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Abstract

Control-system robustness verification with respect to implementation aspects
lacks automated verification approaches for checking stability and performance
of uncertain control systems, when considering finite word-length (FWL) effects.
Here we describe and evaluate novel verification procedures for digital systems
with uncertainties, based on software model checking and satisfiability modulo
theories, named as DSVerifier v2.0, which is able to check robust stability of
closed-loop control systems with respect to FWL effects. In particular, we
describe our verification algorithms to check for limit-cycle oscillations (LCOs),
output quantization error, and robust non-fragile stability on common closed-
loop associations of digital control systems (i.e., series and feedback). DSVerifier
v2.0 model checks new properties of closed-loop systems (e.g., LCO), including
stability and output quantization error for uncertain plant models, and considers
unknown parameters and FWL effects. Experimental results over a large set of
benchmarks show that 35%, 34%, and 41% of success can be reached for stability,
LCO, and output quantization error verification procedures, respectively, for a
set of 396 closed-loop control system implementations and realizations.

Keywords: fixed-point digital controllers, formal methods, bounded model
checking, system reliability, uncertainty

1. Introduction1

The current control theory provides construction of reliable systems, by offer-2

ing mathematical guarantees about stability and desired performance of closed-3

loop systems, where plant states or outputs are fed back and compared to a4

reference signal, which guides control objectives [1]. In such a context, robust-5

ness is a typical control system desirable property that denotes its capability to6

ensure stability and acceptable performance, with respect to uncertainties, i.e.,7

unknown parameters and exogenous perturbations[2].8

Feedback control systems usually seek to guarantee robustness for closed-9

loop architectures; however, digital-controller implementations through elec-10

tronic systems, such as microcontrollers, microprocessors, and specific circuitry,11

commonly face unavoidable variations and disturbances [3] and might be sub-12

ject to problems caused by architecture restrictions, such as finite word-length13

(FWL) effects (i.e., round-offs and truncation), which have the potential to14
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make them fragile. Regarding that, Keel and Bhattacharyya [4] showed that15

even robust and optimal controllers might be fragile and therefore could not16

hold stability, due to FWL effects. Fragility is a control system’s sensitivity to17

extremely small perturbations that are caused by imprecisions in implementa-18

tions, e.g., round-offs in digital controllers’ coefficients due to FWL formats [4].19

Thus, a controller that is designed for a specific purpose is considered fragile20

when it fails to achieve that, due to implementation issues. Finally, non-fragile21

control [5] is the sub-area of control theory dedicated to study techniques for22

designing non-fragile controllers.23

Robust control, in turn, deals with disturbance signals and dynamic pertur-24

bations, the latter being related to mismatches between mathematical model25

and real system. For instance, the work developed by Zhao et al. [3] investi-26

gated stability regarding continuous-time uncertain systems and provided pre-27

cise mathematical modeling for a specific class of them, with a novel type of28

Lyapunov function. In addition, Sakthivel et al. [6] tackled time-delay systems29

subject to actuator faults and disturbances and developed a design approach,30

which includes sufficient conditions under uncertainties, modeled through an31

optimization problem. Although robust control is widely investigated in the32

literature [2–4, 6], its practical applications, while taking into account target33

implementation architectures and respective restrictions, is not commonly con-34

sidered and constitutes a new research branch.35

Indeed, platform restrictions and uncertainties, if not properly tackled, can36

cumulate and thus lead to incorrect behavior and system instability. As a conse-37

quence, the verification and control theory communities lack a formal framework38

able to automatically perform that, which could be integrated into design phases39

and even guide them, with the goal of creating correct-by-construction systems.40

The fragility problem is hardly predicted in the control design step or de-41

tected during tests and simulations, which can cause several losses during oper-42

ation. Non-fragile control techniques [5, 7, 8] and specialized controller realiza-43

tions [1, 9] are usually employed to design safe controllers and implementations,44

with respect to FWL effects. Nonetheless, there are only a few tools to indicate45

fragility and detect violation of control specifications (e.g., stability), when con-46

sidering implementation issues [10–13]. In fact, those formal verification tools47

consider FWL effects to ensure correctness of digital controller designs; how-48

ever, a direct comparison with them is difficult, due to some differences and49

difficulties, as further discussed in Section 2.50

Some model checking tools are able to verify systems represented by timed51

automata, e.g., UPPAAL [14]; however, they consider mainly high-level properties52

during system verification. Only a few studies employ model checking tools for53

low-level specification of controllers (e.g., stability and transient behavior). As54

an example, SAHVY [13] simulates system execution, by solving ordinary differ-55

ential equations (represented by Taylor models) for a range of initial states, and56

performs bounded model checking (BMC) based on satisfiability modulo theo-57

ries (SMT) [15], in order to verify safety properties expressed by computational58

tree logic formulae [16]. Nonetheless, SAHVY does not consider FWL effects in59

digital control system implementations and important design aspects, such as60

fragility and robustness. In addition, Ismail et al. proposed the Digital-System61

Verifier (DSVerifier v1.0) [11] to find FWL problems in digital controllers and62

filters (e.g., overflows, limit-cycle oscillations, and stability loss); however, it63

does not consider the consequences associated to closed-loop systems. Regard-64

ing the latter, they are typically represented as hybrid systems, i.e., controllers65
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are digital and plants are physical continuous systems, whose interaction must66

be considered, under the influence of FWL effects.67

These prior studies are the main source of inspiration for the current work,68

which tackles both fragility verification and uncertain models, in such a way that69

realization aspects are considered along with variations in plant models. As a70

consequence, verification and design procedures can now rely on a broad and71

extensible tool, which is able to scale on closed-loop control systems. Indeed,72

while previous studies either consider mathematical conditions for operation73

under uncertainties [3, 6] or provide verification regarding implementation as-74

pects [11, 13, 14], the proposed approach, which was implemented in DSVerifier75

v2.0, provides a formal framework that checks both in conjunct, while evaluating76

merit figures specific to digital systems, such as stability, limit-cycle oscillations,77

and output quantization error.78

Given the current knowledge in control system verification, DSVerifier v2.0179

Nonetheless, note that MATLAB [17] has two toolboxes for similar problems:80

Robust Control Toolbox (RCT) and Fixed-Point Designer (FPD). The first al-81

lows tuning and analysis of impacts regarding plant model uncertainties on82

control systems (no implementation aspects), while our work allows verification83

and validation of closed-loop systems, when considering FWL effects. Addition-84

ally, the second and our work do not overlap, since the former is an analysis and85

design tool, while the latter is a verification one. Indeed, FPD does not support86

closed-loop system verification and uncertain hybrid system verification. Fur-87

thermore, LCO verification in DSVerifier v2.0 is more comprehensive than that88

of FPD, since it can verify any system represented by a transfer-function and89

it is also able to find LCO for any constant input, while FPD can only indicate90

zero-input LCO for second-order systems [18]. Another important contribution91

of this work is its novel approach for verifying controller fragility. Traditionally,92

the control-systems community considers the latter as uncertainties in a con-93

troller model, by representing it as an inexact model. By contrast, our approach94

allows the computation of FWL effects in digital controllers, by obtaining an95

exact model of a digital controller implementation and a plant model with non-96

deterministic coefficients related to uncertainties.97

98

Finally, DSVerifier can easily scale on control-system verification, given that99

it is able to analyze any structure represented by transfer functions (TFs) of100

single-input single-output (SISO) systems. Indeed, architecture restrictions and101

uncertainties are both considered as effects on TF coefficients of digital con-102

trollers and plants, respectively. In addition, DSVerifier is based on bounded103

model checking [16], which means that a maximum depth for system unrolling104

must be defined and properties are checked until that. As a consequence, sys-105

tem complexity directly relates to memory and processing demands, which may106

result in resource exhaustion. In summary, completeness could be achieved by107

computing a completeness threshold [19], which can be smaller than or equal108

to the maximum number of loop-iterations occurring in the control software;109

however, that may result in inability to provide property checking, due to high110

1Our tool is available at: http://dsverifier.org/ is the only verification tool that checks
robust non-fragile stability and limit-cycle oscilations (LCOs), in closed-loop systems, and it
can be employed to validate implementations of digital controllers designed through different
techniques, including the non-fragile one.
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resource demand, which inherently leads to a trade-off between system unrolling111

and state-space search exploration.112

1.1. Improvements since DSVerifier v1.0113

We extended the previous work of Ismail et al. [11] (i.e., DSVerifier v1.0) to114

enable closed-loop system verification in uncertain systems. In summary, the115

improvements since DSVerifier v1.02 are:116

• Closed-loop System Verification - DSVerifier v2.0 checks stability of117

closed-loop systems, under FWL implementation effects in digital con-118

trollers. It considers both plant and controller transfer function models,119

while plant models can also contain uncertainties.120

• Stability and LCO - DSVerifier v2.0 checks stability and occurrence of121

LCO in closed-loop systems, by using two loop configurations: series and122

feedback. Additionally, its LCO verification is split into two categories:123

zero input LCO (previously supported) and LCO verification for non-124

deterministic inputs and states.125

• Output Quantization Error - DSVerifier v2.0 computes the output of126

a closed-loop control system, considers round-off and FWL effects, and127

compares it with an ideal response (i.e., without FWL effects), in order128

to check whether the output error is inside tolerable bounds.129

• Support for CBMC - DSVerifier v2.0 now supports two efficient model-130

checking tools as back-end modules: ESBMC [16] (previously supported)131

and CBMC [20].132

• Support for New SAT/SMT Solvers - DSVerifier v2.0 now supports133

Yices [21], MathSAT [22], CVC4 [23] by means of ESBMC, and Min-134

iSat [24] by means of CBMC, in addition to Boolector [25] and Z3 [26]135

(both previously supported) by ESBMC.136

Although some improvements over DSVerifier v1.0 might not sound as a ma-137

jor scientific contribution, they are particularly relevant, from a practical per-138

spective. Specifically, they allow us to use off-the-shelf software model checkers139

to verify a large set of properties in a variety of digital control systems, by140

using SAT/SMT solvers. One may notice that SMT solvers apply different141

algebraic reduction rules and contextual simplification and they also use dif-142

ferent SAT solvers as back-end (after bit-blasting), which implement different143

search heuristics. That means a particular SMT solver might perform better144

than others, for a specific verification problem. Providing such an alternative,145

i.e., selection of different SAT/SMT solvers, can wide tool application regard-146

ing real-world problems and also contribute to the SAT/SMT community, with147

new problems and benchmarks. As a result, the nature of our contribution is148

more experimental rather than theoretical, since we add novel features to our149

formal verification tool (DSVerifier), describe details of its implementation, and150

provide an extensive experimental evaluation to demonstrate its feasibility for151

control engineers.152

2DSVerifier v1.0 is available at: http://dsverifier.org/downloads, and the software code
is available at https://github.com/ssvlab/dsverifier.
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Regarding SMT back-ends, ESBMC provides a superior alternative to CBMC,153

which generates SMT formulae in a file and externally calls solvers, whereas154

ESBMC uses a solvers’ native APIs. In [16], we explain the difference in perfor-155

mance, when using both approaches (i.e., API and file interfaces). Additionally,156

the SMT back-end of CBMC is unable to support full ANSI-C, as recently re-157

ported in our previous work [27].158

Lastly, different model checkers provide different verification strategies, coun-159

terexample format, and verification results. Although it is not a big deal to160

support a new software model checker, they usually consume a considerable161

implementation effort, in order to ensure that we exploit the full capabilities162

of each verifier. In particular, such a task should not be underestimated, since163

each verifier has its own characteristics and data format. As an example, a lot164

of effort has been devoted in the International Competition on Software Veri-165

fication for establishing a standard format for counterexamples and invariants166

produced by different verifiers, in order to make it easy for a new verifier to use167

the existing benchmarking infrastructure [28].168

1.2. Preliminaries169

A transfer function representation of a digital system modelG(z) is expressed170

as a ratio of two polynomials in descending powers of z, i.e., the numerator171

BG(z) and the denominator AG(z) in172

G(z) :=
BG(z)

AG(z)
:=

b0 + b1z
−1 + ...+ bMG

z−MG

a0 + a1z−1 + ...+ aNGz
−NG

, (1)

where the subscript G in BG(z) and AG(z) indicate the system they describe173

(i.e., G), and MG and NG represent numerator and denominator orders, respec-174

tivelly, related to system G.175

A general vectorial notion is employed to represent a polynomial, e.g., an176

L-th order polynomial Vλ(z) := v0 + v1z
−1 + ...+ vLλz

Lλ , related to system λ,177

is represented by vector ~Vλ =
[
v0 v1 . . . vLλ

]
. Let C(z) be a digital con-178

troller transfer function implemented with the fixed-point format 〈I, F 〉 (i.e., I179

bits representing the integer part and F bits representing the fractional one),180

which could be signed and with a sign bit included in its integer part, such that181

~AC and ~BC are their nominal denominator and numerator vectors and ~̂AC and182

~̂BC are their correspondent in the FWL domain defined by 〈I, F 〉. Note that183

when a specific format 〈I, F 〉 is chosen, it is applied to all controller coefficients,184

irrespective of their values. As a consequence, in final implementations, some185

care must be taken regarding the chosen representation, in order to keep coeffi-186

cient critical-information intact. Indeed, this work also intended to show FWL187

effects through different formats (with 8, 16, and 32 bits), as carried out for188

the experiments described in Section 5, and how they affect a digital-system’s189

behavior, which is then anticipated by our verification framework. There is also190

a function FWL〈I,F 〉[·] : Rn → Rn〈I,F 〉, where Rn〈I,F 〉 is the set of real numbers191

that are representable with fixed-point format 〈I, F 〉, which computes the rep-192

resentation of a polynomial in the FWL domain, i.e., ~̂AC := FWL[ ~AC ] and193

~̂BC := FWL[ ~BC ].194

Similarly to C(z), let P (z) be a nominal plant transfer function and Pδ(z) a195

plant transfer function with uncertainties, whose denominators and numerators196
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vectors are ~BP , ~BPδ ,
~AP , and ~APδ , which are related as197

~APδ = ~AP + ∆~pa% (2)

and198

~BPδ = ~BP + ∆~pb%, (3)

where ∆~pa% and ∆~pb% represent variations on numerator and denominator199

coefficients, due to model uncertainties. Thus, the set of all possible plant200

models, given parametric deviations (i.e., plant family), is denoted by P.201

1.3. Modelling FWL effects on digital-controller implementations202

From C(z) and 〈I, F 〉, a model Ĉ(z) , B̂C(z)

ÂC(z)
that represents only coefficient203

round-off is obtained, which is still a linear time-invariant system that may204

be represented by a transfer function. The latter is related to a difference205

equation implemented in hardware, through direct-form representations, which206

are directly supported by DSVerifier. For instance, one may consider the FWL207

second-order approximated transfer function208

Ĉ(z) =
b̂0 + b̂1z

−1 + b̂2z
−2

1 + â1z−1 + â2z−2
, (4)

which can be represented by the difference equation209

y(k) = −â1y(n− 1)− â2y(n− 2) + b̂0x(k) + b̂1x(n− 1) + b̂2x(n− 2). (5)

If the plant model is a continuous-time system, the discrete-time model in210

transfer-function or difference equation must be obtained via discretization.211

Among the methods available in the literature [9], we considered the sample-212

and-hold (ZOH) processes in complex systems [29], which models the exact effect213

of sampling and digital-to-analog conversion (DAC) interpolation over plants.214

Assumption 1. The sample-and-hold effects of the analog-to-digital conversion215

(ADC) module and the presence of ZOH for the DAC are synchronized, i.e.,216

there is no delay between sampling a plant’s output, at the ADC, and updating217

the DAC accordingly. Indeed, the DAC’s interpolation is an ideal ZOH process.218

Assumption 2. [9] Given a synchronized ZOH input and a sample-and-hold219

output on a plant, with a sample time T satisfying the Nyquist criterion, the220

discrete pulse transfer function G(z, T ) is an exact z-domain representation of221

G(s), which can be computed through222

G(z, T ) = (1− z−1)Z
{
L−1

{
G(s)

s

}
t=kT

}
. (6)

Software implementations of (5) usually contain basic arithmetic operations,223

i.e., additions, subtractions, and multiplications, whose computation are also224

subject to FWL effects, such as round-off and overflow, which are already con-225

sidered by DSVerifier. For the sake of simplicity, it is assumed that hardware226
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numeric-representations are performed through two’s complement and, if final227

operation results are representable, then overflow in intermediate results do not228

affect system outputs [30].229

Assumption 3. It is assumed that, in two’s complement representations, the230

number of bits available for operations is equal to the number of bits for coef-231

ficients and only final operation results affect a system’s output, i.e., if a final232

result is representable, then overflow in intermediate computations should not233

be flagged as violations [30].234

There are many ways to implement (5) depending on the desired realization235

structure for the target system. The commonly known structures are Direct236

Form I (DFI), Direct Form II (DFII), and Transposed Direct Form II (TDFII),237

where z−1 is defined as the backward-shift operator, that is, a unit delay. In238

order to illustrate this process, one may consider that (5) is implemented in Di-239

rect Form I, as illustrated in Fig. 1, whose algorithm implementation is shown240

in Fig 2. The latter can be implemented in the ANSI-C programming language241

(as shown in Fig. 3) and verified by the supported BMC tools present in DSVer-242

ifier. In a ANSI-C program, fixed-point variables are implemented as integer243

variables, with implicit power-of-2 scaling factors. As illustrated in Fig. 3, func-244

tions fxp add, fxp mult, and fxp sub take two input arguments and return the245

respective addition, multiplication, and subtraction results, in fxp32 t format,246

which is internally defined in DSVerifier as int32 t. Besides, those blocks also247

include quantization effects and consider the fixed-point representation used by248

a given system, while function fxp quantize provides quantization effects in249

each output, for a Direct Form I controller.250

Figure 1: Direct form I realization of Ĉ(z).

Similarly, DSVerifier v2.0 also implements the filter functions in Direct Form251

II (DFII) and Transposed Direct Form II (TDFII), using C language and fixed-252

point library. Fixed-point functions as fxp add, fxp mult, fxp sub and fxp quantize253

are also implemented in both structures as illustrated in Fig. 3, according to254

previous works from the DSVerifier [11, 31, 32] which presented with details255

theses realization structures.256
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Figure 2: Flowchart for Direct Form I realizations.

Remark 1. In the literature, it is shown that round-off effects may also be257

modeled as Gaussian noise in a system’s output [33], i.e., measurement noise.258

Indeed, our stability result ensures internal stability, i.e., a system will be still259

stable for measurement noises, if the Jury’s criteria are met.260

2. Related Work261

Although formal methods provide applicability to check high-level specifi-262

cations in all sorts of cyber-physical systems (CPS) [34], there is little effort263

regarding application of model checking for verifying different control goals,264

which are related to robust stability, robust performance, and non-fragility. In265

addition, relevant studies [12, 35–37] about performance and safety verification266

of closed-loop systems (as described below) propose verification methods based267

on symbolic execution of plant models.268

Closed-Loop Symbolic Execution (CLSE) [36] performs a bounded-time sym-269

bolic execution of a plant’s dynamics, which is represented by ordinary differ-270

ence equations (ODEs) combined with concolic execution of controller software.271

Additionally, robustness analysis is also performed [36], where plant-state devi-272

ation is computed through sensor signals (i.e., measurement noise). In contrast273

8



1 f xp t f xp d i r e c t f o rm 1 ( f xp t y [ ] , f xp t x [ ] ,
2 f xp t a [ ] , f xp t b [ ] , int Na , int Nb) {
3 f xp t ∗ a ptr , ∗y ptr , ∗b ptr , ∗ x pt r ;
4 f xp t sum = 0 ;
5 a pt r = &a [ 1 ] ;
6 y pt r = &y [Na − 1 ] ;
7 b ptr = &b [ 0 ] ;
8 x pt r = &x [Nb − 1 ] ;
9 int i , j ;

10 for ( i = 0 ; i < Nb; i++) {
11 sum = fxp add (sum , fxp mult (∗ b ptr++, ∗x ptr −−));
12 }
13 for ( j = 1 ; j < Na ; j++) {
14 sum = fxp sub (sum , fxp mult (∗ a pt r++, ∗y ptr −−));
15 }
16 return f xp quant i z e (sum ) ;
17 }

Figure 3: C code fragment of a Direct Form I representation of Ĉ(z).

to Majumdar et al. [36], DSVerifier does not investigate robustness regarding274

measurement noises; however, it does perform robustness verification with re-275

spect to parametric uncertainties and investigate fragility, i.e., robustness with276

respect to implementation issues. In particular, Zutshi et al. [35] employed nu-277

merical simulation of plant model and control software implementation, in order278

to build abstractions of state and input spaces, which then allows falsification279

of desired properties.280

In the last decades, symbolic verification of closed-loop systems presented281

important advances; however, there are a few related model checking approaches282

for verifying closed-loop systems. One promising approach is Costan [12], which283

checks stability of closed-loop systems on embedded ANSI-C code controller. It284

compares the Simulink implementation [17] of a control system with code gen-285

erated by MathWorks’ Fixed-Point Advisor and Real-Time Workshop [38]. A286

notable feature of Costan is its error calculation through static analysis in con-287

troller code, when unrolling bounded loops, where deviations are compared with288

a pre-computed error bound. If any violation is found, then Costan provides a289

concrete test input that leads to such a failure. By contrast, DSVerifier com-290

putes quantization effects and checks stability in a closed-loop function for a291

plant family P, without handling the usual stability concept proposed by Keel292

and Bhattacharyya [39], who computed stability margins for measuring fragility.293

Such a behavior makes DSVerifier’s stability verification slower than Costan;294

however, it provides improved accuracy, which is suitable for correct-by-design295

approaches [40]. Unfortunately, it seems that Costan is no longer maintained296

and its currently available version is obsolete, i.e., it does not compile with cur-297

rent operating systems’ libraries, which impairs experimental evaluation proce-298

dures. Rungger and Tabuada [37] established a background on robustness of299

CPSs and hybrid systems based on hybrid automata representations, by pro-300

viding symbolic models for the robustness property that can be used to verify301

and synthesize robust closed-loop hybrid systems, with respect to external dis-302

turbances.303

Sample And Hold Verification (SAHVY) [13] simulates system execution,304

by solving ODEs represented by Taylor models. It performs SMT-based BMC305

within a range of initial states and checks safety properties expressed by com-306

putation tree logic (CTL) formulae. Indeed, its verification engine is similar307
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to that of DSVerifier v2.0; however, it is limited to hybrid systems with ZOH308

sampling and does not take into account FWL effects. Our work, differently,309

neither does not tackle external disturbances nor uses the robustness model-310

ing provided in [37]; however, it is able to consider simultaneously FWL effects311

in digital controllers and parametric uncertainties that are not considered by312

Rungger and Tabuada [37].313

Barnat et al. [41, 42], in turn, presented an approach that uses Simulink314

diagrams to open up new possibilities towards verification properties beyond315

standard stability tests, for first-order systems; however, it is still under devel-316

opment and there are limitations related to the theorem’s proof (Why3 [41, 42]).317

In fact, Why3 can solve problems of previous studies related to state-space ex-318

plosion [41], but it is not fully automatic, i.e., users have to manually change319

parameters, in order to produce new proofs. Additionally, there is no coun-320

terexample and error trace generation and its verification is done over Simulink321

models (which contrasts to our study).322

Finally, the studies introduced by Abate et al. [43–45] describe a method323

called Digital System Synthesizer (DSSynth), which synthesizes stable con-324

trollers for continuous plants given as transfer functions and exploits bit-accurate325

verification of software implemented in digital microcontrollers [11, 32]. DSSynth326

marks the first use of counterexample-guided inductive synthesis [46] for syn-327

thesizing digital controllers, while considering physical plants with uncertain328

models and FWL effects; however, low-level implementation errors (e.g., LCOs)329

are not further investigated in those studies. In fact, our experimental evalu-330

ation shows the DSVerifier v2.0’s precision to detect LCO (cf. Section 5) in331

controllers synthesized by DSSynth.332

Even though transfer functions can describe a huge amount of real-world333

systems, a drawback of DSVerifier v2.0 is that such a representation is still334

limited and it is not widely used by the aforementioned tools; however, support335

to state-space systems is under development [47]. Additionally, DSVerifier v2.0336

presents some advantages over many formal verification tools available in the337

literature [12, 13, 36], e.g., bit-precise verification, counterexamples for failures,338

and automated verification procedures.339

3. Finite Word-Length Effects (FWL)340

Finite word-length (FWL) effects are related to differences in coefficient341

values, due to representations used in real implementations. During the last342

decades, various researchers have studied FWL effects and digital controller and343

filter fragility [29, 48]. Some researchers focused their efforts on the design phase,344

by developing non-fragile design techniques [5, 49]; others, in turn, investigated345

improved realizations, FWL formats with adequate performance under FWL346

effects [50–53], and formal verification and synthesis of digital control systems,347

with respect to FWL effects [12, 32, 43, 44, 54].348

Usually, when designing digital systems, such as digital controllers, tradi-349

tional approaches [9] compute elements through mathematical models, which350

are encoded in computer applications and toolboxes [17]. Indeed, those de-351

scriptions are often created in floating-point arithmetic, which provide lower352

approximation errors for rational numbers; however, in order to reduce cost353

through cheaper processing units and systems, fixed-point representations may354

be employed, which then present higher error magnitude [31]. More specifi-355

cally, floating-point representations are able to support wider amplitude ranges,356
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with gaps between adjacent numbers that are not uniformly spaced, large errors357

for large numbers, and small errors for small numbers, while fixed-point ones358

present more restricted ranges and constant gaps, no matter a number’s mag-359

nitude [55]. As a consequence, whenever design procedures are performed with360

floating-point representations and real systems are implemented with fixed-point361

ones, wrong operation may be notice in the latter.362

In fact, deviation from a designed behavior occurs due to quantization and363

cumulated errors caused by round-off. For instance, mere quantization error364

directly affects locations of poles and zeros, which may be moved to the external365

part of the unit circle, and round-off cumulate through operations usually result366

in wrong or oscillating output, which may incorrectly activate or control further367

stages. As a consequence, our study focuses on investigating FWL effects and368

tackles the following properties: stability, limit-cycle oscillations, and output369

error. The first is only related to quantization, while the others are also due to370

cumulated error.371

3.1. Stability372

A discrete-time linear time-invariant system is considered asymptotic sta-373

ble if its poles lie inside the unit circle, i.e., a circle placed at the origin of a374

complex plane with unitary radius [1]. Consequently, if a discrete-time linear375

system is asymptotic stable, then it is considered bounded-input and bounded-376

output (BIBO) stable, i.e., given an arbitrary bounded input, the output is also377

bounded. Furthermore, a discrete-time system is considered internally stable378

if all its internal states are bounded for all initial conditions and all bounded379

signals injected in it, i.e., if all its components are stable [1].380

Lemma 1. A feedback digital control system represented by C(z) = NC(z)
DC(z) and381

P (z) = NP (z)
DP (z) transfer functions, which represent controller and plant, respec-382

tively, as shown in Figs. 7b and 7a, is internally stable if and only if:383

– the roots of its characteristic polynomial S(z) are inside the open unit384

circle, where385

S(z) = NC(z)NP (z) +DC(z)DP (z);386

– the direct loop product, i.e., NC(z)
DC(z) ·

NP (z)
DP (z) in series (cf. Fig. 7b) and NP (z)

DP (z)387

in feedback configuration, has no pole-zero cancellation on or outside the388

unit circle.389

As a consequence, given that stability depends on poles and those are roots390

of denominators of transfers functions, they are directly affected by coefficient391

quantization, i.e., their locations may be changed when fixed-point arithmetic is392

employed. Finally, if that change exceeds boundaries of the unit circle, systems393

may become unstable.394
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3.2. Limit-Cycle Oscillations395

Limit-cycle oscillations in digital systems are defined by the presence of oscil-396

lations occurring in their outputs, even when their input sequences are composed397

by constant values [29], and may be classified as granular or overflow limit cy-398

cles. Granular LCOs are autonomous oscillations, originating from quantization399

performed in the least significant bits [56], while overflow LCOs take place after400

overflow and wrap-around events. In addition, even a non-zero constant output401

resulting from a constant input equal to zero is a limit-cycle effect [57]. Indeed,402

absence of overflow LCOs, in digital controllers, may be assured by preventing403

overflows or treating them via saturation, when the maximum (or minimum)404

value achieved is held; however, it may not be enough to ensure absence of405

persistent oscillation, in closed-loop systems.406

In addition, different implementations of the same controller may present407

different behaviors regarding LCO, i.e., one may present it and the other may408

not. For instance, that usually happens when the number of allocated fractional409

bits or a chosen scaling factor is different. As a consequence, even if a design410

is correctly performed and should mitigate LCO by construction, different bit411

fixed-point formats may or may not result in such a behavior.412

3.3. Output Quantization Error413

Floating-point representations provide better approximation of rational num-414

bers, when compared with fixed-point ones with the same number of bits.415

Multiple-precision floating-point arithmetic can further represent rational num-416

bers, whose precision digits are bounded by the available memory of a sys-417

tem [58], and practical software packages do exist to implement that type of418

arithmetic (e.g., MPFR3 and MPFI4); however, many practical implementa-419

tions of digital controllers are designed with fixed-precision arithmetic [31]. Ad-420

ditionally, using floating-point arithmetic in BMC leads to higher verification421

time and memory consumption [59]. Indeed, both CBMC and ESBMC, used as422

back-end model checkers in DSVerifier, support floating-point arithmetic and,423

in particular, the IEEE floating-point standard (IEEE 754-2008) [55]. As re-424

ported in our previous work [60], ESBMC represents the most efficient verifier425

for C programs that contain floating-point arithmetic; however, the model pro-426

duced by DSVerifier and corresponding verification conditions are hard to be427

solved by both verifiers. As a consequence, DSVerifier v2.0 currently focuses on428

fixed-point representation only, with bit-vector and rational arithmetic.429

In such a context, precision in a digital controller’s operation is limited by430

its word length, which is specified in a digital system’s realization. Furthermore,431

FWL computations may lead to rounding and truncation errors, which change432

pole and zero positions and modify the associated frequency response. Conse-433

quently, such changes cause variations that can also be observed in time domain.434

A common representation, which is also used here, employs digits separated by a435

decimal point, where the ones to the left are the integer part and the remaining436

ones, to the right, are the fractional part, while using two’s complement. As a437

3https://www.mpfr.org/
4https://directory.fsf.org/wiki/MPFI
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consequence, a real number R represented by a format 〈I, F 〉 can be written as438

R = −bI−12I−1 +

−F∑
i=I−2

bi2
i (7)

and the output quantization error Ed, due to round-off errors when rounding to439

nearest [52], is given by440

−2−F−1 ≤ Ed ≤ 2−F−1. (8)

In addition, when truncation and von Neummann rounding are performed, those441

are given by442

0 ≤ Ed < 2−F (9)

and443

−2−F < Ed < 2−F , (10)

respectively. The simplest rounding procedure is truncation, which works by444

dropping some least significant bits. Round to nearest modes provide smaller445

error and differ in the manner numbers half-way from two rounded ones are446

treated [52, 55], while von Neumann rounding aims to obtain unbiased error.447

As a consequence, outputs in closed-loop systems suffer from round-off,448

which vary with rounding modes and are fed back to their inputs. Indeed, such449

errors may cumulate and result in incorrect computations, which ultimately re-450

sult in wrong behaviors. In addition, in our case, the employed rounding mode451

is the one specified in Eq. (8). Finally, those differences in output samples could452

be monitored and even evaluated, in order to check if they lie within acceptable453

bounds.454

4. Automated Verification Methodology for Fragility455

DSVerifier v2.0’s verification flow is split into two major processes as illus-456

trated in Fig. 4: Steps 1 to 5 are carried out by users and Steps A to D are457

automatically performed by DSVerifier v2.0. Importantly, Steps 1 to 5 result in458

an ANSI-C file (see Fig. 5) that contains vector representations for transfer func-459

tions corresponding to digital controller and plant models, which is then used460

as input for Steps A−D (cf. Section 4.6). In addition, implementation details461

for a digital controller must be provided, e.g., number of bits used for fractional462

and integer parts of fixed-point calculations, realization, input signal range, and463

sample time. In Step 1, users provide inputs p0 representing a plant model,464

∆~pa% and ∆~pb% through .a uncertainty and .b uncertainty, respectively, which465

are related to their respective components of a plant model (i.e., .a uncertainty[0]466

to .a[0], .a uncertainty[1] to .a[1], .b uncertainty[0] to .b[0], and so on). They467

define the percentual of uncertanty (which by default is zero) to be taken into468

account by DSVerifier v2.0, during model generation with uncertanties. Further-469

more, sizes of numerator and denominator polynomials (i.e., parameters a size470

and b size) must be provided, since typical software verifiers have difficulty in471

handling variable-length arrays (VLAs).5 In Step 2, a digital controller and472

5C99 introduced VLAs but C11 made them an optional feature.

13



also a control loop must be designed, with any preferred method (e.g., pole as-473

signment) and configuration (e.g., series or feedback). A controller’s numerical474

representation is then chosen in Step 3 and, in Step 4, one realization form is475

defined, from three different direct representations: Direct Form I (DFI), Direct476

Form II (DFII), and Transposed Direct Form II (TDFII). Finally, in Step 5,477

users configure verification parameters, e.g., verification time, properties, and478

BMC tool. Thus, Steps 1 to 5 result in ANSI-C code that should be used as in-479

put to DSVerifier v2.0, whose verification engine automatically checks property480

φ (e.g., stability, LCO, or output quantization error).481

Step 1
Determine plant 

model and 
intervals1

Step 2
Design digital 

controller

Step 3
Define controller 
realization form

Step 4
Define controller 
representation

Step 5
Configure 

verification

ANSI-C Input File

Step A
Construct  a non-

deterministic plant 
model

User

Step B
Formulate an FWL 

effect-function

Step C
Compute an FWL 
controller-model

Intermediate ANSI-C 
code

Step D
Verify with an 

available BMC tool

Verification successful

Counterexample

DSVerifier

Figure 4: DSVerifier v2.0’s verification flow.

In Step A, DSVerifier v2.0 builds a non-deterministic model for a plant family482

P, using p0, ∆~pa%, and ∆~pb%. Then, it formulates FWL[·], in Step B, using483

implementation details provided in Steps 2 and 3, and computes FWL[c0],484

in Step C. Thus, DSVerifier v2.0 builds an intermediate ANSI-C code for a485

given digital system implementation and makes that an input for a checker, as486

indicated in Step D.487

Definition 1. Non-deterministic approach is a representation of all possi-488

ble values of a given variable and is limited here by the dynamic range (minimum489

and maximum values) defined in the data structure “impl” (as shown in Fig. 5,490
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1 #include <d s v e r i f i e r . h>
2

3 d i g i t a l s y s t em c o n t r o l l e r = {
4 . b = { 0.0039062 , 0 .00097656 } ,
5 . b unce r ta in ty = { 0 .005 , 0 .005 } ,
6 . b s i z e = 2 ,
7 . a = { 0.31348 , −0.00097656 } ,
8 . a unce r ta in ty = { 0 .005 , 0 .005 } ,
9 . a s i z e = 2 ,

10 . sample t ime = 2.000000 e−01
11 } ;
12

13 implementation impl = {
14 . i n t b i t s = 6 ,
15 . f r a c b i t s = 2 ,
16 .max = 1.000000 ,
17 . min = −1.000000
18 } ;
19

20 d i g i t a l s y s t em plant = {
21 . b = { 0 , 0 .00097541 } ,
22 . b unce r ta in ty = { 0 .005 , 0 .005 } ,
23 . b s i z e = 2 ,
24 . a = { 1 , −0.9512 } ,
25 . a s i z e = 2 ,
26 . a unce r ta in ty = { 0 .005 , 0 .005 }
27 } ;

Figure 5: A digital-system input file for DSVerifier v2.0.

lines 13-18).491

Note that this intermediate ANSI-C model contains three main modules:492

digital-controller code to be embedded into a microprocessor, plant model code,493

which simulates plant model dynamics with uncertainties, and model-checking494

directives, i.e., asserts and assumes, which control the verification flow.495

Fig. 6 shows an example of ANSI-C code6 automatically produced by DSVer-496

ifier v2.0, which computes, with (fxp direct form 1 ) and without fixed-point497

FWL effects (double direct form 1 ), outputs for a Direct Form I (DFI) imple-498

mentation structure [32] and also includes assume ( DSVERIFIER assume) and499

assert ( DSVERIFIER assert) statements, which are used for controlling sys-500

tem input range and checking output quantization error violations (through the501

chosen back-end), respectively. Indeed, the former limits non-deterministic val-502

ues, within the dynamic range defined by impl.min and impl.max (shown in503

Fig. 5), which are applied to the digital controller input, and the latter checks if504

deviation between the output with (y qtz) and without FWL effects (y double)505

is greater than an admissible value provided by a user (max error). It is worth506

noticing that computations are internally performed in DSVerifier, by using507

fixed-point arithmetic in 〈I, F 〉 (fxp direct form 1 ) or floating-point representa-508

tions double direct form 1. Finally, shiftL gets values x(k) (determined with509

non-deterministic values) and permutes them to the left, in order to compute510

y(k), and fxp direct form 1() is the DFI controller implementation.511

On the one hand, digital controller’s coefficients are quantized values and all512

its operations use fixed-point arithmetic (i.e., additions, multiplications, sub-513

tractions and divisions). On the other hand, numerator and denominator co-514

efficients for a plant model are not quantized. Indeed, those are represented515

6The DSVerifier v2.0 code is available at https://github.com/ssvlab/dsverifier
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1 nondet cons tant input = nondet double ( ) ;
2

3 DSVERIFIER assume ( ( nondet cons tant input >= impl . min ) &&
4 ( nondet cons tant input <= impl .max ) ) ;
5

6 for ( int i = 0 ; i < k ; ++i ) {
7 x qtz [ i ] = nondet cons tant input ;
8 x double [ i ] = nondet cons tant input ;
9 s h i f t L ( x qtz [ i ] , xaux qtz , ds . b s i z e ) ;

10 s h i f t L ( x double [ i ] , xaux double , ds . b s i z e ) ;
11 y qtz [ i ] = f xp d i r e c t f o rm 1 ( yaux qtz , xaux qtz ,
12 ds . a , ds . b , ds . a s i z e , ds . b s i z e ) ;
13 y double [ i ] = doub l e d i r e c t f o rm 1 ( yaux double , xaux double ,
14 ds . a , ds . b , ds . a s i z e , ds . b s i z e ) ;
15 s h i f t L ( x qtz [ i ] , xaux qtz , ds . b s i z e ) ;
16 s h i f t L ( x double [ i ] , xaux double , ds . b s i z e ) ;
17 ab s o l u t e e r r o r = y double [ i ] − f xp to doub l e ( y qtz [ i ] ) ;
18 DSVERIFIER assert ( ( a b s o l u t e e r r o r < ( max error ) ) &&
19 ( a b s o l u t e e r r o r > (−max error ) ) ) ;
20 }

Figure 6: Intermediate ANSI-C code fragment of a DFI controller, which was modified by
DSVerifier v2.0.

with maximum precision, based on double-precision variables, and treated as516

non-deterministic variables, to support model uncertainties. Nonetheless, com-517

puter representations will always present limited precision, even for double vari-518

ables. In general, double-precision variables are enough for our verification519

engines; however, a more comprehensive analysis may be achieved in further520

studies by using interval arithmetic, as done by Abate et al. [44]. The di-521

rective assume bounds non-deterministic variables, i.e., inputs and plant un-522

certain coefficients. For instance, if a polynomial −0.06875z2 has a coefficient523

-0.06875 (i.e., a0) with 5% of uncertainty (i.e., ∆~pa%), it will be internally repre-524

sented by the non-deterministic interval [−0.06875−∆~pa%(0.06875),−0.06875+525

∆~pa%(0.06875)]⇒ [−0.0721875,−0.0653125].526

Finally, in Step D, translation of intermediate ANSI-C code into SMT for-527

mulae is performed by a back-end model-checking tool (e.g., CBMC [20] or528

ESBMC [16]). Here, DSVerifier v2.0 checks a given property φ (e.g., stability,529

LCO, or output quantization error) with respect to a closed-loop system, which530

is composed by FWL[c0] and every p in P (cf. Section 1.2). If any property531

violation is found, then DSVerifier v2.0 reports a counterexample, which con-532

tains system inputs or parametric deviations that lead to a failure. A successful533

verification result is reported iff a system is safe up to a bound k, with respect534

to φ.535

In particular, stability verification is the only one that is complete, since536

it does not depend on system outputs and inputs (i.e., no bound k for loop537

unwinding is defined) [32]. Furthermore, DSVerifier v2.0 using ESBMC as back-538

end is able to check digital systems through proof by mathematical induction,539

which combines a state-of-the-art k-induction proof rule [61] with invariants [62];540

however, that algorithm must be further extended, as a new direction for future541

work, in order to infer invariants that are inductive w.r.t. quantization and542

LCO properties, since invariance can not determine induction of a non-inductive543

assertion [63].544
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4.1. Loop configurations545

DSVerifier v2.0 supports two closed-loop configurations: feedback as546

H(z) =
C(z) ·G(z)

(1 + C(z) ·G(z))
=

NC(z)
DC(z) ·

NG(z)
DG(z)

1 + NC(z)
DC(z) ·

NG(z)
DG(z)

=
NH(z)

DH(z)
, (11)

where a digital controller is connected through a feedback path (see Fig. 7a),547

and series as548

H(z) =
G(z)

(1 + C(z) ·G(z))
=

NG(z)
DG(z)

1 + NC(z)
DC(z) ·

NG(z)
DG(z)

=
NH(z)

DH(z)
, (12)

where a controller is located at a forward path (see Fig. 7b). In the DSVerifier549

v2.0’s command-line version, loop configuration is chosen with --connection-550

mode <connection name>, where <connection name> can be represented by551

SERIES or FEEDBACK.552

(a) Feedback configuration.

(b) Series configuration.

Figure 7: Closed-loop configurations supported by DSVerifier v2.0.

4.2. Stability verification553

As already mentioned, system stability may be influenced by FWL effects.554

That being said, it would be interesting to check pole location during system555

design, as a consequence of using fixed-point formats as final implementation.556

Based on Lemma 1, DSVerifier v2.0 is able to check stability for closed-loop557

systems, according to Algorithm 1. Firstly, DSVerifier v2.0 applies FWL effects558

on a controller’s numerator and denominator, then it builds a non-deterministic559

model to represent plant family P and, finally, applies the Jury’s criteria [1] to560

determine stability regarding S(z).561

Precisely, the stability verification is encoded as a verification condition (VC)562

ψk =
∧k
i=0 ¬φstability(si) that is satisfiable if, in a given state si, some system’s563

poles (i.e., eigenvalues) has magnitude greater than 1.564
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Algorithm 1: Closed-loop stability verification

Data: NC(z), NP (z), DC(z), DP (z), implementation settings, and plant’s parametric
deviations ∆p%.

Result: SUCCESS for stable systems or FAILED for unstable systems, along with a
counterexample.

1 begin
2 Formulate an FWL effect function FWL[·]
3 Construct the plant interval set P, where N̂P (z) ∈ P and D̂P (z) ∈ P
4 Obtain FWL[NC(z)] and FWL[DC(z)]

5 Check ¬φstability for S(z) = FWL[NC(z)] · N̂P (z) + FWL[DC(z)] · D̂P (z)
6 if ¬φstability is satisfiable then
7 return FAILED and a counterexample (i.e., unstable)
8 end
9 else

10 return SUCCESS (i.e., stable)
11 end

12 end

4.3. Limit-cycle oscillation verification565

LCO may severely compromise system behavior and operation, due to as-566

sociated oscillations; however, its presence may be checked, if such repetitions567

are identified and characterized, and even avoided, if different approaches are568

employed (e.g., realization and coefficient format).569

As a toy example regarding LCO verification, which is supposed to present570

such an effect for illustrative purposes, a single-pole system, described by dif-571

ference equation572

y(n) = −a y(n− 1) + x(n), (13)

is adopted. Here, such a filter is also modeled using 2 bits for the integer part573

and 4 bits for the fractional one (as in the previous case), but with a zero input574

signal. If the verification engine is executed for the implemented model, then it575

finds a particular initial condition leading that system to a limit cycle. In Table576

1, the resulting system response, for that particular condition, is presented,577

through columns y2 and y10, in binary and decimal formats, respectively. Due578

to the adopted rounding procedure (cf. Eq. (8)), which was applied to the579

fractional part of the fixed-point number, one can notice, in Table 1 and for580

a = 0.5, that the resulting output starts repeating after n = 2. Similarly, for581

a = −0.5, the same output keeps in a nonzero steady-state value, instead of582

decaying towards zero.

Table 1: Identification of Limit-cycle oscillations in the adopted toy example.

a = 0.510 = 0.10002 a = −0.510 = 1.10002

n y2 y10 n y2 y10

-1 0.0010 0.125 -1 0.0010 0.125

0 1.0001 -0.0625 0 0.0001 0.0625

1 0.0001 0.0625 1 0.0001 0.0625

2 1.0001 -0.0625 2 0.0001 0.0625

3 0.0001 0.0625 3 0.0001 0.0625

583
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In DSVerifier v2.0, LCO verification is performed in a system’s general equa-584

tion H(z), which is computed from plant and controller transfer functions in585

series configuration (Eq. 12) or feedback configuration (Eq. 11). Basically,586

DSVerifier v2.0 checks the presence of persistent oscillation in an output, given587

a constant input signal, which is illustrated in Algorithm 2.588

Algorithm 2: Limit cycle verification

Data: H(z) and its outputs up to k-depth.
Result: SUCCESS for the absence of LCOs, otherwise FAILED along with a

counterexample.
1 begin
2 Formulate a FWL effect function FWL[·]
3 Construct the plant interval set P, where N̂P (z) ∈ P and D̂P (z) ∈ P
4 Obtain FWL[NC(z)] and FWL[DC(z)]
5 Compute H(z) according to feedback or series configuration (cf. Eqs. (11) or (12),

respectively)
6 Obtain the last output from H(z), as reference
7 Check the presence of a time window
8 if size of time window is bigger than one with non-zero constant input or bigger

than zero with zero input then
9 Check whether elements inside that time window are repeated;

10 if all elements are repeated then
11 return FAILED and a counterexample (i.e., presence of LCO)
12 end

13 end
14 else
15 return SUCCESS (i.e., LCO-free)
16 end

17 end

Firstly, the quantizer block routine is configured to enable wrap-around.589

Then, DSVerifier v2.0 selects the last output as a reference and searches the590

same value among previous elements, in order to compute the length of a time591

window for (potential) LCO. In summary, the last output is compared with the592

previous ones, with the goal of finding an equal element. If that happens, within593

a distance of w samples, a possible time window is flagged, which is encoded in594

line 7 of Algorithm 2. If the employed input is zero and w is greater or equal595

to one or the employed input is non-zero and w is greater than one (see line 8596

of the same Algorithm), there is limit-cycle occurrence; otherwise, there is not.597

If the former happens, each element between the reference output and the first598

equal sample is compared with its respective pair w samples away and, if that599

is successful for all of them, which is performed in lines 9 and 10, DSVerifier600

v2.0 confirms presence of LCO. Precisely, our LCO verification is encoded as a601

VC that is satisfiable iff there is any window (with non-deterministic size) of602

output samples, which is repeated from any sample until a bound k (the same603

used by the BMC algorithm), i.e., w < k. One may notice that the proposed604

LCO verification can also be performed for non-deterministic inputs and states,605

which was impossible with the previous versions of DSVerifier.606

4.4. Quantization error verification607

Output round-off errors may be checked, if an expected behavior is compared608

with an obtained one. Indeed, given that designs are often performed in floating-609

point and real implementations in fixed-point arithmetic, a possible verification610

approach would be to compare both and compute the resulting deviation.611
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Based on that, DSVerifier v2.0 is able to apply non-deterministic inputs to612

two different implementations (i.e., with and without FWL effects) and com-613

pares results from both of them, in order to check whether differences regarding614

their outputs are inside a tolerable bound. Therefore, the VC for this property615

is given as616

lerror ⇐⇒ |yfxp − yfloat| < eb, (14)

where yfxp is the output value from the fixed-point implementation (i.e., with617

FWL effects), yfloat is the output value from the reference floating-point im-618

plementation (i.e., with greatly reduced FWL effects), and eb is the acceptable619

error value defined by a designer. In summary, DSVerifier v2.0 compares the620

output signal of two closed-loop systems, i.e., with and without FWL effects,621

and then checks whether Ed is inside a tolerable bound, as described in Algo-622

rithm 3.623

Algorithm 3: Output quantization error verification

Data: Controller C(z), plant P (z), and eb as an acceptable error value.
Result: SUCCESS if the output quantization error is lower than eb, otherwise

FAILED along with a counterexample.
1 begin
2 Formulate a FWL effect function FWL[·]
3 Construct the plant interval set P, where N̂P (z) ∈ P and D̂P (z) ∈ P
4 Obtain FWL[NC(z)] and FWL[DC(z)]
5 Compute Hfxp(z) according to feedback or series configuration (cf. Eqs. (11)

or (12)), i.e., a transfer function in fixed-point arithmetic
6 Compute Hfloat(z) according to feedback or series configuration (cf. Eqs. (11)

or (12)), i.e., a transfer function in floating-point arithmetic
7 Calculate outputs from Hfxp(z) (i.e., yfxp(k))
8 Calculate outputs from Hfloat(z) (i.e., yfloat(k))
9 Compute the difference between the fixed- and floating-point outputs, i.e.,

Ed = yfxp(k)− yfloat(k)
10 if Ed ¡ eb then
11 return SUCCESS (i.e., output quantization error is within a tolerable bound)
12 else
13 return FAILED and a counterexample (i.e., high output quantization

error)

14 end

15 end

16 end

4.5. Structured Uncertainties Description Example624

DSVerifier v2.0 supports only structured uncertainties. This version does not625

support the specification of unstructured uncertainties. Find below an example626

of specification of structured uncertainties via DSVerifier for a cruise control627

system, whose mechanical schematic is illustrated in Fig. 4.5. The nominal628

continuous time transfer function G(s) can be expressed as follows:629

G(s) =
1

ms2 + bs
. (15)

Consider that the parameter mass (m), and damping ratio (b) are uncertain,630

such that m ∈ [1, 2] kg, and b ∈ [0.18, 0.22] N · s/m. The ZOH discretization is631
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x

Figure 8: A spring-mass-damping system.

obtained by:632

G(z) = (1− z1)Z
{
L−1

{
G(s)

s

}}
, (16)

where Z {·} is the z transform and Z {·} is the inverse Laplace transform. Thus,633

the discrete model of Eq. (15) with sample time T = 0.5 s is:634

G(z) =

(
T − m

b + m
b e
−T ·b

m

)
z + m

b − e
−T ·b
m

(
b
m + T

)
bz2 − b

(
1 + e−

T ·b
m

)
z + b · e−T ·b

m

. (17)

Substituting, the parameters and their interval, it is obtained the following635

interval system:636

G(z) =
b1z + b2

a0z2 + a1z + a2
. (18)

b1 ∈ [0.011, 0.027], b2 ∈ [3.9, 10.547],

a0 ∈ [0.18, 0.22], a1 ∈ [−0.428, 0.345], a2 ∈ [0.164, 0.209]

Based on these intervals, the vectors ~A, ~B, ∆~pa%, and ∆~pb% can be com-
puted, such that the elements of ~A and ~B are the mid point of the above
intervals, and the elements of ∆~pa% and ∆~pb% are the percentage of deviation
from midpoint to bounds of intervals. Then, the following vectors are obtained

~A = [0.2 − 0.386 0.186]

~B = [0.019 7.224]

∆~pa% = [10 10.834 11.729]

∆~pb% = [41.05 46.005]

With these parameters an ANSI-C input file may be written according to637

Figure 5.638

4.6. Illustrative Example639

The methodology applied in this example follows the verification flow shown640

in Fig 4. Consider the plant model given by Eq. (19), which represents the641

pitch angle dynamics of an unmanned aerial vehicle (UAV) quadcopter sys-642

tem [64], and the digital controller given by Eq. (20), which was synthesised by643

DSSynth [44].644

P (z) =
NP (z)

DP (z)
=

−0.06875z2

z2 − 1.696z + 0.7089
. (19)
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C(z) =
NC(z)

DC(z)
=
−0.99832 + 0.09587z + 0.1926

z2 + 0.5665z + 0.75
. (20)

The general equation H(z) that represents the closed-loop system derived645

from (19) and (20), using feedback configuration, is described by646

H(z) =
NH(z)

DH(z)
=

0.06863z4 − 0.006591z3 − 0.01324z2

1.069z4 − 1.136z3 + 0.4849z2 − 0.8704z + 0.5317
. (21)

As mentioned, representations regarding digital controller and plant are647

needed. Therefore, by considering a fixed-point implementation 〈8, 8〉, which648

corresponds to 8 bits for both integer and fractional parts, the resulting ANSI-649

C file is shown in Fig. 9, with plant uncertainty of 0.5% (i.e., ∆~pa% = ∆~pb% =650

0.005).

1 #include <dsverifier.h>
2

3 digital_system controller = {
4 .b = { -0.9983 , 0.09587 , 0.1926 },
5 .b_size = 3,
6 .a = { 1, 0.5665 , 0.75 },
7 .a_size = 3,
8 .sample_time = 2.000000e-01
9 };

10

11 implementation impl = {
12 .int_bits = 8,
13 .frac_bits = 8,
14 .max = 1.000000 ,
15 .min = -1.000000 ,
16 .max_error = 0.005
17 };
18

19 digital_system plant = {
20 .b = { -0.06875 },
21 .b_uncertainty = { 0.005 },
22 .b_size = 1,
23 .a = { 1, -1.696, 0.7089} ,
24 .a_uncertainty = { 0.005 , 0.005, 0.005 },
25 .a_size = 3,
26 };

Figure 9: Closed-loop system from Eqs. (19) and (20), described as an ANSI-C file.

651

In order to check stability with the mentioned file, DSVerifier v2.0 must be652

executed using the command line653

dsverifier <file>.c --k-size <bound> --property654

STABILITY CLOSED LOOP --CONNECTION-MODE feedback,655

where <file>.c is the ANSI-C file and <bound> is the maximum loop unrolling656

(which is set to 10, as default). By doing so, DSVerifier v2.0 reports that the657

system shown in Fig. 9 is stable. In order to validate and reproduce closed-loop658

system stability, one can obtain the associated step response using MATLAB,659

with command dstep, and then observe, in graph shown in Fig. 10, that the660

system is, in fact, stable.661

If DSVerifier is used to check LCO occurrence in a closed-loop system, the662

digital system described in Fig. 9 might use DFI. By combining realization and663

fixed-point implementation, we could invoke LCO verification with664
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Figure 10: Step response for Eq. (19), which describes a stable UAV quadcopter system.

dsverifier <file>.c --k-size <bound> --REALIZATION DFI665

--CONNECTION-MODE FEEDBACK --property LIMIT CYCLE CLOSED LOOP.666

Then, DSVerifier would inform that this system presents LCO for initial667

states y−2 = −0.99609375, y−1 = 0.0078125, and y0 = 0.01171875 and associ-668

ated constant inputs formed with x(k) = −0.015625, as described in Table 2.669

n x(k) y(k)

1 -0.015625 -0.00390625

2 -0.015625 0.0078125

3 -0.015625 0.01171875

4 -0.015625 -0.00390625

5 -0.015625 0.0078125

6 -0.015625 0.01171875

7 -0.015625 -0.00390625

8 -0.015625 0.0078125

9 -0.015625 0.01171875

10 -0.015625 -0.00390625

Table 2: Counterexample for LCO verification, regarding the system in Fig. 9.

In addition, initial states and constant inputs are generated as non-deterministic670

values, by DSVerifier, and LCO is graphically represented in Fig. 11. Finally,671

in order to check output quantization error, the digital closed-loop system in672

Fig. 9 can be used with a different configuration, in order to better understand673

how FWL effects are able to impact a digital system implementation. For this674

illustrative example, we used a DFI realization, with 2-bit in its integer part,675

14-bit in its fractional one, and maximum error 0.005. Bu combining realiza-676

tion and fixed-point implementation, we can invoke output quantization error677

verification with678

dsverifier <file>.c --k-size <bound> --REALIZATION DFI679

--CONNECTION-MODE FEEDBACK --property680

QUANTIZATION ERROR CLOSED LOOP.681
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Figure 11: LCO event detected for the closed-loop system in Fig. 9.

As a consequence, DSVerifier returns output quantization error violation.682

Regarding the associated counterexample, DSVerifier reveals its inputs and out-683

puts, as described in Table 3, where yfloat represents outputs in floating-point684

and yfxp in fixed-point arithmetic.685

n x(k) yfxp(k) yfloat(k) error

1 -0,648437500000000 0,647335156250000 0,647368907928467 -0,000033751678467

2 -0,992858886718750 0,562289957470703 0,562372747837799 -0,000082790367096

3 0,997070312500000 -2,01948836503313 -2,01952749508780 0,000039130054670

4 0,315063476562500 0,312159331313241 0,312026103111179 0,000133228202062

5 -0,274230957031250 1,83378365467574 1,83386485931182 0,000133228202062

6 0,0626220703125000 -1,30108284791635 -1,30097064528742 -0,000112202628930

7 -0,553649902343750 -0,132378914595784 -0,132510583417806 0,000131668822022

8 0,138854980468750 0,871168458658317 0,871170006324547 -0,000001547666230

9 -0,346618652343750 -0,141524289462200 -0,141367224477051 -0,000157064985149

10 -0,298034667968750 -0,282161685942112 -0,282230138194609 -0,009931547747503

Table 3: Counterexample for output quantization error verification regarding the system in
Fig. 9, with modified representation.

Moreover, inputs x(k) are generated as non-deterministic values by DSVer-686

ifier and the error signal identified in its outputs is graphically represented in687

Fig. 12.688

5. Experimental Evaluation689

This section is split into five parts. Firstly, in Section 5.1, we present all690

benchmarks adopted for evaluating DSVerifier v2.0, then we describe the main691

goals of our experiments in Section 5.2. Further, we describe the employed692

setup in Section 5.3 and discuss experimental results through a performance693

comparison, in Section 5.4. Finally, in Section 5.5, we apply DSValidator [65] to694

reproduce and automatically validate the counterexamples generated for each695

experiment.696

697

Availability of Data and Tools. All benchmarks, tools, and results for698
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Figure 12: Output quantization error event detected for the closed-loop system represented
by Eq. 21.

this evaluation are available on a supplementary web page7.699

5.1. Benchmark Description700

Our experimental evaluation consists of a set of fourteen closed-loop sys-701

tems, shown in Table 10, ranging from first up to eighth order [2, 32, 43]. The702

first benchmark, which is represented by controller C1 and plant G1, with 0.2ms703

of sample time, uses a discrete model for a cruise-control system of a car and704

accounts for rolling friction, aerodynamic drag, and gravitational disturbance705

force [66]. The second one, which is represented by controller C2 and plant G2,706

with a sample time of 2ms, describes a discrete model of a DC motor [67]. The707

third one, which is represented by controller C3 and plant G3, with sample time708

0.01s, represents a discrete model of a DC servo-motor velocity dynamics [68].709

The fourth benchmark, which is represented by controller C4 and plant G4,710

with a sample time of 0.02s, contains a well-studied discrete non-minimal phase711

model that normally provides additional difficulties, when designing stable con-712

trollers [69]. The fifth benchmark, which is represented by controller C5 and713

plant G5, with a sample time of 2ms, describes a discrete model for a helicopter714

longitudinal motion [70]. The sixth one, which is represented by controller C6715

and plant G6, with a sample time of 2ms, contains a discrete model for the716

well-known inverted pendulum that describes a pendulum dynamics with its717

center of mass above its pivot point [70]. The seventh benchmark, which is718

represented by controller C7 and plant G7, with a sample time of 0.001s, uses719

a discrete model for satellite attitude dynamics that requires attitude control720

for orientation of antennas and sensors w.r.t. Earth [70]. The eighth bench-721

mark, which is represented by controller C8 and plant G8, with a sample time722

of 0.001s, considers a discrete model for a simple spring-mass damper plant [71].723

7http://dsverifier.org/
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The ninth benchmark, which is represented by controller C9 and plant G9, with724

a sample time of 2ms, in turn, contains a magnetic suspension discrete model725

that describes the dynamics of a mass that levitates with support only of a mag-726

netic field [70]. The tenth one, which is represented by controller C10 and plant727

G10, with a sample time of 2ms, contains a computer tape-driver discrete model728

that describes a system able to read and write data from a storage device [70].729

One may notice that all digital controllers mentioned so far were obtained with730

DSSynth [45]. Finally, the last four benchmarks, which are represented by con-731

trollers C11, C12, C13, and C14, and plants G11, G12, G13, and G14, respectively,732

consist of digital systems extracted from Keel et al. [2] and Bessa et al. [32].733

For all benchmarks, input signal ranges lie between −1 and 1, when verify-734

ing LCO and quantization-error properties. Among the discretization methods735

available in literature [70], we considered the sample-and-hold processes for com-736

plex systems, i.e., the discrete-time plant models in Table 10 were obtained by737

computing discrete-pulse transfer functions from original continuous models.738

5.2. Objectives739

DSVerifier v2.0 checks properties of closed-loop control systems, i.e., stabil-740

ity, output quantization error, and LCO. In summary, our experimental evalu-741

ation aims to answer two research questions:742

RQ1 (performance) Is our BMC tool able to check violations related to sta-743

bility, LCO, and output quantization error in closed-loop systems with744

uncertainty, in a reasonable amount of time?745

RQ2 (sanity check) Is the proposed verification sound and can its counterex-746

ample reproducibility be confirmed by an external tool?747

5.3. Experimental Setup748

The present study employed DSVerifier v2.0 to check the fourteen closed-749

loop control systems described in Section 5.1. The related experiments were750

based on 3 different implementations (i.e., 8-, 16-, and 32-bit) and 3 different751

realization forms (i.e., Direct-Form I, Direct-Form II, and Transposed Direct-752

Form II) [56]. In addition, we verified each benchmark regarding uncertainties753

of 0%, 0.5%, 1.5% and 5%, against 3 properties: stability, output quantization754

error, and LCO. In summary, we performed 924 experiments with DSVerifier755

v2.0, with CBMC v5.8 [20] as the back-end model checker and MiniSAT [24] as756

the back-end solver.757

The present experiments were executed on an otherwise idle computer with758

Intel Core i7− 2600 3.40 GHz processor and 24 GB of random access memory,759

running Ubuntu 64-bit OS. All presented execution times are CPU times, i.e.,760

only time periods spent in allocated CPUs, which were measured with the times761

system call (POSIX system), while the execution-time limit was set to 3600s.762

It is worth noticing that all computations are performed in true fixed-point763

arithmetic, through format 〈I, F 〉, which includes coefficients, operands, and764

operation results. Firstly, we convert coefficients to fixed-point format and765

then all following operations are also performed in fixed-point, until outputs are766

found.767
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5.4. General Results and Discussion768

In order to answer RQ1, we have carried out experiments based on our set769

of benchmarks (cf. Section 5.1), according to the setup description presented in770

Section 5.3. In general, uncertainty bounds depend on specific applications and771

on uncertain physical parameters of plants (e.g., masses, lengths, viscosity, and772

stiffness). As a consequence, the realistic uncertainty bounds used in our exper-773

iments were carefully chosen, in order to properly evaluate the DSVerifier v2.0’s774

effectiveness. Regarding the stability property, we have 168 closed-loop system775

implementations, and DSVerifier v2.0 returned that 58 of them are stable, while776

110 are unstable (see Fig. 13).777

LCO and output quantization error properties have been verified only in778

stable closed-loop system implementations8 with uncertainties of 0%, 0.5% and779

1.5%. Indeed, we avoided higher percentages of uncertainty on those exper-780

iments (e.g., >5%), since they dramatically increase associated state spaces,781

which typically leads to longer verification times, which then makes our ap-782

proach susceptible to timeouts. If a verification procedure takes a long time to783

find a solution, a timeout could be reached, our verification would not finish,784

and, as a consequence, results associated to an employed uncertainty level might785

not be conclusive. In addition, we have further performed experiments only on786

stable implementations, since unstable ones are inherently susceptible to LCO787

and output quantization error.788

Regarding systems implemented with a precision of 8 bits, we have verified789

10 stable implementations with 3 different realizations, i.e., 30 verifications. For790

the ones implemented with 16 bits, we have checked 16 stable implementations791

with 3 different realizations, i.e., 48 verifications. Finally, for those implemented792

with 32 bits, we have evaluated 21 stable implementations with 3 different re-793

alizations, i.e., 63 verifications. In summary, we have verified 114 benchmarks794

for output quantization error and LCO, which led to 228 experiments. Regard-795

ing all chosen properties, we have checked a total of 396 closed-loop system796

implementations, with DSVerifier v2.0.797

In general, we have obtained that 35% of our controllers are stable, while798

65% are unstable. Among our stable controllers, we have checked that 66% of799

the chosen implementations presented LCO, 48% output quantization error, and800

11% timed out during verification. The highest times in LCO and output quan-801

tization error verification procedures are explained by the inherent complexity802

of their associated algorithms, with non-deterministic initial states, (constant)803

inputs, and oscillation periods. Despite that, output quantization error verifica-804

tion procedures were concluded for 91% of the chosen benchmarks, while LCO805

and stability ones were concluded for all of them.806

5.4.1. Stability Occurrence Discussion807

For the stability verification (see Fig. 13), 110 (65%) implementations failed808

(i.e., unstable closed-loop systems). In particular, 8 and 16-bit implementations809

produced more than 50% of unstable systems; importantly, the same systems810

turned from failure to success when implemented in 32 bits of precision. Here,811

we can clearly see the impact of FWL effects, according to the number of bits812

used in a specific implementation. In addition, if implementations are combined813

8All stable benchmarks are listed at http://ssvlab.hussama.io/dsverifier/benchmarks/
jss-benchmarks/
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Figure 13: Stability verification results, whereas (13a), (13b), and (13c) correspond to exper-
iments run on digital systems with precisions of 8, 16, and 32 bits, respectively.

with an uncertainty of 5%, failures are higher when compared with uncertainties814

of 0%, 0.5%, and 1.5%, which states that the disturbance related to uncertainties815

heavily influence stability of a closed-loop system.816

Furthermore, one may notice, in Fig. 13, that more than 70% of the con-817

trollers implemented with 8 bits are unstable, for each uncertainty. For the ones818

implemented with 16-bit precision, experimental results show that the number of819

stable controllers increases. Finally, regarding 32-bit implementations, at least820
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50% of the associated controllers are stable for uncertainties of 0.0%, 0.5%, and821

1.5%. Therefore, one may conclude that when the number of bits is increased,822

the number of stable systems increases as well, due to better precision.823

According to the experimental results, the closed-loop system (H4), which824

is composed by controller C4 (Eq. (22)) and plant G4 (Eq. (23)), presented825

different verification results for different levels of uncertainty, i.e., with 0%, it826

was reported as stable; however, with 0.5%, the resulting one was reported as827

unstable. Regarding such a system,828

C4 =
b3z

3 + b2z
2 + b1z + b0

a3z3 + a2z2 + a1z + a0
, (22)

where b3 = −0.580535888671875, a3 = 0.7188720703125, b2 = 0.9197692871093829

75, a2 = −0.38751220703125, b1 = 0.11871337890625, a1 = −0.415924072265625,830

b0 = −0.951934814453125, and a0 = 0.437286376953125, and831

G4 =
−0.01285z2 + 0.02582z − 0.01293

z3 − 2.99z2 + 2.983z − 0.9929
. (23)

Based on a fixed-point implementation 〈3, 5〉, with 3 bits in its integer part832

and 5 in its fractional one, DSVerifier v2.0 returns stable, when considering an833

uncertainty of 0% (see Fig. 14); however, it returns unstable, for an uncertainty834

of 0.5% (see Fig. 15), which means poles of that system are placed on the outside835

part of the unitary circle. Indeed, if one plots a zeros and poles map of H4, in836

order to check stability and considering each uncertainty, it becomes clear that837

the results found in the experiments are reproducible (the stable one is shown838

in Fig. 14 and the unstable one in Fig. 15).839

-1 -0.5 0 0.5 1 1.5

Real Part

-1

-0.5

0

0.5

1

Im
a

g
in

a
ry

 P
a

rt

zeros

poles

unitary circle

Figure 14: Zeros and Poles Map of the closed-loop system H4, with 0% of uncertainty.

As a consequence, one could say, as general conclusion, that a good way840

of dealing with uncertainty is to use as many bits as possible, in any digital-841

controller fixed-point implementation.842

5.4.2. LCO Occurrence Discussion843

Regarding the LCO experiments (see Fig. 16), only 39 implementations did844

not present LCO (i.e., 34%), according to DSVerifier v2.0. In fact, Fig. 16845
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Figure 15: Zeros and Poles Maps of the closed-loop system H4, with 0.5% of uncertainty.

summarizes the obtained verification results for the LCO property, which show846

that 76% of our controllers presented LCO, when using 8-bit implementations.847

In particular, for DFII realizations, more than 50% of our controllers did not848

present LCO, which means that, for our set of benchmarks, DFII realizations849

presented better results, when compared with DFI and TDFII ones, in order850

to avoid LCO occurrence in closed-loop systems. Indeed, DFI and TDFII real-851

izations present less nodes to check any overflow than that of DFII realization,852

which represents less quantization operations performed during computations.853

As a consequence, DFII realization needs to handle with overflows in more than854

one node, which could be by saturation or wrap-around mode. If an over-855

flow is detected during the computation for DFI and TDFII realizations, the856

output is automatically influenced by this overflow, while DFII realization per-857

forms one more step to avoid overflow during the computation (by saturation or858

wrap-around). In our experiments, the overflow is avoided by employing wrap-859

around mode. As a result, for our set of benchmarks (which is very specific for860

our study), DFII realization presented less LCO occurrences in some closed-loop861

systems than that of DFI and TDFII realizations, and then, the results for DFII862

realization are better than that of DFI and TDFII realizations. When we used863

16-bit implementations, our results showed that 72% of our controllers failed for864

the LCO property and we have also noticed that the ones not presenting LCO,865

in 8-bit forms, are the same in 16-bit ones, which means that 8 bits would be866

enough for them. Finally, for 32-bit implementations, 70% of our controllers867

failed for the LCO property and the number of correct DFII realizations in-868

creased,when compared with elements designed with 8 bits (more controllers869

did not present LCO). In particular, we noticed that when changing from DFI870

to DFII (or TDFII), LCO occurrences were not identified in some controllers.871

In addition, when we configured our verification procedures with uncertainty872

of 1.5%, for 16-bit implementations, all controllers presented LCO, according873

to DSVerifier v2.0. We also noticed that controllers H2 and H9 that did not874

present LCO, with 8 bits, are the same as those that did not present LCO in875

16-bit and 32-bit implementations, which means that, for our set of benchmarks,876

the implemented controllers are appropriate to avoid LCO; however, those re-877
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sults are not transposable for all realization forms, because they are very specific878

for DFII and TDFII realizations, no matter the adopted uncertainty level.879
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Figure 16: LCO verification results.

In particular, we have noticed that the closed-loop system H2 presented LCO880

for a 8-bit format and DFI realization, with initial states y−2 = −0.9921875,881

y−1 = −0.9921875, and y0 = −0.21875, while, for DFII and TDFII, it did not882

present LCO. One may notice that the LCO occurrence detected for closed-loop883

system H2 is classified as a granular one, because the difference between the884

maximum (i.e., −0.171875) and minimum (i.e., −0.1875) amplitudes is only in885
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fractional parts, and also due to the constant input, which was 0.375. Fig. 17886

shows the LCO occurrence in closed-loop system H2. As already mentioned, the887

value computed for the constant input was 0.375, which was obtained with a non-888

deterministic approach. Finally, the same closed-loop system (H2) implemented889

in DFII realization form and under the same input is LCO-free, as can be seen890

in Fig. 18.891
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Figure 17: Closed-loop system H2 with LCO violation in DFI realization.
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Figure 18: Closed-loop system H2 without LCO in DFII realization.

In LCO verification, we also noticed that the chosen implementations took892

a reasonable amount of time. Some closed-loop systems are eighth-order ones,893

which means that many non-deterministic initial states are considered and there894

are more arithmetic operations, which consequently increases the model check-895

ing procedures’ computational cost. In fact, LCO verifications tend to take896

longer than stability ones, due to their algorithmic complexity, i.e., a search897

for persistent oscillations in a system’s output, based on combinations of non-898

deterministic constant input, initial states, and oscillation window size. As a899

conclusion, for our set of benchmarks, we have checked that the appropriate im-900

plementation should use DFII realization and 32-bit implementations, in order901

to avoid LCO.902
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5.4.3. Output Quantization Error Occurrence Discussion903

For the quantization error verification (see Fig. 19), we obtained that 47904

implementations (i.e., 41%) did not present quantization error, 13 timed out905

(i.e., 11%), and 54 (i.e., 48%) failed. In fact, Fig. 19 summarizes the obtained906

verification results for the output quantization error property, which shows that907

100% of our controllers did not presented quantization error for DFII realiza-908

tion, with all bits implementation (i.e., 8-bit, 16-bit, and 32-bit) and regarding909

all uncertainty levels, which means that, for our set of benchmarks, the DFII910

realization is the suitable one, in order to avoid output quantization error. In911

addition, when we increased the number of bits from 8 to 16 and 32, our set912

of benchmarks were more susceptible to timeouts, which represented 11% of913

them. The maximum allowed error (Ed) adopted for our set of experiments was914

defined as 0.05, which was chosen according to usual admissible errors in real915

systems.916

Assuming closed-loop system H2, i.e., controller C2, and plant G2, as rep-917

resented in Eqs. (24) and (25), respectively, which are given as918

C2 =
−0.3466796875z + 0.015625

0.5z2 + 0.19921875z
(24)

and919

G2 =
0.1898z + 1.8027e−4

z2 − 0.9012z − 1.0006e−16
(25)

and were implemented with 8 bits (i.e., 1-bit for its integer part and 7-bit for920

its fractional one) and 0% of uncertainty, we were able to notice that, across921

different realizations (i.e., DFI and TDFII), the same closed-loop system pre-922

sented output quantization error violations. In DFII, H2 presented no output923

quantization error violation, which means that implementing it with a DFII924

realization makes output quantization error effects not significantly detectable,925

according to our adopted bounds and experiments. For that specific realization926

(DFII), we noticed that its structure is the most suitable approach, for our set927

of benchmarks; however, other studies in literature concluded that there are928

also fewer output quantization error occurrences for other structures, such as929

cascade and parallel ones [72]. For our set of benchmarks, which is based on930

real system controllers, we have found that DFII realization could be employed931

as a base structure for usual implementations, while possible bit formats would932

then be explored.933

Table 4 shows the output from the output quantization error verification934

for the mentioned experiment, using DFI, while Table 5 shows that in TDFII935

realization. As can be seen for DFI and TDFII, there is presence of quantization936

error in the produced outputs, which means that yfxp(k)-yfloat(k) is larger than937

the maximum error allowed (Ed), i.e., 0.05. The produced error is represented938

in Fig. 20, for DFI, and in Fig. 21, for TDFII.939

In our experiments, as already mentioned, the maximum allowed error Ed940

was defined as 0.05. In practice, it heavily depends on applications; in partic-941

ular, on its specification. In fact, in Table 4 (i.e., results for DFI realization),942

detection occurred when n = 2, which produced error larger than Ed.943

In addition, in Table 5 (i.e., realization results with TDFII ), detection944

occurred when n = 4, which produced error larger than Ed. In fact, as already945

mentioned, when using DFII realization form, closed-loop system H2 does not946
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Figure 19: Output quantization error verification results.

contain quantization error, as can be seen in Table 6, with fixed- and floating-947

point arithmetic.948

Finally, for our set of benchmarks, we can conclude that the appropriate949

implementation to be used is the DFII realization, in order to avoid output950

quantization error.951
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n x(k) yfxp(k) yfloat(k) error

1 -0,718750000000000 0 0 0

2 -1 0,505371093750000 0,498352500000000 0,07001859375000002

3 -0,0937500000000000 0,483253479003906 0,472335492400000 0,0109179866039063

4 -0,523437500000000 -0,154102921485901 -0,154444853591856 0,000341932105955123

5 0,703125000000000 0,425308758392930 0,421537944965139 0,00377081342779090

6 0,648437500000000 -0,676878421247238 -0,671833750666910 -0,00504467058032820

7 -0,242187500000000 -0,169554327637798 -0,159942529134276 -0,00961179850352123

8 0,976562500000000 0,256783917046015 0,251914298183261 0,00486961886275361

9 -0,992187500000000 -0,794520084783600 -0,785050467343139 -0,00946961744046093

10 1 1,03850882218109 1,03125621133320 0,00725261084789342

Table 4: Output samples from the output quantization error verification for the second bench-
mark, in DFI realization.

n x(k) yfxp(k) yfloat(k) error

1 -0,195312500000000 0 0 0

2 0,00781250000000000 0,137329101562500 0,135421875000000 0,00190722656250000

3 -1 -0,0652408599853516 - 0,0654778825000000 0,000237022514648438

4 0,00781250000000000 0,728853851556778 0,719693148128300 0,09016070342847797

5 -0,882812500000000 -0,321451699826866 -0,323421412940240 0,00196971311337346

6 0 0,746538749932370 0,741215043396909 0,00532370653546055

7 0,546875000000000 -0,319204589817332 -0,322917612516065 0,00371302269873258

8 -0,945312500000000 -0,259832191477605 -0,250517956469099 -0,00931423500850548

9 0,984375000000000 0,783259645108439 0,772348093325548 0,0109115517828915

10 0 -1,02764048637048 -1,01980163992963 -0,00783884644085298

Table 5: Output samples from the output quantization error verification for the second bench-
mark, in TDFII realization.
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Figure 20: Closed-loop system H2 with output quantization error in DFI realization.

5.4.4. Verification Efficiency Discussion952

It is important to elaborate on verification efficiency. The mean time (disre-953

garding timeouts) spent for verifying a closed-loop system is around 5.5 hours954

(σ = 2.1h) for stability, 13.5 hours (σ = 2.2h) for LCO, and 14.3 hours955

(σ = 5.3h) for output quantization error.956

One may notice that high standard deviation regarding verification times957

indicate that the time spent in a successful verification is much longer than what958

is necessary to find a violation, i.e., the time spent to achieve a failure result with959
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Figure 21: Closed-loop system H2 with output quantization error in TDFII realization.

n x(k) yfxp(k) yfloat(k) error

1 -0,00781250000000000 0 0 0

2 -0,500000000000000 0,00549316406250000 0,00541687500000000 7,62890625000002e-05

3 -0,0156250000000000 0,349172592163086 0,344277559700000 0,00489503246308592

4 -0,882812500000000 -0,141034215688705 -0,141965200886868 0,000930985198162565

5 -0,109375000000000 0,675330748315901 0,668183208391364 0,00714753992453698

6 -0,773437500000000 -0,214484667310899 -0,217982558176455 0,00349789086555624

7 -0,335937500000000 0,624188346605820 0,619705626729827 0,00448271987599314

8 1 -0,0317874400803984 -0,0381598067892321 0,00637236670883379

9 -1 -0,701206078093594 -0,688653653457898 -0,0125524246356961

10 -0,796875000000000 1,00828362425531 0,998997161683765 0,00928646257154542

Table 6: Output samples from the output quantization error verification for the second bench-
mark, in DFII realization.

a model checking procedure, which was already expected, since CBMC [20] needs960

to explore all paths in C code, in order to conclude that there is no violation.961

In general, the total time spent to find all violations, in our set of benchmarks,962

was 21.9 hours, for stability verification, and 40.4 hours, for LCO verification.963

Regarding output quantization error verification, the total time spent to find964

all violations, in our benchmarks, was 42.8 hours.965

In general, LCO and output quantization error verification times take longer966

than stability ones, as shown in Table 8, due to the fact that the output quanti-967

zation error and LCO algorithms are much more complex and consider all pos-968

sible initial states, constant inputs, and oscillation periods. It is worth noticing969

that some of the benchmarks employed in our verification procedures present970

orders greater than eight; indeed, it is the first time that DSVerifier works with971

verification of such high-order systems [11, 31, 32]. In addition, the output972

quantization error verification presented more timeout events, which represent973

11% of our benchmarks, due to the complexity of the associated algorithm and974

the high-order systems used in our benchmarks.975

Moreover, C code used during our experiments had a size of 13573 lines,976

and we have also recorded the size of SAT/SMT formulae for each benchmark,977

during our experiments, as can be seen in Table 7. In particular, our experiments978

showed that size for SAT/SMT formulae increases if uncertainty is considered979

in verification procedures of closed-loop systems.980
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System Without Uncertainty With Uncertainty

H1 1277244 variables, 4321669 clauses 1727643 variables, 8266646 clauses

H2 1722172 variables, 5241322 clauses 2360240 variables, 11329867 clauses

H3 3253587 variables, 6125808 clauses 5338240 variables, 26248761 clauses

H4 1844814 variables, 7139887 clauses 2895533 variables, 14736433 clauses

H5 2472803 variables, 5962070 clauses 3195781 variables, 14218084 clauses

H6 1856178 variables, 5665784 clauses 2376520 variables, 11391401 clauses

H7 1434076 variables, 5099746 clauses 2627499 variables, 13020009 clauses

H8 1630051 variables, 4656029 clauses 2218405 variables, 10479693 clauses

H9 2764042 variables, 5148166 clauses 3472051 variables, 15715523 clauses

H10 1179154 variables, 4403589 clauses 1714830 variables, 8254551 clauses

H11 1434491 variables, 5240815 clauses 1985506 variables, 9825689 clauses

H12 1831898 variables, 6647088 clauses 2608707 variables, 13128360 clauses

H13 2637406 variables, 8339858 clauses 3257443 variables, 16232626 clauses

H14 3219849 variables, 8736102 clauses 4037904 variables, 20407908 clauses

Table 7: Size of SAT/SMT formulae for each employed benchmark.

One may notice that, although software model checking has been experi-981

encing significant progress in the last two decades, one major bottleneck for its982

practical applications remains being scalability. In particular, BMC is a promis-983

ing approach to check digital control systems [32], but its application for refut-984

ing properties in large instances is still limited by its resource requirements [31].985

That happens when BMC techniques unwind all loops, up to their given max-986

imum bound or completeness threshold [73], which is typically infeasible when987

checking some realistic control systems. In this study, we have proposed an988

encoding approach able to be efficiently handled by underlying SMT solvers,989

e.g., use of Jury’s Criteria for stability check, which does not depend on bound990

k, and fixed-point arithmetic for computation modeling. We have also inves-991

tigated the application of k -induction and abstract interpretation techniques,992

in combination with BMC procedures in previous work [74]; however, we were993

still unable to scale our verification engine to larger instances. Nonetheless, in994

our experiments, an unwinding bound (k) of 10 was enough for finding most995

property violations. In particular, this value was empirically determined, by996

considering different orders and realization forms (e.g., direct and delta) of digi-997

tal controllers. Although this approach is an under-approximation, we have not998

encountered any problems in our benchmarks.999

In order to prove that our controllers are safe for any depth k, we have ap-1000

plied a state-of-the-art k -induction algorithm to both falsify and prove safety1001

properties in digital controllers; however, our experiments were inconclusive,1002

since this k -induction algorithm was unable to prove safety for all reachable1003

states of the controllers, i.e., that procedure did not terminate, possibly due1004

to large a state-space exploration. Indeed, the employed k -induction algorithm1005

was able to find the same property violations (with the respective counterex-1006

amples) as with plain BMC procedure; however, it tends to consume more time1007

and memory. There are verification tools (e.g., Impara [75]) that implement1008

the interpolation and SAT-based model checking approach described by McMil-1009

lan [76], but as we have observed over the last years, in the international software1010

verification competition (SV-COMP), that algorithm does not seem to produce1011

better results, when compared with the k -induction approach. We were able to1012

further investigate a “property-based reachability” (or IC3) procedure for safety1013

verification of digital controllers, but we have not found any software tool that1014
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is publicly available for verifying safety properties in full C programs, via IC3.1015

Uncertainty/Property Stability Limit-Cycle Quantization Error

0.0% 2,3h 16,0h 8,7h

0.5% 6,1h 12,7h 14,9h

1.5% 6,4h 11,8h 19,2h

5.0% 7,1h - -

Table 8: Mean-time results for verification of each uncertainty level.

5.5. On the Validation of DSVerifier’s Results1016

In order to answer RQ2, we have performed validation regarding results1017

produced by DSVerifier v2.0, through reproduction of the counterexamples gen-1018

erated for each failed verification and confirmation of final results. The main1019

purpose of the employed tool, names as DSValidator [65], is to automatically1020

check whether a given counterexample, provided by DSVerifier, is reproducible1021

or irreproducible. Indeed, it is able to reproduce counterexamples generated by1022

DSVerifier, by using typical MATLAB features. As a consequence, it is also suit-1023

able for investigating digital system behavior, when considering implementation1024

and FWL aspects. Thus, DSValidator supports automatic validation of results1025

generated by DSVerifier. In addition, it takes into account implementation1026

aspects, overflow mode (i.e., saturate or wrap-around), and rounding approach1027

(i.e., floor or round). Currently, DSValidator is able to perform counterexample1028

reproducibility for stability, minimum-phase, LCO, output quantization error,1029

and overflow occurrences.1030

In DSValidator, when we employ the counterexample to reproduce the vi-1031

olation that has been found by DSVerifier, we do not undo the discretization1032

on the closed-loop system. In fact, we just take the closed-loop system that1033

was previously discretized, employ the initial states and the inputs provided1034

by the DSVerifier counterexample, and then apply all quantizations and fixed-1035

point operations to compute the outputs by running the scripts inside MATLAB1036

(DSValidator). If the outputs produced via simulation in MATLAB (DSValida-1037

tor) are the same outputs produced by that of DSVerifier, then we can confirm1038

that the result found by DSVerifier is indeed reliable and reproducible. Note1039

that, during this procedure to compute the output in DValidator, we perform1040

the same algorithm employed in DSVerifier, i.e., we apply the same fixed-point1041

representations, realization form, coefficients, and quantization procedure.1042

Property Evaluated Reproducible Irreproducible Execution Time

Stability 110 0 0.50703 s

limit cycle 75 0 0.74359 s

Quantization Error 54 0 0.82934 s

Table 9: Reproducibility results for our set of benchmarks.

According to Table 9, DSVerifier produced 110 stability, 54 output quantiza-1043

tion error, and 75 LCO counterexamples. DSValidator was able to reproduce all1044

DSVerifier’s counterexamples, which suggests that the latter is sound and reli-1045

able. Nonetheless, output quantization error and LCO present high-complexity1046
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counterexamples, due to the enormous amount of states, which are generated to1047

reach a given violation, in closed-loop control systems. Even so, DSValidator is1048

able to quickly reproduce those counterexamples, i.e., in less than one second,1049

since it just replays them with actual inputs and states over actual systems.1050

In addition, controllers that do not present LCO or quantization error, when1051

evaluated by DSVerifier, except for the ones present in the assembled test set,1052

whose results were validated by DSValidator, are not undoubtedly free from1053

violations, due to the depth that we have to employ for any verification, i.e.,1054

k = 10.1055

5.6. Threats to validity1056

Benchmark selection. We reported an assessment of our approaches, over a1057

diverse set of real-world benchmarks. Nevertheless, that set of benchmarks is1058

limited within the scope of this paper and the obtained performance may not1059

be generalized to other groups.1060

Fixed-point implementation and realization. Our experiments were com-1061

posed by different implementations (i.e., 8, 16 and 32 bits) and realizations1062

(i.e., DFI, DFII and TDFII), against four different uncertainty levels (i.e., 0%,1063

0.5%, 1.5% and 5%). The purpose of this set of closed-loop system implementa-1064

tions was to emphasize that DSVerifier v2.0 is able to check digital systems with1065

different fixed-point formats and realizations, while considering uncertainty. In1066

addition, with our results, we have been able to check how those three variables1067

influence closed-loop system performance, regarding sensibility to FWL effects1068

and violations related to LCO, output quantization error, and stability.1069

Noise-free model. DSVerifier does not consider process or sensor noise in its1070

verification model. Nonetheless, noise-rejection ability is a consequence given1071

by Lemma 1fadali, as demonstrated by Fadali [1]. Furthermore, the effect of1072

noise in the output signal’s dynamics can be investigated through DSVerifier,1073

by checking the noise sensitivity transfer function [70].1074

Numerical aspects. One may notice that our experiments performed verifi-1075

cation with plant discrete-models, in order to investigate occurrence of viola-1076

tions, in closed-loop systems. In general, we use high precision for plants, i.e.,1077

floating-point arithmetic; however, FWL effects can still influence them, due to1078

the finite representation models designed for computers. Due to that limitation,1079

if there are small errors during computations, which were caused by FWL ef-1080

fects, our engine does not consider them. Further work includes use of interval1081

arithmetic [77, 78], in order to reduce numerical issues.1082

Correctness of our models. The idea of encoding properties of digital control1083

systems into C programs has already been discussed in our previous work [31,1084

32], i.e., how to convert realization forms into C code, and correctness of such1085

C models is actually a major issue. Consequently, the usefulness of our ap-1086

proach relies on the fact that our C models approximate original behaviours of1087

digital control systems. In that sense, all developed C models were manually1088

verified and exhaustively compared with original digital control systems, in or-1089

der to ensure the same behaviour. One may notice further that behaviors of1090

digital control systems are actually represented in C code, by using realization1091

forms [31] and native C functions (e.g., log, exp, and assert). The soundness1092

proof for those native C functions, which are already supported by ESBMC, can1093

be found in Cordeiro et al. [16]. Although further proofs regarding soundness1094

of C models could be carried out, it represents a hard task, due to unbounded1095
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memory usage (e.g., we do not know, in advance, the number of samples that1096

should be provided to a given digital system).1097

6. Conclusions1098

DSVerifier v2.0 included novel verification methods w.r.t. its previous re-1099

lease, in order to allow engineers to perform closed-loop system verification [11].1100

In particular, DSVerifier v2.0 is now able to consider hardware implementation1101

aspects during verification of fundamental properties of digital control systems,1102

which consists of digital controller and plant modeled by an uncertain discrete1103

transfer function. In this respect, DSVerifier v2.0 is able to check stability and1104

occurrence of LCO in closed-loop systems, by using two loop configurations:1105

series and feedback. It is also able to compute the output of a closed-loop con-1106

trol system, while considering round-off and FWL effects, and compare that1107

with an near-ideal response (i.e., with floating-point arithmetic), in order to1108

check whether output quantization error is within tolerable bounds. Lastly,1109

DSVerifier v2.0 also uses state-of-the-art model checkers as its back-end, whose1110

efficiency and effectiveness were confirmed in recent competitions [28, 79]. Our1111

experimental evaluation suggests that DSVerifier v2.0 can be considered as an1112

automated and reliable verification tool for improving digital control system1113

design, while considering both fragility and robustness aspects, which was not1114

true for previous verification approaches.1115

In addition, we were able to verify, with DSVerifier v2.0, real-world closed-1116

loop systems with high-order, regarding different realizations, implementations,1117

and uncertainty levels. Indeed, for our set of benchmarks, we were able to eval-1118

uate closed-loop systems properties as stability (34.5% stable and 65.5% unsta-1119

ble), output quantization error (41% are quantization-error free, 11% timed out,1120

and 48% failed), and LCO (34% are LCO-free and 66% failed). Verification of1121

closed-loop systems were not previously supported by DSVerifier v1.0 [11], and1122

now DSVerifier v2.0 is able to not only verify previous properties supported for1123

open-loop systems, but also for closed-loop ones, while considering uncertainty.1124

Our experimental results also showed that, when we implement a closed-loop1125

system in DFII realization, output quantization error occurrence is minimized,1126

which means that DFII could be employed as a default structure, in order to1127

avoid quantization error effects. Additionally, we were able to check that even for1128

unstable closed-loop systems, their implementations are still susceptible to FWL1129

effects, i.e., they produce round-offs (limit-cycles) and output quantization error1130

violation. Finally, greater number of bits is also desirable for any representation,1131

because it helps mitigate FWL effects.1132

In future work, DSVerifier will verify non-fragile and robust performance1133

and support a wide range of dynamic systems, in addition to linear and SISO1134

ones (e.g., multiple-input multiple-output and non-linear systems), as well as1135

other types of representation (e.g., state space) and realization forms (e.g., Rho-1136

DFIIT realization form [80]). In addition, reliability of controllers obtained via1137

non-fragile techniques will also be investigated. Thus, the proposed formal ver-1138

ification techniques will be applied to ensure correctness of fault diagnosis and1139

fault tolerant control system design. Note that other features related to process-1140

ing entities and implementation strategies could influence stability, such as cache1141

and pipeline structures, which could be encoded as properties to be checked by1142

DSVerifier and tackled in a more generic evaluation regarding worst-case exe-1143

cution time (WCET) analysis, in addition to FWL effects, but with the goal1144
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of checking closed-loop behavior maintenance. As a result, DSVerifier would1145

be able to check processing capabilities, along with implementation strategies,1146

which could lead to a generic framework for system verification and evaluation.1147

Future versions of DSVerifier will support the linear fractional transform frame-1148

work framework [81], in order to obtain a standard representation of control-loop1149

configurations and uncertainty. Finally, we will also add a fixed-point format1150

check to DSVerifier, with the goal of instantly suggesting representations suit-1151

able to a given system’s coefficient and their inherent dynamic range, which has1152

the potential to shorten the verification effort.1153
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Appendix A1439

Table 10: Set of closed-loop systems (i.e., benchmarks) used in our experimental evaluation.
Here, Cn represents a controller and Gn a plant, regarding a chosen closed-loop system Hn.

Id Closed-Loop system

H1
C1 = 0.00390625z+0.0009765625

0.3134765625z−0.0009765625

G1 = 9.7541e−4

z−0.9512

H2
C2 = −0.3466796875z+0.015625

0.5z2+0.19921875z

G2 = 0.1898z+1.8027e−4

z2−0.9012z−1.0006e−16

H3
C3 = 0.5z3−0.96875z2−0.875z−0.5

0.001190185546875z8+0.0008544921875z7+0.000152587890625z6+0.000335693359375z5

G3 = 0.0001929z+6.814e−9

z8−0.6921z7

H4
C4 = −0.580535888671875z3+0.919769287109375z2+0.11871337890625z−0.951934814453125

0.7188720703125z3−0.38751220703125z2−0.415924072265625z+0.437286376953125

G4 = −0.01285z20.02582z−0.01293

z3−2.99z2+2.983z−0.9929

H5
C5 = −0.0009765625z2

0.76171875z3

G5 = 15.1315z2+17.8600z+17.4549

z3−2.6207z2+2.3586z−0.6570

H6
C6 = −0.96484375z+0.9833984375

0.8896484375z2−0.875z

G6 = 0.2039z+0.2039

z2+1.19999z+1.0

H7
C7 = 0.8359375z2+0.265625z−0.96875

0.9453125z3+0.90625z2−0.15625z−0.123046875

G7 = 1.25e−1z+1.25e−1

z2−2z+1

H8
C8 = −4.656612873077392578125e−10z2+1.0000000004656612873077392578125z−1.0000000004656612873077392578125

z2−0.4656612873077392578125e−9z+0.4656612873077392578125e−9

G8 = 5.0e−5z+5.0e−5

z2−2z+1

H9
C9 = −0.0224609375z3

0.138671875z4

G9 = 0.25z3+0.5z2+0.25z−4.3341e−7

z4+5.9150e−6z3+1.0480e−11z2−4.9349e−63z+7.0168e−225

H10
C10 = 0.0625z

0.517578125z2−0.4990234375z

G10 = 0.0200z−3.8303e−176

z−4.6764e−166

H11
C11 = −4.4366z6+9.177z5−3.6362z4−5.1444z3+5.9167z2−2.2791z+0.31329

−0.23339z5−1.5195z4+0.73999z3+0.51029z2−0.41403z+0.073294

G11 = 0.54869z−0.88674

z2−3.3248z+1.6487
-

H12
C12 = 11.9255z−11.8089

z−1.0729

G12 = 0.01z−0.010101

z2−2.0103z+1.0101

H13
C13 = −2.7056z3+4.9189z2−2.9898z+0.60746

z3−0.24695z2−0.80001z+0.35681

G13 = 0.33528z−0.55879

z2−1.8906z+0.7788

H14
C14 = −45456.4327z7+37928.1361z6+25543.7663z5−38701.0881z4+16110.0087z3−2847.8579z2+182.2326z+0.38487

z70.47737z6−1.4922z5−0.6236z4+0.64615z3+0.10413z2−0.12437z+0.018243

G14 = −0.0001492z3−0.00051649z−7.2373e−5

z4−7.8381z2+2.9258z−0.25393
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