
Are Architectural Smells Independent from Code Smells?
An Empirical Study

Francesca Arcelli Fontanaa, Valentina Lenarduzzib, Riccardo Rovedac,
Davide Taibib

aUniversity of Milano-Bicocca, Milan (Italy)
bTampere University, Tampere (Finland)

cAlten Italia, Milano, (Italy)

Abstract

Background. Architectural smells and code smells are symptoms of bad code
or design that can cause different quality problems, such as faults, technical
debt, or difficulties with maintenance and evolution. Some studies show
that code smells and architectural smells often appear together in the same
file. The correlation between code smells and architectural smells, however,
is not clear yet; some studies on a limited set of projects have claimed that
architectural smells can be derived from code smells, while other studies
claim the opposite.
Objective. The goal of this work is to understand whether architectural
smells are independent from code smells or can be derived from a code smell
or from one category of them.
Method. We conducted a case study analyzing the correlations among 19
code smells, six categories of code smells, and four architectural smells.
Results. The results show that architectural smells are correlated with code
smells only in a very low number of occurrences and therefore cannot be
derived from code smells.
Conclusion. Architectural smells are independent from code smells, and
therefore deserve special attention by researchers, who should investigate
their actual harmfulness, and practitioners, who should consider whether
and when to remove them.

Keywords: Code Smells, Architectural Smells, Technical Debt, Empirical
Analysis

Email addresses: francesca.arcelli@unimib.it (Francesca Arcelli Fontana),
valentina.lenarduzzi@tuni.fi (Valentina Lenarduzzi), riccardo.roveda@alten.it
(Riccardo Roveda), davide.taibi@tuni.fi (Davide Taibi)

Preprint submitted to Journal of System and Software April 29, 2019

ar
X

iv
:1

90
4.

11
75

5v
1

 [
cs

.S
E

]
 2

6
A

pr
 2

01
9

1. Introduction

Architectural smells, as introduced by Garcia et al. [1], are ”Architec-
tural decisions that negatively impact system internal quality. Architectural
smells may be caused by applying a design solution in an inappropriate con-
text, mixing design fragments that have undesirable emergent behaviors,
or applying design abstractions at the wrong level of granularity.” Several
studies claim that architectural smells lead to architectural erosion and that
architectural issues are the greatest source of technical debt [2], [3]. Hence,
they have to be considered as one of the primary sources of investigation for
mitigating the problem of architecture degradation [3]. The code infected
by an architectural smell is a natural candidate for refactoring in order to
prevent the occurrence of critical quality issues.

Code smells were introduced by Fowler [4] to describe a code structure
that is likely to cause problems and that can be removed through refactor-
ing. They commonly increase the software’s defectiveness [5], [6] and change
proneness [5], [7] and increase maintenance effort [8], [9]. Unlike architec-
tural smells, they are defined at a lower level of granularity and do not take
into account the software architecture of the system under development,
commonly focusing on class or method levels.

Several studies have investigated the interrelations between code smells,
e.g., whether a code smell leads to another code smell, or whether some
code smells tend to go together [10], [11], [12], [13]. Other studies have
considered the possible correlations and the impact of code smells on various
software qualities such as defects, bugs, changes, and code understandability
([14], [15], [16], [17], [7]).

To the best of our knowledge, only few studies have been published
that analyze the correlations between code smells and architectural smells.
Among them, one work [18] identified correlations between code smells and
architectural smells, while another work [19] claims that they are not cor-
related. In any case, no extended empirical evaluations have been carried
out and no code smell stands out as the best indicator of harmfulness with
respect to architecture degradation.

The goal of this work is to understand whether architectural smells can
be derived from a code smell, or from one category of code smells (we con-
sidered the categories proposed by Mantyla [20]). For this purpose, we
designed and conducted a large empirical study on possible correlations ex-
isting between four architectural smells, 19 code smells, and six categories

2

of code smells, analyzing 111 Java projects taken from the Qualitas Corpus
Repository [21]. We considered a large set of code smells defined in the
literature and four architectural smells based on dependency issues that can
have a critical impact on the software quality of a project and its progressive
architecture degradation [22].

Hence, this study aims to assess the existence of any correlation between
code smells and higher-level architectural smells. We did not consider cor-
relations between defects and code smells, which have already been studied
to a large extent in the literature, but only possible correlations between
code smells and architectural smells. The results of this work will support
researchers and practitioners in understanding whether they should detect
both architectural smells and code smells or whether the detection of code
smells alone is enough to highlight the same anomalies that could be high-
lighted by an architectural smell. If we could find some kind of correlation
between architectural smells and lower-level code smells, we could mark ar-
chitecturally problematic parts of software systems for extra attention by
using existing code smell detectors. More importantly, this might enable us
to solve some of the higher-level problems using smaller refactorings, which
would be more desirable for maintainers. The results we obtained do not re-
veal any significant correlation, suggesting that architectural smells cannot
be derived from code smells and practitioners should take extra care to deal
with architectural smells. They cannot focus only on the refactoring of code
smells, but need to pay particular attention to the more dangerous architec-
tural smells as well. Hence, in most of cases, code smells will infect different
classes than those infected by architectural smells, which not only highlights
different problems but also different candidate classes for refactoring.

The main contributions of our work can be summarized as follows:

• We investigated whether architectural smells are correlated with code
smells or with a specific category of code smells. Other studies have
considered correlations with more general architectural problems ([18], [19]).

• We considered a huge number of analyzed projects (111). To the best
of our knowledge, previous studies investigated smaller sets of Java
projects (see Related Work section).

• Possible correlations between code and architectural issues have not
been widely explored. Existing results are contradictory - evidence
that this topic deserves careful attention. Hence, through our study we
further emphasize how important it is for developers and maintainers

3

to take into account both code and architectural smells during their
refactoring activities.

Structure of the paper. This paper is structured as follows: Section 2
describes some related work done by researchers in the last years, while Sec-
tion 3 describes the background on which our paper is based. In Section 4,
we present the case study, where we define the research questions, the met-
rics, the hypothesis and the study context with our Research Questions as
well as the data collection and data analysis procedure. In Section 5, we
show the results obtained and discuss them in Section 6. Section 7 focuses
on threats to the validity of our study. In Section 8, we draw conclusions
and outline some possible future work.

2. Related Work

Many studies on code smells can be found in the literature; they con-
sider different aspects such as the relationships among code smells and their
impact on different features such as faults [14] [6], maintainability [16] [23],
comprehensibility [17], change frequency [7] [24], change size [7] [25], and
maintenance effort [9] [8]. Moreover, several commercial and research tools
for code smell detection have been developed [26] (e.g., HIST [27], JCodeodor [28],
Wekanose [29], JDeodorant [30]). Less work is available on architectural
smells. Hence, in this section we will describe some work found in the liter-
ature on architectural smell definitions, on code smell correlations, as well
as studies considering both code smells and architectural smells.

We need to point out that in the literature, different terms are often
used to describe the same concept: e.g., in some cases code smells are also
called code anomalies, design flaws, design smells, design disharmonies, or
antipatterns. This is the case, for example, for the God Class design dishar-
mony [31], which is similar to the Large Class code smell defined by Fowler [4]
or to the Blob antipattern [32]. Cyclic Dependency is called an architec-
tural smell [33], but corresponds to the Tangle antipattern [34] and to the
Cyclically-Dependent Modularization design smell [35], or is considered an
architectural violation [36].

Our paper focuses particularly on possible correlations existing between
code smells and architectural smells.

2.1. Code Smell Correlations

Pietrzak and Walter [10] describe several types of inter-smell correlations
to support more accurate code smell detection and to better understand the

4

effects caused by interactions between smells. They found different kinds of
correlations among six different code smells by analyzing the Apache Tomcat
project.

Arcelli Fontana et al. [37] analyzed 74 projects of the Qualitas Cor-
pus, detecting six smells, some correlations among smells, and possible co-
occurrence of smells. They found a high number of correlations among God
Class and Data Class, as well as among other code smells that tend to go
together, and a high number of co-occurrences of the Brain Method smell
with Dispersed Coupling and Message Chains.

Liu et al. [12] propose a detection and resolution sequence for different
smells by analyzing certain code smell correlations given by commonly oc-
curring bad smells. They analyzed whether it is better to first identify smell
A than smell B, e.g., Large Class versus Feature Envy or versus Primitive
Obsession, or Useless Class versus other smells. They considered nine code
smells and identified fifteen correlations of this kind.

Yamashita et al. [13] studied possible correlations among smells. They
incorporated dependency analysis in order to identify a wider range of inter-
smell correlations, and analyzed one industrial and two open-source projects.
They found the following correlations: collocated smells among God Class,
Feature Envy, and Intensive Coupling, and coupled smells between Data
Class and Feature Envy.

Moreover, various authors provide code smell classifications or taxonomies
that are useful for capturing possible correlations among smells.

Mäntylä et al. [38] categorized all of Fowler’s code smells except for In-
complete Library Class and Comments smells into five categories: Bloaters,
Object Orientation Abusers, Change Preventers, Dispensables, Encapsula-
tors, and Couplers. The study outlines the existence of several correlations
among smells belonging to the same category.

Moha et al. [39] propose a taxonomy of smells and describe some corre-
lations among design smells, such as Blob and (many) Data Class, or Blob
and (Large Class and Low Cohesion).

Lanza and Marinescu [31] propose a classification of twelve smells, called
”design disharmonies”, into three categories: Identity, Collaboration, and
Classification disharmonies. They describe the most common correlations
between the disharmonies in a type of diagram called a correlation web.
However, these correlations were not empirically validated.

2.2. Architectural Smells

In this section, we provide a description of some of the architectural
smells (AS) defined in the literature. In most studies, they are actually called

5

architectural smells, but in a few cases they are called design smells [40] or
antipatterns [32].

Garcia et al. [1] define the Connector Envy, Scattered Functionality,
Ambiguous Interface, and Extraneous Connector AS. They provide a de-
scription of each AS, outlining the quality impact and the trade-offs and
providing a generic schematic view of each smell captured in one or more
UML diagrams. They assert that architects can manually use such diagrams
to inspect their own designs to look for architectural smells.

Macia [41] analyzed different architectural smells related to dependency
and interface issues: Ambiguous Interface, Redundant Interface, Overused
Interface, Extraneous Connector, Connector Envy, Cyclic Dependency, Scat-
tered Parasitic Functionality, and Component Concern Overload (Compo-
nent Responsibility Overload).

Mo et al. [42] and Kazman et al. [43] defined five AS, four at the
file level and one at the package level, which they call Hotspot Patterns:
Unstable Interface, Implicit Cross-Module Dependency, Unhealthy Inheri-
tance Hierarchy, Cross-Module Cycle, and Cross-Package Cycle. These AS
were defined in the context of the authors’ research on Design Rule Spaces
(DRSpaces) [44]. The authors also developed a tool called Hotspot Detec-
tor, which is able to detect the five AS mentioned above. The detector takes
as input several files produced by another tool called Titan [44]. Currently,
Hotspot Detector is being evolved into a new commercial tool.

Marinescu [45] defined three AS: Cyclic Dependency, Stable Abstraction
Breaker, and Unstable Dependency. They developed a tool called inFusion,
which was able to detect these architectural smells and a large number of
code smells. However, this tool is no longer available.

Lippert and Rook [33] defined different AS at different levels by essen-
tially considering dependency and inheritance issues and aspects related to
small/large size in terms of number of packages, subsystems, and layers. In
particular, they defined AS in dependency graphs, inheritance hierarchies,
packages, subsystems, and layers.

Le et al. [46] developed a tool for the detection of some AS and pro-
posed a classification of the AS based on four categories: Interface, Change,
Dependency and Concern-based smells.

Suryanarayana et al. [47, 35] adopted an approach for classifying and
cataloging a number of recurring structural design smells based on how
they violate key object-oriented design principles. Their definition of design
smells is similar to the one of architectural smells, but many of their design
smells correspond to the code smells of Fowler. They identified the following
design smell categories: Abstraction, Encapsulation, Modularization, and

6

Hierarchy. They developed a tool, called Designite, to detect different design
smells in C# projects.

As we can see, different AS definitions have been proposed, but few
detection tools are freely available [48].

2.3. Code Smells and Architectural Degradation

There is little knowledge, as outlined by Macia [41], about the extent to
which code anomalies are related to architectural degradation. In the follow-
ing, we report on some studies where the term code anomalies is sometimes
used instead of the term code smells and architectural anomalies correspond
to architectural smells.

Macia et al. [19] analyzed code anomaly occurrences in 38 versions of
five applications using existing detection strategies. The outcome of their
evaluation suggests that many of the code anomalies detected were not re-
lated to architectural problems. Even worse, over 50% of the anomalies
not observed by the employed techniques (false negatives) were found to be
correlated with architectural problems.

In another work, Macia et al. [18] studied the correlations between code
anomalies and architectural smells in six software projects (40 versions).
They considered five architectural smells and nine code smells. They em-
pirically found that each architectural problem represented by each AS is
often refined by multiple code anomalies. More than 80% of architectural
problems were found to be correlated with code anomalies. They also found
1) that certain types of code smells, such as Long Method or God Class,
were consistently correlated with architectural problems; 2) that the highest
percentages of code smells that introduce architectural problems occurred
for God Class, Long Method, and Inappropriate Intimacy instances, and 3)
that the occurrence of both God Class and Divergent Change smells in the
same code element was a strong indicator of architectural problems, such as
Scattered Functionalities violating the Separation of Concerns design prin-
ciple. However, the study revealed that no type of code smell stands out as
the best indicator of harmfulness with respect to architecture degradation.

Oizumi et al. [49] propose studying and assessing the extent to which
code smell agglomerations help developers to locate and prioritize design
problems. They propose considering not only the syntactic relations among
code smells, but also the semantic relations to find more powerful smell
agglomerations in order to identify design problems. Their findings show
that 50% of syntactic agglomerations and 80% of semantic agglomerations
are related to design problems.

7

Oizumi et al. [50] analyzed seven projects and demonstrated that agglom-
erations are better than single anomaly instances to indicate the presence
of an architectural problem. They considered six code smells detected using
the rules of Lanza-Marinescu [31] and seven architectural smells detected
using the rules defined by Macia [41].

Guimaraes et al [51] conducted a controlled experiment utilizing archi-
tecture blueprints to prioritize various types of code smells and provide an
analysis of whether and to what extent the use of blueprints impacts the
time required for revealing architecturally relevant code anomalies.

Unlike the previous studies, we 1) analyzed a total of 111 Java projects,
2) employed two available and validated tools to detect code and architec-
tural smells; 3) analyzed 19 code smells and four architectural smells, and 4)
applied different correlation analyses. Moreover, as previous papers did not
make it clear, respectively provided not much empirical validation, whether
some kind of correlation exists between code smells and architectural smells,
our study is intended to provide a further investigation in this direction.

3. Background

In this Section, we present the code smells together with their proposed
classification and the architectural smells adopted in this work.

3.1. Code Smells

In this work, we consider code smells detected by SonarQube 1 using
the ”Antipatterns-CodeSmell” plugin 2. All the code smells, except for Du-
plicated Code, are detected by the ”Antipatterns-CodeSmell” plugin, while
Duplicated Code is detected natively by SonarQube. Here is the list of code
smells considered in this work:

• Anti-Singleton (ASG): A class that provides mutable class variables
exhibiting the properties of global variables [52].

• Base Class Knows Derived Class (BCKD): A class that does not re-
spect the heuristic defined by Riel [53], which says that ”Derived
classes must have knowledge of their base class by definition, but base
classes should not know anything about their derived classes.” [54].

1SonarQube https://www.sonarqube.org/
2SonarQube https://github.com/davidetaibi/sonarqube-anti-patterns-code-smells

8

• Base Class Should Be Abstract (BCSA): An inheritance tree contains
roots that are not abstract - only the leaves should be concrete [55].

• Blob (BL): The majority of the responsibilities are allocated to a single
class that monopolizes the processing. A Blob class is characterized
by a class diagram composed of a single complex controller class sur-
rounded by simple data classes. [32].

• Class Data Should Be Private (DsP): A class that publicly exposes its
variables [56].

• Complex Class (CC): A class with high MC-Cabes cyclomatic com-
plexity [57].

• Duplicated Code (DC): A class or method that contains an identical
piece of code of another class or method. Note that we only consider
internal project duplication and not cross-project duplication.

• Functional Decomposition (FD): Non-object-oriented design (possibly
from legacy) is coded in an object-oriented language and notation [32].

• Large Class (LC): A class with too many lines of code, methods, or
variables [4].

• Lazy Class (LzC): ”A class that is not doing enough to pay for itself.”
[4].

• Long Method (LM): A method with too many lines of code [4].

• Long Parameter List (LPL): A method having too many parame-
ters [4].

• Many Field Attributes But Not Complex (MFnC): A class that is not
complex but has many public fields [55].

• Message Chains (MC): A chain of methods that ask for an object,
which asks for another one, which asks for yet another, and so on [4].

• Refused Parent Bequest (RPB): The subclass uses only a few features
of the parent class [4].

• Spaghetti Code (SC): An ad-hoc software structure that makes it dif-
ficult to extend and optimize the code [32].

9

• Speculative Generality (SG): Hooks and special cases in the code that
handle things that are not required, but are speculated to be required
someday [4].

• Swiss Army Knife (SAK): Over-design of interfaces results in objects
with numerous methods that attempt to anticipate every possible
need. This leads to designs that are difficult to comprehend, utilize,
and debug, as well as to implementation dependencies [32].

• Tradition Breaker (TB): An inherited class provides a large set of new
services that are unrelated to those provided by the base class [57].

3.2. Categories of Code Smells

The categories of code smells we considered are based on the classification
proposed by Mäntylä and Lassenius [20], where the smells are classified
according to some of the common concepts shared by the smells within one
category. Below, we provide a description of each category and the smells
included by the authors that we were able to detect with the Antipatterns-
CodeSmell tool, as well as the new smells we included in the categories, if
any.

• The Bloaters (Bloat.): Objects that have grown too much and can
become hard to manage. This category includes the code smells Blob,
Long Method, Large Class, and Long Parameter List. We additionally
included Complex Class and Swiss Army Knife.

• The Dispensables (Disp.): Unnecessary code fragments that should be
removed. This includes the code smells Lazy Class, Duplicated Code,
and Speculative Generality. We also included Many Field Attributes
But Not Complex.

• The Encapsulators (Enc.): Objects that present high coupling (this
category is also called Couplers). This category includes the code
smell Message Chain.

• The Object-Orientation Abusers (OOA): Classes that do not com-
ply with object-oriented design. For example, a Switch Statement,
even if applicable in procedural programming, is highly deprecated in
object-oriented programming. This category includes the code smells
Anti-Singleton and Refused Parent Bequest. We also included Base
Class Knows Derived Class, Base Class Should Be Abstract, Class
Data Should Be Private, and Tradition Breaker.

10

• The Change Preventers: This category includes smells that hinder
further changes in the source code. This category includes a set of
code smells such as Divergent Change, Shotgun Surgery, and Parallel
Inheritance Hierarchies, which are not detected by the Antipatterns-
CodeSmell tool. We also included Spaghetti Code.

Moreover, since we believe that some code smells considered in this work
could be grouped together, we defined a new category:

• The Object-Oriented Avoiders: This category is in contrast to the
Object-Orientation Abusers, since code smells belonging to this cate-
gory do not (intentionally or unintentionally) apply any object-oriented
practice. We here included the code smell Functional Decomposition.

Since three categories (Change Preventers, Encapsulators, Object-Orientation
Avoiders are based on only one code smell, we did not analyze them inde-
pendently since they will provide the same results as those of the code smells
belonging to them. In Table 1, we propose a summary of the new revisited
classification of the smells with all the categories we considered and the
smells included in each category. In the table, we outline in italics the new
smells we introduced in the categories of Mäntylä according to our evaluation
and the new category we defined.

11

Table 1: Code Smell Taxonomy

Category Name Code Smells

The Bloaters

Blob
Large Class
Long Method
Long Parameter List
Complex Class
Swiss Army Knife

The Change Preventers Spaghetti Code

The Dispensables

Lazy Class
Speculative Generality
Many Field Attributes But Not Complex
Duplicated Code

The Encapsulators Message Chain

The Object-Orientation Abusers

Anti-Singleton
Refused Parent Bequest
Base Class Knows Derived Class
Base Class Should Be Abstract
Class Data Should Be Private
Tradition Breaker

The Object-Orientation Avoiders Functional Decomposition

3.3. Architectural Smells

The architectural smells we considered in our study are those described
below, where a subsystem (component) refers to a set of packages and classes
identifying an independent unit of the system responsible for a certain func-
tionality:

1. Unstable Dependency (UD): describes a subsystem (component) that
depends on other subsystems that are less stable than itself [58]. This
may cause a ripple effect of changes in the system [22]. Detected in
packages.

2. Hub-Like Dependency (HD): arises when an abstraction has (outgo-
ing and incoming) dependencies on a large number of other abstrac-
tions [35]. Detected in classes and packages.

3. Cyclic Dependency (CD): refers to a subsystem (component) that is
involved in a chain of relations that break the desirable acyclic nature
of a subsystem’s dependency structure. The subsystems involved in
a dependency cycle are hard to release, maintain, or reuse in isola-
tion. Detected in classes and packages. The Cyclic Dependency AS is
detected according to different shapes [59] as described in [60].

4. Multiple Architectural Smell (MAS): identifies a subsystem (compo-
nent) that is affected by more than one architectural smell and pro-

12

vides the number of the architectural smells involved.

We decided to consider these AS in the study since they represent relevant
problems related to dependency issues: Components with high coupling and
a large number of dependencies cost more to maintain and hence can be con-
sidered more critical, leading to a progressive architectural degradation [2].
In particular, Cyclic Dependency is one of the most common architectural
smells that is dangerous and difficult to remove [61]. Moreover, a tool called
Arcan that can detect these smells is available. As outlined in Section 2.2,
few tools for AS detection are currently freely available. Other AS impacting
different issues will be considered in the future as their automatic detection
will become possible.

4. Case Study Design

The goal of our work is to understand whether architectural smells could
be derived and obtained from code smells or whether they are independent
from them. For this purpose, we conducted a case study to investigate the
interdependency between architectural smells and code smells by analyzing
111 open-source Java projects. For the design and conduction of the case
study, we followed the guidelines proposed by Runeson [62].

In this section, we will present the goal, the research questions, the
metrics, and the hypotheses for the case study. Based on them, we will
outline the study context, the data collection, and the data analysis.

4.1. Goal, Research Questions, Metrics, and Hypotheses

We formulated our goal according to the GQM approach [63]
Analyze code smells and architectural smells
for the purpose of evaluating them
with respect to their interdependency
from the point of view of developers
in the context of open-source Java projects.

Based on our goal, we derived the following Research Questions (RQ),
Metrics (M), and Hypotheses (H) [63], [64].

RQ1: Is the presence of an architectural smell independent from the
presence of code smells?

• M1: correlation coefficient between architectural smells and code smells

– H0: The presence of an architectural smell is independent from
the presence of code smells.

13

– H1: The presence of an architectural smell depends on the pres-
ence of code smells.

RQ1.1: Is the presence of a Multiple Architectural Smell (MAS) inde-
pendent from the presence of code smells?

• M1.1: correlation coefficient between Multiple Architectural Smell and
code smells.

– H0: The presence of a Multiple Architectural Smell (MAS) is
independent from the presence of code smells.

– H1: The presence of a Multiple Architectural Smell (MAS) de-
pends on the presence of code smells.

RQ2: Is the presence of an architectural smell independent from the
presence of a category of code smells?

• M2: correlation coefficient between architectural smells and categories
of code smells.

– H0: The presence of an architectural smell is independent from
the presence of a category of code smells.

– H1: The presence of an architectural smell depends on the pres-
ence of a category of code smells.

RQ2.1: Is the presence of a Multiple Architectural Smell independent
(MAS) from the presence of a category of code smells?

• M2.1: correlation coefficient between Multiple Architectural Smell and
categories of code smells.

– H0: The presence of a Multiple Architectural Smell (MAS) is
independent from the presence of a category of code smells.

– H1: The presence of a Multiple Architectural Smell (MAS) de-
pends on the presence of a category of code smells.

With our RQs, we aim to understand whether a single architectural
smell (RQ1) or a Multiple Architectural Smell (RQ1.1) can be independent
from code smells or from a category that groups code smells as described in
Section 3.2 (RQ2 and RQ2.1).

14

4.2. Study Context

We selected projects contained in the Qualitas Corpus collection of soft-
ware projects [21]. In particular, we used the compiled version of the Qual-
itas Corpus [65]. 111 Java projects are available and already compiled with
more than 18 million LOCs, 16,000 packages, and 200,000 classes analyzed.
The data set includes projects from different contexts such as IDEs, SDKs,
databases, 3D/graphics/media, diagram/visualization libraries and tools,
games, middlewares, parsers/generators/make tools, programming language
compilers, testing libraries and tools, and other tools not belonging to the
previous categories. Terra et al. [65] provide more information on the con-
text and types of these projects.

4.3. Data Collection

We detected architectural smells in 111 Java projects and code smells in
103 Java projects of the Qualitas Corpus [65], as depicted in Figure 1.

Architectural smells were detected in these projects through the Arcan
tool [60], while the analysis of code smells was carried out with SonarQube
using the ”Antipatterns-CodeSmell” plugin. The results of this step are lists
of the architectural smells and code smells present in each analyzed project.
The raw data is available in the replication package [66].

4.3.1. Code smell detection data

The SonarQube ”Antipatterns-CodeSmell” plugin is a code smell de-
tection tool that integrates DECOR (Defect dEtection for CORrection)
[55] into SonarQube, detecting the 19 code smells reported in Section 3.1.
DECOR can be applied to any object-oriented language; however, the Sonar-
Qube plugin is only configured to detect code smells in Java. Moreover,
SonarQube also calculates several other static code metrics such as the
number of lines of code and cyclomatic complexity, but also reports code
violations.

It is important to note that in SonarQube (up to the version 6.5), the
term ”Code Smells” is used to report coding style violations (also known as
Issues in SonarQube), such as brackets closed on the wrong line, or redun-
dant throw declarations. To avoid misunderstandings with coding style vi-
olations, the SonarQube ”Antipatterns-CodeSmell” plugin tags all the code
smells of Section 3.1 as ”Antipatterns/CodeSmells”. Regarding detection
accuracy, we relied on the DECOR detection tool since it ensures 100%
recall for the detection of code smells [55]. Moreover, since the definition
of code smells is based on several metrics and thresholds, we relied on the

15

Architectural
code-smell extraction

Correlation analysis

Code-smells
extraction

 111 Java projects

(Qualitas Corpus)

111 projects

103 projects

Figure 1: Data Collection Process and Data Analysis

standard metrics proposed by Moha et al. [55] so as to ensure a precision
average of 80%.

The detection of code smells in the Qualitas Corpus data set was carried
out on a Linux virtual machine with 4 cores and 16GB of RAM. The first
103 projects were analyzed within 35 days. Due to time constraints, we
skipped the analysis of the remaining eight projects such as Eclipse and
JBoss, which would have taken more than three months. The reason for

16

this dramatic increase in analysis time is due to the project structure. These
eight projects are composed of several sub-projects with sizes similar to the
other 103 projects already analyzed. Therefore, in this work we only consider
the results of the 103 projects listed in Appendix A.

4.3.2. Architectural smell detection data

The Arcan tool focuses on the identification of architectural smells whose
generation was caused by instability issues. By software instability we mean
the inability to make changes without impacting the entire project or a large
part of it. To accomplish its aim, the tool computes the metrics proposed by
Martin [67] and exploits them during the analysis. The detection techniques
exploit graph databases to perform graph queries, which allows higher scal-
ability in the detection and management of a large number of different kinds
of dependencies.

The detection techniques for AS and the validation of the tool results
have been described in previous studies [22], [60]. The results of the tool
were validated on ten open-source projects and two industrial projects based
on feedback from the developers with a high precision value of 100% and a
recall value of 66%. The developers also reported five architectural smells
that were false negatives, but these cases were related to external compo-
nents beyond the scope of the analysis performed by the tool. Moreover, the
results of Arcan were evaluated using the feedback of practitioners in four
industrial projects [61].

In this study, the detection of the architectural smells was performed on
a Windows machine with 4 cores and 24 GB of RAM. The entire Qualitas
Corpus data set was analyzed using Arcan within less than 24 hours. The
tool is freely available and easy to install and use 3.

4.4. Data Analysis

In this section, we will describe the procedure we followed to analyze the
collected data in order to answer our research questions.

We analyzed the classes infected both by an architectural smell and one
or more code smells at the class and package levels.

Architectural smells involve more than one Java class, while the 19 code
smells considered in this work involve only one class. Therefore, for each
architectural smell, we could have one or more code smells infecting the
same set of classes. In the analysis, we only calculated correlations between

3http://essere.disco.unimib.it/wiki/arcan)

17

code smells infecting those classes (and packages) that were also infected by
architectural smells.

To give an example: Classes A, B, and C may be infected by Cyclic
Dependency, while classes A and C may be infected by God Class and
class D may be infected by Speculative Generality. In this case, we would
calculate the correlation only for the architectural smell Cyclic Dependency
and the code smell God Class, since they affect the same set of classes,
whereas we would not consider the code smell Speculative Generality, since
it infects a class that is not infected by Cyclic Dependency.

Before answering our RQs, we analyzed the distribution of the code
smells and the architectural smells in our data set. We performed a descrip-
tive analysis of the collected data, analyzing the number of code smells and
architectural smells per project and per package.

We analyzed the frequency of occurrence of the code smells and archi-
tectural smells, considering:

• (CS+AS): Classes infected by code smells AND architectural smells;

• (CS): Classes infected only by code smells;

• (AS): Classes infected only by architectural smells;

• (HC): Healthy Classes – classes neither infected by code smells nor
by architectural smells.

We analyzed the 103 projects independently, then considered the data
of all the projects globally, as though all the classes belonged to one sin-
gle project. Projects without code smells or architectural smells were not
considered for the analysis.

In order to answer our research questions, we applied the following anal-
ysis procedure, as summarized in Figure 2. We considered as our dependent
variable the number of each type of architectural smell infecting the same
classes and as independent variable the number of code smells infecting the
same classes. We investigated the correlation for every pair of (code smell
and architectural smell or categories of code smells and architectural smell),
since considering all types of smells at the same time might hide possible
correlations among smells, making it impossible to discover them.

• For each Architectural Smell

– Data-Normality Test : We tested the data for normality by means
of the Shapiro-Wilk test.

18

– Correlation Analysis: We calculated the correlation between code
smells or a category of smells (independent variable) and archi-
tectural smells or Multiple Architectural Smells (dependent vari-
able).

∗ If the data were normally distributed, we calculated the Pear-
son correlation coefficient

∗ If the data were not normally distributed, we calculated the
Kendall rank correlation coefficient.

Component …

AntTypeDefinition.java 1 1 0 0 …

AntClassLoader.java 1 4 3 1 …

ComponentHelper.java 0 0 2 0 …

DefaultLogger.java 0 0 1 0 …

Diagnostics.java 1 1 3 0 …

DirectoryScanner.java 0 0 2 0 …

IntrospectionHelper.java 1 5 2 1 …

Main.java 1 2 2 0 …

NoBannerLogger.java 0 0 0 0 …

… … … … …

Cyclic dependency
present

Cyclic dependency
cycle size

#The
Bloaters

#Swiss Army Knife
Code Smells

3: check correlation
p-value

2: calculate
Pearson/Kendall
correlation

1: calculate Shapiro-
Wilkinson normality
test

Figure 2: The Data Analysis Process

Correlation is a bi-variate analysis that measures the association strength
between two variables and the direction of the relationship. The value of the
correlation coefficient varies between +1 and -1, where a value of 1 means
a perfect degree of association between the two variables.

Usually, in statistics, different types of correlations are applied. Pearson
correlation is the one used most frequently to measure the relationship de-
gree between linearly related variables. Kendall rank correlation is one of
the non-parametric tests commonly used to measure the strength of depen-
dency between two variables. We selected Kendall rank correlation because
compared with other non-parametric tests, it has less gross error sensitivity
(GES), meaning more robustness, and a smaller asymptotic variance (AV),
meaning more efficiency [68].

We only show those results with a p-value smaller than 0.05 as a statis-
tical significance threshold. This is customary in Empirical Software Engi-
neering studies [64].

19

5. Results

In this section, we will first describe the data we analyzed and then an-
swer our research questions by reporting the results of the analysis described
in Section 4.4.

All the projects contain classes infected by both architectural smells and
code smells.

Considering the presence of code smells in the 103 projects, only 15 of
the 19 code smells detectable by the SonarQube plugin were found. The 103
projects were not infected by Blob Class, Functional Decomposition, Base
Class Knows Derived, and Tradition Breaker. This also impacted the cate-
gories of code smells containing code smells not found in the projects, since
two categories (Change Preventers and Object Orientation Avoiders) were
based on two code smells not detected in the 111 projects. Therefore, only
the remaining four categories of code smells are considered in the analysis.

Regarding the architectural smells, Arcan detected them in 102 projects
(Jasml contains no architectural smell). Therefore, we considered this set
of 102 projects for the analysis. Note that, for the sake of completeness,
we also report data for the code smell categories containing only one code
smell. However, these categories will not be considered in the next analysis
to avoid duplication of the results.

Table 2 shows the number of projects infected by code smells, cate-
gories of code smells, and architectural smells (Column #Inf.prj.), while
the remaining columns report descriptive statistics. Regarding code smells,
Complex Class, Long Method, and Long Parameter List were the most com-
monly detected ones in the projects (more than 100 projects). Swiss Army
Knife, Message Chains, and Large Class were code smells infecting fewer
projects (less than 11), while Base class Knows Derived Class, Blob Class,
Functional Decomposition, and Tradition Breaker were not present in any
of the analyzed projects.

Figure 3 shows the number of classes infected by code smells and archi-
tectural smells (CS+AS), classes infected only by code smells (CS), classes
infected only by architectural smells (AS), and healthy classes, i.e., classes
without any smells (HC) in our data set. Moreover, Figure 4 shows the
distribution of the same data per package.

Regarding the architectural smells, all the projects were infected by at
least two architectural smells. The analysis revealed that 101 projects were
infected by Cyclic Dependency, 100 were infected by Hub-Like Dependency,
95 were infected by Unstable Dependency, and 102 were infected by a Mul-
tiple Architectural Smell.

20

Table A.10 (Appendix A) reports the details on the number of code
smells and architectural smells detected in each project.

In Table 3, Table 4, Table 5, and Table 6, we report the results obtained
from analyzing the AS-CS pairs, while in Table 7 we present the results
for the AS-CS category pairs. These tables report the number of infected
projects for each pair (column “#Inf. Prj.”), the number of infected projects
where the results are statistically significant and their percentage up to the
total number of infected projects (column “#Prj.(p<0.05)”). Moreover, we
also list the projects that reported a Kendall correlation higher than 0.5
(column “#Prj.(tau<0.5)”).

As an example (Table 5), the pair composed of the architectural smell
Unstable Dependency (UD) and the code smell Base Class Should be Ab-
stract (BCSA) was detected in 54 projects (column ”#Inf.prj”), with 30
of them (55% of projects) having a significant statistical correlation with a
p-value <0.05 (column ”#Prj.(p-value<0.05”). However, only two projects
have a correlation higher than 0.5 (column “#Prj. (tau >0.5)”) while the
remaining ones (28 projects), which are not listed in the table, had a sta-
tistically significant result with a low correlation (tau <0.5). The column
“Project” indicates the two projects with a correlation higher than 0.5.

We also performed the same analysis (AS-CS pairs and AS-CS category
pairs) at the project level, trying to analyze all the classes together as be-
longed to a single project. The results did not change, as illustrated in
Table 8 and Table 9. We report the correlation value (column ”tau”) and
the relative statistical hypothesis testing value (column ”p-value”).

In Table A.10 (Appendix A), we report the number of architectural
smells, categories of code smells, and code smells infecting each analyzed
project.

In order to better understand the cases of positive correlations, we man-
ually inspected all the 23 projects where we found pairs with a correlation
higher than 0.5 with a p-value lower than 0.05. The result of the manual
inspection did not yield any useful feedback. As an example, Anti-Singleton
(ASG) is positively correlated with Cyclic Dependency only in the project
xmojo. Manually inspecting its classes, we confirmed the presence of the
four cyclic dependencies, where two cycles included one class per cycle also
affected by ASG and one of the four cycles was also affected by a Spaghetti
Code smell. The same class affected by Spaghetti Code was also affected
by Hub-Like Dependency (HD). Other projects, such as Checkstyle, JParse,
and Log4J reported a relatively higher number of AS and CS but their
manual examination did not reveal any noticeable information.

21

Table 2: Projects infected by code smells, a category of code smells, or architectural smells

Name
#Inf. per Project
prj. AVG Max Min StD

Code Smells
Complex Class 103 147.90 914 1 163.23
Duplicated Code 103 237.28 1830 0 357.67
Long Method 102 178.88 1,251 0 197.58
Long Parameter List 100 94.09 1,197 0 157.51
Anti-Singleton 92 31.96 7.34 0 81.86
Class Data should be Private 90 28.93 3.53 0 50.07
Lazy Class 86 26.96 210 0 43.65
Spaghetti Code 58 2.97 40 0 5.23
Baseclass Abstract 54 3.84 65 0 8.49
Refused Parent Bequest 42 6.38 139 0 19.33
Speculative Generality 36 2.68 35 0 5
Many Field Attr. not Complex 32 0.76 20 0 2.23
Swiss Army Knife 11 1.39 76 0 8.22
Message Chains 8 1.27 62 0 7.19
Large Class 5 0.07 2 0 0.32
Baseclass Knows Derived 0 - - - -
Blob Class 0 - - - -
Functional Decomposition 0 - - - -
Tradition Breaker 0 - - - -

Category of Code Smells
The Bloaters 103 421.70 3,364 1 496.13

The Dispensables 102 264.24 1,849 0 379.22
The Obj.-Orientation Abusers 92 31.96 734 0 81.86
The Change Preventers 58 2.97 40 0 5.23
The Encapsulators 8 1.27 62 0 7.19
The Obj.-Orientation Avoiders 0 - - - -

Architectural Smells
Multiple Architectural Smell 102 6,148.02 162,531 0 22,176.7
Cyclic Dependency 101 6,122.24 162,357 0 22,162.1
Hub-Like Dependency 100 21.35 168 0 25.43
Unstable Dependency 95 4.43 15 0 3.16

Table 4: Projects infected by the Hub-like Dependency architectural smell (HD) and code
smells (RQ1)

AS CS #Inf.prj
Prj.(p-value<0.05) Prj.(tau>0.5)
% # prj. name

HD

ASG 92 80 89 1 jmoney
BCSA 54 50 92 2 checkstyle, jparse
CC 102 95 90 0 -
DC 102 91 89 0 -
DSP 90 80 89 2 checkstyle, jparse
LC 5 5 100 0 -
LM 102 94 94 0 -
LPL 100 93 93 0 -
LzC 86 78 91 0 -
MfNC 32 26 81 1 checkstyle
MC 8 7 87 0 -
RBP 42 37 88 1 checkstyle
SC 58 50 69 1 xmojo
SG 36 31 86 0 -
SAK 11 9 82 0 -

22

Table 3: Projects infected by the Cyclic Dependency architectural smell (CD) and code
smells (RQ1)

AS CS #Inf.prj
Prj.(p-value<0.05) Prj.(tau>0.5)
% # prj. name

CD

ASG 92 70 76 1 xmojo
BCSA 54 45 83 0 -
CC 102 92 90 1 freecs
DC 102 87 85 0 -
DsP 90 60 67 0 -
LC 5 1 20 0 -
LM 102 87 85 0 -
LPL 100 80 80 1 jparse
LzC 86 28 32 0 -
MFnC 32 10 31 0 -
MC 8 7 87 0 -
RPB 42 26 62 0 -
SC 58 40 69 1 xmojo
SG 36 22 61 0 -
SAK 11 6 54 0 -

Table 5: Projects infected by the Unstable Dependency architectural smell (UD) and code
smells (RQ1)

AS CS #Inf.prj
Prj.(p-value<0.05) Prj.(tau>0.5)
% # prj. name

UD

ASG 92 60 65 1 nekohtml
BCSA 54 30 55 2 log4j, picocontainer
CC 102 92 90 0 -
DC 102 84 82 0 -
DsP 90 63 70 0 -
LC 5 4 80 0 -
LM 102 82 80 0 -
LPL 100 68 68 0 -
LzC 86 36 42 0 -
MFnC 32 9 28 0 -
MC 8 5 62 0 -
RBP 42 23 55 0 -
SC 58 30 52 1 oscache
SG 36 17 2 log4j, picocontainer
SAK 11 8 72 0 -

23

Table 6: Projects infected by a Multiple Architectural Smell (MAS) and code smells
(RQ1.1)

AS CS #Inf.prj
Prj.(p-value<0.05) Prj.(tau>0.5)
% # prj. name

MAS

ASG 92 66 72 0 -
BCSA 54 32 60 0 -
CC 102 90 88 0 -
DC 102 64 63 0 -
DsP 90 56 62 0 -
LC 5 0 0 0 -
LM 102 83 81 0 -
LPL 100 80 80 1 jparse
LzC 86 33 38 0 -
MFnC 32 7 22 0 -
MC 8 7 87 0
RBP 42 21 50 0 -
SC 58 36 62 1 xmojo
SG 36 21 58 0 -
SAK 11 7 63 0 -

Table 7: Projects infected by architectural smells (RQ2) or Multiple Architectural Smells
(RQ2.1) and by categories of code smells

AS CS cat. #Inf.prj
Prj.(p-value<0.05) Prj.(tau>0.5)
% # prj. name

CD
Bloat. 103 91 88 0 -
Disp. 102 74 72 0 -
OOA 98 73 75 0 -

HD
Bloat. 103 95 92 0 -
Disp. 102 90 88 0 -
OOA 92 87 94 1 jmoney

UD
Bloat. 102 87 85 0 -
Disp. 102 68 67 0 -
OAA 98 69 70 1 nekohtml

MAS
Bloat. 102 88 86 1 jparse
Disp. 102 68 67 0 -
OOA 98 66 67 0 -

24

0 2000 4000 6000 8000 10000 12000

jboss
azureus

springframework
lucene
hadoop
ireport
jruby

nakedobjects
derby

aspectj
rssowl

compiere
castor
struts

poi
weka

exoportal
tomcat

jchempaint
megamek
tapestry
jtopen

myfaces_core
argouml

jasperreports
jrefactory
findbugs

ant
columba

xalan
htmlunit
jmeter
jena

sandmark
jedit

fitlibraryforfitnesse
freecol

jhotdraw
freemind

xerces
jgroups
maven

ganttproject
mvnforum
jfreechart

aoi
c_jdbc

jext
pooka

wct
galleon
hsqldb
heritrix

pmd
roller
jung

openjms
jspwiki
velocity

log4j
itext

collections
proguard

james
checkstyle
jgraphpad

jgraph
colt

joggplayer
drawswf

antlr
displaytag

jsXe
quartz

ivatagroupware
quickserver

emma
jag

jgrapht
sunflow

marauroa
axion

cayenne
junit

informa
jmoney

picocontainer
cobertura

jpf
squirrel_sql

freecs
sablecc
webmail

quilt
oscache
javacc
trove

nekohtml
jFin_DateMath

jparse
fitjava
xmojo
jasml

Number	of	Packages
AS+CS CS AS Healthy	Packages

Figure 3: Number of packages infected by code smells or architectural smells

25

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

collections
megamek
aspectj
ireport
azureus
argouml

weka
jena
aoi

compiere
freecs
freecol
pooka
jtopen
tomcat

jedit
hsqldb
junit

freemind
jhotdraw

xerces
fitjava
colt

xalan
mvnforum
jchempaint

galleon
rssowl
derby

jmoney
jag

jgraph
hadoop

jrefactory
myfaces_core
ganttproject

castor
c_jdbc
sablecc
javacc
jruby
jparse

quickserver
itext

findbugs
sandmark
sunflow

jasml
emma

jfreechart
jext
jsXe

jgroups
fitlibraryforfitnesse

squirrel_sql
ant

drawswf
htmlunit
lucene

picocontainer
jmeter
roller

marauroa
proguard

poi
wct

jboss
nakedobjects

cobertura
axion

columba
struts

jasperreports
quartz

cayenne
jspwiki

webmail
log4j

heritrix
openjms
informa

joggplayer
jgraphpad
exoportal

springframework
jung

displaytag
james

oscache
pmd

xmojo
quilt

nekohtml
tapestry
maven
jgrapht

jFin_DateMath
ivatagroupware

velocity
jpf

checkstyle
antlr
trove

Smells	per	package
AS+CS CS AS Healthy	Packages

Figure 4: Number of code smells and architectural smells per package

26

Table 8: Correlation between AS and CS. All projects merged as a single project (RQ1
and RQ1.1)

CS
CD HD UD MAS

p-value tau p-value tau p-value tau p-value tau

ASG 0.03 0.04 0.03 0.32 0.04 0.14 0.00 0.19

BCSA 0.02 0.08 0.02 0.20 0.01 0.13 0.12 0.09

CC 0.01 0.13 0.04 0.31 0.01 0.03 0.00 0.23

DC 0.00 0.02 0.03 0.27 0.00 0.26 0.00 0.16

DsP 0.03 0.06 0.04 0.33 0.03 0.28 0.00 0.15

LC 0.72 0.35 0.03 0.36 0.00 0.08 0.23 0.04

LM 0.01 0.14 0.03 0.27 0.00 0.23 0.92 0.25

LPL 0.03 0.19 0.03 0.21 0.09 0.00 0.05 0.09

LzC 0.07 0.32 0.04 0.27 0.08 0.42 0.00 0.15

MFnC 0.60 0.23 0.04 0.27 0.08 -0.05 0.00 0.14

MC 0.01 0.10 0.04 0.19 0.00 0.12 0.00 0.33

RPB 0.05 0.06 0.04 0.31 0.08 -0.30 0.91 0.01

SC 0.05 0.18 0.03 0.36 0.06 0.18 0.11 0.04

SG 0.25 0.22 0.04 0.19 0.09 0.04 0.01 0.14

SAK 0.06 0.15 0.02 0.20 0.04 0.29 1.11 0.13

Table 9: Correlation between AS and categories of CS. All projects merged as a single
project (RQ2 and RQ2.1)

AS
Bloat. Disp. OAA Encap. Change prev.

p-value tau p-value tau p-value tau p-value tau p-value tau

CD 0.02 0.32 0.03 0.17 0.03 0.16 0.64 0.10 0.17 0.11

HD 0.00 0.24 0.00 0.28 0.08 0.03 0.07 0.36 0.75 0.29

UD 0.03 0.12 0.03 0.14 0.05 0.19 0.21 0.05 0.87 0.26

MAS 0.06 0.23 0.11 0.13 0.16 0.17 0.33 0.00 0.28 0.05

6. Discussion

In this Section, we will answer our Research Questions (RQs) based on
the results obtained and described in Section 5 and derive the main lessons
learned of this work.

6.1. RQ1:Is the presence of an architectural smell independent from the pres-
ence of code smells?

The results for RQ1 are presented in Table 3, Table 4, Table 5, and
Table 8. We analyzed 45 combinations (AS-CS pairs composed of three
architectural smells and 15 code smells) for each of the 102 projects for a
total of 4,590 analyses and for the data of all the projects merged together
as a single project.

27

Regarding the analysis performed separately on 111 projects, we decided
not to consider the combinations (CD-LC, CD-MC, CD-SAK), (HD-LC,
HD-MC and HD-SAK), and (UD-LC, UD-MC and UD-SAK), due to the
low number of infected projects (less than twelve). We found statistically
significant results (p-value <0.05) for all the other combinations.

However, only 14 combinations in nine projects showed a correlation
higher than 0.5. Moreover, the same combination of code smells and archi-
tectural smells was found in a maximum of two projects. For the other 40
combinations, we found low correlations (tau<0.5) in a considerable number
of projects (at least 32).

According to our results, the most interesting low correlations we found
are related to SC (Spaghetti Code) CS with all the four AS considered, and
ASG (Anti-Singleton) CS with three AS (CD, HD and UD).

Considering all the projects merged together, the results did not change
and we found for the majority of the cases that the results were not statis-
tically significant.

The results confirm our Hypothesis 0 since, based on the results of the
102 analyzed projects and the analysis of all the projects merged together
as a single project, we were unable to identify any dependencies between
architectural smells and code smells.

6.2. RQ1.1:Is the presence of a Multiple Architectural Smell independent
from the presence of code smells?

The results for RQ1.1 are presented in Table 6 and Table 8. We analyzed
15 combinations (CS-MAS pairs composed of 15 code smells and a Multiple
Architectural Smell) for each of the 102 projects (1,530 analyses) and for
the data from all the projects merged together as a single project.

Regarding the analysis performed with 111 projects separately, we de-
cided not to consider the combinations (MAS-LC), (MAS-MC), and (MAS-
SAK), due to the low number of infected projects (less than twelve). We
found statistically significant results (p-value <0.05) for the remaining 13
combinations. However, only two combinations in two different projects
showed a correlation higher than 0.5. For the other eleven combinations we
found low correlations (tau <0.5) in a considerable number of projects (at
least 32).

According to our results, we found that only SC (Spaghetti Code) and
LPL (Long Parameter List) have a low correlation with MAS.

Considering all the projects merged together, the results did not change
and we found for the majority of the cases that the results were not statis-
tically significant.

28

The results confirm our Hypothesis 0, since the presence of a Multiple
Architectural Smell does not depend on the presence of code smells in the
102 analyzed projects.

6.3. RQ2:Is the presence of an architectural smell independent from the pres-
ence of a category of code smells?

In order to answer this RQ, we considered the three categories of code
smells reported in Section 3.2: Bloaters (Bloat.), Dispensables (Disp), and
Object Orientation Abusers (OOA). In this case, we considered all the code
smells belonging to the same category as a single code smell.

The results obtained for RQ2 are shown in Table 7 and Table 9. We
analyzed nine combinations of AS-CS (pairs composed of three categories of
code smells and three architectural smells) for each of the 102 projects (918
analyses) and for the data from all the projects merged together as a single
project.

Regarding the analysis performed with 111 projects separately, we found
statistically significant results (p-value <0.05) for all the combinations. How-
ever, only two combinations with the same category of code smells (OOA)
showed a correlation higher than 0.5 in two different projects, as shown in
Table 7. For the other seven combinations, we found low correlations (tau
<0.5) in a huge number of projects (at least 92). The results are similar
to the one reported for the analysis of the non-categorized code smells in
(Table 3, Table 4, and Table 5).

According to our results, the most interesting low correlations we found
are between the category of Object-Oriented Abuser (OOA) smells and the
two HD and UD architectural smells.

Considering all the projects merged together, the results did not change
and we found for the majority of the cases that the results were not statis-
tically significant.

We can accept our Hypothesis 0, since the presence of an architectural
smell does not depend on the presence of a category of code smells. Even
though three projects were infected by the same category of code smells, we
were unable to consider the results since the sample was too small.

6.4. RQ2.1:Is the presence of a Multiple Architectural Smell independent
from the presence of a category of code smells?

In order to answer this RQ, we considered the same category of code
smells adopted in RQ2. The results obtained for RQ2.1 are shown in Table 7
and Table 9. We analyzed three combinations (CS-AS pairs composed of
three categories of code smells and one Multiple Architectural Smell) for

29

each of the 102 projects (306 analyses) and for the data from all the projects
merged together as a single project.

Regarding the analysis performed with 111 projects separately, we found
statistically significant results (p-value <0.05) for all the combinations. How-
ever, only one combination showed a correlation higher than 0.5, and only
in one project. For the other three combinations, we found low correlations
(tau <0.5) in a huge number of projects (at least 98).

According to our results, the most interesting low correlations we found
are between the category the Bloater category and the MAS architectural
smell.

We can accept Hypothesis 0, since the presence of a Multiple Architec-
tural Smell does not depend on the presence of a category of code smells.

Considering all the projects merged together, the results did not change
and we found for the majority of the cases that the results were not statisti-
cally significant. In conclusion we found very low correlations. Correlations
in all the projects are very low, and merging the data did not help to increase
the number of correlations.

6.5. Lessons Learned

Lesson Learned 1: An architectural smell or Multiple Architectural
Smells do not depend on code smells. As we can see from the analysis,
statistically significant results were found in all projects for all cases of AS-
CS pairs, and for MAS-LPL (Multiple Architectural Smell-Long Parameters
List) or MAS-SC (Spaghetti Code). However, some code smells were found
to infect projects more frequently than others and therefore the results of the
analyses are more reliable for them. Considering all the analyses (4,590 for
RQ1 and 1,530 for RQ1.1), 58.8% of them provided statistically significant
results and only 0.03% of them showed a correlation higher than 0.5.

Therefore, the main lesson learned from the analysis of these RQs is
that architectural smells do not depend on code smells and therefore the
refactoring of code smells does not decrease the chances of removing ar-
chitectural smells. Moreover, the removal of an architectural smell does not
imply the removal or reduction of code smells, either. Hence, developers can
focus their attention on the refactoring of the more dangerous architectural
smells.

Lesson Learned 2: An architectural smell or Multiple Architectural
Smells do not depend on categories of code smells. In this case, too, 78% of
them provided statistically significant results (918 for RQ2 and 306 for RQ
2.1), and only 0.3% of them showed a correlation higher than 0.5.

30

Even if we considered categories of code smells or some smells together,
the results do not change, which confirms the need to analyze and remove
smells at both levels, i.e., both code and architectural smells.

Oizumi et al[49] outlined that design problems, structures that violates
fundamental design principles, can be located by not considering only syn-
tactical agglomeration of code smells, but also the semantically ones. We
have not considered semantically relations, but we considered categories of
smells that can be viewed as a kind of semantically agglomeration. Accord-
ing to the categories we found correlations between the category of Object-
Oriented Abuser (OOA) smells and the two HD and UD architectural smells
and between the Bloater category of smells and the MAS architectural smell.
Among the design problems considered in the study of Oizumi et al and our
AS, only Cyclic Dependency problem is in common and according to the
code smells only Long Method and Long Parameter List is in common,
hence the results obtained in the two study are quite different and a next
future development is related to consider the detection of other smells, that
could be more relevant according to their impact on architectural problems
. Moreover, we could remove from the code smells list of Section 3.1 those
that could be seen more as design/architectural problems than problems at
the code level, such as for example Swiss Army Knife and Spaghetti Code
smells. Moreover, in the Oizumi paper the design problems have been iden-
tified through the developers feedbacks by creating a ground truth of design
problems for the set of considered projects. We detected the architectural
problems/smells through the Arcan tool. In conclusion, with respect to the
results obtained we can observe that the relation between Spaghetti Code
and all the other AS can be an expected relation. In any case all the corre-
lations have been found in few projects.

The independence between issues at the code level detected using the
Technical Debt Index provided by SonarQube and those at the architectural
level detected using the Architectural Debt Index computed by Arcan has
been evaluated in a previous study [69]. Developers have to take care of both
possible sources of debt, as removing code debt does not necessarily imply
the reduction/removal of architectural debt and vice versa. The results
described in this paper are in line with this previous result.

Lesson Learned 3: Code smells and architectural smells correlations have
to be further investigated as we will outline in future developments. Accord-
ing to the results we found, we could expect to find a correlation between
Spaghetti Code and all the AS, as well as Spaghetti Code and Long Param-
eter List with MAS. We have not find correlations between some code smells
and architectural smells previously found in the literature, since the tools

31

we used were not able to detect some of these smells, such as for example
Feature Envy and Divergent Change CS and Scattered Functionality AS.
Hence, its difficult to compare our results with previous results of the liter-
ature. For example in the work of Oizumi [49] other AS (design problems)
have been considered with the exception of Cyclic Dependency. They found
that some code anomalies often flock together in order to embody a design
problem. They analyzed not only syntactic agglomerations of code anoma-
lies, but also the semantic ones, as possible indicators of design problems.
We have not considered in our work these kinds of agglomerations, but we
considered some categories of code smells. Moreover, in their work design
problems have been identified through the developers feedbacks by creating
a ground truth of design problems for the set of considered projects. While
we detected the architectural problems/smells through an automated sup-
port . Hence, further investigations have to be done and this study can also
be used to better design future analysis.

7. Threats to Validity

In this Section, we introduce the threats to validity, following the struc-
ture suggested by Yin [70], reporting construct validity, internal validity,
external validity, and reliability. Moreover, we will also discuss the different
tactics adopted to mitigate them.

7.1. Construct Validity

Construct Validity concerns the identification of the measures adopted
for the concepts studied in this work. We used two widely accepted tools
to measure code and architectural smells, but we are aware that other tools
could have reported different results or could have detected other types of
smells. To reduce the threat related to the data analysis technique adopted,
we used Kendall rank correlation, since it has less gross error sensitivity
enabling a more robust analysis with a smaller asymptotic variance [68].

7.2. Internal Validity

Threats to Internal Validity concern factors that might have influenced
the results obtained. Regarding this threat, the main issue is related to the
detection accuracy of the adopted tools. For this purpose, we relied on exist-
ing detection tools already adopted in previous research studies. Regarding
code smell detection, we relied on the DECOR rules. We would like to point
out that the SonarQube ”Antipatterns-CodeSmell” plugin adopts the exact
rules defined by Moha et al. [39]. We are aware that the results could be

32

influenced by the presence of false negatives and positives. For this reason,
Moha et al. reported a precision higher than 60% for DECOR and a recall
of 100% on a selected set of projects. Moreover, in our previous work [71],
two authors independently manually validated a subset of smell instances,
reporting a mean precision of 78%. The results of the validation analyzed
in [71] are also available in its replication package [66].

The evaluation of Arcan’s detection performance in two industrial case
studies based on the feedback of the developers is described in [60], where
the authors report a precision of 100%, since Arcan found only correct in-
stances of architectural smells, and a recall of 66%. The developers reported
five more architectural smells, which were false negatives related to 180 ex-
ternal components outside the tool’s scope of analysis. According to the
recall value, some AS can be missed and therefore, we might have failed to
detect some correlations. Moreover, the manual validation of the Arcan’s
detection results has been done on ten open source projects d [22] and a
multiple case study on several architectural smells detected by Arcan has
been conducted on four industrial projects [61], with the aim to evaluate
the negative impact of the architectural smells based on the feedbacks from
practitioners. According to this study practitioners appreciated the support
of the automatic detection of AS provided by Arcan [61].

Based on the previous assumptions, the presence of possible false posi-
tives and false negatives is mitigated also by the large sample of analyzed
projects and by the high precision and recall values of the results of the two
detection tools.

7.3. External Validity

Threats to External Validity concern the generalization of the results ob-
tained. We cannot claim that our results fully represent every Java project.
In order to mitigate this issue, we considered a large set of projects with
different characteristics, in particular a set of 102 well-known Java projects
included in the Qualitas Corpus data set. This data set includes projects
from different domains, of different sizes, and with different architectures.
Hence, this data set is representative and useful for reducing the possibil-
ity that the results might not be generalizable. As for the selection of the
projects for this study, the adoption of Open Source projects instead of
commercial ones, should not have influenced the results of this work. Open
source projects are now considered at the same level of quality of closed
source projects [72]. Therefore, we hypothesized that commercial projects,
in similar domains, would have reported a similar result. We have analyzed

33

only Java projects, hence we can not generalize our results to projects in
different programming languages.

We used two available tools to measure code and architectural smells.
Not all of the defined code smells and architectural smells in the literature
are detected by these tools. Hence, we cannot claim that our results will
hold for any code smell or architectural smell. In order to mitigate this issue,
we considered a large number of code smells, but other code smells can be
considered in future work, such as for example the Feature Envy smell [4].
The detection of this smell could have a significant impact on the results:
when envying classes, or in the case of classes that are being envied and very
scattered in a software project, this might actually represent an indicator
of a design or architecture-level problem. While for architectural smells, we
have considered only four architectural smells, since the availability of tools
able to detect several architectural smells 4 is reduced with respect to code
smells Hence, we have to extend this study by considering other architectural
smells and, in particular, other smells not focused only on dependency issues.
To accomplish this task, we have to extend Arcan with the ability to detect
such new architectural smells or use another available tool.

Moreover, to enable the replicability of this work, we provided a complete
replication package [66].

7.4. Reliability

Threats to Reliability refer to the correctness of the conclusions reached
in the study. We applied non-parametric tests and rank-based correlation
methods, as software metrics often do not have normal distributions. We
used a standard R package to perform all statistical analyses since it allows
simple replications and gives good confidence on the quality of the results.

8. Conclusion and Future Development

In this work, we conducted a large-scale empirical study investigating
the correlations between code smells and architectural smells. We detected
code smells and architectural smells in 102 Java projects of the Qualitas
Corpus data set [73] by means of two smell detection tools, the SonarQube
”Antipatterns-CodeSmells plugin” for code smells and Arcan for architec-
tural smells.

4at least at the time when we performed this study.

34

We found empirical evidence on the independence between code smells
and architectural smells. Therefore, we can assume that the presence of code
smells does not imply the presence of architectural smells and vice versa.
This result can be useful for developers, since they cannot focus only on the
refactoring of code smells, but also need to pay particular attention to the
more dangerous architectural smells. Moreover, this result can stimulate
research in this direction to enhance the detection of architectural issues
such as architectural smells. Also, it may provide an incentive for studying
and providing support for the automated refactoring of AS.

Future work will include the replication of this work considering differ-
ent projects and their historical evolution. In particular, we would like to
consider projects in different categories and evaluate whether the domain
of the project might have an impact on this study. We have to extend our
study by considering other code and architectural smells. Regarding code
smells, we have to consider at least the Feature Envy and Divergent Change
smells, not detected by the tool we used. Hence, we could revisit the clas-
sification of CS in the different categories according to the new introduced
CS. Regarding architectural smells, we have to consider a larger set of smells
not focused only on dependency issues, such as those identified, for example,
by Macia et al.[18] and Garcia et al.[1]. To accomplish this task, we could
extend Arcan to detect these new architectural smells or exploit any other
tool available in the future. We are also working on the extension of Arcan
to detect architectural smells in microservice architectures [74].

Research interest on architectural smells is increasing, and this will cer-
tainly lead to the development of new tools or the extension of the existing
ones.

Therefore, we believe there is a need for more empirical investigations
in this domain, so as to understand whether (a) the presence of other code
smells implies the presence of one or more architectural smells; (b) the in-
dependence between architectural smells and code smells is still true when
considering other architectural smells not currently detected by Arcan or by
other available tools; (c) the results obtained are valid for other projects in
different domains.

Moreover, as outlined by Kouroshfar et al. [75], to improve the accuracy
of bug prediction one should also take the software architecture of the project
into consideration. Hence, in the near future we would like to study poten-
tial correlations between architectural smells and bugs as well as potential
correlations with other issues detected through SonarQube [76].

35

References

References

[1] J. Garcia, D. Popescu, G. Edwards, N. Medvidovic, Identifying ar-
chitectural bad smells, in: CSMR 2009, IEEE, Germany, 2009, pp.
255–258.

[2] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, I. Gorton, Measure
it? manage it? ignore it? software practitioners and technical debt, in:
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September
4, 2015, pp. 50–60.

[3] R. Nord, I. Ozkaya, P. Kruchten, M. Gonzalez-Rojas, In search of a
metric for managing architectural technical debt, in: Proceedings of the
2012 Joint Working IEEE/IFIP Conference on Software Architecture
(WICSA) and European Conference on Software Architecture (ECSA),
IEEE, Helsinki, Finland, 2012, pp. 91–100.

[4] M. Fowler, K. Back, Refactoring: Improving the Design of Existing
Code, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999.

[5] F. Palomba, G. Bavota, M. D. Penta, F. Fasano, R. Oliveto, A. D. Lu-
cia, On the diffuseness and the impact on maintainability of code smells:
a large scale empirical investigation, Empirical Software Engineering
23 (2018) 1188–1221.

[6] T. Hall, M. Zhang, D. Bowes, Y. Sun, Some code smells have a signifi-
cant but small effect on faults, ACM Trans. Softw. Eng. Methodol. 23
(2014) 33:1–33:39.

[7] S. Olbrich, D. S. Cruzes, V. Basili, N. Zazworka, The evolution and
impact of code smells: A case study of two open source systems, in:
Proceedings of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, ESEM ’09, IEEE Computer
Society, Washington, DC, USA, 2009, pp. 390–400.

[8] D. I. K. Sjoberg, A. Yamashita, B. Anda, A. Mockus, T. Dyba, Quan-
tifying the effect of code smells on maintenance effort, IEEE Trans.
Softw. Eng. 39 (2013) 1144–1156.

36

[9] A. Lozano, M. Wermellinger, Assessing the effect of clones on change-
ability, in: IEEE International Conference on Software Maintenance,
ICSM ’08, IEEE Computer Society, Washington, DC, USA, 2008, pp.
227–236.

[10] B. Pietrzak, B. Walter, Leveraging code smell detection with inter-
smell relations, in: P. Abrahamsson, M. Marchesi, G. Succi (Eds.),
Extreme Programming and Agile Processes in Software Engineering,
volume 4044 of Lecture Notes in Computer Science, Springer Berlin /
Heidelberg, 2006, pp. 75–84.

[11] B. Walter, F. A. Fontana, V. Ferme, Code smells and their collocations:
A large-scale experiment on open-source systems, Journal of Systems
and Software 144 (2018) 1–21.

[12] H. Liu, Z. Ma, W. Shao, Z. Niu, Schedule of bad smell detection and
resolution: A new way to save effort, IEEE Transactions on Software
Engineering 38 (2012) 220–235.

[13] A. Yamashita, M. Zanoni, F. Arcelli Fontana, B. Walter, Inter-smell
relations in industrial and open source systems: A replication and com-
parative analysis, in: Proceedings of the 31st International Conference
on Software Maintenance and Evolution (ICSME2015), IEEE, Bremen,
Germany, 2015, pp. 121–130.

[14] W. Li, R. Shatnawi, An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution,
J. Syst. Softw. 80 (2007) 1120–1128.

[15] F. Palomba, M. Zanoni, F. A. Fontana, A. D. Lucia, R. Oliveto, Toward
a smell-aware bug prediction model, IEEE Trans. Software Eng. 45
(2019) 194–218.

[16] I. Deligiannis, M. Shepperd, M. Roumeliotis, I. Stamelos, An empirical
investigation of an object-oriented design heuristic for maintainability,
Journal of Systems and Software 65 (2003) 127 – 139.

[17] B. D. Bois, S. Demeyer, J. Verelst, T. Mens, M. Temmerman, Does
god class decomposition affect comprehensibility?, in: IASTED Conf.
on Software Engineering.

[18] I. Macia, R. Arcoverde, A. Garcia, C. Chavez, A. von Staa, On the rele-
vance of code anomalies for identifying architecture degradation symp-
toms, in: Proceedings of the 15th European Conference on Software

37

Maintenance and Reengineering (CSMR 2012), IEEE Computer Soci-
ety, Szeged, Hungary, 2012, pp. 277–286.

[19] I. Macia, J. Garcia, D. Popescu, A. Garcia, N. Medvidovic, A. von
Staa, Are automatically-detected code anomalies relevant to architec-
tural modularity?: An exploratory analysis of evolving systems, in:
Proceedings of the 11th Annual International Conference on Aspect-
oriented Software Development (AOSD ’12), ACM, Potsdam, Germany,
2012, pp. 167–178.

[20] M. V. Mäntylä, C. Lassenius, Subjective evaluation of software evolv-
ability using code smells: An empirical study, Empirical Software En-
gineering 11 (2006) 395–431.

[21] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, J. Noble, The qualitas corpus: A curated collection of java
code for empirical studies, in: Proc. 17th Asia Pacific Software Engi-
neering Conference (APSEC 2010), IEEE, Sydney, Australia, 2010, pp.
336–345.

[22] F. Arcelli Fontana, I. Pigazzini, R. Roveda, M. Zanoni, Automatic
detection of instability architectural smells, in: Proc. 32nd Intern.
Conf. on Software Maintenance and Evolution (ICSME 2016), IEEE,
Raleigh, North Carolina, USA, 2016.

[23] C. J. Kapser, M. W. Godfrey, ”cloning considered harmful” considered
harmful: Patterns of cloning in software, Empirical Softw. Engg. 13
(2008) 645–692.

[24] J. Schumacher, N. Zazworka, F. Shull, C. Seaman, M. Shaw, Building
empirical support for automated code smell detection, in: Proceedings
of the 2010 ACM-IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement, ESEM ’10, ACM, New York, NY,
USA, 2010, pp. 8:1–8:10.

[25] S. Olbrich, D. Cruzes, D. I. K. Sjoberg, Are all code smells harm-
ful? a study of god classes and brain classes in the evolution of three
open source systems, in: IEEE International Conference on Software
Maintenance (ICSM 2010), p. 10.

[26] F. Arcelli Fontana, E. Mariani, A. Morniroli, R. Sormani, A. Tonello,
An experience report on using code smells detection tools, in: IEEE

38

Fourth International Conference on Software Testing, Verification and
Validation Workshops, RefTest 2011, IEEE, Berlin, 2011, pp. 450–457.

[27] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, D. Poshyvanyk, A. D.
Lucia, Mining version histories for detecting code smells, IEEE Trans-
actions on Software Engineering 41 (2015) 462–489.

[28] F. Arcelli Fontana, V. Ferme, M. Zanoni, R. Roveda, Towards a pri-
oritization of code debt: A code smell intensity index, in: Proc. Sev-
enth International Workshop on Managing Technical Debt (MTD 2015),
IEEE, Bremen, Germany, 2015, pp. 16–24. In conjunction with ICSME
2015.

[29] U. Azadi, F. A. Fontana, M. Zanoni, Machine learning based code smell
detection through wekanose, in: Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018, pp. 288–289.

[30] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, Jdeodorant: Identification
and removal of feature envy bad smells, in: 23rd IEEE International
Conference on Software Maintenance (ICSM 2007), October 2-5, 2007,
Paris, France, pp. 519–520.

[31] M. Lanza, R. Marinescu, Object-Oriented Metrics in Practice, Springer,
2006.

[32] W. Brown, R. C. Malveau, H. W. McCormick III, T. J. Mowbray, An-
tiPatterns: Refactoring Software, Architectures, and Projects in Crisis,
John Wiley, 1998.

[33] M. Lippert, S. Roock, Refactoring in Large Software Projects: Per-
forming Complex Restructurings Successfully, Wiley, 2006.

[34] F. Arcelli Fontana, S. Maggioni, Metrics and antipatterns for software
quality evaluation, in: Proceedings of the 34th IEEE Software En-
gineering Workshop (SEW 2011), IEEE, Limerick, Ireland, 2011, pp.
48–56.

[35] G. Suryanarayana, G. Samarthyam, T. Sharma, Refactoring for Soft-
ware Design Smells, Morgan Kaufmann, 1 edition, 2015.

[36] hello2morrow, Sonargraph Product Family, 2015. https://www.

hello2morrow.com/products/sonargraph.

39

https://www.hello2morrow.com/products/sonargraph
https://www.hello2morrow.com/products/sonargraph

[37] F. A. Fontana, V. Ferme, M. Zanoni, Towards assessing software archi-
tecture quality by exploiting code smell relations, in: Proceedings of
the 2nd IEEE/ACM International Workshop on Software Architecture
and Metrics (SAM 2015), Florence, Italy, pp. 1–7.

[38] M. Mantyla, J. Vanhanen, C. Lassenius, A taxonomy and an initial
empirical study of bad smells in code, in: Software Maintenance, 2003.
ICSM 2003. Proceedings. International Conference on, pp. 381–384.

[39] N. Moha, Y.-G. Guéhéneuc, Decor: a tool for the detection of design
defects, in: Proc. 22nd IEEE/ACM international conference on Auto-
mated software engineering (ASE ’07), ACM, Atlanta, Georgia, USA,
2007, pp. 527–528.

[40] G. Suryanarayana, G. Samarthyam, T. Sharma, Refactoring for Soft-
ware Design Smells: Managing Technical Debt, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition, 2014.

[41] I. Maćıa Bertrán, On the Detection of Architecturally-Relevant Code
Anomalies in Software Systems, Ph.D. thesis, PUC-Rio, Departamento
de Informática, Rio de Janeiro, 2013.

[42] R. Mo, Y. Cai, R. Kazman, L. Xiao, Hotspot patterns: The formal def-
inition and automatic detection of architecture smells, in: Proceedings
of the 12th Working IEEE/IFIP Conference on Software Architecture
(WICSA 2015), IEEE, Montreal, QC, Canada, 2015, pp. 51–60.

[43] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak,
A. Shapochka, A case study in locating the architectural roots of tech-
nical debt, in: Software Engineering (ICSE), 2015 IEEE/ACM 37th
IEEE International Conference on, volume 2, pp. 179–188.

[44] L. Xiao, Y. Cai, R. Kazman, Titan: A toolset that connects software
architecture with quality analysis, in: Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering (FSE 2014), ACM, Hong Kong, China, 2014, pp. 763–766.

[45] R. Marinescu, Assessing technical debt by identifying design flaws in
software systems, IBM Journal of Research and Development 56 (2012)
9:1–9:13.

[46] D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian,
N. Medvidovic, An empirical study of architectural change in open-

40

source software systems, in: 2015 IEEE/ACM 12th Working Confer-
ence on Mining Software Repositories, pp. 235–245.

[47] S. Ganesh, T. Sharma, G. Suryanarayana, Towards a principle-based
classification of structural design smells, Journal of Object Technology
12 (2013) 1:1–29.

[48] U. Azadi, F. Arcelli Fontana, D. Taibi, Architectural smells detected by
tools: a catalogue proposal, in: Proceedings of International Conference
on Technical Debt, TechDebt ’19.

[49] W. N. Oizumi, A. F. Garcia, L. da Silva Sousa, B. B. P. Cafeo, Y. Zhao,
Code anomalies flock together: exploring code anomaly agglomerations
for locating design problems, in: Proceedings of the 38th International
Conference on Software Engineering, ICSE 2016, Austin, TX, USA,
May 14-22, 2016, pp. 440–451.

[50] W. Oizumi, A. Garcia, M. Ferreira, A. von Staa, T. Colanzi, When
code-anomaly agglomerations represent architectural problems? an ex-
ploratory study, in: Software Engineering (SBES), 2014 Brazilian Sym-
posium on, pp. 91–100.

[51] E. Guimaraes, A. Garcia, Y. Cai, Exploring blueprints on the prioriti-
zation of architecturally relevant code anomalies – a controlled experi-
ment, in: 2014 IEEE 38th Annual Computer Software and Applications
Conference, pp. 344–353.

[52] F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, G. Antoniol, An exploratory
study of the impact of antipatterns on class change- and fault-proneness,
Empirical Softw. Engg. 17 (2012) 243–275.

[53] A. J. Riel, Object-Oriented Design Heuristics, Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1st edition, 1996.

[54] S. Kpodjedo, F. Ricca, P. Galinier, Y.-G. Guhneuc, G. Antoniol, De-
sign evolution metrics for defect prediction in object oriented systems,
Empirical Software Engineering 16 (2011) 141–175.

[55] N. Moha, Y. G. Gueheneuc, L. Duchien, A. F. L. Meur, DECOR: A
method for the specification and detection of code and design smells,
IEEE Transactions on Software Engineering 36 (2010) 20–36.

41

[56] S. E. S. Taba, F. Khomh, Y. Zou, A. E. Hassan, M. Nagappan, Pre-
dicting bugs using antipatterns, in: Proceedings of the 2013 IEEE
International Conference on Software Maintenance, ICSM ’13, IEEE
Computer Society, Washington, DC, USA, 2013, pp. 270–279.

[57] R. Marinescu, Detection strategies: Metrics-based rules for detecting
design flaws, in: Proceedings of the 20th IEEE International Con-
ference on Software Maintenance, ICSM ’04, IEEE Computer Society,
Washington, DC, USA, 2004, pp. 350–359.

[58] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices, Prentice Hall, 2007.

[59] H. A. Al-Mutawa, J. Dietrich, S. Marsland, C. McCartin, On the shape
of circular dependencies in java programs, in: Proc. 23rd Australian
Software Engineering Conference (ASWEC 2014), IEEE, Sydney, Aus-
tralia, 2014, pp. 48–57.

[60] F. Arcelli Fontana, I. Pigazzini, R. Roveda, D. A. Tamburri, M. Zanoni,
E. D. Nitto, Arcan: A tool for architectural smells detection, in: 2017
IEEE International Conference on Software Architecture Workshops,
ICSA Workshops 2017, Gothenburg, Sweden, April 5-7, 2017, pp. 282–
285.

[61] A. Martini, F. Arcelli Fontana, A. Biaggi, R. Roveda, Identifying
and prioritizing architectural debt through architectural smells: a case
study in a large software company, in: Proc. of the European Conf. on
Software Architecture (ECSA), Springer, Madrid, Spain, 2018.

[62] P. Runeson, M. Höst, Guidelines for conducting and reporting case
study research in software engineering, Empirical Softw. Engg. 14
(2009) 131–164.

[63] V. R. Basili, G. Caldiera, H. D. Rombach, The goal question metric
approach, Encyclopedia of Software Engineering (1994).

[64] F. Shull, J. Singer, D. I. Sjøberg, Guide to Advanced Empirical Software
Engineering, Springer-Verlag, Berlin, Heidelberg, 2007.

[65] R. Terra, L. F. Miranda, M. T. Valente, R. S. Bigonha, Qualitas.class
Corpus: A compiled version of the Qualitas Corpus, Software Engi-
neering Notes 38 (2013) 1–4.

42

[66] D. Taibi, Raw data: Are architectural smells independent from code
smells? an empirical study, https://data.mendeley.com/datasets/
tnhk383zvz/, 2017.

[67] R. C. Martin, Object oriented design quality metrics: An analysis of
dependencies, ROAD 2 (1995).

[68] C. Croux, C. Dehon, Influence functions of the spearman and kendall
correlation measures, Statistical Methods & Applications 19 (2010)
497–515.

[69] R. Roveda, F. Arcelli Fontana, I. Pigazzini, M. Zanoni, Towards an
architectural debt index, in: Proceedings of the Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), Technical
Debt track, IEEE, Prague, Czech Republic, 2018.

[70] R. K. Yin, Case Study Research: Design and Methods, 4th Edition
(Applied Social Research Methods, Vol. 5), SAGE Publications, Inc,
4th edition, 2009.

[71] D. Taibi, A. Janes, V. Lenarduzzi, How developers perceive smells in
source code: A replicated study, Information and Software Technology
92 (2017) 223 – 235.

[72] V. Lenarduzzi, , D. Tosi, L. Lavazza, S. Morasca, Why do develop-
ers adopt open source software? past, present and future, in: 15th
International Conference on Open Source Systems (OSS2019).

[73] R. Terra, L. F. Miranda, M. T. Valente, R. S. Bigonha, Qualitas.class
Corpus: A compiled version of the Qualitas Corpus, Software Engi-
neering Notes 38 (2013) 1–4.

[74] D. Taibi, V. Lenarduzzi, On the definition of microservice bad smells,
IEEE Software 35 (2018) 56–62.

[75] E. Kouroshfar, M. Mirakhorli, H. Bagheri, L. Xiao, S. Malek, Y. Cai, A
study on the role of software architecture in the evolution and quality
of software, in: Proceedings of the 12th Working Conference on Mining
Software Repositories, MSR ’15, IEEE Press, Piscataway, NJ, USA,
2015, pp. 246–257.

[76] N. Saarimäki, V. Lenarduzzi, D. Taibi, On the diffuseness of code
technical debt in open source projects, International Conference on
Technical Debt (TechDebt 2019) (2019).

43

https://data.mendeley.com/datasets/tnhk383zvz/
https://data.mendeley.com/datasets/tnhk383zvz/

Appendix A. The analyzed projects

44

T
a
b
le

A
.1
0
:
N
u
m
b
er

o
f
A
rc
h
it
ec
tu
ra
l
S
m
el
ls
,
C
a
te
g
o
ry

o
f
C
o
d
e
S
m
el
ls
,
a
n
d
C
o
d
e
S
m
el
ls

in
fe
ct
in
g
th
e
a
n
a
ly
ze
d
p
ro
je
ct
s

P
ro

je
ct

A
rc

h
it

ec
tu

ra
l

S
m

el
ls

C
a
te

g
o
ry

o
f

C
o
d

e
S

m
el

ls
C

o
d

e
S

m
el

ls

UD

HL

CD

MAS

Bloat.

Disp.

Enc.

OOA

AS

BCSA

DsP

CC

DC

LC

LzC

LM

LPL

MFnC

MC

RPB

SC

SG

a
o
i

6
7

1
1
1
1
0

1
1
1
2
3

2
2
5

1
9
1

4
2

3
1

3
1

0
4
2

7
8

1
8
8

0
3

1
0
8

3
9

0
0

0
3

0
a
rg

o
u

m
l

3
2
5

1
8
3
3

1
8
6
1

8
5
4

1
3
4
4

6
2

1
7

1
7

3
6
1

3
3
3

1
2
9
4

0
5
0

4
2
9

8
9

3
1

0
6

2
a
sp

ec
tj

8
5
2

4
8
0
6
4

4
8
1
2
4

9
7
4

1
5
6
4

3
5
3

9
3

9
3

5
3
5
3

4
3
7

1
5
0
1

0
6
3

3
5
2

1
8
3

2
0

6
1
0

2
a
x
io

n
1

5
1
5
8

1
6
4

8
5

4
0

8
3

3
0

8
3
1

3
9

0
1

4
6

7
1

0
0

0
0

a
zu

re
u

s
6

1
6
8

1
6
2
3
5
7

1
6
2
5
3
1

1
1
9
3

7
0
4

1
7
3

1
3
9

1
3
9

6
5

1
1
1

4
2
8

4
9
4

0
2
1
0

4
6
2

3
0
3

0
6
2

1
3
9

1
9

2
5

cj
d

b
c

7
3
5

1
6
3
2

1
6
7
4

3
6
5

1
3
6

2
1

5
4

5
4

0
2
1

1
4
0

1
3
2

0
4

1
6
5

6
0

0
0

0
6

0
ca

st
o
r

9
5
8

1
5
1
0

1
5
7
7

1
5
1
1

1
0
1
7

3
2

1
1

1
1

4
3
2

5
1
1

9
5
6

0
6
1

5
7
3

4
2
7

0
0

4
4

1
ca

y
en

n
e

2
1

1
2

1
5

1
2
4
1

5
5
2

1
8

2
5

2
5

4
1
8

4
7
9

3
4
3

0
2
0
9

6
5
5

1
0
6

1
0

3
2

0
2
5

ch
ec

k
st

y
le

4
3

2
5
3

2
6
0

4
4
6

5
0

1
0

5
5

2
1
0

1
8
6

5
0

0
0

1
5
8

1
0
0

2
0

2
0

0
co

b
er

tu
ra

6
4

3
8

4
8

7
8

4
9

2
6

3
3

2
2
6

3
0

4
8

0
1

3
1

1
7

0
0

0
0

0
co

ll
ec

ti
o
n

s
4

5
3
6
0

3
6
9

2
4
1

4
1
1

2
2

2
1

2
7
7

4
0
9

0
2

1
0
7

5
7

0
0

0
0

4
co

lt
6

9
8
8
5

9
0
0

8
5

1
0
9

6
2
2

2
2

1
6

1
7

9
5

0
1
4

5
0

1
8

0
0

2
5

0
co

lu
m

b
a

5
6
0

2
2
9
4

2
3
5
9

6
2
3

1
4
6

2
4

2
9

2
9

0
2
4

1
6
9

1
3
4

0
1
2

2
5
3

2
0
1

0
0

0
0

0
co

m
p

ie
re

9
1
9

8
2
8
2

8
3
1
0

1
3
5
1

1
2
9
2

8
1

7
3
4

7
3
4

2
8
1

4
1
2

1
2
6
5

2
2
7

5
1
6

4
1
5

6
0

1
5

1
d

er
b
y

4
5
1

9
6
4
8

9
7
0
3

1
4
5
5

7
3
9

1
6
3

9
8

9
8

1
1

1
6
3

5
4
2

5
8
1

0
1
5
8

6
0
4

3
0
3

6
0

9
1
6

6
d

is
p

la
y
ta

g
1

5
1
1
7

1
2
3

1
9
7

8
1

0
2

2
2

0
6
1

8
1

0
0

7
9

5
7

0
0

1
0

0
d

ra
w

sw
f

2
1
4

3
6
4

3
8
0

1
0
2

5
7

7
1
2

1
2

1
0

7
4
0

5
5

0
2

5
3

9
0

0
1
0

0
1

em
m

a
3

8
1
8
7

1
9
8

7
9

4
1

1
9

0
0

0
1
9

2
1

3
9

0
2

2
8

3
0

0
0

0
0

3
ex

o
p

o
rt

a
l

0
4
9

3
7
0

4
1
9

9
9
8

2
6
9

4
4

7
7

7
7

1
1

4
4

2
6
3

2
2
8

0
4
1

3
5
7

3
7
7

1
0

8
7

3
fi

n
d

b
u

g
s

1
0

1
3

9
1
1
1

9
1
3
4

4
4
9

9
7

1
4

3
4

3
4

0
1
4

1
7
4

7
2

0
2
5

2
0
2

7
2

1
0

0
6

0
fi

tj
a
v
a

2
0

3
2

3
4

3
2

7
7

3
1

1
5

1
5

1
3
1

9
7
5

0
2

1
5

8
0

0
0

0
1

fi
tl

ib
ra

ry
fo

rfi
tn

es
se

6
3
8

2
4
3
6

2
4
8
0

6
0
7

1
6
1

7
5

2
7

2
7

1
1

7
5

1
5
2

1
0
2

0
5
9

2
2
9

2
2
4

2
0

4
3

0
fr

ee
co

l
1
5

2
0

4
1
0
8
8

4
1
1
2
3

3
2
3

8
6

6
6

6
0

6
1
2
3

8
1

0
5

1
5
9

4
1

0
0

0
0

0
fr

ee
cs

4
6

7
4
2

7
5
2

7
8

6
6

2
6

1
3

1
3

0
2
6

2
7

6
6

0
0

2
9

2
1

1
0

0
0

0
fr

ee
m

in
d

9
1
6

4
3
5
0

4
3
7
5

1
8
1

5
4

4
8

2
7

2
7

1
0

1
1

6
4

4
3

0
1
1

8
9

2
8

0
3
7

3
4

6
3

g
a
ll
eo

n
8

6
1
7
8
8

1
8
0
2

1
5
3

1
2
5

1
8

2
0

2
0

0
1
8

6
6

1
2
5

0
0

5
0

3
7

0
0

0
3

0
g
a
n
tt

p
ro

je
ct

5
2
0

1
8
5
2

1
8
7
7

2
2
2

5
1

1
6

1
3

1
3

0
1
6

7
9

3
9

0
1
2

1
0
3

3
9

1
0

0
3

0
h

a
d

o
o
p

9
4
8

6
8
6
5

6
9
2
2

9
9
4

7
8
9

4
6

1
0
3

1
0
3

1
1

4
6

3
2
6

7
5
3

0
3
6

5
5
0

1
1
7

1
0

1
0

1
1

6
h

er
it

ri
x

6
1
6

9
9
6

1
0
1
8

2
6
1

6
3

2
0

3
7

3
7

0
2
0

8
9

6
1

0
2

1
3
8

3
4

0
0

0
1

0
h

sq
ld

b
9

1
1

1
0
6
0
6

1
0
6
2
6

2
5
7

1
9
3

4
4

4
2

4
2

3
4
4

1
1
2

1
6
2

1
3
1

1
0
9

3
5

0
0

1
8

0
h
tm

lu
n

it
2

7
1
0
4
0
8

1
0
4
1
7

3
5
7

1
1
8

0
0

0
0

0
1
7
6

1
1
7

0
1

1
7
8

3
0

0
0

0
0

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

45

T
a
b
le

A
.1
0

–
c
o
n
ti
n
u
e
d

fr
o
m

p
r
e
v
io
u
s
p
a
g
e

P
ro

je
ct

A
rc

h
it

ec
tu

ra
l

S
m

el
ls

C
a
te

g
o
ry

o
f

C
o
d

e
S

m
el

ls
C

o
d

e
S

m
el

ls

UD

HL

CD

MAS

Bloat.

Disp.

Enc.

OOA

ASG

BCSA

DsP

CC

DC

LC

LzC

LM

LPL

MFnC

MC

RPB

SC

SG

in
fo

rm
a

3
3

4
9

5
5

6
5

4
2

0
8

8
4

0
2
4

4
2

0
0

3
1

1
0

0
0

3
0

0
ir

ep
o
rt

9
4
4

1
4
3
4
4

1
4
3
9
7

8
9
3

8
3
8

3
6

3
9

3
9

1
3
6

3
0
3

8
2
9

2
9

2
7
0

3
1
8

0
0

1
8

0
it

ex
t

6
6

3
5
1
9

3
5
3
1

2
1
5

8
9

1
8

1
7

1
7

0
1
8

1
1
3

6
3

1
2
6

7
3

2
8

0
0

0
3

0
iv

a
ta

g
ro

u
p
w

a
re

3
2
0

1
4

3
7

1
0
5

2
5

2
1

1
0

2
3
8

1
9

0
6

4
4

2
3

0
0

0
0

0
ja

g
1

7
4
2
2

4
3
0

7
2

2
9

1
3

1
1

1
1

0
1
3

1
9

2
0

0
9

3
0

2
3

0
0

0
4

0
ja

m
es

3
6

1
0
0

1
0
9

1
4
4

6
7

2
1

1
0

2
5
6

6
0

0
7

8
1

7
0

0
1

0
1

ja
sm

l
0

0
0

0
2
1

5
2
7

3
3

0
2
7

1
0

3
0

2
4

5
2

0
0

0
0

ja
sp

er
re

p
o
rt

s
7

2
1

1
8
2
9

1
8
5
7

8
2
0

3
0
6

0
3

3
1

0
2
8
5

3
0
0

0
6

2
8
2

2
5
3

0
0

0
1

0
ja

v
a
cc

4
2

4
7

5
3

7
0

5
7

3
8

2
3

2
3

2
3
8

3
0

5
4

0
3

2
8

1
1

1
0

0
9

0
jb

o
ss

9
9
3

2
6
5
8

2
7
6
0

3
3
6
4

1
5
0
1

3
0
5

3
5
8

3
5
8

1
7

3
0
5

9
1
4

1
3
3
0

0
1
7
1

1
2
5
1

1
1
9
7

2
0

1
1

4
0

3
jc

h
em

p
a
in

t
5

3
7

1
7
3
7

1
7
7
9

9
1
4

8
2
3

3
8

4
4

4
4

4
3
8

3
8
6

6
9
3

0
1
3
0

4
2
6

1
0
2

0
0

1
8

0
je

d
it

8
1
4

1
1
5
0
9

1
1
5
3
1

2
5
7

1
3
8

4
7

2
2

2
2

1
4
7

1
0
4

8
9

0
4
9

1
3
1

2
0

2
0

1
0

0
je

n
a

6
2
1

6
2
5
7

6
2
8
4

3
2
4

1
1
7

7
1

1
1
5

1
1
5

2
8

6
6

1
3
4

7
3

0
4
4

1
5
3

3
6

1
5

7
1

1
3

7
je

x
t

6
1
3

1
2
5
5

1
2
7
4

2
7
7

1
5
3

2
7

1
6

1
6

1
2
7

1
2
4

1
5
0

0
3

1
2
3

2
9

1
0

1
2

0
jF

in
D

a
te

M
a
th

0
2

0
2

4
8

2
0

3
3

3
0

3
1
9

1
8

0
2

2
5

4
0

0
0

0
0

jf
re

ec
h

a
rt

9
1
5

2
4
5

2
6
9

4
4
0

3
3
1

5
2
9

2
9

0
5

1
3
4

3
2
6

0
5

2
1
4

9
2

0
0

0
1

0
jg

ra
p

h
6

8
9
0
8

9
2
2

8
1

6
7

3
7

4
4

4
4

0
3
7

2
6

5
6

0
1
1

4
4

1
1

0
0

0
0

0
jg

ra
p

h
p

a
d

4
4

1
8
6

1
9
4

1
6
6

3
5

2
1

3
2

3
2

0
2
1

5
6

3
5

0
0

6
4

4
6

0
0

1
3

1
jg

ra
p

h
t

1
6

5
8

6
5

9
6

1
9

8
2

2
0

8
3
3

1
6

0
3

5
8

5
0

0
0

0
0

jg
ro

u
p

s
4

7
8
5
9

8
7
0

3
0
1

1
4
4

1
3

2
4

2
4

1
1
3

1
1
3

1
3
5

1
9

1
6
9

1
8

0
0

1
1

0
jh

o
td

ra
w

8
2
2

8
2
7

8
5
7

3
5
6

2
7
4

9
8

8
4

9
1
4
0

2
4
1

0
3
3

1
4
6

7
0

0
0

0
0

0
jm

et
er

7
3
5

4
4
6
4

4
5
0
6

4
9
8

2
2
2

1
0

0
0

1
1
1
7

1
7
0

0
5
2

1
9
6

1
8
5

0
0

0
0

0
jm

o
n

ey
0

3
3
0
2

3
0
5

3
4

1
4

0
4

4
1

0
1
0

7
0

7
1
4

1
0

0
0

0
0

0
jo

g
g
p

la
y
er

3
3

2
1
2

2
1
8

1
2
2

1
8

1
3

1
6

1
6

1
1
3

4
1

1
6

0
2

4
4

3
7

0
0

0
5

0
jp

a
rs

e
1

1
1
2
2

1
2
4

4
1

2
1

7
3

3
1

1
1
4

2
1

0
0

1
5

1
2

0
6

0
1

0
jp

f
1

2
4
2

4
5

3
5

8
0

4
4

0
0

1
1

7
0

1
1
9

5
0

0
0

0
0

jr
ef

a
ct

o
ry

4
3
7

2
9
0
1

2
9
4
2

8
0
5

3
0
9

3
3

2
3

2
3

2
9

2
7

2
6
0

3
0
9

0
0

3
1
0

2
3
3

2
6

7
4

6
5

jr
u

b
y

1
2

4
6

1
4
7
5
9
2

1
4
7
6
5
0

6
3
6

2
0
8

6
8

4
5

4
5

9
6
8

3
0
4

1
7
9

0
2
9

2
7
2

5
8

2
0

4
9

6
js

p
w

ik
i

6
1
7

1
6
1
0

1
6
3
3

3
1
7

6
1

9
2
6

2
6

0
9

8
0

6
0

0
1

1
3
9

9
8

0
0

0
0

0
js

X
e

6
7

3
6
8

3
8
1

7
2

2
9

6
2

2
0

6
2
4

1
4

0
1
5

3
4

1
2

2
0

0
0

1
jt

o
p

en
1

3
3
6
9
0

3
6
9
4

9
8
2

7
4
8

1
0

5
0

5
0

0
1
0

4
6
1

6
5
5

0
9
3

3
1
1

2
0
9

1
0

0
6

0
ju

n
g

2
1
4

2
0
0

2
1
6

1
7
3

1
1
2

6
1
0

1
0

0
6

4
8

1
1
2

0
0

9
2

3
3

0
0

0
2

0
C

o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

46

T
a
b
le

A
.1
0

–
c
o
n
ti
n
u
e
d

fr
o
m

p
r
e
v
io
u
s
p
a
g
e

P
ro

je
ct

A
rc

h
it

ec
tu

ra
l

S
m

el
ls

C
a
te

g
o
ry

o
f

C
o
d

e
S

m
el

ls
C

o
d

e
S

m
el

ls

UD

HL

CD

MAS

Bloat.

Disp.

Enc.

OOA

ASG

BCSA

DsP

CC

DC

LC

LzC

LM

LPL

MFnC

MC

RPB

SC

SG

ju
n

it
2

1
1

1
8
3

1
9
6

7
9

4
9

3
3

3
7

3
1
5

4
6

0
3

3
5

2
9

0
0

1
7

1
6

lo
g
4
j

3
1
3

4
1
1

4
2
7

1
9
0

9
1

3
1
1

1
1

2
3

6
1

8
9

0
2

1
0
7

2
2

0
0

0
2

1
lu

ce
n

e
2

6
6

3
7
8
6

3
8
5
4

6
0
8

3
6
4

4
4

2
6

2
6

3
4
4

1
9
0

3
5
3

0
1
1

2
8
4

1
3
4

0
0

0
2

4
m

a
ra

u
ro

a
5

1
2

2
6
4

2
8
1

9
4

3
0

6
0

0
0

6
2
6

2
8

0
2

5
7

1
1

0
0

0
0

0
m

a
v
en

6
2
7

6
9
1

7
2
4

3
3
1

9
9

1
0

0
5

1
1
1
5

8
0

0
1
9

1
4
9

6
7

0
0

5
0

1
m

eg
a
m

ek
4

2
0

1
1
5
3
2

1
1
5
5
6

5
8
1

1
0
7
6

6
1

2
4

2
4

1
6
1

3
8
7

1
0
7
6

0
0

1
8
2

7
5

0
1

6
0

m
v
n

fo
ru

m
3

2
6

1
0
7
1

1
1
0
0

3
3
1

2
9
4

1
0

1
8

1
8

1
1
0

1
1
8

2
4
0

0
5
4

1
2
8

8
5

0
0

1
2

0
m

y
fa

ce
s

co
re

7
4
1

1
2
6
7

1
3
1
5

9
2
4

1
8
4
9

5
5

5
1
6

5
2
9
4

1
8
3
0

0
1
9

2
9
9

3
3
1

0
0

5
3

0
3
5

n
a
k
ed

o
b

je
ct

s
2

9
9

2
5
7
8

2
6
7
9

1
0
8
2

3
2
2

4
4

3
4

3
4

0
4
4

3
9
8

2
2
3

0
9
9

5
5
7

1
2
7

0
0

0
2

1
n

ek
o
h
tm

l
1

2
1
5

1
8

1
3

1
5

0
1

1
0

0
6

6
0

9
7

0
0

0
0

0
0

o
p

en
jm

s
2

1
9

3
0
1

3
2
2

2
3
0

6
0

0
3

3
0

0
6
4

4
6

0
1
4

1
2
7

3
9

0
0

0
0

0
o
sc

a
ch

e
1

4
4
5

5
0

6
3

8
5

9
9

0
5

1
6

8
0

0
2
5

2
2

0
0

0
1

0
p

ic
o
co

n
ta

in
er

1
4

1
2
9

1
3
4

5
3

1
1

0
0

0
1

0
2
1

7
0

4
3
2

0
0

0
1
8

0
1

p
m

d
2

1
7

3
1
0

3
2
9

3
7
9

7
7

1
8

5
5

4
1
8

1
2
0

5
2

0
2
5

1
6
7

9
2

0
0

2
0

2
p

o
i

1
3

4
3

3
4
9
1

3
5
4
7

9
5
6

3
0
6

2
5

2
0

2
0

7
2
5

4
0
8

2
7
0

0
3
6

4
3
2

1
1
3

3
0

0
1

2
p

o
o
k
a

7
8

1
0
0
7
0

1
0
0
8
5

1
1
3

9
3

6
4

4
8

4
8

2
2

5
3

2
9

7
5

0
1
8

7
4

1
0

0
1
1

1
2

5
1

p
ro

g
u

a
rd

2
1
5

2
8
7

3
0
4

2
7
8

3
4

7
3

1
1

0
7
3

1
1
8

3
4

0
0

1
2
4

3
5

1
0

0
1

0
q
u

a
rt

z
1

8
1
9
8

2
0
7

9
3

4
8

0
0

0
0

0
3
1

4
4

0
4

4
5

1
7

0
0

0
0

0
q
u

ic
k
se

rv
er

1
6

2
8
8

2
9
5

8
9

5
7

1
3

9
9

0
1
3

2
9

5
7

0
0

3
8

2
2

0
0

0
1

0
q
u

il
t

0
3

7
0

7
3

4
8

1
0

7
6

6
0

7
8

1
0

0
0

2
3

1
7

0
0

0
0

0
ro

ll
er

6
2
3

3
7
1

4
0
0

4
0
2

1
9
0

4
5

5
4

5
4

0
4
5

9
6

1
8
9

0
1

1
6
5

1
4
1

0
0

0
5

0
rs

so
w

l
1
0

5
1

1
7
0
0
9

1
7
0
7
0

2
5
4

1
9
2

3
7

3
9

3
9

0
3
7

9
5

1
1
1

0
8
1

1
1
0

2
9

2
0

0
0

2
0

sa
b

le
cc

1
1

4
4

4
6

9
2

8
0

1
1

4
4

0
1
1

2
5

4
9

0
3
1

3
0

3
7

0
0

0
3

0
sa

n
d

m
a
rk

2
2
3

7
6
0

7
8
5

4
0
3

1
8
5

7
6

3
7

3
7

1
4

7
6

1
4
9

1
6
8

0
1
7

1
8
5

6
9

0
0

2
4

2
2

sp
ri

n
g
fr

a
m

ew
o
rk

7
1
0
0

3
6
0
4

3
7
1
1

2
0
7
5

8
1
5

3
6

2
7

2
7

2
3
6

6
1
4

7
1
9

0
9
6

7
7
7

6
8
3

1
0

1
0

0
sq

u
ir

re
ls

q
l

0
2

2
3
1

2
3
3

1
9

1
0

0
0

0
0

6
0

0
1

1
2

1
0

0
0

0
0

st
ru

ts
5

4
3

1
2
4
1

1
2
8
9

7
9
0

4
3
1

3
0

3
0

3
0

4
3
0

3
3
1

3
9
7

0
3
4

4
3
3

2
6

0
0

3
7

1
su

n
fl

o
w

3
7

8
5
0

8
6
0

9
4

3
3

4
0

0
0

4
3
5

3
3

0
0

3
7

2
2

0
0

0
0

0
ta

p
es

tr
y

7
2
9

9
7
1

1
0
0
7

7
4
5

4
9

5
5

5
0

5
2
4
5

4
9

0
0

3
9
5

1
0
5

0
0

0
0

0
to

m
ca

t
5

3
5

1
8
9
1

1
9
3
1

6
1
2

9
0
9

2
2

6
8

6
8

3
2
2

2
2
9

7
9
5

0
1
1
4

2
6
3

1
1
9

1
0

3
1
0

1
tr

o
v
e

0
0

1
7

1
7

2
2

8
0

0
0

0
0

8
5

0
3

9
5

0
0

0
0

0
v
el

o
ci

ty
2

1
4

2
8
7

3
0
3

1
7
2

5
3

1
1

4
4

0
1
1

6
4

5
2

0
1

9
2

1
5

1
0

0
0

0
C

o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

47

T
a
b
le

A
.1
0

–
c
o
n
ti
n
u
e
d

fr
o
m

p
r
e
v
io
u
s
p
a
g
e

P
ro

je
ct

A
rc

h
it

ec
tu

ra
l

S
m

el
ls

C
a
te

g
o
ry

o
f

C
o
d

e
S

m
el

ls
C

o
d

e
S

m
el

ls

UD

HL

CD

MAS

Bloat.

Disp.

Enc.

OOA

ASG

BCSA

DsP

CC

DC

LC

LzC

LM

LPL

MFnC

MC

RPB

SC

SG

w
ct

4
3
5

6
8
5

7
2
4

2
5
9

1
6
2

8
7

7
0

8
9
9

1
2
6

0
3
6

1
4
1

1
9

0
0

0
0

0
w

eb
m

a
il

4
7

1
1
7

1
2
8

5
0

2
9

2
4

4
1

2
1
7

2
7

0
2

2
9

4
0

0
2

0
0

w
ek

a
4

3
2

5
1
7
9

5
2
1
5

6
5
4

6
3
9

5
6

8
5

8
5

0
5
6

2
0
6

5
7
8

0
6
1

3
3
4

1
1
4

0
0

0
4

0
x
a
la

n
4

2
1

8
0
2
7

8
0
5
2

5
6
7

4
3
9

3
3

7
7

1
0

3
3

2
2
3

3
1
3

0
1
2
6

2
2
8

1
1
5

1
0

8
1

5
x
er

ce
s

2
1
2

1
1
3
0

1
1
4
4

3
6
7

4
3
9

3
1

1
3

1
3

5
3
1

1
1
6

4
0
9

0
3
0

1
0
4

1
4
6

1
0

0
2

0
x
m

o
jo

0
1

4
5

1
0

1
6

3
2

2
0

3
3

1
4

0
2

6
1

0
0

0
1

0
a
n
tl

r
4

8
6
0
1

6
1
3

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

a
n
t

5
1
3

2
5
1
1

2
5
2
9

5
5
1

1
5
2

1
1

3
3

2
4

8
1
3
5

1
0
2

0
5
0

2
1
3

2
0
3

0
3

7
4

1
3

48

	1 Introduction
	2 Related Work
	2.1 Code Smell Correlations
	2.2 Architectural Smells
	2.3 Code Smells and Architectural Degradation

	3 Background
	3.1 Code Smells
	3.2 Categories of Code Smells
	3.3 Architectural Smells

	4 Case Study Design
	4.1 Goal, Research Questions, Metrics, and Hypotheses
	4.2 Study Context
	4.3 Data Collection
	4.3.1 Code smell detection data
	4.3.2 Architectural smell detection data

	4.4 Data Analysis

	5 Results
	6 Discussion
	6.1 RQ1:Is the presence of an architectural smell independent from the presence of code smells?
	6.2 RQ1.1:Is the presence of a Multiple Architectural Smell independent from the presence of code smells?
	6.3 RQ2:Is the presence of an architectural smell independent from the presence of a category of code smells?
	6.4 RQ2.1:Is the presence of a Multiple Architectural Smell independent from the presence of a category of code smells?
	6.5 Lessons Learned

	7 Threats to Validity
	7.1 Construct Validity
	7.2 Internal Validity
	7.3 External Validity
	7.4 Reliability

	8 Conclusion and Future Development
	Appendix A The analyzed projects

