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Abstract
Software product lines (SPLs) are sets of related systems that are built based on reusable
artifacts. They have three elements: a variability model, that has feature declarations and
dependencies among them; implementation artifacts and a configuration knowledge, that
maps features to their implementation. SPLs provide several advantages, like software
quality and reuse improvements, productivity gains and the capacity to customize a system
depending on customers needs. There are several challenges in the SPL development
context. To build customizable software and meet all customer needs, SPLs tend to
increase over time. The larger a SPL becomes, the higher is the complexity to evolve it.
Therefore, it is not trivial to predict which products are affected by a change, specially
in large SPLs. One might need to check if products had their behaviour preserved to
avoid inadvertently affecting existing users in an evolution scenario. In refactoring and
conservative extension scenarios, we can avoid this problem by checking for behavior
preservation, either by testing the generated products or by using formal theories. Product
line refinement theories support that by requiring behavior preservation for all existing
products. This happens in a number of situations, such as code refinements. For instance,
in function renaming transformations, all existing products behave exactly as before the
change, so we can say that this transformation is safe. Another example of SPL refinement
would be changing a feature type from mandatory to optional. In this case, we increase
variability, but preserving all products from the original SPL. Although several evolution
scenarios are safe (or technically refinement), in many others, such as bug fixes or feature
removals, there is a high chance that only some of the products are refined. In these
scenarios, the existing theories would give no support, since we can not assume behaviour
preservation holds for all products. To support developers in these and other non refinement
situations, we define partially safe evolution for product lines, that is formalised through
a theory of partial refinement that helps to precisely understand which products should
not be affected by an evolution scenario. This provides a kind of impact analysis that
could, for example, reduce test effort, since products not affected do not need to be tested.
Additionally, we formally derive a catalog of partial refinement templates that capture
evolution scenarios, and associated preconditions, not covered before. Finally, we evaluate
the proposed templates by analyzing commits from two product line systems (Linux and
Soletta) and we found evidence that those templates could cover a number of practical
evolution scenarios.

Keywords: product line volution. product line maintenance. product line refinement



Resumo
Linhas de produto de software (LPSs) são conjuntos de sistemas relacionados desenvolvidos
a partir de artefatos reusáveis. Há diversas vantagens de se trabalhar com LPS, como
melhorias na qualidade do código e o aumento de reuso, e também ganhos em produtividade
e uma maior customização do software, que se torna configurável para atender aos critérios
dos clientes. Porém, há também muitos desafios. Os sistemas tendem a crescer com o tempo,
o que aumenta a complexidade de evoluir a LPS. Então, a tarefa de descobrir o conjunto de
produtos afetados em uma mudança se torna não trivial, principalmente em LPS maiores.
Os desenvolvedores eventualmente precisam verificar se os produtos existentes preservaram
comportamento para evitar afetar usuários inadvertidamente. Em cenários de refatoração
e extensão conservadora, nós podemos evitar esse problema checando se o comportamento
dos produtos foi preservado através da realização de testes nos produtos gerados, ou ainda
com o uso de teorias formais. De fato, isso acontece em várias situações. Por exemplo,
em cenários de refinamentos de código, como renomeações de funções, todos os produtos
continuam se comportando exatamente da mesma forma, então nós dizemos que esta
evolução é segura. Outro exemplo de refinamento de LPS seria alterar o tipo de uma
feature mandatória para opcional. Neste caso, nós estamos aumentando variabilidade,
mas preservando todos os produtos da LPS original. Apesar de haver um grande número
de cenários de evolução segura (o que tecnicamente, é sinônimo de refinamento), em
outros, como correções de defeitos ou remoções de features, existe uma chance razoável
de apenas alguns produtos serem refinados. Nestes cenários, as teorias existentes não
seriam capazes de dar suporte, já que nem todos os produtos preservam comportamento.
Para dar suporte aos desenvolvedores nestes e em outros cenários de não refinamento, nós
definimos o conceito de evolução parcialmente segura de linhas de produto de software,
que é formalizado através de uma teoria de refinamento parcial, que ajuda a entender
precisamente que produtos não devem ser afetados num cenário de evolução. Com isto, nós
provemos uma espécie de análise de impacto que poderia, por exemplo, reduzir o esforço
envolvido no desenvolvimento de testes, dado que produtos não afetados não precisariam
ser testados. Adicionalmente, nós derivamos formalmente um catálogo de templates de
refinamento parcial que capturam cenários de evolução, e pré-condições associadas, não
cobertos anteriormente. Finalmente, nós avaliamos os templates propostos através de uma
análise de commits de duas LPS (Linux e Soletta) e encontramos evidência de que os
templates poderiam cobrir uma série de cenários práticos de evolução.

Palavras-chave: evolução de linhas de produto. manutenção de linhas de produto. refi-
namento de linhas de produto
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1 INTRODUCTION

Software product lines (SPLs) provide systematic reuse and mass customization
for software related products [CN01, PBvDL05]. This concept brings several advantages,
such as productivity and quality improvements, apart from the capacity to customize a
system based on customers needs. Nevertheless, there several challenges in the product line
development field. Due to requirement changes, they naturally evolve and tend to become
complex to manage. So, developers face the challenge, for example, of not inadvertently
affecting users in an evolution scenario [ABKS13, PBvDL05] by guaranteeing that the
evolution is safe.

This safe evolution concept [NBA+15] is formalized by a refinement notion [BTG12]
that requires every product of the initial product line to have compatible behavior with at
least one product of the newly evolved product line. This is useful to support developers
in a number of evolution scenarios, helping them to make sure that the changes they make
do not have unintended impact. For instance, users might simply need to refactor assets,
or even add optional features, and these are guaranteed not to affect existing products,
provided that certain conditions are observed. The refinement notion and its associated
transformation templates help us to precisely capture those conditions.

Although these notions of product line safe evolution and refinement are useful in
many practical evolution scenarios, they are too demanding for other scenarios because
they require behaviour preservation for all products. Nevertheless, we believe that we could
still support developers even when that does not apply. For example, adding functionality
to an asset changes the behavior of all products that use that asset, so this is often not a
product line refinement. However, the behavior of products that do not use the modified
asset should not be affected. So we could still provide behavior preserving guarantees for a
proper subset of the products in the product line.

This kind of partial guarantee can be useful as an impact analysis for developers to
be aware of which products are affected in an evolution scenario. They could, for instance,
avoid checking behavior preservation of the refined products, focusing only on testing the
new functionality on the subset of products that are impacted by the changes. A notion
of partially safe product line evolution could assist developers by providing this kind of
weaker, but still useful, guarantee that covers common evolution scenarios not supported
by refinement. This partially safe evolution concept can be helpful not only in a practical
product line development context, but also in building tools that support product line
development.

In fact, many evolution scenarios found in practice do not characterize a refinement.
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A bug fix, or changing a top level (child of root) feature from optional to mandatory, for
example, are not refinements because not all original products are refined. More specifically,
in the first situation, products containing the files changed due to the bug fix are not
refined; the other products, however, have the same behavior since they are not changed.
When a feature is transformed from optional to mandatory, products that already had
the changed feature are refined because they will present the same behavior in the new
product line. However, products that did not have the feature do not preserve behavior
because, in the new product line, they will present the extra behavior associated to the
changed feature. Furthermore, Passos et al. [PTD+15] examined commits of the Linux
repository history,1 and found that feature removals, which are not refinements unless
the feature is dead or has void behavior, often occurs. The partially safe evolution notion
can address these cases by requiring refinement for a proper subset of the product line
products. Transformation templates derived from this notion capture the context and
required conditions for a number of scenarios, and precisely provide the subset of refined
products for those cases. For example, in the feature removal scenario, the template could
guarantee that products that did not have the removed feature are refined.

We formalize the partially safe evolution notion in terms of a partial refinement
notion. As discussed, partially safe evolution only requires behavior preservation for a
subset of the existing products in a product line.2 For scenarios where a change is intended
to refine all products, such as changing a feature from mandatory to optional, developers
should rather use the refinement notion [BTG12]. Hence, they might choose to make use of
the partial and refinement notions depending on the situation. Evolution in practice often
interleaves different kinds of changes, ranging from refinement to no refinement scenarios.
So, to support practitioners, we derive a number of properties, including that safe and
partially safe evolution transformations, when applied in different orders, might lead to
the same resulting product line. For example, developers could refine an asset and then
remove a feature, or apply these transformations in the opposite order, and still reach the
same target. In addition, we propose transformation templates representing abstractions
of partial refinement situations encountered in practice. Templates work as a guide for
developers. Instead of reasoning over refinement notions, they can use templates by means
of pattern matching, which can also be tool supported. The partial evolution templates
precisely determine which subset of products is refined for each situation; developers might
even obtain this subset automatically. So our templates effectively provide change impact
analysis.

To evaluate the applicability of our templates, we use the FEVER tool [DvDP16]
to automatically analyze evolution scenarios found among versions 3.11 and 3.16 of the
1 Linux repository is available at http://github.com/torvalds/linux.
2 We use the “partial refinement" term to denote the new refinement notion, which requires refinement

only for a subset of the original products from a product line.

http://github.com/torvalds/linux
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Linux Kernel repository. We also analyse commits from Soletta,3 which is a framework for
making IoT devices. We found, in both projects, a number of instances of the templates in
the commit history of both projects and confirm that they could have been applied, thus
reinforcing the applicability of our templates. We also formalize the concepts and prove
properties and soundness of the templates in the Prototype Verification System (PVS)
theorem prover [OSRSC24].

To summarize, the main contributions of this work are (i) a new concept of partial
product line refinement that covers partially safe evolution scenarios, (ii) a number of
properties to support users not only in partially safe evolution scenarios, but also when
these transformations are combined with safe evolution ones, (iii) a template catalog
that represents partial safe evolution scenarios to guide developers and (iv) evidence of
applicability of our templates, based on an analysis of evolution scenarios of the Linux
and Soletta systems. Part of this work is already published in SPLC’16 [SBT16].

The remainder of this work is organized as follows:

• Chapter 2 provides relevant concepts for the understanding of this work;

• Chapter 3 is the core of this work. It introduces partially safe evolution and its
formalisation;

• Chapter 4 proposes a template catalog, which is a possible applicability of the partial
refinement theory;

• Chapter 5 provides an evaluation of the proposed templates;

• Chapter 6 discusses related work, and presents final remarks and future work.

3 Soletta is available at http://github.com/solettaproject/soletta

http://github.com/solettaproject/soletta
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2 BACKGROUND

In this chapter, we present relevant concepts for the understanding of this work.
In Section 2.1, we define Software Product Lines (SPLs) and their basic structure using
the PVS (Prototype Verification System) notation. We then introduce safe evolution of
product lines in Section 2.2. Finally, we discuss the Linux Kernel notation in Section 2.3.

2.1 Software Product Lines
Software customers have different needs. For this reason, developers need to build

customizable software to avoid the loss of potential customers. There are several strategies
to attend customers needs. A possible approach is to develop each product separately.
This might be the fastest choice, but it can increase maintainability costs, due to code
clones, for example. Alternatively, product line development is a well-established mass
customization and systematic reuse approach, in which large-scale products are built based
on reusable artifacts. [CN01, PBvDL05]. This way, companies improve in quality aspects,
since their software become well-structured and easier to maintain. Apart from this gain,
productivity also increases. Following such strategy, functionalities can be represented as
features, that are units of abstractions for both functional and non-functional requirements.
They are useful to describe points of variability in product line systems. This way, each
customer would choose their features and products automatically built depending on their
specific needs.

For our purposes, product lines are formally represented as a triple: (1) a feature
model that contains features and dependencies among them; (2) an asset mapping, that
contains sets of assets and asset names; (3) a configuration knowledge, that allows features
(or feature expressions) to be related to assets. In the remainder of this section, we introduce
these elements in more detail.

2.1.1 Feature Models

Feature models (FMs) play a key role in SPLs. They are used to manage variability,
particularly in the Feature-Oriented Domain Analysis (FODA) approach [KCH+90]. The
most common notation used is a tree, whose nodes are feature names and the specific
notation to specify relationships among them is observed in Figure 2.1.

In this FM, the Mobile Media feature is called the root feature. Every FM has at
least a root feature, that is present in every product. As is described in Figure 2.1, the
features with a filled circle (Media, Management and Screen Size) are mandatory, and
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Figure 2.1 – Feature model example [NBA+15, FCS+08]

this means that if their parent is selected, they should be automatically selected. In this
case, since their parent is the root feature, they must be present in every product. The
Send Photo and Sorting features are classified as optional features (empty circles). So,
they can be present or not in the products. However, as all the other features, they must
obey the hierarchy imposed by the tree notation. Therefore, we could not select the Send
Photo feature without selecting Management. Features may also be grouped in either or
(filled arc) or alternative (empty arc) groups. Photo and Music compose an or group,
so at least one of them should be selected for products containing Media. In contrast, for
the alternative group containing features 128x149 and 240x320, exactly one must be
selected in products containing the Security feature.

Dependencies among features in a FM are also expressed through the use of cross-
tree constraints (CTC). They are essentially propositional expressions involving features
not directly related in the tree. In Figure 2.1, there is one example of such dependency
between the Send Photo and Photo features. This CTC is needed because the tree structure
is not enough to express this dependency. When interpreting such a FM, one should be
aware that apart from the dependencies expressed in the tree, Send Photo can not be
selected without Photo.

The product generation process begins with a feature selection, called a product
configuration. There are several ways of representing configurations. For the purpose of
this work, a confuguration is defined as a set of feature names, containing the features
that are present in the respective product.

Feature selections can not be arbitrary; they need to obey the FM rules, as
explained in the previous section. For the FM presented in Figure 2.1, these would be
valid configurations:

! {Mobile Media, Media, Photo, Management, Screen Size, 128x149}

! {Mobile Media, Media, Photo, Music, Management, Send Photo, Screen Size,
240x320}
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In contrast, for these configurations below, some rules were not obeyed. In the
first example, the Screen Size feature was not selected. Since its parent, Mobile Media
was selected and the feature is mandatory, it must also be present. In addition, rules
regarding the alternative group were not obeyed, since neither Send Photo nor Sorting
was selected. In the last example, more features were selected. However, from the CTC
we know that Send Photo could not have been selected without Photo. Moreover, both
features from the alternative group were selected and this is also not allowed.

% {Mobile Media, Media, Music, Management}

% {Mobile Media, Media, Music, Management, Send Photo, Screen Size, 128x149,
240x320}

2.1.2 Asset Mappings

When dealing with product lines, apart from FMs, we also have source code. An
Asset Mapping (AM) is a set of mappings from asset names to actual assets. Each asset
name is mapped to one asset only. Assets can be specified in any language, such as
Java, HTML and XML, and have different purposes. A software project may contain test,
requirements, or even configuration assets.

Figure 2.2 – Asset mapping example [NBA+15]

We can observe an example of an AM in Figure 2.2. On the left-hand side, there
are asset names and their respective contents are mapped on the right-hand side. It is
possible to notice that there are two names for the Main.java asset. This is due to the fact
that there could be two versions of a Main asset, for instance, for two alternative features.
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In this case, if one of the features is selected, Main1 would be activated. Otherwise, Main2
is included in the final product.

2.1.3 Configuration Knowledge

As already explained earlier in this section, FMs contain features and dependencies
among them. The implementation is represented as an AM structure, where asset names
are mapped to asset contents. Besides these two elements, it is essential to have a third
structure to relate features to SPL artifacts. This is the main role of the Configuration
Knowledge (CK). The CK is also essential in the products generation process. From a
valid feature selection according to a FM, we process the relations from the CK to obtain
the assets that implement the selected features, and consequently, the final product. The
way in which we process the CK may vary according to the used notation.

Similarly to the other elements of a product line, there are several forms of specifying
CKs. In some notations, they may even be implicit [Bat04, SBB+10]. In such cases, features
are mapped to assets directly by their names. This only works when naming conventions
are well-established in a SPL development context, like, for instance, in Ruby [TH06]
projects. There is also a number of different notations for explicit CKs. In this section, we
present two of them: compositional (Section 2.1.3.1) and transformation (Section 2.1.3.2)
CKs.

2.1.3.1 Compositional

This notion is essentially expressed as relations between feature expressions and
asset names. Here we show an example of a simple CK from the Mobile Media product
line, in Figure 2.3. It is represented as a table. From this figure, we are able to locate
the implementation of a determined feature or set of features. It is possible to conclude
that the asset Common.aj is present in products containing either the Photo or the Music
feature. In contrast, AppMenu.aj is only present in products containing the two features.
Each row from the table in Figure 2.3 corresponds to an item. It is important to mention
that the order of the items does not matter for this type of CK. If we permute the rows
from the table in Figure 2.3, the final result is the same.

The process to generate the product for compositional CKs is straightforward.
Assets are filtered according to feature expressions that match a configuration. If the
expression holds, the assets are included in the final product. Otherwise, they are not
included. For instance, if the configuration contains Photo but does not contain Music,
the final product would have the Common.aj asset. AppMenu.aj, however, would not be
included.



Chapter 2. BACKGROUND 20

Figure 2.3 – Configuration knowledge example [NBA+15]

2.1.3.2 Transformational

Apart from compositional CKs, there are also more powerful representations. One
of them is CKs associating feature expressions with transformations, instead of asset names.
Several types of transformations may be applied. One example is shown in Figure 2.4.
The Mobile Media product line is structured with the use of compositional CKs, so we
created this hypothetical CK by adapting the original one, replacing asset names by
transformations, just for didactic reasons.

Figure 2.4 – Configuration knowledge example with transformations [NBA+15]

There are three types of transformations in Figure 2.4: tag, preprocess and
select. For these CKs, we assume the use of preprocessing directives. So, the assets suffer
a transformation before the final product is created. The use of #ifdef allows only a
part of an asset to be the implementation of a feature, instead of the entire asset. The
preprocessor then decides if the code inside the #ifdef is going to be included or not in
the product. This depends on the tag being activated. In this example, this is associated
to the Photo tag, that is executed when the Photo feature is present on the product
configuration being processed.

class Photo {
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...

#ifdef Photo

...

#endif

...

}

The tag transformation only enables the #ifdef with the respective name, but
the code excerpt is actually included with the use of the preprocess, as can be seen
for the feature Mobile Media. With the use of this transformation, the #ifdef #endif
are removed, since they should not be part of the resulting code. Finally, the select
transformation simply selects the asset as it is and no preprocessing is done. So, the .aj
files are included without any change and the effect of this transformation is is the same
as using a compositional CK.

In summary, this notion gives more flexibility for developers to use variability
mechanisms such as ifdefs. Thus, the product generation process is more complex when
comparing to compositional CKs, where assets do not suffer any transformation. Moreover,
in this notion the order of the elements in the CK matters. For instance, when a preprocess
comes before a tag, it will not make the code fragment inside the #ifdef to be included,
since the tag has not been activated yet. For this reason, the final product depends on the
order applied to process the items in the CK. On the following, we discuss safe evolution
and how it supports developers in a SPL development context.

2.2 Product Line Refinement
Product lines naturally evolve as a consequence of changes performed to their

artifacts. Supporting developers in such situations is still a challenging task. One might not
know if the changes performed affected existing products in an advertent way, that would
mean an impact on the products behaviour. Behaviour-preservation could be desired in
several evolution scenarios, for instance, in a code refinement, such as a method addition
or a function renaming. In both situations, one does not intend to affect the behaviour
of existing products. Developers are often not aware if the changes performed did not
inadvertently affect products. As a consequence, they might need to test the entire product
line after a change.

This problem has already been tackled by establishing the safe evolution concept. A
product line is safely evolved when behaviour-preservation holds for all its existing products.
This idea is formalized through a refinement theory [BTG12], that has been encoded and
proved using the PVS system. Thus, safe evolution technically means refinement. Before
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introducing the refinement concept for product lines, it is essential to understand the
formalization of its three elements.

The Prototype Verification System (PVS) [OSRSC24] provides support for the
mechanization of formal specifications. This involves an integrated environment for the
creation, specification, management and analysis of theories and proofs. With the use of
the PVS specification language, one is able to create theories, which may include a set of
axioms, lemmas, theorems, types and functions, among others.

Theories may be parameterized, and imported to other theories. PVS uninterpeted
types are the ones that do not have a concrete definition; they are just declared but we have
no information about them. When importing theories, one may instantiate uninterpreted
types with concrete definitions. For instance, although we define the CK as an uninterpreted
type in a higher-level theory, we then instantiate it either as a set of items or as a list
of items. In every instantiation, one needs to prove that every assumptions made in the
imported theory also holds for the more concrete theory. Thus, properties valid for an
uninterpreted CK type must also be proved for its instantiations.

The specification language is based on classical, typed higher-order logic. PVS also
comes with a built-in library called Prelude1, which defines a collection of basic theories
about logic, functions, predicates, sets, numbers, and other datatypes.

In this work, we use the PVS theorem prover for formalising the Partially Safe
Evolution concept. Therefore, it is important to briefly review the PVS notation. So, we
show how the product line refinement theory [BTG12] is encoded in PVS, as we built the
partial refinement theory using its concepts.

2.2.1 Feature Models

We define FMs as abstract types. According to the PVS notation, TYPE means a
uninterpreted type. We assume a semantics function J_K for the FM, which yields the set
of all valid configurations for a given FM. We also do not define configurations here, but
they could be a set of feature names, representing the selected features by the user.

Assumption 1 (Feature Model Semantics)

FeatureModel : TY PE

Configuration : TY PE

J_K : FeatureModel→ P [Configuration]

With the semantics notion, we are able to reason over FM equivalence and re-
finement. Two FMs are equivalent, as stated in Definition 1, when they have the same
semantics.
1 http://www.cs.rug.nl/~grl/ar06/prelude.html

http://www.cs.rug.nl/~grl/ar06/prelude.html
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Definition 1 (Feature Model Equivalence)

∼= (fm1, fm2) : bool = Jfm1K = Jfm2K

We define FM refinement in Definition 2. A FM fm2 refines a FM fm1 when the
latter semantics is a subset of the former semantics. So, refinement in the context of FMs
means preserving all existing configurations. We may have possibly new ones, but we
should be able to still generate the initial ones. This happens when, for example, we add
an optional feature to a FM. We still have the initial configurations, but we are able to
generate new ones with the added feature.

Definition 2 (Feature Model Refinement)

v (fm1, fm2) : bool = subset?(Jfm1K, Jfm2K)

We will see later on this chapter that product line refinement does not lead to
feature model refinement. For example, feature renamings are safe evolution scenarios,
and consequently product line refinements, as we do not change the behaviour of any
product; only a feature name is changed. However, according to Definition 2, this type of
scenario is not considered a FM refinement in our concrete FM notions. When we change
a feature name, we are possibly changing configurations, that might be defined as sets of
feature names. So, a number of initial configurations may not be present in the evolved
FM semantics, which means non-refinement.

2.2.2 Asset Mappings

We also rely on a definition of assets. Similarly to the FM, Asset is also an abstract
type. We also assume a refinement function that returns true when the two sets of assets
have compatible behavior. For instance, an asset could be modified with a function
renaming operation. The observable behavior of both assets would be the same, so v
holds for the set containing the initial asset and the set containing its modified version,
respectively. The wf function takes a set of assets, that represent a product, and informs
whether the product is well-formed. This function is not defined, since there could be
several interpretations of well-formedness. For example, one could argue that a product is
well-formed if it is compiling successfully. Alternatively, a valid product could mean that
the program is not raising exceptions to its final user. For this reason, we assume that
there might be a way to determine if a program is well-formed, but we do not present a
definition for it.
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Assumption 2 (Asset refinement)

Asset : TY PE

v: P [Asset],P [Asset]→ bool

wf : P [Asset]→ bool

We assume that the refinement relation v is a preorder. Reflexivity is essential here,
and this is aligned with the idea that refinement means "equal or better". Consequently,
every set of assets needs to refine itself. The fact that two sets of assets are equal imply
that they have the same observable behavior. Thus, it is considered a refinement. As shown
in Axiom 1, transitivity also holds for any set of assets. If a set of assets as is refined by a
set of assets bs and bs is refined by the set cs, cs also refines as.

Axiom 1 (Asset set refinement is a preorder)

∀as : P [Asset] · as v as

∀(as, bs, cs : P [Asset]) · as v bs ∧ bs v cs⇒ as v cs

As we explain in Section 2.1.2, AMs are structures that allow the correlation
between asset names and assets. We rely on a definition of asset names as an uninterpreted
type, as described in Assumption 3. Then, we define the AM type as a mapping between
asset names and assets. Technically, a set is a mapping when asset names map to a single
asset. This is also specified in Assumption 3.

Assumption 3 (Asset mappings)

AssetName : TY PE

mapping(r : F [AssetName, Asset]) : bool =

∀n : AssetName · ∀a, b : Asset · (n, a) ∈ r ∧ (n, b) ∈ r ⇒ a = b

AM :{r : F [AssetName, Asset] | mapping(r)}

Similarly to the FM, we also have a refinement notion for AMs. First, we require
that the AMs have the same domain. Additionally, for every asset found in the initial AM
am1, there needs to be an asset in the evolved AM am2 with the same name, that refines
the initial one. AM refinement holds in several situations, like in a function renaming
scenario. If we rename a function in each initial asset, all of them are refined by the new
ones.
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Definition 3 (Asset mapping refinement)

v (am1, am2) : bool =

(dom(am1) = dom(am2) ∧

(∀an ∈ dom(am1)·

∃a1, a2 · (an, a1) ∈ am1 ∧ (an, a2) ∈ am2 ∧ a1 v a2))

Nevertheless, some scenarios do not represent AM refinement. For example, adding
new assets to an AM is not a refinement, since we are changing the domain in this case,
so the first condition in Definition 3 does not hold. Furthermore, asset name renamings
are also not AM refinements. Although these would not have any impact to the assets
behaviour, at least one of the initial assets would be refined by an asset with a different
name, so instead of having (n, a1) in the initial AM and (n, a2) in the final AM, given
that a1 v a2 we would have (n, a1) and (n′, a2), respectively.

2.2.3 Configuration knowledge

As already mentioned in Section 2.1.3, the CK can have several representations,
like, for example, the compositional (Section 2.1.3.1) and transformations (Section 2.1.3.2)
CK. So, the CK is represented as an uninterpreted type. Similarly to the FM, there is
also a semantics function for the CK, which yields the product given a CK, an asset
mapping and a configuration. We define products as finite sets of assets. Depending on
the language used, the semantics function also may vary. For this reason, we do not give
an interpretation of semantics here.

Assumption 4 (Configuration knowledge Semantics)

CK : TY PE

J_K : CK → AM → Configuration→ F [Asset]

Like the FM, with the CK semantics function we are able reason over CK equivalence.
As stated in Definition 4, two CKs are equivalent whenever they have the same semantics.
This means that the CK evaluation needs to be equal considering any AM and configuration.
As we may consider configurations from a specific FM, we also have a weaker equivalence
notion (Definition 5), which is akin to Definition 4, since it requires the CK evaluation to
be equal only according to configurations from a specific FM.

Definition 4 (Configuration Knowledge Equivalence)
∼= (ck1, ck2) : bool = Jck1K = Jck2K

Definition 5 (Configuration Knowledge Weaker Equivalence)
∼=F (ck1, ck2) : bool =

∀A · ∀c ∈ F · Jck1KA
c = Jck2A

c K
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All relations presented here are pre-orders, which means that they are reflexive and
transitive. It is not intuitive to think in a refinement or equivalence notion that is not a
pre-order, as this allows they to be valid considering the same element and after refining
an element several times, we still need to provide support through transitivity theorems.
We do not present such properties here, but they can be found in previous work [BTG12].

2.2.4 Software Product Line

A software product line is a well-formed triple formed by a FM, an AM and a CK.
We assume that a product line is well-formed, as stated in Definition 6, whenever all valid
products are well-formed. We do not have a concrete definition of product well-formedness,
since this would require us to adopt a particular programming language. So, it can mean
that the product is compiling without errors, for example.

Definition 6 (Software product line)
For a feature model F , an asset mapping A, and a configuration knowledge K, we say
that the tuple (F, A, K) is a product line when, for all c ∈ JF K, wf(JKKA

c )

These concepts just discussed are useful to introduce the notion of safe evolution of
product line, that is formalized through a refinement relation. Definition 7 establishes that
for any product lines L and L′, the latter refines the former when for each configuration c

from the initial product line there is a configuration c′ in L′ so that the product generated
from c in L is refined by the one generated from c′ in L′. Therefore, the central idea
is that the resulting product line might even have more products than before, possibly
implementing new features, as long as current users are not affected, i.e., all existing
products must be refined by new ones.

Definition 7 (Product line refinement)
For arbitrary product lines L = (F, A, K) and L′ = (F ′, A′, K ′), L′ refines L, denoted by
L v L′, whenever

∀c ∈ JF K · ∃c′ ∈ JF ′K · JKKA
c v JK ′KA′

c′ .

Product line refinement holds for several evolution scenarios. For instance, when one
adds an optional feature being able to generate more products than before and preserving
the behaviour of existing products, this is considered to be a refinement. Apart from this
scenario, transforming a feature type from mandatory to optional is also safe evolution,
since the evolved product line has more products than the original one, but behaviour is
preserved for all existing products.

It is important to notice that according to Definition 7, feature names do not matter.
The reason for this is that the refined product can be originated from a configuration c’
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different from the configuration of the original product (c). As a consequence, changing a
feature name is also a product line refinement.

We now relate AM refinement to product refinement. As described in Axiom 2, if
an AM am1 is refined by an AM am2, refinement also holds for products generated based
on both AMs.

Axiom 2 (AM refinement implies product refinement)

∀(am1, am2) : am1 v am2⇒

∀(K : CK, c : Conf) : wf(JKKam1
c )⇒

wf(JKKam2
c ) ∧ JKKam1

c v JKKam2
c

2.2.5 Compositionality

When working in product line development contexts, developers may need to change
only one of the three elements in an evolution scenario. For instance, one could change
only a source code artifact without touching the FM and the CK, or alternatively only add
a feature to the FM. The product line refinement theory also provides compositionality
theorems to support developers in such situations. So, we can be sure that refining a single
element implies refining the entire product line.

As we can see in Theorem 1, one can change a FM F from an initial product line
(F, A, K) obtaining a new FM F ′. So, if this change represent a FM refinement, and the
new product line is well-formed, the evolved product line formed by the new FM and the
existing AM and CK (F ′, A, K) refines the initial product line. Thus, FM refinement leads
to product line refinement.

Theorem 1 (Feature Model Refinement Compositionality)
For product lines L = (F, A, K) and L′ = (F ′, A, K), if F v F ′ and L′ is well-formed,
then L v L′.

Nevertheless, as we mentioned earlier in this section, product line refinement does
not imply FM refinement. This happens in every situation where we preserve existing
products but do not preserve existing configurations. In feature renaming scenarios, for
example, all products have their behaviour preserved, which means product line refinement.
However, configurations possibly change, since we are replacing feature names. So, we do
not generate the existing configurations in the new FM, so this is not a FM refinement.
This situation can also happen when developers remove features which have void behaviour.
In this scenario, we existing users are not affected, as the removed feature does not present
any extra behaviour. So, this characterizes a product line refinement. However, it is also
not a FM refinement, as we are not able to generate configurations with the removed
feature in the evolved FM.
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As Theorem 2 shows, AM refinement also leads to product line refinement. This
is intuitive, since AM refinement requires assets to be refined, we still preserve product
behaviour. Moreover, we can also guarantee that the existing product line remains well-
formed, as we only perform asset refinements.

Theorem 2 (Asset Mapping Refinement Compositionality)
For product lines L = (F, A, K) and L′ = (F, A′, K), if A v A′, then L v L′ and L′ is
well-formed.

In Definition 5, we introduce CK weaker equivalence. One might need to guarantee
that changes to the CK lead to product line refinement. So, as stated in Theorem 3, if a
CK K is equivalent to a CK K ′ according to configurations from the initial FM F , the
resulting product line L′, which is formed by F , A, and K ′, refines the initial one.

Theorem 3 (Configuration Knowledge Weaker Equivalence Compositionality)
For product lines L = (F, A, K) and L′ = (F, A, K ′), if K ∼=F K ′, then L v L′ and L′ is
well-formed.

2.3 Linux Overview
Linux2 is a highly configurable system that runs in several devices (mobile phones,

Desktops, printers, among others) and has more than 10,000 features and 6 million lines
of C code.

In summary, the Linux system has three main elements. Its variability model is
expressed in terms of the Kconfig language. In Kconfig, it is possible to declare features and
dependencies among them. The configuration knowledge is the set of mappings obtained
in Makefiles. Finally, the third part is the implementation. This is analogous to the asset
mapping already introduced in Section 2.1.2, since we have assets and their respective
names. In the remainder of this section, we present each element in more detail.

Kconfig

A Kconfig excerpt example can be found in Listing 2.1. Every declaration in
Kconfig starts with the config word. Then, the feature name is specified, which is
EXYNOS_AUDSS_CLK_CON in this case. Its short description informs that this is a Sam-
sung driver for clock controller support. Features can be of type bool, assuming “Y” or “N”
values depending if they have been selected. Tristate features can assume boolean values
and also “M”, which means that it is present as a dinamically loadable kernel module.
2 Linux is available at http://github.com/torvalds/linux

http://github.com/torvalds/linux
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In Kconfig, it is also possible to establish cross-tree constraints among features.
Developers may use depends on to indicate features that must be activated before,
so EXYNOS_AUDSS_CLK_CON can not be selected if COMMON_CLK_SAMSUNG is not
selected. In other declarations we may find the select keyword to indicate features that
are automatically selected when the current feature is selected. So, it is a dependency
in the opposite direction to depends on. One may set default values as well. In this
case, if ARCH_EXYNOS is selected, the EXYNOS_AUDSS_CLK_CON feature assumes “Y”
by default. Otherwise, it has no default value. The text that comes after the help word
is exhibited when users need more information about the feature.

Listing 2.1 – Excerpt of “linux/drivers/clk/samsung/Kconfig”

c on f i g EXYNOS_AUDSS_CLK_CON
t r i s t a t e " Samsung Exynos AUDSS c lock c o n t r o l l e r support "
depends on COMMON_CLK_SAMSUNG
de f au l t y i f ARCH_EXYNOS
help

Support f o r the Audio Subsystem CLKCON c lock c o n t r o l l e r
pre sent on some Exynos SoC va r i an t s . Choose M or Y here i f
you want to use audio dev i c e s such as I2S , PCM, etc .

The Kconfig notation is different from the tree notation introduced in Section 3.2.2.1.
For example, features in Kconfig are not classified into optional, mandatory, alternative
and or. Every dependency among features is expressed through the depends on and select
statements. So, one could argue that if users are able to select or deselect a feature, it
might be optional. Mandatory features often must appear in every product. If two features
can not be selected at the same time, but exactly one of them should be selected, we
could classify them into alternatives. A similar procedure could be applied to or features.
Nevertheless, this is a challenging task and we are not aware of any tool that classifies
Linux features into these four categories automatically.

Makefiles

The CK is expressed through Makefile mappings in the Linux system. There are
several Makefiles and one might import mappings from another. In these files, features are
mapped to assets. So, the idea is basically the same of the CK notion previously presented
in Section 2.1.3. The Makefile presented in Listing 2.2 has some of the mappings related
to Samsung driver features, and one of them is the mapping of the feature presented in
the Kconfig notation (EXYNOS_AUDSS_CLK_CON ). As we can see, it is mapped to
the clk-exynos-audss.o artifact. In the implementation, we will possibly find a file with the
same name, but with the .c extension instead of .o. This mapping does not necessarily
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mean that this artifact implements exclusively the mapped feature. As we discussed in
Section 2.1.3.2, features may also be implemented with the use of #ifdefs blocks. So, a
single artifact may implement more than one feature. Pre-processing steps guarantee that
products are only generated with the implementation of the selected features and nothing
else.

Listing 2.2 – Excerpt of “linux/drivers/clk/samsung/Makefile”

obj−$ (CONFIG_SOC_EXYNOS5260) += clk−exynos5260 . o
obj−$ (CONFIG_SOC_EXYNOS5410) += clk−exynos5410 . o
obj−$ (CONFIG_SOC_EXYNOS5420) += clk−exynos5420 . o
obj−$ (CONFIG_EXYNOS_ARM64_COMMON_CLK) += clk−exynos5433 . o
obj−$ (CONFIG_SOC_EXYNOS5440) += clk−exynos5440 . o
obj−$ (CONFIG_EXYNOS_AUDSS_CLK_CON) += clk−exynos−audss . o
obj−$ (CONFIG_ARCH_EXYNOS) += clk−exynos−c lkout . o
obj−$ (CONFIG_EXYNOS_ARM64_COMMON_CLK) += clk−exynos7 . o
obj−$ (CONFIG_S3C2410_COMMON_CLK) += clk−s3c2410 . o
obj−$ (CONFIG_S3C2410_COMMON_DCLK) += clk−s3c2410−dc lk . o

Implementation

The main language used in the Linux system is C. As we are using the
EXYNOS_AUDSS_CLK_CON feature as example, we present part of its implementation
in Listing 2.3. We should observe that this code excerpt is inside an ifdef block. So, it is
only included if the CONFIG_PM_SLEEP feature is included. The rest of the code, that
is not presented here but is available on the GitHub repository,3 is not inside any ifdef, so
it is included for every feature mapped to this artifact in Makefiles.

Listing 2.3 – Excerpt of “linux/drivers/clk/samsung/clk-exynos-audss.c”

#i f d e f CONFIG_PM_SLEEP
s t a t i c unsigned long reg_save [ ] [ 2 ] =
{ . . . } ;

s t a t i c i n t exynos_audss_clk_suspend ( s t r u c t dev i ce ∗dev )
{ . . . }

s t a t i c i n t exynos_audss_clk_resume ( s t r u c t dev i ce ∗dev )
{ . . . }
#end i f /∗ CONFIG_PM_SLEEP ∗/

3 http://github.com/torvalds/linux/blob/master/drivers/clk/samsung/
clk-exynos-audss.c

http://github.com/torvalds/linux/blob/master/drivers/clk/samsung/clk-exynos-audss.c
http://github.com/torvalds/linux/blob/master/drivers/clk/samsung/clk-exynos-audss.c
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Product Generation Process

Now, we give an overview of the product generation process for the Linux Kernel
system in Figure 2.5. On the left end of the diagram, we have Kconfig models, Makefiles and
the Implementation structures. First, the Kconfig models are rendered in a configurator,
which is enabled, for instance, by the execution of the make menuconfig command in the
Linux terminal. Then, the user can see which configurations are available and make a valid
selection. A .config file is generated representing the user selection. Features selected have
the “Y” value, and the others have “N” or do not appear.

After these three initial steps, we have a valid configuration. In the fourth step,
the user runs the make command, which initiates the execution of the top Makefile at the
root of the Linux source code tree. So, in Step 5.1, the top Makefile invokes config to read
the .config file. This file is then translated into two other files in Step 5.2. The auto.conf
is useful for make, and autoconf.h is later used by the C pre-processor cpp.

So, depending on the features selected in the .config file, assets are included in the
final product. The top Makefile controls the resident kernel image vmlinux and the kernel
loadable modules. To build vmlinux, Kbuild first builds all the object files stored in core-y,
libs-y, drivers-y, and net-y variables. For example, the EXYNOS_AUDSS_CLK_CON
feature shown would be present in the drivers list if selected by the user. To generate
object files, Kbuild compiles .c files with equal name to the .o files present in Makefiles. In
Step 5.3, Kbuild adds an inclusion directive to autoconf.h in each target source file. This
header file contains macro definitions for the features selected during configuration. It is
encoded as follows: all features in the .config file result in preprocessor symbols with the
same name; tristate features selected as modules are suffixed with _MODULE; macros of
selected Boolean/tristate features are set to 1; integer/string features, if present, lead to
macros whose values match those given during configuration.

Then, all ifdefs are evaluated by the pre-processor and code blocks are included or
not depending on the features selected. Finally, the generated code is compiled by the C
compiler and the object files are linked and merged into a single built-in.o file, which is
then linked into vmlinux by the parent Makefile. Similarly, tristate features set to “M”,
after linkage, result in loadable kernel objects (.ko files).
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Figure 2.5 – Linux Structure Overview (adapted from [PTD+15])
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3 PARTIALLY SAFE EVOLUTION

As we discuss in Chapter 2, the product line refinement theory [BTG12] could
support developers in several situations, such as refactoring a particular class or changing a
feature from mandatory to optional. Nevertheless, developers might need to perform unsafe
changes, for example, when fixing bugs. These scenarios are not entirely safe because it is
desirable that at least some products do not have their behaviour preserved. However, the
evolution might be safe according to a subset of product configurations. Therefore, we call
them partially safe.

The safe evolution concept is not able to support developers in partially safe
scenarios, since it only provides support for cases where all products are refined. In this
chapter, we introduce and formally establish the concept of partially safe evolution for
product lines. First, in Section 3.1, we present a motivating example taken from the Linux
Kernel evolution history. Then, we formalize partially safe evolution through a partial
refinement theory, in Section 3.2. We also explore properties and how partial refinement
relates to refinement. In Section 3.3, we discuss final remarks about our approach.

3.1 Motivating Example
To illustrate a common evolution scenario not covered by the product line refinement

notion, we refer to commit ae3e4c2776 1 of the Linux repository history. It basically consists
of a feature removal scenario. The LEDS_RENESAS_TPU feature represents a LED
driver in the Linux system; this feature was removed because it was superseded by the
preexisting generic PWM_RENESAS_TPU driver. The commit changes are illustrated
in Listings 3.1, 3.2 and 3.3. We use the “−” symbol in each line to indicate that it was
removed from the file.

In Listing 3.1, we observe changes to a Linux Kconfig file,2 which, as discussed in
Section 2.3, models features and their properties, and plays a similar role to variability
models such as feature models. As already explained, statements in Kconfig declare features
by indicating their names, types (in this case, a boolean, so it can assume y or n, depending
on its selection) and relations with other features. In this example, LEDS_RENESAS_TPU
depends on LEDS_CLASS, HAVE_CLK and GPIOLIB. Thus, the former can only be
selected if these three other features are also selected in the product. In terms of feature
1 Feature removal commit http://github.com/torvalds/linux/commit/ae3e4c2776. Lau-

rent Pinchart commited on Jul 16, 2013; version v3.12-rc1.
2 Kconfig language documentation https://www.kernel.org/doc/Documentation/kbuild/

kconfig-language.txt.

http://github.com/torvalds/linux/commit/ae3e4c2776
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
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models, this condition is akin to establishing LEDS_RENESAS_TPU as a descendant of
those features.

Listing 3.1 – Changes made to “drivers/leds/Kconfig”

−c on f i g LEDS_RENESAS_TPU
− bool "LED support f o r Renesas TPU"
− depends on LEDS_CLASS=y && HAVE_CLK && GPIOLIB
− help
− . . .

The LEDS_RENESAS_TPU feature is implemented by the leds-renesas-tpu.o
asset, as we can see in the makefile partially presented in Listing 3.2. These files represent
Linux configuration knowledge, relating feature expressions (presence conditions) to asset
names. This mapping was removed, since the intention was to remove the feature. However,
a feature is only completely removed when its implementation is deleted as well, otherwise
there would be unused assets. Listing 3.3 indicates that this was actually done; we only
show part of the code associated to LEDS_RENESAS_TPU, but the leds-renesas-tpu.c
and leds-renesas-tpu.h files were entirely removed from the repository.

Listing 3.2 – Changes made to “drivers/leds/Makefile ”

−obj−$ (CONFIG_LEDS_RENESAS_TPU) += leds−renesas−tpu . o

Listing 3.3 – Changes made to “drivers/leds/leds-renesas-tpu.c"

−#inc lude <l inux /module . h>
−#inc lude <l inux / i n i t . h>
− . . .
−MODULE_LICENSE( "GPL v2 " ) ;

After these changes, the new product line likely will not have products with be-
havior compatible to products that had feature LEDS_RENESAS_TPU in the original
product line. Unless LEDS_RENESAS_TPU had a void behavior, or side effect free
behavior equivalent to another feature, the evolution will not be safe for products contain-
ing LEDS_RENESAS_TPU in their configuration, unless the PWM_RENESAS_TPU
feature has a compatible behavior with the previous one and the products having the
former also had the latter, but this may not be true. Thus, in the resulting product
line, we likely do not find products that match the behavior of original products with
LEDS_RENESAS_TPU. Consequently, this is not considered a safe evolution scenario;
the existing theory fails to support developers in this case, even though we know that
products that do not have that feature should have the same behavior.
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In fact, this scenario is partially safe considering the product configurations that do
not select LEDS_RENESAS_TPU and thus are not impacted by its removal. Since Linux
users can optionally select LEDS_RENESAS_TPU, there might be a number of products
that do not have it. Supposing that 50% of the products select LEDS_RENESAS_TPU,
we could give guarantee behaviour preservation for half of the products, significantly
benefiting developers, for instance, in productivity, by avoiding these products to be tested.
Moreover, a partially safe evolution concept could also avoid developers to unintentionally
affect products. For instance, in this feature removal scenario, products not containing
LEDS_RENESAS_TPU should not be affected. So, developers would be aware that
artifacts not implementing the removed feature should not be affected. If, by a mistake,
the set of products refined is not the set expected, developers would probably check their
changes and discover possible mistakes.

There are many other kinds of partially safe evolution scenarios, such as asset
additions, where both implementation files and the respective mappings are added to the
product line. In this scenario, products that include the new files likely do not preserve
behavior, but the evolution is still safe when considering products that do not have the
added files. The percentage of refined products tends to increase when the frequency of the
features in configurations implemented by the added assets decreases. If the affected feature
is mandatory, guarantee is limited, since this feature possibly appears in all products (in
this case we would give no guarantee). In contrast, when the changed feature is optional
and directly connected to the root feature, we could guarantee, depending on the situation,
for example, 50% of the products and this percentage tends to increase when the feature
is positioned lower in the tree. Therefore, we believe that one could benefit from partially
safe evolution notion, that is able to handle unsafe evolution scenarios, while still offering
safe evolution guarantees considering a subset of the products.

3.2 Partial Refinement
To handle evolution scenarios such as the one illustrated in the motivating example,

we introduce a theory of partial refinement that formalizes our notion of partially safe
evolution of product lines. Moreover, we also present some properties derived from our
partial refinement definition. Additionaly, we analyze how refinement and partial refinement
operations can be interleaved, which might be often necessary in practice. Although we
specify our theory in PVS, we do not use its syntax here to improve readability.

The partial notion assumes that only some products are refined. So, in Definition 8,
we use S as an index to denote the subset of refined product configurations. More precisely,
for product lines L and L′, and set of configurations S, we say that L′ partially refines L

with respect to S when product configurations from S are valid for both FMs, and product
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refinement holds for all such configurations. The first condition is necessary to guarantee
that all configurations in S are valid according to the respective product lines. Otherwise,
we would not be able to generate valid products.

Definition 8 (Partial product line refinement)
For arbitrary product lines L = (F, A, K) and L′ = (F ′, A′, K ′), and a set of configurations
S, L′ partially refines L for the configurations in S, denoted by L vS L′, whenever

S ⊆ JF K ∧ S ⊆ JF ′K ∧ ∀c ∈ S · JKKA
c v JK ′KA′

c .

With this relation, we can support developers in examples like the one in Section 3.1. We
could simply associate L with the product line before the feature removal, and L′ represents
the resulting product line after removing LEDS_RENESAS_TPU. Thus, S would be the
set of all configurations that do not contain LEDS_RENESAS_TPU. This would include
configurations such as {IMX_WEIM, MV EBU_MBUS, OMAP_OCP2SCP, ...} and
{ADB_IOP, ADB_MACII, PROC_EV ENTS, ...}. Since the only modification is the
feature removal, and we filter the respective changed products by verifying refinement
only for configurations in S, partial refinement holds. Partial refinement would not hold,
for example, if S included configurations containing LEDS_RENESAS_TPU. Hence,
considering that we give guarantees that the other products are refined, developers would
only need to test products that had LEDS_RENESAS_TPU, which could consequently
increase productivity. The previous theory gives no guarantees for this case, so developers
would have no support.

The partial refinement relation is reflexive and transitive, which are essential
conditions to support stepwise partially safe evolution. Theorem 4 establishes that every
product line is partially refined by itself. As required by Definition 8, we need to assure
that S is a subset of the valid configurations generated from the respective product line.

Theorem 4 (Partial product line refinement reflexivity)
For an arbitrary product line L = (F, A, K), and a set of configurations S, if S ⊆ JF K,
then L vS L.

Proof. Let L = (F, A, K) be an arbitrary product line. By Definition 8, we have to prove
that S ⊆ JF K and ∀c ∈ S · JKKA

c v JKKA
c . The first condition is already assumed by the

theorem and the second follows from asset refinement reflexivity (see Axiom 1).

One might want to consecutively perform partial refinement operations, and the
transitivity property guarantees that this is feasible, and that it results in refined products.
However, given that the consecutive partial refinement operations might involve different
subsets of products, we can only guarantee that refinement holds for the intersection of
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the configurations refined in each step. For instance, given a product line L1, one could
first fix a bug, resulting in a product line L2, and then remove a feature, obtaining L3.
Assuming that S and T are the sets of configurations refined in each step, S would be the
set of configurations whose products do not contain the changed files in the bug fix, and
T would be the set of configurations that do not have the removed feature. Assuming that
S and T are different, the resulting product line L3 does not partially refines L1 in terms
of S or T in isolation, because the products refined in the first step are not necessarily
refined in the second step, and vice versa. But L3 partially refines L1 for the configurations
that are in both sets: S ∩ T .

Theorem 5 (Partial product line refinement transitivity)
For arbitrary product lines L1, L2, L3, and set of configurations S and T , if L1 vS L2 and
L2 vT L3, then L1 vS∩T L3.

Proof. Let L1 = (F1, A1, K1), L2 = (F2, A2, K2) and L3 = (F3, A3, K3) be arbitrary
product lines. Assume that L1 vS L2 ∧ L2 vT L3. By Definition 8, this amounts to:

S ⊆ JF1K ∧ S ⊆ JF2K (3.1)

∀c ∈ S · JK1KA1
c v JK2KA2

c (3.2)

T ⊆ JF2K ∧ T ⊆ JF3K (3.3)

∀c ∈ T · JK2KA2
c v JK3KA3

c (3.4)

We then have to prove that

(S ∩ T ) ⊆ JF1K ∧ (S ∩ T ) ⊆ JF3K (3.5)

and
∀c ∈ S ∩ T · JK1KA1

c v JK3KA3
c (3.6)

We can trivially prove Predicate 3.5 by using Predicate 3.1 and Predicate 3.3. To prove
Predicate 3.6, assuming an arbitrary c ∈ S ∩ T , we have to prove that JK1KA1

c v JK3KA3
c .

Properly instantiating c in Predicate 3.2 and Predicate 3.4, we have that JK1KA1
c v JK2KA2

c

and JK2KA2
c v JK3KA3

c . The proof then follows by asset set refinement transitivity (see
Axiom 1).

Note that S and T might be disjoint. For example, let us consider, for simplicity,
a product line with two features A and B only. One could first remove feature A and
then feature B. S in this case would be the set of product configurations that do not have
A, that is the configuration that has just the feature B. In the second transformation,
however, T corresponds to product configurations that do not have B, that is the product
configuration that have A only. So, S and T are disjoint in this case, since they do not
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share any configuration. So, we would not be able to give guarantee for any product. This
may happen in a number of scenarios and we can not avoid this situation, but for others
we still give support after several transformations, specially considering a system like the
Linux Kernel that has thousands of features, it is expected that for most of the possible
evolution scenarios, one could still be supported after performing consecutive partially
safe transformations.

3.2.1 Considerations

To analyse implications of the partial refinement definition, we now discuss two
important aspects of our definition.

3.2.1.1 Feature names matter

We should observe that in Definition 8 the configuration c remains the same for
both the original and refined product lines. Thus, we are not giving guarantees for any
refined product that has a different configuration from the initial one. Consequently, partial
refinement only holds for products containing features whose names remain the same. As
we have previously mentioned in Section 2.1, we define configurations as sets of feature
names. So, a change in a feature name affects configurations containing that name. For
this reason, feature names matter for partial refinement. We can still give guarantees for
the other products that are not affected (in this case, products not containing the renamed
feature). However, we would not be able to give the full guarantee desired according to
Definition 8. So, the refinement notion is more useful in this case, as it gives guarantees
for all products.

A scenario that involves only a change to a feature name would not be a partial
refinement, according to how we formalize it in Definition 8. For instance, consider the
commit 84743ea369 3 extracted from the Linux repository history. The following listings
represent the changes performed in this commit. The lines starting with the + and −
symbols were added and removed, respectively.

Listing 3.4 – Changes made to “drivers/gpio/Kconfig ”

−c on f i g GPIO_LANGWELL
−bool " I n t e l Langwell /Penwell GPIO support "
+con f i g GPIO_INTEL_MID
+ bool " I n t e l Mid GPIO support "

Listing 3.5 – Changes made to “drivers/gpio/Makefile”

−obj−$ (CONFIG_GPIO_LANGWELL) += gpio−l angwe l l . o
3 https://github.com/torvalds/linux/commit/84743ea369

https://github.com/torvalds/linux/commit/84743ea369
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+obj−$ (CONFIG_GPIO_INTEL_MID) += gpio−i n t e l−mid . o

Listing 3.6 – Changes made to “drivers/gpio/gpio-langwell.c →
drivers/gpio/gpio-intel-mid.c "

F i l e renamed without changes .

In this commit, the three parts of the Linux product line are changed. How-
ever, all changes are related to modifying the feature name. The GPIO_LANGWELL

feature was renamed to GPIO_INTEL_MID. Thus, the feature name is changed in
the Kconfig in Listing 3.4. Moreover, a Makefile mapping also needs to be updated, as
shown in Listing 3.5. Finally, the source file name has also been modified, as Listing 3.6
shows. After such changes, configurations containing GPIO_LANGWELL now have
GPIO_INTEL_MID instead.

This scenario could be considered a refinement, since only the feature name has
been changed and all existing products have their behaviour preserved after the change.
Intuitively one would classify it as a partial refinement according to all configurations.
Nevertheless, as stated in Definition 8, we require the evolved product to have the same
configuration of the original one. Therefore, products whose configurations were affected
would not be considered to be refined according to our definition for partial refinement.

To handle feature renaming scenarios, we have an alternative (and more elaborate)
definition for partial refinement, as we discuss in Section 3.2.3. We use Definition 8 as
default for simplicity and avoid confusion, since it is able to deal with any other scenario
except feature renamings.

3.2.1.2 Could S be the emptyset?

As already explained earlier in this section, we define partial refinement as an
indexed relation. The index is a set of configurations S. It is important to notice that
according to Definition 8, we only check refinement for products in the scope of S. This
means that the larger the S, the higher is the number of refined products and stronger the
provided guarantees. Consequently, developers can be better supported, since they would
be aware that there is a significant number of products that are refined, which would avoid
the need for testing.

Nevertheless, developers can always choose a subset of S, given that partial refine-
ment holds for S. This property is formalised in Theorem 6. So, if a product line refines
another in terms of S, this is also true for any subset of S. We try to make S as larger as
possible to potentiate our support, but this does not prevent one from choosing a smaller
subset.
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Theorem 6 (Partial refinement holds for subset)
For arbitrary product lines L and L′, and sets of configurations S and S ′, if L vS L′ and
S ′ ⊆ S, then L vS′ L′.

Proof. For arbitrary product lines L = (F, A, K) and L′ = (F ′, A′, K ′), and sets of
configurations S and S ′, by assuming L vS L′ and S ′ ⊆ S, which amounts to

∀c ∈ S · JKKA
c v JK ′KA′

c (3.7)

and
∀c ∈ S ′ · c ∈ S (3.8)

We then have to prove
∀c ∈ S ′ · JKKA

c v JK ′KA′

c (3.9)

For an arbitrary c in S ′, we have to prove that JKKA
c v JK ′KA′

c . Properly instantiating c

in Predicate 3.8, we have that c ∈ S. So, we can instantiate c in Predicate 3.7 and this
concludes our proof.

It is also the case that, for an empty S, partial refinement trivially holds. However,
this means that we would give no support, because we would guarantee that no products
are refined. Developers might face this situation after applying consecutive transformations
of partial refinement, if the intersection of the products refined in each step is empty (see
Theorem 5). We could also try to provide some guarantee for products that are not in the
scope of S, that constitutes the set of products possibly not refined. However, this would
involve having a partial product refinement notion, and this is not in the scope of this
work. So, for now we only give support for products in the scope of S.

3.2.2 Compositionality

To simplify reasoning about partial refinement, it is important to derive composi-
tionality properties from our definition. These are useful, for example, when product lines
main elements evolve separately to be later integrated to generate products. In this context,
one might need to change a specific artifact, for instance, the FM, without changing the
AM and CK. In this case, instead of using the definition to verify partial refinement after
changes being applied to a specific artifact, we could use a theorem and simply verify that
partial refinement holds. Developers could also modify different product line elements.
We analyze these scenarios and whether such modifications preserve product line partial
refinement. Compositionality theorems are provided in the existing refinement theory
[BTG12], so it would be important to provide the same kind of modular support for partial
refinement too. So, instead of using the definition, one could use the compositionality
theorems provided here.
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3.2.2.1 FM Partial Equivalence

We first analyse the FM. Developers often desire to change feature types and/or
dependencies among them. For example, an optional feature may become mandatory. The
refinement theory already provides support for FM refinement scenarios. According to the
FM refinement notion (Definition 2), a FM refines another when the initial configurations
are still present in the evolved FM. This holds for a number of scenarios, but changing a
feature type from optional to mandatory is not considered a FM refinement. As shown in
Theorem 1, FM refinement implies product line refinement. It is also true that FM refine-
ment implies product line partial refinement (considering S to be all initial configurations),
as we would be able to generate existing products in the new product line. However, we
would like also to address scenarios such as a change in a feature type from optional to
mandatory, that is not a FM refinement. In this case, the FMs may share configurations,
but configurations not containing the affected feature possibly do not exist in the new
product line. Thus, to provide more guarantees, we establish a partial FM equivalence
notion, which allows the initial FM to have configurations not present in the final FM,
differently from the FM equivalence and refinement notions, that require the semantics of
the initial FM to be equal or a subset of the semantics of the final FM [BTG12]. According
to Definition 9, the FMs only have a set of configurations S in common.

Definition 9 (Feature model partial equivalence)
For arbitrary feature models F and F ′, and a set of configurations S, F is equivalent to
F ′ in terms of S, denoted by F ∼=S F ′, whenever

∀c ∈ S · c ∈ JF K ∧ c ∈ JF ′K.

Now, we would be able to support developers when transforming a feature type
from optional to mandatory. Partial equivalence holds, if S is the set of configurations
that already had the changed feature or do not have its parent. We should notice that FM
equivalence and refinement lead to FM partial equivalence, but the opposite does not hold.
As captured in Theorem 7, FM partial equivalence preserves product line partial refinement.
Given a product line L, one can modify only the FM, by possibly adding, removing or
modifying features and dependencies among them, but preserving a set of configurations
S. Whenever only the FM is changed, there is still a partial product line refinement with
respect to the same S. Since a product line by definition is well-formed [BTG12], we know
that L is well-formed. However, we have no guarantee about L′, more precisely, whether
configurations that are in F ′ but are not in S lead to valid products. In exceptional cases,
these could refer to features that are not in F ′ or do not obey rules, such as having
a feature without having its parent. This is the reason for requiring well-formedness.
Refinement holds because we are not checking products whose configurations are not in
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S. Moreover, the weaker FM equivalence guarantees that S is in both FMs. Neither the
AM nor the CK change. Therefore, we actually have exactly the same products if only
checking configurations from S.

Theorem 7 (Feature partial equivalence compositionality)
For a product line L = (F, A, K), a feature model F ′, and a set of configurations S, let
L′ = (F ′, A, K). If F ∼=S F ′ and L′ is well-formed, then L vS L′.

Proof. For an arbitrary product line L = (F, A, K), a FM F ′ and a set of configurations
S, assume that F ∼=S F ′. By Definition 9, this amounts to:

∀c ∈ S · c ∈ JF K ∧ c ∈ JF ′K (3.10)

By Definition 8 we then need to prove that

S ⊆ JF K ∧ S ⊆ JF ′K (3.11)

and
∀c ∈ S · JKKA

c v JKKA
c (3.12)

and
wfPL(L′) (3.13)

We can prove Predicate 3.11 directly from Predicate 3.10 and Predicate 3.13 is assumed in
the theorem. Finally, Predicate 3.12 is trivially true from asset set refinement reflexivitiy
(see Axiom 1).

3.2.2.2 AM Partial Refinement

Similarly to the FM, the AM may also be modified separately. Previous work
shows that the source code is modified in a higher frequency when compared to the FM
or CK [DVDP14]. Some of these changes may be unsafe, like bug fix scenarios. In these
cases, one not necessarily modifies the FM and the CK. The existing AM refinement
compositionality (see Theorem 8) theorem would not be helpful in this case because it
requires all assets from the initial AM to be refined by the evolved ones, that is not true
in bug fix scenarios. For this reason, we also define partial refinement for the AM. As
stated in Definition 10, an AM partially refines another when, for a finite set of names,
refinement holds. More specifically, the AM resultant from filtering the original AM A

according to a set of asset names ns (that is formalised as A / ns, which expands to
{(n : Name, a : Asset)|(n, a) ∈ A∧n ∈ ns}.) needs to be entirely refined (see Definition 3)
by the AM obtained by filtering the new AM A′ according to ns. In the case of bug fix
scenarios, the new AM would refine the original one according to the assets not affected
by the change.



Chapter 3. PARTIALLY SAFE EVOLUTION 43

Definition 10 (AM Partial Refinement)
For arbitrary asset mappings A and A′, and a set of asset names ns, A′ partially refines A

in terms of ns, denoted by A vns A′, whenever

(A / ns) v (A′ / ns),

AM partial refinement implies product line partial refinement, since products not containing
any asset name in ns are not affected. As a product is represented as a set of assets only,
we need to discover which products have assets whose names are in ns to precisely express
the set of products refined after a change in an AM. Thus, in this context, we assume an
evaluation function L_M. This function could be seen as part of the CK semantics function,
but instead of returning a set of assets, it returns assets and their names in the form of
an AM (the submapping of the original AM containing only the assets used to build the
product). This way, we are able to maintain the mapping and check if a product has an
asset associated with a specific name in the AM.

Assumption 5 (Configuration knowledge evaluation)

L_M : CK → AM → Configuration→ AM

The CK semantics function is then defined using the just defined evaluation function,
as seen in Definition 11. The result of the semantics function is just collecting the assets
in the resulting AM from the evaluation function, and ignoring their names. We use A〈_〉
to denote the relational image of an AM A. We are assuming that the evaluation function
is responsible for the other steps in the product generation process.

Definition 11 (Configuration Knowledge Semantics)
Let L = (F, A, K) be a product line. Then JK : CKK : F [Asset] = LKMA

c < dom(LKMA
c ) >

We do not desire an arbitrary evaluation function. It needs to obey some rules to
avoid abnormalities. For this reason, we created axioms to guarantee that it is defined as we
expect. They were derived as part of the compositionality proof. So, if they were not valid,
compositionality theorems would not hold, and moreover, we could have abnormalities
such as changing an asset name during the product generation process. Axiom 3 states
that if the asset names of a determined product, which is the result of applying the CK
semantics function, belong to a set of names ns, the result of the CK evaluation should be
the same using the entire AM or the filtered AM according to ns. The reasoning is that if
the other names are not present in the respective product, they can be discarded.

Axiom 3 (Unused assets do not influence CK semantics)
For an arbitrary AM A, a CK K, a finite set of asset names ns and a configuration c, if
dom(LKMA

c ) ⊆ ns, then JKKA
c = JKKA/ns

c
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It is also essential to guarantee that the resulting asset names from the generated
products belong to the original asset mapping of the product line. Otherwise, we could
have assets from other product lines, which does not make sense. For this reason, we
formalize this in Axiom 4.

Axiom 4 (CK evaluation must preserve AM domain)
For arbitrary AM A, CK K, configuration c, dom(LKMA

c ) ⊆ dom(A)

The third constraint is established in Axiom 5. It is related to Axiom 4. The
evaluation function not only is forbidden to create new asset names, but for asset mappings
with equal domain, the resulting domain after applying the evaluation function also needs
to be equal. So, the evaluation function preserves equality over AM domain. We need
both axioms because one does not exclude the other and we do not concretely define
an evaluation function in this theory, since its definition depends on the CK structure,
which is undefined at this theory level because we are assuming the CK as defined in
Section 2.2.3. So, the CK to is an uninterpreted type, and its evaluation is generic here.

Axiom 5 (Evaluation preserves equality over AM domain)
For arbitrary AMs A and A′, CK K, and configuration c, if dom(A) = dom(A′), then
dom(LKMA

c ) = dom(LKMA′
c ).

The three axioms just introduced are essential to avoid an arbitrary evaluation
function, and they do not restrict the applicability of our theory, that is compatible with
every notion that obeys these constraints. To guarantee that both compositional and
transformational CKs satisfy these axioms, we instantiate this theory using both CK
notions and prove them. The axioms are also important for stating and proving the AM
compositionality theorem. We also found that all product line evolution scenarios analysed,
which are detailed in Chapter 5 obey the three axioms. This confirms our intuition that
they are reasonable to be assumed.

According to Theorem 8, partial AM refinement implies partial product line
refinement. We calculate the set of configurations S for these situations based on the
AM commonalities and differences. Configurations from S must not generate products
containing the names that are not in ns, since as already discussed earlier in this section,
these products are not refined. So, partial refinement does not hold for them. Alternatively,
configurations that lead to products containing assets in the scope of ns are refined. To
define S, we use a restriction operator � that takes the three elements of a product line (F ,
A, K) and a finite set of asset names ns. It then returns configurations whose products have
only assets that are in ns, which is given by the set {c : Conf | c ∈ JF K∧dom(LKMA

c ) ⊆ ns}.
However, it is not enough to filter configurations considering the original AM, since A

and A′ may be different. So, we need to define S as the intersection of filtering both AMs
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according to ns (which is given by ((F, A, K) � ns) ∩ ((F, A′, K) � ns)), unless we knew
that A and A′ have the same domain, but we do not assume this condition.

Theorem 8 (Asset mapping partial refinement compositionality)
For product lines L = (F, A, K) and L′ = (F, A′K), and a finite set of asset names ns, if
A vns A′ then L vS L′, where S = ((F, A, K) � ns) ∩ ((F, A′, K) � ns).

Proof. For an arbitrary PL L = (F, A, K), an AM A′ and a finite set of asset names ns. We
have to prove that L vS L′, where L′ = (F, A′, K) and S = ((F, A, K) � ns)∩ ((F, A′, K) �
ns). According to Definition 8, L vS L′ expands to

S ⊆ JF K ∧ ∀c ∈ S · JKKA
c v JKKA′

c (3.14)

It is trivially true that S ⊆ JF K, since this is expressed in the definition of S. So, then we
need to prove that, for an arbitrary c in S, JKKA

c v JKKA′
c . By properly instantiating K,

A, ns, and c in Axiom 3, we have that JKKA
c = JKKA/ns

c . The condition dom(LKMA
c ) ⊆ ns

is satisfied due to S definition. Using Axiom 3 again, properly instantiated with K, A′, ns,
and c, we also have JKKA′

c = JKKA′/ns
c . By replacing this in Predicate 3.14, we then need

to prove that JKKA/ns
c v JKKA′/ns

c . Using Definition 10, we have that (A / ns) v (A′ / ns).

From Axiom 2, we have that ∀am1, am2 · am1 v am2 ⇒ ∀K, c · wf(JKKam1
c ) ⇒

wf(JKKam2
c ) ∧ JKKam1

c v JKKam2
c . Instantiating this equation with am1 = A / ns and

am2 = A′/ns, the first condition holds because (F, A, K) is a product line, and by definition,
every product line is well-formed. So, this is enough to prove that JKKA/ns

c v JKKA′/ns
c .

Although we do not use Axiom 4 and Axiom 5 in this proof, they are used in a
similar compositionality theorem in our online appendix4 and also in the Change asset
template, which will be discussed in Chapter 4.

3.2.2.3 CK Partial Equivalence

Now, we analyse scenarios where the CK structure is changed in isolation and
how this impacts the entire product line. Developers may need to modify the CK only
and it is important to support them in these situations not only with our definition of
partial refinement, but also with a CK partial equivalence notion. An example of such
scenario would be adding a mapping between existing features and artifacts, assuming a
compositional CK (see Section 3.2.2.3). In this case, the FM and the AM do not suffer any
change. Only the CK is modified. There are other several possible modifications: deleting
mappings, or even changing existing mappings in only one of the sides, either a feature
expression or the respective assets.
4 All PVS files and proofs are available at http://github.com/spgroup/

theory-pl-refinement/tree/dev.

http://github.com/spgroup/theory-pl-refinement/tree/dev
http://github.com/spgroup/theory-pl-refinement/tree/dev
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To address this and other evolution scenarios, we formalise a partial equivalence
notion to represent partial refinement changes regarding the CK only. Notions to deal with
refinement scenarios have already been proposed [BTG12]. However, most of the possible
changes involving the CK are not refinements. Definition 12 generalizes all possible changes
in the CK. We state that for a set of configurations S the respective products generated
with the original and final CKs are equal. If the CKs are equivalent, S could be equal to
the semantics of the FM, that is, the set of all valid configurations. In contrast, if the CKs
are completely different, S would be empty, which is not desired becaused this would give
no support.

Definition 12 (Configuration knowledge partial equivalence)
For arbitrary CKs K and K ′, and a set of configurations S, K is equivalent to K ′ in terms
of S, denoted by K ∼=S K ′, whenever

∀am, c ∈ S · JKKam
c = JK ′Kam

c

Configuration Knowledge partial equivalence implies product line partial refinement.
This is shown in the compositionality theorem (Theorem 9). Basically, considering an
arbitrary product line L, let us suppose that a change is made to the CK of L but
preserving the set of configurations S. We then obtain L′, and we can say that L′ partially
refines L according to S as long as S is a subset of the valid configurations generated
from the FM of L. Just to give an example, considering that we obtain K ′ by removing a
mapping from a hypothetical feature P to an asset a present in K. In this case, S would
be the set of configurations present in F that do not have P . Products containing P might
not be refined, since they will not have the asset a as before. So, configurations containing
P can not be included in S. Since K is equivalent to K ′ according to S and S is a subset
of F configurations, L′ refines L according to the same S.

Theorem 9 (Configuration knowledge partial equivalence compositionality)
For a product line L = (F, A, K), a CK K ′, and a set of configurations S, let L′ = (F, A, K ′).
If K ∼=S K ′, S ⊆ JF K and L′ is well-formed, then L vS L′.

Proof. For an arbitrary product line L = (F, A, K), a CK K ′ and a set of configurations
S, assume that K ∼=S K ′ and S ⊆ JF K. By Definition 5, this amounts to:

∀am, c ∈ S · JKKam
c = JK ′Kam

c (3.15)

By Definition 8 we then need to prove that

S ⊆ JF K (3.16)

and
∀c ∈ S · JKKA

c v JK ′KA
c (3.17)
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We are already assuming Predicate 3.11. So, for an arbitrary c in S, we need to proveJKKA
c v

JK ′KA
c . By properly instantiating am and c in Predicate 3.15 with A and c, we have

JKKA
c = JK ′KA

c . So, we can replace JK ′KA
c by JKKA

c and the proof follows from asset set
refinement reflexivitiy (see Axiom 1).

3.2.3 Combining different refinement and partial refinement notions

We also reason about compositionality in terms of combining different refinement
notions, since the theories are not mutually exclusive; they are complementary. Thus,
practitioners may desire to interleave refinement and partial refinement operations. For
improvements or adding new features with behavior preservation, one can use the refinement
theory. After that, developers may need to remove another feature, such as the feature
removal scenario illustrated in Section 3.1. For these cases, the partial refinement notion
should be used. Hence, the theories might be used interchangeably and we need to provide
support in the sense that, when applying consecutive transformations, refinement still
holds for a subset of products.

Refinement and partial refinement

When a partial refinement over S is followed by a refinement, we would ideally
have partial refinement for products in S by transitivity. This is not possible because, in
the refinement transformation, feature names do not matter, differently from the partial
refinement notion. In fact, as Definition 7 admits configurations to change, even when S is
equal to the set of all valid configurations, refinement is not necessarily a particular case
of partial refinement.

To support interleaving of safe and unsafe changes, Definition 13 describes an
alternative partial refinement notion that allows configurations to change according to
a renaming function f . Then, given an initial configuration c, refinement holds for the
product generated from f(c). In a feature renaming situation, supposing that we change
the feature name from P to P ′, f would be defined as f(c) = c[P ′/P ]. This function takes
a configuration c and returns c if c does not have the feature P . Otherwise, it gives a new
configuration c′ as result, that is equal to c, except that every occurrence of P is replaced
by P ′.

Definition 13 (Weak partial refinement)
For arbitrary product lines L = (F, A, K), L′ = (F ′, A′, K ′) and a function f : Conf →
Conf , L′ partially refines L in terms of f , denoted by L vf L′, whenever

∀c ∈ dom(f) · f(c) ∈ JF ′K ∧ JKKA
c v JK ′KA′

f(c).
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The partial refinement notion is a particular case of Definition 13 (when f is the
identity function over S). Thus, this weak notion supports situations where configurations
change, which are not covered by the default partial product line refinement notion
(Definition 8). Since the weak definition is more general, we could have it instead of having
both partial refinement relations. However, Definition 8 is less complex and developers
only need to deal with the alternative one for feature renaming scenarios.

We have a function f as an index because allowing configurations to be arbitrarily
modified having a set of configurations S as an index would lead to relations that are not
transitive. Transitivity does not hold for such a definition because we have no control of the
new configurations; they could be arbitrary. Thus, when applying consecutive refinements,
we would not know if the refined configurations were the same as the ones refined in the
first step. Hence, even assuming two refinement operations in terms of the same S, the
transitivity does not hold for S. We desire to have a partial refinement relation that is a
pre-order, since this considerably increases its applicability.

Similarly to Definition 7, this relation is also a pre-order, as we should support
developers in the step by step refinement. In Theorems 10 and 11, we formalise the
reflexivity and transitivity properties. A product line partially refines itself, according to
Definition 13, when the function f is an identity. Otherwise, it makes no sense to compare
different products in the same product line.

Theorem 10 (Weak partial refinement reflexivity)
For an arbitrary product line L = (F, A, K), and a function f : Conf → Conf , if f is the
identity function and dom(f) ⊆ JF K, then L vf L.

Proof. Let L = (F, A, K) be an arbitrary product line. By Definition 13, we have to prove
that, for an arbitrary c in dom(f), JKKA

c v JKKA
f(c). Since f is the identity function, we

can replace f(c) follows from asset refinement reflexivity (see Axiom 1).

For the transitivity property, the reasoning is similar to Theorem 5. Instead of
giving refinement guarantees for the intersection of the two sets of configurations, we
compose the two functions defined for each evolution step. So, suppose that we first refine
a product configuration c1 according to a function f resulting in c2, and then another
transformation is made to c2 and we obtain c3 by applying a function g. So, the product
generated with c3 refines the one obtained from c1 in terms of the composite function gof .

Theorem 11 (Weak partial refinement transitivity)
For arbitrary product lines L1, L2, L3, and functions f : Conf → Conf and g : Conf →
Conf , if L1 vf L2 and L2 vg L3, then L1 vgof L3.
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Proof. Let L1 = (F1, A1, K1), L2 = (F2, A2, K2) and L3 = (F3, A3, K3) be arbitrary
product lines. Assume that L1 vf L2 ∧ L2 vg L3. By Definition 13, this amounts to:

∀c ∈ dom(f) · JK1KA1
c v JK2KA2

f(c) (3.18)

∀c ∈ dom(g) · JK2KA2
c v JK3KA3

g(c) (3.19)

We then have to prove that

∀c ∈ dom(gof) · JK1KA1
c v JK3KA3

g(f(c)) (3.20)

For an arbitrary c ∈ dom(gof), we need to prove that JK1KA1
c v JK3KA3

g(f(c)). Since the
domain of gof is equal to f domain, we can instantiate c in Predicate 3.18. We then have
JK1KA1

c v JK2KA2
f(c). Properly instantiating c in Predicate 3.19 with f(c), we then have

JK2KA2
f (c) v JK3KA3

g(f(c)). The proof then follows by asset set refinement transitivity (see
Axiom 1).

When one applies a partial refinement followed by a refinement, we have a weak
partial refinement. A possible scenario of such situation is found, for instance, when one
renames a feature, and then changes an asset in a non behavior-preserving way. Since not
all products are refined because of the asset change operation, the domain of the function
is only the set of configurations whose products do not have the changed asset. Suppose
that feature P was renamed to P ′, L is the product line before these two operations and
L′ is the final product line, we then guarantee that L vf L′. The function f in this case
would also be defined as f(c) = c[P ′/P ], since in the asset change operation configurations
were not changed. This notion is formalized in Theorem 12. When partial refinement is
followed by refinement, there is a function that maps configurations from S to the final
product line, so that weaker partial refinement holds.

Theorem 12 (Partial refinement and refinement)
For product lines L1, L2 and L3 and a set of configurations S, let F3 be the FM of L3. If
L1 vS L2 and L2 v L3, then, for some function f : S → JF3K, L1 vf L3.

Intuitively, this theorem is valid because there is always a function which maps
configurations from the initial to the product line. When a refinement (Definition 7) occurs,
we can derive a function that maps configurations. So, in this case we could say that there
is a function g : JF2K → JF3K that maps configurations from L2 to L3. In the first case,
when we have a partial refinement (Definition 8), we require that configurations do not
change, differently from Definition 13. So, we can derive an identity function I : S → JF2K,
since the initial configuration is equal to the final one. Thus, f : [S → JF3K] in Theorem 12
would be the composition of g with the identity function I. Product refinement then holds
by transitivity.

If the operations are conducted in the opposite order (refinement followed by partial
refinement), the reasoning and end result are analogous, so we omit the details here.
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Name aware refinement and partial refinement

Although the refinement and partial refinement correspondence is indirect, there
is another definition for product line refinement that has basically the same meaning
of Definition 7, but it does not allow changing the configurations. Consequently, this
definition supports less scenarios when compared to Definition 7. Feature renaming, for
instance, is not a refinement according to this notion. Since configurations are usually
sets of feature names, when changing such names, configurations containing them are
impacted.

Definition 14 (Name aware product line refinement)
For arbitrary product lines L = (F, A, K) and L′ = (F ′, A′, K ′), L′ strictly refines L,
denoted by L � L′, whenever

∀c ∈ JF K · c ∈ JF ′K ∧ JKKA
c v JK ′KA′

c .

Previous work has shown that this relation has similar properties to the refinement
relation, like pre-order [BTG12]. Differently from product line refinement (Definition 7),
this notion from Definition 14 is similar to the partial refinement notion (Definition 8).
Since it does not allow any change in configurations, we can then establish a more direct
relationship. For product lines L and L′, name aware refinement implies partial refinement,
provided that the set of configurations S is present in L. As a consequence, by transitivity,
when a partial refinement is followed by a name aware refinement, this results in a partial
refinement, as shown in Theorem 13. If the refinements are performed in the opposite
order, the result is also a partial refinement.

Theorem 13 (Partial and stronger refinement)
For product lines L1, L2 and L3 and set of configurations S, if L1 vS L2 and L2 � L3,
then L1 vS L3.

Commutativity of name aware refinement and partial refinement

Finally, we also reason whether the name aware refinement and partial refinement
transformations lead to the same product line when applied in different orders, and we
demonstrate that this property holds. For instance, given a product line L1, suppose
that a developer performs a name aware refinement, such as locally refactoring an asset,
obtaining L3 and then partially refines the product line by removing a feature, obtaining
L4. Figure 3.1 represents a commutative diagram that shows that if we instead first apply
this same partial refinement operation (yielding L2) and then refine the asset, we obtain
the same L4. Thus, in this case, the order in which the transformations are applied does
not matter.
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Figure 3.1 – Commutative diagram

Properties like this one reflect what happens during development, where practi-
tioners might want to apply several different operations consecutively and it is helpful to
be sure that applying refinements in a different order can produce the same result. We
formally derive and prove two theorems from the commutative diagram structure shown
in Figure 3.1. Although we do not present the proofs here, they are available in our online
appendix.

In Theorem 14, we give support in case developers are doing first a partial refinement
and then a name aware refinement. The theorem establishes that there is an alternative
way to obtain the same resulting product line, by performing the corresponding operations
in the opposite order. Theorem 15 is analogous. This theorem has an extra condition
when compared to the first one. This property only holds if S is a subset of the valid
configurations generated by the initial product line L1. This condition is necessary, as
otherwise we could have invalid products, since invalid configurations may not obey
dependency rules among features. Thus, it does not make sense to refine a product line in
terms of an S that is not part of the product line configurations.

Theorem 14 (Partial refinement and name aware refinement commute (1))
For product lines L1, L2 and L4, and a set of configurations S, if L1 vS L2 and L2 � L4,
then, for some product line L3, we have L1 � L3 ∧ L3 vS L4.

Theorem 15 (Partial refinement and name aware refinement commute (2))
For product lines L1, L3, L4 and a set of configurations S. Let F1 be the FM of L1. If S ⊆
JF1K, L1 � L3 and L3 vS L4, then, for some product line L2, we have L1 vS L2 ∧L2 � L4.

3.3 Discussion
In the previous section, we provide a correspondence between the partial refinement

and stronger refinement relations, through a commutative diagram illustrated in Figure 3.1.
We believe that the diagram also holds if we replace � by v. Nevertheless, we do not
formalize the partial refinement and refinement commutativity in this sense. To prove
the correspondent theorems, we would possibly need to enrich our theory, where instead
of having only relations connecting product lines, we would also have transformation
operations expressing how product lines change. Instead of considering just sets of product
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lines, our encoding would have also to consider sets of transformations or changes among
product lines. The proof would then be made by induction over the set of possible
transformations.

As mentioned in Section 3.2.3, the partial refinement relation is far less similar to
the product line refinement notion than to the stronger one, because only the second one
allows changes in configurations, whereas the others do not. Thus, the proof regarding
the commutative property relating the refinement and partial definitions would become
more complex and we would need to provide a valid L3 assuming arbitrary L1, L2 and L4

and that L1 vS L2 and L2 v L4. Intuitively, L3 is the result one obtains by applying the
same operation performed in L2 that resulted in L4. To express this formally, however,
we need a function that maps product lines before and after the evolution process, such
that assuming a transformation function t : [PL− > PL] and L4 = t(L2), we can then
instantiate L3 with t(L1). Since we did not formalize this theory yet, we do not have the
commutative diagram (Figure 3.1) using the refinement definition.

3.4 PVS Encoding
To understand how the presented theory is encoded in PVS and relates to the

product line refinement theory, we discuss the impact and the growth of the product line
refinement theory in PVS.5 In Figure 3.2, it is possible to observe the dependencies among
theories and their hierarchy. The new theories that were created due to the inclusion of
partial refinement are highlighted in grey colour. As the partial refimement concept builds
on the existing product line theory and concepts, all assumptions existing there, like asset
set refinement preorder (see Section 2.2), are also required here. On top of that, we have
assumptions specifically to partial refinement, like the axioms presented in Section 3.2.2.2.
We prove all the new properties to guarantee that they are valid and consistent with
the existing theory. In the remainder of this section, we explain each theory in more
detail. Some of them deal with general notions of FM, AM and CK (PartialRefBasics,
PartialRefDefault, PartialRefWeaker, PartialRefinement and PartialAMCompositionality),
and ideally they would be valid with any product line definition that has the three elements.
These five theories have six parameters: FM, Asset, Asset Name and CK types, and also
FM and CK semantics functions. Thus, one can instantiate it with concrete languages for
the three product line elements and implement semantics functions. One needs to provide
concrete notions, and semantics functions for the FM and CK. The other two theories are
specific for compositional and transformational CK respectively.

• PartialRefBasics: in this theory, partial refinement/weaker equivalence notions for
5 All PVS files and proofs are available at http://github.com/spgroup/

theory-pl-refinement/tree/dev.

http://github.com/spgroup/theory-pl-refinement/tree/dev
http://github.com/spgroup/theory-pl-refinement/tree/dev
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the FM, AM and CK are defined. It imports the preexisting refinement theory that
defines these basic types representing the three main elements of the product line.

• PartialRefDefault: this theory contains the main partial refinement definition
(Definition 8). It uses PartialRefBasics, as we analyze whether the transformations
applied to the FM and the CK in separate lead to product line partial refinement.
Furthermore, we also reason about refinement and partial refinement transformations
being applied consecutively. So, theorems like Theorems 14 and 15 are defined in
this theory.

• PartialRefWeaker: this is analogous to PartialRefDefault, but here we are
dealing with the weaker partial refinement notion (Definition 13).

• PartialRefinement: in this theory, we analyse how the definitions presented pre-
viously (default and weaker) relate to each other. Basically, here we establish that
if the function f in the weaker defintion is the identity function, this definition is
equivalent to Definition 8.

• PartialAMCompositionality: as we discussed in Section 3.2.2.2, we assume the
existance of the evaluation function to reason about AM compositionality. For this
reason, this is expressed in a separate theory, as we do not need the evaluation
function for the other concepts. We do not allow the evaluation function to be
arbitrarily defined. As discussed in Section 3.2.2.2, it must obey a set of constraints,
like not generating assets not present in the AM of the product line being evaluated.

• PartialAMRefInstComp: this is an instantiation of PartialAMComposition-
ality, where we deal with the general CK notation introduced in Section 2.2.3. This
theory is essential to certify that assumptions made regarding an arbitrary CK would
be valid for the compositional CK. So, we prove that Axioms 3, 4 and 5 also hold
for compositional CKs.

• PartialAMRefInstTrans: analogous to PartialAMRefInstComp, but deals
with transformational CKs.
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Figure 3.2 – PVS theories hierarchy
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4 PARTIALLY SAFE EVOLUTION TEM-
PLATES

As mentioned in Chapter 3, the partial refinement theory can be applied to
several contexts (possibly even more than the refinement theory). In this chapter, we
exemplify such contexts and define templates that are abstractions of recurrent practical
evolution scenarios. We defined such templates based on preexisting refinement templates
[NBA+15, BTG12], by changing conditions to allow partially safe changes. Templates are
helpful because they provide guidance on how to evolve a product line guaranteeing safe
evolution for a subset of the products. Moreover, developers do not need to understand
the theory for these scenarios; they just need to understand the templates. Templates also
avoid errors during the evolution process and increase developers confidence.

A template has a left-hand side pattern (LHS) and a right-hand side pattern (RHS).
They correspond to abstractions that capture properties of the initial and evolved product
lines, respectively. We make use of meta-variables to represent the initial and evolved
product line elements. In case one follows the syntactic and semantic rules established by
templates, it is guaranteed that partial refinement holds for a specified subset of products
S.

The developer does not choose the value of S; it is defined based on the FM, AM
and CK of the product lines in the templates. Establishing S this way helps to understand
the change impact, since products in the scope of S are not impacted. We should remember
that, as we stated in Theorem 6, product line partial refinement holds for any subset
of S, given that it holds for S. So, one may choose to work with a smaller subset. In
Section 2.1.3, we discuss two notations for the CK structure: compositional and annotative.
In this chapter, we provide a set of templates that are compatible with each of these
notations (Section 4.1 and Section 4.2). Some templates are not included in these two
groups (Section 4.3), since they do not depend on any particular CK notation. In this
case, we assume a more general CK like the one introduced in Section 2.2.3.

4.1 Compositional CK
In this section, we present templates that use the compositional CK notation (see

Section 2.1.3). In this notation, the CK is assumed to be a table-like structure where
there are two columns. The left column has feature expressions and the right column has
asset names. In the following, we analyze a number of possible scenarios of partially safe
evolution.
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Remove feature

We first analyze feature removal situations, which is an usual scenario in a prod-
uct line development context. One often decides to exclude features for diverse reasons
[PTD+15]; for instance, they are no longer used or not needed by customers. We define
the Remove feature template in Figure 4.1. Products that did not have the removed
feature in the original product line keep the same behavior, and the others might not be
refined. In this template, the three product line elements are changed. By syntactically
analyzing the Remove feature template in Figure 4.1, we observe that the initial
FM (F ), has the O feature, which is removed, and consequently, F ′, including cross-tree
constraints, does not have it. We also notice that O is P ’s child. Nothing else is changed
in the FM, which might have other features beyond O and P . We assume that the initial
CK has references to O, so from the LHS to the RHS, every row in the CK (like the one
containing e′ and n′) referencing O is removed. If the CK has no references to O, the
feature could be removed directly but this scenario would be also a product line refinement.
The AM also loses a set of mappings, like a′ which implements O.

Figure 4.1 – Remove feature compositional partial refinement template

The guarantees provided by the template only hold if some conditions are valid.
We need to make sure that when e′ is true, O has been selected, otherwise it would make
no sense to exclude it from the CK. To do so, we require that e′ ⇒ O. Consequently, a′

is removed, since it must be in a product whenever O is selected. We could use simply
O instead of e′, but this would restrict the template applicability. When using e′, we
are allowing any expression where O is true. When a feature is removed, the intuition is
that the products that did not have the respective feature do not change, so behavior is
preserved. The other ones might not be compatible to any product in the new product line
because they lose functionality, unless a′ adds no extra behavior to a product. To specify
S to capture that, we make use of the � operator, which filters configurations from a FM
according to a feature expression. This expression may contain feature names and logical
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operators, such as and, not and or. The expression P ∧Q, for instance, is satisfied by a
configuration c when c has the P and Q features. For an arbitrary FM F and a feature
expression e, we use F � e to denote the set of configurations in JF K that do not satisfy e.
Thus, we specify S as F � O, giving refinement guarantees only for product configurations
that are in F and do not include O. Since we only remove the line containing e′ and n′

from the CK, it is required that O does not appear in e and other CK lines, otherwise the
feature would not be completely removed. Finally, we also need a well-formedness condition
to guarantee that the products not refined (the ones that had O in the initial product
line) remain well-formed. Since we assume that assets are removed from the initial to the
evolved product line, we can not guarantee that existing products remain well-formed,
except those refined.

The Remove feature template does not assume that O is a leaf feature. However,
when O is removed, the subtree under O is also removed according to the template. One
might need to remove O, but keeping its children. So, we would need another template,
which would be a variation of the template illustrated in Figure 4.1, to deal with such
scenario and this is part of our future work.

Strictly, this template does not match the example discussed in Section 3.1, but
it is compatible with a slight variation of the template, where two assets are removed.
To illustrate that, we instantiate the meta-variables for the example. In this case, F is
instantiated with the initial Linux VM containing LEDS_RENESAS_TPU, and F ′ is
the resultant VM without this feature. The initial CK is instantiated with the Linux CK,
including the line shown in Listing 3.2 and the changed CK is the same except for this
mapping. The Linux AM could be represented by mappings between the file names to
their respective contents. Using the feature removal example, n′ would be drivers/leds/leds-
renesas-tpu.c and drivers/leds/leds-renesas-tpu.h, and a′, the respective contents of these
source code files. The other mappings, such as n 7→ a, correspond to other source file
names and the respective contents. The new AM is obtained from the initial by removing
the mapping n′ 7→ a′, which corresponds to the implementation of the removed feature.
It is true that e′ ⇒ O, since e′ is LEDS_RENESAS_TPU. This feature appears only in
e′, since we did not find occurrences of this feature in the remaining items of the CK.
Assuming that the resulting product line is well-formed, all conditions are satisfied. S is F �

LEDS_RENESAS_TPU. Thus, for these configurations the refinement holds. The other
products are not refined since they have the removed feature, thus not preserving behavior.
Differently from product line refinement (Definition 7), that requires every product in the
initial product line to be compatible with at least one product in the new product line,
partial refinement requires refinement for a subset of the initial products. So, in this case,
only products without LEDS_RENESAS_TPU are refined.
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Formalization

All of the templates presented in this chapter were encoded and proved in the PVS
system. However, we do not present all specifications and proofs here, but all PVS files
are available online.1 In this section, to illustrate our formalization approach, we present
the Remove feature template formalisation. To specify partially safe templates, we
follow the same strategy found in previous works [GMB05, BTG12, NBA+15, TABG15].
So, we first define the syntax and conditions predicates to encode the information present
in the template. All syntactic similarities and differences regarding the initial and final
product lines form the syntax predicate. In the Remove feature template, the three
product line elements are presented in detail, so we define syntactic rules for all of them.
Preconditions like well-formedness rules are specified with the conditions predicate.

To specify the syntax predicate, we make use of pre-existing functions defined for
concrete FM and CK. For example, the FM we are dealing with has a set of features and
a set of formulae. So, for the Remove feature template, we state that F ′ (fm2 in
the formalization) formulae are all formulae from F (fm1 in the formalization), except
those that have O. This is formalized as formulae(fm2) = remove(O, formulae(fm1)),
and remove(O, formulae(fm1)) expands to {f : Formulae | f ∈ formulae(fm1) ∧O /∈
names(f))}. It would not make sense to allow these formulae to be part of F ′, since the O

feature is removed. So, this guarantees that the O feature does not appear in any formula
in F . Besides that, we also require that features from F ′ are exactly the ones from F ,
except for O. As Figure 4.1 shows, P and O need to be features from the initial FM. As a
consequence of the second condition, P is also in F ′.

We also describe the AMs and CKs. As we have just discussed, the removed feature
does not need to be implemented by one asset only, nor be present in only one expression
in the CK. We assume that several items in the CK and in the AM may be removed,
and we represent these two sets with the its and pairs variables, respectively. Thus, the
specification is actually more general than the template shown in Figure 4.1. Basically,
the intitial AM must be an extension of the final one, with the AM pairs. The ⊕ operator
can be simplified to pairs ∪ (am2− dom(pairs)), where am2− dom(pairs) is the set of
pairs that belong to am2 whose names are not in dom(pairs). The CK is represented as
a set of items in the compositional language, so we say that K has every item from K ′

and also the removed items in its. Finally, we also need to certify that every configuration
satisfies the O ⇒ P expression, as this is derived from the template.
1 http://github.com/spgroup/theory-pl-refinement/tree/dev

http://github.com/spgroup/theory-pl-refinement/tree/dev
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syntax(fm1, fm2, am1, am2, ck1, ck2, P, O, its, pairs) : bool =

formulae(fm2) = remove(O, formulae(fm1)) ∧

features(fm2) = remove(O, features(fm1)) ∧

P ∈ features(fm1) ∧

O ∈ features(fm1) ∧

am1 = am2⊕ pairs ∧

ck1 = ck2 ∪ its ∧

∀c ∈ Jfm1K · sat(O ⇒ P, c)

We also define preconditions. The first one is to define S as F � O, which means
the set of configurations that are in F semantics, but do not satisfy O. It is also necessary
to make sure that every expression from its implies O, which is represented by the e′

variable in Figure 4.1. Regarding the CK, it also required that O does not appear in
other lines. So, we establish that configurations from the initial FM satisfy expressions
from its if and only if they have the feature O. The second condition is regarding well-
formedness. Developers must be sure that initial products containing O implementation
remain well-formed. Finally, we have a condition regarding its and pairs. We require that
the remaining features do not have their implementation removed, by guaranteeing that if
an item does not belong to its, its respective assets, obtained by getRS(item), are not in
pairs, and consequently not removed.

conditions(fm1, S, its, pairs, P, O, ck, ck2, am2) : bool =

S = F � O ∧

∀c ∈ Jfm1K·

∀exp ∈ exps(ck)·

sat(exp, c)⇒ exp ∈ exps(its)⇔ sat(O, c) ∧

c /∈ S ⇒ wf(Jck2Kam2
c ) ∧

∀item ∈ ck · item /∈ its⇒ ∀an ∈ getRS(item) · an /∈ dom(pairs)

The template is already encoded, but we do not prove it directly. We define a
strategy for an stepwise proof. First, we prove that configurations in S do not satisfy any
expression in its. This guarantees that, when evaluating the CK, items associated with
the O feature are not included, and consequently artifacts that implement O are not also
present. This is specified in Lemma 1. The evalCK function yields K items whose feature
expressions are satisfied in the configuration c.

Lemma 1 (Items from its are not included)
For product lines L = (F, A, K) and L′ = (F ′, A′, K ′), a set of configurations S, a set of
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items its, an AM pairs and features P and O, if syntax(F ,F ′,A,A′,K,K ′,P ,O,its,pairs)
and conditions(F ,its,pairs,P ,O,K) hold, then

∀c ∈ S · ∀item ∈ evalCK(K, c) · item /∈ its

Proof. For arbitrary product lines L = (F, A, K) and L′ = (F ′, A′, K ′), set of con-
figurations S, set of items its, AM pairs and features P and O, we assume that
syntax(F, F ′, A, A′, K, K ′, P, O, its, pairs) and conditions(F, its, pairs, P, O, K) predi-
cates hold. Expanding the conditions predicate, we have that:

S = {c|c ∈ JF K ∧ ¬sat(O, c)} (4.1)

and

∀c ∈ JF K · ∀exp ∈ exps(K) · sat(exp, c)⇒ (exp ∈ exps(its)⇔ sat(O, c)) (4.2)

We then have to prove that, for an arbitrary c in S,

∀item ∈ evalCK(K, c) · item /∈ its (4.3)

For an arbitrary item it from evalCK(K, c), we have to prove that it /∈ its. Using set
theory and properly instantiating c, we simplify Predicate 4.1 to c ∈ JF K ∧ ¬sat(O, c).
Properly instantiating Predicate 4.2 with c and exp(it), we have that sat(exp(it), c) ⇒
(exp(it) ∈ exps(its)⇔ sat(O, c)). The expression sat(exp(it), c) holds, because it belongs
to evalCK(K, c), that expands to it ∈ K ∧ sat(exp(it), c). So, we can conclude exp(it) ∈
exps(its)⇔ sat(O, c). As we had ¬sat(O, c), we conclude that ¬exp(it) ∈ exps(its). So,
we prove that it /∈ its and conclude our proof.

We also introduce Lemma 2, to prove that, for products in S, assets resulting
from the evaluation of the initial CK K (eval(K, c) yields all asset names mapped to
feature expressions that are satisfied according to the configuration c) do not belong to
the removed assets from pairs. This means that assets implementing the removed feature
are not present in the evolved CK. This lemma is related to Lemma 1, where we show that
the evolved CK does not have any expression involving the removed feature. Although we
do not present in detail here, all definitions used in this proof can be found in our Git
repository.2

Lemma 2 (Assets from pairs are not included)
For product lines L = (F, A, K) and L′ = (F ′, A′, K ′), a set of configurations S, a set of
items its, an AM pairs and features P and O, if syntax(F ,F ′,A,A′,K,K ′,P ,O,its,pairs)
and conditions(F ,its,pairs,P ,O,K) hold, then

∀c ∈ S · ∀an ∈ eval(K, c) · an /∈ dom(pairs)
2 http://github.com/spgroup/theory-pl-refinement/tree/dev

http://github.com/spgroup/theory-pl-refinement/tree/dev
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Proof. For an arbitrary configuration c in S and asset name an in eval(K, c), we have
to prove that an /∈ dom(pairs). If an is in eval(K, c), by expanding eval, we have that,
for some item it ∈ K, an ∈ getRS(item) ∧ item ∈ evalCK(K, c). Properly instantiating
Lemma 1, we have that it /∈ its. Expanding the conditions predicate leads us to

∀item /∈ its · ∀an ∈ getRS(item) · an /∈ dom(pairs) (4.4)

Properly instantiating it and an in Predicate 4.4, we have that an /∈ dom(pairs) and
conclude our proof.

We are now able to prove that removing a feature, given the syntax and conditions

predicates previously established, lead to product line partial refinement. This idea is
formalised in Theorem 16. Essentially, when a feature is entirely removed from a product
line, and no elements regarding the remaining features are removed, we say that the
evolved product line partially refines the initial one for configurations that do not have
the removed feature.

Theorem 16 (Removing a feature is a partial refinement)
For product lines L = (F, A, K) and L′ = (F ′, A′, K ′), a set of configurations S, a set of
items its, an AM pairs and features P and O, if syntax(F ,F ′,A,A′,K,K ′,P ,O,its,pairs)
and conditions(F ,its,pairs,P ,O,K) hold and ∀c /∈ S · wf(JK ′KA′

c ), then L vS L′, where
L′ = (F ′, A′, K ′).

Proof. We have to prove that L vS L′, which, according to Definition 8, expands to

S ⊆ JF K ∧ S ⊆ JF ′K (4.5)

and
∀c ∈ S · JKKA

c v JK ′KA′

c (4.6)

To prove Predicate 4.5, we first expand the restriction operator � in our assumption
about S, which leads us to ∀c ∈ S · c ∈ JF K ∧ ¬sat(O, c). So, we can conclude that
S ⊆ JF K. To prove that S ⊆ JF ′K, we expand the FM semantics function J_K, and
we have to prove that all features and formulae in F ′ belong to F . JF ′K expands to
{c : Configuration | satImpConsts(F ′, c) ∧ satExpConsts(F ′, c)}. Expanding these two
predicates, we have to prove that:

∀c ∈ S · ∀(n : Name) ∈ c · n ∈ features(F ′) (4.7)

and
∀c ∈ S · ∀(f : Formula) ∈ formulae(F ′) · sat(f, c) (4.8)

From S definition, we have that S ⊆ JF K, which amounts to ∀c ∈ S · ∀(n : Name) ∈ c ·n ∈
features(F ). So, to prove Predicate 4.7, we need to prove that n can not be O. Otherwise,
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since it belongs to features(F ), it will also be in features(F ′). Also from S definition,
we conclude that c does not satisfy O. So, O can not be in c’s names. Predicate 4.8 also
holds because it holds for formulae(F ) and formulae(F ′) ⊆ formulae(F ).

We then need to prove Predicate 4.6. Assuming an arbitrary c ∈ S and expanding
the CK semantics function, this simplifies to A<eval(K, c)> v A′<eval(K ′, c)>. The
difference between K and K ′ is the set of items (its) that belong to K but not to K ′.
Expanding eval(K, c) results in getRS(evalCK(K, c)). By using Lemma 1, we conclude
that all CK items resulting from evalCK(K, c) do not belong to its. As the other items,
except its, are equal, K and K ′ evaluation results in the same items for configurations in
S. So, we have that getRS(evalCK(K, c)) = getRS(evalCK(K ′, c)).

The difference between A and A′ refers to pairs. In Lemma 2, we show that there
are no assets from pairs resulting from the CK K evaluation. So, the assets obtained by
the image in A and A′ are the same and do not refer to pairs, so it makes no difference
in obtaining the image in A and A′, which is formally expressed as A<eval(K, c)> =
A′<eval(K, c)>. Given that JKKA

c = JK ′KA′
c for an arbitrary c in S, the proof folows by

asset set reflexivity (see Axiom 1).

As every product line is well-formed by definition, PVS generates two TCCs (type
check conditions) regarding the well-formedness of the evolved FM and product line.
We are able to prove that the final FM is well-formed because, since the initial FM is
well-formed, and the only transformation is removing a feature, F ′ is also well-formed.
Regarding the final product line well-formedness, we need to prove that all products are
well-formed, according to Definition 6. There are two scenarios to be considered: if a
product is in the scope of S, we guarantee its well-formedness because it is equal to an
initial product, as we have just proved in this theorem. For products that do not belong
to S, we make use of the condition requiring that all products in L′ which are not in S

should be well-formed. So, we are able to prove that L′ is well-formed.

Adding and Removing assets

Another possibility for partially evolving a product line is adding new assets and
their references in the CK. This might not be a completely partially safe evolution scenario,
since some features will be associated to new assets that likely will change their behavior.
Thus, we characterize it as a partially safe evolution scenario and give refinement guarantees
only for products that are not extended with the new assets. The template illustrated in
Figure 4.2 captures this scenario. It requires the FM not to change. The AM in PL′ is an
extension of the previous AM with new mappings, and new items are added to the CK.
Note that nothing is removed. We are only assuming additions to both entities.

The set of refined products in this case corresponds to the ones that do not have the
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new assets, so they are not affected. We express the respective configurations by filtering
the ones that do not satisfy expressions in its, which is the set of items that might refer to
the added assets. So, the set of configurations that belong to F semantics and satisfy the
expressions from its corresponds precisely to the products that were extended. Another
condition is that the assets in m must not appear in K. This is necessary to guarantee
that the added assets are not referred by existing expressions in K. We also require that
products from PL′ that are not in S must be well-formed. Since the AM and CK are
modified, we have no control of such additions, so we demand well-formedness.

Figure 4.2 – Add assets partial refinement compositional template

We do not require that A and K are modified, since m and its could be empty.
However, in case unused assets are added (by changing only the AM), exps(its) would
return the emptyset and, consequently, S would be equal to F semantics since all products
would be refined. So, this would be the same as using the Add unused assets safe
evolution template [NBA+15]. Moreover, if the three elements of the product line are
modified and the added assets are only associated to the new feature, this would also
be a safe feature addition scenario (Add new optional featuretemplate) [NBA+15],
provided that the added feature is optional. However, in cases of unsafe feature additions,
such as mandatory feature additions, one could obtain support of the partial refinement
theory by dividing this modification in two parts: first, only the FM would be modified
by adding a mandatory feature using the Add new mandatory feature template
[NBA+15], and then adding the respective assets by using the template illustrated in
Figure 4.2. The first step is safe, since it is a FM refinement scenario. The second step,
however, is partially safe because the mandatory feature added in the previous step had
no implementation, and in the resulting product line part of the products are affected
by these new assets. The guarantee would hold for products that do not have the added
feature, as asserted by Theorem 13, that guarantees refinement for a set of products after
performing a partial refinement followed by a feature name aware refinement.
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This template could be applied not only to asset additions scenarios, but also asset
removals. If we read the template in reverse order (from right to left), we have the Remove
assets template. In this case, elements are possibly removed from the AM and the CK.
We also guarantee that at least product configurations not satisfying expressions in its are
refined. So, S should be as in the template. As in the asset additions scenarios, we also
need the two other conditions to certify that assets from m are completely removed, so
they do not appear in K and that the transformation preserves well-formedness for the
products potentially not refined. We do not show this template here since it is analogous
to the Add assets template, but it can be found in our online appendix.3

Changing, Adding and Removing CK lines

Finally, we consider a template in which only the CK changes, which is the Change
ck line template, shown in Figure 4.3. As explained in Section 3.1, the CK maps feature
expressions to asset names. In a product line development context, for instance, one
might need to replace a feature that is associated with an asset name by another one.
The opposite may also happen, which would be to change the respective asset name, or
even changing both. To cover these situations, we can use this template. We assume an
expression e to be changed to e′ and a set of asset names ns being changed to ns′. The
other items found in the initial CK (its) are also in the new CK.

We assume that the new expression e′ only contains feature names that are in F ,
otherwise we would not have a well-formed expression. Since we change e to e′, products
whose configurations satisfy e or e′ are not refined. Suppose that e is equal to a hypothetical
feature F1 and a user decides to transfer the implementation of F1 to a feature named F2.
To apply such change, one has to change the expression from F1 to F2 and this means
that the assets that were implementing the former now implement the latter. Consequently,
both features are affected. So, S should have configurations that do not satisfy both, which
means configurations that do not have both F1 and F2. Therefore, we define S as the
intersection of the configurations that do not satisfy e and e′. As they are not affected, we
can guarantee that refinement holds for the products that do not enable e and e′. We also
assume that products from PL′ not in S are well-formed because we can not prove such
condition assuming arbitrary e′ and ns′.

We also consider variations of the Change ck line template. In Figure 4.4, we
have the Add ck lines template. The CK is the only element that may be modified, and
the set of items its are added to the product line. The effect is that product configurations
satisfying expressions from its are potentially not refined. For this reason, we define S as
the set of configurations that belong to F semantics but do not satisfy expressions from
its. The products in the scope of S remain the same. In the same way as we do with the
3 http://github.com/spgroup/theory-pl-refinement/tree/dev

http://github.com/spgroup/theory-pl-refinement/tree/dev


Chapter 4. PARTIALLY SAFE EVOLUTION TEMPLATES 65

Figure 4.3 – Change ck line partial refinement compositional template

Add assets template, if we read the template from Figure 4.4 from right to left (and
also assuming well-formedness for PL instead of PL′), we have the Remove ck lines
template.

Figure 4.4 – Add ck lines partial refinement compositional template

We have just presented six compositional partial refinement templates: Remove
feature, Add assets, Remove assets, Change ck line, Add ck lines and
Remove ck lines. We discussed the Remove feature formalization (see Section 4.1),
and the others can be found in our online appendix.4 In the following, we show templates
compatible with transformational CKs and templates that are compatible with both CK
notations.

4.2 Transformational CK
As shown in the previous section, there are several possible partially safe evolution

scenarios that developers might face in practice. Here, we deal with the same scenarios,
but assuming that the CK may also have transformations (see Section 2.1.3.2).
4 http://github.com/spgroup/theory-pl-refinement/tree/dev

http://github.com/spgroup/theory-pl-refinement/tree/dev
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Instead of defining similar templates just differing on the CK language used, we
ideally would define a single template that is more general and compatible to both languages.
This is impossible because in all scenarios presented here, the CK may be modified. So,
we need to show such modifications and we can only choose to use one of the languages.
For example, in the Remove feature template, the compositional version assumes that
the CK has feature expressions and asset names, whereas the transformational version
deals with transformations instead of simply names. They also differ in the structures
underlying their similar syntax CK. While the former definition consists of a set of items,
the latter conists of a list. It is not feasible to work with these different representations
at the same time. Additionally, a number of conditions may vary and impose restrictions
on the artifacts format. For instance, one could assume an artifact with an ifdef block,
while another simply does not deal with such structure. For these reasons, we present two
versions of the Remove feature and other templates.

Remove Feature

Developers may need to remove features for diverse reasons, as already explained
in Section 4.1. Thus, we also have a template to deal with feature removals but allowing
the use of transformations in the CK and ifdefs in the AM structure. We could also have
another template considering the use of the select transformation, which would be similar
to the compositional one, as select transformations do not really transform assets, but
simply select them. For this reason, we only present a template dealing with ifdefs. In
Figure 4.5, it is possible to notice that the three parts of the product line are affected.
Similarly to the feature removal template for compositional CKs, we give support for the
products that do not have the removed feature. So, S is defined in the same way.

The O feature is removed from the initial FM F . Similarly to its compositional
version, assets implementing the O feature should be removed from the product line. In
this case, since we are able to transform assets, we can use preprocessing directives to
implement features. So, the x tag activates the c code that implements O. Thus, in the
new AM, this tag is not present, neither the c code. Two lines are removed from the initial
CK. Both have an expression e, which, if true, implies in the presence of O. For this reason,
both lines should be removed, otherwise we could have a malformed CK, that refers to
features that do not exist anymore. The first transformation in the first line is tag x, which
activates this tag. So, the transformation preprocess n generates a new asset with the code
respective to the activated tags. As a consequence, since the x tag is previously activated,
c is included. If x had not been activated, c would not be included.

There are three other conditions in the template illustrated in Figure 4.5. The
first one is to make sure that O only appers in e. This is essential to guarantee that the
remaining expressions in the resulting CK will not refer to a feature that was already
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Figure 4.5 – Remove feature partial refinement transformational template

removed. We also require the x tag to not appear in other CK lines. Differently from
the other conditions, we can not find this one in the compositional Remove feature
template, as we do not deal with tags there. This is necessary because since this tag
activates the code related to the removed feature O, it is also removed. The first CK line
refers to x, and it is also removed. So, since we are assuming that x refers to the removed
feature, it makes no sense to allow that other CK lines refer to x. This could imply in
a illformed product line because after removing O, there would still be a tag referring
to O. Finally, we need a well-formedness condition. We do not have control over the
products that are not in the scope of S, since these products were affected with the feature
removal. Consequently, we do not know if these products would still compile successfully,
for example. So, we need to establish that they must be well-formed after the change.

We do not present the formalization of the Remove feature transformational
template, but it follows a similar reasoning to the Remove feature compositional
template proof illustrated in Section 4.1. Nevertheless, the languages used to represent the
CK and assets are different because we allow CKs with transformations and ifdef blocks.
Moreover, we prove the template shown in Figure 4.5 by induction over the CK, since we
deal with a recusive semantics function. In contrast, the compositional template proof
requires no induction.

Adding and Removing Assets

As we discussed in Section 4.1, developers might need to add new assets to a
product line. We support them with the Add assets template that represents this
scenario assuming a compositional CK structure. The template shown in Figure 4.2 is not
compatible with transformational CKs because it deals with a CK that is a set of items,
where each item has a feature expressions and a set of asset names. So, we now define an
analogous template that allows the CK to be a list of items, with transformations. We can
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guarantee that product configurations generated from F and do not satisfy expressions
from its are refined. As we have that the evolved CK is K ++ its, this means that the
new items need to be added at the end of the existing CK. Of course, if the new items
are added to the beginning or in other positions, this should not make any difference, but
formally these would be variations of this template.

Figure 4.6 – Add assets partial refinement transformational template

There is a condition to make sure that assets from m do not appear in the original
products. This condition is slightly different when compared to the compositional template,
because it is not enough here to establish that assets from m do not appear in K. The
reason is that K may have transformations, so the product is generated only after applying
transformations. Thus, assets from m should not be found after transformations applied
from K. As with every other non-refinement transformation involving assets, we can not
guarantee that products not in the scope of S remain well-formed. So, as every product line
is well-formed by definition, we need this condition to guarantee that the transformation
will not break this condition.

We should observe that, similarly to other templates, the Add assets template
can be derived by combining two other. Applying the Adding unused assets [NBA+15]
(refinement) template followed by the Add ck lines (partial refinement) results in the
change described in Figure 4.2. This allows us to prove this template by reusing proofs
from the two others. As a consequence of having derived templates by applying others
sequentially, our set of templates is not minimal.

Similarly to the Add assets template for compositional CKs, if we read the
template from Figure 4.6 from right to left (and considering the well-formedness condition
for PL instead of PL′), we have a possible Remove assets template for CKs with
transformations. We do not present this template here for simplicity, but it is specified
and proved in our online appendix.
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Changing, Adding and Removing CK Lines

We have already explained this scenario in Section 4.1. However, the template in
Figure 4.7 is not dealing with CKs with transformations. As it is possible to notice, it
assumes that the CK is formed of feature expressions and asset names. The difference in
this template from Figure 4.7 is that we use a slightly different notation for the CK that
assumes that the CK is a list. This is essential for the CK with transformations, because
the order in which the transformations appears matters. Additionally, instead of having
asset names on the right side, it has transformations, like tag and preprocess.

Since we are also dealing with a change in a CK line, S does not change. It is
defined in the same way, as the intersection of the configurations that do not satisfy e and
e′.

Figure 4.7 – Change ck line partial refinement transformational template

Similarly to the templates presented in Section 4.1, we also have versions of the
Add ck lines and Remove ck lines templates for CKs with transformations. Visually,
these templates are equal to the ones that are compatible with compositional CKs, but
instead of the union operator, we need to use concatenation since transformational CKs
are specified as lists. Due to this similarity, we do not show them here but we also support
developers dealing with transformational CKs.

In this section, we present six partial refinement templates that deal with trans-
formational CKs: Remove feature, Add assets, Remove assets, Change ck
line, Add ck lines and Remove ck lines. We do not present any proof of the
transformational partial refinement templates here, but they are available in our online
appendix.5 Compositional template proofs (like the one shown in Section 4.1) are more
simple because the CK semantics function simply filters the assets that implement the
selected features. In contrast, the transformational CK semantics function is recursive and
assets are transformed with the use of preprocess commands, for example. So, the proofs
5 http://github.com/spgroup/theory-pl-refinement/tree/dev
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of the templates shown in this section were all made by induction over the CK items. This
involves a higher complexity when compared to compositional template proofs.

4.3 General Templates
In this section, we present templates that do not require a particular CK language.

This happens because in these scenarios, the CK does not change; only the FM or the AM.
So, we can see the CK as a black box, we can abstract its structure. Consequently, these
templates are compatible with both compositional and transformational CK notations.
We first introduce the Change asset template, which deals with changes only to
implementation files. This template is a particular case of the AM partial refinement
compositionality introduced in Section 3.2.2.2. Moreover, we also have templates to deal
with changes only to the FM. These would be particular cases of the FM compositionality
(see Section 3.2.2.1).

Change asset

Developers modify source files in many contexts, such as fixing bugs or implementing
new features. In such situations, one possibly does not desire to preserve behavior. Thus,
this is often an unsafe safe evolution scenario, since products that contain the changed
asset might not preserve behavior. Therefore, we give refinement guarantees for the other
products, which are the ones that do not have the changed assets. We define a template
that matches this scenario in Figure 4.8.

To specify S for this case, we use another restriction operator. For arbitrary FM
F , CK K and set of asset names ns, we use (F, A, K) � ns to denote the subset of
F configurations whose products (resulting from evaluating K with A and c) do not
contain assets from ns. Hence, S is defined as (F, A, K) � {n}, which is the subset of F

configurations whose features are not implemented by the asset named n, which in this
case is the a asset. Since products containing a′ are possibly not refined, we can not give
any guarantees for them. There is also a well-formedness condition. Since we do not know
which changes were performed to a, we need to demand well-formedness for products
containing a′.

This template assumes that both product lines have the same F and K. More
precisely, only the asset a is changed to a′. Thus, only the asset content is modified, not the
asset name, which is the same for the initial and new lines (n). Although this template does
not capture situations where the FM and CK change as well, one could obtain this effect
by combining templates. The Change asset template can be used with the Change ck
line template (which will be introduced later), for instance. Thus, developers could not
only change assets, but also change their reference in the CK. As explained in Section 3.2,
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Figure 4.8 – Change asset partial refinement template

the guarantee is for the intersection of the products refined in both steps and this can be
automatically calculated, as we define S for both templates.

The Change asset template also captures safe evolution scenarios. Suppose that
one might refine an asset, this template also matches. However, we would give less support
than possible since we assume that the asset is being changed in a non behavior-preserving
way. The Refine asset template [NBA+15] is more appropriate in this situation because
it assumes that the product line is safely evolved and gives guarantees for all products. In
contrast, if the change impacts the product line behavior, the Refine asset template
gives no support and developers should rather make use of the Change asset template.

Transform Optional to Mandatory Feature

As already discussed in Section 2.1.1, features are classified into mandatory, optional,
alternative and or. These types may change during the evolution process. Some of these
changes are refinements and others are not. For example, transforming a mandatory feature
into an optional one is often a refinement, since in the evolved product line we would have
more configurations than before, but we would still have the existing products, and thus
supporting existing users. This situation was addressed by previous work [NBA+15].

On the other hand, the opposite transformation, transforming an optional feature
in mandatory, is often not a refinement. When we change a feature type from optional to
mandatory, every product containing its parent then needs to have the changed feature.
Thus, we would not be able to generate products without the feature. For this reason,
some users would not be supported, but others can be because products containing the
changed feature would be unnafected. We have a condition in the template (Figure 4.9) to
guarantee that O can only be selected through the P selection, so there are no cross-tree
constraints changing this condition. We state that we must be able to deduce the equation
O ⇒ P in CTC. We only have this type of restriction when the FM changes, so in the
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other templates it is not necessary to check whether the cross-tree constraints satisfy a
feature expression. So, it should not be possible to have O without P in the Transform
optional feature to mandatory template.

For this evolution scenario, we define S as the set of configurations that belong
to the semantics of F , and satisfy the formula O ∨ ¬P . This is expressed with the filter
operator �, which takes a FM F and a feature expression e and yields all configurations in
F that satisfy e. This operator is the opposite of the restriction operator �. So, we give
support for the original products that have O, because the only change applied to the
initial product line was that O becomes mandatory. Furthermore, products without P are
not affected, because they remain without O, as it is impossible to have O without having
P .

Figure 4.9 – Transform optional feature to mandatory partial
refinement template

We do not have any well-formedness condition for this template. This is not
necessary because, in this particular case, we are able to prove that the resulting product
line is well-formed. As there are no changes to assets in this case, we know that products
remain well-formed. So, we had essentially to prove that all configurations belonging to F ′

semantics, also belong to F semantics.

Move Feature

Finally, we also consider changes to the FM regarding feature dependencies. During
the evolution process, developers may want to move features. Moving only the code is safe,
because this does not impact the behaviour of the feature. The only difference is where
its code is located. Alternatively, features can be moved in the FM, and there are several
possibilities. For example, a possible scenario is illustrated in Figure 4.10.

We have an initial FM F that has at least three features: P , Q and O. Feature
P is the parent of Q and O. A change is performed and we then obtain F ′, where O is
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now Q’s descendant. In this scenario, product configurations from the initial product line
that do not have Q and have O are inexistent in the resulting product line. In contrast,
configurations that have O and Q do not suffer any impact, neither the ones that have P

but do not have O. So, we define S as the set of configurations that belong to F semantics
and do not satisfy the expression ¬Q ∧O.

Figure 4.10 – Move feature to its sibling partial refinement template

The CTC meta-variable represents the cross-tree constraints and we require the
initial FM to have the same constraints of the evolved FM. Besides that, the constraints
should satisfy two expressions: O ⇒ P and Q⇒ P . This is necessary to guarantee that
the cross-tree constraints are not changing the relation between the features. So, we should
be able to select O only if P is selected and this must hold for the entire FM. The same
happens to Q and P . So, both feature expressions should hold for the constraints of both
FMs.

We do not specify any feature type in this template. This means that it is valid for
situations where the features P , Q and O are of any type. However, depending on their
types, we would be able to provide guarantees to a diferent set of products. For example,
there are two situations where S is equal to all valid configurations, and as a consequence,
we would have refinement. This happens when only Q is mandatory and when the three
features are mandatory. In both cases, all products would have Q, so the expression ¬Q∧O,
that should be satisfied by the configurations that are not refined, would not hold for any
product. In any other scenario, S would not be equal to F semantics. For instance, if all
features are optional, products containing only P and O would not be generated in the
resulting product line, as Q would need to be present, since it is O’s ascendant in F ′.

We have just discussed a possible product line evolution scenario that consists of
moving a feature in the FM, with the effect of changing feature dependencies. Nevertheless,
as the FM structure is represented as a tree, there are several potential scenarios of moving
features in the scope of the tree. We could, for example, have the opposite transformation,
as illustrated in Figure 4.11.
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Figure 4.11 – Move feature to its parent partial refinement template

Again, only the FM is modified. The AM and CK remain the same. In the initial
FM F , the O feature is Q’s descendant, whereas in F ′ it is P ’s descendant. In this case,
we do not support products that have P but do not have O. For example, the product
containing only the P feature would not be refined if O is mandatory. So, we define S

as the set of configurations that belong to F semantics, but do not satisfy the P ∧ ¬O

feature expression. As we opted to not specify feature types, the set of refined products
depends on the type of O, if it is mandatory or optional. In the first case, the product
containing only the feature P is only generated from the FM F , whereas in F ′ this is not
possible. In contrast, if O is optional, this represents a refinement, because we are only
increasing variability by allowing the generation of every initial product, and the product
containing P and Q only.

Although we have shown two possible move feature transformations, there are
several other possibilities. The FM tree can be large, and features may be moved to a
place far from its origin. So, these are just examples and any case that do not match these
templates needs to be analysed separately. Moreover, for each situation the value of the
set of configurations S refined may vary. For this reason, we do not have a single template
to represent all possible move feature scenarios.

We do not present proofs of the general templates, but they are available in our
online appendix. The templates that deal with changes to the FM only (Transform
optional feature to mandatory, Move feature to its sibling and Move
feature to its parent) are relatively simple to prove, as they do not deal with any
change to the implementation, so we basically need to prove that the set S of product
configurations refined can be obtained from the initial and evolved FM semantics. We also
guarantee that the evolved FM is well-formed for these templates. We do not need to deal
with CK semantics and AM peculiarities. Regarding the Change asset template, it is a
particular case of the AM partial refinement compositionality (see Section 3.2.2.2). So, we
make use of the existing AM partial refinement notion to prove this template.
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4.4 Template derivation process
We derived the templates by adapting a catalog of safe evolution templates

[NBA+15, BTG12] for situations where not all products are refined by products in the
evolved product line. For instance, the Change asset template in Figure 4.8 essentially
adapts the Refine asset [NBA+15] template by dropping the precondition that the new
asset a′ must refine a. This way we allow any kind of change to a, but capture change
impact by precisely defining S. Verifying completeness of the templates and proposing a
minimal set are part of our future work. We would also possibly need more templates, but
we already cover several situations, like feature removals, CK line additions and removals,
changes to the implementation, among others.

4.5 PVS Encoding
We now present the theory hierarchy created in PVS to add the partial refinement

notion. In Figure 4.12, it is possible to observe not only the theories presented in Chapter 3,
but also the theories created due to the templates. We highlight in dark grey colour (white
font) the template theories. Although we do not show the entire hierarchy here, all PVS
files and proofs can be found online.6 As we discussed, we have three template categories
and they vary mainly according to the CK notation used. Consequently, we have three
different templates theories. For each template developers should obey the syntactic and
conditions predicates like the ones presented for the Remove feature template in
Section 4.1. We also determine, for each case, the S set of product configurations refined.
In the following, we explain each template theory for partial refinement.

• PartialRefTemplatesComp: this theory comprises the templates proposed in
Section 3.4. It uses the concrete notions for FM (FeatureModel theory) and CK
(CKComp theory). Since we are defining partial refinement templates, these theories
all import the PartialRefinement theory.

• PartialRefTemplatesTrans: this is analogous to PartialRefTemplatesComp,
but it deals with transformational CKs and uses the CKtrans theory instead of
CKComp.

• PartialRefTemplatesFM: this theory corresponds to the templates presented in
Section 4.3, except the Change asset template that is specified together with the
AM compositionality theory. This template is in a separate place because it assumes
an eval function (see Section 3.2.2.2), which is part of the CK semantics. All the
other templates deal with changes to the FM only, so all specific cases of the FM

6 All PVS files and proofs are available at http://github.com/spgroup/
theory-pl-refinement/tree/dev

http://github.com/spgroup/theory-pl-refinement/tree/dev
http://github.com/spgroup/theory-pl-refinement/tree/dev
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weaker equivalence compositionality are specified here. These templates assume a
specific notation for the FM, that is structured as a tree. So, we use the concrete
FM theory and the intermediate CK theory CKint, since the templates do not
specify any CK language and would be compatible with any concrete CK that is a
instantiation of CKint.

Figure 4.12 – PVS partial refinement theory

4.6 Discussion
In this chapter, we present partial refinement templates, that are divided into

three categories: templates for compositional CKs (Section 4.1), transformational CKs
(Section 4.2) and more general templates that assume a generic CK (Section 4.3). As
discussed, these templates can vary according to the languages used to represent the three
elements of a product line. We have two versions of each template that deals with a specific
CK language.

Nevertheless, it is not our aim to present such catalog to developers. We would need
to adapt the catalog for the specific needs and also take into consideration the languages
being used. For example, if the company works only with compositional CKs, it would not
make sense to include templates that deal with transformational CKs. Moreover, if the
languages used are slightly different from ours, we would need to possibly redesign the
existing templates. Finally, we could even consider evolution scenarios not considered yet,
such as transforming an or feature group into an alternative one. All decisions depend on
the user needs.
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We should highlight that, in all situation analysed, products in the scope of S

are actually equal in the two product lines. For example, in the compositional Remove
feature template illustrated in Figure 4.1, S is defined as the set of configurations that
are in the initial FM and do not satisfy the O removed feature. Since the only modification
in this scenario is associated to O, the other products are actually equal in both initial
and evolved product lines. So, we could use the equality symbol =S symbol instead of
the refinement one (vS). We should observe that, since refinement is a weaker relation
than equality, in general, we are able to capture more scenarios with refinement and
consequently provide a wider support for developers.
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5 EVALUATION

Although we expect our partially safe evolution templates could be useful in
a number of situations, it is important to gather empirical evidence so we can better
understand how often they could be applied in practice. To do that, we perform a
quantitative retrospective study by analyzing two product lines, Linux1 and Soletta.2 Both
projects are active on GitHub, the variability model is written in Kconfig, Makefiles are
used to map features to their implementation and C is the main programming language
used for source code files. Linux is a large and highly variable system that has been used
in previous works [IF10, ADSTDM08, DvDP16]. Soletta is smaller and more recent, so
we also chose to analyse this system to understand whether characteristics such as project
size and number of commits have any influence our analysis. Since Soletta’s build system
is based on Linux Kernel Kconfig, the configuration process is the same. Users can use the
default configuration or a custom one, by choosing the features that will be present in the
generated product.

We try to find scenarios that match our templates by analysing commits from the
two projects. In this chapter, we detail the data extraction process in Section 5.1, show
the results for each template in Section 5.2, and discuss threats to validity in Section 5.3.
We structure the study using the GQM approach [Bas92], as we detail on the following.

Study main goal: The purpose of this study is to discover whether the proposed
templates could be frequently applicable in a product line development context to reinforce
their expressiveness. We would like to answer the following question:

Research question: How often would partially safe evolution templates be appli-
cable in product line projects?

Metric: In order to answer this question, we automatically analyze commits from
the Linux and Soletta projects, where each evolution scenario is composed of a commit pair:
the initial and evolved product lines are the ones in two consecutive commits. We measure
the number of occurrences of the proposed templates, since they represent partially safe
evolution situations.
1 Linux Kernel repository available at http://github.com/torvalds/linux
2 Soletta project website: http://solettaproject.org/

http://github.com/torvalds/linux
http://solettaproject.org/
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5.1 Setup
We assess the templates using FEVER [DvDP16].3 This tool, developed by Dintzner

et al., is able to analyze commits from projects that use the Linux notation. FEVER takes
a set of commits as input and collects all information from them. Then, the differences for
each commit are processed and the resulting information is stored in a Neo4j database.4

So, the tool discovers which Linux elements, such as the variability model, were changed
in evolution scenarios. Additionally, changed files are automatically classified into source
and non-source. To find occurrences of our templates, we query the database populated
by FEVER filtering evolution scenarios by expressing the conditions for each template,
such as whether they affect the FM.

We manually check all evolution scenarios to make sure they really match the
templates (except those representing changes only to the implementation, as the number is
extremely high), and also to reduce false positives and the tool imprecision. The analysis
was made by one person only. So, we should also consider possible errors in this process.
Altogether, we analyzed 67310 evolution scenarios of the Linux Kernel from the database
we had access to, and this corresponds to all commits between Linux versions 3.11 and
3.16. The first commit was performed on September 2nd of 2013 and the last one was on
August 3rd of 2014, so this comprises roughly one year of development. Additionally, we
analysed 2300 commits of the Soletta project, from the project start, on June 26th of 2015,
until April 19th of 2016, which corresponds to almost one year of development. We try to
match each evolution scenario with the templates, based on their conditions, as explained
in the following for each template.

Remove feature: scenarios that modify all three elements of the product line, re-
moving elements. These three modifications must be correlated, as illustrated in Section 3.1.
Thus, the removed mappings need to be associated with the removed feature in the FM.
Similarly, the removed assets in the CK need also to be excluded from the implementation.
These rules are detailed in Listing 5.1, using Neo4j query language. In the database, the
MappingEdit and FeatureEdit nodes represent changes to the CK and FM, respectively. An
ArtefactEdit is any file change. From the MATCH clause, we have all commits in which
the CK and source code are both changed. We then have the WHERE clause to establish
extra conditions. For instance, the first condition is that this commit should affect the FM
as well, and the change must be a removal. Moreover, the feature name in the FM needs to
be the same name as the edited feature in the mapping change (CK). Although the exact
mapping between features and artifacts in Makefiles can be complex, FEVER relates each
mapping change to one feature only, which may lead to imprecision. As the three parts
are affected, we also state that there should be CK removals. It would make no sense to
3 http://github.com/NZR/SPLR-FEVER-Tool.
4 Neo4j website http://neo4j.com.

http://github.com/NZR/SPLR-FEVER-Tool
http://neo4j.com


Chapter 5. EVALUATION 80

allow source code artifact additions in a feature removal scenario, so we filter these cases.
We also verify if changes in the implementation are related to changes in the mapping. In
the Remove feature template, we have a condition regarding well-formedness that, in
our analysis, we assume to be true in every scenario. All distinct commits obeying these
rules are then returned.

Listing 5.1 – Remove feature Neo4j query

MATCH ( f i l e : Ar te fac tEd i t)<−−(c : commit)−−>(mapping : MappingEdit )
WHERE
( c)−−>(:FeatureEdit {change : ‘ ‘ Remove ’ ’ , name : mapping . f e a tu r e }) AND
f i l e . change= ‘ ‘REMOVED’ ’ AND
mapping . target_change= ‘ ‘REMOVED’ ’ AND
mapping . target_type= ‘ ‘COMPILATION_UNIT’ ’ AND
NOT ( c)−−>(:Arte fac tEd i t { type : ‘ ‘ source ’ ’ , change : ‘ ‘ADDED’ ’ } ) AND
f i l e . name=~( ‘ ‘ .∗ ’ ’+

subs t r (mapping . target , 0 , l ength (mapping . t a r g e t )−2) +
‘ ‘ . ∗ ’ ’ )

r e turn d i s t i n c t c

This query is subject to false positives. Since we are dealing with feature removals, it might
be expected that source file modifications would be forbidden, like source file additions
were. However, we should include examples with asset modifications because features are
not necessarily implemented by one artifact only. So, when removing a feature, one can
remove only an #ifdef block, without removing an entire file. Although we cover examples
that deal with transformational CKs (see Section 2.1.3.2), this increases imprecision, since
we can not filter if only an #ifdef has been removed. False negatives may arise due to
special cases. For instance, the removed file not necessarily has the same name of the
mapping target removed in the CK. Thus, this evolution scenario would not be found
with this query because the last condition may not hold. Additionally, we also do not find
scenarios that are compositions of feature removals and other changes. For instance, one
could remove a feature and add a new one in the same commit. Errors in the dataset can
also lead to false negatives.

Change asset: we classified an evolution scenario as a change asset instance when
only the implementation changed. In Listing 5.2, we show the Change asset Neo4j
query. We filter only commits that have at least one source file changed, as established
in the MATCH clause. We also have some conditions in the WHERE clause. In the first
two, we state that neither the FM nor the CK change. It was also necessary to establish
that the commit had no added or removed source files. The last two conditions are useful
to reinforce the first two. Therefore, we only capture cases where the change is in source
code and non-code files, such as documentation. If only a .txt file is modified, we do not
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consider it a change asset instance.

Listing 5.2 – Change asset Neo4j query

MATCH ( c : commit)−−>(a : Arte fac tEd i t {change : ‘ ‘MODIFIED’ ’ ,
type : ‘ ‘ source ’ ’ } )
WHERE

NOT ( : FeatureEdit)<−−(c ) AND
NOT ( : MappingEdit)<−−(c ) AND
NOT ( : Arte fac tEd i t

{ type : ‘ ‘ source ’ ’ , change : ‘ ‘ADDED’’})<−−(c ) AND
NOT ( : Arte fac tEd i t

{ type : ‘ ‘ source ’ ’ , change : ‘ ‘REMOVED’’})<−−(c ) AND
NOT ( c)−−>(:Arte fac tEd i t { type : ‘ ‘ bui ld ’ ’ } ) AND
NOT ( c)−−>(:Arte fac tEd i t { type : ‘ ‘vm’ ’ } )

re turn d i s t i n c t c

This query finds any scenario representing an implementation change. Nevertheless, we
do not have a precise idea of the change type. A number of them might be refinement,
and consequently instances of the Refine asset template proposed in previous work
[NBA+15]. We are not sure about the presence of false negatives, but they can be present
due to dataset problems. For instance, if a FeatureEdit edge is added to a Change asset
commit; this way, we do not find it with our query. We do not show here queries for
the other templates, but they follow a similar approach and are available in our online
appendix.5

Add assets and Remove assets: we classify evolution scenarios as instances of
these templates when only the CK and implementation change. In the former, both changes
must be additions. The files added to the implementation should be new and of type
source, according to FEVER. For the Remove assets template, the query is analogous.
So, we only allow removals in the CK and implementation. Source files should be entirely
removed and CK lines must also be excluded. Moreover, we have a similar condition to
the last one in Listing 5.1 to guarantee that the changes are related. Developers might
remove Makefile mappings and source files independently. So, we check whether the source
file names appear in the affected CK lines. We do not consider any case in which the FM
changes. This would be actually a feature addition or removal.

We are not aware of false positives that may arise due to the Add assets and
Remove assets queries. Regarding false negatives, we do not find instances in which an
added file has not exactly the same name of the added CK line. However, changing such
5 Our queries are available at http://github.com/spgroup/theory-pl-refinement/blob/

dev/doc/evaluation/queries.pdf

http://github.com/spgroup/theory-pl-refinement/blob/dev/doc/evaluation/queries.pdf
http://github.com/spgroup/theory-pl-refinement/blob/dev/doc/evaluation/queries.pdf
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condition would probably increase the false positives number.

Change ck line, Add ck lines and Remove ck lines: we identify these
templates with only one query because they are very similar and we noticed that in some
cases an evolution scenario was an instance of the Change ck line template, but the
Git diff algorithm was showing it as a removal followed by an addition. Since the tool
relies on this classification, we could have non-precise results, so we preferred to detect
mapping changes and check manually which templates match the respective evolution
scenario. Another reason is that the number of instances is considerably small for these
templates. For all of them, we required that the implementation and FM elements must
remain unchanged. We also identified the other templates in a similar way, and the results
are presented next.

We can have false positives in these instances because we are filtering any mapping
change. So, a number of them might not be of our interest. We could filter mapping
additions, removals and modifications separately, but the FEVER tool uses the Git diff
algorithm, which has an unprecise classification. So, we prefer to filter all changes and
manually classify according to their types. We are not aware of false negatives due to the
query, but they can occur due to dataset problems.

5.2 Results
In this section, we discuss the results from the analysis of the Linux and Soletta

systems. Linux and Soletta are similar with respect to the product line notation used, but
vary in size and maturity level. So, these differences reflect in our results. For each project,
we inform how often our templates could be applied in evolution scenarios. We also discuss
threats to the validity of our results. Although we classify templates into compositional and
transformational in Chapter 4, both systems analysed use a transformational CK notion.
So, these results evaluate the transformational templates and evaluating the compositional
templates is part of our future work.

5.2.1 Linux Kernel

First, we analyse the results of running FEVER against Linux commits. For each
template, we discuss the number of instances found. We also provide examples of evolution
scenarios that match our templates and show examples that were excluded due to problems
related to query, dataset, among others.

Change Asset

According to Dintzner et al. [DvDP16], around 80% of feature oriented changes
in Linux only touch the implementation, and do not affect the FM or CK. Confirming
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that, the Change asset template had the highest occurrence rate instances, with 55345
instances, which corresponds to almost 90% of the evolution scenarios analysed. This
might be due to Linux maturity level, and also to the fine granularity of the commits
observed in the analyzed period.

Asset refinements (Refine asset template [NBA+15]) also match this pattern
and, since the number of occurrences is extremely high, we could not manually verify
all cases. Thus, a number of these occurrences might be full refinements. By manually
analyzing 50 Change asset instances (randomly chosen between versions 3.15 and 3.16),
only 7 turned out to be asset refinements. The other 43 are non-refinements and the
majority of them were bug fixes. Developers fixed such bugs, for instance, by modifying if-
then-else conditions. Based on this analysis, we suspect that partial refinements occur more
frequently, and this makes the Change asset template far more frequently applicable
than the Refine asset template.

An example of a Change asset scenario is the pair formed by commit
2627b7e15c6 and its predecessor. In Listing 5.3, a developer removes the call to the
ip_vs_conn_drop_conntrack function (we used the − symbol to indicate the line removed)
to avoid a crash, as he explains in the message. This is the only change; the other lines
remain untouched. So, we consider this example to be a non-refinement, as there is a
clear intention to change the feature behaviour by solving a bug. Moreover, regardless
of the commit message, function call removals are often not refinement transformations
[BSCC04, CCS10]. Unless the function has a void behaviour, the resulting program tends
not to have a compatible behaviour to the initial one. In this example, products not
containing the net/netfilter/ipvs/ip_vs_conn.c file are refined according to the set of
products S specified in the Change asset template.

Listing 5.3 – An excerpt of “net/netfilter/ipvs/ip_vs_conn.c”

i f ( cp−>f l a g s & IP_VS_CONN_F_NFCT) {
− ip_vs_conn_drop_conntrack ( cp ) ;
/∗ Do not a c c e s s conntracks during subsys cleanup because
nf_conntrack_find_get can not be used a f t e r connt ra ck cleanup
f o r the net .∗/
. . .

We do not know precisely the type of change performed in the 55345 commits
returned by the query. A possible strategy could be processing the code changes to classify
them according to the structures affected. For example, one might know if the change
is a method addition, a class addition, a method call removal, among others. However,
6 Change Asset example: http://github.com/torvalds/linux/commit/2627b7e15c. Rafael

J. Wysocki commited on Jul 8, 2014; version v3.16-rc5.

http://github.com/torvalds/linux/commit/2627b7e15c
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this would require significant effort and we found no tool able to classify changes in C
systems. So, we decided to follow a simpler approach, which analyzes commit messages
for identifying terms that suggest that changes are not behavior preserving. It consists of
analysing commit messages and ranking every term according to its frequency in the text.
To perform this task, we performed the following steps: first, in Neo4j, we downloaded a
JSON file containing all of the yielded information from the Change asset template
query. Thereafter, we developed a Java program that ignores information in the JSON file,
like commit ids, authors, among others, except the messages themselves. This program
then creates a text file for every commit message with the respective content. So, after
performing this step, we had 55345 text files, each one containing the content of a commit
message. The next step consists on using Lucene,7 a natural language processing tool that
analyses text files, and ranks every term found according to its frequency. Since every
document here corresponds to a commit message, we are able to know the number of
commit messages that had each term.

Lucene ranked 209.328 terms that were found in the 55345 messages. We can see
from Table 5.1 that Fix and Bug occupy the 2nd and 146th positions, respectively. This
suggests that a great number of the Change asset instances are bug fix scenarios.
Patch is the 3rd most used term, which also suggests the high presence of bug fixes or
general improvements, which may or not be code refinements. Other words that might
suggest the presence of product line refinement changes do not seem as frequent, like
Rename and Refactor. This only gives a general idea, but we can not be sure about
the exact changes performed in Change asset without analysing the code. Messages
may not be well-written, or incomplete. Developers often do not explain in detail their
commits and surely express differently their ideas, so this is just an approximation. Being
conservative and considering that only the documents containing Bug and Fix represent
partial refinement scenarios and all the others are refinement, we then have 12680 Change
asset instances instead of 55345. The number decreases considerably, but we would still
be able to support at 22% of the scenarios analysed.

The Lucene tool automatically excludes terms that are not of our interest, like
prepositions, pronouns, among others. We also configured the tool to ignore others terms,
such as signed and off, which are present at the end of every commit message and just
pollute the rank, since they do not mean anything for us. Besides analysing the rank of
every single term, Lucene also allows us to search for specific expressions, for example, the
number of messages that contain bug and fix, and including other possible terminations,
like fixes. This provides a more powerful search than the single term one, but there is no
ranking in this case. We found similar results by looking for expressions involving terms,
and the results are available in our website.
7 Lucene website: http://lucene.apache.org/

http://lucene.apache.org/
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Term Frequency Rank
Use 12609 1
Fix 11836 2
Patch 9921 3
Add 9916 4
Remove 8352 8
Error 4200 41
Change 4131 42
Bug 1870 146
Failure 1228 267
Rename 1111 305
Modify 431 954
Refactor 422 976

Table 5.1 – Frequent terms in Change asset commit messages

In addition to analysing Change asset commit messages, we also find commits
that only change spacing in code files by using Conflicts Analyzer,8 an open source tool that
classifies conflicts according to a set of patterns [Acc15]. Although we are not dealing with
conflicts, the tool identifies differences between source code files. So, for every Change
asset instance, we compare the initial and final files. From the 55345 commits returned
in the Change asset query, 777 only change whitespaces, so these can be considered
product line refinements, which corresponds to approximately 1,4% of the instances for
the Change asset template. We consider this number to be high, but it depends on the
project development practices. In the Linux case, changes have fine granularity, so this
seems to be common. Commit 2055fb41ea9 is one of the instances found. In this commit,
a line break is added before an if statement. No other changes are performed.

Our template could still be applied in this situation, because we do not make
any restrictions to the changed artifact, but one should rather make use of the Refine
asset template, as it gives guarantees that all products are refined, differently from the
Change asset template, that assumes that the asset is not refined and gives behaviour
preservation guarantees for only a subset of the existing products. For this reason, we
exclude these instances. The other three excluded instances are permission changes. For
example, commit 186026874c10 changes the permission code of a C source file from 755
to 644. In the Git version control system, which we deal with, permission changes may be
commited in projects whose configuration file has the filemode parameter set to true, like
8 Conflicts Analyzer website: http://twiki.cin.ufpe.br/twiki/bin/view/SPG/

ConflictPatterns
9 http://github.com/torvalds/linux/commit/2055fb41ea. Rasmus Villemoes commited on

Jun 20, 2014; version v3.16-rc3.
10 http://github.com/torvalds/linux/commit/186026874c. Dave Airlie commited on Jul 2,

2014; version v3.16-rc4.

http://twiki.cin.ufpe.br/twiki/bin/view/SPG/ConflictPatterns
http://twiki.cin.ufpe.br/twiki/bin/view/SPG/ConflictPatterns
http://github.com/torvalds/linux/commit/2055fb41ea
http://github.com/torvalds/linux/commit/186026874c
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the Linux Kernel.

Adding, Removing and Changing CK Lines

There are at least 18, 9 and 12 scenarios respectively corresponding to mapping
changes, additions and removals. We manually checked the 39 instances. There can be
false negatives, for example, if the dataset is not correctly generated for some cases. In this
case, our query would not return all examples. The numbers regarding these templates are
not high because modifications focusing only on the mapping rarely occur, so the Change
ck line, Add ck lines and Remove ck lines templates have a lower frequency when
compared to others, such as Add assets. This might happen because most of the commits
modify at least one source code file and some of them also modify the FM. The Change
ck line template presents the highest number of instances of the three patterns, probably
because developers often remove and add mappings together with the respective source
code associated or references to the FM as well. It is also possible that an evolution
scenario captured by one of our templates corresponds to a longer sequence of commits.
Since we try to match each commit pair separately with the templates, this would explain
the low occurrence. We did not find any problem in the dataset, the main problem was
query imprecision.

We provide an example of a Change ck line instance in Listing 5.4, that shows
the differences of 5a90af67c2 11 according to its predecessor. The presence of the artifact
davinci-cpufreq.o was conditioned to the activation of CONFIG_ARCH_DAVINCI_DA850.
After the change, the CONFIG_ARCH_DAVINCI feature is mapped to this artifact
instead. In the message, they explain that this commit fixes a build error. In such
situations, there are no changes to the FM and implementation; only the CK changes,
as we stated in our query. In this case, our template guarantees that products without
the CONFIG_ARCH_DAVINCI_DA850 and CONFIG_ARCH_DAVINCI features are
refined.

Listing 5.4 – Changes made to “drivers/cpufreq/Makefile”

−obj−$ (CONFIG_ARCH_DAVINCI_DA850) += davinc i−cpuf req . o
+obj−$ (CONFIG_ARCH_DAVINCI) += davinc i−cpuf req . o

Each scenario is classified as compatible with one template only, except for the
Add ck lines, Change ck line and Remove ck lines templates. Since they were
found with the same query, we noticed that some scenarios actually had instances of more
than one of the three patterns. Thus, a scenario might be classified as an instance of both
11 CK line change commit: http://github.com/torvalds/linux/commit/5a90af67c2. Simon

Horman commited on July 10, 2014; version 3.16

http://github.com/torvalds/linux/commit/5a90af67c2
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Remove ck lines and Add ck lines templates, so we had to proceed with a manual
analysis as follows.

Adding and Removing Assets

FEVER returned 181 instances of the Add assets template, which were all
manually checked to confirm that they really match the template. Due to errors in the
dataset, 13 of them did not. Therefore, we exclude these instances and only 168 remain,
which precisely match our conditions and are instances of the template. There are at least
16 assets removals. We did not investigate the reason for such a lower removal rate. The
results might be different considering another interval and project.

In Listings 5.5, 5.6 and 5.7, we show a scenario that matches the Add as-
sets template.12 Basically, a line is added to the Linux CK, to map the CON-
FIG_SOC_EXYNOS5410 feature to the exynos5410.o asset. As this asset is new, the
clk-exynos5410.c and exynos5410.h files are added to the implementation. So, as the
Change asset template requires, there is no change to the FM in this case. Also, the
changes in the CK and implementation need to be related, and we do not allow source
file removals or modifications. The only change in this commit that is not listed here is
regarding documentation, but we do not forbid any change to a non-source file.

Listing 5.5 – Changes made to “drivers/clk/samsung/Makefile”

+obj−$ (CONFIG_SOC_EXYNOS5410) += clk−exynos5410 . o

Listing 5.6 – Changes made to “drivers/clk/samsung/clk-exynos5410.c ”

209 l i n e s added

Listing 5.7 – Changes made to “include/dt-bindings/clock/exynos5410.h ”

33 l i n e s added

As we have already discussed, we only classify as Add assets instances, commits
that only touch the implementation and CK. So, other artifacts like the variability model
are not allowed to change. However, among the commits returned by FEVER for our
Add assets query, we found 1 commit that changes the Kbuild file, 11 that change the
Kconfig and another example where additional CK lines change. In all these examples,
there are additions to the Makefile mapping and implementation files. However, other
changes are not allowed and should not have been returned by FEVER. For example,
commit d3e6573c48 13 and its predecessor change additional lines in the CK. However, by
12 Add assets commit: http://github.com/torvalds/linux/commit/e7ef0b632e. Kukjin Kim

commited on May 26, 2014; version 3.16-rc1.
13 http://github.com/torvalds/linux/commit/d3e6573c48. Haojian Zhuang commited on

Dec 24, 2013; version v3.15-rc1.

http://github.com/torvalds/linux/commit/e7ef0b632e
http://github.com/torvalds/linux/commit/d3e6573c48
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a mistake, these extra changes do not appear in the dataset, so it would not be possible
to filter them. The excluded instance of the Remove assets template was commit
182f3fe929 14 and its predecessor, which also changes the Kconfig. In this example, the
dataset was generated without the edge that relates the commit and a Kconfig change.
This should then be classified as a feature removal, where the three elements of the product
line are affected. Although our query is correct and should not return such examples, the
dataset was not correctly generated in a few cases.

Reason # Excluded instances Problem due to
Changes in Kbuild 1 Dataset
Changes in Kconfig 11 Dataset
Changes in additional CK
lines

1 Dataset

Total 13 -
Table 5.2 – Excluded instances - Add assets template

Remove Feature

Our query returned 93 feature removal scenarios, but only 68 were classified as
valid according to our templates. The other 25 non-removals, such as scenarios where the
features were actually being moved. We did not consider these cases to match our pattern,
since the feature was not actually removed. So, we exclude them. All excluded instances
were found due to query imprecision, so we are not aware of bugs in the FEVER tool for
this template. We already provide a valid example of the Remove feature template
instance in Section 3.1, and the examples are available in our website.15

We also present numbers regarding excluded instances of the Remove feature
template. In Table 5.3, we classify these scenarios into six categories. In five evolution
scenarios of them, features were actually being moved/renamed. Commit messages help to
identify these situations. In some examples, instead of being removed, features are simply
being merged to other features. So, existing features incorporate their behaviour. For this
reason, these instances were not considered feature removals. As we discuss, the Remove
feature template requires all parts of the product line to be affected. According to
Table 5.3, only the FM was changed in four instances. In other commits, we found feature
removals, but also extra changes, like dependency changes in the Kconfig. This would be
the case of composing the Remove feature template with a move feature template,
for example. So, we also discarded one commit for this reason. Finally, we also observed
that, in some examples, features were not being completely removed, and as this was not
14 http://github.com/torvalds/linux/commit/182f3fe929. Malcolm Priestley commited on

Feb 13, 2014; version v3.15-rc1.
15 http://github.com/spgroup/theory-pl-refinement/tree/dev

http://github.com/torvalds/linux/commit/182f3fe929
http://github.com/spgroup/theory-pl-refinement/tree/dev
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explicitly stated in the messages, we also discarded seven instances for this reason and
some more commits that include changes to other artifacts not related to the feature being
removed.

Reason # Excluded instances Problem due to
Move/Renaming 5 Query
Feature merge 3 Query
Changes in FM only 4 Query
Dependency changes 1 Query
Feature not completely removed 7 Query
Other 5 Query
Total 25 -

Table 5.3 – Excluded instances - Remove feature template

Differently from the Add assets and Remove assets problematic instances,
Remove feature ones were not returned due to dataset problems. They all satisfied
conditions specified in the Remove feature query, but the query is not precise enough
to eliminate them automatically. One of the main problems is that we do not restrict
source file modifications to deletions. Intuitively, one might argue that when a feature is
removed from a product line, and no other changes are performed, we should have source
file deletions, but not additions/modifications. This would be valid in a compositional
product line development context, where one code artifact implements exclusively one
feature. However, in the Linux system, developers can make use of ifdefs, so an artifact
may be the implementation of more than one feature, and removing a feature from the
code means basically removing the respective ifdef only. For this reason, we allow source
code removals and modifications, but we need to filter them manually.

Summary

Now, we present the numbers of each template in Table 5.4. As discussed, the
Change asset template had the highest number, corresponding to almost 90% of the
evolution scenarios analysed. By identifying commits that actually change only whitespaces
and permissions, we exclude 780 scenarios. We try to reduce the query imprecision by
analysing commit messages, which suggest that non-refinement occur more frequently
than refinement scenarios. The other templates had considerably low numbers. The Add
assets query returned 181 instances, but, as explained, only 168 were classified as valid,
since the other 13 had unnexpected characteristics due to dataset and query problems.
Similarly, the Remove assets template had 16 instances only. The templates that deal
with changes to the CK (Change ck line, Add ck lines and Remove ck lines) had
18, 9 and 12 instances. Although we do not exclude any scenario, we believe that having
only one query to find three templates can lead to imprecision. Finally, the Remove
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feature query returned 93 instances and after manual analysis 68 remain valid. We
believe that there are no problems due to dataset in this template, but the query is not
precise enough.

Template Query
returned

Excluded Problems Remaining

Change asset (and pos-
sibly Refine asset)

55345 780 Changes can be
of any type

54565 (89.4%)

Add assets 181 13 Dataset 168 (0.27%)
Remove assets 17 1 Dataset 16 (0.02%)
Change ck line 18 0 Query 18 (0.02%)
Add ck lines 9 0 Query 9 (0.01%)
Remove ck lines 12 0 Query 12 (0.02%)
Remove feature 93 25 Query 68 (0.11%)

Table 5.4 – Template occurrence - Linux Kernel

As explained, the numbers in Table 5.4 are lower bounds of the cases we could
confirm. We provide a summary of our analysis in Table 5.5. From the 67310 commits, 5413
are merge commits, which are discarded by the tool because they correspond to integration,
not evolution, scenarios. Although there might be changes during manual merges, they are
not really relative to a single previous product line, as captured by our templates. Hence,
we could give support for approximately 90% of the cases. There are, in fact, 6221 commits
that, together with its previous commits, do not match any of our current templates,
which could include, for instance, commits that only change feature dependencies in the
FM, or commits that represent feature additions, or even refinement scenarios such as
feature renamings. As discussed in Chapter 4, the proposed templates were adapted from
product line refinement templates proposed in previous works [NBA+15]. So, we aim to
investigate these 6221 instances in more detail, and, if necessary, propose new templates
to deal with them as well.

Total number of commits 67310
Merge commits 5413
Number of commits analysed 61897
Match our templates 55676 (89.94%)
Do not match any template 6221 (10.06%)

Table 5.5 – Template occurrence summary - Linux Kernel

We are not able to identify instances of all our current templates with the FEVER
tool. For example, we do not provide any result for the Transform optional feature
to mandatory template. As we illustrate in Section 2.3, the Kconfig model does not
provide a clear feature classification into optional, mandatory, alternative and or. So, the
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current version of the tool is not able to inform a feature type. This would require a deeper
interpretation of the Kconfig model, and possibly add and improve modules of the FEVER
tool.

5.2.2 Soletta

Soletta is a development framework that makes writing software for IoT (Internet
of Things) devices easier. With the significant recent development in this field, we have
more connected devices, like coffee machines, printers, personal robots, among others.
So, IoT is a growing area, and several applications are being developed in this context,
including Soletta. By abstracting hardware and operating system details from a program,
Soletta allows developers to write software for controlling actuators and sensors and
communicating using standard technologies.

The same process used in Linux to find template instances was also applied to
Soletta. By running FEVER and executing the queries, like the Remove feature query
detailed in Listing 5.1, we obtain the numbers regarding the Soletta project for the period
ranging from 26 Jun 2015 to 19 Apr 2016. This interval corresponds to the whole history
of this project up until the last analyzed commit. We analyzed 2300 commit pairs for the
Soletta project.

In Table 5.6, we notice that the numbers are significantly lower when compared
to Linux. This was already expected, as this project is considerably smaller and we are
analyzing 2300 commits in this project. However, we can see some differences. The Change
asset query returned 1496 instances, or 65% approximately. In the Linux project, this
template corresponds to almost 90% of the commits. We believe that this difference is due
to the commits granularity and project’s maturity level. In the Linux project, commits
have a finer granularity than in Soletta, so developers commit more often in the former
system. So, it is expected a higher Change asset instances number. Furthermore, Linux
is considered a stable project, so changes are performed mostly to the code, and there are
less feature additions, for example, than a more recent project like Soletta.

We only found five Add assets instances. We expected to find more, as in the
beginning the project might have a significant number of asset additions. Nevertheless,
most asset additions are also feature addition scenarios, where, apart from CK and
implementation, the FM also changes. So, we consider this hypothesis. These instances
would best match the Add new optional feature refinement template proposed in
previous work [PTD+15]. There was no asset removal that matched our Remove assets
template. This is understandable because Soletta is relatively new.

The numbers for Change ck line and Add ck lines were proportionally higher
than in Linux. A possible explanation is that approximately 90% of the commits in Linux
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only change the implementation, whereas in Soletta only 65%. Like Remove assets,
Remove ck lines had 0 instances. We found five instances of the Remove feature,
but three were excluded. So, only two remain. This is also justifiable by the fact that
this is a recent project, so we expected to find a greater number of additions instead of
removals.

Template Query
returned

Excluded Problems Remaining

Change asset (and pos-
sibly Refine asset)

1496 0 Changes can be
of any type

1496 (65%)

Add assets 5 0 Dataset 5 (0.22%)
Remove assets 0 0 Dataset 0 (0%)
Change ck line 9 0 Query 9 (0.39%)
Add ck lines 3 0 Query 3 (0.13%)
Remove ck lines 0 0 Query 0 (0%)
Remove feature 5 3 Query 2 (0.09%)

Table 5.6 – Template occurrence - Soletta

The results are summarized in Table 5.7. Surprisingly, we found only one merge
commit for this period in Soletta. Thus, actually 2299 commits were analysed. As we
explained, the FEVER tool ignores merge commits. So, at least 65.89% of the evolution
scenarios would match our templates. This rate is much lower than Linux, that is almost
90%. We believe that this difference is due to the projects maturity level. The Linux
project is older and the analysed interval in Soletta includes the start of the project,
that tends to have more feature additions, which would not match any of our templates.
Another possibility is the granularity level for the changes. Linux commits have a finer
granularity. So, each commit in Soletta possibly would be the result of applying more than
one partially safe evolution template. Since we try to match each commit pair to a single
template, we would not include such instance.

Total number of commits 2300
Merge commits 1
Number of commits analysed 2299
Match our templates 1515 (65.89%)
Not match any template 785 (34.14%)

Table 5.7 – Template occurrence summary - Soletta

We have the same problems in Soletta and Linux regarding the results, as we use
the same queries and FEVER in both projects. Change asset instances are the most
risky, since we do not precisely analyse the performed changes. So, we do not know the
number of refinements, for example. Although we did not find any bug in the dataset for
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the Add assets and Remove assets, we encountered such errors in Linux, so we do
not eliminate this possibility. For the other four templates, the queries are not precise
enough and we do not consider problems in the dataset because we did not find any of
them.

We excluded three Remove feature instances from Soletta re-
sults. Commit 5293f12e59 16 was excluded because it is basically a renam-
ing, where the FLOW_NODE_TYPE_FREEGEOIP feature is renamed to
FLOW_NODE_TYPE_LOCATION. So, this example is not considered to be a
feature removal. We had similar situations in commits 8d2e8aeb2c and 446bc7e43c. We
can see removals, but the features are actually renamed into others.

By running the Conflicts Analyzer tool over Soletta Change asset instances,
we did not find any commit changing only whitespaces. This may be due to two reasons:
the number of processed commits (2300) and the project development practices. It might
be the case that in the Linux project, commits have finer granularity and developers
accumulate more changes before commiting. We also perform the term analysis for commit
messages in Soletta. Lucene found a total of 6028 terms in the 1496 messages. As shown
in Table 5.8, the word fix occupies the top again, as the most used term, appearing in
356 documents. Other words found in the Linux analysis like Add, Error, Remove, Bug
and Refactoring also appear, but in lower positions. Although this project is different,
we can see some similarity to Linux rank. This result indicates that bug fixes occur in a
significant frequency in both projects, which is possibly higher than refactoring scenarios.

Term Frequency Rank
Fix 356 1
Add 307 2
Error 95 22
Remove 78 40
Change 74 42
Bug 14 390
Failure 5 825
Modify 5 826
Refactoring 3 1152

Table 5.8 – Frequent terms in Change asset commit messages

16 http://github.com/solettaproject/soletta/commit/5293f12e59. Flavio Ceolin com-
mited on Sep 10, 2015; version v1_beta4.

http://github.com/solettaproject/soletta/commit/5293f12e59
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5.3 Threats to Validity
As this is a preliminary evaluation, in this section, we discuss internal, external

and construct validity.

Construct: As already mentioned in Section 5.2, to find occurrences of the Change
asset template, we search for any change in the implementation and do not analyze
which type of modification was performed, thus possibly also retrieving commits which
actually represent occurrences of the Refine asset template [NBA+15]. Although we
manually examined 50 commits and performed analysis using both Lucene and Conflicts
Analyzer, we can not generalize to all commits. Regarding the term frequency analysis, we
are aware that it is superficial to make conclusions, specially considering that developers
express differently their ideas. Moreover, we do not consider synonyms in that analysis,
which could also lead to more precise results. Scenarios matching the other templates can
be safe only in pathological cases, so we do not take them into consideration.

Internal: We should consider that the tool we use may have bugs. The dataset
generated by FEVER can have extra or less edges than it should, and this implies directly
in our results. For example, if in a Remove feature scenario, FEVER does not capture
that the three elements of the product line have been changed, our query will not return
such scenario. We discussed such examples in the previous section. We manually analyzed
several instances, so there is evidence that, except for Change asset instances, most of
the results are correct. We should remind that the manual analysis was performed by one
person only and this is also error-prone.

We did not find false negatives, but if we could detect and reduce them, we would
have even better results. False negatives rate also depends on the number of commits
matched to an evolution scenario. We analyzed each commit separately. For instance, one
could remove a feature in two parts: first, the FM and CK could be changed, and in the
subsequent commit only the implementation would be removed. In this situation, these
two commits would not match any template, although, in sequence, they constitute a
feature removal scenario.

We also consider the queries precision as an internal threat to validity, since it
is not trivial to precisely classify commit changes. Finally, we assume certain template
conditions to be true, such as well-formedness. To reduce such imprecision we should use
a strategy to verify well-formedness [BGM+16] to make sure that the template would be
applicable. In our analysis, we make the open world assumption. Consequently, we analyse
the scenarios locally instead of globally. Thus, this is also a threat. In systems such as
Linux it is not trivial to analyse changes globally and this is also part of our future work.

Furthermore, we should provide the set of products refined in each scenario. This
way, developers know, for instance, when considering the motivating example shown in
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Section 3.1, the exact set of products that had the LEDS_RENESAS_TPU. As already
discussed, if all products have this feature, we would have no products refined and this
means an empty S. Consequently, developers would have no support. In contrast, if the
feature is not present in a high number of products, the support tends to be much higher.
So, this is also a threat and part of our future work.

External: We only examined Soletta and a small part of the Linux repository
history. Hence, we can not generalize the result for other history periods or projects, which
may have different development practices, such as commits with coarser granularity and
different programming languages. Perhaps, if we analyze other projects, the Change
asset template could be used together with others, since one might change not only
the implementation but also the FM and the CK in a single commit. However, as a
consequence, other templates could have a higher rate of occurrence. Although we do not
include other projects, we consider the Linux system significant because of its popularity
and complexity.
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6 CONCLUSIONS

In this work, we define partially safe evolution for product lines. The motivation of
this work is that product line evolution is a challenging and complex task. It is important
to give guarantees during this process, even for a product subset only. Especially in
highly configurable systems like the Linux Kernel, there are thousands of possible valid
configurations and predicting whether products have their behaviour preserved is often
hard.

This problem had already being tackled in the scope of safe evolution scenarios. A
product line is safely evolved when all existing products have their behaviour preserved. So,
we potentially have new products, as long as we are still able to generate the existing ones.
This concept is formalised through a product line refinement theory and it is applicable in
several scenarios, like code refinements, such as function renamings. Refinement templates
capture these scenarios and abstractedly represents them to guide developers and avoid
them overly reasoning about the theory.

Nevertheless, developers eventually perform unsafe changes. For instance, feature
removal scenarios are possibly non-refinements, unless the removed features have a void
behaviour. Otherwise, products having this feature do not have their behaviour preserved.
The existing theory does not give any support for this and other unsafe scenarios. We
should notice, however, that the other products (the ones not containing the removed
feature) are not affected. So, the evolution can be safe according to this specific products
subset. This is the idea behind the partially safe evolution concept. We formalise this
concept in the PVS theorem prover through a partial refinement theory. We use the S

index to represent the set of products refined and make considerations regarding its size.
We also define and prove a set of properties regarding partial refinement, like pre-order,
which is essential to guarantee that every product line partially refines itself and after
several partial refinement operations, the final product line partially refines the original one.
We then show that we have actually two definitions of partial refinement, and the main
difference is the form they handle feature names. (Definition 8) does not deal with feature
renaming scenarios, so in this case one might need to use the weaker partial refinement
notion (Definition 13).

As we have discussed, in a product line development context we might have safe
and partially safe evolution scenarios, interchangeably. So, we also establish properties
connecting these notions to suggest how they can be used together. One may need to
perform, for instance, a feature removal followed by a function renaming and we also
provide transitivity properties assuming that refinement and partial refinement operations
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can be interleaved. Apart from transitivity properties, we have a commutable diagram,
which indicates that we may perform refinement and partial refinement transformations
and still achieve the same target. This shows that the order that the transformations are
applied does not matter.

Regarding the partial refinement theory applicability, we define a template catalog
that abstracts common partial evolution scenarios found in practice. For each template,
we analyze the change impact and give refinement guarantees for a proper subset of the
original products. A template describes how each product line element can be modified in
an evolution scenario.

Templates can be more general than others, in the sense that they are compatible
with several languages of the three elements. However, it is usually not possible to
generalize compositional and transformational CK languages when we need to present
the CK in detail. For this reason, we divided the templates into three categories: general,
compositional CK and transformational CK. Compositional and transformational CK
partial refinement templates are similar and represent the same scenarios, but proofs differ
due to the semantics notion used. The entire partial refinement theory and the templates
are mechanised in PVS. As our motivating example (illustrated in Section 3.1) shows a
feature removal scenario found in the Linux Kernel commits history, we present the entire
proof of the compositional Remove feature template. The other proofs are available in
our online appendix.1

Finally, we gather template occurrence evidence in two product line projects: Linux
and Soletta. We believe that these two open-source projects can reveal if the proposed
templates might be useful. Moreover, they represent two opposite extremes in terms of size,
number of contributors, number of features, among others. We used FEVER to analyse
both projects. The tool takes a set of commits as input, and creates a Neo4j database
informing which part of the product line was changed in the specific scenario. So, we create
queries for our templates to find instances in the database. We analysed 67310 commits
of the Linux system, which corresponds to all changes made from version 3.11 to version
3.16. We found that we could support approximately 90% of the evolution scenarios. More
than 89% correspond to implementation changes only. So, we conclude that during this
period Linux developers almost did not change the FM and CK elements and we speculate
that this is due to Linux stability level. Consequently, the other templates, for instance
Add assets, Remove feature and Change ck line, had low occurrences.

We found slightly different results by analysing 2300 Soletta commits. We could
support approximately 65% of the evolution scenarios. We believe that since the Soletta
project was created in 2015 and we analysed its start, developers might have added more
features, for example. As we do not have any feature addition partial refinement template,
1 http://github.com/spgroup/theory-pl-refinement/tree/dev

http://github.com/spgroup/theory-pl-refinement/tree/dev
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this type of scenario is not returned by our queries. Nevertheless, this could be the case of
a product line refinement. So, some scenarios that do not match our templates could be
supported by the refinement theory.

6.1 Contributions
This work has the main following contributions:

• A partially safe evolution concept for product lines that is formalised through a
partial refinement theory (Chapter 3);

• A set of properties to support developers, for instance, in the step by step evolu-
tion and dealing with refinement and partial refinement theories interchangeably
(Chapter 3);

• A template catalog that abstractedly represents partially safe evolution scenarios
and precisely inform the subset of products refined in each situation (Chapter 4);

• A study to find evidence of the templates applicability in two product lines project:
Linux and Soletta (Chapter 5).

6.2 Related work
This section presents related work in tools and formal verification for software

product lines. We discuss the different approaches and similarities with this work.

As discussed, this work is based on previous works. Borba et al. [AGM+06, BTG12]
define safe evolution for product lines. A product line is safely evolved when behaviour
preservation holds for all initial products, and this is formalized through a refinement
theory. Teixeira et al. [TBG15] extended this work for product populations and multi
product lines. With the aim of guiding developers in possible refinement scenarios, Neves
et al. [NBA+15] and Benbassat et al. [BBT16], among others, propose template catalogues
to abstract safe evolution scenarios. Finally, a product line of theories for reasoning about
safe evolution of product lines was proposed by Teixeira et al. [TABG15] to investigate
and explore similarities between different languages that specify product line elements.

Dintzner et al. [DVDP14] present a classification of feature changes as well as
a tool named FMDiff to automatically analyze differences in Linux variability models.
The change categories are specific to structures found in Kconfig specifications, such as
feature dependency changes. Finally, they evaluate the tool by analyzing commits from
the Linux repository history. Thüm et al. [TBK09] classify FM edits into refactorings,
specializations, generalizations and arbitrary edits by using satisfiability solvers. Our work
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differs because it deals with arbitrary changes to any of the three product line elements.
We have properties dealing with changes to the FM, so these in particular could be used
in such tools, providing even more support for developers when making changes to the
FM, by informing the subset of refined configurations in each case.

Passos et al. [PTD+15] propose a pattern catalog containing feature addition
and removal templates applicable in the Linux context. The main difference from their
patterns to ours is that they do not focus on giving guarantees for developers in partially
safe evolution scenarios. Additionally, they present both refinement and potential non-
refinement templates. To verify the scenarios occurrence in practice, they conducted an
experiment by manually analyzing the Linux repository trying to find instances of their
templates and discarded the ones that did not present a significant occurrence rate. While
they focus on proposing templates not only representing refinement scenarios but also non-
refinements, our aim is to propose a new partial refinement theory and partial refinement
templates. They also suggest the need for a new theory to address non-refinement scenarios.

Also in the context of the Linux system, Ziegler et al. [ZRL16] present an approach
to identify relationships between configuration options, which allows to discover source files
that might be affected due to a change in a configuration option. They found that most
configuration options affect few files only, and a few options affect a significant number of
files. This work is related to ours, as we also analyse changes in the Linux system. However,
this is not the core of our work. We could use their approach to present more detail of
the evolution scenarios to give an idea of the number of products affected by a change to
a configuration option. Furthermore, Lotufo et al. [LSB+10] provide a quantitative and
qualitative analysis of the Linux product line. They discovered changes related to the FM,
such as the number of features and the tree height, and how these changes influence in
the Kconfig model complexity. While they focus on the Linux FM, we are interested in
changes to the three elements of a product line.

Seidl et al. [SHA12] provide a remapping approach to keep product line artifacts
after evolution. The authors classify changes to each product line element and inform
developers possible inconsistencies that may arise. Our solution could be integrated to
theirs in establishing other possible categories and supporting the inconsistency analysis,
as we provide an impact analysis for a set of evolution scenarios.

Nieke et al. [NSS16] analyze feature model evolution and define temporal feature
models, which allow features to have an expiration date. For instance, if a feature is removed
it is no longer valid. It is also possible to have locked configurations. A configuration
that is locked should never be broken. This information is achieved through analyzing
possible changes, such as feature renaming, deletion, among others, to temporal FMs. This
work resembles ours because it gives support for some partial refinements regarding the
variability model. Developers can change some configurations and still be certified that



Chapter 6. CONCLUSIONS 100

the locked ones remain valid. However, they only analyze the variability model and do not
propose a partial refinement theory, differently from our work.

Also in the product line evolution context, R.P.d. Oliveira et al. [dOSdAdSG16]
evaluates Lehman’s laws of software evolution [Leh80] by checking their validity in two
SPL industrial projects in the medical and financial domain. So, they analysed whether
there is a relationship between six Lehman’s laws and the evolution of common, variable
and product-specific assets. Results shown that only one law was completely supported
for all assets within both empirical studies. They then propose several guidelines to ease
the product line evolution task, which is one of the main challenges in the SPL field. This
work resembles ours because it aims to support developers in product line evolution, but
the approaches are different. They try to check if Lehman’s laws are valid in product line
development contexts and suggest guidelines, and we tackle this problem in the context of
partially safe changes and use formal reasoning.

Pfofe et al. [PTS+16] propose VariantSync, which is a tool for synchronizing software
variants. The clone-and-own approach is often used by developers and variants may not
evolve consistently. So, the gap to product lines tends to become larger over time. With
this tool, one can reduce this gap by automatically synchronizing variants. The approach
involves relating code changes to feature expressions. Thus, a code change can only be
merged to a variant if the feature expression evaluates to true. This work is related to
ours in the sense that they support developers in product line evolution, but whereas their
strategy is tool-supported and focused on clone-and-own product lines, ours involves a
refinement theory and focus on partially safe evolution scenarios. Theories that reason
over product populations or multi-product lines might be useful in this context [TBG15].

A number of researchers [CHS+10, GLS08, LPT09, CCP+12] use model checking
techniques [CGP99] to verify products lines. Sabouri and Khosravi [SK14] try to tackle the
well-known state space explosion problem by statically analyzing product family models,
before checking them against properties (expressed in linear temporal logic [Eme90]),
to avoid re-verifying products by using previous results. This work is related to ours,
since in both proposals, not all products are verified. However, we defined a partial
refinement theory and verify product refinement, whereas their focus is not refinement,
but to verify general properties, such as whether a product has a specific feature. There
are also approaches to verify properties regarding probabilistic product lines. Chrszon et
al. [CDKB16] defined the ProFeat language to specify probabilistic product lines and a
translation engine from ProFeat models to PRISM [KNP02] models, so that they can use
the checker to verify such properties. Again, the focus is not refinement, whereas we do
not deal with probabilistic product lines.

Finally, there are several works [RST+04, ZKK12, Mon11] that propose change
impact analyzers in a specific context, such as the Java language. The approaches involve
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running tests to check whether behaviour is preserved after a change. Our work is also
related to change impact analysis but we do not deal with any programming language in
particular, so our discussion is more abstract. Furthermore, we reason about changes not
only to code, but also FMs and CKs, as we are dealing with product lines.

6.3 Future work
As we mention in Chapter 3, we reason over scenarios that combine refinement

and partial refinement operations, as they may both occur in practice. In this context, we
show that performing these operations in different orders can lead to the same resulting
product line. We have a property relating partial refinement and name aware refinement,
but we also intend to expand our theory to deal with function transformations to specify
refinement (see Section 3.3), and also prove that refinement and partial refinement commute.
Additionally, we intend to correlate our work with previous work [TABG15] that defines a
product line of product line theories. This way, we could apply our theory to itself and
integrate our new theory to the existing product line of theories.

We have defined a number of templates, but there are potential partially safe
changes that we are not dealing with. For example, transforming an OR group into an
alternative group would be a non-refinement scenario, since we are not able to select
more than one feature in the alternative group of the evolved FM. We also intend to
investigate variations of the proposed templates. For instance, the Remove feature
template assumes that the sub-tree under the removed feature is also removed. Thus, this
does not allow developers to remove a feature in the middle of a FM keeping its children.
So, we could have more templates to deal with this and other partial refinement situations.
Although we have templates to deal with different CK notions, we do not investigate the
compatibility of our templates regarding more complex FMs that deal with cardinality
and attributes, for example. This is also another possible future work.

We intend to expand our empirical analysis, which is still preliminary, by evaluating
other projects, and determining the exact value of S for each scenario. If so, developers
would be aware of the exact set of products refined in each evolution scenario. We would
then have a better idea of the support provided. We could also propose a minimal set
of templates and investigate their completeness. If it is not possible to obtain absolute
completeness, we could then establish a relative completeness by showing that the templates
are expressive enough to transform an arbitrary product line to a reduced normal form.
Furthermore, we plan to answer other research questions, such as if our approach is safe and
also check the number of developers that performed safe and unsafe changes. Interviewing
developers and using bug trackers to understand if there are bugs related to safe scenarios
are also part of our future work.
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Additionally, we could also further investigate Change asset instances. Although
we provide a commit messages analysis, it would be useful to know precisely the type of
changes in each scenario, and also classify them in refinements and non-refinements. A
possible approach is to use the SafeRefactor tool [SGSM10, MRG+17] for C programs to
identify scenarios that are actually refactorings. We should consider verifying product line
well-formedness considering configurable systems [MRG+17, BGM+16]. We also intend
to classify refactorings into root-canal or floss [MHPB12], and give a precise difference of
number of ifdefs during evolution scenarios. We could also analyse, for each Change asset
instance, the number of code lines changed. We believe that this number is considerably
low in Linux because commits have a fine granularity. The FEVER tool can also be used
to discover the refinement templates instances and one could compare the results with
partial refinement instances. Moreover, we also intend to perform a study where developers
apply the templates in real time. This could lead to different results from our analysis,
which is retrospective.

Although we defined partial refinement in the product line context, we are not aware
of such notion for arbitrary programs. So, another possible future work is define partial
refinement for sequential programs, for example. One would then build on the traditional
refinement notion for sequential programs, that consists on weakening preconditions and
strenghtening postconditions. An analogous reasoning could be applied to concurrent
programs. A partial program refinement notion would allow us to increase the support in
some scenarios. Instead of giving support for a subset of products only, for the affected
products, we would give support for part of the product.

Another possible expansion of this work is dealing with probabilistic product lines,
that are usually found in domains that include safety critical systems, such as avionics and
automotive. This would involve defining refinement and potentially also partial refinement
for probabilistic product lines. The ProFeat language already allows developers to specify
these product lines and the models are verified using the PRISM checker. So, this could
be extended with refinement.

Finally, we would like to develop a tool to support developers on software product
line evolution. We could implement transformations described in the proposed templates
to allow developers to automatically evolve product lines and inform the set of products
refined. So, the tool would provide another layer of abstraction and use the partial
refinement theory concepts in background. Furthermore, we also intend to provide a PVS
guide with good practices. In total, we proved 54 theorems, 57 TTCs and 14 lemmas. So,
we could share our experience using this theorem prover.
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