaces that satisfy their infor-
mation needs. The composition paradigm is, on the one hand, suitable to non-technical users for its capability to
abstract from technical details, and, on the other hand, amenable to customization with respect to the require-
ments of specific domains. Similarly, Zhong and Liu present an environment that provides chemistry educators
with domain-oriented building blocks, which can be assembled to create 3D virtual chemistry experiments
[a165].

Several component-based solutions exploit domain-specific visual languages (DSVLs) suitable to domain ex-
perts, who may consider intuitive composing virtual objects that resemble those ones they use in daily activities.
To cope with the development of visual design environments that support the implementation of DSVLs, the
paper [a153] proposes Pounamu, a meta-tool aimed to support end users to rapidly design, prototype and modify
tools supporting a wide range of visual notations.

In recent years, component-based techniques are adopted in most of those environments that empower end users
to create mashups, such as [a46][a49][a55][a133] [a151]; mashups are web applications that result from the
combination of more than one web services. The availability of several open application programming interfaces

and data sources nowadays contribute to the success of mashup technologies.

Rule-based

The rule-based technique is proposed by 19 papers (about 12%) and is mostly aimed to support end users to
easily and autonomously personalize the behavior of smart devices, Ambient Intelligence (Aml) systems and
Internet of Things (10T) applications, i.e. artifacts that encompass both hardware and software. Among the se-
lected papers, [a22][a24][a57][a61][a87][al115] present methods and tools that allow end users without pro-
gramming experience to customize the behavior of devices/environments/applications through the specification
of trigger-action rules. For example, Ghiani and colleagues propose a EUD environment that allows end users to
create complex trigger-action rules for different types of 10T applications [a22]. The paper [a61] presents an

ontology-based framework for the development of context-aware applications, which provides personalized

20

programming support for users with different technical skills; furthermore, several cooperation modalities are
enabled, as well as resource sharing and reuse. Houben et al. propose a system for “human-data design” for loT
applications based on rule definition; this system includes cubical interconnected artifacts, called PhysiCubes, to
provide physical and embedded ambient data visualizations, and a web-based EUP tool, to add, remove, or
change rules that define such visualizations [a87]. Barricelli and Valtolina, instead, propose the SmartFit Rule
Editor, a tool specifically designed for coaches and trainers of non-professional teams of athletes to monitor and
analyze fitness and wellness data streams; with this tool, end users may create rules that support them in detect-

ing relevant events and performing specific actions [a115].

Programming by demonstration/example

This technique, proposed in 19 papers, is one of the first proposals for enabling end users to program in an easy
way: indeed, the user performs actions on concrete examples, the system records these actions and infers a gen-
eralized program that can be used on new examples. For instance, the paper [a136] is considered a seminal work
in the field of context-aware computing: it presents a context-aware prototyping environment targeted to end
users, which allows them to program a desired context-aware behavior in situ, by demonstrating it to the system
and by annotating portions of the demonstration. More recently, [a89] presents a new programming-by-
demonstration system that allows end users to create automations on their smartphone; the user may give verbal
commands and then demonstrate them by directly manipulating Android apps’ user interface. On the basis of the
verbal instructions, the demonstrated procedures, and the user interface hierarchical structure of the apps, the

system is able to generalize a script than can successively be used with different variations and parameters.

Spreadsheet-based

The spreadsheet-based technique has been proposed in 13 papers (about 8%). Spreadsheets are a common busi-
ness tool and are considered the most widely used EUP environment (Burnett et al., 2004). For example, consid-
ering its ubiquity in business landscape, Saldivar et al. presents a spreadsheet-based technique for business pro-
cess model analysis [a146]. Here, the problem of business process performance analysis and verification is
mapped into the problem of configuring and analyzing data in common spreadsheets; the generation of spread-
sheets from business process models is thus supported, as well as the possibility of defining analysis reports and
simulations of business process executions. The paper [a74] proposes instead a EUP environment for mashups,

which offers, also in this case, a spreadsheet-like programming experience. It is based on an expressive data

21

structure that takes advantage of nested table and mashup operators visualized with contextual menus and formu-
la bars. A spreadsheet tool with features for using and exploring hierarchical data is presented in [a86]. It sup-
ports the user in creating different kinds of visualizations by just moving spreadsheet columns through drag-and-
drop. It also allows the user to define a variety of data summaries without having to learn new programming-

oriented concepts such as SQL queries or pivot tables.

Wizard-based

Wizard-based interaction, found in 12 papers (7%), is usually adopted in those situations where a task can be
naturally split into a limited sequence of simple operations, in order to guide the user throughout the overall
activity without requiring too much cognitive effort. In EUD, this technique has been adopted for example in the
e-government domain to drive civil servants throughout the definition of web pages implementing e-government
services for citizens [a39], to allow house inhabitants to customize smart home data visualization through a
guided step-by-step creation mechanism [a90], or to support physicians to develop mobile data applications
(e.g., for clinical trials or online surveys) in an intuitive way [a41]. Usually, wizard-based interaction is com-
bined with form-based interaction to help end users customize and create digital artifacts by means of fill-in
forms, through which they may provide the parameters necessary to the system to automatically generate code or

interface customizations.

Template-based

The template-based technique is proposed in 10 papers (6%). Templates are considered an effective way to em-
power end users to customize application features and tailor the content to their personal interests. For example,
the paper [a95] proposes a tool that allows users to tailor information awareness content: layout templates are
made available in the tool and the user can create her/his own collages of channels (information services) by
simple drag-and-drop, thus associating each template region with a piece of data. When the collage must be dis-
played, the system inspects the data to identify its type and automatically determines the most suitable rendering
method to depict it to the screen. The paper [a104], instead, uses the concept of template to allow users to edit

spreadsheets that do not contain some kinds of errors, and proposes an automatic system to infer such templates.

22

Natural language

The idea of programming in natural language was proposed more than fifty years ago (Sammet, 1966), but only
recently significant advances in natural language understanding have been made, see for example IBM Watson,
Apple Siri, and Google Assistant. However, giving the possibility to end users to program using natural language
remains an open challenge. The selected 9 papers (about 5%) aim at addressing this challenge in specific and
narrow domains. For instance, the paper [a48] proposes this technique for debugging the behaviors of intelligent
assistants, i.e., software assisting end users with email, shopping, and other tasks. A “Why-oriented” approach is
here proposed: users may ask questions about how the assistant made its predictions, and consequently change
the answers to their questions, in order to debug the assistant’s current and future predictions. In [a76] the au-
thors describe a novel personal information assistance engine, called Atomate, that supports end users in auto-
mating a variety of simple tasks and reminders, by managing several information sources, including the user’s
online calendar, web-based e-mail client, news feeds and messaging services. To this end, the system provides
end users with a constrained-input natural language interface for behavior specification. The paper [a82] de-
scribes a natural language-based interface for spreadsheet programming, which capitalizes on the design of a
typed domain-specific language appropriate for end users. Another form of natural language programming is
based on keyword commands: the system proposed in [a75], for example, allows the user to enter a set of key-
words expressing a command in a given domain (e.g. web browsing) and then directly translates such keyword

commands into executable code.

Workflow and Dataflow diagrams

Easy-to-use visual programming languages are often based on the idea of representing complex computations
(activities) through diagrams that encompass nodes (single computations or activities) and wires to indicate de-
pendencies among computations (activities). This leads to notations called dataflow diagrams or workflow dia-
grams, according to the emphasis put on data transformation or activity execution.

This technique has been proposed in 7 papers (4%). For example, the paper [a85] presents LondonTube, a visual
language for enabling end users to build cloud-mobile-web apps in an intuitive way. As any other dataflow nota-
tion, it represents computational logic with graphical icons connected by wires; in addition, a node may repre-
sent either a cloud, a mobile or a web device, and thus may contain a nested dataflow diagram, giving rise to a
structured dataflow. Catala et al., on the other hand, explores the use of a visual dataflow language for creating

trigger-action rules able to control the behavior of smart environments [a109]. The recent paper of Turchi et al.

23

describes an approach to adapting the user experience with pervasive displays to heterogeneous usage contexts;
the approach allows end users to create workflows to satisfy their specific usage needs, by means of tangible

interaction and puzzle metaphor [a159].

Model-based

This technique, found in 6 papers, usually comprises a language for describing a model of the system to be cre-
ated and an automatic code generator taking the model as an input. In this way, the user does not need to learn
any programming aspects but may easily express the requirements of the system at a high level of abstraction.
For example, [a67] proposes discourse modeling, a way of modeling interaction design as a dialogue between
human and computer (the so-called ‘discourse’). Some model-based approaches adopt the idea of design pat-
terns to drive interaction modeling: for instance, [a9] describes a recommendation tool embedded in a visual
environment, which aims at suggesting design patterns to support end users to create their designs; similarly, in
[a64], a model-based and pattern-based web application framework is proposed to help educators, teachers and

therapists create and customize tangible learning experiences for disabled children.

Text-based

Even though visual programming environments and direct manipulation have demonstrated to be easy to use by
end users, some works, like [a130][a133], observe that graphical creation and manipulation of complex formulas
or applications can become overly cumbersome. Therefore, they propose hybrid approaches that, beyond em-
ploying visual manipulation, also encompass textual representation of formulas, markups and scripts. Only 4

papers present this kind of technique.

Digital sketching

This technique is based on digital painting for creating interface layouts and behaviors, which are then processed
by automatic systems able to generate the corresponding code. It has been proposed in 4 papers. The paper
[a101] employs this technique to enable game developers to create interactive computer-controlled characters by
digitally painting storyboards; an algorithm based on machine learning then analyzes each storyboard and gener-
ates a behavior suitable to the situations provided in the storyboard. This technique can be combined with ges-
ture-based [a113] (see below) or rule-based development techniques [a155]. Obrenovic and Martens propose

instead to extend the concept of sketching to the more generic concept of manipulation of interactive materials,

24

which include any piece of software or hardware that can take part of the interactive user experience, such as
input from sensors, output in different forms (sound, video, or image), or interaction with web services [a47].
The proposed tool provides designers with the possibility of combining elements of traditional pen-and-paper

sketching with end-user programming tools, such as spreadsheets and scripting.

Annotation-based

This technique, found in 4 papers, is based on the idea of empowering the user to create new artifacts (e.g., new
web pages) by simply annotating (or similarly augmenting) one or more existing artifacts. As an example, the
paper by Firmenich et al. [a150] describes a way for creating new collaborative procedures, such as planning a
trip over the Web, by means of augmentation tools that allow extending the set of elementary tasks users can do
while navigating the Web. The approach is based on the use of so-called “augmenters”, able to automatic extract
information and Document Object Model (DOM) elements from different websites for creating new distributed

user interfaces.

Assertion-based

Similarly to its use in software engineering, the assertion-based technique is proposed to support error preven-
tion [a73][a125] and debugging [a45] (3 papers). The focus is mainly on the quality of spreadsheets and the ap-
proach appears suitable to end users, who can easily write assertions to reason about their spreadsheets, by im-

proving correctness and efficiency [a45].

Gesture-based

A few scholars have recently explored the use of physical gestures as a novel paradigm to compose digital arti-

facts in specific domains, such as to support video game creation [a113] and music composition [a120].

4.3 Phases

To explore dimension D3 we analyzed the development activities presented in the papers with reference to the
time in which such activities are carried out. Specifically, we classify as “design phase” all those situations
where the end user is called on to design and develop a new digital artifact, and which can therefore be used also

by other users; the term “use phase” is instead adopted whenever the user carries out a system customization or

25

develops an extension of the system, by creating new functionalities (e.g., by writing macros in a spreadsheet) or
new contents at use time.

The results for D3 analysis reveal that development activities discussed in the selected papers are carried out
more often in the design phase (57%) than in the use phase (41%), whilst only 4 works (2%) propose approaches
for both phases.

As to the design phase, there are for example proposals that aim at facilitating the creation of mobile applications
[a27][a68], video games [a28][a58], mashups [a46][a49][a70][a74] and web applications [a135][a148][a149],
personal information spaces [a156], assistive technologies [a107], rehabilitation exercises [a103], e-government
services [a39], and chemistry experiments [a165].

The adoption of tools at use time usually enables debugging activities (of spreadsheets, macros, and other types
of user-generated code) as shown in [a45][a73][a104][a125][al44], system customization and tailoring [a95], or
business process management in an easier way [a82][a97]; in addition, the most recent approaches promote the
use of development features in the use phase for personalizing and controlling the behavior of smart spaces and
smart devices (see for instance, [a23][a92][al129][al41][a142][al143]).

The results of this analysis show that there are two distinct needs in this field: 1) creating new digital artifacts,
possibly capable of evolving at use time in the end users’ hands; 2) tailoring and customizing one’s own applica-
tion, smart environment or object. These two different needs should be considered and analyzed since the begin-

ning of a project, in order to apply proper design methodologies.

26

Business and data management

39

Webapplications and mashups

w
~

Smart objects andenvironments 26

Games and Entertainment

[
~

Education and teaching

-
w

App Domain

-
~

Healthcare and wellness

Mobile applications

) I
[
S)

Interaction design

Robotics

O I
~

n. of papers
Fig. 5. Application domains identified in the select papers (D4).

4.4 Application domains

Dimension D4 is useful to discover the application domains considered by the publications analyzed in this
work. The results suggest that they are highly variable, even though three application domains are the most fre-
quent (see Fig. 5): business and data management (24%), web applications and mashups (23%), and smart ob-
jects and smart environments (16%). The first one is the historical domain where the idea of shaping digital arti-
facts by end users at run time was born; the other two domains are gaining momentum since users are more and
more interested in contributing to the Web (also by creating their web applications) and in defining the behavior
of personal devices and environments.

As it will be better noticed in mapping results presented in Section 4.8, business and data management is an
important application domain for spreadsheet programming; for instance, the paper [a97] presents an approach to
the extraction of information from spreadsheets, in order to present it with leveled dataflow diagrams, suitable to
users in industrial settings. It is also worth noticing that most of the research in this application domain concen-
trates on spreadsheet debugging [a36][a45][a99][a125][a144].

The most cited papers in the second application domain are those that propose approaches for facilitating

mashup creation by end users. As an example, the paper by Wang et al. [a74] presents Mashroom, a mashup tool

27

that offers a spreadsheet-like programming experience by adopting the nested table as the data structure and a set
of visual mashup operators; the authors demonstrate through different case studies that Mashroom provides end
users with an effective and efficient way to build the common mashups.

Ambient Intelligence, IoT and any kind of “smart” application may require the intervention of end users for con-
figuration and solution customization over time; therefore, several works published in 2016 and 2017 propose
for example tools to be applied in the case of smart objects and environments (e.g. the smart home)
[a20][a21][a22][a87][a90][a141][a142][a143].

Other application domains that received attention in our selected papers are games and entertainment (10%),
education and teaching (8%), healthcare and wellness (7%), mobile applications (6%), interaction design (4%),
and robotics (2%). As an example, cultural heritage is a field that we included in the games and entertainment
category: here, museum and exhibit curators often would like to create virtual guides or related websites, as dis-
cussed in [a91][a106]. The adoption of techniques for system shaping is advocated for instance in [a59] to sup-
port teaching cognitive modeling, or to allow creating educational games in an easy way, see for example [a58].
As far as healthcare and wellness, we may cite here the variety of proposals in the field of rehabilitation and
assistive technologies for disabled and elderly people. As an example, the paper by Carmien and Fischer de-
scribes the Memory Aiding Prompting System (MAPS), an environment in which caregivers can create scripts
for people with cognitive disabilities to support them in carrying out daily tasks [a107]. Similarly, Tetteroo et al.
propose TagTrainer, a physical rehabilitation technology that supports physiotherapists in the creation of cus-
tomized rehabilitation exercises for people with neurological impairments [a103]. Mobile applications represent
another important domain addressed by some recent papers, such as [a41] that proposes a model-driven frame-
work to empower domain experts, such as physicians and psychologists, in creating mobile data collection appli-
cations in an intuitive way, or [a158], which describes an iconic language, called MicroApp, for specifying per-
vasive mobile applications directly on the mobile device. Interaction design is often in the hand of designers that
are not experienced programmers; for this reason, the authors of Sketchify have connected their tool for sketch-
ing interactive systems with spreadsheets and scripting languages to allow designers to quickly outline sketch
behaviors [a47]. Diaz et al. created a recommendation tool embedded in a visual environment that suggests nov-
ice designers which design patterns should be used in their development project [a9]. Similarly, as an example of
works in the robotics application domain, [a88] presents Code3, a system that enables non-roboticist program-

mers to program a mobile manipulator to perform complex tasks.

28

We can finally observe that the classification of the papers according to this dimension is strictly related to the
type of outcome of the EUD/EUP/EUSE activities: indeed, a good percentage of works (24%) propose solutions
that deal with hardware artifacts, such as smart objects, robots, healthcare devices or physical games. In these
papers, the user activity mainly consists in using a software artifact to change the behavior of a physical artifact;
for this reason, we have considered this activity as one aimed at shaping hardware artifacts. Interestingly enough,
there are also a few solutions, such as GALLAG Strip [a80] or TAPAS [a159], which propose tangible pro-
gramming, that is, the adoption of physical manipulation, to define the behavior of software or hardware arti-

facts.

Personal

Target Use

Playful

P
Educational _ 19
R
B

Assistive technology

10 20 30 40 50 60 70 80 %0 100 110 120 130 140 150 160
n. of papers

o

Fig. 6. Classification of the selected papers according to the target use (D5).

4.5 Target use

The analysis of papers with respect to D5 reveals that target use of the proposed approaches is mainly utilitarian,
with 134 papers, as shown in Fig. 6. This highlights the importance, for end users, of creating customized sys-
tems or being able to adapt them, in order to cope with their daily work practice.

More precisely, 117 of them describe tools and methods to support different kinds of domain experts in custom-
izing and/or creating digital artifacts used in their workplace. Other 14 papers propose approaches that could be
used both for utilitarian and personal objectives (where ‘personal objective’ is intended for all those situations
in which users perform activities for personal reasons and not for work); these papers are concerned with smart

environment control (e.g., [a44][a53][a109]), mashup creation (e.g. [a49][a55][a70][a111]), and personal task

29

management (e.g. [a84][a94]). Moreover, there are other 3 papers whose target use might be both utilitarian and
playful. As an example, Smith and Graham present Raptor, a tool for sketching games through tabletop and
mixed-reality interaction; they show how this advanced interaction mode effectively supports the ideation phase
and the collaboration among designers and testers [a113].

Personal use only is envisaged in 3 papers (out of the 20 reported in Fig. 6). They discuss how to create
smartphone automations [a72], Personal Information Management spaces [a76] or how to enable system custom-
ization [a95]; whilst, 3 papers consider both a personal and playful use. For instance, in the last category we
found [a80], which describes GALLAG Strip, a mobile and tangible tool that allows users to create context-
aware applications through programming by physical demonstration of envisioned interactions with sensors and
objects; the aim of this work is to demonstrate how EUP tools may empower end users to create applications
tailored to their own needs and lives, for breaking bad habits by behavior change; a tangible and playful interac-
tion is here advocated to better engage end users. These papers bring to 20 the total number of papers in the
“personal” class (including the above mentioned 14 papers that propose approaches for both utilitarian and per-
sonal target use).

Seventeen papers deal with pure educational objectives. Two other papers have educational target use combined
with playful [a87] and assistive technology purposes [a64], thus bringing to 19 the total number in Fig. 6. Inter-
estingly enough, the educational target use is drawing attention in recent years, probably because teachers are
more and more called on to adopt novel ways of teaching to engage and motivate students in learning activities:
13 out of the 19 papers have been published in the last five years. For instance [a58] presents WEEV (Writing
Environment for Educational Video games), a methodology for educational adventure game authoring; in partic-
ular, through a narrative metaphor and a novel visual language to represent the flow of the story, WEEV allows
educators to collaborate in the educational game development process. Similarly, the paper by Zhong and Liu
proposes a domain-oriented end-user design environment, called iVirtualWorld, to support educators to create
3D virtual chemistry experiments, by simply assembling three-dimensional building blocks [a165]. In [a64],
Garzotto and Gonella describe a EUD environment that supports the creation and customization of tangible
learning experiences for disabled children learning.

Empowering end users in the design of video games or other playful applications is proposed in 4 selected pa-
pers [a28][a32][a79][a112], which, together with the other ones addressing a mixture of target use, bring to 11

the total number of papers pursuing playful objectives (see Fig. 6). For instance, [a28] describes AgentCubes, a

30

3D-game authoring environment for middle school students, through which the pedagogical f