
Efficient anytime algorithms to solve the bi-objective Next Release Problem

Miguel Ángel Domı́nguez-Rı́osa,∗, Francisco Chicanoa, Enrique Albaa, Isabel del Águilab, José del Sagradob

aDept. Lenguajes y Ciencias de la Computación. Universidad de Málaga (Spain)
bDept. Informática. Universidad de Almerı́a (Spain)

Abstract

The Next Release Problem consists in selecting a subset of requirements to develop in the next release of a software product. The

selection should be done in a way that maximizes the satisfaction of the stakeholders while the development cost is minimized and

the constraints of the requirements are fulfilled. Recent works have solved the problem using exact methods based on Integer Linear

Programming. In practice, there is no need to compute all the efficient solutions of the problem; a well-spread set in the objective

space is more convenient for the decision maker. The exact methods used in the past to find the complete Pareto front explore the

objective space in a lexicographic order or use a weighted sum of the objectives to solve a single-objective problem, finding only

supported solutions. In this work, we propose five new methods that maintain a well-spread set of solutions at any time during the

search, so that the decision maker can stop the algorithm when a large enough set of solutions is found. The methods are called

anytime due to this feature. They find both supported and non-supported solutions, and can complete the whole Pareto front if the

time provided is long enough.

Keywords: Next Release Problem, Multi-objective optimization, Search-based software engineering, Anytime algorithm, Pareto

front

1. Introduction

Developing software systems that meet stakeholders’ needs

and expectations is the ultimate goal of any software provider

seeking a competitive edge. Software development processes,

specially if agile methodologies are applied, carry requirements

prioritization, not only as a way to identify and filter the impor-

tant requirements, but also to solve conflicts and plan the dif-

ferent releases or deliveries of the software product [29]. These

complex decisions require a detailed knowledge of the domain

and good quantification and estimation techniques of the re-

quirements’ properties that usually involve contradictory crite-

ria. These criteria are defined either by the customers or product

∗Corresponding author
Email addresses: miguel.angel.dominguez.rios@uma.es (Miguel

Ángel Domı́nguez-Rı́os), chicano@lcc.uma.es (Francisco Chicano),

eat@lcc.uma.es (Enrique Alba), imaguila@ual.es (Isabel del Águila),

jsagrado@ual.es (José del Sagrado)

owners (e.g. requirement value, deadline), or by the developers

(e.g. available effort, team size), or maybe by both of them (e.g.

risk, volatility), or even from external factors such as market

opportunity. Release related decisions pose a challenging prob-

lem because of their complexity and dependencies, the number

of stakeholders involved in them, the variety of variables that

need to be reviewed, and the uncertainty of the information it is

relying upon [43].

Some authors differentiate between several kinds of release

decisions [31, 32, 44], those related to find the best combination

of features to implement in a sequence of releases (i.e. releases

schedule) and others that focus on finding the optimal combi-

nation of requirements only for the next release, as we do in

this paper. Nevertheless, requirements change drastically and

frequently. Thus, the company needs a streamlined, flexible ap-

proach to release planning. Priorities may shift as the context

evolves and as more information becomes available. As the re-

Preprint submitted to Elsevier February 8, 2024

ar
X

iv
:2

40
2.

04
58

6v
1

 [
cs

.S
E

]
 7

 F
eb

 2
02

4

quirements are further refined, requirements selection is done

at a more granular level and will incorporate additional bases

when they become appropriate.

Due to the computational complexity of the problem of

choosing a set of requirements that will add the most to a soft-

ware product, it has been also formulated as an optimization

problem. Search methods emerged as an alternative strategy to

solve it within the framework defined by Search Based Soft-

ware Engineering (SBSE) discipline [26, 27]. This discipline

has been successfully and prolifically applied to different prob-

lems in requirements engineering (e.g. requirements prioriti-

zation, requirements selection, release planning, next release

problem, requirement triage) [41]. In most of the literature,

Metaheuristic algorithms have been applied to solve these prob-

lems.

In a recent work, Veerapen et al. [54] showed that Inte-

ger Linear Programming solvers can, nowadays, solve the bi-

objective version of the Next Release Problem in a few hours

for reasonable sizes of the instances. They used the ε-constraint

method to find the complete Pareto front of the problem.

Finding the whole Pareto front might require too much com-

putational time in practice, even hours or days. For example,

this happens in instances with many non-dominated points. The

drawback of ε-constraint is that if the algorithm is stopped be-

fore it finishes, the partial Pareto front could lie in a specific

region because it finds the solutions in lexicographic order ac-

cording to some objective, and, therefore, it could be useless

to the decision maker. From a practical point of view, the de-

cision maker should be interested in a set of solutions as well

spread as possible in the objective space. This is achieved by

designing algorithms which jump in the objective space, finding

scattered solutions and getting the whole Pareto front if there is

enough available time. These algorithms are known as anytime,

because the decision maker can interrupt the execution when-

ever s/he wishes, and take the partial Pareto front provided by

the algorithm. Veerapen et al. used the dichotomic search [51]

to solve the bi-objective NRP. The dichotomic search can only

find supported solutions, missing the non-supported ones. In

all of the instances used in the work of Veerapen et al. [54], the

number of supported efficient solutions is below 6% of the total

number of efficient solutions.

In this work, we improve the state-of-the-art methods for

solving the bi-objective Next Release Problem by defining five

new anytime algorithms for solving bi-objective optimization

problems and we apply them to the problem. Four of the de-

signed algorithms are able to find all the efficient solutions, not

only the supported ones, and can provide a well-spread set of

efficient solutions in a few seconds. Thus, they are more ap-

propriate than the previous state-of-the-art techniques when a

set of non-dominated solutions is required in a short time. This

work answers the following two main Research Questions:

RQ1 Which of the proposed anytime algorithms is the best one

applied to the bi-objective Next Release Problem?

RQ2 Do anytime algorithms find a better-spread set of solutions

in the objective space than the classical algorithms when

there is a time limit?

The paper is organized as follows. The formulation of the

bi-objective Next Release Problem is presented in Section 2. In

Section 3, we define concepts related to multi-objective integer

linear problems. In Section 4, five different anytime algorithms

are described to solve the bi-objective Next Release Problem.

Section 5 presents the analysis of the algorithms and the com-

putational results. Section 6 presents a discussion on the util-

ity of the new anytime algorithms from the point of view of

requirements engineering, while Section 7 describes the identi-

fied threats to validity. Section 8 analyzes the relevant previous

work on Next Release Problem. The last section, presents our

final conclusions and future work.

2. Next Release Problem formulation

The Next Release Problem (NRP) was originally proposed

by Bagnall et al. [5]. It consists in finding a subset of require-

ments or a subset of stakeholders that maximizes a desirable

property, such as revenue, while being constrained by an upper

2

bound on the cost. The bi-objective NRP was formulated by

Zhang et al. [56]. In this case, the upper bound of the cost is

lifted and that constraint is transformed into a second objective.

Then, the decision-maker is presented with a set of solutions

which are all efficient in the Pareto sense.

Let R be the set of n requirements which are not developed

yet and r = (r1, ..., rn) ∈ {0, 1}n the binary vector of require-

ments, where the component ri takes the value 1 if and only if

the i-th requirement will be selected for the next release. Let S

be the set of m stakeholders and s = (s1, ..., sm) ∈ {0, 1}m the

binary stakeholders vector, where the k-th component is set to

1 if and only if the requirements of stakeholder k are included

in the next release. Let c = (c1, ..., cn) be the cost vector associ-

ated to the requirements and w = (w1, ...,wm) the weight vector

associated to the stakeholders, which represents the importance

of each stakeholder. To define the constraints, let P be the set

of pairs (i, j) where requirement i is a prerequisite for require-

ment j and let Q be the set of pairs (i, k) where requirement i is

requested by stakeholder k.

The bi-objective NRP is formulated as:

min f (x) =

 f1(s) = −
m∑

k1=1

wk sk , f2(r) =
n∑

i=1

ciri

 (1)

subject to

ri ≥ r j ∀(i, j) ∈ P (2)

ri ≥ sk ∀(i, k) ∈ Q (3)

ri ∈ {0, 1} ∀i ∈ 1, . . . , n (4)

sk ∈ {0, 1} ∀k ∈ 1, . . . ,m (5)

where Eq. (1) are the two objective functions to be minimized

(satisfaction is to be maximized and this is why it is preceded by

a minus sign), Eq. (2) are the precedence constraints among the

requirements, Eq. (3) forces all requirements of a stakeholder to

be implemented in order to satisfy him/her, and Eqs. (4) and (5)

are the domain equations.

3. Background

In this section we present all the basic elements required

to follow our proposal and the experimental section. We will

start with some definitions of the domain of multi-objective

optimization followed by the presentation of the classical ILP-

based algorithms to find the Pareto front in a bi-objective prob-

lem.

3.1. Multi-objective Optimization

A multiple criteria optimization problem is defined without

loss of generality by

min f (x) = (f1(x), . . . , fp(x)), subject to x ∈ X (6)

where p ∈ N, p ≥ 2, fi : X → R are the objective functions,

i = 1, ..., p, and X , ∅ denotes the feasible solution set. In this

article, we consider X discrete and bounded. Every element in

X is a vector of dimension n, being n the number of variables in

the decision space .

The notion of optimality with several objective functions is

considered in the sense of Pareto optimization. A feasible solu-

tion x ∈ X is called dominated if there exists another y ∈ X with

fi(y) ≤ fi(x) for all i = 1, . . . , p, and fk(y) < fk(x) for at least

one k ∈ {1, ..., p}. In this case, y dominates x and x is dominated

by y (y ⪯ x). If strict inequality holds for all k ∈ {1, . . . , p}, then

we say that x is strictly dominated by y, and y strictly dominates

x (y ≺ x) [21].

Definition 3.1. x ∈ X is an efficient solution if there is no y ∈ X

which dominates x.

Definition 3.2. x ∈ X is called a weakly efficient solution if

there is no y ∈ X which strictly dominates x.

The image of an efficient solution x, is called a non-

dominated point, z = f (x). The image of a weakly efficient

solution x′, is called a weakly non-dominated point, z′ = f (x′) .

The set of all efficient solutions of a multiple criteria opti-

mization problem is called efficient set, XE , and its image is

called Pareto front, PF = f (XE). Because many of the elements

of XE could lead to the same image, we are only interested in

the set PF and one anti-image for every element of this set.

Definition 3.3. An efficient solution is called supported if its

image lies on the frontier of the convex hull of PF ∈ Rp. Equiv-

3

alently, x ∈ X is supported if it minimizes a weighted sum of

the p objectives involving positive weights.

Definition 3.4. (Lexicographic order) Let z1, z2 ∈ Rp. We say

that z1 <lex z2 when z1
q < z2

q for q = min{k | z1
k , z2

k}.

Definition 3.5. Let σ be a permutation, f : X → Rp a vec-

tor function, and fσ =
(

fσ(1), fσ(2), ..., fσ(p)

)
the vector function

based on f where the objectives were re-ordered using permuta-

tion σ. We say that x ∈ X is a lexicographical optimal solution

for permutation σ when there is no y ∈ X with fσ(y) <lex fσ(x).

There exists a maximum of p! lexicographical optimal solu-

tions, one for each permutation.

The Next Release Problem was firstly defined as a bicri-

teria problem with linear constraints and binary variables in

[56]. This is called BOILP (Bi-Objective Integer Linear Prob-

lem) in the literature. In general, a bicriteria problem has

two lexicographical optimal solutions, otherwise it is a triv-

ial problem. Suppose that the images of these two solutions

are z1, z2 ∈ PF with z1
1 < z2

1. Then, z1
2 > z2

2, where z1
1 =

min
x∈X
{ f1(x)}, z1

2 = min
x∈X

{
f2(x) | f1(x) ≤ z1

1

}
, z2

2 = min
x∈X
{ f2(x)} and

z2
1 = min

x∈X

{
f1(x) | f2(x) ≤ z2

2

}
.

Definition 3.6. Let z1 and z2 be two bidimensional points with

z1
1 < z2

1. The points z1 and z2 form a box (rectangle) seen in

Figure 1. Consider the function

δ(x) = λ1 f1(x) + λ2 f2(x) (7)

where λ1 = z1
2 − z2

2 and λ2 = z2
1 − z1

1. Let y be a solution whose

image is inside the box formed by z1 and z2. Then we say that y

is in the convave part of the box when δ(y) > δ0 = λ1z1
1+λ2z1

2 =

λ1z2
1+λ2z2

2, and is in the convex part of the box when δ(y) ≤ δ0.

3.2. Classic algorithms for bi-objective optimization

In this section we present four well-known methods for com-

puting the complete Pareto front of a bi-objective optimization

problem. They are the ε-constraint method, the Augmented

ε-constraint method, Ehrgott Hybrid’s method and the Aug-

mented Tchebycheff method. We also include a description of

Concave

Convex

Figure 1: z1 and z2 form a box. The points z3 and z5 lies in the convex

part of the box, and the point z4 lies in the concave part of the box.

the dichotomic search used by Veerapen et al. [54], which is the

first phase of the Two Phase Method proposed by Ulungu and

Teghem [51].

3.2.1. ε-constraint method

The general bi-objective ε-constraint method is one of the

best-known techniques to solve bicriteria optimization prob-

lems. The idea of the algorithm is to minimize one of the objec-

tives while the other is transformed into a constraint [21]. Since

there are two objective functions, we can implement two vari-

ants of the method, depending on which function we minimize.

In general, the result of the method is a set of weakly efficient

solutions that must be filtered to find the set of non-dominated

points. At the end, this algorithm certifies that the whole Pareto

front is found. There is another variant of this method which

avoids the use of the filtering process. It requires to solve two

subproblems to obtain each efficient solution [7].

3.2.2. Augmented ε-constraint method

This method, also called Augmecon [37, 38], is based on the

general ε-constraint method. It adds a new variable and mod-

ifies the objective function and one constraint. Augmecon is

able to obtain one efficient solution with only one call to the

underlying single-objective solver. The new created variable

has a coefficient λ > 0 in the objective function, and is usually

a fixed value in the interval
[
10−6, 10−3

]
. For example, if we

choose to minimize f1, then the objective function is f1 − λt

4

subject to all the constraints of the problem plus f2(x) + t ≤ ε.

If λ is too large, the algorithm could omit solutions. If λ is too

small, it could generate weakly efficient solutions due to numer-

ical errors in the solver. This value is problem-dependent, but

in general, it works well with a value in the range
[
10−6, 10−3

]
.

Compared to ε-constraint, Augmecon has the advantages that it

ensures that any solution found is efficient and, thus, it requires

one single call of the underlying solver per point in the Pareto

front.

3.2.3. Ehrgott’s Hybrid method

This method, described in [21, p. 101], combines a parame-

terization of the two objectives with the ε-constraint method. It

will be called EHybrid method. Given a bi-objective optimiza-

tion problem and two real numbers λ1, λ2 > 0, at each step the

algorithm minimizes λ1 f1(x)+λ2 f2(x), subject to the constraints

of the problem, x ∈ X, and the new constraints fi(x) ≤ Li for

i ∈ {1, 2}, being L = (L1, L2) a given point. If the problem

has an optimal solution, it must be efficient for the original bi-

objective problem.

The EHybrid method can start with the lexicographical op-

timal solutions. At every iteration, it analyzes a box with two

adjacent non-dominated points as opposite corners, and looks

for a new non-dominated point between them. In Figure 2, we

can see how the method adds constraints in the two axes when

searching for a non-dominated point in a box. When analyzing

the box with corner points z1 and z2, being z1
1 < z2

1, it defines

L = (L1, L2) such that L1 = z2
1 − δ, L2 = z1

2 − δ, where δ is

small enough to avoid omitting solutions. If the subproblem

is infeasible, no new non-dominated point exists between them

and the box is discarded. If a solution exists, it is efficient for

the bi-objective problem and is added to the Pareto Optimal set.

3.2.4. Augmented Tchebycheff method

This algorithm was introduced by Dächert et al. in [12]

and uses an augmented weighted Tchebycheff norm in order to

avoid the generation of weakly non-dominated points. In this

paper, this algorithm will be called Tchebycheff. The method

uses as objective function a weighted sum of the ∥·∥∞ metric

f1

Figure 2: For the EHybrid method, we analyze a box with two non-

dominated points as opposite corners in the current iteration. The vec-

tor L is selected to look for new non-dominated points inside the box.

with an added term using the ∥·∥1 metric. This way, we guaran-

tee that a solution to the problem is efficient. The level curves

in the objective space for certain value α are unions of linear

segments (see Figure 3).

f1

Figure 3: Example of level curve for the Tchebycheff method.

Starting with the lexicographical optimal solutions, the algo-

rithm analyzes boxes in the objective space, looking for new

non-dominated points in between. If the algorithm finds a solu-

tion whose image is an extreme of the box it is discarded. Oth-

erwise, the box is broken down into two new boxes to explore.

The objective function to minimize is max(w1z1(x),w2z2(x)) +

ρ|z(x)|, where z(x) = f (x) − t, and t = (t1, t2) is the local ideal

point of the box, that is, if we analyze the box with corners

(z1, z2), then t = (z1
1, z

2
2). The vector w determines the associ-

5

ated weights of the vector z and the positive real value ρ is fixed

and should have the maximum value possible in order to avoid

numerical errors in the solver. The values of w and ρ depend on

the coordinates of the corners in the current box analyzed.

3.2.5. Anytime dichotomic search

Veerapen et al. [54] use an anytime method based on Aneja

and Nair’s dichotomic scheme [2]. The idea is also quite sim-

ilar to the first phase of the Ulungu and Teghem two-phase

method [51]. The algorithm starts computing the two lexico-

graphical optimal solutions, form a box with the images of both

of them and adds the box to a list of regions to explore. In each

iteration of the algorithm the box with the largest diagonal, say

(z1, z2) is extracted from the list and a weighted sum of the ob-

jectives is optimized, where the weights are λ1 = z1
2 − z2

2 and

λ2 = z2
1 − z1

1. With these weights, z1 and z2 evaluate to the same

value. If a new solution z is found after this optimization step,

its image is added to the Pareto front and is used to divide the

box in two new boxes: (z1, z) and (z, z2). If no new solution is

found the algorithm extracts another box from the list of boxes

and iterates again. This process is repeated until a time limit is

reached or the list of boxes is empty.

4. Anytime algorithms

In this section we present the main contribution of this work:

five new anytime algorithms based on some of the algorithms

described in Section 3.2. The algorithms presented in this sec-

tion have a similar structure. They start computing the im-

ages of the optimal lexicographical solutions and define a set

of boxes. Each box is represented by its upper-left and bottom-

right corners. As long as the set of boxes is not empty, one box

is extracted from it, the one with largest area, and it is explored

to search for new non-dominated points inside. If a new point

is found, two new boxes are to be explored. They are the result

of breaking apart the original box in four pieces and removing

the dominated and empty ones. All the algorithms stop when a

time limit is reached or when there is no box to explore.

The algorithms of subsections 4.1, 4.3 and 4.4 can be consid-

ered as slight variations of previous algorithms. The algorithms

of subsections 4.2 and 4.5 are completely new, to the authors

knowledge.

4.1. Finding the supported Pareto front

Our first anytime algorithm, called SPF (Supported Pareto

Front), focuses the search in the supported efficient solutions. It

is a variant of the Anytime Dichotomic Search (ADS) of Veer-

apen et al. [54], which can also find supported efficient solutions

only. The main difference between ADS and SPF is that ADS

can miss supported efficient points, while SPF is designed to

find all of them. The code of SPF is in Algorithm 1. In Line 8

we can observe that the scalarized version of the problem con-

tains two constraints for both objective functions. These con-

straints prevent the algorithm from finding a previously found

supported solution, thus, forcing it to find a new one, if it ex-

ists. This is the reason why it is able to find all the supported

efficient solutions.

Looking at Algorithm 1, after a box is analyzed, if a new

solution is found, we check whether its image is in the convex

part of the box. If this is the case, we divide the box into two

new boxes. If the new solution has its image in the concave part

of the box, then it is not supported and is discarded. In Line 5

of Algorithm 1 we extract the box with the largest area from the

set Boxes.

4.2. Anytime version of Augmecon

The anytime version of Augmecon will be called AnyAug-

mecon1 and is presented in Algorithm 2. In this and other algo-

rithms we use obj to designate the objective we will use as the

main objective to optimize in the single-objective formulation

of the ILP, and rest for the second objective (used as constraint

in the ILP formulation). For example, if obj = 1, then rest = 2

and vice versa. We consider obj as a parameter of the algorithm.

1A preliminary version of this algorithm appeared in the Spanish congress

JISBD 2016 [11].

6

Algorithm 1 SPF

1:
{
z1, z2

}
← Images of the lexicographical optimal solutions

2: Boxes =
{(

z1, z2
)}

3: PF = {z1, z2}

4: while (Boxes , ∅) do

5:
(
ε1, ε2

)
← Extract some box from Boxes

6: λ1 = ε
1
2 − ε

2
2 ; λ2 = ε

2
1 − ε

1
1

7: (l1, l2) =
(
ε2

1 − 1, ε1
2 − 1
)

8: P ≡ min{λ1 f1(x) + λ2 f2(x); s.t. x ∈ X ∧ f1(x) ≤ l1

∧ f2(x) ≤ l2}

9: if (P is feasible) then

10: x∗ ← Optimal solution of P

11: z = (f1 (x∗) , f2 (x∗))

12: if
(
λ1 f1(x∗) + λ2 f2(x∗) ≤ λ1ε

1
1 + λ2ε

2
2

)
then

13: Boxes = Boxes ∪
{(

z1, z
)}
∪
{(

z, z2
)}

14: PF = PF ∪ {z}

15: end if

16: end if

17: end while

In addition to the starting objective function and the λ value

(see Section 3.2.2) as input parameters, the algorithm fixes ε as

the midpoint between the rest-coordinate of the corners of the

current box (Line 6). Then, it solves the sub-problem. If a new

solution is found, it checks if its image was previously found,

which is equivalent to checking if z∗ is not in the interior region

of the box (Line 12). Then, two new boxes are created and

added to the set Boxes. Otherwise, only one new box is created

and added to the set, having half the area of the previous one.

In Figure 4 we analyze the box
(
z1, z2

)
with AnyAugme-

con. If f1 is optimized (f2 is used as constraint), the algorithm

searches from the vertical line to the left, and finds z3 as the

new point. Then, it analizes boxes
(
z1, z3

)
and
(
z3, z2

)
(see Fig-

ure 4a). If f2 is optimized, the algorithm searches from the

horizontal line to the bottom, obtains z4 as the new point and

analyzes boxes
(
z1, z4

)
and
(
z4, z2

)
(see Figure 4b).

In Figure 5, we analyze box
(
z1, z2

)
with AnyAugme-

con (1, λ). No new non-dominated point is found, so it explores

(a) AnyAugmecon (1, λ)

(b) AnyAugmecon (2, λ)

Figure 4: Analyzing a box using AnyAugmecon (1, λ) and AnyAugme-

con (2, λ).

box
(
ε, z2
)

to obtain z3, and create the two new boxes
(
ε, z3
)

and
(
z3, z2

)
.

4.3. Anytime version of Tchebycheff

The anytime version of Tchebycheff, called AnyTcheby-

cheff 2, is presented in Algorithm 3. The only difference with

the Tchebycheff method is the way it chooses the boxes to be

explored next (Line 5), which is the one with the largest area.

This box will be in most of the cases the one increasing the

hypervolume [24] in the largest amount.

4.4. Anytime version of the EHybrid method

The anytime variant of the EHybrid method commented in

Section 3.2.3, called AnyHybrid, is presented in Algorithm 4.

2A preliminary version of this algorithm appeared in the Spanish congress

JISBD 2016 [11].

7

(a) No new non-dominated point is found

(b) Then, the algorithm searches in the region determined by the verti-

cal bar (ε) and z2

Figure 5: Use of AnyAugmecon (1, λ) when no new non-dominated

point is found.

The only difference between them is the way in which AnyHy-

brid chooses the boxes to be explored next (Line 5), which is

the one with the largest area.

Recall that in the AnyHybrid algorithm, an explored box

could contain no non-dominated points, in which case, the box

is discarded. In AnyAugmecon and AnyTchebycheff a solution

is always found, maybe a new one with image in the interior of

the box, or maybe a repeated or dominated solution previously

found. In all the algorithms that we have exposed so far, when

a new non-dominated point is found, two new boxes are gener-

ated, but in AnyAugmecon, if the image of the new solution is

not inside the box, only one reduced box is created.

4.5. Mixed anytime algorithm

We present in this section two variants of an algorithm that

combines two anytime methods on-the-fly: AnyHybrid and

AnyTchebycheff. The selection on which approach to use de-

pends on the solution found in the previous iteration. EHybrid

Algorithm 2 AnyAugmecon (obj,λ)

1:
{
z1, z2

}
← Images of lexicographical optimal solutions

2: Boxes =
{(

z1, z2
)}

3: PF = {z1, z2}

4: while (Boxes , ∅) do

5:
(
z1, z2
)
← Extract box with the largest area

6: ε =
(
z1

rest + z2
rest

)
/2

7: ε∗ = zrest
rest

8: P ≡ min
{
fobj(x) − λt ; s.t. x ∈ X ∧ frest(x) + t ≤ ε

}
9: if (P is feasible) then

10: x∗ ← Solve P

11: z∗ = (f1 (x∗) , f2 (x∗))

12: if (z∗ is in the interior of the box) then

13: PF = PF ∪ {z∗}

14: Boxes = Boxes ∪
{(

z1, z∗
)
,
(
z∗, z2

)}
15: else

16: if (obj = 1) then

17: Boxes = Boxes ∪
{((
ε, z2

1

)
, z2
)}

18: else

19: Boxes = Boxes ∪
{(

z1,
(
z1

2, ε
))}

20: end if

21: end if

22: end if

23: end while

method is fast but not very good for concave fronts, and Tcheby-

cheff method is good finding spread solutions, so it seems natu-

ral to combine their anytime variants together in one algorithm.

Before presenting the algorithm, we need to introduce a defini-

tion.

Definition 4.1. Let a and b two integer numbers, with a < b.

Let c be such that a < c < b. We say that c is close to a if

c − a < 1
4 (b − a). We say that c is close to b if b − c < 1

4 (b − a).

Now we apply this definition to our problem. Depending on

how close is every component of the image in the new solution

with respect to the corners of the box, we choose one algorithm

or the other for the next iteration. Suppose that the box is (z1, z2)

8

Algorithm 3 AnyTchebycheff

1:
{
z1, z2

}
← Images of lexicographical optimal solutions

2: Boxes =
{(

z1, z2
)}

3: PF = {z1, z2}

4: while (Boxes , ∅) do

5:
(
ε1, ε2

)
← Extract box with the largest area

6: D =
{
x ∈ R2 : x ∈ X ∧ fi(x) ≤ ε3−i

i , i = 1, 2
}

7: P ≡ min {λ + ρ
∑2

i=1 (fi(x) − ti) s.t. x ∈ D ∧

λ ≥ wi(fi(x) − ti) , i = 1, 2}

8: if (P is feasible) then

9: x∗ ← Optimal solution of P

10: z = (f1 (x∗) , f2 (x∗))

11: PF = PF ∪ {z}

12: Boxes = Boxes ∪
{(

z1, z
)}
∪
{(

z, z2
)}

13: end if

14: end while

Algorithm 4 AnyHybrid

1:
{
z1, z2

}
← Images of lexicographical optimal solutions

2: Boxes =
{(

z1, z2
)}

3: PF = {z1, z2}

4: while (Boxes , ∅) do

5:
(
ε1, ε2

)
← Extract box with the largest area

6: λ1 = ε
1
2 − ε

2
2 ; λ2 = ε

2
1 − ε

1
1

7: (L1, L2) =
(
ε2

1 − 1, ε1
2 − 1
)

8: P ≡ min {λ1 f1(x) + λ2 f2(x); s.t. x ∈ X ∧

fi(x) ≤ Li , i = 1, 2}

9: if (P is feasible) then

10: x∗ ← Optimal solution of P

11: z = (f1 (x∗) , f2 (x∗))

12: PF = PF ∪ {z}

13: Boxes = Boxes ∪
{(

z1, z
)}
∪
{(

z, z2
)}

14: end if

15: end while

and the new point z = (z1, z2) is in the concave part. If z1 is

close to z1
1 or close to z2

1, the box (z1, z) will be analyzed using

AnyTchebycheff, otherwise AnyHybrid will be used. Regarding

box (z, z2), we check if z2 is close to z1
2 or z2

2. If this is the case, it

will be analyzed using AnyTchebycheff, otherwise AnyHybrid is

used. See Figure 6 for a graphical example. This new algorithm

will be called MixHT and its pseudocode is shown in Algorithm

5. In Algorithm MixHT we associate to the boxes the algorithm

(AnyHybrid or AnyTchebycheff) to be used in its exploration

(see Line 4 of Algorithm 5).

A

C

B

D

Figure 6: For MixHT, if the current point is in the convex part of the

box, the two new boxes will use AnyHybrid in the next iteration. For

simplicity, name H to AnyHybrid and T to AnyTchebycheff. If the new

point is A, box (z1, A) will use H and box (A, z2) will use T. If the new

point is B, box (z1, B) will use T and box (B, z2) will use H. If the new

point is C, boxes (z1,C) and (C, z2) will use H. If the new point is point

D, boxes (z1,D) and (D, z2) will use T.

The second variant presented in this section, called MixSHT,

is shown in Algorithm 6 and is similar to the previous one, with

the difference that the supported non-dominated points are ob-

tained first. The rationale behind this approach is that the sup-

ported solutions give a very good hypervolume. After that, we

analyze the non-supported points using MixHT algorithm. We

begin exploring the entire supported Pareto front using SPF,

and every time we find a non-supported point, we store it in an-

other set, which will be processed later. Therefore, we need to

consider two sets of boxes, named Boxes1 and Boxes2 in Al-

gorithm 6. The images of the lexicographical optimal solutions

are stored in Boxes1. Boxes2 will be explored after Boxes1 is

empty. When analyzing a box of Boxes1, if the image of a so-

lution is in the convex part, the two new boxes are added to

Boxes1. In this way, we are first getting all the supported solu-

tions. However, if we find a solution with image in the concave

9

Algorithm 5 MixHT

1:
{
z1, z2

}
← Images of lexicographical optimal solutions

2: H ← AnyHybrid method

3: T ← AnyTchebycheff method

4: Boxes =
{(

z1, z2, H
)}

5: PF = {z1, z2}

6: while (Boxes , ∅) do

7:
(
z1, z2, alg

)
← Extract box with the largest area

8: Explore box (z1, z2) using alg method

9: if (Problem is feasible) then

10: x∗ ← Optimal solution

11: z = (f1 (x∗) , f2 (x∗))

12: PF = PF ∪ {z}

13: if
(
z1 is close to z2

1

)
and (z1 is in the concave part)

then

14: B1 =
(
z1, z, T

)
15: else

16: B1 =
(
z1, z, H

)
17: end if

18: if
(
z2 is close to z1

2

)
and (z2 is in the concave part)

then

19: B2 =
(
z, z2, T

)
20: else

21: B2 =
(
z, z2, H

)
22: end if

23: Boxes = Boxes ∪ B1 ∪ B2

24: end if

25: end while

part of the box, the two new boxes to be explored are stored

in Boxes2, which will be explored after Boxes1 has been ex-

hausted. The exploration of Boxes2 is done using MixHT algo-

rithm.

5. Analysis and computational results

In order to answer our research questions we perform a thor-

ough experimental study using well-known benchmarks for

Algorithm 6 MixSHT

1:
{
z1, z2

}
← Images of lexicographical optimal solutions

2: H ← AnyHybrid method; T ← AnyTchebycheff method

3: Boxes1 =
{(

z1, z2, H
)}

; Boxes2 = ∅

4: PF = {z1, z2}

5: while (Boxes1 , ∅) do

6:
(
z1, z2, alg

)
← Extract a box with the largest area from

Boxes1

7: Explore box (z1, z2) using alg method

8: if (Problem is feasible) then

9: x∗ ← Optimal solution ; z = (f1 (x∗) , f2 (x∗))

10: PF = PF ∪ {z}

11: if (z is in the convex part) then

12: Boxes1 = Boxes1 ∪ (z1, z, H) ∪ (z, z2, H)

13: else

14: Boxes2 = Boxes2 ∪ (z1, z, H) ∪ (z, z2, H)

15: end if

16: end if

17: end while

18: while (Boxes2 , ∅) do

19:
(
z1, z2, alg

)
← Extract a box with the largest area from

Boxes2

20: Explore box (z1, z2) using alg method

21: if (Problem is feasible) then

22: x∗ ← Optimal solution; z = (f1 (x∗) , f2 (x∗))

23: PF = PF ∪ {z}

24: if
(
z1 is close to z2

1

)
and (z1 is in the concave part)

then B1 =
(
z1, z, T

)
25: else B1 =

(
z1, z, H

)
26: if

(
z2 is close to z1

2

)
and (z2 is in the concave part)

then B2 =
(
z, z2, T

)
27: else B2 =

(
z, z2, H

)
28: Boxes2 = Boxes2 ∪ B1 ∪ B2

29: end if

30: end while

10

Dataset req stake Dataset req stake

nrp1 140 100 nrp-g1 2,690 445

nrp2 620 500 nrp-g2 2,650 315

nrp3 1,500 500 nrp-g3 2,512 423

nrp4 3,250 750 nrp-g4 2,246 294

nrp5 1,500 1,000 nrp-m1 4,060 768

nrp-e1 3,502 536 nrp-m2 4,368 617

nrp-e2 4,254 491 nrp-m3 3,566 765

nrp-e3 2,844 456 nrp-m4 3,643 568

nrp-e4 3,186 399

Table 1: Number of requirements and stakeholders for every dataset

Next Release Problems and the algorithms defined in the previ-

ous sections.

5.1. Instances and parameters

To perform the computational experiments, we used the in-

stances presented in [54] which were previously described in

[55]. They are divided into two groups of datasets, called clas-

sic instances and realistic instances. The first group is com-

posed of five synthetic datasets named nrp1 to nrp5. The real-

istic instances use the bug repositories for the Eclipse, Gnome,

and Mozilla open-source projects. Four subsets of bugs were

extracted from the three repositories (nrp-e1 to nrp-e4, nrp-g1

to nrp-g4, nrp-m1 to nrp-m4). The requirements for realistic in-

stances do not have prerequisites. The number of requirements

and the stakeholders for every dataset is shown in Table 1.

We use the hypervolume indicator [24] as a measure of the

objective space that is dominated by the points computed by

the algorithms. In the bi-objective case, it represents the union

of the regions of all the rectangles that are dominated by the

non-dominated points. As a reference point to calculate the

hypervolume we consider the Nadir point (z2
1, z

1
2), being z1

and z2 the images of the lexicographical optimal solutions. To

solve the NRP instances we use a 1 GHz CPU machine, with

four cores and 16 GB of RAM. We programmed the algorithms

using C++ and CPLEX 12.6.2. Source code is available at

https://github.com/MiguelAngelDominguezRios/anytime-nrp.

We set the CPLEX parameters, CPXPARAMEPGAP = CPX-

PARAMEPAGAP = CPXPARAMEPINT = 0 , as used in [54]. All the

anytime methods are stopped after 60 seconds of computation,

unless a different stopping condition is indicated.

Although all the algorithms are deterministic, the number of

solutions found can differ for different executions, also for a

fixed time. In each call to the solver, CPLEX manages some

internal parameters, such as the remaining available memory of

the machine, which can have an influence in the tree exploration

to obtain the next solution. This explains why we can obtain a

different number of solutions even when we execute the same

instance for the same amount of time.

To check these variations, we did 30 executions for every in-

stance and for every algorithm, and then use the average values.

The Pearson coefficient, σ/µ (standard deviation divided by the

average), does not exceed the amount of 2% in the worst case,

so the results can be considered stable. If a solution is found

after the runtime limit (60 seconds), it is discarded.

5.2. Answering RQ1: Comparison of anytime methods

In Table 2, we execute the SPF algorithm without time limit

to calculate the complete supported Pareto front for all NRP

instances. We indicate the number of supported non-dominated

points found by Algorithm 1, which is exact, and by [54], which

is approximate. The reader can observe the great difference of

the total percentage of solutions found in every algorithm. The

largest difference occurs in nrp5, where SPF finds around three

times the number of supported solutions of ADS. We can also

observe that the number of supported solutions can be as low as

2% of the total number of non-dominated solutions.

Now we study the results of the remaining four anytime algo-

rithms for the NRP instances. We use two variants for AnyAug-

mecom, each one with a different objective function as main

goal to optimize in the subproblem and the parameter λ as used

in [11]. We also use the two variants described for the Mixed

algorithm combining EHybrid and Tchebycheff. In total, we

compare six algorithms in our experiments. As a quality of

the solution to measure, we consider the percentage of the to-

11

tal hypervolume in the criteria space and the percentage of total

solutions. These results are displayed in Table 3.

As we can see in the results, every anytime algorithm can

solve the nrp1 instance before the total time is reached. More-

over, every anytime method reaches more than the 99% of the

maximum hypervolume for all NRP instances except for nrp2,

nrp4 and nrp5, where the percentages are higher than 60%,

67% and 90%, respectively. Nevertheless the results are quite

similar, so we need to take three decimal numbers to show

the differences between them. Notice that for nrp5, algorithm

AnyAugmecon(1,λ) does not finish its execution because of an

out of memory error, while AnyAugmecon(2,λ) has the best re-

sults for that instance. In summary, it is clear that anytime al-

gorithms behave as expected, because with a low number of the

total solutions, but well-spread, we obtain a great percentage of

the total hypervolume.

Dataset |PF| |SPF| |ADS| |SPF|
|PF| %

|ADS|
|PF| %

nrp1 465 28 27 6.0 5.8

nrp2 4,540 89 70 2.0 1.5

nrp3 6,296 246 172 3.9 2.7

nrp4 13,489 276 195 2.0 1.5

nrp5 2,898 781 264 27.0 9.1

nrp-e1 10,331 826 309 8.0 3.0

nrp-e2 10,573 680 300 6.4 2.8

nrp-e3 8,344 600 268 7.2 3.2

nrp-e4 8,303 454 257 5.5 3.1

nrp-g1 9,280 778 233 8.4 2.5

nrp-g2 6,393 341 209 5.3 3.3

nrp-g3 8,457 603 228 7.1 2.7

nrp-g4 6,171 544 201 8.8 3.3

nrp-m1 13,773 1,252 351 9.1 2.6

nrp-m2 12,933 760 329 5.9 2.5

nrp-m3 12,624 1,059 324 8.4 2.6

nrp-m4 11,547 995 295 8.6 2.6

Table 2: Comparing the number of supported solutions obtained in

NRP instances using SPF and ADS.

The best results are distributed among several algorithms,

such as AnyAugmecon(1,λ), AnyAugmecon(2,λ), AnyHybrid

and MixHT for the best hypervolumes, and AnyAugmecon(2,λ),

AnyHybrid and MixSHT for the best percentage of total solu-

tions.

We applied the Friedman test to the average hypervolume ob-

tained by the methods to check if the differences are statistically

significant. The result is a p-value of 3.187×10−7, that suggests

a strong evidence that the performance of the algorithms is dif-

ferent. To find out the differences we do a post-hoc analysis

using the Nemenyi multiple comparison test, available in an R-

package called PMCMR. The results are displayed in Table 4.

As we can see, the only statistically significant differences

(at the 5% significance level) are those of AnyTchebycheff with

the rest, excluding MixSHT; and the pair AnyAugmecon(1,λ)

- MixHT. We use the Wilcoxon test to compare all

the previous pairs and conclude that AnyAugmecon(1,λ),

AnyAugmecon(2,λ), AnyHybrid and MixHT are better than

AnyTchebycheff, but there is no significant difference between

AnyAugmecon(1,λ) and MixSHT.

In conclusion, we can say that for these instances, AnyTheby-

cheff is worse than the others, but for the rest, there is no clear

winner.

The main feature of the anytime methods is that they are able

to increase the hypervolume very fast during the search process.

To see this, we show in Figure 7 the curves for the anytime al-

gorithms in instance nrp3 which provides a very good hyper-

volume for all of them after 10 seconds. However, there also

exist differences at the beginning, being MixSHT the best and

AnyTchebycheff the worst, in this case. In the supplementary

material the reader can observe the progress in the hypervol-

ume of all the anytime methods in all the NRP instances.

5.3. Answering RQ2: Traditional multi-objective against any-

time algorithms

In this section we want to explore what is the real advantage

of anytime methods compared to the classic multi-objective al-

gorithms (described in Section 3.2). In order to do this, we run

12

A
ny

Au
gm

ec
on

(1
,λ

)

A
ny

Au
gm

ec
on

(2
,λ

)

A
ny

H
yb

ri
d

A
ny

Tc
he

by
ch

eff

M
ix

H
T

M
ix

SH
T

nrp1
%Hyper 100.000 100.000 100.000 100.000 100.000 100.000

%PF 100.000 100.000 100.000 100.000 100.000 100.000

nrp2
%Hyper 97.673 98.869 60.202 97.107 96.403 96.667

%PF 1.0 2.0 3.6 0.7 1.1 4.6

nrp3
%Hyper 99.714 99.689 99.694 99.375 99.740 99.557

%PF 4.5 4.1 5.6 2.1 5.4 8.3

nrp4
%Hyper 98.862 97.847 90.546 94.586 97.464 90.396

%PF 0.6 0.3 0.6 0.1 0.4 2.0

nrp5
%Hyper * 99.969 99.953 67.838 99.822 99.873

%PF * 45.5 36.8 0.1 14.6 39.6

nrp-e1
%Hyper 99.896 99.872 99.898 99.737 99.897 99.882

%PF 6.5 5.4 7.9 2.7 7.1 8.5

nrp-e2
%Hyper 99.860 99.758 99.882 99.625 99.877 99.855

%PF 4.7 2.8 5.5 2.0 5.2 5.7

nrp-e3
%Hyper 99.931 99.925 99.922 99.831 99.920 99.896

%PF 11.5 10.6 13.8 5.3 11.3 13.0

nrp-e4
%Hyper 99.911 99.860 99.900 99.773 99.895 99.878

%PF 9.2 6.1 10.6 4.1 8.8 10.4

nrp-g1
%Hyper 99.955 99.945 99.948 99.896 99.946 99.925

%PF 15.4 13.1 18.2 7.8 14.5 15.8

nrp-g2
%Hyper 99.956 99.934 99.951 99.892 99.945 99.941

%PF 19.2 14.0 22.7 9.6 17.5 17.3

nrp-g3
%Hyper 99.963 99.955 99.955 99.912 99.954 99.943

%PF 19.1 16.2 22.1 9.7 17.3 17.4

nrp-g4
%Hyper 99.969 99.956 99.957 99.924 99.960 99.948

%PF 27.0 20.8 28.9 14.0 23.6 23.2

nrp-m1
%Hyper 99.802 99.792 99.794 99.449 99.809 99.791

%PF 2.8 2.7 3.4 1.0 3.2 3.7

nrp-m2
%Hyper 99.792 99.721 99.816 99.442 99.825 99.825

%PF 2.8 2.1 3.5 1.1 3.4 3.7

nrp-m3
%Hyper 99.815 99.843 99.777 99.469 99.842 99.834

%PF 3.3 3.8 4.4 1.2 4.2 4.9

nrp-m4
%Hyper 99.840 99.805 99.869 99.571 99.862 99.825

%PF 4.1 3.4 5.1 1.7 4.8 5.3

Table 3: Results for anytime algorithms (excluding SPF) within 60 seconds of time limit. Best percentages for every instance are marked in bold.

13

0 2 4 6 8 10

60

70

80

90

100

nrp3

Time (s)

%
 H

yp
er

vo
lu

m
e

AnyAugmecon(1,λ)
AnyAugmecon(2,λ)
AnyHybrid
AnyTchebychef
MixHT
MixSHT

Figure 7: Percentage of the total hypervolume for the six methods in the first 10 seconds for instance nrp3.

all the algorithms with a limited runtime: 60 seconds. The re-

sults of the classic methods are displayed in Table 5. Additional

results of the classic methods can be found in the supplementary

material. For each instance, we consider the total percentage of

hypervolume and the total percentage of total solutions within

60 seconds. The ε-constraint method commented in Section

3.2.1 had two variants, depending on which function we min-

imize. This is done including an input parameter obj ∈ {1, 2}.

Considering the two approaches, we call Econst1 the one which

uses one call to the solver at every iteration (with an ulterior fil-

tering of weakly efficient solutions) and Econst2 the algorithm

which solves two subproblems to obtain every non-dominated

point. As we can see, every algorithm can solve the nrp1 in-

A
ny

Au
gm

ec
on

(2
,λ

)

A
ny

H
yb

ri
d

A
ny

Tc
he

by
ch

eff

M
ix

H
T

M
ix

SH
T

AnyAugmecon(1,λ) 0.15927 0.82732 1.2e-06 0.96213 0.00989

AnyAugmecon(2,λ) - 0.85074 0.03463 0.62413 0.92569

AnyHybrid - - 0.00048 0.99883 0.26315

AnyTchebycheff - - - 8.3e-05 0.34184

MixHT - - - - 0.11337

Table 4: Post-hoc analysis using Nemenyi multiple comparison test.

stance before the total time is reached. On the other hand, some

algorithms provide poor results in hypervolume or in the to-

tal number of solutions. As expected, algorithms Econst1 and

Econst2 have the higher percentage of the total number of so-

lutions found, but their hypervolume percentages are very poor

because they are exploring the Pareto front in lexicographical

order. They do not jump in the objective space. Regarding the

hypervolume, algorithm Tchebycheff is clearly the best, maybe

because of the structure of its level curves (see Section 3.2.4).

We conclude from Table 5 that after 60 seconds the results for

the hypervolume are around 70% of the maximum hypervolume

in the best cases, excluding nrp1.

In order to answer RQ2, in Table 6, we compare the best clas-

sic algorithm against the worst anytime algorithm, in terms of

hypervolume. We see that for all instances there are more than

22% of improvement for anytime methods, except for nrp2 and

nrp5, where the best classic algorithm is better than the worst

anytime, but not better than the best anytime. Interestingly,

most of the best results for the classic exact algorithms are

achieved with Tchebycheff method, and most of the worst ones

for anytime algorithms are with AnyTchebycheff method. This

fact shows that augmented Tchebycheff method works much

14

E
co

ns
t1

(1
)

E
co

ns
t1

(2
)

E
co

ns
t2

(1
)

E
co

ns
t2

(2
)

Au
gm

ec
on

(1
,λ

)

Au
gm

ec
on

(2
,λ

)

E
H

yb
ri

d

Tc
he

by
ch

eff

nrp1
%Hyper 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

%PF 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

nrp2
%Hyper 27.0 27.1 25.1 20.8 23.2 26.0 44.0 67.2

%PF 11.2 13.0 10.1 9.2 9.0 12.3 9.0 8.4

nrp3
%Hyper 31.1 22.2 26.9 16.7 27.6 17.2 71.3 68.7

%PF 10.2 9.3 8.2 6.3 8.5 6.6 4.3 5.3

nrp4
%Hyper 12.4 7.6 10.2 5.9 12.9 6.6 64.8 67.7

%PF 2.5 1.4 1.8 1.0 2.6 1.1 1.0 1.0

nrp5
%Hyper 60.9 66.1 71.0 42.2 * 54.6 74.6 71.7

%PF 22.4 49.7 30.5 29.5 * 39.4 30.0 17.7

nrp-e1
%Hyper 24.0 14.4 18.9 15.0 19.8 17.5 70.9 71.8

%PF 7.7 3.4 5.5 3.6 5.9 4.4 2.2 2.9

nrp-e2
%Hyper 19.4 11.6 14.4 12.5 17.4 14.7 70.1 72.3

%PF 5.7 1.9 3.5 2.1 4.8 2.6 1.7 2.0

nrp-e3
%Hyper 35.6 28.0 29.3 24.0 26.8 24.7 70.7 72.1

%PF 13.2 9.4 10.1 7.2 8.9 7.6 4.6 5.7

nrp-e4
%Hyper 34.6 17.6 25.6 20.8 27.6 21.5 70.5 71.8

%PF 13.5 4.4 8.5 5.6 9.5 5.9 3.7 4.8

nrp-g1
%Hyper 38.2 44.7 27.9 36.6 27.4 38.1 68.5 72.9

%PF 18.4 16.0 12.1 10.8 11.8 11.6 7.8 8.8

nrp-g2
%Hyper 42.8 50.1 29.7 47.6 32.9 45.1 69.7 73.9

%PF 25.6 13.7 15.8 12.5 18.3 11.5 8.1 8.9

nrp-g3
%Hyper 42.7 48.4 31.5 40.5 32.4 41.6 70.5 72.8

%PF 20.8 17.3 13.0 12.7 13.6 13.4 9.0 10.0

nrp-g4
%Hyper 54.2 63.8 37.8 54.1 42.6 54.2 70.5 73.4

%PF 32.5 26.4 18.5 18.6 22.1 18.7 12.9 14.4

nrp-m1
%Hyper 11.9 9.2 8.8 8.9 11.0 12.3 67.9 71.8

%PF 3.4 1.5 2.3 1.5 3.1 2.3 0.9 1.5

nrp-m2
%Hyper 12.0 10.4 8.4 10.4 10.8 12.3 67.2 72.1

%PF 3.7 1.3 2.3 1.3 3.2 1.8 0.8 1.2

nrp-m3
%Hyper 14.4 10.7 11.7 9.4 13.1 12.1 68.0 71.2

%PF 4.0 2.9 3.0 2.4 3.5 3.5 1.4 2.1

nrp-m4
%Hyper 16.4 12.5 11.2 12.7 13.9 14.7 68.0 71.7

%PF 5.5 2.3 3.4 2.4 4.4 3.1 1.5 1.9

Table 5: Results for the classic multi-objective algorithms within 60 seconds of time limit.

15

better when it is used as anytime algorithm. We see in Fig-

ures 8, 9, 10, 11 and 12, the progress in hypervolume of the best

and worst classic exact and anytime algorithms for some of the

NRP instances (in the supplementary material the progress of

all the instances can be found).

As expected, all anytime algorithms do a much better job

than classic algorithms to keep a well-spread set of solutions,

as the progress in the hypervolume indicates.

Best classic %Hyper Worst anytime %Hyper % Differ.

nrp2 Tchebycheff 67.2 AnyHybrid 60.2 -7.0

nrp3 EHybrid 71.3 AnyTchebycheff 99.4 28.1

nrp4 Tchebycheff 67.7 MixSHT 90.4 22.7

nrp5 EHybrid 74.6 AnyTchebycheff 67.8 -6.8

nrp-e1 Tchebycheff 71.8 AnyTchebycheff 99.7 27.9

nrp-e2 Tchebycheff 72.3 AnyTchebycheff 99.6 27.3

nrp-e3 Tchebycheff 72.1 AnyTchebycheff 99.8 27.7

nrp-e4 Tchebycheff 71.8 AnyTchebycheff 99.8 28.0

nrp-g1 Tchebycheff 72.9 AnyTchebycheff 99.9 27.0

nrp-g2 Tchebycheff 73.9 AnyTchebycheff 99.9 26.0

nrp-g3 Tchebycheff 72.8 AnyTchebycheff 99.9 27.1

nrp-g4 Tchebycheff 73.4 AnyTchebycheff 99.9 26.5

nrp-m1 Tchebycheff 71.8 AnyTchebycheff 99.4 27.6

nrp-m2 Tchebycheff 72.1 AnyTchebycheff 99.4 27.3

nrp-m3 Tchebycheff 71.2 AnyTchebycheff 99.5 28.3

nrp-m4 Tchebycheff 71.7 AnyTchebycheff 99.6 27.9

Table 6: Comparing the approximated total percentage of hypervol-

ume for the best classic algorithm versus the worst anytime algorithm.

We omit instance nrp1 because its Pareto front is completely found by

all methods.

6. Discussion

In this section we discuss the connection between the results

obtained in the previous section and the results in the literature,

in particular, regarding the application of metaheuristic algo-

rithms. We also analyze the utility of the proposed anytime

methods for requirements engineering.

6.1. Results with metaheuristic algorithms

The bi-objective Next Release Problem has been solved in

the past using metaheuristic algorithms [15, 31, 32, 33, 34, 56],

the main reason being that the problem is NP-hard and ex-

act methods require too much time. The work of Veerapen et

al. [54] is the most recent one claiming that an exact solution

using ILP solvers is possible for this problem in a reasonable

time, but they also use a Metaheuristic algorithm (NSGA-II) to

compare the results with, showing that the metaheuristic algo-

rithm is competitive with the Dichotomic search. In Section 5.2

we have shown that the anytime methods proposed here clearly

beat the Dichotomic Search and are able to find the complete

Pareto front if this is the desire of the user. Thus, we con-

clude that, for the sizes of the instances used in our experi-

mental evaluation, anytime methods, proposed in this paper,

should be clearly the preferred methods to find an appropri-

ate (well-spread) set of efficient solutions for the bi-objective

NRP. They have the advantage over the dichotomic search that

all the non-dominated solutions are found (with enough time),

not only the supported solutions. They have also the advantage

over the metaheuristic algorithms that all the solutions found

are provably efficient (metaheuristics cannot guarantee that the

solutions found are efficient) and they can be faster. In our pre-

vious report [11] it was clear that anytime methods outperform

NSGA-II, GRASP and ACO, both in runtime and quality of so-

lutions.

6.2. Anytime methods in requirement engineering

Regarding the use of anytime methods in Requirements En-

gineering, they are specially useful in the following scenarios:

• To check “What if” scenarios that allow the user to in-

teractively try different values for the cost or value of the

requirements in a short time. A slow method (like ε-

constraint) is not appropriate for this purpose, since the

user has to wait for the answer before checking a different

scenario. Furthermore, the value and cost of the require-

ments are usually not precisely known, they are uncertain.

Anytime algorithms can help to try different combinations

of the requirements’ parameters in a short time. This ap-

proach has been used in the past by Li et al. [35], and

they conclude that the use of exact algorithms (like the

proposed in this work) is important to avoid algorithmic

uncertainty.

16

60%

80

100

nrp2

0

20

40

60

0 5 10 15 20 25 30

%
 H

yp
er

vo
lu

m
e

%
 H

yp
er

vo
lu

m
e

WC-Econst2(2)

BC-Tchebycheff

WA-AnyHybrid

BA-AnyAugmecon(2,λ)

Time (s)

Figure 8: Comparing worst classic exact (WC), best classic exact (BC), worst anytime (WA) and best anytime (BA) algorithms for instance nrp2.

60%

80

100

%
 H

yp
e

rv
o

lu
m

e

nrp4

0

20

40

60

0 5 10 15 20 25 30

%
 H

yp
e

rv
o

lu
m

e

Time (s)

WC-Econst2(2)

BC-Tchebycheff

WA-MixSHT

BA-AnyAugmecon(1,λ)

Figure 9: Comparing worst classic exact (WC), best classic exact (BC), worst anytime (WA) and best anytime (BA) algorithms for instance nrp4.

60%

80

100

%
 H

yp
e

rv
o

lu
m

e

nrp5

0

20

40

60

0 5 10 15 20 25 30

%
 H

yp
e

rv
o

lu
m

e

Time (s)

WC-Econst2(2)

BC-EHybrid

WA-AnyTchebycheff

BA-AnyAugmecon(2,λ)

Figure 10: Comparing worst classic (WC), best classic (BC), worst anytime (WA) and best anytime (BA) algorithms for instance nrp5.

• Sensitivity analysis and uncertainty, recently studies for

the problem by Li et al. [33, 34] require fast exact methods

to find the solutions to the problem. Thanks to the use of

anytime methods, this sensitivity analysis is possible in a

short time (minutes) compared to the previous approaches

that would require days of computation.

17

60%

80

100

%
 H

yp
e

rv
o

lu
m

e

nrp-e4

0

20

40

60

0 5 10 15 20 25 30

%
 H

yp
e

rv
o

lu
m

e

Time (s)

WC-Econst1(2)

BC-Tchebycheff

WA-AnyTchebycheff

BA-AnyAugmecon(1,λ)

Figure 11: Comparing worst classic exact (WC), best classic exact (BC), worst anytime (WA) and best anytime (BA) algorithms for instance

nrp-e4.

60%

80

100

%
 H

yp
e

rv
o

lu
m

e

nrp-m1

0

20

40

60

0 5 10 15 20 25 30

%
 H

yp
e

rv
o

lu
m

e

Time (s)

WC-Econst2(1)

BC-Tchebycheff

WA-AnyTchebycheff

BA-MixHT

Figure 12: Comparing worst classic exact (WC), best classic exact (BC), worst anytime (WA) and best anytime (BA) algorithms for instance

nrp-m1.

• While the requirements selection is a problem to be solved

every few months using a traditional waterfall method-

ology, in agile methodologies the sprints usually last for

one or two weeks, and the selection of requirements (user

stories) for a sprint is something done every one or two

weeks. Thus, the time to solve the problem should be ac-

cordingly short compared to the duration of the sprint. A

runtime of eight hours is too much time to make the selec-

tion. A few seconds or minutes, as the anytime methods

require, is more appropriate.

• When the number of requirements is in the order of tens or

hundreds of thousands, finding the complete Pareto front

is not viable in a reasonable time, but finding a set of a

few well-spread solutions is possible using anytime algo-

rithms.

When the selection of the requirements to implement in the

next release does not need to be solved very often, non-anytime

exact methods (like the ones proposed by Veerapen et al. [54])

are also useful. They require a few hours to compute the Pareto

front, but in these cases the algorithm to find the efficient so-

lutions should be run every few months. Thus, the fact that

the algorithms takes a few hours to compute the Pareto front is

not a big issue for the software development team, and anytime

methods have no clear advantages in these cases.

18

7. Threats to validity

Construct validity concerns the relation between theory and

observation. We use the hypervolume metric to assess the qual-

ity of the results. This quality is potentially subjective to the de-

cision maker’s opinion. Moreover, the hypervolume measures

the convergence to the front and the spread of the solutions.

Since in this paper the convergence of the solutions to the front

is assured because the algorithms are exact, the hypervolume

measures the spread of the solutions.

Internal validity is concerned with the causal relationships

that are examined. We are working with exact algorithms, but

their runtime is critical in our study and is subject to stochas-

ticity due to the load of the machines used for the experiments

and the internal mechanisms of CPLEX. We used several runs

for every NRP Instance and statistical procedures to evaluate

the results. The randomness of the process is mitigated with

the high number of runs. On the other hand, we used the non-

parametric Friedman test combined with a post-hoc analysis us-

ing the Nemenyi multiple comparison test to check the differ-

ences between the anytime algorithms. Thus, the conclusions

are supported by statistical tests in order to mitigate the poten-

tial errors caused by stochasticity.

External validity concerns the possibility to generalize our

results. The NRP instances used are varied in the number of

variables and constraints, and also in the type of the constraints.

We have used well-known benchmarks of instances. We were

not able to compare with real-world instances, but we have a

benchmark with realistic ones. The results in [54] show that

real-world instances are usually smaller than benchmark in-

stances, so we think that our approach should be applicable also

to real-world instances.

8. Literature review

Many ranking, release planning and prioritization techniques

have been defined, each one using a subset of the information

collected for requirements [1, 6, 48, 49]. These methods may

differ in the way priorities are computed, in the scale of values

used to represent the resulting ordering, and in the accuracy of

the results. They vary from those that do not use numerical data

about requirement attributes, such as the MoSCoW method,

the Top Ten ranking and the 100-point method, to more com-

plex approaches that combine different steps, algorithms and

software tools, such as InSCo-Requisite [15], DRank [47] and

DMGame [30]. InSCo-Requisite defines a process flow across

three stages: gathering candidate requirements, finding solu-

tions to the problem using metaheuristic algorithms, and ana-

lyzing the solutions found. DRank makes use of machine learn-

ing techniques to guide the user preferences elicitation in the

prioritization process and extracts requirements dependencies

from requirements models. DMGame exploits game elements:

AHP (analytic hierarchy process) and genetic algorithms in an

iterative prioritization process.

The Next Release Problem has as goal to meet the cus-

tomer’s needs, minimizing development effort and maximizing

customers satisfaction. It was originally proposed by Bagnall

et al. [5] at customer level and by van den Akker et al. [52] at

requirements level. The first approach did not give any value

property to each requirement, it is estimated according to the

weight or the client importance. The goal of the problem is to

select the subset of the requirements to be satisfied that maxi-

mize the satisfaction of the involved clients without overcom-

ing the budget taking as reference the estimated efforts. In the

second problem, a value is assigned to individual requirements

to model their importance. This way, the individual profit for

each requirement can be estimated. The goal of the problem

is to select the subset of the requirements that maximize their

values without exceeding the cost bound. This formulation is

more accurate to current software engineering development ap-

proaches where selection has to be done at feature level. The

bi-objective NRP was formulated by Zhang et al. [56] naming it

Multi-Objective Next Release Problem (MONRP). In this case,

the upper bound of the cost is lifted and that constraint is trans-

formed into a second objective. Then, the decision-maker is

presented with a set of solutions which are all efficient in the

Pareto sense.

19

Another point to be considered in the problem definition is

requirements interaction [29], that is, constraints among the re-

quirements that must be considered. Some works prioritize the

interactions to the value-cost criterion for requirement triage

[13, 46], that is, interactions represent a stronger constraint than

the resources. These interactions were unified and classified as

strong and weak (functional, value based) [9], but until 2002

they were not totally formalized [8]. The complete list of inter-

actions, including exclusion and time-value dependencies, ap-

peared later [31, 32, 53]. Interactions are constraints that should

be represented in the problem formulation. Precedence rela-

tions are first represented by a graph [5], combination relations

and function interactions also are represented as a graph in [40]

and [18], respectively.

In the literature, several search techniques showed promising

results when only one objective is managed. Some examples

are hill climbing [5], simulated annealing [5, 16], integer linear

programming [5, 52] genetic algorithms [25, 44], ant colony op-

timization [14, 16] and approximate backbone based multilevel

algorithm [55].

The work recently published by Li et al. [35] deserves a spe-

cial mention. They developed a decision support framework for

the Next Release Problem to manage algorithmic and require-

ment uncertainty. Using a conflict graph to model the mutual

exclusion between requirements, and considering the possibil-

ity of partial satisfaction for the stakeholders, they applied the

Nemhauser-Ullmann algorithm, which is a dynamic program-

ming method, to solve the NRP. Their algorithm, called NS-

GDP, cannot be compared to our algorithms for two reasons.

The first one is that the Nemhauser-Ullmann algorithm can not

deal with constraints in the requirements, and we have prereq-

uisites (a kind of requirement) in all our classic instances. The

second one is that the formulation of the Next Release Problem

we use does not consider partial satisfaction of the stakeholders.

The multi-objective approach finds a set of non-dominated

solutions. Most of the works that manage MONRP apply the

cost-value approach (minimal cost and maximal client satisfac-

tion) in several ways: as an interplay between requirements

and implementation constraints [46], considering two objec-

tives (cost and value) [56], using different measures of fair-

ness [23], applying several algorithms based on genetic inspi-

ration (such as NSGA-II, MOCell and PAES) [19, 20], apply-

ing multiobjective ant-colony algorithms [17], using differen-

tial evolution (a kind of evolutionary algorithm) [10], and using

grey wolf optimization algorithm and clustering approach [36].

However, other objectives have also been considered, such as

client dissatisfaction, risk or urgency, [39, 42].

There are some works that propose combining search tech-

niques with human preferences [4, 15, 22], learning algorithms

[3], statistical methods to deal with uncertainty [33, 34] and

AHP [50].

Integer linear programming (ILP) had been applied from the

very beginning to NRP even before the name NRP was coined.

Jung [28] used this method to reduce the complexity of AHP to

large instances of the problem. Bagnall et al. [5], who named

the problem, had used exact techniques to solve a linear pro-

gramming relaxation of the problem, in addition to greedy and

hill climbing algorithms. They concluded that, despite the re-

sults, there was scope for further development on both heuristic

and exact techniques, as has been demonstrated along the more

than fifteen last years.

As Bagnall et al. [5] said, linear programming solutions

proved to be sufficient on small problem instances but required

a long time for larger problems. ILP was also used in a release

planning tool that managed requirements interactions [8] and

stakeholder’s opinions for release planning [45].

An extended ILP technique that manages the list of require-

ments, requirements’ interactions, requirements’ projected rev-

enue, and requirements’ resource claim per development team

was proposed later to support software vendors in determin-

ing the next release [52, 53]. Two integer ILP models that

integrate requirement selection into software release planning

have been successfully used to minimize project duration in the

first model and to maximize revenues and calculate an on-time-

delivery project schedule [31, 32]. A reconsideration of ILP

for the single-objective formulation of the problem and its in-

20

tegration within the ϵ-constraint method has also been used to

address the MONRP [54]. Exact approaches are unappealing

when the number of requirements or interactions grows up be-

cause of large run times. Iterated applications of ILP (solving

a series of single objective subproblems) are used to generate

the exact Pareto front obtaining very fast results on smaller in-

stances of the problem but can take several hours for larger,

more complex instances [54].

None of the previous work using exact techniques focused

on anytime methods. This paper makes a contribution to the

line of research using exact ILP-based methods to solve the bi-

objective formulation of the Next Release Problem. We pro-

pose five anytime methods that improve the state-of-the-art in

the problem by finding a well-spread set of solutions in a few

seconds for instances with up to several thousands of require-

ments.

9. Conclusions and future work

Many optimization problems in Software Engineering can be

modeled as multi-objective optimization problems. This is the

case of the bi-objective Next Release Problem used here. Find-

ing the whole Pareto front for these problems is time consuming

and unnecessary in most of the cases, since the decision maker

just needs a few solution well-spread in the objective space to

take the decision. We propose here some exact algorithms to

find a well-spread set of solutions at anytime from the begin-

ning of the search. We have seen that, in practice, for the Next

Release Problem, they obtain a set of well-spread solutions in

the objective front within a few seconds, while the complete

front require several hours of computation for the instances

used. We claim that this kind of algorithm (anytime) should

be the preferred ones by the decision makers in Software Engi-

neering, since they allow them to play with different parameters

and have exact answers in seconds. In the literature of the Next

Release Problem, however, most of the works use metaheuris-

tic algorithms, that cannot guarantee that efficient solutions are

found.

We have worked here with the bi-objective Next Release

Problem, but the same idea can be applied to other Software

Engineering Problems as future work. The main key ingredient

for a successful application of anytime algorithms is an efficient

exact method to find the efficient solutions. Regarding the Next

Release Problem, there are other variants where the value or

satisfaction are not certain or depend on the presence/absence

of other requirements. These variants would require a differ-

ent, more complex, formulation to be solved with our anytime

algorithms that can be addressed in future work. Other lines

of future work include solving largest instances, probably com-

bining exact methods and heuristics, improving the anytime al-

gorithms, and extending them to more than two objectives.

Acknowledgements

This research has been partially funded by the Spanish Min-

istry of Economy and Competitiveness (MINECO) and the Eu-

ropean Regional Development Fund (FEDER), under contracts

TIN2014-57341-R (moveOn project), TIN2015-71841-REDT

(SEBASENet Excellence Network), TIN2016-77902-C3-3-P

(PGM-SDA II project) and TIN2017-88213-R (6city project).

The authors also acknowledge the funds of the University of

Málaga for the EXHAURO Project (PPIT.UMA.B1.2017/07).

References

[1] Philip Achimugu, Ali Selamat, Roliana Ibrahim, and Mohd Naz’ri

Mahrin, A systematic literature review of software requirements priori-

tization research, Information and software technology 56 (2014), no. 6,

568–585.

[2] Yash P. Aneja and Kunhiraman P.K. Nair, Bicriteria transportation prob-

lem, Management Science 25 (1979), no. 1, 73–78.

[3] Allysson Allex Araújo, Matheus Paixao, Italo Yeltsin, Altino Dantas, and

Jerffeson Souza, An Architecture based on interactive optimization and

machine learning applied to the next release problem, Automated Soft-

ware Engineering 24 (2017), no. 3, 623–671.

[4] Muhammad Imran Babar, Masitah Ghazali, Dayang NA Jawawi,

Siti Maryam Shamsuddin, and Noraini Ibrahim, PHandler: An ex-

pert system for a scalable software requirements prioritization process,

Knowledge-Based Systems 84 (2015), 179–202.

21

[5] Anthony J. Bagnall, Victor J. Rayward-Smith, and Ian M Whittley, The

next release problem, Information and Software Technology 43 (2001),

no. 14, 883–890.

[6] Patrik Berander and Anneliese Andrews, Requirements Prioritization,

pp. 69–94, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[7] Jean-François Bérubé, Michel Gendreau, and Jean-Yves Potvin, An ex-

act e-constraint method for bi-objective combinatorial optimization prob-

lems: Application to the traveling salesman problem with profits, Euro-

pean journal of operational research 194 (2009), no. 1, 39–50.

[8] Pär Carlshamre, Release Planning in Market-Driven Software Product

Development: Provoking an Understanding, Requirements Engineering

7 (2002), 139–151.

[9] Pär Carlshamre, Kristian Sandahl, Mikael Lindvall, Björn Regnell, and

J Natt och Dag, An industrial survey of requirements interdependencies in

software product release planning, Proceedings of the fifth IEEE Interna-

tional Symposium on Requirements Engineering, IEEE, 2001, pp. 84–91.

[10] José M. Chaves-González and Miguel A. Pérez-Toledano, Differential

evolution with Pareto tournament for the multi-objective next release

problem, Applied Mathematics and Computation 252 (2015), 1–13.

[11] Francisco Chicano, Miguel Angel Dominguez, Isabel M. del Águila,

José del Sagrado, and Enrique Alba, Dos estrategias de búsqueda

anytime basadas en programación lineal entera para resolver el

problema de selección de requisitos, Actas de las XXI Jornadas

de Ingenierı́a del Software y Bases de Datos (JISBD), 2016,

http://hdl.handle.net/11705/JISBD/2016/041.

[12] Kerstin Dächert, Jochen Gorski, and Kathrin Klamroth, An augmented

weighted tchebycheff method with adaptively chosen parameters for dis-

crete bicriteria optimization problems, Computers & Operations Re-

search 39 (2012), no. 12, 2929–2943.

[13] Alan M Davis, The art of requirement triage, Computer 36 (2003), no. 3,

42–49.

[14] Jerffeson Teixeira de Souza, Camila Loiola Brito Maia, Thiago do Nasci-

mento Ferreira, Rafael Augusto Ferreira Do Carmo, and Márcia Maria Al-

buquerque Brasil, An ant colony optimization approach to the software

release planning with dependent requirements, Proceedings of the Inter-

national Symposium on Search Based Software Engineering, Springer,

2011, pp. 142–157.

[15] Isabel M del Águila and José del Sagrado, Three steps multiobjective deci-

sion process for software release planning, Complexity 21 (2016), no. S1,

250–262.

[16] José del Sagrado, Isabel M. del Águila, and Francisco J. Orellana, Ant

Colony Optimization for the Next Release Problem: A Comparative

Study, Proceedings of the second International Symposium on Search

Based Software Engineering (SSBSE), 2010, pp. 67–76.

[17] José del Sagrado, Isabel M. del Águila, and Francisco Javier Orellana,

Multi-objective ant colony optimization for requirements selection, Em-

pirical Software Engineering 20 (2015), no. 3, 577–610.

[18] José del Sagrado, Isabel Marı́a del Águila, and Francisco Javier Orel-

lana, Requirements interaction in the next release problem, Proceedings

of the 13th annual conference companion on Genetic and evolutionary

computation (Natalio Krasnogor and Pier Luca Lanzi, eds.), ACM, 2011,

pp. 241–242.

[19] Juan J Durillo, Yuanyuan Zhang, Enrique Alba, Mark Harman, and An-

tonio J Nebro, A study of the bi-objective next release problem, Empirical

Software Engineering 16 (2011), no. 1, 29–60.

[20] Juan J. Durillo, Yuanyuan. Zhang, Enrique Alba, and Antonio J. Nebro, A

study of the multi-objective next release problem, Proceedings of the 1st

International Symposium on Search Based Software Engineering, SSBSE

2009, 2009, pp. 49–58.

[21] Matthias Ehrgott, Multicriteria optimization, vol. 491, Springer Science

& Business Media, 2005.

[22] Thiago Nascimento Ferreira, Silvia Regina Vergilio, and Jerffeson Teix-

eira de Souza, Incorporating user preferences in search-based software

engineering: A systematic mapping study, Information and Software

Technology 90 (2017), 55–69.

[23] Anthony Finkelstein, Mark Harman, S. Afshin Mansouri, Jian Ren, and

Yuanyuan Zhang, A search based approach to fairness analysis in re-

quirement assignments to aid negotiation, mediation and decision mak-

ing, Requirements Engineering 14 (2009), no. 4, 231–245.

[24] Carlos M Fonseca, Luı́s Paquete, and Manuel López-Ibánez, An improved

dimension-sweep algorithm for the hypervolume indicator, Proceedings

of the IEEE Congress on Evolutionary Computation, 2006. CEC 2006,

IEEE, 2006, pp. 1157–1163.

[25] Des. Greer and Günther Ruhe, Software release planning: An evolution-

ary and iterative approach, Information and Software Technology 46

(2004), no. 4, 243–253.

[26] Mark Harman and Bryan F Jones, Search-based software engineering,

Information and software Technology 43 (2001), no. 14, 833–839.

[27] Mark Harman, Jens Krinke, Inmaculada Medina-Bulo, Francisco

Palomo-Lozano, Jian Ren, and Shin Yoo, Exact scalable sensitivity anal-

ysis for the next release problem, ACM Transactions on Software Engi-

neering and Methodology 23 (2014), no. 2, 1–31.

[28] Ho Won Jung, Optimizing value and cost in requirements analysis, IEEE

Software 15 (1998), no. 4, 74–78.

[29] Joachim Karlsson, Stefan Olsson, and Kevin Ryan, Improved practical

support for large-scale requirements prioritising, Requirements Engi-

neering 2 (1997), 51–60.

[30] Fitsum Kifetew, Denisse Munante, Anna Perini, Angelo Susi, Alberto

Siena, and Paolo Busetta, DMGame: A Gamified Collaborative Require-

ments Prioritisation Tool, Proceedings of the IEEE 25th International Re-

quirements Engineering Conference, RE 2017, 2017, pp. 468–469.

[31] Chen Li, Marjan van den Akker, Sjaak Brinkkemper, and Guido Diepen,

Integrated Requirement Selection and Scheduling for the Release Plan-

ning of a Software Product, Requirements Engineering: Foundation for

Software Quality (2007), 93–108.

[32] Chen Li, Marjan van den Akker, Sjaak Brinkkemper, and Guido Diepen,

22

http://hdl.handle.net/11705/JISBD/2016/041

An integrated approach for requirement selection and scheduling in soft-

ware release planning, Requirements Engineering 15 (2010), no. 4, 375–

396.

[33] Lingbo Li, Exact Analysis for Next Release Problem, Proceedings of the

IEEE 24th International Requirements Engineering Conference (RE), sep

2016, pp. 438–443.

[34] Lingbo Li, Mark Harman, Emmanuel Letier, and Yuanyuan Zhang, Ro-

bust next release problem: handling uncertainty during optimization, Pro-

ceedings of the 2014 Annual Conference on Genetic and Evolutionary

Computation, ACM, 2014, pp. 1247–1254.

[35] Lingbo Li, Mark Harman, Fan Wu, and Yuanyuan Zhang, The value of

exact analysis in requirements selection, IEEE Transactions on Software

Engineering 43 (2017), no. 6, 580–596.

[36] Raja Masadeh, Abdullah Alzaqebah, and Amjad Hudaib, Grey Wolf Al-

gorithm for Requirements Prioritization, Modern Applied Science 12

(2018), no. 2, 54.

[37] George Mavrotas, Effective implementation of the ε-constraint method

in multi-objective mathematical programming problems, Applied mathe-

matics and computation 213 (2009), no. 2, 455–465.

[38] George Mavrotas and Kostas Florios, An improved version of the aug-

mented ε-constraint method (augmecon2) for finding the exact pareto set

in multi-objective integer programming problems, Applied Mathematics

and Computation 219 (2013), no. 18, 9652–9669.

[39] An Ngo-The and Günther Ruhe, A systematic approach for solving the

wicked problem of software release planning, Soft Computing 12 (2008),

no. 1, 95–108.

[40] An Ngo-The, Günther Ruhe, and Wei Shen, Release planning under fuzzy

effort constraints, Proceedings of the third IEEE International Conference

on Cognitive Informatics, 2004, pp. 168–175.

[41] Antônio Mauricio Pitangueira, Rita Suzana P Maciel, and Márcio Bar-

ros, Software requirements selection and prioritization using sbse ap-

proaches: A systematic review and mapping of the literature, Journal of

Systems and Software 103 (2015), 267–280.

[42] Antônio Mauricio. Pitangueira, Paolo Tonella, Angelo Susi, Rita

Suzana P Maciel, and Márcio Barros, Minimizing the stakeholder dis-

satisfaction risk in requirement selection for next release planning, Infor-

mation and Software Technology 87 (2017), 104–118.

[43] Günther Ruhe, Product release planning: methods, tools and applica-

tions, CRC Press, 2010.

[44] Günther Ruhe and Des Greer, Quantitative studies in software release

planning under risk and resource constraints, Proceedings of the Inter-

national Symposium on Empirical Software Engineering, ISESE 2003,

2003, pp. 262–270.

[45] Günther Ruhe and Moshood Omolade Saliu, The Art and Science of soft-

ware release planning, IEEE Software (2005), no. Nov/Dec, 47–53.

[46] Moshood Omolade Saliu and Günther Ruhe, Bi-objective release plan-

ning for evolving software systems, Proceedings of the 6th joint meeting

of the European Software Engineering Conference and the ACM SIG-

SOFT Symposium on the Foundations of Software Engineering, ESEC-

FSE’07, 2007, pp. 105–114.

[47] Fei Shao, Rong Peng, Han Lai, and Bangchao Wang, DRank: A semi-

automated requirements prioritization method based on preferences and

dependencies, Journal of Systems and Software 126 (2017), 141–156.

[48] Mikael Svahnberg, Tony Gorschek, Robert Feldt, Richard Torkar, Saad

Bin Saleem, and Muhammad Usman Shafique, A systematic review on

strategic release planning models, Information and Software Technology

52 (2010), no. 3, 237–248.

[49] Rahul Thakurta, Understanding requirement prioritization artifacts: a

systematic mapping study, Requirements Engineering 22 (2017), no. 4,

491–526.

[50] Paolo Tonella, Angelo Susi, and Francis Palma, Interactive requirements

prioritization using a genetic algorithm, Information and software tech-

nology 55 (2013), no. 1, 173–187.

[51] Ekunda L. Ulungu and Jacques Teghem, The two-phase method: An ef-

ficient procedure to solve bi-objective combinatorial optimization prob-

lems, Foundations of Computing and Decision Sciences 20 (1995), no. 2,

149–165.

[52] Marjan van den Akker, Sjaak Brinkkemper, Guido Diepen, and Johan

Versendaal, Flexible Release Planning using Integer Linear Program-

ming, Proceeding of the 11th International Workshop on Requirements

Engineering: Foundation for Software Quality (REFSQ ’05), vol. 03018,

2005, pp. 247–262.

[53] Marjan van den Akker, Sjaak Brinkkemper, Guido Diepen, and Johan

Versendaal, Software product release planning through optimization and

what-if analysis, Information and Software Technology 50 (2008), no. 1-

2, 101–111.

[54] Nadarajen Veerapen, Gabriela Ochoa, Mark Harman, and Edmund K

Burke, An integer linear programming approach to the single and bi-

objective next release problem, Information and Software Technology 65

(2015), 1–13.

[55] Jifeng Xuan, He Jiang, Zhilei Ren, and Zhongxuan Luo, Solving the large

scale next release problem with a backbone-based multilevel algorithm,

IEEE Transactions on Software Engineering 38 (2012), no. 5, 1195–1212.

[56] Yuanyuan Zhang, Mark Harman, and S Afshin Mansouri, The multi-

objective next release problem, Proceedings of the 9th annual conference

on Genetic and evolutionary computation, ACM, 2007, pp. 1129–1137.

23

	Introduction
	Next Release Problem formulation
	Background
	Multi-objective Optimization
	Classic algorithms for bi-objective optimization
	-constraint method
	Augmented -constraint method
	Ehrgott's Hybrid method
	Augmented Tchebycheff method
	Anytime dichotomic search

	Anytime algorithms
	Finding the supported Pareto front
	Anytime version of Augmecon
	Anytime version of Tchebycheff
	Anytime version of the EHybrid method
	Mixed anytime algorithm

	Analysis and computational results
	Instances and parameters
	Answering RQ1: Comparison of anytime methods
	Answering RQ2: Traditional multi-objective against anytime algorithms

	Discussion
	Results with metaheuristic algorithms
	Anytime methods in requirement engineering

	Threats to validity
	Literature review
	Conclusions and future work

