
This is a repository copy of A Complete Run-time Overhead-aware Schedulability Analysis
for MrsP under Nested Resources.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/155803/

Version: Accepted Version

Article:

Zhao, Shuai, Garrido, Jorge, Wei, Ran et al. (3 more authors) (2020) A Complete Run-time
Overhead-aware Schedulability Analysis for MrsP under Nested Resources. Journal of
Systems and Software. ISSN 0164-1212

https://doi.org/10.1016/j.jss.2019.110449

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A Complete Run-time Overhead-aware Schedulability

Analysis for MrsP under Nested Resources

Shuai Zhaoa, Jorge Garridob,∗, Ran Weia,∗, Alan Burnsa, Andy Wellingsa,
Juan A. de la Puenteb

aDepartment of Computer Science, University of York, York, YO10 5GH, UK
bSTRAST research group, Universidad Politécnica de Madrid (UPM), Spain

Abstract

Multiprocessor Resource Sharing Protocol (MrsP) is a hard real-time multi-
processor resource sharing protocol for fully partitioned fixed-priority systems,
and adopts a novel helping mechanism to allow task migrations during resource
accessing. Previous research focusing on analysing MrsP systems have deliv-
ered two forms of timing analysis which effectively bound response time and
migration cost of tasks under MrsP, and have demonstrated advantages of this
protocol. An adjustable non-preemptive section is also introduced that effec-
tively reduces the number of migrations needed during each resource access.
However, these analysis methods are only applicable if a non-nested resource
accessing model is assumed. In addition, there is no clear approach towards the
configuration of the non-preemptive section length, and the computation cost
for applying the analysis remains unknown.

In this paper, we extend the MrsP analysis for systems with nested resources.
Major run-time costs incurred by MrsP tasks are also taken into account to form
a complete run-time cost-aware schedulability analysis. In addition, recommen-
dations towards non-preemptive section configuration are given from both an-
alytic and empiric perspectives. Finally, a set of evaluations are conducted to
investigate schedulability of MrsP under nested resources and the cost for ap-
plying the proposed analysis. As a result of this paper, the schedulability test
for MrsP is complete and the computation costs of its use are now understood.

Keywords: hard real-time system; multiprocessor resource sharing protocol;
schedulability test; nested resources; run-time overhead.

∗Corresponding author
Email addresses: shuai.zhao@york.ac.uk (Shuai Zhao), jgarrido@dit.upm.es (Jorge

Garrido), ran.wei@york.ac.uk (Ran Wei), alan.burns@york.ac.uk (Alan Burns),
andy.wellings@york.ac.uk (Andy Wellings), jpuente@dit.upm.es (Juan A. de la Puente)

Preprint submitted to Elsevier January 16, 2020

1. Introduction

Real-time applications have become more sophisticated with increased func-
tionality demanding more computational power (Block et al., 2007). This has
necessitated a transition from uniprocessor execution platforms to multiproces-
sor ones. The movement towards multiprocessor platforms has raised many
theoretical and practical challenges for the real-time system developers, where
matured uniprocessor real-time scheduling techniques cannot be directly ap-
plied (Davis and Burns, 2011). Resource sharing is one of the major problems
in real-time multiprocessor systems, where the well-practised uniprocessor re-
source sharing protocols cannot be applied as these techniques assume that
resources are accessed from a single processor (Brandenburg, 2011). Whilst
both physical and logical resources are of research interest, they are differenti-
ated research topics. In this work, we focus on the sharing of logical resources,
such as shared data structures and I/O ports.

With multi-tasking, two or more tasks may request exclusive access to the
same resource (i.e., a shared resource) simultaneously. The code related to a
shared resource is called a critical section. Shared resources that are accessed
only from one processor are termed local resources. In multiprocessor systems,
resources can potentially be accessed from more than one processor in parallel,
and are termed global resources. To avoid race conditions and protect data
consistency, locks1 are commonly adopted to protect shared resources in real-
time systems. Each resource is protected by a designated lock, where the access
to a shared resource is only permitted with the corresponding lock acquired.
Deadlocks must be avoided to ensure system progress and to satisfy temporal
requirements.

A task’s behaviour while accessing a shared resource must be predictable and
conclude within bounded time. With resource locks, tasks can incur additional
delays due to accessing shared resources, which leads to priority inversions.
A priority inversion happens when a high priority task is waiting for a shared
resource but cannot proceed (i.e., is being blocked) because a low priority task is
executing with that resource. Priority inversion cannot be completely eliminated
due to the difficulty in controlling the exact time at which a given task can
access a shared resource. However, it must be bounded to achieve a predictable
blocking time for each resource access. With locks applied, deadlocks must be
avoided to guarantee system execution progress, which is essential for real-time
systems to meet temporal requirements.

For uniprocessor systems, resource sharing is successfully managed by ma-
tured resource control technology, which is well-understood and has been applied

1The lock-based approach is the dominant synchronisation approach in real-time sys-
tems (Davis and Burns, 2011). We acknowledge the existence of other synchronisation ap-
proaches, such as Lock-Free (Anderson et al., 1997) and Wait-Free (Sundell and Tsigas, 2000)
algorithms. However, these algorithms rely on multiple snapshots of shared resources for mon-
itoring state changes, which are not always feasible as memory spaces are often very limited
in real-time applications.

2

for decades with several optimal resource sharing policies available (Davis and
Burns, 2011), such as the Priority Ceiling Protocol (PCP) in (Sha et al., 1990).
Standard schedulability analysis techniques, such as Response Time Analysis
(RTA) (Audsley et al., 1993), have been extended to include the blocking time
for these resource sharing protocols (Brandenburg, 2011; Burns and Wellings,
2013). However, these techniques cannot directly be applied on multiproces-
sors due to the simple fact that resource requests can be issued simultaneously
from multiple processors. Although there are several multiprocessor resource
sharing protocols available, there is no agreed best approach (Brandenburg and
Anderson, 2010), because the performance of these protocols depends highly
on the characteristics of the given applications, such as the length of critical
sections (Zhao et al., 2017). Amongst existing multiprocessor resource sharing
protocols, early efforts in locking protocols map mainly to extensions of unipro-
cessor protocols, such as MPCP by Rajkumar et al. (1988) and MSRP by Block
et al. (2007). However, these protocols assume a restricted resource-accessing
model, where nested accesses to shared resources is not allowed (Garrido et al.,
2017b). Such restrictions are relaxed later on by protocols proposed explicitly
for multiprocessors, which assume a more flexible resource-accessing model with
nested resources allowed and deadlocks avoided (Ward and Anderson, 2012a;
Burns and Wellings, 2013).

This article focuses on a multiprocessor resource sharing protocol proposed
by Burns and Wellings (2013) for fully partitioned multiprocessor systems,
namely the Multiprocessor resource sharing Protocol (MrsP). In MrsP, preemp-
tive spin-locks are adopted and resource access requests are served in a FIFO
order. Although targeting fully-partitioned systems, MrsP introduces a novel
helping mechanism that allows task migration for resource accessing2, where a
preempted task that is accessing a resource can keep executing by migrating to
a remote processor where there is a task spin-waiting for the resource. With
this helping mechanism, resource-accessing tasks can keep progressing after be-
ing locally preempted and the blocking of high priority tasks can be minimised
by the preemptive approach. As illustrated in (Burns and Wellings, 2013),
the definition of this protocol yields a temporal behaviour very similar to that
of the well-known Priority Ceiling Protocol (Rajkumar, 1991) for uniprocessor
systems. With this feature, MrsP has attracted notable attention, as relevant
previous research and practitioners’ results from PCP (e.g., the deadlock-free
mechanism and the analysis techniques (Sha et al., 1990; Audsley et al., 1993;
Burns and Wellings, 2016)) can be easily applied to MrsP with minor modifi-
cations, thus easing the adoption of multiprocessor platforms for hard real-time
systems (Burns and Wellings, 2013). The current version of MrsP contains a
complete nested resource accessing model with a simple analysis that provides
an upper blocking bound (Garrido et al., 2017b). A short configurable non-

2Fully partitioned scheduling requires each task is assigned with an allocation prior to
execution, but allows temporary allocation changes made by resource sharing protocols (Davis
and Burns, 2011)

3

preemptive section has been introduced in its helping mechanism (Zhao and
Wellings, 2017) that effectively reduces the number of task migrations required
for each resource access. In addition, a migration-cost aware schedulability anal-
ysis is supported for non-nested resource accessing in (Zhao et al., 2017), and can
provide more accurate schedulability results than that of the original analysis
given in (Burns and Wellings, 2013). As observed in (Garrido et al., 2017a; Zhao
et al., 2017; Shi et al., 2017), MrsP outperforms other similar protocols (Craig,
1993; Anderson et al., 1998; Gai et al., 2001) under certain application char-
acteristics based on either system schedulability or response time of tasks in
real-world applications, especially with long critical sections.

However, with the presence of nested resource accesses, the current analysis
of MrsP by Garrido et al. (2017b) carries considerable pessimism compared to
the state-of-the-art analysis techniques (Wieder and Brandenburg, 2013; Zhao
et al., 2017) due to the issue of over-calculating the time required to execute
critical sections (see Section 3.4). In addition, as illustrated in (Zhao et al.,
2017), the potential cost of task migrations has a non-trivial impact on MrsP
schedulability, and this is not considered in the analysis for nested resources.
However, as demonstrated in the above study, failing to bound such cost can
lead to direct system failure due to deadline misses and should not be ignored
by any form of schedulability tests. Further, although the NP-section adopted
in the helping mechanism is shown to be effective in reducing the cost of mi-
grations (Zhao and Wellings, 2017) in general, it is not clear how to set the
NP-section length. Due to above issues, although the current version of MrsP is
a promising multiprocessor resource control solution with several reference im-
plementations available (Catellani et al., 2015; Zhao and Wellings, 2017), further
research and development work still needs to be carried out for it.

In this article, we present a number of contributions all of which address the
above concerns. These contributions can be summarised as follows:

• extensions to the schedulability analysis presented by Zhao et al. (2017) to
support nested resource access, including the extensions to the migration
cost analysis;

• a complete analysis approach for incorporating all run-time and implemen-
tation overhead: preemptions, context switches and locking operations;

• an approach for the configuration of NP-section aiming to reduce number
of task migrations during each resource access;

• an extensive evaluation of the presented extensions, and a performance
evaluation of the revised protocol’s schedulability compared with other
relevant FIFO spin-based protocols.

As the result of the work presented in this article, a complete MrsP run-
time cost-aware schedulability test is now available that bounds the worst-case
blocking time for accessing nested resources as well as run-time costs incurred
by tasks from both the protocol and the underlying operating system. In ad-
dition, with NP-section configuration clarified, true performance (in terms of

4

schedulability) of this protocol under nested resources can be determined while
its advantages over other relevant FIFO spin-based protocols are understood.
Finally, the computation cost of applying the proposed analysis to a range of
applications is investigated and is compared with other relevant forms of schedu-
lability tests.

The rest of the article is organised as follows. Section 2 provides a review of
resource sharing technology for real-time systems relevant for the present work.
Section 3 describes MrsP and explains previous efforts made towards both the
definition and schedulability tests of this protocol. In Section 4, the response-
time analysis is extended to support the analysis of MrsP systems under presence
of nested resources. Section 5 presents the complete run-time overhead-aware
analysis for MrsP, which bounds the costs of migrations under nested resources
and incorporates overheads imposed from the underlying operating system. Sec-
tion 6 gives a comprehensive approach for bounding and reducing the migrations
costs under MrsP with a fine-tuned configuration of short non-preemptive sec-
tions. Section 7 presents the evaluation results on the newly developed analysis
and comparisons against relevant protocols. Finally, Section 8 concludes the
article and supplies some interesting future work directions.

2. Resource Sharing in Real-time Systems

The research into shared resources in real-time systems can be traced back
to late 1980’s and is broad. The majority of these resource sharing techniques
work in collaboration with a Fixed-Priority Scheduler (FPS), where the priority
of each task must be statically assigned prior to execution (Brandenburg, 2011).
In this sense, a higher priority value indicates higher execution eligibility. Task
activation conforms to the general sporadic task model, in which each task can
give rise to a potentially infinite sequence of invocations (i.e., task releases),
but each release must be invoked after a minimum interval (e.g., period) has
elapsed since its last arrival (Davis and Burns, 2011), where the worst-case
scenario happens when all tasks are released immediately after such intervals.

This section focuses on the major real-time resource sharing protocols and
their schedulability tests3 (if they exist). The basic concepts and notions to-
wards real-time systems (e.g., sporadic task model and fixed-priority scheduling
policy) used in this article can be found in a survey paper on hard real-time
scheduling for homogeneous multiprocessor systems by Davis and Burns (2011).
The rest of this section is organised as follows: first, Section 2.1 reviews the ma-
jor uniprocessor protocols that introduced the main techniques and associated
system properties with regards to resource sharing adopted by modern multi-
processor protocols. Then Section 2.2 presents the most relevant multiprocessor

3Schedulability test is a mathematical tool that determines whether a given system is
schedulable via an analytical approach. A common approach is to calculate the worst-case
response time of all tasks in the system (Davis and Burns, 2011). The system is regarded as
schedulable if all tasks can meet their deadlines (i.e., response time of a task is equal to or
lower than its deadline).

5

resource sharing protocols to date, categorised by the novel features they intro-
duced. Section 2.3 presents modern scheduling analysis techniques that can
further improve schedulability results of existing protocols meeting certain cri-
teria. Finally, the presented protocols and analysis techniques are summarised
and compared in Section 2.4, as well as areas of improvement are identified,
motivating the contributions of this paper.

2.1. Uniprocessor Resource Control Protocols

Uniprocessor scheduling algorithms incorporating shared resource accesses
have been successfully studied and implemented. The most relevant examples
are, for this work, derivatives of the original work on priority inheritance proto-
cols defined by Sha et al. (1990). These protocols coordinate the tasks’ execution
when accessing a shared resource and provide a blocking bound for each resource
access.

The Priority Inheritance Protocol (PIP) (Sha et al., 1990) increases the
active priority (i.e., the current priority value of a given task) of a task holding
a resource when blocking a higher priority task4. By doing so, the blocking
task (i.e., the low priority task that is executing with the resource) is assigned
with a higher execution eligibility so that it will incur no interference from other
unrelated tasks (e.g., a task with an intermediate priority that does not require
the resource), and hence, the blocking time suffered by the higher priority task
is reduced. However, PIP is not ideal as a task can be blocked more than once
if it requests several resources and is not deadlock-free (see system execution
examples in (Zhao, 2018)). This motivates the development of the optimal
resource sharing protocols for uniprocessor systems, as described below.

The Priority Ceiling Protocol (PCP) proposed by Sha et al. (1990) increases
the priority of a resource-requesting task to the highest among all tasks that
(will) require the same resource, known as resource ceiling priority. Under PCP,
a task that requests a resource raises its priority to the corresponding ceiling
priority, and executes with this priority until it releases the resource. Executing
with ceiling priority effectively delays executions of other tasks requesting the
same shared resource, preventing the formation of a circular resource-requesting
chain and hence, avoiding deadlocks. In addition, all resources requested by a
task are guaranteed to be available when the task starts its execution, i.e., there
is no task running at the ceiling priority for accessing those resources. By doing
so, PCP provides an optimal blocking bound in a uniprocessor system (Davis
and Burns, 2011), in which the blocking is bounded to solely one critical section
and can only happen before the real execution of tasks (this is termed arrival

blocking, being blocked upon task’s arrival).
The Stack Resource Policy (SRP) (Baker, 1990) extends PCP and provides

4FPS does not impose any changes towards task priority, but allows priority changes made
by resource control protocols. This does not break the working mechanism of FPS as this
scheduler only requires that a priority is assigned to each task before execution (Davis and
Burns, 2011).

6

an optimal blocking bound for both FPS and Earliest Deadline First scheduling5.
As with PCP, the notion of resource ceiling is applied. In addition, this protocol
introduces preemption levels based on the deadline monotonic scheme, where a
task with a shorter relative deadline is assigned with a higher preemption level.
With this static metric, SRP is able to work with dynamic scheduling policies
using deadlines. Accordingly, the value of the resource ceiling for each resource
is decided by the static preemption levels. On FPS, SRP demonstrates identical
behaviour as PCP, where the preemption levels are mapped to resource ceiling
via task priority instead of deadlines.

Table 1: Notations in the PCP/SRP Analysis

τi A task that is currently been studied.
Ri Response time of τi.
Ci The pure worst-case computation time of τi without ac-

cessing any shared resources.
Ti Period of τi.
Bi The maximum blocking time τi can incur in each release.
hp(i) The set of tasks with a priority higher than that of τi.
Pri(rk) The resource ceiling priority of rk.
ĉi The arrival blocking incurred by τi.

b̂ Maximum length of NP-sections in the underlying Real-
time operating system.

ck Computation time of resource rk.
Nk

i Number of accesses τi requests to rk during one release.
F (τi) Resources that are requested by τi.

Both PCP and SRP systems can be analysed via the Response-Time Analysis
(RTA) technique proposed by Audsley et al. (1993), in which the response time
Ri of a task τi is calculated iteratively by using Equation (1), where Ci denotes
τi’s pure computation time, i.e., without the time waiting for and executing
with shared resources, hp(i) gives the set of tasks with priorities higher than
τi, Bi is the maximum blocking τi can incur due to resource accessing and Tj

gives the period of τj ,. The system is schedulable if the iteration reaches a fixed
point, and the response time of all tasks is equal or lower their deadlines. The
cost due to resource accessing is computed by function

∑

rk∈F (τi)
Nk

i c
k, where

F (τi) returns resources that are requested by τi, Nk
i denotes the number of

access τi requests to rk during one release and ck gives the computation cost
for executing with rk.

Ri = Ci +
∑

rk∈F (τi)

Nk
i c

k +Bi +
∑

τj∈hp(i)

⌈

Ri

Tj

⌉

(Cj +
∑

rk∈F (τj)

Nk
j c

k) (1)

5Earliest Deadline First scheduling is a typical dynamic scheduling policy that does not
rely on task priorities but absolute task deadlines, where the task with the closest deadline is
assigned with the highest execution eligibility (Liu and Layland, 1973).

7

Notation Bi can be further extended as shown in Equation (2), where ĉ indicates
the maximum critical section length of all resources that are requested by at least
one task with priority less than Pri(τi) and at least one task with equal or higher

priority, and b̂ is the maximum length of NP-sections in the underlying Real-time
operating system (RTOS). Table 1 summarises the notations in schedulability
tests of PCP/SRP.

Bi = max{ĉ, b̂} (2)

2.2. Multiprocessor Resource Sharing Protocols

The research into multiprocessor resource sharing problem is broad, where
there exist many locking protocols with unique features. Below we review eight
major multiprocessor protocols in total, which are categorised by the novel
features they introduced.

Multiprocessor PCP versions Due to the simple implementation and
analysis of priority ceiling protocols, the PCP approach has been translated into
different forms for multiprocessor systems. The most relevant, the Multiproces-
sor Priority Ceiling Protocol (MPCP) by Rajkumar et al. (1988) introduces the
requirement to migrate to a synchronisation processor to access a resource, as
a means to serialise accesses. Later in (Rajkumar et al., 1988), MPCP is ex-
tended to distributed systems (DPCP) with the notion of a remote agent that
can execute a resource’s critical sections on behalf of remote tasks. As an early
multiprocessor resource sharing protocol, MPCP (and DPCP) manages shared
resources in a uniprocessor fashion (via the synchronisation processor) so that
matured uniprocessor resource sharing techniques can be directly applied. This
was highly appreciated in 1980s, given that there existed no multiprocessor
resource sharing solutions.

Multiprocessor SRP Another relevant approach to control shared re-
sources in multiprocessor systems is the Multiprocessor Stack Resource Policy
(MSRP) by Gai et al. (2001), developed as an extension of SRP. Resources
under MSRP are accessed from the task host processor in a non-preemptable
fashion and any not immediately satisfied requesting task keeps spinning also
non-preemptably until the access is granted. A FIFO queue is used to grant
access to the resource allowing the spin-waiting time to be bounded by the
number of processors with tasks that request the resource. However, MSRP
only supports a limited nested resource accessing model, where nested accesses
between global resources are not allowed. With the spin-waiting time taken
into account in the execution time of resources, MSRP systems can be anal-
ysed by Equation (1) with minor modifications to reflect the potential parallel
accesses to shared resources (Gai et al., 2001), where hpl(i) returns τi’s local
high priority tasks. In Equation (3), Ci is the worst case execution time of τi,
including the time it spends when waiting (spinning) for and executing with
each required resource. Equation (4) presents Ci calculation, where notation ck

in Equation (1) is replaced by ek to reflect potential parallel accesses to globally
shared resources, including τi’s spin-waiting time for the resource. Accordingly,

8

notation ĉ in Equation (2) is also replaced by ê to include the potential parallel
accesses to resources that can cause τi to incur arrival blocking, as given in
Equation (5).

Ri = Ci +Bi +
∑

τj∈hpl(i)

⌈

Ri

Tj

⌉

Cj (3)

Ci = Ci +
∑

rk∈F (τi)

Nk
i e

k (4)

Bi = max{ê, b̂} (5)

With the above equations, the response time of τi is bounded by its pure
executing cost Ci, the waiting time τi takes waiting for (i.e., being blocked)
and executing with each required resource, arrival blocking Bi and total higher
priority interference (i.e., computation time and resource-accessing time Cj)
from each of τi’s local higher priority task (denoted as τj).

As requests to a resource under MSRP are served in a non-preemptive FIFO
order, ek is effectively bounded by the number of processors containing requests
to rk, as given in Equation (6), where G(rk) gives the set of tasks that require
rk, function map() returns a set of processors where the given tasks are assigned
to and || returns the size of the given set. Table 2 summarises the notations in
schedulability analysis of MSRP.

ek = |map(G(rk))| ∗ ck (6)

Table 2: Notations in the MSRP Analysis

hpl(i) A set of local tasks with a priority higher than that of
τi.

Ci The complete execution time of τi, including its resource
accessing time.

ek Worst-case accessing time to resource rk, including the
delay due to parallel resource accesses.

ê Worst-case arrival blocking of τi, including potential
parallel accesses to resources that can cause τi to incur
this blocking.

|| The size of a given set.
G(rk) Tasks that request rk.
map() Processors where the given tasks are assigned to.

Waiting and accessing schemes While the use of FIFO queues for grant-
ing access to globally shared resources has been widely adopted, different wait-
ing and access schemes have been proposed. Notable examples are the O(m)
Locking Protocol (OMLP) proposed by Brandenburg and Anderson (2010),
where tasks first contend for acquiring a common m-exclusion priority lock

9

and then are suspended until they become the head of the FIFO queue associ-
ated to the required resource, finally, the task becomes non-preemptable under
OMLP when accessing the resource; or the preemptive resource sharing ap-
proach (PWLP) (Anderson et al., 1998; Craig, 1993). Under the latter protocol
tasks spin-wait for shared resources at their base priority. If the scheduler pre-
empts a spinning task, it cancels the task’s current resource request and the task
is placed back at the end of the FIFO queue when rescheduled. Once granted
the resource lock, a task becomes non-preemptable during the entire execution
of the critical section.

Helping protocols Progress on shared resources upon local preemption of
tasks can also be achieved via the notion of helping. In Spinning Processor Ex-
ecutes for Preempted Processor (SPEPP) proposed by Takada and Sakamura
(1997), tasks insert in a FIFO queue the action to be performed on the resource
as an operation block. When the task responsible of the action is locally pre-
empted having been granted access to the resource, the queued operation block
is executed non-preemtptively by a waiting task (if any is available). Another
notable helping mechanism is proposed in the Multiprocessor Bandwidth Inher-
itance (M-BWI) protocol by Faggioli et al. (2010), for soft real-time systems.
M-BWI is an execution-time server based protocol where a resource-holding
task that is locally preempted or runs out of budget can be helped by other
tasks waiting for that resource by being migrated to the helper’s processor and
consuming the budget of the helper.

Resource grouping Support for nested resources can be generally achieved
by grouping resources together. The Flexible Multiprocessor Locking Protocol
(FMLP) proposed by Block et al. (2007) uses this notion to manage each group
with different approaches based on specific semantics of the group. In particu-
lar, FMLP distinguishes between short and long resources, and resource groups
can only include either short or long resources. Short resources are accessed in
FIFO order and both the spinning and access is done non-preemptively, while
long resources are also serviced in FIFO order but tasks suspend until they are
granted access to the resource. That is, FMLP advocates that spin-based locks
are not favourable for long critical sections (Block et al., 2007). Nested access
is only allowed between resources of the same group, and also from long re-
sources to short ones. This same approach of resource grouping is used in other
multiprocessor protocols to partially support nested resource accesses, such as
OMLP and PWLP. Grouping resources, however, has the side effect of under-
mining the degree of parallelism and system composability (Davis and Burns,
2011), where in an extreme case parallelism can be reduced to the uniprocessor
case as resources requested by different tasks are guarded by one lock, and only
serialised access is allowed.

Fine grained nested resources access Fine-grained blocking bounds for
nested resources was first achieved by Takada and Sakamura (1995) and re-
fined in the Real-time Nested Locking Protocol (RNLP) by Ward and Ander-
son (2012b), which only requires a partial order on the resource nesting to avoid
deadlocks. Under RNLP, concurrency is limited by a k-exclusion token and
a number of satisfaction (access granting) mechanisms are defined, providing

10

sub-optimal results under different system configurations. Unfortunately, these
optimal results are only possible for certain specific system configurations, and
are therefore impractical (from the scheduling and system complexity point of
view) to support all possible combinations of tokens and satisfaction mechanisms
on a given system to address real-world scenarios.

2.3. Schedulability Tests in the Presence of Blocking

In addition to Response Time Analysis, further analysis techniques have been
proposed that can be applied to MSRP directly, or to similar protocols (such as
PWLP) with modifications. A holistic analysis is presented in (Brandenburg,
2011) that analyses the exact number of remote requests being issued for a
shared resource that can actually cause blocking of a task accessing the same
resource in one release. By avoiding the assumption that each time a task
tries to access a resource, it can be blocked once from each remote processor
that contains tasks requesting the same resource, the holistic analysis is able to
provide more accurate blocking time bounding than that of the original tests.

In addition, the mixed-integer linear programming (ILP) technique is in-
troduced to the schedulability analysis in (Brandenburg, 2013a; Wieder and
Brandenburg, 2013). This ILP-based analysis preserves the advantage of the
holistic analysis in (Brandenburg, 2011) (i.e., computing the exact number of
requests) and further improves schedulability results by guaranteeing that each
critical section is accounted for only once. By defining up to 30 spin locks con-
straints, this ILP-based analysis framework can provide schedulability tests to 8
spin-based resource sharing protocols, including MSRP and PWLP as described
above. Later, this analysis framework was extended by Biondi et al. (2016) to
support fine-grained nested access analysis based on graph abstraction that re-
flects conflicts and transitive delays between shared resources.

2.4. Summary and Discussion

As described in Section 2.2, each multiprocessor resource sharing protocol
has a unique combination of resource classification, queuing techniques and
resource-accessing rules. In addition, some protocols (e.g., PWLP) also contain
an additional mechanism (e.g., request cancellation) that further reduces block-
ing in a multiprocessor environment, and contains different approach for sup-
porting nested resources (if they exist). Table 3 summarises the main features
of each reviewed protocol, where “-” denotes that the feature is not supported
by a given protocol. A detailed comparison of these protocols is reported in
(Zhao, 2018). Below we summarise the comparison and emphasis the major
observations.

As shown in this table, most protocols classify resources as either global or
local, and manage global resources with multiprocessor resource control tech-
niques. An exception to this is FMLP, that manages shared resources by their
length of critical sections (denoted as short and long resources). The advantage
of doing so is that each resource can be managed by the most appropriate lock,
and hence, unnecessary system overheads (i.e., avoiding the use of suspension-
based locks on short resources) as well as processor idle time (i.e., avoiding

11

Table 3: Features of Reviewed Multiprocessor Resource Sharing Protocols

Protocol Resources
Accessing

Rule
Queuing
Technique

Additional
Facility

Nested
Resource

MPCP
Global &
Local

Priority
Ceiling

-
Synchroni-

sation
processor

Ordered
Locks

MSRP
Global &
Local

Non-Preemptive FIFO - -

OMLP
Global &
Local

Priority
Inheritance &

Non-Preemptive

FIFO &
Priority
Ordered

- Group
Locks

PWLP
Global &
Local

Base Priority
for Waiting;

Non-Preemptive
for Holding

FIFO Cancel
Group
Locks

SPEPP
Global &
Local

Base Priority
for Waiting;

Non-Preemptive
for Holding

FIFO
Operation
Blocks

-

M-BWI - Base Priority
of Servers

FIFO
Execution
Server

Ordered
Locks

FMLP
Short &
Long

Non-Preemptive
for Short;
Suspension
for Long

FIFO - Group
Locks

RNLP -
k-exclusion

token
Satisfaction
mechanism

-
Ordered
Locks

MrsP
Global &
Local

Priority
Ceiling

FIFO
Migration-

based
Helping

Ordered
Locks

spinning too long) could be decreased. However, applying FMLP requires the
support of both suspension-based and spin locks from the underlying operating
system. In addition, there exists no clear instruction for classifying resources
under FMLP, which increases the difficulty of adopting this protocol.

Among the reviewed protocols, there exist three major resource-accessing
rules, where a task can access a shared resource with a) its base priority; b)
priority boosting (either priority inheritance or ceiling priority) or c) in a non-
preemptive fashion. The non-preemptive approach provides the strongest exe-
cution progress guarantee, but can impose extra blocking to high priority tasks,
where they can be prevented from executing due to a low priority task is execut-
ing non-preemptively with a shared resource. In contrast, accessing resources
with base priority cannot provide any protection towards resource accessing
tasks (which can be preempted at any time), but has minimised blocking to
high priority tasks. Finally, the priority ceiling approach provides a trade-off

12

between the non-preemptive and base priority approaches, where unrelated high
priority tasks can still execute while the resource-accessing tasks are protected
from tasks with an intermediate priority. MPCP adopts priority ceiling and
uses a synchronisation processor for resource-accessing. However, this approach
serialises the execution with any resources, decreases the degree of parallelism
in multiprocessor systems and does not support nested resources between global
resources (Davis and Burns, 2011).

Two mainstream approaches are commonly adopted for queuing resource-
accessing tasks. These are to queue tasks either by their base priority or follow-
ing a FIFO order. With priority-ordered queues, the waiting time of low priority
tasks can be prolonged significantly. In turn, FIFO queues lead to the theoret-
ical bounding of |map(G(rk))| for a given resource rk. Thus, FIFO queuing is
generally preferred and adopted by the majority.

Moreover, additional facilities are introduced by certain protocols to re-
duce the blocking in multiprocessor systems. In particular, PWLP presents
the cancellation mechanism to facilitate the resource accessing routine, where
preempted resource-waiting tasks cancel their requests and rejoin into the re-
source contention later on when being resumed. This approach minimises the
arrival blocking to one critical section only (same as the uniprocessor case), but
introduces extra overhead to low priority tasks, which could be preempted fre-
quently and have a prolonged resource-waiting time. The helping mechanism
in SPEPP accelerates resource-accessing via wasted CPU cycles (i.e., when a
task is spinning). However, its adoption is limited to atomic operations only
and cannot support nested resources.

Finally, nested resource accesses are supported by some of the reviewed
protocols via either group locks and ordered locks, where group locks decrease
the degree of parallelism while ordered locks impose restrictions towards the
resource model. With group locks, more than one resource are managed by
the same lock so that accesses towards these resources are serialised. Ordered
locks mandate that accesses towards nested resources must be one way only, in
order to prevent deadlocks, but this does not undermine the performance of the
system, and hence, is more favourable (Ward and Anderson, 2012b).

From the above discussion, each resource sharing approach has its unique
advantages and limitations. As concluded by Davis and Burns (2011); Zhao
(2018), there exists no optimal resource sharing solution in real-time multipro-
cessor systems. As reported by Wieder and Brandenburg (2013), spin locks are
mandated in majority of real-world safety-critical systems due to its low run-
time overhead. However, spin locks are known to be not favourable for long
critical sections (Brandenburg et al., 2008), as valuable CPU cycles are wasted
while tasks are spinning for shared resources. Consequently, helping mechanisms
are adopted by spin-based protocols (e.g., SPEPP), which utilise the wasted cy-
cles to facilitate resource accesses and executions. However, these protocols
impose strong limitations towards the resource-accessing model, where opera-
tions must be atomic and nested resources accesses are not allowed. To advance
the state of art, MrsP (Burns and Wellings, 2013) (see Section 3) introduces a
migration-based helping mechanism, in which wasted CPU cycles are utilised for

13

executing critical sections. Compared with the existing helping-based protocols,
MrsP supports a less restrictive resource-accessing model, where atomic opera-
tions towards shared resources are no longer mandated. In addition, this pro-
tocol demonstrates the capability for supporting nested resource access (Burns
and Wellings, 2013; Garrido et al., 2017b). In this paper, a complete definition
is presented for MrsP to fully support fine-grained nested resources via order
locks with corresponding schedulability analysis.

As for schedulability tests reviewed in Section 2.3, the ILP-based analysis
proposes advanced analysis techniques and can provide schedulability results
with minimised pessimism when compared to traditional RTA. Unfortunately,
this analysis does not consider any helping-based protocols due to the focus
on generic spin-based frameworks, and hence, cannot be directly applied to
MrsP. In addition, it is difficult to extend the ILP-based analysis to bound
the potential migration cost under MrsP due to the complexity of the migra-
tion cost analysis. Further, as the ILP-based analysis relies on an optimisation
process (which gradually decreases the blocking bound via iterations until the
constraints are met), it presents a high computation cost. This higher cost
further discourages the adoption of this approach for analysing MrsP systems.
Therefore, the analysis presented in this paper is based on the RTA due to its
high expandability nature (Audsley et al., 1993) but incorporates lessons learnt
from ILP-based analysis (i.e., the issues of inflating task computation time with
resource-accessing time and over-calculating critical sections, see Section 3.4 for
details).

3. MrsP: Definition and Analysis

MrsP (Burns and Wellings, 2013) is a multiprocessor resource sharing proto-
col aimed at fully-partitioned systems with fixed priority scheduling, that pro-
vides a safe upper bound of the accessing cost to resources shared among tasks
executing on different processors. This protocol has a novel migration-based
helping mechanism and PCP-like temporal behaviour. Research efforts have
been made towards completing and improving its definition and analysis (Gar-
rido et al., 2017b; Zhao et al., 2017), as well as implementing and evaluating
this protocol in real-world operating systems (Garrido et al., 2017a; Catellani
et al., 2015; Zhao and Wellings, 2017; Shi et al., 2017). This section describes
the original definition proposed by Burns and Wellings (2013) and summarises
our previous work on this protocol.

3.1. Original Protocol Definition

In MrsP, each shared resource has a set of ceiling priorities, one for each
processor that contains tasks requesting the resource. The ceiling priority for
a given processor is set to the highest priority among tasks requesting the re-
source on that processor. Once a task requests a resource, it raises its priority
to the ceiling of the resource on its processor and executes with the ceiling pri-
ority during its entire access. With this mechanism, tasks requesting the same

14

resource in one processor do so at the same ceiling priority. Thus, only one
task per processor can request access to the same shared resource at a time6.
Access requests are satisfied in FIFO order, waiting actively to be served (i.e.,
spinning), preventing lower priority tasks to be released during the busy-waiting
time, consequently reducing context switch overhead. With FIFO spinning, the
total access cost of a request could be bounded and would be equal to the max-
imum number of possible simultaneous access requests multiplied by the access
time of the resource (i.e., the bounding given by Equation (6)). However, such a
safe upper bound is only achievable if the resource-accessing task (either holding
or waiting for the resource) is executed in a non-preemptive manner. Otherwise,
both the resource-holding task and other waiting tasks (on remote processors)
can be locally preempted by higher priority tasks, which interferes the resource-
accessing routine and prolongs the cost for accessing a shared resource.

To achieve the previously mentioned bounded blocking time, a helping mech-

anism is introduced in this protocol where any task waiting to access a resource
is able to undertake the associated computation (i.e., critical section) “on be-
half of” any other task accessing the same resource. Hence, when a resource-
accessing task is preempted, it can be helped by other waiting tasks to ensure
progress. In the worst-case, a task needs to execute on behalf of all other tasks
in the FIFO queue (according to the FIFO order) whenever it tries to access a
resource. This situation happens when this task is placed at the end of FIFO
queue and all other tasks in the queue are locally preempted. This will not
increase the worst-case response time of the helping task as it has to wait for all
other tasks in the FIFO queue to execute with the resource before it can do so
(i.e., the FIFO resource-accessing order). In contrast, this helping mechanism
speedups the resource-accessing routine as all these resource-accessing tasks do
not need to wait for potential preemptors before executing with the resource.
The choice of the helping task is not forced by MrsP and is up to implemen-
tations. For instance, MrsP implementation provided in (Zhao and Wellings,
2017) always searches for a valid (i.e., actively spinning on its processor) helping
task from the top of the FIFO queue.

The helping mechanism is realised by task migrations, where the locally
preempted resource-accessing task is migrated to a processor where a task is
actively spin-waiting to access the resource. After migration, the task is assigned
the priority of the helping task and then resumes its execution with the resource.
If the task is preempted again, it can either migrate to another remote processor
with a waiting task spinning for the resource or to its original processor if the
initial preemptor is finished. After the task releases the resource, it migrates
back to its original processor if necessary, i.e., it was being helped on a remote
processor.

Accordingly, the mentioned blocking bound (i.e., Equation (6)) of each re-
source access is obtained, and MrsP is compatible with the MSRP schedulability

6Under FPS, a First Come First Serve strategy is used when two tasks have the same
priority (Burns and Wellings, 2016).

15

test described in Section 2, with ê in Equation (5) replaced by êi given in Equa-
tion (8) for bounding the arrival blocking due to the use of the priority ceiling
facility. A task τi incurs arrival blocking if there exist any local lower priority
task that requests a resource rk, which has a resource ceiling priority on τi’s
processor that is equal or higher than the priority of τi, where FA(τi) denote
such resources, Nk

ll denotes the number of such local low priority tasks, P (τi)
gives the processor of τi, Pri(τi) denotes τi’s priority and Pri(rk, Pm) returns
the ceiling priority of rk on processor Pm.

FA(τi) , {r
k|Nk

ll > 0 ∧ Pri(rk, P (τi)) ≥ Pri(τi)} (7)

êi = max{ek|FA(τi)} (8)

In the presence of nested accesses to resources, MrsP exhibits the same
behaviour as PCP. However, simply following PCP on a multiprocessor can raise
the issue of deadlocks (i.e., circular chain of requests to resources). To avoid
deadlocks, two approaches that are commonly adopted by other multiprocessor
protocols are discussed in (Burns and Wellings, 2013): group locks and resource

ordering. A group lock can be applied to serialise the access of nested resources
so that the circular chain can be prevented. However, this approach could
impose prolonged resource accessing time to the tasks that access resources in
a non-nested fashion. The other approach is to order the resources statically
and to only allow a task to access a resource with a higher order index than
that of any other currently held resource. Such an approach imposes restrictions
to the resource-accessing model but can be more expressive than group locks.
Therefore, there is a trade-off between the use of group locks and nested access.
However, assigning resources with orders is preferred and is assumed by Burns
and Wellings (2013); as with group locks nesting is essentially avoided rather
than tolerated. As noted earlier, this is the approach adopted by RNLP (Ward
and Anderson, 2012b). Equation 9 gives the bounding for one access to rk with
potential access requests to rk’s via a nested fashion (denote as V (rk)).

ek = (|V (rk)|+ |map(G(rk))|)ck (9)

3.2. Nested Resource Access

Although two possible approaches and a simple analysis for supporting nested
resources are provided by Burns and Wellings (2013), it has been demonstrated
in (Garrido et al., 2017b) that the support for nested resource access in MrsP’s
original definition is insufficient as tasks can incur extra local blocking due to
nested access when used together with the helping mechanism. For instance,
with nested access, a task can access further resources while being helped on
a remote processor, which could lead to a priority boost according to PCP.
However, with the boosted priority, the task could block the current executing
task on its original processor when migrating back with the resources (i.e., after
being preempted again on the remote processor), which breaks the property of
PCP that a task can incur local blocking (i.e., blocking from the task’s hosting

16

processor) only once during each release. To preserve this property, Garrido
et al. (2017b) proposed a specific set of rules that tasks should follow when
accessing nested resources, including a dynamic priority assignment scheme.

As defined by Garrido et al. (2017b), a task does not update its active
priority when accessing inner resources while being helped in a remote proces-
sor. Thus, the migrated task can not benefit from the helping mechanism as
its priority remains at the priority of the helping task. In turn, tasks are re-
dispatched on their host processor with the priority they had when they were
locally preempted. We will refer to this priority as the Leaving Priority for the
rest of the paper. Migrated tasks do update their active priorities when they
are re-dispatched on their host processor.

In the presence of nested resources, the helping mechanism can be initiated if
the spinning task requires a resource that is held by a preempted task regardless
of the nesting level of the resource (i.e., not necessarily the immediately inner
resource). As mentioned, the migrated task keeps executing with the priority of
the helping task. In this case, obtaining or releasing resources does not cause any
priority update. The helping mechanism is finished when the resource holder
releases the resource that the helping task requires. In addition, “transitive
helping” is allowed to cope with the case where a task that is being helped (say
τh) requires a resource that is held by another preempted task (say τp). In
this case, τh can help τp in its current processor until τh releases the required
resource.

In addition, the definition of the existing helping functions is clarified in (Gar-
rido et al., 2017b). In the nested access case, function F (τi) should only return
the outer-most resources that are directly accessed by τi without any nested ac-
cess while G(rk) should give the set of tasks that access rk directly as the outer-
most resource. This will not affect the non-nested analysis presented above
as tasks can execute with only one resource (i.e., the outer-most resource) at
any given time. Then, Equation (9) is modified to account for the potential
transitive blocking incurred when accessing nested resources, as given in Equa-
tion (10), where V (rk) returns the set of outer resources that access rk as an
inner resource and U(rk) gives a set of resources that are accessed by rk directly
(i.e., without further nesting).

ek = (|V (rk)|+ |map(G(rk))|) ∗ (ck +
∑

rq∈U(rk)

Nk
i

q
eq) (10)

This analysis, which includes the whole cost of accessing a nesting of re-
sources from a specific resource (F (τi) in Equation (4), returns the set of out-
ermost resources requested by τi) has a similar form to the non-nested analysis
shown in Equation (6). The left-hand side of this equation gives the longest
possible queue to access a resource, and the right-hand side gives the maximum
accessing time for that resource and all inner resources it requires.

3.3. Controlled Migrations in Helping Mechanism

With the helping mechanism, MrsP theoretically guarantees an identical
resource-accessing time bound to the non-preemptive protocol (recall analysis

17

in Section 3.1). However, as our previous work suggests, allowing migrations
on-demand in a real-time system could decrease the predictability of task be-
haviours (Zhao et al., 2017). Consider, in the case where a resource accessing
task is preempted and there exists a large number of potential migration tar-
gets that reside in processors with one or more high priority tasks with very
short periods. Under such cases, the resource accessing task can suffer frequent
migrations. In extreme situations, the task can spend significantly more time
migrating than executing in critical sections, which greatly undermines the us-
ability of the protocol.

To prevent excessive migrations and to offer a more efficient resource-accessing
behaviour, a short and tuneable non-preemptive section (NP-section) is intro-
duced by Zhao et al. (2017), where a newly migrated task is allowed to execute
non-preemptively for a short time before it inherits the priority of its helper. As
demonstrated by Zhao et al. (2017), this simple approach can provide guaran-
teed progress to the resource-accessing tasks and effectively reduce the number
of migrations. The only side effect of the NP-section is that any newly released
high priority task has to cope with the cost of one NP section before it can
preempt the holder and execute. However, the length of the NP section can be
configured so that high priority tasks are still able to meet their deadlines. We
denote the length of the NP section as Cnp. With the NP-section adopted, the
local blocking, Bi is updated as Equation (11), where n̂pi denotes the blocking
time imposed by this facility.

Bi = max{êi, n̂pi, b̂} (11)

For a task τi, it can incur such blocking as long as τi has a priority equal or higher
than the lowest ceiling priority of global resources on its processor. Otherwise
npi is 0 as the task cannot preempt any task accessing a shared resource, and,
consequently, is not affected by the NP-section:

n̂pi =

{

Cnp, if Pri(τi) ≥ min{rk is global}Pri(rk, P (τi))

0, otherwise
(12)

3.4. Response Time Analysis

The analysing technique given above (see Section 2) is attractive due to
its simplicity and elegancy, and can be applied with limited knowledge of the
application. However, as shown byWieder and Brandenburg (2013), the analysis
can over calculate critical sections as it assumes each resource request will be
blocked |map(G(rk))| times regardless the actual number of remote requests
being issued during that period. Such an assumption can lead to response time
boundings that are much higher than the actual worst-case values, and hence,
is considered to be pessimistic. In addition, this analysis does not consider the
potential blocking caused by a phenomenon named “back-to-back” hits, which
was firstly reported in (Brandenburg, 2013a) and is fully elaborated with details
in (Zhao et al., 2017). Such a phenomenon happens where a given task τi is

18

released only once during the release of τ2 (i.e.,
⌈

R1

T2

⌉

= 1), yet can cause one

more blocking due to the resource access made in its last release (
⌈

R1+R2

T1

⌉

= 2).

Consequentially, Zhao et al. (2017) proposed new MrsP response time anal-
ysis that addresses the above issues. Under this analysis, the response time of τi
is bounded by Equation (13). Ei is the total resource accessing time of τi with
direct spin delay (i.e., being blocked directly by remote tasks for accessing a
shared resource) accounted for. Ii,h indicates the indirect spin delay, where τi is
blocked indirectly by its local higher priority, which preempts τi but is blocked
for requesting a locked resource. Bi denotes the arrival blocking (i.e., occurs
upon τi’s arrival), where it cannot execute because a local lower priority task is
accessing a resource with an active priority equal to or higher than τi’s priority
Pri(τi).

Ri = Ci + Ei +Bi +
∑

τh∈hpl(i)

(

⌈

Ri

Th

⌉

· Ch + Ii,h) (13)

The resource accessing time by τi itself (Ei) and indirect spin delay (Ii,h)
are computed by the same function but require different input parameters, as
shown in Equations (14) and (15), where ekx(l, µ) gives the accessing time to
resource k that task τx can incur within the duration l and a release jitter µ.
By giving different duration and jitter length, the function returns a different
bounding as τx can be released a different number of times (and generate a
different number of requests) within the given duration.

Ei =
∑

rk∈F (τi)

eki (Ri, 0) (14)

Ii,h =
∑

rk∈F (τh)

ekh(Ri, Rh) (15)

Equation (14) gives the total resource accessing time of τi itself, including
the direct spin delay. For the direct spin delay, we consider l = Ri and µ = 0
so that only the resource requests in τi’s one release will be accounted for (we
enforce that Ri ≤ Di). As for the indirect spin delay incurred by τi from local
high priority tasks τh (Equation 15), l = Ri and µ = Rh so that the potential
delay due to the back-to-back hit can be accounted for when computing the
total number of requests issued from a high priority task τh to rk in the context
of τi (i.e., during τi’s release).

For a given task, the blocking time incurred for each access to a resource
may vary as there may not exist resource requests on each remote processor that
can cause the delay for every access of the given task. Thus, function ekx(l, µ) is
computed via analysing the resource accessing time of a task in each individual
access, as given in Equation (16), where ekx(l)(n) gives the resource accessing
time of τx’s nth access to rk within the duration l.

ekx(l, µ) =

Nk
x (l,µ)
∑

n=1

ekx(l)(n) (16)

19

To include the “back-to-back” hits in the number of requests issued from
other tasks during τi’s release, a helper function Nk

x (l, µ) (see Equation (16)) is

introduced, where Nk
x (l, µ) =

⌈

l+µ
Tx

⌉

·Nk
x . For a given task τx, function Nk

x (l, µ)

gives the number of requests τx can issue to resource k within the given duration
l and a jitter µ, and Nk

x gives the number of requests τx can issue to rk in one
release. For instance, it can compute the number of requests issued from τ1 to
a resource during τ2’s release, l = R2 and µ = R1 so that the back to back hit
can be accounted for. In addition, two additional functions are introduced to
compute the number of resource requests issued from a group of tasks, where
Nhk

x(l) =
∑

τh∈hpl(x) N
k
h (l, Rh) gives the number of requests issued by local high

priority tasks of τx during the time l and Npkm(l) =
∑

τj∈τ(Pm) N
k
j (l, Rj) gives

the number of requests issued from a remote processor m within the duration l.
Then, the worst case bounding of ekx(l, µ) is formed by two theorems proved

by Zhao et al. (2017), where notation (f(x))ba denotes min{max{f(x), a}, b},
where a and b are positive integers with a ≤ b, summarised as follows.

Theorem 1. The maximum number of requests on a remote processor m that

may block τx directly for accessing rk within the duration l is bounded by

NSk
x,m(l) = (Npkm(l)−Nhk

x(l))0.

Theorem 2. The number of direct spin delays that τx can incur for accessing

rk from a remote processor m within the duration l and jitter µ is bounded by

min{NSk
x,m(l), Nk

x (l, µ)}.

With the above theorems, ekx(l)(n) is constructed as shown in Equation (17),
where n takes the values 1, . . . , Nk

x (l, µ) (defined by Equation (16)) and one extra
ck is accounted for the access by τx itself. In τx’s nth access, requests from a
remote processor m can block τx only if there still exists unaccounted requests
on that processor, i.e., (NSk

x,m(l)− n+ 1)0 ≥ 1. Upon one access, there can be
at most one request on a remote processor that can cause the spin delay, and
hence (NSk

x,m(l)− n+ 1)10.

ekx(l)(n) =
∑

Pm 6=P (τx)

(NSk
x,m(l)− n+ 1)10 · c

k + ck (17)

The arrival blocking caused by a given resource (say rk) is effectively bounded
by identifying the set of processors that contain unaccounted requests to rk

that can cause arrival blocking to τi, denoted as αk
i and is bounded in Equa-

tion (18). Thus, the arrival blocking time due to ck is |αk
i | · c

k, which forms a
new equation for êi, as shown in Equation (19). Finally, by integrating this êi
to Equation (11), the arrival blocking Bi for τi is then safely bounded.

αk
i , {Pm|NSk

i,m(Ri)−Nk
i > 0 ∧ Pm 6= P (τi)} ∪ P (τi) (18)

êi = max{|αk
i | · c

k|rk ∈ FA(τi)} (19)

20

As proved in (Zhao et al., 2017), this analysis guarantees that each critical
section is accounted for only once and the blocking time is safely bounded with
the back-to-back hit considered. As such, this analysis delivers less pessimistic
as well as more accurate response time boundings than that of the original one
given in (Burns and Wellings, 2013). Furthermore, the analysis is independent
of the priority assignment scheme and is not fixed to any specific hardware
architecture. With an initial response time, say Ci, the analysis computes the
blocking variables and then updates the response time of all tasks in the system
iteratively and alternately until a fixed-point is reached.

3.5. Cost of Migrations

As described in Section 3.1, migrations are required in MrsP due to the
helping mechanism, which imposes extra overhead due to necessary updates in
the underlying operating system, cache misses and pipeline stalls. As measured
by Zhao and Wellings (2017), a full migration operation (i.e., from the point
the task is queued for migration until the time it is scheduled for execution on a
remote processor) under the LitmusRT system (Calandrino et al., 2006a) costs
8.4 microseconds on average. Such costs are non-negligible to real-time systems
and should not be ignored by MrsP analysis. To bound the cost of migrations, a
migration cost analysis is developed in (Zhao et al., 2017). This analysis treats
the cost of one migration as a constant upper bound (i.e., Cmig) and computes
the maximum number of migrations a task can perform during each release due
to accessing shared resources under MrsP.

The analysis is constructed based on the following theorem (see complete
proof in (Zhao et al., 2017)), which identifies potential migration targets for a
resource accessing task via examining whether there exist requests to the same
resource during the given period.

Theorem 3. In τx’s n-th access to rk within a duration l, the set of migration

targets for τx is mtkx(l)(n) , {Pm|Pm 6= P (τx)∧NSk
x,m(l)−n+1 > 0}∪P (τx).

When τx is blocked by a low priority task upon its arrival, that low priority
task may also incur migration cost due to resource access, which in turn delays
τx. The migration targets of the low priority task are identified directly by the
set αk

x (the set of remote processors with requests that can cause τx to incur
arrival blocking) in Equation (18).

In addition, for a given set of migration targets (mt) and a resource rk, the
set of migration targets with potential preemptors is identified in Equation (20),
where hpt(rk, Pm) gives a set of tasks on processor m that have a priority higher
than the resource ceiling of rk.

mtp(mt, rk) , {Pm|Pm ∈ mt ∧ hpt(rk, Pm) 6= ∅} (20)

With migration targets determined, Zhao et al. (2017) firstly presents three
obvious situations where no (or limited number of) migrations can occur when a
request is issued from processor Pm to resource rk with a given set of migration
targets mt, summarised as follows. Nmig denotes the number of potential
migrations.

21

• Nmig = 0 if Pm /∈ mtp(mt, rk).

• Nmig = 0 if {Pm} = mt.

• Nmig = 2 if {Pm} = mtp(mt, rk) ∧ |mt| > 1.

However, in a more general case (i.e., Pm ∈ mtp(mt, rk) ∧ |mt| > 1), there
could exist more than one migration targets with potential preemptors. Thus,
the number of migrations is bounded by the releases of all potential preemp-
tors, and each release could cause a preemption to a resource-accessing task,
as computed by Equation (21). This equation accounts for the total number
of releases of all the potential preemptors on each migration target within the
duration of one resource computation time, including the migration time (i.e.,
ck +Mhp(mt, rk)). To cope with the situation where the next holder needs to
wait for the current holder to migrate away before it can acquire the resource,
one extra migration is included.

Mhp(mt, rk) = Cmig ·
(

∑

Pm∈mtp(mt,rk)

(

∑

τh∈hpt(rk,Pm)

⌈

ck +Mhp(mt, rk)

Th

⌉

)

+ 1
)

(21)

On the other hand, with the NP-section adopted, the migration cost in a
single access can also be bounded by the length of the NP-sections, denoted
by Mnpk, as given by Equation (22), where Cnp represents the length of the
NP-section.

Mnpk = Cmig · (

⌈

ck

Cnp

⌉

+ 1) (22)

In the case where the holder can be preempted frequently, this equation can
give a more acceptable number of migrations that a MrsP resource holder can
incur. Unlike Equation (21), this equation does not rely on iterations as the
NP-section is for the resource execution only and does not include the cost of

migrations. Therefore,
⌈

ck

Cnp

⌉

can provide a safe bounding on the number of

migrations with NP section applied. Combing Equations (21) and (22), Zhao
et al. (2017) gives the migration cost bounding for the last situation, where

• Nmig = min{Mhp(mt, rk),Mnpk} if Pm ∈ mtp(mt, rk) ∧ |mtp
(mt, rk)| > 1.

Combining the above, Equation (23) gives the complete migration cost bound-
ing that a task can incur. In the worst case, the task has to cope with the
migration cost of all the requests in the FIFO queue, including the migration
cost of those resource requests, where Mig(mt, rk) denotes the total migration
cost that a task can incur for accessing rk with a given set of migration targets
mt.

Mig(mt, rk) =
∑

Pm∈mt

0, if Pm /∈ mtp(mt, rk) ∨ {Pm} = mt

2 · Cmig, if {Pm} = mtp(mt, rk) ∧ |mt| > 1

min{Mhp(mt, rk),Mnpk}, otherwise

(23)

22

This concludes the migration cost analysis. This analysis can be easily in-
tegrated into the schedulability test proposed by Zhao et al. (2017) to form a
complete migration-aware schedulability analysis for MrsP. The integration is
performed by embedding function Mig(mt, rk) into Equations (16) and Equa-
tion (19), as given below.

ekx(l, µ) =

Nk
x (l,µ)
∑

n=1

(

ekx(l)(n) +Mig(mtkx(l)(n), r
k)
)

(24)

êi = max{|αk
i | · c

k +Mig(αk
i , r

k)|rk ∈ FA(τi)} (25)

4. Analysing Nested Resource Accesses under MrsP

Section 3 describes the original version of MrsP proposed by Burns and
Wellings (2013) and our previous contributions that improve both the definition
and schedulability analysis of this protocol. With these efforts, the migration-
based helping mechanism is analysable and the definition of supporting nested
resource access is complete. However, the schedulability analysis presented in
Sections 3.4 and 3.5 is constructed based on the assumption that resource ac-
cesses must be non-nested. That is, a task can only access one resource at a
given time. However, this assumption imposes strong application restrictions
and greatly undermines the practicability of the protocol. In the following sec-
tions, this restriction is removed with new extensions for the schedulability anal-
ysis proposed to achieve an analysable MrsP system model in wider application
scenarios.

The fundamental approach of analysing nested resource accesses is described
in (Garrido et al., 2017b), including the techniques of bounding the transitive
blocking incurred by inner resources. In this section, new approaches that sup-
port the analysis of nested accesses are developed as adaptations to the improved
MrsP response time analysis, and aim to provide less pessimistic results than
that of the sufficient analysis of nested access presented in Section 3.2.

As described in Section 3.2, a task can incur additional blocking while ac-
cessing a resource, say rk, due to requests to rk’s outer resources (which in turn
access rk as an inner resource). In addition, the task can also incur additional
transitive blocking while holding rk due to the access to rk’s inner resources,
which are requested by other tasks in the system. Accordingly, the total block-
ing time of a task for accessing rk in the nested case is determined as the delay
to the concurrent accesses to rk’s outer resources, rk itself and access requests to
rk’s inner resources issued from other tasks in the system. Let Ek

x(l)(n) denote
such total blocking in τx’s nth access to rk within the duration l, and hence
Equation (14) and (15) are updated as follows:

Ei =
∑

rk∈F (τi)

Nk
i (Ri,0)
∑

n=1

Ek
i (Ri)(n) (26)

23

Ii,h =
∑

rk∈F (τh)

Nk
h (Ri,Rh)
∑

n=1

Ek
h(Ri)(n) (27)

To bound the variable Ek
x(l)(n), we examine the blocking time of τx for

accessing rk and each of rk’s inner resources. When waiting for a resource, τx
can incur blocking from the requests to rk’s outer-most resources as well as the
requests to rk itself. One fundamental difference of the nested resource case is
the increased number of possible concurrent requests, as a result of migrations.
While for the sufficient analysis the general safe upper bound was provided
|V (rk)|+ |map(G(rk))| (see Section 3.2), a more exact bound is required for the
improved analysis. For this new analysis, we define Γ(rk) as a set of tasks that
can access a resource rk regardless of the nesting level. This number can be
lower than the bounding of |V (rk)|+ |map(G(rk))|. If it is, this value should be
used as the safe bound for the maximum number of concurrent access requests
Sk
max (i.e., the maximum length of the FIFO queue) to such a resource, as shown

in Equation (28):

Sk
max =

{

|map(G(rk))| when |V (rk)| = 0

min{|Γ(rk)|, |V (rk)|+ |map(G(rk))|} otherwise
(28)

Proof. If the resource has no outer resource, it can only be accessed directly
(without nesting) by tasks from their host processors, PCP rules ensuring only
one task per processor requests access at a time (i.e., |map(G(rk))|) (Burns
and Wellings, 2013). If the resource has outer resources, the concurrent nested
access to this resource is bounded by its outer resources due to the mutual
exclusion required to those outer resources (Burns and Wellings, 2013; Gar-
rido et al., 2017b). Together with the bounding of direct accesses, accessing a
nested resource is safely bounded by |V (rk)| + |map(G(rk))|. In addition, as
the system model does not allow more than one job of a task to be active at
a time, there cannot be more resource requests pending so that tasks can issue
resource requests up to (|Γ(rk)|) regardless of the nesting level. Thus, a more
precise bounding can be constructed, where the maximum blocking due to ac-
cessing a nested resource is bounded by min{|Γ(rk)|, |V (rk)| + |map(G(rk))|}
for accessing a nested resource.

Another difference between nested and non-nested resource accesses is that
with nested access, resource requests for a given task τx can be issued from
potentially all processors it can migrate to (i.e., being helped). In addition, the
migration targets for τx now can be all the processors with tasks requesting
any resource that τx may have locked. Consequently, the tasks with resource
requests that may delay τx are tracked regardless of their host processors, as
given by Equation (29), where Nrkx(l) gives the total number of requests to rk

24

issued by tasks except for τx within the given duration l.

Nrkx(l) =
∑

τj 6=τx

Nk
j (l, Rj) (29)

With Nrkx(l) calculated, the resource requests that can cause τx to incur
spin delay can be identified by NSk

x(l) = (Nrkx(l) − Nhk
x(l) × Sk

max)0, where
Nhk

x(l) × Sk
max denotes the requests that block higher priority tasks of τx and

should be accounted for as the high priority tasks’ interference.
With Sk

max and NSk
x(l) identified, the amount of spin delay for accessing

a given resource rk (without the cost of accessing its inner resources) can be
bounded, denoted as Sk

x(l)(n), as shown in Equation (30). This is, from all
the contending requests that could lead to spin delay to τx for accessing rk

(i.e., NSk
x(l)), we subtract n-1 times (already performed accesses) the maximum

number of concurrent accesses (Sk
max) minus one (which is the access performed

by the analysed task itself), with a minimum of 0 and max of Sk
max − 1 as the

task can be blocked as many times as Sk
max − 1 (i.e., the FIFO queue length).

Sk
x(l)(n) = (NSk

x(l)− ((n− 1) · (Sk
max − 1)))

Sk
max−1

0 (30)

Proof. As demonstrated for Equation (28), only up to Sk
max requests can be

issued to a resource rk at a time. If task τx issues a request, only up to Sk
max−1

requests can be ahead in the resource’s FIFO queue. Given that NSk
x(l) returns

the maximum number of potential access requests that could directly block a
τx request to rk during a τx activation, Equation (30) safely upper bounds
the maximum number of contending access requests to the resource in the nth
access.

Let ekx(l)(n) be the total amount of time that τx executes with rk, including
the time waiting and executing with each rk’s inner resource. With Sk

x(l)(n)
bounded, the total blocking time for τx accessing rk can be determined by
Equation (31), where (Sk

x(l)(n) + 1) reflects all potential concurrent access to
rk.

Ek
x(l)(n) = (Sk

x(l)(n) + 1) · ekx(l)(n) (31)

Similar to the approach adopted in Equation (10), the accessing time for each

rk’s inner resource can be bounded by
∑

rj∈U(rk)

∑N
j

k

n=1 E
j
x(l)(n) iteratively until

the inner-most resource is identified, where U(rk) returns an empty set.

ekx(l)(n) = ck +
∑

rj∈U(rk)

Nr
j

k
∑

n=1

Ej
x(l)(n) (32)

Thus, the total cost for accessing a resource and its inner resources (including
the spin delay and the transitive blocking) can be safely bounded by the above
analysis. As for the arrival blocking, the set of resources that could cause

25

such blocking remains identical to Equation (7). However, as for function êi,
modifications are required to reflect the transitive blocking for accessing the
inner resources. With nested resource allowed, êi = max{Ek

i (Ri)(N
k
i + 1)|rk ∈

FA(τi)}. Note that there could be the case where τi does not access r
k. In this

instance, Nk
i = 0 so that the remote requests that have not blocked τi’s higher

priority tasks will be accounted for as the arrival blocking. Otherwise, where
Nk

i > 0, we track the remote requests that have not blocked τi or its higher
priority tasks yet.

Example

In order to illustrate the analysis approach, consider the example depicted
in Figure 1. The example includes a 3 processor platform with four relevant
tasks τ1 .. τ4, and two resources accessed by them, r1 and r2. Resource r2 is
accessed by τ2 and τ3 while holding r1, i.e., in a nested way. The priorities of
these tasks are Pri(τ1) = 4, Pri(τ2) = 3, Pri(τ3) = 2 and Pri(τ4) = 1. That
is, τ1 has the highest execution eligibility among all these tasks while τ4 has the
lowest such eligibility.

Table 4 summarises the relevant task and resource data for the example.
A first step to analyse the system is to upper bound the maximum number of
concurrent access requests each resource can receive, i.e., Sk

max, by applying
Equation (30). For r1, since it is an outermost resource, this value is equal
to |map(G(r1))| which is the number of processors from where it is directly
accessed. Resource r2, on the contrary, is accessed both directly by task τ1 and
τ4 and in a nested fashion by tasks τ2 and τ3. In this case, the number of tasks
that access the resource is Γ(r2) = 4 but the number of outer serialising entities
is just |V (r2)| + |map(G(r2))| = 3, and, as a result, the maximum number of

concurrent access requests to the resource is Sr2

max = 3. As τ2 and τ3 access
the resource while having locked r1 first, only one of them can issue an access
request at a time.

τ2 τ1 τ3 τ4

p1 p2 p3

r1

r2

Figure 1: Graphical representation of resource usage in running example.

To compute the response time of τ1, its access cost to r2 (Er2

τ1
) is calculated.

To do so, Equation (29) is used to identify the number of accesses issued by
other tasks to the resource. This is, applying Nk

x (l, µ) for each other task:

26

Table 4: Relevant task parameters and resource usage of running example.

r1 r2

Task P T C N c N c
τ1 1 50 5 1 2
τ2 1 60 3 3 1 3 2
τ3 2 50 4 1 1 1 2
τ4 3 40 3 1 2

Resource Γ |V | |map(G)| Smax

r1 2 0 2 2
r2 4 1 2 3

⌈

5+3
60

⌉

· 3 = 3 for τ2,
⌈

5+4
50

⌉

· 1 = 1 for τ3 and
⌈

5+3
40

⌉

· 1 = 1 for τ4, resulting

in a total of Nrr
2

τ1
(Rτ1) = 5. As τ1 does not have any local higher priority

task, i.e., Nhr2

τ1
(Rτ1) = 0. Consequently NSr2

τ1
(Rτ1) = 5, meaning that all

remote accesses are to be considered, since they have not been accounted for
yet. Then, for the first and only access to r2, the potential number of tasks that
can cause direct spin delay to τ1 according to Equation (30) is Sr2

τ1
(Rτ1)(1) =

(5 − ((1 − 1) · (3 − 1)))3−1
0 = 2, i.e., one direct access from p3 and a nested

access from r1. Since r2 does not have any inner resource, its access time er
2

is
equal to its execution time cr

2

, i.e., 2. Then we can substitute er
2

access time in
Equation (31) to obtain the final access cost to r2 as Er2

τ1
(Rτ1)(1) = (2+1)·2 = 6.

This is to be added to the base execution time of 5 units to obtain a preliminary
response time of 11 time units.

Then, response time of τ2 can be addressed. As shown in Table 4, it accesses
3 times to r1 and r2 in a nested way. Then, for each access to r1, the cost of
accessing τ2 is calculated first. The number of accesses to r2 from other tasks is
calculated via Nk

x (l, µ) yielding a value of
⌈

3+5
50

⌉

·1 = 1 for τ1,
⌈

3+4
50

⌉

·1 = 1 for τ3

and
⌈

3+3
40

⌉

·1 = 1 for τ4, and a total of Nrr
2

τ2
(Rτ2) = 3. In contrast to τ1 analysis,

τ2 presents higher priority tasks accessing r2 (τ1). This number of accesses is

Nhr2

τ2
(Rτ2) = Nr2

τ1
(Rτ2) =

⌈

3+5
50

⌉

· 1 = 1. As the resource has already been
accessed by a higher local priority task, the direct delay to be accounted for due
to remote tasks can be reduced: NSr2

τ2
(Rτ2) = 3− (1 · 3) = 0. With this value,

the access to r2 does not need to account for any direct spin delay according to
Equation (30): Sr2

τ2
(Rτ2)(1) = (0− ((1− 1) · (3− 1)))3−1

0 = 0 and thus its access

cost is equal to its execution time, Er2

τ2
(Rτ2)(1) = (0 + 1) · 2 = 2. With this

value, the access cost to r1 can be calculated. The resource only has one other
task accessing the resource, τ3: Nrr

1

τ2
(Rτ2) = Nr1

τ3
(Rτ2) =

⌈

3+4
30

⌉

· 1 = 1, and no

local higher priority task accesses the resource, i.e., Nhr1

τ2
(Rτ2) = 0, resulting in

a number of potential spin delay remote accesses of NSr1

τ2
(Rτ2) = 1− (0 ·2) = 1.

Then, for the first access, this direct spin delay is accounted for according by
Equation (30): Sr1

τ2
(Rτ2)(1) = (1− ((1− 1) · (2− 1)))2−1

0 = 1. Being the access

27

time including the inner resource er
1

τ2
(Rτ2)(1) = 1 + 2 = 3, the total access cost

for the first access is Er1

τ2
(Rτ2)(1) = (1 + 1) · 3 = 6. Successive accesses do not

have to account for any direct spin delay as the potential access from τ3 has
been already accounted for. As a result, accesses 2 and 3 have an access cost of
Er1

τ2
(Rτ2)(2, 3) = (0+1) ·3 = 3 each. Then, the total direct access cost to shared

resources is the sum of the three accesses Eτ2 = Er1

τ2
(1) + Er1

τ2
(2) + Er1

τ2
(3) =

6 + 3 + 3 = 12. With this value, a preliminary response time of 15 time units
can be used for further calculations.

The analysis of τ2 response time needs to be completed with the study of the
interference suffered due to τ1. This interference includes τ1 execution time plus
the indirect spin delay caused by τ1, as identified in Equation (27). The first
step is to calculate the number of accesses that τ1 can issue during an activation
of τ2, including the back to back hit. This is calculated as Nr2

τ1
(Rτ1 , Rτ2) =

⌈

11+15
50

⌉

· 1 = 1. Then, the indirect spin delay to account for is the only access

of τ1 that was already identified to be of Er2

τ1
(Rτ1) = 6 time units, and a final

τ2 response time of Rτ2 = Cτ2 + Eτ2 +
⌈

Rτ2

Tτ1

⌉

· Cτ1 + Iτ1 = 3 + 12 + 5 + 6 = 31

The last step to complete the analysis of tasks on processor P1 is to compute
the arrival blocking suffered by τ1. The only resource identified by function FA

τ1

is r2, as is the only resource accessed by both τ1 and a lower priority task. The
arrival blocking is calculated as the cost of the Ek

i (Ri)(N
k
i + 1) access to the

resource, i.e., Bτ1 = Er2

τ1
(Rτ1)(2). The number of remote access requests that

can interfere with that of this second access to the resource is recalculated with
the updated response times, being

⌈

11+31
60

⌉

· 3 = 3 for τ2,
⌈

11+4
50

⌉

· 1 = 1 for

τ3 and
⌈

11+3
40

⌉

· 1 = 1 for τ4, resulting in a total of Nrr
2

τ1
(Rτ1) = 5. As there

are no higher priority tasks accessing the resource Nhr2

τ1
(Rτ1) is still equal to

0. The number of potential remote contenders for the resource is calculated
as Sr2

τ1
(Rτ1)(2) = (5 − ((2 − 1) · (3 − 1)))3−1

0 = 2 and so the access cost is

equal to Er2

τ1
(Rτ1)(2) = (2 + 1) · 2 = 6, resulting in a final response time of

Rτ1 = Cτ1 + Eτ1 +Bτ1 = 5 + 6 + 6 = 17.
Processors P2 and P3 present a simple analysis, since they only host one

task each. Following the same procedures as those presented previously, an
access cost for τ3 to r1 and r2 can be calculated as Er1

τ3
(Rτ3)(1) = 14 yielding a

response time of Rτ3 = Cτ3 +Eτ3 = 4+14 = 18. Similarly, for τ4 in p3 an access

cost of Er2

τ4
(Rτ4)(1) = 6 and a response time of Rτ4 = Cτ4 + Eτ4 = 3 + 6 = 9.

With these results, any pair of response times is bigger than the period of any
of the two tasks and consequently the analysis is finished.

5. A complete Run-time Cost Analysis for MrsP

Section 3.5 describes our first attempt to include run-time overhead (more
precisely, the cost of migrations) of MrsP system into mathematical schedulabil-
ity analysis, based on the assumption of non-nested accesses. As this assumption
is removed in this paper for more realistic application scenarios, the migration-
cost analysis should be revised to cope with the case where tasks hold multiple

28

resources at the same time. In addition, as shown in (Burns and Wellings,
2016), context switches introduce non-trivial run-time overhead and manipulat-
ing locks also imposes extra costs, which should not be ignored for any form
of run-time cost-aware tests. In this section, the migration cost analysis is ex-
tended to support applications with nested resource access and to include the
above cost.

5.1. Cost of Migrations under Nested resources

Similar to the non-nested case, the number of migrations during nested re-
source access directly depends on the amount of time during which a resource
is locked. However, two differences need to be taken into account. Firstly, a
task having locked a non-outermost resource can migrate not only to processors
from where the locked resource can be accessed directly, but also to those from
where its outer resources can be accessed. In other words, a task can migrate to
any processor where a task accesses the resource regardless of the nesting level.

mt(rk) , {Pm|Pm ∈ map(Γ(rk))} (33)

Note that Equation (33) also includes the host processor of task τx under
analysis. Recall that, with nested resources, it is perfectly possible for a task
to be migrated to a remote processor when accessing a rk outer resource (say
rj) and while accessing rj on that remote processor access rk and require help.
During the time τx was migrated, another task τy satisfying Pri(rj) < Pri(τy) ≤
Pri(rk) could have been released and spinning for access to rk, making τx host
a valid migration target.

The second difference is due to the transitive helping rule, a resource can
be helped with the priority of an outer resource rather than its local ceiling
priority. Following general PCP rules, an outer resource must have an equal or
lower priority than any inner resource accessed. As a result, the priority to be
considered for migration calculation purposes on each helping processor is the
lowest of those outer resources on that processor (if any), denoted as lcpkm in
Equation (34). If resource rk is an outermost resource on that processor, its lcp
is equal its local ceiling priority.

lcpkm = min
ry∈V (rk)∧Pm∈map(G(ry))

{Pri(ry)} (34)

This function is then used to redefine the calculation of migration targets
with preemptors (mtp(mt, rk) in Equation (20)) as:

mtp(mt, rk) , {Pm|Pm ∈ mt ∧ hpt(lcpkm, Pm) 6= ∅} (35)

Finally, the migration cost bounded by the number of preemptor releases is
refined as that can be used to finally obtain the migration cost by also redefining
Equation (21) as:

Mhp(mt, rk) = Cmig ·
(

∑

Pm∈mtp(mt,rk)

(

∑

τh∈hpt(lcpkm,Pm)

⌈

ck +Mhp(mt, rk)

Th

⌉

)

+ 1
)

(36)

29

Alternatively, if non-preemptive sections are implemented, the cost of migra-
tions can also be calculated using Equation (22). The final value Mig(mt, rk)
to be taken into account for the analysis is still defined by Equation (23). This
value is integrated in the accessing time to a nested resource with migrations
accounted for.

ekx(l)(n) = ck +Mig(map(Γ(rk)), rk) +
∑

rj∈U(rk)

N
j

k
∑

n=1

Ej
x(l)(n) (37)

Example

Consider the resource access graph of the example provided Section 4, and
let the taskset be enriched with tasks τx, τy and τz with parameters presented
in Table 5. With this newly considered tasks, the migration cost analysis of r2

would be as follows. The first step is to consider the potential migration targets
of the resource by applying Equation (33). This, for r2 is all processors, includ-
ing p2, as, although not directly accessed, it is an inner resource of r1 accessed
by τ3. The second step is to consider on which processors it has preemptors,
using Equations (34) and (35). Following Equation (34), lcp21 and lcp22 are equal
to 2, as is the lowest priority of its outer resources on each processor. In proces-
sor p3, the value of lcp23 its, 1, equal to its local ceiling priority. Then applying
Equation (35), mtp(mt, r2) = p1, p3 as on those processors there is at least a
task with higher priority than lcp2 on that processor. Finally, we compute the
migration cost (lets consider 0.1 as the cost of each migration Cmig): on the first
iteration Mhp0 = 0.1·(

⌈

2+0
40

⌉

)+
⌈

2+0
25

⌉

) = 0.2. Then, feeding back the Mhp value

in the iteration Mhp1 = 0.1 · (
⌈

2+0.2
40

⌉

) +
⌈

2+0.2
30

⌉

) = 0.2 that is the final value
to be considered for tasks allocated to p1 and p3. Note that τ3 does not suffer
migration costs as, as mentioned in section 3.5, τ3 cannot be locally preempted.
As denoted by Equation (37) this value is to be added to the resource access
time in order to obtain e2 value e2 = 2 + 0.2 = 2.2.

Table 5: Relevant task parameters and resource usage of enriched running example.

r1 r2

Task P Pri T C N c N c
τx 1 3 40 5
τ1 1 2 50 5 1 2
τ2 1 1 60 3 3 1 3 2
τ3 2 2 50 4 1 1 1 2
τy 2 1 60 5
τz 3 2 25 5
τ4 3 1 30 3 1 2

5.2. Costs of Context Switches and Protocol Implementation

As described in (Burns and Wellings, 2016), the major run-time costs that
tasks incur when using a resource sharing protocol include the cost of obtain-

30

ing and releasing a lock (i.e., the time required for executing the lock() and
unlock() functions), and the context switches due to task releases and pre-
emptions. Figure 2 illustrates the major scheduling events occurring in the
underlying operating system during the lifetime of a periodic task’s release (say
τi).

Clock Handler

A A’B

Context

Switch

C

Task Execution

D E

Context

Switch

Figure 2: Events from the Operating System During a Task’s Release (Burns and Wellings,
2016).

When τi’s release time arrives, the corresponding clock interrupt will be
fired and the interrupt handler will move τi from the sleeping queue to the
ready queue, where it waits to be scheduled (i.e., event A). Assuming τi has
the highest priority among all the ready tasks, the scheduler will be invoked to
release τi (i.e., event B). If there is an executing task, this task will be switched
away. τi starts its execution at event C and finishes at event D, during which it
could be preempted several times by newly-released higher priority tasks. When
τi is finished, it will be cleaned up and switched away by the scheduler (event
E). Then, the system schedules the next ready task to execute (if any) and keeps
waiting for the next clock interrupt (i.e., event A’). If τi is preempted during
the interval C to D, it incurs the overhead from all events given in Figure 2.

According to the description above, to account for the cost due to the poten-
tial context switches τi can suffer during each release, Equation (13) is extended
to Equation (38), as given below.

Ri = CX1 + Ci + Ei +Bi +
∑

τh∈hpl(i)

(

⌈

Ri

Th

⌉

· (CX2 + Ch) + Ii,h

)

(38)

where CX1 denotes context switch overhead associated with τi itself. Note,
CX1 only includes the costs for events A and B as τi finishes its execution at
even D. That is, only the cost of events A and B will occur during its release,
assuming no preemptions. If τi is preempted while executing, it will incur extra
overhead caused by the events A, B and E, which is denoted as CX2. The
reason to include event E here is that τi has to cope with the associated cost for
switching the preemptor away before being resumed. With these two variables

31

determined, the run-time overhead incurred by τi due to major scheduling events
from the underlying system can be bounded.

The cost for obtaining and releasing a MrsP lock mainly includes the over-
head for raising and restoring the priorities of the resource accessing tasks (Zhao
and Wellings, 2017), and manipulating the FIFO queues, which are performed
in the function lock() and unlock(). Such costs are denoted as Clock

MrsP and
Cunlock

MrsP respectively, where they can be easily integrated into the cost for ac-
cessing a resource via a new notation Ck, as given below.

Ck = Clock
MrsP + ck + Cunlock

MrsP (39)

Accordingly, notation ck is replaced by Ck in Equations (17), (19), (21)
and (32) to incorporate the overhead of the locking protocol. However, note
that ck in Equation (22) remains as the NP-section is applied only inside the
critical section. With the above equations, the run-time overhead incurred by
tasks in MrsP systems due to the underlying operating system and the protocol
implementation can be bounded. Note that the above equations only provide
an overall approach for incorporating the run-time overhead.

To complete this analysis, the underlying hardware and a real-world oper-
ating system must be provided and the cost for each event in the worst case
should be measured to provide a safe upper bound. The exact measuring ap-
proach of CX1 and CX2 largely depends on the scheduling structure of the given
operating system while the costs of lock() and unlock() depends on the real
implementation of the protocol. In Section 7, the above run-time cost variables
are measured under the LitmusRT Real-Time Operating System (Calandrino
et al., 2006a; Brandenburg, 2011) based on a MrsP implementation realised in
the Preemptable-Fixed Priority scheduler for fully-partitioned systems.

This concludes our extensions to MrsP schedulability analysis. Combining
the response time analysis and the migration cost analysis together, we provide
an improved and more complete schedulability analysis tool for MrsP with the
awareness of implementation and run-time costs, which is capable for analysing
systems with the presence of nested resource accesses.

6. NP-Section Length Configuration

As described by Zhao et al. (2017), the number of migrations, and thus
its costs, can be limited if a short non-preemptive Section is enforced after a
migration. As discussed in Section 3.3 and formalised in Equation (11), the
length of the NP-section might affect the response time of tasks, constituting
the local blocking term (Bi). In consequence, the Cnp length configuration can
have an impact on the protocol performance.

In (Zhao et al., 2017), an initial analytic approach to the Cnp length setting

is given. In particular, the constant, platform-dependent b̂ value can be safely
used as an initial Cnp value. In this section, a complete set of recommenda-
tions for NP-section configuration is proposed to achieve further schedulability
improvement, which is not possible via the simplistic setting of Cnp to b̂.

32

From an analytic perspective, the objective is to reduce the number of po-
tential migrations without increasing task response time. That is, reduce E and
I values without increasing B for any task in the system. As suggested in (Zhao

et al., 2017), b̂ can be safely used as Cnp as now demonstrated in Theorem 4.

Theorem 4. No task local blocking time is increased when Cnp is set to b̂, i.e.,

Cnp = b̂.

Proof. By definition of Bi = max{êi, n̂pi, b̂}. As n̂pi can take only two values

[0, Cnp], Bi is independent of Cnp as long as Cnp ≤ b̂.

While Theorem 4 gives a safe value for Cnp, it can provide a little benefit

on systems where b̂ is trivial to critical section length. This raises the interest
of deriving Cnp configurations based on the length of shared resources.

Theorem 5. Task local blocking time will not increase when Cnp is set so

that Cnp = {min (B′
i)|Pri(τi) ≥ min{rk is global}Pri(rk, P (τi))}, where B′

i =

max{êi, 0, b̂}.

Proof. Condition of Cnp construction limits B′
i consideration to only those tasks

affected by Cnp. Then, if the minimum value of local blocking of those tasks
without considering n̂pi is taken as Cnp, it follows from Bi and n̂pi definition

that max{êi, n̂pi, b̂} ≤ max{êi, 0, b̂}, ∀τi.

Note that Cnp obtained from Theorems 4 and 5 can take the same value
if for a given task τi that might be affected by the non-preemptive section it
holds that êi ≤ b̂, i.e., the non-preemptive section imposed by the platform is
longer than the access time of potentially local blocking resources. In any case,
the resulting Cnp of applying Theorem 5 is optimal without increasing local
blocking values of any task.

Proof. Suppose Theorem 5 does not provide an optimal Cnp with the restriction
of not increasing local blocking values of any tasks. Then there should exist a
C+

np value satisfying C+
np > Cnp. Then, for the task τx yielding the min(B′)

value on Theorem 5 C ′
np > max{êi, b̂} and hence Bx > B′

x.

Values for Cnp obtained from Theorems 4 and 5 might not be sufficient to
make the system schedulable, or provide a sufficient margin for certain tasks
within systems including this requirement. In this case, the empirical approach
shown in Algorithm 1 can be applied, at the cost of potentially increasing the
local blocking of certain tasks and thus their response times. Note that this
can make the latter tasks unschedulable. In consequence, the algorithm is only
intended to be used when the system does not already meet its temporal re-
quirements.

The algorithm initially sets as a first tentative Cnp value the one proposed in
Theorem 5. Then this value is gradually increased until either a value for Cnp

is found allowing every task to meet its temporal requirements or the system is
finally deemed unschedulable.

33

Algorithm 1 Cnp empiric configuration.

1: do RTA;
2: Cnp ← {min (B′

i)|Pri(τi) ≥ min{rk is global} Pri(rk, P (τi))}, where B′
i =

max{êi, 0, b̂}
3: loop

4: if System Unschedulable then

5: if {Ri ≤ Di ∨Mig(τi) ≥ Ri −Di|∀τi} then

6: Cnp ← min{Cnew
np |⌈

ck

Cnew
np
⌉ = ⌈ ck

Cold
np
⌉−1∧rk ∈ G(Unsched Tasks)}

7: if Cnew
np = Cold

np then

8: return System Unschedulable;
9: else

10: do RTA;
11: end if

12: else

13: return System Unschedulable;
14: end if

15: else

16: return System Schedulable;
17: end if

18: end loop

The algorithm prerequisite (necessary, but not sufficient) is that, for every
task in the system, its initial response time is either lower or equal than its
deadline (the tasks meets its temporal requirements), or the sum of the migra-
tion costs suffered by the task (denoted by Mig(τi)) is greater than the response
time reduction needed by the task to meet its deadline, i.e., reducing the task
migration costs can actually make the task schedulable.

Then a new tentative value Cnew
np is selected. This new value is the minimum

that reduces the number of potential migrations that can happen during the
access to a resource by one. Only resources used by at least one task not meeting
its temporal requirements (G(Unsched Tasks)) are considered. If no new value
is found then the system cannot be made schedulable by Cnp tuning. Otherwise,
the response time analysis is reconducted, and system schedulability rechecked.
If the system is found to be schedulable, the algorithm ends. Elseways, the
process is repeated.

The presented algorithm efficiently checks every possible Cnp value in the so-
lution space. Only Cnp values that can actually improve response times of tasks
not meeting their temporal requirements are checked. Any other values would
increase arrival blocking times without reducing worst-case migration costs of
unschedulable tasks. By finding, if any, the minimum Cnp value making the
system schedulable, the algorithm provides the lowest possible local blocking
to higher priority tasks by construction. Finally, it should be noted that the
algorithm complexity only depends on the number of shared resources in the

34

system and the number of their associated access time divisors greater than the
initial Cnp value. To this end, the time complexity of this algorithm can be
determined. Let W denote the non-polynomial time complexity of the schedu-
lability test (Audsley, 2001), the time complexity of this algorithm is bounded

by O(W ·
∑

∀rk

⌈

ck

Cinit
np

⌉

), where Cinit
np denotes the initial length of the NP-section

provided by the algorithm.

7. Evaluation

In this section, we investigate the efficiency of the proposed schedulability
analysis extension for nested resources and evaluate the performance of this
protocol under the studied resource accessing model with various system settings
(e.g., the degree of parallelism, the frequency of resource access and the length
of critical sections). To achieve this, a set of experiments are conducted to
investigate (1) the schedulability of the original test and the new test of MrsP;
(2) the schedulability of MrsP and the other major FIFO spin-based locking
protocols (i.e., MSRP and PWLP reviewed in Section 2.2); (3) the impact of
the run-time overhead to the schedulability results and (4) the computation
costs of the proposed schedulability analysis itself and the ILP-based analysis
(see Section 2.3). Schedulability tests proposed in the above sections have been
implemented for the experiments conducted in this section and are accessible
via https://github.com/RTSYork/SchedulabilityTestEvaluation.

To compare the results of the schedulability tests for MrsP developed in this
paper and the tests for MSRP and PWLP, the ILP-based analysis from the
SchedCAT project (Brandenburg, 2013b; Biondi et al., 2016) is integrated into
the testing program via JNI. Note, the run-time overhead for MSRP and PWLP
is accounted for by approaches similar to those described in Section 5.2 in the
ILP-based analysis, which directly supports the analysis of MSRP and PWLP
with minimised pessimism (i.e., they guarantee that each critical section will
be accounted for only once). To achieve fair comparison, a system generation
tool (Zhao et al., 2017; Zhao, 2018) is developed to generate random systems
with various application semantics and resource characteristics configurations
(but within given boundaries). The algorithms and configuration settings ap-
plied in the generation tool is described below. This tool firstly generates tasks
that conform to the sporadic model and a set of resources, then the resource
usage is produced based on the given parameter settings.

The experimental setup for investigating the schedulability tests in this paper
is described as follows, and covers a wide range of system settings in real-time
automotive and safety-critical applications (Fürst et al., 2009; Cavalcanti et al.,
2016; Garrido et al., 2015; Buttle, 2012). We consider platforms withM = [2, 24]
processors, where systems with M ≤ 8 are widely available nowadays while
M > 8 gives the forward-looking scenario. The system contains n tasks with
a total utilisation U and U = 0.1n, where n denotes the number of tasks in
the system. Periods of tasks on each processor are given randomly between
[1ms, 1000ms] in a log-uniform distribution fashion. Deadlines of tasks are set

35

to be constrained (i.e., equal to their periods, where Dx = Tx for τx). The
utilisation of each task is given based on the UUnifast-Discard algorithm (Bini
and Buttazzo, 2005; Emberson et al., 2010). With task utilisation obtained, the
total computation time (denoted as C ′

x for τx) for each task can be computed,
where C ′

x = Ux×Tx. Note, C ′
x is the sum of the pure computation time Cx and

the total resource computation time Cr
x (i.e., the time τx spends on executing

with each resource it requests), where C ′
x = Cx + Cr

x. The system supports
1000 priority levels. The priorities of the tasks in a given system is assigned via
the DMPO algorithm (Leung and Whitehead, 1982) prior to allocation, which
assigns a higher priority to a task with a shorter deadline. At last, tasks are
allocated to each processor via the Worst-Fit heuristic (Johnson, 1973), which
allocates each task to the processor that has the lowest utilisation.

In addition, similar to the evaluation settings applied in (Wieder and Bran-
denburg, 2013; Zhao et al., 2017), tasks in each system share M resources. For
each resource, a wide range of critical section lengths (L) is supported, includ-
ing [1µs, 15µs], [15µs, 50µs], [50µs, 100µs], [100µs, 200µs], [200µs, 300µs] and
[1µs, 300µs]. In addition, a real value parameter κ is introduced to specify
the number of tasks on each processor that can have access to resources (i.e.,
⌊κ · allocated tasks⌋), where κ ∈ [0.0,1.0]. Once a task is set to access a re-
source, it can issue requests to a number of randomly chosen resources, but
limited by [1,M]. To control resource access frequency, the number of requests
that a task can issue to a resource is randomly decided between [1, A], where
A takes value ranged from 1 to 41. Such settings are sufficient to cover most
scenarios in practice (Wieder and Brandenburg, 2013; Fürst et al., 2009). Once
τx’s resource usage is generated, the total resource computation time Cr

x can be
obtained so that Cx can also be computed, where Cx = C ′

x − Cr
x (Cr

x = 0 for
tasks that do not access any shared resources). We enforce that C ′

x − Cr
x ≥ 0.

There exists a large number of possible combinations of the system settings
with variables given above (i.e., n, M , L and A). In the interest of brevity,
we only present experiments that effectively demonstrate the main trends and
performance difference between evaluated schedulability tests.

7.1. Schedulability Comparison

This section investigates and compares the schedulability performance of the
selected protocols in the presence of nested resources. In particular, the proto-
col versions considered are the original MSRP analysis (denoted as “MSRP-
original”) for nested resources and the ILP-based nested analysis presented
in (Biondi et al., 2016) for both MSRP and PWLP (“MSRP-new” and “PWLP-
new”), the original MrsP analysis (“MrsP-original”) for nested resources by Gar-
rido et al. (2017b) and the newly presented MrsP improved analysis for nested
resources (“MrsP-new”). Protocols with the label “new” indicates their asso-
ciated state-of-art schedulability tests (ILP-based analysis for MSRP, PWLP
and our new analysis for MrsP) while “original” denotes the early analysis de-
scribed in Section 2. As with in (Wieder and Brandenburg, 2013; Zhao et al.,
2017), 1000 systems are generated for each combination of system settings. To
generate nested resource accesses the following process has been adopted: after

36

all resources have been generated, the use of inner resources is calculated in
order of creation. To this end, in order to avoid circular dependencies, a task
holding a resource can only access another resource that is generated later. The
probability of accessing each inner resource is 20%. The number of times that
a task can access an inner resource is also defined by A.

8 16 24 32 40 48 56 64 72
number of tasks

0

0.2

0.4

0.6

0.8

1

sc
he

du
la

bl
e

MSRP-new
PWLP-new
MrsP-new
MSRP-original
MrsP-original

Figure 3: Schedulability in the presence of nested resources for M = 8, U = 0.1n, κ = 0.4,
A = 2, L = [50µs, 100µs], and M Shared Resources.

(a) Increasing workload n: With a realistic number of processors (M = 8),
low resource contention (the number of accesses to the same resource is limited
to A = 2 and a resource sharing factor of κ = 0.4) and medium critical section
length (L = [50µs, 100µs]), MrsP presents a better schedulability in general
terms with the improved analysis, as shown in Figure 3. Firstly, similar with
the observation obtained in (Zhao et al., 2017), the state of art schedulability
tests of both MSRP and MrsP provide better results than that of their origi-
nal tests in all cases, which indicates that the new schedulability tests remain
less pessimistic in the presence of nested resources. With the increase of n, the
original MSRP schedulability test presents the most pronounce fall as a conse-
quence of its higher arrival blocking regardless of the analysis employed, due to
its non-preemptive nature. The original test of MrsP, on the contrary, presents a
similar trend to that of the new analysis for PWLP and MrsP until almost 60%
of system workload (48 tasks in the system), as the inter-dependency between
tasks is still low to reflect the pessimism in the analysis.

As for the new schedulability tests, both MSRP and MrsP outperform
PWLP with n < 40 (i.e., with a low schedulability pressure) due to the extra
resource-waiting time introduced into by the cancellation mechanism. However,
with n ≥ 32, the schedulability of MSRP decreases significantly and is outper-
formed by both MrsP and PWLP due to its non-preemptive approach, which
leads to prolonged arrival blocking. As for MrsP, it provides the best schedu-
lability in most cases with the priority ceiling approach, which achieves the
|map(G(rk))| bounding as MSRP theoretically (i.e., without run-time overhead)
and has a much lower arrival blocking. Interestingly, PWLP presents a leaner

37

curve, somewhat different from the non-nested results given in (Zhao et al.,
2017). This is the result of the difference between grouping and non-grouping
resources: in the cases where the workload is low, and thus the total number
of accesses to shared resources, the reduced parallelism of the resource group-
ing approach present in PWLP highly affects the overall system performance
compared to the fine-grained nesting of MSRP and MrsP. It is also relevant
to note that PWLP presents better results on the higher end (above 70% of
utilisation). This result is somehow expected since, as the overall utilisation
of resources increases, it is more likely that resource access requests to inner
resources cannot be directly satisfied under fine-locking approaches, where each
resource is protected by its own lock and tasks have to compete with each other
when accessing an inner resource. However, with group locks, such resource
contention is described as the access to an inner resource is granted as long as
its outer resource is being held by the task.

1 2 3 4 5 6 7
number of accesses to critical sections

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sc
he

du
la

bl
e

MSRP-new
PWLP-new
MrsP-new
MSRP-original
MrsP-original

Figure 4: Schedulability for M = 8, n = 32, U = 0.1n, κ = 0.4, L = [15µs, 50µs], and M

Shared Resources.

(b) Increasing resource contention A: As with the non-nested case in (Zhao
et al., 2017), PWLP under the nested case has similar results with a low resource
access frequency, where it demonstrates a strong schedulability and outperforms
other protocols with A = 2. Again this result is a consequence of the trade-off
between arrival blocking and the cost of being preempted while busy-waiting of
PWLP (requiring to requeue the request). However, as the number of times a
resource can be accessed increases, the number of times a lower priority task can
be preempted while busy-waiting is increased and, as a consequence, the time
spent occupying the processor without making progress is increased. A similar
analysis can be derived from the MSRP results: while it is the best performing
protocol with the ILP analysis with low number of accesses to critical sections
(and thus probabilities of higher priority tasks suffering arrival blocking), as
tasks increase their use of critical sections the arrival blocking becomes a limiting

38

factor, highly reducing the protocol performance. As for MrsP, it demonstrates
strong schedulability in this experiment due to the priority ceiling approach
(which yields limited arrival blocking compared to MSRP) without no extra
blocking period.

1-15 us 15-50 us 50-100 us 100-200 us 200-300 us 1-300 us
length of critical sections

0

0.2

0.4

0.6

0.8

1

sc
he

du
la

bl
e

MSRP-new
PWLP-new
MrsP-new
MSRP-original
MrsP-original

Figure 5: Schedulability in the presence of nested resources for M = 8, n = 32, U = 0.1n,
κ = 0.4, A = 2 and M Shared Resources.

(c) Increasing critical section length L: The results presented in Figure 5
show that both MSRP and PWLP are highly affected by the length of critical
sections. It is important to note that, as resource accesses can be nested, the
effect of the length increase is multiplied. In the case of MSRP, as the arrival
blocking includes the busy-waiting and access time of lower priority tasks for
each resource accessed in a nest of resources, clearly affecting the schedulability
of higher priority tasks. Regarding PWLP, lower priority tasks are those spe-
cially affected by the critical section length increase, since the potential amount
of busy-waiting time lost upon preemption before acquiring the lock is increased.
This effect is again multiplied by the resource grouping used to analyse PWLP
nested resources. Regarding MrsP, both approaches are clearly less affected.
As higher priority tasks can preempt both busy-waiting and lock-holder lower
priority tasks, the reduction in the schedulability is only a consequence of the
proportionally longer spinning times, with better performance of the new, less
pessimistic on resource contention analysis approach.

7.2. Run-time overhead

Now we study the impact of the run-time overhead to the schedulability re-
sults with the analysis developed in Section 5. For the rest of the paper we will
only consider “-new” approaches as denoted in Section 7.1, so we will now omit
the suffix to avoid repetition. The experiment is conducted by varying the crit-
ical section length L. In addition, we present evidence of improved efficiency of
MrsP by the controlled migration behaviours due to the NP-section. To conduct

39

this experiment, MSRP, PWLP and MrsP are implemented into the Preempt-
able Fixed Priority scheduler under the LitmusRT system (Calandrino et al.,
2006a) for overhead measuring, with the support of nested resource accessing.
Standard POSIX threads scheduled by a preemptive fixed-priority scheduler
in LitmusRT are mapped to a set of tasks requesting certain shared resources.
These threads share the same lock (implemented by a struct in LitmusRT ker-
nel with a size of 114 bytes), and operates on a simple strcut with the size of
76 bytes inside the critical section. The implementation can be accessed via
https://github.com/RTSYork/Litmus_MSRP_PWLP_MrsP. Table 6 summarises
the worst-case bounding of the run-time cost variables introduced in the newly-
developed schedulability tests measured from the implementations, and will be
adopted in this experiment. The Cretry notation denotes the worst-case run-
time cost of the cancellation mechanism carried in PWLP.

Table 6: The Run-time Costs of the Candidate Protocols under LitmusRT

Variables Worst-case Cost Variables Worst-case Cost

CX1 5606 ns Cunlock
MSRP 602 ns

CX2 10,240 ns Clock
PWLP 1255 ns

Cretry 1663 ns Cunlock
PWLP 602 ns

Cmig 8378 ns Clock
MrsP 1272 ns

Clock
MSRP 979 ns Cunlock

MrsP 1642 ns

The schedulability analysis examined in this experiment includes (1) ILP-
based MSRP test without run-time overhead (MSRP); (2) ILP-based MSRP test
with run-time overhead (MSRP*); (3) ILP-based PWLP test without run-time
overhead (PWLP); (4) ILP-based PWLP test with run-time overhead (PWLP*);
(5) new MrsP analysis without run-time overhead (MrsP); (6) new MrsP anal-
ysis with run-time overhead, including the cost of migrations but without the
protection of the NP-section (MrsP*); and (7) new MrsP analysis with NP sec-
tion adopted, including run-time overhead and the NP-section adopted (MrsP-
np*). The analysis “MrsP*” is modified from the analysis in Section 5 by taking
the functions Mnpk and n̂pi out of Equations (23) and (11) respectively. When
“MrsP-np” is in use, the length of the NP-sections (i.e., Cnp) is configured
differently for each given system based on the approach given in Section 6.

From the experiment in Figure 6, we observed that, as with the observations
obtained in (Zhao et al., 2017; Zhao, 2018), the schedulability tests with the run-
time overhead accounted for (i.e., “MSRP*”, “PWLP*”, “MrsP*” and “MrsP-
NP*”) demonstrate lower schedulability results than the theoretical response
time analysis do (i.e., “MSRP”, “PWLP” and “MrsP”) respectively, especially
for MrsP, where schedulability results “MrsP*” and “MrsP-NP*” are such lower
than that of “MrsP” in all cases. This observation reveals that run-time cost
imposes non-trivial impact towards the schedulability of these protocols in the
presence of nested resources, and again, illustrates the necessity of incorporating
the run-time overhead into corresponding schedulability tests to provide more
accurate and realistic schedulability results.

40

1us-15us 15us-50us 50us-100us 100us-200us 200us-300us 1us-300us

length of critical sections

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sc
he

du
la

bl
e

MSRP
MSRP*
PWLP
PWLP*
MrsP
MrsP*
MrsP-NP*

Figure 6: Schedulability for M = 16, n = 48, U = 0.1n, κ = 0.4, A = 3 and M Shared
Resources.

Now we focus on the schedulability tests with run-time overheads accounted
for (i.e., bars labelled with “*”). Firstly, without the protection of the NP-
sections, the cost of migrations in MrsP (i.e., “MrsP*”) impose a huge impact
to the schedulability of this protocol, and leads to the protocol being imprac-
tical. However, with the NP-section adopted (i.e., “MrsP-NP*”), the efficiency
of the helping mechanism is significantly improved. This observation illustrates
that the proposed NP-section effectively reduce the cost of migrations in MrsP.
Compared to “PWLP*”, “MrsP-np*” is less favourable when applied to short
critical sections as one single migration has a cost of 8.378µs in this experi-
ment, where “MrsP-np*” provides a low schedulability with L = [1µs, 50µs].
However, when L = [100µs, 200µs], [200µs, 300µs] or [1µs, 300µs], MrsP with
the NP-section adopted shows a better schedulability than both “MSRP*” and
“PWLP*”, which again leads to the conclusion that MrsP works better with
longer critical sections while MSRP and PWLP are favourable if critical sec-
tions are short. By taking the run-time overhead into account while analysing
all candidate locking protocols, we have improved the accuracy of schedulability
of MrsP in the presence of nested resources and proved the necessity for incor-
porating the run-time costs into the schedulability test of MrsP, especially the
non-trivial costs for task migrations.

In summary, results obtained from the above evaluation clearly show that
there is no silver-bullet with regards to resource sharing among processors. Yet,
we have revealed a clear relationship between the performance of the studied
protocols and various critical section length ranges, where MSRP and PLWP
are more favourable with short critical section and MrsP is desirable with ei-
ther long resources or mixed length of critical sections. While longer critical
sections can have an impact on migrations costs, these are bounded by the NP-
section configuration presented in Section 6; in this respect, the enhanced MrsP

41

protocol based on this aspect clearly outperforms MSRP and PWLP as it ex-
hibits both lower arrival blocking and no re-queuing costs. With a mixed length
of critical sections (i.e., L = [1µs, 300µs] in Figure 6), both MrsP and PWLP
demonstrate strong schedulability, where MrsP is slightly better in general. The
lower schedulability of MSRP showcases that arrival blocking is the most rel-
evant factor in scheduling performance when varying critical section lengths.
However, compared to either MSRP and PWLP, the cost of migrations in MrsP
becomes significant with short critical sections and hence, greatly undermines
MrsP schedulability. On the other hand, MSRP and PWLP impose much less
run-time cost towards the system, and hence are more favourable under such
cases.

7.3. Time Consumption for Analysing Spin-based Locking Systems

The last experiment conducted in this article is to investigate and to com-
pare the time consumption of our newly-developed schedulability tests and the
ILP-based analysis i.e., the time that a schedulability test spends to produce
schedulability results. As the computing time of a given test largely depends
on the exact system being generated, there can be huge differences between
the computation times under the same system setting. To illustrate the over-
all time consumption of the schedulability tests in general, 10000 systems are
generated for each given system setting and an average computing time of each
analysis is reported in Tables 7 and 8. Note that this section aims at comparing
the run-time cost of the proposed analysis and other schedulability tests, the
computation time presented is for schedulability tests only. That is, the cost
of Algorithm 1 is not included in this measurement. New schedulability tests
of MSRP, PWLP used in this experiment is developed by Zhao (2018) based
on the new MrsP schedulability test by Zhao et al. (2017), which remove the
need of the ILP solver but achieve identical scheduability results with ILP-based
tests (Zhao, 2018).

Table 7: The Average Time Consumption (inms) and Standard Deviation (std.) for Analysing
Systems with M = 16, U = 0.1n, κ = 0.4, A = 2, L = [15µs, 50µs], and M Shared Resources.

n
MSRP PWLP MrsP MSRP-ILP PWLP-ILP

avg. std. avg. std. avg. std. avg. std. avg. std.
48 1.24 8.4·105 0.96 6.9·105 3.33 4.4·106 139.65 8.2·107 137.93 8.3·107

64 1.93 1.3·106 1.59 1.2·106 5.69 8.0·106 228.17 1.4·108 232.97 1.6·108

80 1.37 3.1·106 0.87 2.0·106 2.21 4.8·106 252.84 3.0·108 328.91 3.5·108

96 1.85 4.6·106 1.00 2.6·106 3.16 1.1·107 318.64 4.6·108 441.86 4.6·108

112 1.83 4.6·106 1.01 2.5·106 3.35 7.3·106 347.40 5.3·108 618.20 5.3·108

42

Table 8: The Average Time Consumption (in ms) and Standard Deviation (SD) for Analysing
Systems with n = 5M , U = 0.1n, κ = 0.4, A = 2, L = [1µs, 15µs], and M Shared Resources.

M
MSRP PWLP MrsP MSRP-ILP PWLP-ILP

avg. std. avg. std. avg. std. avg. std. avg. std.
4 0.19 5.2·104 0.17 5.0·104 1.98 1.6·106 37.11 3.1·107 28.67 3.2·107

8 1.72 4.9·105 1.22 3.5·105 13.33 1.3·107 361.85 3.2·108 359.55 3.7·108

12 4.86 2.8·106 3.42 1.8·106 10.96 2.4·107 972.11 7.8·108 1167.84 9.4·108

16 6.83 7.9·106 4.72 5.1·106 5.61 2.1·107 1299.37 1.5·109 1700.07 1.7·109

As given in both tables, ILP-based tests (i.e., “MSRP-ILP” and “PWLP-
ILP”) require much more computation costs (in terms of both average comput-
ing time and standard deviation) than those that do not rely on such a technique
(i.e., “MSRP” and “PWLP”) under all tested system settings. Among the first
three analysis, where the requirement of ILP solver is removed, MrsP takes more
time to compute the response times due to the additional migration cost analysis
(up to 13.3 milliseconds) while MSRP and PWLP consume similar computation
time to deliver the results. In contrast, the ILP-based ones require up to 1700
milliseconds with M = 16 in Table 8. One interesting observation is that with a
shorter L, all tests require larger computation time to deliver the schedulability
results, see n = 80 in Table 7 and M = 16 in Table 8 (with L = [15µs, 50µs]
and [1µs, 15µs] respectively). This is due to the fact that with a shorter critical
section length, the response time of tasks will have a smaller increment under
each recursion calculation so that more recursions could be required to either
get fixed response times or reach the deadlines of tasks (i.e., where the tests are
terminated).

Table 9: The Increase Rate of the Time Consumption in Table 7.

n MSRP PWLP MrsP MSRP-ilp PWLP-ilp

48 → 64 155 % 166 % 171 % 164 % 170 %
64 → 80 71 % 55 % 39 % 111 % 141 %
80 → 96 135 % 114 % 143 % 126 % 134 %
96 → 112 107 % 102 % 106 % 109 % 140 %

Table 10: The Increase Rate of the Time Consumption in Table 8.

M MSRP PWLP MrsP MSRP-ilp PWLP-ilp

4 → 8 905 % 718 % 672 % 975 % 1253 %
8 → 12 283 % 280 % 83 % 267 % 325 %
12 → 16 141 % 138 % 121 % 134 % 146 %

Tables 9 and 10 present the increase rate of the computation cost of each
analysis given in Tables 7 and 8. In general, the increasing ratio of computation
cost of the ILP-based analysis demonstrates a slightly higher increase rate com-
pared to ones without ILP technique. Note, we observe that the computation

43

cost of the new analysis does not increase monotonically with the increase of
the system parameter settings (i.e., n from 64→ 80 in Table 9). This is because
with n > 64, the evaluated schedulability tests can hardly schedule any of the
input systems (recall Figure 3). For schedulable systems, these tests need to
iterate through all tasks in the system and compute a fixed response time for
each task via recursive calculations, and hence, returns the result that the sys-
tem is schedulable. However, for systems that cannot be schedulable by a given
test, it is not necessary to compute response time for all tasks, and the test
returns immediately as soon as an unschedulable task (i.e., its response time
higher than deadline) is being found. Therefore, a computation time decrease
for all new tests is observed. In addition, the input systems for analysis are
generated randomly, including the usage of shared resources. Thus, systems
with low resource contention could be generated under high system setting pa-
rameters, which requires less time for analysing such systems, and hence, causes
the computation time decrease under the new tests in Table 9 with n from 64
→ 80. However, even under such case, the costs of the ILP-based analysis keep
increasing due to the use of ILP solver, which needs to establish the optimisa-
tion problem based on the constraints (e.g., 8 constraints for analysing MSRP
systems) for each task and each resource access before computing response time,
and hence, requires a large amount of calculations.

Based on these tables, the schedulability test proposed in this paper requires
less computation cost (and has lower increase rates by giving higher systems
setting parameters) than the ILP-based ones. Admittedly, the time consumed
by the ILP-based analysis for executing once is definitely acceptable, as such
tests are usually performed off-line (i.e., before the execution of the system).
For systems with a set of locking protocols pre-defined, the ILP-based analysis
provides a valuable unified analysing tool that can be adopted to analyse 8 spin-
based protocols. However, for more complex application scenarios, (e.g., as the
fitness function of a genetic algorithm adopted in (Zhao, 2018)), where a vast
amount of invocation towards the analysis is performed, practising this analysis
can lead to significant consumption costs; thus, it would be more favourable to
use a different technique than an ILP-based one in a practical viewpoint.

8. Conclusions

Multiprocessor platforms are becoming the system configuration of choice
in the area of real-time embedded systems (Davis and Burns, 2011). The de-
velopment of hard real-time systems over these platforms presents a number
of challenges, being one of them the scheduling of tasks under the presence of
globally shared resources (Brandenburg, 2011). Although initially few results
from uniprocessor scheduling were expected to be translated to multiproces-
sor systems (Liu, 1969), notable multiprocessor resource sharing approaches
have built on SRP (Baker, 1990) and PCP (Sha et al., 1990) uniprocessor lock-
based approaches. Some of these relevant multiprocessor locking protocols are
MSRP (Block et al., 2007), PWLP (Anderson et al., 1998; Craig, 1993) and
MrsP (Burns and Wellings, 2013).

44

In this article, MrsP is selected due to its promising features (i.e., prior-
ity ceiling, migration-based helping and full support for nested resource access)
and its wide adoption in real-world operating systems and applications (e.g.,
in LitmusRT (Calandrino et al., 2006b) and the UPMSat-2 satellite (Garrido
et al., 2015)). MrsP was first proposed in 2013 and has been improved over
time by a number of different contributions providing missing features or im-
proving existing ones. These include a full approach to fine-grained nested
resources support (Garrido et al., 2017b), a modified helping mechanism (Zhao
and Wellings, 2017), migration costs analysis and an improved schedulability
analysis (Zhao et al., 2017) still based on RTA. In this paper, extensions to-
wards MrsP schedulability test for supporting nested resource accesses are pro-
posed for conducting analysis over both theoretical response time and run-time
cost. With the proposed analysing techniques, we provide a complete run-time
overhead-aware schedulability analysis for MrsP. Then, a set of NP-section con-
figuration approaches are also addressed that provide recommendations for NP
section length setting. Finally, we evaluate the MrsP protocol by comparing its
schedulability ratio under different configurations with other relevant spin-lock
protocols, such as MSRP and PWLP.

The results of this evaluation show that there is no silver-bullet with regards
to resource sharing among processors. Although MrsP strictly dominates MSRP
if no migrations cost is considered, it has been demonstrated that, in practice
(when these costs are considered) the situation is not a so clear cut. However,
thanks to the contributions presented in this paper, MrsP still produces overall
better results on realistic platforms and test cases where there exist both short
and long critical sections. Our new, less pessimistic analysis exhibits the main
MrsP strong points: while it maintains the spin-lock efficiency on short resource
access, it also reduces the effect on arrival blocking of long resource access.
With regards to the comparison against PWLP, this latter protocol has only
shown better performance with very short critical sections or low resource access
frequency, while MrsP has proven to be a better all-round approach capable of
proving consistently better and more scalable results when increasing resource
length and access frequency. Again, the combination of our new analysis and
MrsP inherited PCP properties provide an effective compromise between local
and global blocking.

There are a number of topics that will be addressed as future work. Firstly,
as with in Zhao et al. (2017), the analysis developed in this article depends on
several assumptions that impose resections towards the system and task model
(i.e., homogeneous multiprocessor systems with sporadic tasks). In future, such
assumptions could be removed to improve the applicability of the proposed
analysis. Then, as demonstrated in Section 7, although the migration-based
helping mechanism is worthwhile with long critical sections, the cost of migra-
tions becomes significant and greatly undermines MrsP schedulability if critical
sections are short. In future, a flexible helping mechanism could be desirable,
which migrates a resource-holding task only if it is worthwhile to do so (e.g.,
when the cost of migrations is less than the remaining computation of the criti-
cal section). By doing so, an overall schedulability improvement of MrsP could

45

be achieved and better scalability of MrsP towards varied critical section length
could be obtained. With the adoption of the configurable NP-section for con-
trolled migrations, approaches that optimise the NP-section configuration to
achieve improved robustness of MrsP systems (i.e., remains schedulable with
extra unexpected inference taken by the system) would be desirable. In addi-
tion, as described in Section 7, the schedulability tests are evaluated via their
pessimism and accuracy, which have conflicted metrics based on the same mea-
surement (i.e., the percentage of schedulable systems). In the future, approaches
that identify the optimal schedulability point of resource sharing protocols would
be desirable, which can greatly facilitate the evaluation of corresponding schedu-
lability tests and could provide further motivations for improving the existing
analysis to be close or equal to the ideal point.

Further, with the proposed schedulability tests, the response time of a given
task depends on potentially all other tasks in the system. As proved by Zhao
(2018), due to this feature, DMPO is no longer an optimal priority-ordering al-
gorithm under the new MrsP analysis while the majority of the existing search-
based priority assignments (e.g., Optimal Priority Assignment by Bletsas and
Audsley (2006) and Robust Priority Assignment by Davis and Burns (2007))
are not applicable. As for task allocation, the traditional utilisation-based task
allocation algorithms (e.g., the Worst-Fit and Best-Fit heuristics) do not con-
sider shared resource access costs, and hence, can lead to long blocking times.
In addition, existing resource-oriented task allocation schemes (e.g., the SPA al-
gorithm in (Lakshmanan et al., 2009) and the BPA algorithm in (Nemati et al.,
2010)) are incompatible with the new schedulability test applied due to the
aforementioned response dependency (i.e., the response time of a task depends
potentially on the response time of all other tasks in the system). Therefore,
novel priority ordering and task allocation algorithms (e.g., search-based heuris-
tics and evolutionary algorithms (Lee and Lee, 2005; Zhao et al., 2019b,a)) that
can further improve the schedulability of MrsP systems are desirable. In this
respect, the analysis presented in this paper exhibits a speedup factor ranging
from 20 to 200 times when compared to the ILP-based analysis, thus consti-
tuting a notable state of the art advancement, enabling the efficient use of the
aforementioned priority ordering and task allocation algorithms.

Finally, although fully functional MrsP implementations are available in sev-
eral real-world operating systems, the requirement for migrations could impose
difficulty to the protocol implementation in practice (Catellani et al., 2015; Shi
et al., 2017) and raise race conditions (Zhao and Wellings, 2017). Therefore, an
implementation guide for MrsP (in particular, a guide for realising the helping
mechanism) could greatly prompt the use of this protocol in real-world systems
and applications (Chang et al., 2019).

Acknowledgements

This work has been partially funded by the Spanish National R&D&I plan
(project M2C2, TIN2014-56158-C4-3-P and project PRECON-I4, TIN2017-

46

86520-C3-2-R). UPM authors would also like to acknowledge the contributions
of Juan Zamorano and Alejandro Alonso.

References

Anderson, J. H., Jain, R., Jeffay, K., 1998. Efficient object sharing in quantum-
based real-time systems. In: Real-Time Systems Symposium, 1998. Proceed-
ings. The 19th IEEE. IEEE, pp. 346–355.

Anderson, J. H., Ramamurthy, S., Jeffay, K., 1997. Real-time computing with
lock-free shared objects. ACM Transactions on Computer Systems (TOCS)
15 (2), 134–165.

Audsley, N., Burns, A., Richardson, M., Tindell, K., Wellings, A. J., 1993.
Applying new scheduling theory to static priority pre-emptive scheduling.
Software Engineering Journal 8 (5), 284–292.

Audsley, N. C., 2001. On priority assignment in fixed priority scheduling. Infor-
mation Processing Letters 79 (1), 39–44.

Baker, T. P., 1990. A stack-based resource allocation policy for realtime pro-
cesses. In: [1990] Proceedings 11th Real-Time Systems Symposium. IEEE,
pp. 191–200.

Bini, E., Buttazzo, G. C., 2005. Measuring the performance of schedulability
tests. Real-Time Systems 30 (1-2), 129–154.

Biondi, A., Brandenburg, B. B., Wieder, A., 2016. A blocking bound for nested
FIFO spin locks, 291–302.

Bletsas, K., Audsley, N., 2006. Optimal priority assignment in the presence of
blocking. Information processing letters 99 (3), 83–86.

Block, A., Leontyev, H., Brandenburg, B. B., Anderson, J. H., 2007. A flexible
real-time locking protocol for multiprocessors. In: Embedded and Real-Time
Computing Systems and Applications, 2007. RTCSA 2007. 13th IEEE Inter-
national Conference on. IEEE, pp. 47–56.

Brandenburg, B. B., 2011. Scheduling and locking in multiprocessor real-time
operating systems. Ph.D. thesis, The University of North Carolina at Chapel
Hill, https://cs.unc.edu/~anderson/diss/bbbdiss.pdf.

Brandenburg, B. B., 2013a. Improved analysis and evaluation of real-time
semaphore protocols for p-fp scheduling. In: Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), 2013 IEEE 19th. IEEE, pp.
141–152.

Brandenburg, B. B., 2013b. “SchedCAT: Schedulability test collection
and toolkit”. http://www.mpi-sws.org/bbb/projects/schedcat, accessed:
2016-11-1.

47

Brandenburg, B. B., Anderson, J. H., 2010. Optimality results for multiprocessor
real-time locking. In: Real-Time Systems Symposium (RTSS), 2010 IEEE
31st. IEEE, pp. 49–60.

Brandenburg, B. B., Calandrino, J. M., Block, A., Leontyev, H., Anderson,
J. H., 2008. Real-time synchronization on multiprocessors: To block or not
to block, to suspend or spin? In: 2008 IEEE Real-Time and Embedded
Technology and Applications Symposium. IEEE, pp. 342–353.

Burns, A., Wellings, A., 2016. Analysable Real-Time Systems: Programmed in
Ada. CreateSpace Independent Publishing Platform.

Burns, A., Wellings, A. J., 2013. A schedulability compatible multiprocessor
resource sharing protocol – MrsP. In: Real-Time Systems (ECRTS), 25th
Euromicro Conference on. IEEE, pp. 282–291.

Buttle, D., 2012. Real-time in the prime-time, etas gmbh, germany. In: Keynote
talk at 24th Euromicro Conference on Real-Time Systems, Pisa, Italy.

Calandrino, J. M., Leontyev, H., Block, A., Devi, U. C., Anderson, J. H., 2006a.
Litmusˆ rt: A testbed for empirically comparing real-time multiprocessor
schedulers. In: Real-Time Systems Symposium. RTSS. 27th IEEE Interna-
tional. IEEE, pp. 111–126.

Calandrino, J. M., Leontyev, H., Block, A., Devi, U. C., Anderson, J. H.,
2006b. LitmusRT: A testbed for empirically comparing real-time multipro-
cessor schedulers. In: Real-Time Systems Symposium, 2006. RTSS’06. 27th
IEEE International. IEEE, pp. 111–126.

Catellani, S., Bonato, L., Huber, S., Mezzetti, E., 2015. Challenges in the im-
plementation of MrsP. In: Ada-Europe International Conference on Reliable
Software Technologies. Springer, pp. 179–195.

Cavalcanti, A., Miyazawa, A., Wellings, A., Woodcock, J., Zhao, S., 2016. Java
in the safety-critical domain. In: School on Engineering Trustworthy Software
Systems. Springer, pp. 110–150.

Chang, W., Zhao, S., Wei, R., Wellings, A. J., Burns, A., 2019. From java
to real-time java: A model-driven methodology with automated toolchain
(invited paper): From java to real-time java: A model-driven methodology.
In: 20th ACM SIGPLAN/SIGBED International Conference on Languages,
Compilers, and Tools for Embedded Systems. York.

Craig, T. S., 1993. Queuing spin lock algorithms to support timing predictability.
In: Real-Time Systems Symposium, 1993., Proceedings. IEEE, pp. 148–157.

Davis, R. I., Burns, A., 2007. Robust priority assignment for fixed priority real-
time systems. In: Real-Time Systems Symposium, 2007. RTSS 2007. 28th
IEEE International. IEEE, pp. 3–14.

48

Davis, R. I., Burns, A., 2011. A survey of hard real-time scheduling for multi-
processor systems. Acm Computing Surveys 43 (4), 1–44.

Emberson, P., Stafford, R., Davis, R. I., 2010. Techniques for the synthesis of
multiprocessor tasksets. In: proceedings 1st International Workshop on Anal-
ysis Tools and Methodologies for Embedded and Real-time Systems (WA-
TERS 2010). pp. 6–11.

Faggioli, D., Lipari, G., Cucinotta, T., 2010. The multiprocessor bandwidth in-
heritance protocol. In: Real-Time Systems (ECRTS), 22nd Euromicro Con-
ference on. IEEE, pp. 90–99.

Fürst, S., Mössinger, J., Bunzel, S., Weber, T., Kirschke-Biller, F., Heitkämper,
P., Kinkelin, G., Nishikawa, K., Lange, K., 2009. Autosar–a worldwide stan-
dard is on the road. In: 14th International VDI Congress Electronic Systems
for Vehicles, Baden-Baden. Vol. 62. p. 5.

Gai, P., Lipari, G., Natale, M. D., 2001. Minimizing memory utilization of
real-time task sets in single and multi-processor systems-on-a-chip. In: Pro-
ceedings of the 22nd IEEE Real-Time Systems Symposium. IEEE Computer
Society.

Garrido, J., Zamorano, J., Alonso, A., de la Puente, J. A., 2017a. Evaluating
MSRP and MrsP with the multiprocessor ravenscar profile. In: Ada-Europe
International Conference on Reliable Software Technologies. Springer, pp. 3–
17.

Garrido, J., Zamorano, J., de la Puente, J. A., Alonso, A., Salazar, E., 2015.
Ada, the programming language of choice for the upmsat-2 satellite. Data
Systems in AerospaceDASIA 2015.

Garrido, J., Zhao, S., Burns, A., Wellings, A., 2017b. Supporting nested re-
sources in MrsP. In: Ada-Europe International Conference on Reliable Soft-
ware Technologies. Springer, pp. 73–86.

Johnson, D. S., 1973. Near-optimal bin packing algorithms. Ph.D. thesis, Mas-
sachusetts Institute of Technology.

Lakshmanan, K., de Niz, D., Rajkumar, R., 2009. Coordinated task scheduling,
allocation and synchronization on multiprocessors. In: Real-Time Systems
Symposium, 2009, RTSS 2009. 30th IEEE. IEEE, pp. 469–478.

Lee, Z.-J., Lee, C.-Y., 2005. A hybrid search algorithm with heuristics for re-
source allocation problem. Information sciences 173 (1-3), 155–167.

Leung, J. Y.-T., Whitehead, J., 1982. On the complexity of fixed-priority
scheduling of periodic, real-time tasks. Performance evaluation 2 (4), 237–
250.

49

Liu, C. L., 1969. Scheduling algorithms for multiprocessors in a hard real-time
environment. JPL Space Programs Summary, 1969.

Liu, C. L., Layland, J. W., 1973. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the ACM (JACM) 20 (1), 46–61.

Nemati, F., Nolte, T., Behnam, M., 2010. Partitioning real-time systems on
multiprocessors with shared resources. Principles of Distributed Systems, 253–
269.

Rajkumar, R., 1991. Synchronization in real-time systems: a priority inheritance
approach. Vol. 151. Springer Science & Business Media.

Rajkumar, R., Sha, L., Lehoczky, J. P., 1988. Real-time synchronization proto-
cols for multiprocessors. In: IEEE Real-Time Systems Symposium.

Sha, L., Rajkumar, R., Lehoczky, J. P., 1990. Priority inheritance protocols:
An approach to real-time synchronization. IEEE Trans. Comput. 39 (9).

Shi, J., Chen, K.-H., Zhao, S., Huang, W.-H., Chen, J.-J., Wellings, A., 2017.
Implementation and evaluation of multiprocessor resource synchronization
protocol (MrsP) on LITMUSRT.

Sundell, H., Tsigas, P., 2000. Space efficient wait-free buffer sharing in multipro-
cessor real-time systems based on timing information. In: Real-Time Com-
puting Systems and Applications, 2000. Proceedings. Seventh International
Conference on. IEEE, pp. 433–440.

Takada, H., Sakamura, K., 1995. Real-time scalability of nested spin locks.
In: Real-Time Computing Systems and Applications. Proceedings., Second
International Workshop on. IEEE, pp. 160–167.

Takada, H., Sakamura, K., 1997. A novel approach to multiprogrammed multi-
processor synchronization for real-time kernels. In: Real-Time Systems Sym-
posium. Proceedings., The 18th IEEE. IEEE, pp. 134–143.

Ward, B., Anderson, J., 2012a. Nested multiprocessor real-time locking with
improved blocking. In: Proceedings of the 24th Euromicro conference on real-
time systems.

Ward, B. C., Anderson, J. H., 2012b. Supporting nested locking in multiproces-
sor real-time systems. In: 24th Euromicro Conference on Real-Time Systems.
IEEE, pp. 223–232.

Wieder, A., Brandenburg, B. B., 2013. On spin locks in autosar: Blocking
analysis of fifo, unordered, and priority-ordered spin locks. In: Real-Time
Systems Symposium (RTSS), 2013 IEEE 34th. IEEE, pp. 45–56.

Zhao, S., 2018. A FIFO Spin-based Resource Control Framework for Symmet-
ric Multiprocessing. Ph.D. thesis, The University of York, http://etheses.
whiterose.ac.uk/21014/.

50

Zhao, S., Dziurzanski, P., Przewozniczek, M., Komarnicki, M., Indrusiak, L. S.,
2019a. Cloud-based dynamic distributed optimisation of integrated process
planning and scheduling in smart factories. In: Proceedings of the Genetic
and Evolutionary Computation Conference. ACM, pp. 1381–1389.

Zhao, S., Garrido, J., Burns, A., Wellings, A., 2017. New schedulability analysis
for MrsP. In: Embedded and Real-Time Computing Systems and Applica-
tions (RTCSA), 2017 IEEE 23rd International Conference on. IEEE, pp. 1–10.

Zhao, S., Mei, H., Dziurzanski, P., Przewozniczek, M. W., Soares Indrusiak, L.,
2019b. Cloud-based integrated process planning and scheduling optimisation
via asynchronous islands.

Zhao, S., Wellings, A., 2017. Investigating the correctness and efficiency of MrsP
in fully partitioned systems. In: The 10th York Doctoral Symposium on Com-
puter Science and Electronics (YDS 2017). The University of York.

51

	1 Introduction
	2 Resource Sharing in Real-time Systems
	2.1 Uniprocessor Resource Control Protocols
	2.2 Multiprocessor Resource Sharing Protocols
	2.3 Schedulability Tests in the Presence of Blocking
	2.4 Summary and Discussion

	3 MrsP: Definition and Analysis
	3.1 Original Protocol Definition
	3.2 Nested Resource Access
	3.3 Controlled Migrations in Helping Mechanism
	3.4 Response Time Analysis
	3.5 Cost of Migrations

	4 Analysing Nested Resource Accesses under MrsP
	5 A complete Run-time Cost Analysis for MrsP
	5.1 Cost of Migrations under Nested resources
	5.2 Costs of Context Switches and Protocol Implementation

	6 NP-Section Length Configuration
	7 Evaluation
	7.1 Schedulability Comparison
	7.2 Run-time overhead
	7.3 Time Consumption for Analysing Spin-based Locking Systems

	8 Conclusions

