
Preprint submitted to Journal of Systems and Software (JSS), accepted version licensed under CC BY-NC-SA

Publication info/status: https://authors.elsevier.com/tracking/article/details.do?aid=110720&jid=JSS&surname=Costa

July 2020

Towards the Adoption of OMG Standards in the Development of

SOA-Based IoT Systems

Bruno Costa1, Paulo F. Pires2, Flávia C. Delicato2
1Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil

2 Instituto de Computação (IC), Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil

{brunocosta.dsn, paulo.f.pires, fdelicato}@gmail.com

Abstract— A common feature of the Internet of Things (IoT) is the high heterogeneity, regarding network protocols, data

formats, hardware and software platforms. Aiming to deal with such a degree of heterogeneity, several frameworks have

applied the Model-Driven Development (MDD) to build IoT applications. On the software architecture viewpoint, the literature

has shown that the Service-Oriented Architecture (SOA) is a promising style to address the interoperability of entities

composing these solutions. Some features of IoT make it challenging to analyze the impact of design decisions on the SOA-

based IoT applications behavior. Thus, it is a key requirement to simulate the model to verify whether the system performs as

expected before its implementation. Although the literature has identified that the SOA style is suitable for addressing the

interoperability, existing modelling languages do not consider SOA elements as first-class citizens when designing IoT

applications. Furthermore, although existing MDD frameworks provide modeling languages comprising well-defined syntax,

they lack execution semantics, thus, are not suitable for model execution and analysis. This work aims at addressing these issues

by introducing IoTDraw. The framework provides a fully OMG-compliant executable modeling language for SOA-based IoT

systems; thus, its specifications can be implemented by any tool implementing OMG standards.

Keywords- internet of things, application, model-driven development, service-oriented architecture

1 Introduction

Heterogeneity is an intrinsic feature in the Internet of Things (IoT) systems, regarding several aspects such as network

protocols, data formats, hardware and software platforms [1]. Such a degree of heterogeneity poses challenges to develop

IoT applications when following traditional approaches, as the node-centric programming [2], which has been widely

used in the context of Wireless Sensor Networks (WSN) [3], a subset of IoT. In such an approach, applications are

developed in a platform-dependent way, with experts in embedded systems programming the tasks required for individual

nodes, as well as the interactions between them, by using general-purpose programming languages. As shown by [4],

although traditional approaches allow complete and fine-grained control over individual nodes, it is not easy to apply

them in the context of IoT applications due to the scale factor and high heterogeneity of devices [5]. In addition to these

factors, programming using traditional approaches requires low-level knowledge of the hardware-specific operating

systems of the sensor nodes. The proliferation of sensors and applications that make use of their data has led to the desire

to increase the learning curve for building sensing-based systems and to promote the reuse of generated software artifacts.

Aiming at addressing the limitations of traditional approaches, several frameworks were proposed (such as [6], [7])

applying the Model-Driven Development (MDD) [8] to build IoT and large-scale WSN applications.

MDD is a development paradigm that uses models as the primary artifact of the development process. With MDD

approaches, models specifying the systems are created by using Domain-Specific Modeling Languages (DSML), or DSL

for short. A DSL provides high-level abstractions related to the domain of interest expressed through inter-connected

textual or graphical symbols. In the context of IoT, existing DSLs allow identifying the heterogeneous entities composing

the applications through general concepts. As suggested by the literature (e.g., [6], [9], [10]), considering its key

principles, such as abstraction, separation of concerns, reusability and automation, MDD is a promising paradigm to

support the development of IoT solutions.

From the software architecture point of view, the heterogeneous nature of IoT requires structuring the applications by

considering the interoperability of different software components and hardware devices. This critical issue has led the

researchers to investigate architectural patterns or styles that most favor the communication of the inter-connected entities

in an IoT system. In this sense, many studies (e.g., [11], [12]) have shown that the Service-Oriented Architecture (SOA)

[13] is one of the most suitable architectural styles to address the interoperability in IoT applications. Interoperability is

about the degree to which two or more systems can usefully exchange meaningful information via interfaces in a given

context [14], [15]. SOA is an architectural pattern structured as a collection of loosely coupled, distributed components

that provide and/or consume services through well-defined interfaces [15]. In the SOA-based IoT applications, the

devices’ capabilities (e.g., sensing, actuating) are provided as software services through such well-defined interfaces, thus

allowing the entities that compose an IoT providing their capabilities and consuming the required services in a

standardized manner. For example, the authors in [16] applied SOA in real-world scenarios with multiple heterogeneous

devices, ensuring interoperability across all devices and components. Furthermore, Cloud platforms are widely used as

back-end for IoT given their huge processing and storage capabilities. The synergistic integration of IoT with Cloud has

given rise to the recent paradigm known as Sensor-Cloud or Cloud of Things, which aims to make the most of both

technologies. IoT-generated data that requires a lot of processing or long-term storage can be sent to the cloud, which in

turn extends its service portfolio to encompass sensing and actuation capabilities. Cloud platforms follow a service-based

resource provisioning model. Cloud platforms providing infrastructure for IoT systems naturally adopt the services

approach (e.g., [17], [18]). In a recent survey that investigated middleware technologies for Cloud of Things [19], the

authors have identified that SOA is the main architectural style in CoT-based Middleware, due to is capability of

promoting interoperability and reusability in IoT systems.

1.1 Issues in designing MDD & SOA-based IoT Systems

Any DSL must provide a coherent set of concepts related to the domain of interest [8]. That is, the DSL must be

expressive, aiming to allow the precise identification of multiple aspects regarding the application domain. Otherwise, if

the DSL lacks essential elements of the underlying domain, the models may be at least ambiguous, or the modelers may

not be able to represent all components of the applications. Although the literature has identified the suitability of the

SOA style for addressing the interoperability in the IoT domain, to the best of our knowledge, there is no DSL tailored

for the modeling of SOA-based IoT applications. SOA is a proven architectural pattern, with a well-known set of concepts.

Existing DSLs for IoT (e.g., UML4IoT [9] and ThingML [20]) do not fully contemplate such concepts, which impacts on

the architectural design of IoT applications following the SOA approach. This is a critical problem since even crucial but

straightforward design questions related to SOA style cannot be answered by the model, such as, “What are the services,

and by which interface they are exposed?”, “Who are the provider/consumer participants that are part of the application?”,

“How the participants interact with each other?”, “What is the choreography of the services?”, or “What is the protocol

used by the interfaces.” A DSL that does not provide concepts to allow answering these design questions possibly hampers

the design of SOA-based IoT applications.

Another important design issue refers to the simulation and analysis of IoT systems. In the domain of Software and

Systems engineering, a rule of thumb states that the best system representation is the simplest model that answers a set of

design questions [21]. This means that, besides identifying precisely the multiple components, another reason for

modeling a system is to support the architectural decision-making process [21], [22]. Otherwise, the system model would

serve only as documentation and would not support a more in-depth analysis, which may not justify the modeling effort.

A modeling approach helps to answer design questions and supports the architectural decision-making process by its

ability to predict, at design-time, the properties of an artifact based on its design. This prediction is possible when the

DSL allows its compliant models to be executed and simulated. When specifying IoT systems, some features of the IoT

domain makes challenging to analyze the impact of design decisions on the system behavior. Examples of such features

are the resource constraints of devices and multiple deployment scenarios. An IoT application can be composed of tens,

hundreds, or even thousands of devices, many of them being powered by limited batteries and with constrained resources

(in terms of processing speed and memory size), which may impact on the availability or performance of the IoT

application [1]. On the other hand, the multiple components of an application may be deployed on different platforms

(varying from resource-constrained devices to Cloud computing platforms), which result in a considerable number of

eligible deployment scenarios. Since each deployment scenario has a different impact on application requirements and

system performance, it may become humanly infeasible to identify the best deployment alternative. These issues hamper

making proper design decisions, being necessary to execute and simulate the model to verify whether the specified

application performs as expected before its implementation. Otherwise, if problems caused by wrong design decisions

are found only after the system implementation or deployment, it may result in financial loss or, worse, risks to human

lives, for instance in failures in e-Health applications.

Considering the system verification and the problems that may occur whether it is not realized at design time, a typical

analysis that must be performed refers to non-functional or Quality of Service (QoS) properties. The study of Udoh and

Kotonya [23] presents a comprehensive review of existing IoT application frameworks and toolkits. An interesting finding

of such study is that existent frameworks ignore the support of verification of Quality of Service (QoS) properties at

design time. Another study ([24]) has shown that only around 2% of the companies that are developing IoT solutions are

able to test the specified systems before undertaking the system deployment.

1.2 Contributions and Roadmap

Aiming to tackle the abovementioned issues, the core contribution of our work is proposing an MDD framework,

which we called as IoTDraw. The framework provides a fully OMG-compliant executable modeling language (DSL),

SoaML4IoT [25], for SOA-based IoT systems; thus, its specifications can be implemented by any tool implementing

OMG standards. The DSL was built on the Service-oriented architecture Modeling Language (SoaML) [26], the Object

Management Group (OMG) standard for designing SOA solutions. SoaML consists of an extension of UML [27] (i.e., a

UML profile), which was conceived through the collaboration of experts from academia and industry. As stated by the

SoaML specification, the modeling language focuses on the basic service modeling concepts, and the intention is to use

it as a foundation for further domain extensions. Thus, based on our experience and proven domain models for IoT (e.g.,

IoT-ARM [11], WSO2 [28]), we extended this language with concepts of the IoT domain, allowing the identification of

the multiple entities composing SOA-based IoT applications.

SoaML4IoT-compliant models are meant to be executed based on the language execution semantics. The execution

semantics of SoaML4IoT is defined following the fUML (Foundational Subset for Executable UML Models) [29], the

OMG standard for model execution. This specification provides a semantic model that formalizes the execution of a

subset of UML, that is, classes (structure) and activities (behavior). Therefore, fUML allows defining an interpreter or

execution engine to execute the system described in the model. However, if the UML model has an applied profile (e.g.,

SoaML), the semantics of this latter does not influence the execution. Aiming to allow the execution of SoaML4IoT

models, we extended the fUML semantic model with concepts of our proposed DSL and implemented it as a prototype

on Moka [30], a Papyrus module that includes an execution engine complying with fUML.

By allowing the execution of SoaML4IoT-compliant models, our proposed framework aims to help answering design

decisions that are hard to answer even for simple IoT applications. Some of these questions are, for example: “In which

platform should I deploy this component?” or “Considering the availability requirement of the application, is there any

component I should deploy to a different platform after a link failure?”. By supporting answering these questions,

IoTDraw aids modelers to make more successful architectural decisions and to verify their impact on the IoT application

behavior/performance.

We claim that our proposal is useful for supporting engineering activities potentially for all IoT application domains,

including the field of Industrial Internet of Things (IIoT) systems [31]. As identified by Koziolek and colleagues [32],

distributed control systems are currently evolving towards IIoT. However, the initial network configuration, application-

specific device configuration, and integration with other devices are cumbersome and laborious nowadays. Such tasks are

referred to as commissioning, and engineers still suffer from complex commissioning process that incurs high costs, not

only from investments on hardware components but, also from manual labor to engineer and set them up [33]. The number

of heterogeneous devices (hundreds or even thousands) composing the system, the specificity of communication

protocols, as well as the eventual reconfiguration of devices can result that the commissioning process takes several

months, which is costly and delays time-to-market. The most common structure of control systems follows the

ANSI/ISA95 [34] standard, which splits the systems into four levels, namely, Level 4: Business Planning & Logistics

(plant production scheduling, operational management); Level 3: Manufacturing Operations & Control (dispatching

production, detailed production scheduling, reliability assurance); Level 2: Supervision and Controller (workstations for

supervision by human operators and for engineering of devices and processes); and Level 1: Devices (sensors and

actuators that directly interface with the machines executing the industrial process). The IoTDraw can be used in the

commissioning process, specifically, in the levels 1 to 3 of the ANSI/ISA95 standard. In Level 1, the SoaML4IoT allows

the engineers to specify the configuration of devices through UML elements thus, abstracting hardware-specific details.

Such device models can be organized into model libraries and re-used by other projects. In Level 2, the controllers and

their network connection to the devices are also modeled by using UML. By applying SOA standard, the distributed

components are structured as providers and consumers, which expose their functionalities through well-defined interfaces,

promoting interoperability. Finally, the operations of Level 3 are specified as behavior UML diagrams (i.e. UML Activity

Diagram) in such a way that it is possible to execute the model at design-time. Thus, engineers can verify and test the

system before its implementation and deployment. Such verification can reduce the cost of fixing errors that would be

only detected in the production.

IoT applications interact with the physical world through different models, such as, periodic, event-driven, or initiated-

by-the-actor (i.e., request-response) [1], [35]. In the periodic model, the devices sense data (e.g., temperature, lighting)

or actuate on the physical objects (e.g., turning on/off, updating configurations) continuously, at a rate predefined by the

application. In the event-driven model, the devices continuously monitor the physical objects or environment variables,

but report information or perform actuation only if an event of interest for the application occurs. The event-driven model

requires asynchronous communication, for example, based on the Publish-Subscribe pattern [15]. With such a pattern,

the applications register for events of interest only once and receive the required sensing data upon the occurrence of

these events. Finally, in the request-response model, the applications send requests for sensing data or actuating

capabilities to the devices, which perform the required tasks and respond to the applications with the required data or

actuating confirmation. The request-response model is based on synchronous communication, in which the devices report

their data in response to a synchronous request issued by the application. The focus of IoTDraw is on periodic applications,

which, as indicated by [36], is adopted in several domains and IoT solutions.

In summary, the contributions of our work aim to benefit both the IoT and MDD fields. In the IoT domain, we bridge

the gap of existing DSLs that do not provide concepts as first-class citizens for the precise representation of periodic IoT

systems following the services approach and thus, lack support for specifying and simulating SOA-based periodic IoT

applications. Considering the MDD field, our work is one of the first endeavors towards defining the execution semantics

for UML profiles by extending the fUML semantic model. Since IoTDraw is fully OMG-compliant, its specifications can

be implemented by any tool implementing UML and fUML.

The remainder of this paper is organized as follows. Section 2 establishes the background underlying this work.

Section 3 describes a Smart City IoT system that will be used as a running example of this study. Section 4 introduces the

IoTDraw modeling framework. In Section 5 we present the evaluation of our proposal. In Section 6 we analyze the related

work. Finally, Section 7 revisits the contributions and presents perspectives for future work.

2 Foundations

In this Section, we present an overview of the basics of MDD engineering, with focus on the elements on which our

approach is built on, that is, SoaML and fUML.

2.1 SoaML

SoaML [26] is the standard graphical modeling language proposed by the OMG for designing systems that follow the

services approach. It consists of a metamodel and a UML profile for the specification of services within SOA style. An

extensive example of modeling with SoaML is given by Elvesæter and colleagues [37]. In the following, we present key

concepts of the SoaML metamodel. In parenthesis, we show the UML element that SoaML profile extends.

Participants (Class) are entities that provide or use services. Capability (Class), refer to functions required by

stakeholders and provided by a participant through a service. A Service (Port) denotes value delivered to another through

a well-defined interface. Provider and Consumer (Interface) are roles of participants that provide or consumes services,

respectively. The description of how the participants interact to provide or use a service can be specified as Service

Contracts (Collaboration). It specifies the roles each participant plays in the service – provider or consumer – and the

choreography of the service, that is, what information is sent between the provider and consumer and in what order. When

specifying the choreography of a given service contract, any UML behavior specification can be used, such as interaction

and activity diagrams. Finally, the Services Architecture (Collaboration) describes how participants work together for a

purpose by providing and using services expressed in the service contracts.

There are a variety of approaches for identifying services that are supported by SoaML. However, regardless of how

the services are identified, they are formalized by service descriptions. In turn, the services architecture aims at structuring

such services with the interacting participants and their ports, which realize the roles of the system.

2.1.1 SoaML and Microservices

Microservices is an architectural style that has gaining popularity in the last years. Emerging out of Service-Oriented

Architecture [38], microservices is an approach that inherits many features of SOA [39], such as encapsulation (separation

of implementation from interfaces, this last providing the service’s functionalities), loose-coupling (minimizing

dependencies between system components), and interoperability (communication through well-defined interfaces).

Complementary to such features, the microservices style introduces novel concepts that differ it from SOA. Among them,

the literature [40] highlights the service granularity, on which the microservices are more fine-grained than SOA services,

with a single responsibility and owning its own data store. Such a feature allows the microservices being deployed

independently and being replaceable in a smoother fashion than SOA components.

Considering the architectural design, microservices also differs from the SOA style. SOA-based systems are

commonly decomposed into horizontal technical layers (a.k.a., horizontal decomposition), on which the services are

grouped according to their functional similarity (e.g., data services, business services, or presentation services). On the

other hand, in microservices architecture (MSA) each microservice should align to a single business capability,

encapsulating all relevant technical layers [40], i.e., the vertical decomposition.

The SoaML focuses on the basic service modeling concepts, and, as stated in the language standard [26]), the goal is

to use it as a foundation for further domain extensions. In this sense, SoaML can be extended to provide concepts of

microservices (e.g., granularity, independent deployment). For example, [41] introduces major challenges of microservice

design and presents ways to cope with them based on model-driven development. The authors propose an UML profile

that extends SoaML elements to allow the specification of microservices-based systems. As an example, the concept of

“Microservice” is modeled as a stereotype with the same name that specializes the SoaML Participant element.

2.2 Execution Semantics and fUML

The execution semantics of a DSL can be defined implicitly or explicitly [42]. Considering the implicit specification,

a commonly used approach to making the conforming models executable is to develop model-to-code translators. Such

translators map the DSL’s metamodel concepts into coding elements of the general-purpose programming languages and

generate the code from the DSL’s conforming models. In this approach, the behavioral semantics is defined implicitly,

encoded in the manually developed translators. The implicit specification has considerable drawbacks, as extensively

demonstrated by the literature [42]. For example, the behavioral semantics might be redundantly defined, as it is necessary

to create multiple model-to-code translators to various target languages. To overcome the implicit specification

limitations, the behavior semantics of DSLs must be defined explicitly. In this specification, the DSL’s execution

semantics is specified by determining the steps of computation required for executing a conforming model. Therefore,

the explicit specification expresses runtime concepts, which define an interpreter for the DSL. As demonstrated by

Tatibouët and colleagues [43], fUML can be used to formalize the execution semantics of UML profiles explicitly. The

execution semantics of fUML is defined by the fUML semantic model, which, in turn, is defined using the PSL [44]. The

execution model is based on the Visitor pattern [45], which is used to add behavior to an already existing class hierarchy.

In the case of fUML, the visitor pattern is applied over the UML subset (i.e., classes and activities), providing a

specification for the execution of models represented in terms of instances of this subset. Formalizing the execution

semantics of UML profiles consists of extending such visitors for each concept of the profile by using standard object-

oriented mechanisms (e.g., inheritance, polymorphism).

3 Running Example

As adopted by several players (e.g., Google [46]) and identified by the literature (e.g., [47]), a common end-to-end

infrastructure for IoT encompasses typically three tiers, namely, cloud, fog, and device. The cloud tier consists of

computers/data centers located in the cloud providing resources (e.g., computing, storage), which can be rapidly

provisioned and released on-demand. The fog tier encompasses computers that exploit capabilities at the edge of the

Internet, thus, providing near-devices computing/storage resources [48]. Fog nodes can also act as bridges to connect the

devices to the cloud and provide remote access to devices through APIs offered by specific components [1]. It is important

to emphasize that in many implementations, the Fog tier assumes a hierarchical, multi-level organization. Therefore, the

resulting system actually has multiple tiers in terms of possible component deployments. In turn, the device tier refers to

electronic platforms equipped with sensors and actuators that are attached to physical entities to enhance them with

sensing, actuating, communication, and computing capabilities.

Our running example is based on a real Smart City IoT project deployed in the city of Padova (Italy) that adopts the

infrastructure presented above. The “Padova Smarty City” (PSC) [49] is the result of the collaboration between the

municipality of Padova, the University of Padova, and the Patavina Tech – a software house specialized in the

development of innovative IoT solutions. The infrastructure of PSC is depicted in Figure 1 and explained in the following.

The complete explanation, including the reasoning behind all technical decisions, can be found in [49].

Figure 1. The infrastructure of “Padova Smart City” (based on [49])

The PSC encompasses several devices placed on streetlight poles of Padova’s downtown and connected to the

municipality’s network through fog nodes. Some devices are heterogeneous, i.e., equipped with a photometer, temperature

sensor, and humidity sensor. There are two types of homogenous devices. One is equipped only with benzene (C6H6)

sensor, which monitors the air quality. The other is equipped with water sensor and placed on the base of the streetlight

poles aiming to monitor the water level is case of flooding. A small battery powers IoT devices equipped with a

photometer, temperature sensor, humidity sensor, and water sensor while the devices equipped with benzene sensor,

which requires a much higher power supply, are powered by the grid. The devices have a CC2420 transceiver that

implements the IEEE 802.15.4 standard [50], providing them with wireless communication. Cloud nodes refers to third-

party computers that provide resources that can be provisioned or released on demand.

The devices, fog and cloud nodes are computers that provide database servers and application containers, allowing

data storage and execution environment for software components, although, in the cloud, such capabilities can be

provisioned and released on-demand. The fog nodes also provide protocol translation and functional mapping between

unconstrained protocols and their constrained counterparts, which are used by the devices (e.g., CoAP [51], 6LoWPAN

[52]), through a cross-proxy. A fog node performs protocol translation and forwards the requests directly to the required

device by using 6LoWPAN and the RPL routing protocol [53]. Such a protocol is used in the communication between

fog nodes and devices.

3.1 IoT Applications

On the PSC infrastructure, we want to design IoT applications to enhance the quality of the services offered to citizens.

The applications are Flooding Warning (FW), Street Light Monitoring (LM), Temperature Monitoring (TM), Humidity

Monitoring (HM), and Air Quality Monitoring (AM). The goal of these applications is to request the related data at regular

time intervals (i.e., periodic applications), store it in a database, and further perform analytics aiming at examining

different scenarios, which will be helpful for urban planning.

The SOA style is suitable for architecting the applications for two main reasons. Firstly, it allows providing the

capabilities of the heterogeneous devices composing the applications through well-defined interfaces, thus, furnishing the

interoperability between the different hardware platforms and software components. Secondly, some sensors will also be

exposed as a service to be requested by external applications based on the request-response model, following the Sensing

as a Service (S2aaS) approach [54]. In S²aaS, the sensing data is available for external users and can be provided on

demand based on a pay as you go model, in the same way as traditional services. In short, when a user needs data of a

certain object or environment, he/she requests it to the device’s service, which answers with the required data. For

example, in the context of the FW application, by providing water level sensor as a service, public/private organizations

or individual developers can create their own flooding monitoring applications. For example, the University of Padova

may create an application aiming to measure the time it takes for an area to be flooded after a storm starts. On the other

hand, Patavina Tech may create a mobile app that informs the citizens about flooded areas.

Constrained batteries power the devices providing the lighting, temperature, humidity, and water level data; thus, a

Quality of Service (QoS) requirement that must be analyzed in the related applications is the operational lifetime of devices

providing the required services. Based on [55], we consider the lifetime as the time spanning from the instant when the

device starts functioning until it runs out of energy, making the service provided by such a device unavailable. In this

sense, the ability of the service, platform, or component to perform its required function over an agreed period may be

impacted. Thus, the FW, LM, TM, and HM applications shall address availability requirements [15].

Flood monitoring is a time-critical application; thus, the response time requirement must also be addressed by the FW

application. Based on [56], we consider the response time as the time spent since a component requests for a device’s

service until this component receives the sensing data or the device performs the required actuation.

Finally, considering the S2aaS model, there is also a critical concern for the service consumers, namely, the freshness

of the data. Data freshness refers to the time elapsed since the data is collected until it is delivered to the requesting user

[57]. Some applications may require data as fresher as possible. This is the case, for example, of mobile apps that inform

the citizens about flooded areas. On the other hand, other applications do not need a high data freshness, for example,

applications that request the water level to perform historical data analysis.

A DSL providing concepts of the SOA style is required for the precise specification of the applications, with their

underlying infrastructure. Moreover, another feature that a modeling language must provide is the support for model

execution without requiring translating the model to other languages, avoiding the problems of translational approaches.

Such a feature of the language should help answering design questions and support the architecture decision-making

process. For example, a crucial decision is “in which cloud or edge nodes each component should be deployed?” To

answer such a question, the modelers may evaluate dozens or even hundreds of candidate deployment scenarios. This is

because more than one component would be able to be deployed within the same platform. The deployment decision

becomes even more complicated considering that depending on the platform in which the components are deployed; it

may impact on the availability or response time requirements. In this context, selecting the best candidate deployment

scenario becomes humanly infeasible as the number of eligible deployments changes.

4 IoTDraw Modeling Framework

In this section, we present our proposed modeling framework, the IoTDraw. As introduced earlier, IoT Draw is more
suitable for the specification and analysis of periodic applications. The actual version covers essential concepts or
services-oriented architecture; however, since our approach was conceived on SoaML, it can be extended to allow the
representation of microservices elements in the context of IoT systems.

SoaML4IoT is composed of two main cornerstones, namely, the SoaML4IoT modeling language (encompassing the
abstract syntax, the concrete syntax, the execution semantics, and the extensibility rules) and the Model Execution Engine.
The modeling language was designed by following the methodology presented by Brambilla and colleagues [8], which
introduces five principles that a DSL should follow in order to be useful, that is, (i) the language must provide good
abstractions to the developer, must be intuitive, and make life easier, not harder; (ii) the language must not depend on
one-man expertise for its adoption and usage; (iii) the language must evolve and must be kept updated based on the user
and context needs; (iv) the language must come together with supporting tools and methods; and, (v) the language should
be open for extensions and closed for modifications. As introduced in the next subsections, SoaML4IoT was conceived
considering these principles. The Execution Semantics and the Model Execution Engine were developed based on the
process of formalizing the execution semantics of UML profiles proposed by Tatibouët and colleagues [43], which was
briefly introduced in Section 2.2.

4.1 Abstract Syntax

The SoaML4IoT metamodel is depicted in the UML Class diagram of Figure 2. It was conceived as an extension of

the SoaML metamodel (gray elements). Following the first principle of DSL’s, the concepts related to the IoT domain

were elicited from proven domain models for IoT, namely, the IoT Architectural Reference Model (IoT-ARM) [11], the

WSO2 IoT Reference Architecture [28], and the IEEE Standard for an Architectural Framework for Internet of Things

(P2413) [58]. Such domain models provide high-level abstractions that aim at describing the main concepts of IoT.

An IoT System is a cyber-physical system composed of Platforms, Applications, and Networks. A platform refers to

computer nodes, which can be of type Cloud, Fog, or Device. Nodes located in the cloud provide a set of resources (i.e.,

processing, storage), which can be provisioned and paid on demand. Fog nodes are computers that act as near- devices

computing/storage resources or as bridges to connect the devices to the cloud. A device is a computer attached to physical

entities, which can be anything of the real world from objects and cars to animals and human beings. A physical entity

lies in a specific geographic location.

Figure 2. The SoaML4IoT Metamodel

The devices enhance physical entities with sensing, actuating, communication, and computing capabilities. Sense tasks

aim to collect data from physical entities (e.g., car speed, human body’s temperature) or the environment it is inserted

into (e.g., room’s temperature or lighting level); actuate tasks can affect the physical realm (e.g., turn on/off a heater,

sound alarm); transmit and receive tasks regard the communication of the device; finally, the compute task refers to the

processing capability of the device. The platforms communicate with each other and eventually with the Internet by using

wired or, more often, wireless networks. A Network refers to the set of nodes and links providing the communication path

by with the platforms receive and transmit data. An Application refers to a set of specialized algorithms that request

services and process data aiming at fulfilling user-defined requirements. An application is composed of one or more

Components, which are software units that can be deployed within platforms. Note that the metamodel represents the IoT

applications as a set of components instead of a monolithic structure.

In SoaML4IoT metamodel, the capabilities performed by the providers are specialized as tasks (sense, actuate,

transmit, receive, and compute). In turn, the providers are specialized as platforms. Components act as consumers,

requesting the required tasks exposed through the devices’ services. In other words, devices attached to physical entities

expose their provided tasks through services, which are consumed by application’s components aiming at fulfilling the

stakeholders’ requirements.

4.2 Concrete Syntax

The concrete syntax of SoaML4IoT (Figure 3) consists of an UML profile extending the UML elements Port, Class,

Dependency, Interface, Association, and DataType. Such extensions realize the concepts with the same name from the

SoaML4IoT metamodel. Instead of specializing the stereotypes of SoaML, we decided to extend the elements from the

UML with concepts of our metamodel. Note that we extend the same UML elements as the SoaML. For example, the

concept Consumer from the SoaML metamodel extends the UML element Class. Thus, the concept Application from

SoaML4IoT metamodel, which specializes consumer, extends the same UML element Class. The reasoning behind this

design decision is that fUML engines do not handle cases were multiple stereotypes are applied over the same modeling

construct [43]. Thus, if we specialize the SoaML profile, the same class could be applied with multiple stereotypes (e.g.,

provider and device), hampering the model execution. Another adaptation we made to allow the execution regards the

Service Contract and IoT System elements (this later specializing the concept of Services Architecture). In SoaML, both

service contract and service architecture extend the UML element Collaboration, which is not part of the fUML semantic

model. Thus, we extended the UML element Class, which also allows the modeling of collaboration through composite

structures.

Following the second principle of DSL’s, each stereotype of SoaML4IoT provides properties to specify the general

properties of the elements composing the solution. In other words, the elements do not provide properties that are onçy

relevant for a specific expert. For example, a device specialist may be interested on the processing speed of the devices.

On the other hand, a network specialist may be interested on the network interfaces available for the platforms; or the

software architect may be concerned on the execution environments (Python, Java) provided by the platforms. Although

processing speed is an essential characteristic for the device specialist, it may not be relevant for the network specialist.

The same may happen with network interface and execution environments. Therefore, instead of representing every aspect

of an IoT system, of interest for every possible stakeholder, as presented in Section 4.4, the framework is fully extensible,

so that the experts can add new attributes according to their specific needs 1.

The Service has the attribute protocol, aiming to specify its application-level protocol (e.g., HTTP, CoAP). The

Application also has the attributes region and localTimer. The former aims to specify the geographic location of the target

environment (as requested by the application), from which the sensing data will be collected and/or actuation tasks will

be performed upon. The second attribute is used by the execution semantics as a counter, considering the periodic

applications. Thus, for example, when the user specifies that the application requests a given service every 2 minutes, the

attribute localTimer is used to control the time elapsed since the last request (such behavior is specified in the execution

semantics, introduced in the section).

Figure 3. The SoaML4IoT UML Profile

The Component stereotype has the attributes for specifying periodic and/or event-based applications. Recall that an

application is composed of one or more components. Thus, although the periodic or event-based model refers to the

application, the components are the responsible for actually performing that required requests. The attribute

requestTaskPeriodic models the task to be requested at regular time intervals, which is specified in the attribute

requestTaskPeriodicInterval. In the simulation, such an attribute is used in conjunction with localtimer to trigger the

request. On the other hand, the attribute requestTaskEvent defines the required task that aims to be requested when an

event occurs. Such an event is specified in SoaML4IoT textually, in the attribute requestTaskEventCondition.

1 It is important to highlight that SoaML also adopts this strategy, as introduced in its specification [26]: SoaML focuses on the basic

service modeling concepts, and the intention is to use this as a foundation for further extensions both related to integration with other

OMG metamodels like BPDM and BPMN 2.0, as well as SBVR, OSM, ODM, and others.

The Physical Entity stereotype allows specifying its geographic region through the latitude, longitude attributes. The

Platform (abstract) also allows specifying its geographic region through the latitude, longitude attributes. The Device

stereotype has only attachedTo attribute, which models the physical entity equipped with the device.

Finally, the IoT System stereotype has three attributes, globalTimer, simulationTime, and executionModule. All these

attributes are used in the model execution. The attribute globalTimer represents the simulation time in minutes, which is

updated until it achieves the required simulation time (simulationTime attribute). At the beginning of the simulation, it is

initialized with 0 (zero), and it is incremented until achieving the limit defined by the user or the user stops the simulation.

The Execution Module, which is the third attribute of the IoT system, is the extension point of the execution semantics. It

has three attributes, namely, module, language, and code. The first specifies the module name. The second defines the

language used to implement the module. Finally, the third attribute is used to indicate the location of the code file to be

executed in the simulation. The details about the extension of the execution semantics of SoaML4IoT through the

execution module is explained in the following.

4.3 Execution Semantics

The details and implementation of the execution semantics of IoTDraw are available at brccosta.github.io/iotdraw.

The current version of the execution semantics is applied over the IoT System stereotype, which models the behavior of a

periodic IoT application. Thus, it represents a discrete-event system [59], in which the service requests occur at a discrete

set of point in time, as defined by the data sending interval (period of time between two consecutive data sending) required

by the application (which is modeled in the requestTaskPeriodicInterval attribute).

List 1. Execution Semantics of IoT System (Language: Alf)

1 activity execute(){
2 WriteLine(“[IoT System Execution]”);
3 WriteLine(“Begin...”);
4 UML::Stereotype execModule = this.types.getAppliedStereotype(“Execution Module”);
5 if(executionModule != null) {
6 String module = execModule.getAttributeValue(“module”);
7 String code = execModule.getAttributeValue(“code”);
8 String language = execModule.getAttributeValue(“language”);
9 WriteLine(“Execution module: ” + module);
10 /*@inline(language)
11 String result = module(this);
12 */
13 WriteLine(result);
14 }
15 UML::Stereotype iotSystem = this[0].types.getAppliedStereotype(“IoT System”);
16 Integer globalTimer = iotSystem. getAttributeValue(“globalTimer”);
17 Integer simulationTime = iotSystem.getAttributeValue(“simulationTime”);
18 List<Application> applications =
19 this.types.getAppliedStereotype(“Application”);
20
21 //Perform the simulation
22 while(globalTimer <= simulatiomTime){
23 for(IoTDraw::Application app in applications){
24 for(IoTDraw::Component comp in app.types.getAppliedStereotype(“Component”);
25 if(comp.getAttributeValue(“requestPeriodicInterval”)== app.getAttributeValue(“localTimer”) &&

 comp.getAttributeValue(“requestTaskPeriodic”)!= null)){

26 UML::Stereotype contract = this[0].types.getAppliedStereotype(“Service Contract”);
27 contract.execute();
28 app.setAttributeValue(“localTimer”, 0);
29 } else {
30 Integer localTimer = app.getAttributeValue(“localTimer”);
31 localTimer++;
32 app.setAttributeValue(“localTimer”, localTimer);
33 }
34 }
35 globalTimer++;
36 }
37 }

In List 1 , the first step of execution extension is to verify whether there is any execution module assigned to the IoT

system class (lines 4 and 5). If it is true, the module code is injected as an opaque action, which is responsible for executing

such a module (line 11). Such an injection is performed by IoTDraw at runtime. In line 16, we get the globalTimer tagged

value, which is 0.0 by default, and in line 17 we get the required simulation time. This simulation time is configured by

the modeler and represents the total time required by the simulation in minutes. In line 18, we get all the applications that

comprise the IoT system. It is important to highlight that, in this way, we allow the simulation of various applications

comprising an IoT system.

The simulation itself is performed into a while loop, which starts at line 22. Each iteration of the loop represents a

minute in the simulation. The condition of the loop is that the simulation time (specified in the attribute simulationTime)

is less or equals to the simulation time (specified in the attribute simulationTime). Thus, the simulation runs until it

achieves the time limit specified by the modeler. Inside the while loop, the logic is to verify all components of all

applications of the IoT system (lines 23 and 24). Whether the component requires a task periodically (line 25), such a

component is a candidate to be executed. Another verification that we do in line 25 is whether the local timer equals the

requestTaskPeriodicInterval. As introduced in Section 2.2, the local timer attribute is an internal counter of the

application, and the requestTaskPeriodicInterval defines the data sending rate of the component. By comparing it with

the local timer, we ensure that the component only will be executed when it is required. Next, in line 27 we execute the

choreography that is related to the current object. After executing the choreography, the local timer attribute is re-assigned

to 0.0. Line 29 is executed whether the local timer does not equal to the periodic interval required by the application; thus,

we only increment the local timer. In line 34, we also increment the global timer.

4.4 Extensibility Rules

Following the third and fifth principles of language engineering, SoaML4IoT can be extended by following the

extensibility rules. The extensibility rules of SoaML4IoT are based on the techniques of Model-Driven Architecture

(MDA) [60], that is, (i) creating new attributes (i.e., tagged values) for the existing elements of the language (i.e., the

stereotypes of the SoaML4IoT profile), (ii) specializing existing elements, and (iii) implementing user-defined execution

modules to be called in the model execution. Extension for the SoaML4IoT that follows these rules keep the language

compliant with the metamodel and the execution semantics. In this way, modelers can enhance the expressivity of the

language by providing specific attributes based on the domain of interest. On the other hand, user-defined execution

modules provide means to simulate other application scenarios and, thus, support answering several design questions.

Creating new attributes for existing elements of SoaML4IoT follows the same methodology of UML profiling.

The execution modules can be implemented using standard object-oriented mechanisms, that is, inheritance and

polymorphism. To create the execution module, the user must implement the interface ExecutionModule, as detailed in

List 2.

List 2. ExecutionModule Interface
1 interface ExecutionModule{
2 String executionModule(IoTSystem iotSystem);
3 }

The function executionModule receives as argument an object typed of IoTSystem and responds a String data. When

a class implementing such a module is called by the IoTDraw framework, it collects the UML Class stereotyped as IoT

System with all its composing elements, that is, Platforms (Cloud, Fog, Device), Applications (and composing

Components), and Networks. IoTDraw structures such an object as a POJO (Plain Old Java Object) class [61]. POJO

classes refer to pure data structures that has fields with getters and setters. The tagged values are converted into class

attributes and their types converted into basic types. For example, time[minute] (type of globalTimer tagged value) is

converted into Double.

4.5 Model Execution Engine

Aiming to apply the fourth principle of language engineering, the execution semantics specified above has been

developed as a prototype on Moka [30], an Eclipse Papyrus module that includes an execution engine complying with

fUML. When executing a SoaML4IoT model, the extended engine analyzes each element. According to the stereotype

applied over the element, the code representing the execution semantics of the element is dynamically injected at runtime

to reflect the execution semantics applied by the stereotype. Figure 4 depicts the components of our proposal focusing on

the extension mechanisms of SoaML4IoT.

Figure 4. IoTDraw framework – Model execution semantics and extension modules

5 Evaluation

In this Section, we evaluate our proposal based on two methodologies, namely proof-of-concept (PoC) and the

perceived acceptance of IoTDraw by software engineers from industry. In the PoC, we show the specification of the FW

application introduced in Section 3, highlighting the support of our framework to answer important design questions. The

second evaluation study is based on the Technology Acceptance Model (TAM) [62], a mature theoretical model that has

been widely used in many empirical researches.

5.1 Evaluation Proof-of-Concept: FW Application specification

Returning to the running example introduced in Section 3, on the PSC infrastructure (Figure 1), we want to design

IoT applications aiming to enhance the quality of the public services offered to citizens. Due the lack of space, we focus

on the specification of the Flood Warning (FW) application (the complete specification of all applications is available at

brccosta.github.io/iotdraw). The objective is to sense the water level at regular time intervals and send alerts to the citizens,

in case of flooding, to enable the fast evacuation near the flooding area. The FW application also performs analytics

aiming at examining different flooding scenarios, which will be helpful for urban planning. The FW application models,

which will be created by SoaML4IoT, must support modelers to (i) identify key elements of the system, and (ii) answer

important design questions regarding the services approach as well as issues related to lifetime, availability, and response

time QoS requirements.

As identified by the literature, IoT applications have highly heterogeneous requirements, and can vary from being

composed of only a few devices, such as e-health application ([63]), to hundreds and even thousands of heterogeneous

devices and software components (e.g., [64]). In our example, we specify the FW application with a limited number of

elements in such a way that it would be possible to explain our framework in detail. Anyway, applying our framework

to specify and analyze more complex IoT applications follow the same approach that we use to model the running

example. In Section 5.2, after introducing IoTDraw and exemplifying it with the FW application, we modify its

architecture, resulting in a more complex scenario that reinforces the need and usefulness of our proposed framework.

The specification of the FW application follows the process for service-oriented design proposed by Erl [65]. The

diagrams created in each step follow the SoaML approach for structuring the modeling components. In summary, the

architecture specification of an SOA-based IoT application using SoaML4IoT consists of three kinds of models: (i)

Service Contract and Choreography (Figure 5 and Figure 6); (ii) Participants (Figure 7 and Figure 8); and, (iii) Services

Architecture (Figure 9). We provide a briefly introduction of each model in the following. A more detailed explanation

about the process and the SoaML approach can be found at [65] and [26].

The Service Contract models specify the constraints and design standards the provider and consumer participants must

adhere when interoperating such as the protocol and the structure of the information that is transmitted from the provider

to the consumer. The contract also defines the behavior of the service’s communication; that is, the actions that are

performed by each participant as well as the order in which these actions must be performed. Technical issues related to

software components and hardware devices are specified in the Participant’s models. As introduced in Sections 3 and 4,

SoaML4IoT adopts the 3-tier architecture model, which encompasses computing nodes that can be of type Cloud, Fog or,

Device. In the Participant Provider models, we specify the tier each node is part of. Finally, Services Architecture models

specify the fundamental structure of the system by composing the software and hardware elements. The composition of

each element is mediated by the service contracts specified in the service contract models. By mediating the composition

through contracts, both provider and consumer participants must agree with the constraints and design standards when

composing the architecture, allowing the interoperability between all elements of the system.

The approach for the specification of FW application adopts the concept of component-specification and component-

use [21]. This approach stablishes that in the development lifecycle the components are conceived to be reused, forming

component library or repository. Thus, when designing a system’s architecture, the modelers take components from a

repository and assembles them into a system. In the case of the FW application, for example, the consumer and provider

participants are specified in the Participant Provider models and are used in the Services Architecture specification; the

same happens with the contracts, which are specified in the Service Contract models and used in the Service Architecture

specification.

5.1.1 Service Contract Design

There are two contracts that the participants must agree when designing the consumers and providers of the FW

application, namely, Request Water Sensor and Request Alarm (Figure 5). The Monitor Water task provides two

operations: sense() and transmit(). The former aims at sensing the water level while the second transmits the data to the

requesting component. The data is structured as the WaterLevelData message type. The Monitor Water task is exposed

by the FW_SenseInterface, which is realized by the Water Sensor (provider interface). This interface is used by Flood

Monitor (consumer interface), which, in turn, realizes the conjugated interface ~FW_SenseInterface.

Figure 5. Contract Design for FW Application

In the Request Alarm service contract, the Sound Alarm task provides only the operation actuate(), which aims to

sound the alarm in case of flooding. The Sound Alarm task is exposed by the FW_ActInterface, which is realized by the

Alarm (Provider interface). This interface is used by Flood Monitor (consumer interface), which, in turn, realizes the

conjugated interface ~FW_ActInterface.

In the Request Water Sensor service contract, the Water Sensor (provider interface) specifies a set of properties that a

participant implementing such interface must provide. The devices are powered by limited batteries; thus, these properties

are required to answer the following design question (DQ1) “considering the data sending rate required by the

application, what is the operational lifetime of the Water Sensor devices?”. Recall that, in the context of the PSC, the

lifetime is considered as the time spanning from the instant when the device starts functioning until it runs out of energy,

becoming the service provided by such a device unavailable.

To answer this design question, we adopt an analytic model proposed by Halgamuge and colleagues [66] to predict

the energy consumption of devices’ tasks. In such a model, the energy consumption of sensing tasks 𝐸𝑠𝑒𝑛𝑠𝑒 (unit: Joules)

is given by:

𝐸𝑠𝑒𝑛𝑠𝑒 = 𝑏𝑉𝑠𝑢𝑝𝐼𝑠𝑒𝑛𝑠𝑒𝑇𝑠𝑒𝑛𝑠𝑒

where 𝑏 is the bit package (unit: kilobit - kb) collected by the sensing activity, 𝑉𝑠𝑢𝑝 is the supply voltage (unit: volt -

v), 𝐼𝑠𝑒𝑛𝑠𝑒 is the total current (unit: milli ampere) required for sensing activity, and 𝑇𝑠𝑒𝑛𝑠𝑒 is the time duration (unit:

milliseconds - mS) for sensing unit is collecting data from the environment. The equation from Halgamuge’s model

formalize the energy consumption of transition task 𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 (unit: Joules), is given by

𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 = 𝑏𝐸𝑒𝑙𝑒𝑐 + 𝑏𝑑𝑖𝑗
𝑛 𝐸𝑎𝑚𝑝

where 𝑏 is the bit package to be transmitted in a distance 𝑑𝑖𝑗 (unit: meter - m), 𝐸𝑒𝑙𝑒𝑐 (unit: Nano Joules per bit – nJ/bit)

is the energy dissipated to transmit data, which may differs considering the network interface, for example; 𝐸𝑎𝑚𝑝 is the

energy dissipated by the power amplifier (unit: Pico Joules per bit per square meter – pJ/bit/m2), and 𝑛 is the distance-

based loss exponent (unit: Integer).

The battery capacity of devices is typically measured as milliampere hour (mAh), while the energy consumption is

measured as Joules (J). Thus, it is necessary to convert from J to mAh in order to verify the difference between the battery

capacity and the total energy consumption required for the device. The conversion from J to mAh is given by:

𝐽𝑜𝑢𝑙𝑒𝑠_𝑡𝑜_𝑚𝐴ℎ =
1000 × 𝐸(𝑊ℎ)

𝑉(𝑉)

where 𝐸(𝑊ℎ)is the energy in watt-hours (Wh) and 𝑉(𝑉)is the voltage in volts (V). 1 J corresponds to 0.000277778 Wh,

thus 1 𝐽 = 1000 × 0,000277778/𝑉(𝑉) mAh.

These energy consumption equations are modeled in the choreography of the Request Water Sensor service contract,

specified as an fUML Activity Diagram (Figure 6). It starts with a readSelf action followed by the reading of the attributes

(readStructuralFeature action) required to calculate the energy consumption of sensing task. An opaque action calculates

the energy consumption. The result in Joules is converted with an opaque action into mAh (milli ampere hour), which is

the unit of battery capacity of devices. Next, this result is used to update the residual energy. The behavior of the transmit

task follow the same structure.

Figure 6. Choreography of Request Water Level Sensor Service Contract (Key: fUML Activity Diagram)

5.1.2 Participants Design

The specification of consumer participants of FW application is depicted in the UML Class Diagram of Figure 7. The

application Flood Warning aims to monitor the water level in two important avenues of Padova, namely, Via Codalunga

and Via Niccoló Tommaseo. The application is composed of three components, namely, FloodAPI, FloodMonitor, and

Analytics. The component FloodAPI intermediates the communication between other components and the devices’

services. It has two services; each one typed as an interface as defined in the respective contract; thus, the FloodAPI

requires the Alarm and the Water Sensor interfaces. The component also provides a service, based on HTTP, providing

an interface for external requests.

The component FloodMonitor is responsible for managing the monitoring for flooding. It requires the interface Flood

API and provides a service, based on HTTP, with an interface Flood Monitor for external requests. The task that will be

requested periodically by the component (i.e., every 2 minutes), is the Monitor Water. In turn, the task Sound Alarm will

be requested only when the water level is above 20 centimeters. Finally, the component Analytics, which requires the

interface Flood Monitor, aims to store the water level data and further perform analytics aiming at examining different

urban scenarios. This component requires the interface Flood Monitor.

The specification of provider participants of FW application is depicted in the UML Class Diagram of Figure 8. There

are two cloud nodes available for the system; the first is in Stuttgart while the second is in Michigan. The three available

fog nodes, fog_1, fog_2, and fog_3, are located in different areas of the city of Padova. Finally, in the example, there are

two devices, namely, water sensor and alarm. The devices have services providing interfaces for external access. Note

that these services are typed as elements of the service contracts.

Figure 7. Participants of FW application – Consumers

Figure 8. Participants of FW application – Providers

Since the water sensor devices realize the Water Sensor interface, it provides the properties required by this interface

(recall that these properties are used in the choreography to estimate the energy consumption of the services). In our

example, we use the values of voltage, current, etc. presented by [66], considering a generic device (e.g., Arduino,

RaspberryPi). Finally, the associations stereotyped as <<Net>>, models the network connections between the platforms.

5.1.3 Services Architecture Design

The services architecture design of PSC, including the FW application, is depicted in the UML Class Diagram of

Figure 9. The PSC services architecture aims at connecting the consumers (i.e., applications) to the providers (i.e., devices)

through the specified contracts. When connecting the participants, IoTDraw checks if the applications have components

that agree with the contracts, that is, if they have the ports implemented the required interfaces as specified in the contracts.

It is also specified the simulation time of the model, that is, 1.051.200 minutes (i.e., 2 years).

Figure 9. The services architecture of PSC System

5.1.4 Answering Design Questions

After specifying the FW application, there are important design questions (DQ) that must be answered regarding

lifetime, data freshness, availability, and response time QoS requirements. Some of these questions are: (DQ1)

considering the data sending rate required by the application, what is the operational lifetime of the Water Sensor

devices?; (DQ2) in the S2aaS model, what is the operational lifetime of the devices considering the data freshness

required by service consumers?; (DQ3) in which type of node (cloud and/or fog) should the application’s components be

deployed?; (DQ4) what is the deployment configuration that promotes the highest availability for the FW application?;

(DQ5) what is the deployment configuration that promotes the lowest response time for the FW application? By

answering such questions, the modelers would make more successful architectural decisions about, for example,

deployment configurations, component replication, protocol specifications, and caching.

Based on the extensibility rules introduced in Section 4.4, we developed the execution modules depicted in Figure 10

to support the modelers answering the design questions presented above. Furthermore, we extended the language to

represent the required properties. The models created with the extended version of SoaML4IoT are depicted in Figure 11

and Figure 12. All modules with their complete specifications are also available at brccosta.github.io/iotdraw.

Figure 10. The execution module repository

The DeploymentScenarios module supports finding the best deployment configuration for the application modules.

When deploying a component within a platform, it is necessary to verify whether such a platform provides the software

capabilities that are required by the component. For example, whether a component was developed by using C#, to allow

executing it, the platform must provide the .NET framework, which is the execution environment of C# applications. To

allow the analysis, the modelers must inform the required and provided software in the components and platforms,

respectively.

The AvailabilityAnalysis module extends the DeploymentScenarios module by allowing to find the deployment

configurations with the highest availability. To achieve this goal, the module apply the following availability model [15]:

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑃) =
𝑀𝑇𝐵𝐹

(𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅)

where 𝑃 is the platform, 𝑀𝑇𝐵𝐹 refers to the mean time between failures and 𝑀𝑇𝑇𝑅 refers to the mean time to repair.

The modelers must provide such information in the platforms.

Finally, the ResponseTimeAnalysis also extends the DeploymentScenarios module by allowing to find the deployment

configurations with the lowest response time between components. To achieve this goal, we apply the following response

time analytic model [56]:

𝑅𝑒𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒(𝑅) = 𝐿(𝑁𝑒𝑡𝑤𝑜𝑟𝑘) + 𝑃𝑡𝑖𝑚𝑒(𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚, 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡)

where 𝑅 denotes the request. 𝐿 denotes the average latency of the network connection between consumer and provider

participants. And, 𝑃𝑡𝑖𝑚𝑒 refers to the mean processing time of the platform to process the component’s algorithms. And,

𝑄 denotes the waiting time in the queue. 𝑃𝑡𝑖𝑚𝑒 is given by [21]:

𝑃𝑡𝑖𝑚𝑒(𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚, 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡) =
𝐶𝑃𝑈𝑑𝑒𝑚𝑎𝑛𝑑(𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡)

𝐶𝑃𝑈𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚)

where the average CPU demand of the component (unit: cycles) is divided by the CPU frequency (unit: GHz) of the

Platform. All such information must be provided by the modelers in the platforms and components.

We execute the model aiming to answer the design questions (DQ1 to DQ6) introduced earlier. In the analysis, we

execute the model in Intel Core i7-2640M, 2.80GHz, 6GB of RAM, JRE version 1.8.0_191. The execution follows the

semantics introduced in Section 4.3. In the following, we present the results.

Figure 11. Components with “meanCPUdemand” and “requiredSoftware” information

Figure 12. Providers and networks enhanced with information to analyze response time and availability

5.1.4.1 DQ1 and DQ2: Lifetime and Data freshness

Based on the participants design (Figure 12), water sensor devices can communicate with fog_1, fog2, or fog_3. Each

of these fog nodes are located in a different place of the city of Padova. Thus, for each simulation scenario, we vary the

distance of the devices, setting a random value from 1 to 50 (meters) for the attribute 𝑑𝑖𝑗 . After starting the model

execution, we monitor the variable residualEnergy. When the value of the variable is above a given constant (i.e., 5 mAh),

we stop the simulation and verify the value of the tagged value globalTime. We also vary the request rate from 2 to 6,

aiming to analyze the lifetime of the water sensor device with different request rates. For each simulation scenario, we

perform 30 execution rounds. The result is depicted in Figure 13 (a). The simulation shows that requesting the water level

data every 2 seconds, the average lifetime of the devices is 9 months. On the other hand, by increasing the request rate to

4 and 6 seconds, the lifetime of the water sensor device increases to 12 and 15 months.

For analyzing the operational lifetime considering the data freshness required by the application, in the same way as

the previous simulation scenario, we also vary the distance of the devices of the fog nodes. After starting the model

execution, we monitor the variable residualEnergy. When the value of the variable is above a given constant (i.e., 5 mAh),

we stop the simulation and verify the value of the tagged value globalTime. We also vary the max age of data, from 1 to

4 (seconds), aiming to analyze the lifetime of the water sensor device with different data freshness. For each simulation

scenario, we perform 30 execution rounds. Figure 13 (b) shows the results. By allowing to request water level with higher

max ages, the lifetime of the devices increases considerably. For example, in a scenario that the max age is 2 seconds, the

lifetime of the devices increases in approximately 45% when compared with 1 second of max age. Whether the requests

allow 4 seconds of max age, the operational lifetime could be more than duplicated.

(a)

(b)

Figure 13. Operational lifetime of water sensor devices considering different request rates of FW application (a), and

Operational lifetime of water sensor devices considering different data freshness requirements (b)

5.1.4.2 DQ3, DQ4, and DQ5: Deployment configurations, response time and availability.

By running the model, considering the software requirements, IoTDraw come up with 30 eligible deployments (recall

that more than one component can be deployed in the same node). Part of the output is depicted in Figure 14. Each

scenario is numbered, and, for each candidate, a deployment configuration is presented. For example, in Scenario 1, the

Analytics and FloodMonitor components are deployed within Stuttgart while the FloodAPI component is deployed within

fog_1. It means that such nodes provide all required software and hardware capabilities for the components.

Figure 14. Eligible Deployment Candidate Scenarios

Despite the simulation helps to identify the possible deployment configurations, selecting a candidate scenario must

consider two other requirements for the FW application, that is, availability and response time. Figure 14 depicts the

deployment scenarios considering availability while Figure 15 depicts the eligible Deployment Candidate Scenarios

ordered by response time.

The simulations help to reveal the best and worst deployment scenarios considering the availability and response time

requirements. A conflict was identified, once the best scenario of response time (i.e., Scenario 1) is, oppositely, the third

worst scenario when considering the availability. However, it was also possible to identify one scenario that meets both

availability and response time, that is, Scenario 19 (Analytics>Michigan, FloodMonitor>Michigan, FloodAPI>fog_1),

which is the fifth best scenario of availability and the fourth best scenario for response time. Finding such a scenario

without our supporting framework is a non-trivial task. For example, the average latency between the fog nodes and the

Stuttgart cloud node is about 50 mS. On the other hand, the average latency between the fog nodes and the Michigan

cloud node is about 160 mS. Thus, the likely decision would be deploying the components within Stuttgart cloud.

However due to other features, e.g., software requirements and CPU speed, the best scenario addressing availability and

response time both Analytics and FloodMonitor are deployed within Michigan cloud.

Figure 15 Deployment scenarios considering availability

Figure 16. Deployment scenarios considering response time

5.1.5 Qualitative Analysis

A survey [24], conducted in the beginning of 2019, which reports on the interviews of more than 630 participants,

from 250 companies spread around 42 countries, has identified some key concerns and barriers to develop successful IoT

projects. The research revealed the following top five concerns: (i) the connectivity between the heterogeneous entities

of the system; (ii) integration of hardware devices; (iii) interoperability between platforms; (iv) security, and; (v) total

cost estimation. The IoTDraw aims to help the engineers tackle the connectivity, integration and interoperability concerns

when developing IoT applications. In the following we discuss how the framework achieves this goal.

Connectivity is the backbone of IoT, which is achieved by the adoption of standards and protocols that establish how

the software components and physical devices can connect and communicate between each other and with the Internet.

Considering the connectivity between the heterogeneous entities composing an IoT system, SoaML4IoT stablishes that

the modeler must define the protocols used in the communication paths and services. Thus, in the system architecture

design, the services can only be connected whether their respective protocols are compatible. Such features of our

proposed language aim at promoting the connectivity between system elements. For example, as depicted in Figure 7, the

service of FloodMonitor component adopts the application protocol HTTP, while the protocol used in the service of Water

Sensor_1 (Figure 8) was defined based on CoAP. In the system architecture (e.g., Figure 9), when creating the links

between services, which are modeled trough communication links, both services (at each side of the link) must agree with

the defined protocols.

When designing an IoT application in the IoTDraw, the modelers must specify the services’ interfaces in a

standardized fashion. This is achieved by the contract-based approach, which is adopted by SoaML4IoT. For example, in

Section 5.1.1, we show how to specify contracts between service providers and consumers, and, in the architecture

specification (Section 5.1.3) such contracts are used to verify whether the provider and consumer participants are

compatible. Since the specification is realized through interfaces, it is agnostic of the type of entity that will implement

it. Such approach is inspired by the SOA style and, as demonstrated by many studies (e.g., [67], [68]), promotes the

integration and interoperability between the components of system (second and third concerns when developing IoT

applications).

The current version of IoTDraw does not provide mechanisms to deal with security and cost estimation. However,

such concerns point opportunities for enhancements in our proposed framework, which will be addressed in future works

(Section 7).

5.2 Complex Scenario: New Sensors and Applications

After introducing and explaining IoTDraw by using a scenario with a limited number of components, in this section

we introduce a more complex scenario. The purpose of this section is twofold. First, we aim at demonstrating the

usefulness of IoTDraw to answer design questions that are humanly infeasible to be answered without a supporting tool.

In this sense, as it will be described in the following, the scenario comes up with almost 1.000 eligible deployment

configurations, each one impacting differently in the QoS requirements. Second, the scenario shows that our framework

does not impose a strict division between cloud-fog-device levels for deployment. Actually, although we contemplate a

3-tier organization of IoT systems, as often adopted in the literature, the framework supports n-tier architectures. In order

to illustrate such a feature, we modified the PSC architecture so that the components can be deployed in any cloud, fog

or device nodes, considering the required and provided software, and the possible network connections.

We added several devices equipped with new sensors upon the PSC infrastructure. A small battery powers the devices

and they are homogeneous, that is, equipped with only one type of sensor, which can be a photometer, a temperature

sensor, a humidity sensor, or a benzene (C6H6) sensor (to monitor the air quality). The devices also have a CC2420

transceiver that implements the IEEE 802.15.4 standard [50], providing them with wireless communication capability.

The new sensors are equipped with a more robust hardware, allowing them to provide execution environments for

software components. Thus, the software components can be deployed within any processing node that makes part of the

system. Figure 17 depicts the participant providers of the new scenario.

Figure 17. Participants - Providers of the new scenario

5.2.1 Application requirements

In this new scenario for running the PSC infrastructure, the devices endowed with different sensors enable the

development of new applications aiming to enhance the quality of the services offered to citizens while reducing the

operational costs of the public administration. The new applications we want to specify are the Street Light Monitoring

(LM), the Temperature Monitoring (TM), the Humidity Monitoring (HM), and the Air Quality Monitoring (AM). The

goal of such applications is to request the related data at regular time intervals (i.e., periodic applications), store it in a

database, and further perform analytics aiming at examining different scenarios. Figure 18 depicts the requirements of

each application specified by using the SoaML4IoT.

Figure 18 Requirements of the new applications of PSC

As with the flood warning (FW) application, constrained batteries power the devices providing the data for the new

applications; thus, a QoS requirement that must be analyzed in this new scenario is the operational lifetime of devices

providing the required services. Based on [55], we consider the lifetime as the time spanning from the instant when the

device starts functioning until it runs out of energy, making the service provided by such device unavailable. In this sense,

the ability of the service, platform, or component to perform its required function over an agreed period may be impacted.

Thus, the LM, TM, HM, and AM applications shall also address availability requirements [15]. Although the new

applications are not time-restricted, we want to conceive the applications’ architecture providing the minimum delay in

the communication between components. Based on [56], we consider the response time as the time spent since a

component requests a service to another component until this first component receives the respective answer. We will

reuse the specification of availability and response time conceived for the FW application, which is introduced in Section

5.1.4. Finally, the sensors will also be exposed as a service to be requested by external applications based on the request-

response model, following the Sensing as a Service (S2aaS) approach [54]. Thus, there is also a critical concern for the

service consumers, namely, the freshness of the data. Data freshness refers to the time elapsed since the data is collected

until it is delivered to the requesting user [57].

5.2.2 Participants Design

Since we have already introduced the diagrams modeling the service contracts (Section 5.1.2), in this scenario we

focus on the specification of provider and consumer participants. Table 1 introduces the specification of participant

consumers. To create each component, the modeler follows the same steps as presented in Section 5.1.2. For clarity, the

new applications follow the same architecture of the FW application, that is, comprising three components: Monitor

(managing the monitoring of the environmental variable), analytics (analysis module), and API (performing the requests

to the services).

Table 1. Participant consumers

Application Component meanCPUDemand requiredSoftware

 LM

MonitorLM 800 CPU cycles .NET, Python

AnalyticsLM 3.500 CPU cycles Spark, C++

APILM 500 CPU cycles JBoss

 TM

MonitorTM 650 CPU cycles .NET

AnalyticsTM 3.000 CPU cycles Python, MySQL

APITM 550 CPU cycles Python

 HM

MonitorHM 700 CPU cycles Java

AnalyticsHM 2.500 CPU cycles Anaconda

APIHM 490 CPU cycles JBoss

 AM

MonitorAM 685 CPU cycles Java

AnalyticsAM 2.530 CPU cycles Spark

APIAM 250 CPU cycles JBoss

The participant providers refer to the new devices exposing the sensing data to the applications. All devices are placed

on streetlight poles of Padova’s downtown, following the same infrastructure introduced in Section 5.1. We consider 20

devices exposing the lighting level; 15 devices exposing the temperature level; 25 devices exposing the humidity level;

and 5 devices exposing the benzene level. These former devices are placed only in streetlight poles that are near to the

main boulevards of Padova.

Due to the wireless range, there are devices that can communicate with all fog nodes while other devices are connected

only to a single fog node. To specify the participant providers, the modelers perform the same steps as introduced in

Section 5.1. However, in this scenario, there are dozens of devices, which may hamper the specification of each one

without the support of IoTDraw. Thus, our framework allows replicating the specification of an element, helping the

modelers to create all elements composing the IoT system.

After specifying the consumers (i.e., applications) and providers (i.e., devices) participants, we want to answer design

questions similar to the ones elicited for the FW application, that is, (DQ1) considering the data sending rate required by

the applications, what is the operational lifetime of the devices?; (DQ2) in the S2aaS model, what is the operational

lifetime of the devices considering the required data freshness of service consumers?; (DQ3) in which node, device cloud

and/or fog, should the application’s components be deployed?, (DQ4) what is the deployment configuration that promotes

the highest availability for the applications?, and; (DQ5) what is the deployment configuration that promotes the lowest

response time for the applications? To answer these questions, we execute the model following the steps introduced in

Section 5.1.4 in a computer with Intel Core i7-2640M, 2.80GHz, 6GB of RAM, JRE version 1.8.0_191.

Considering the first question, based on the participants’ design, some of the devices can communicate only with

fog_1, fog_2, or fog_3. On the other hand, other devices can communicate with two or even all fog nodes. Each of these

fog nodes is located in a different place of the city of Padova. Thus, for each simulation scenario, we vary the distance of

the devices, setting a random value from 1 to 50 (meters) for the attribute 𝑑𝑖𝑗 , which is the maximum wireless range of

the devices. After starting the model execution, we monitor the variable residualEnergy. When the value of the variable

is above a given constant (i.e., 5 mAh), we stop the simulation and verify the value of the tagged value globalTime. For

each simulation scenario, we perform 30 execution rounds. The result is depicted in Figure 19 (a). Considering the data

sending rates specified by the applications (Figure 18), the average lifetime of the devices providing data for the LM, TM,

HM, and AM applications are 8, 21, 20, and 8 months, respectively.

(a)

(b)

Figure 19. (a) Lifetime of the applications LM, TM, HM and AM; (b) Lifetime of the applications LM, TM, HM and

AM considering 4 seconds of data freshness

The second question aims at analyzing the lifetime of the devices considering the data freshness. In our analysis, we

verify the lifetime by allowing up to 4 seconds of max-age of the data. The results are shown in Figure 19 (b). With the

specified data rates (Figure 18), and allowing the data freshness up to 4 seconds, the average lifetime of the devices

providing data for the LM, TM, HM, and AM applications are 14, 22, 20, and 10 months, respectively.

The objective of the third question is to find the eligible deployment scenarios considering network connections

between the devices, provided and required software. Answering such question is important because each scenario may

impact differently on the QoS requirements. To answer the question, we set the DeploymentScenarios execution module

to the system model (Section 5.1.4) and execute it. Due to the number of scenarios, the execution spends about 3 minutes

to come up with the results. Figure 20 depicts part of the result. IoTDraw comes up with 958 eligible deployment

scenarios. Recall that each scenario considers: (i) the required and provided software and (ii) the possible network

connections, that is, deployment scenarios consider only the ones that allow the communication between the components.

Figure 20. Deployment scenarios for the LM, TM, HM, and AM applications

With almost one thousand eligible deployment scenarios it becomes costly or even humanly infeasible to find the best

deployment, since each option impacts differently on the availability QoS requirement. Finding the best option is crucial

to guarantee the highest availability for the applications. This result is related to the fourth design question, that is, what

is the deployment configuration that promotes the highest availability for the applications? To answer this question, we

execute the module by setting the AvailabilityAnalysis to the system architecture. IoTDraw finds the best deployment

configuration among the 958 eligible deployment scenarios, that is, the scenario 598:

Scenario 598: AnalyticsLM > Michigan, MonitorLM > fog_1, APILM > fog_3,

 AnalyticsTM > Stuttgart, MonitorTM > fog_3, APITM > fog_1,

AnalyticsHM > Michigan, MonitorHM > fog_3, APIHM > fog_2,

AnalyticsAM > Michigan, MonitorAM > fog_1, APIAM > fog_3

 Considering the fifth question, recall that, the applications are composed of individual components which, in turn,

can be deployed within different devices. Each device has a CPU frequency and the network connection between the

devices have different latencies. At runtime, the components interact with each other to achieve the applications' goals.

Thus, answering the fifth question allows us to find the deployment configuration that promotes the lowest response time

in the components' requests. The execution was supported by the ResponseTimeAnalysis execution module, which was

introduced in Section 5.1.4. Among hundreds of possible deployment configurations, IoTDraw finds the scenario that

most reduces the response time between components’ requests, that is, that scenario 168:

Scenario 168:AnalyticsLM > Michigan, MonitorLM > fog_2, APILM > fog_1,

 AnalyticsTM > Stuttgart, MonitorTM > Michigan, APITM > fog_3,

AnalyticsHM > Michigan, MonitorHM > Stuttgart, APIHM > fog_2,

AnalyticsAM > Stuttgart, MonitorAM > fog_2, APIAM > fog_2

5.3 Perceive of acceptance: usefulness and ease of use

The evaluation of perceive of acceptance is based on the Technology Acceptance Model (TAM) [62], a mature

theoretical model that has been widely used in many empirical researches [69]. The TAM focuses on investigating the

acceptance of a given system, which is determined by two criteria, that is, perceived usefulness (PU) and perceived ease

of use (PEOU). The PU is defined as the degree to which a person believes that using the new technology will enhance

their task performance [69]. On the other hand, PEOU refers to the degree to which a person believes that using a particular

technology would be free from effort [62].

5.3.1 Study Design

Our study is based on the evaluation model adopted by Espirito Santo [70], which, in light of [71], was designed as

an adaptation of TAM by embodying the goal/question/metric paradigm (QGM) [72]. Figure 21 depicts the adapted model

that we adopt in our study. The goals showed in the model are introduced in tables Table 2 and Table 3.

Figure 21.Usage of GQM in the TAM for evaluating the IoTDraw

Table 2. Goal G1

Analyze the IoTDraw framework

Aiming to characterize

Considering the usefulness of the tool

In the context of the specification and analysis of SOA-based IoT applications

Under viewpoint of software engineers modeling a SOA-based IoT application

Table 3. Goal G2

Analyze the IoTDraw framework

Aiming to characterize

Considering the ease of use

In the context of the specification and analysis of SOA-based IoT applications

Under viewpoint of software engineers modeling a SOA-based IoT application

Figure 21 depicts seven questions (Q1 to Q7) related to the objectives G1 and G2, following the GQM model. These

questions, which are listed in Table 4, were conceived aiming at capturing the acceptance of IoTDraw in the dimensions

of TAM, that is, its usefulness and ease of use. The possible answers were classified under an ordinal scale, that is, Totally

Agree (TA), Broadly Agree (BA), Partially Agree (PA), Partially Disagree (PD), Broadly Disagree (BD), and Totally

Disagree (TD).

Table 4. Questions for the evaluation of IoTDraw

Question Description Dimension

Q1 It was easy to learn the IoTDraw framework Ease of use

Q2 I was able to use the IoTDraw in the way I want to Ease of use

Q3 I understand what happened in my interaction with IoTDraw Ease of use

Q4 It was easy to specify and analyze the IoT application by using IoTDraw Usefulness

Q5
I consider the IoTDraw framework useful to specify and analyze SOA-based

IoT applications
Usefulness

Q6
The IoTDraw allows to specify and analyze an SOA-based IoT application

following the activities defined in the development process
Usefulness

Q7
The usage of the IoTDraw allow enhancing the specification and analysis of

SOA-based IoT applications
Usefulness

Finally, to each question considered in the study, there is a set of metrics used to quantify them. Table 5 lists such

metrics.

Table 5. Metrics for the evaluation of IoTDraw

Metric Description

M1 Number of participants that answer “Totally agree”

M2 Number of participants that answer “Broadly agree”

M3 Number of participants that answer “Partially agree”

M4 Number of participants that answer “Totally disagree”

M5 Number of participants that answer “Broadly disagree”

M6 Number of participants that answer “Partially disagree”

To compute the final answer of each question of the study, it was considered the values related to each metric

introduced earlier, following the configurations listed in Table 6.

Table 6. Configuration of the concept assigned to each question of GQM model

Metric configuration Assigned concept

M1 > M2 + M3 ∨ M4, M5, M6 = 0 Totally agree (TA)

M1 ≤ M2 + M3 ∨ M2 > M3 ∨ M4, M5 = 0 ∨ M6 < M3 Broadly agree (BA)

M1 ≤ M2 + M3 ∨ M2 ≤ M3 ∨ M4 = 0 ∨ M6 < M3 ∨ M6 > M5 Partially agree (PA)

M1, M2, M3 = 0 ∨ M4 > M5 + M6 Totally disagree (TD)

M1, M2 = 0 ∨ M4 ≤ M5 + M6 ∨ M5 > M6 ∨ M6 > M3 Broadly disagree (BD)

M1 = 0 ∨ M4 ≤ M5 + M6 ∨ M5 ≤ M6 ∨ M6 > M3 ∨ M3 > M2 Partially disagree (PD)

Table 7. Interpretation model regarding the ease of use of IoTDraw

Configuration Interpretation

Q1, Q2, Q3,

and Q4 = TA

IoTDraw is easy to use. It is not necessary improvements regarding usability, in such

a way that the tool can be used immediately to support the specification and analysis

of SOA-based IoT applications.

Q1, Q2, Q3 and

Q4 = BA, PA or PD

IoTDraw is easy to use. However, the participants identified opportunities for

improvements considering the ease of use.

Q1, Q2, Q3

and Q4 = TD or BD

IoTDraw is not easy to use. Therefore, the usability of the framework should be

reviewed based on usability heuristics described in the technical literature and in the

participants’ comments.

Table 8. Interpretation model regarding the usefulness of IoTDraw

Configuration Interpretation

Q4, Q5, Q6

and Q7 = TA

IoTDraw is very useful for the specification and analysis of SOA-based IoT

applications. It is not necessary to implement improvements regarding aspects of

utility; thus, the framework can be used immediately to support the specification and

analysis of SOA-based IoT applications.

Q4, Q5, Q6 and

Q7 = BA, PA or PD

IoTDraw is very useful for the specification and analysis of SOA-based IoT

applications. However, the participants identified opportunities for improvements

considering the usefulness of the framework.

Q4, Q5, Q6

and Q7 = TD or BD

IoTDraw is not very useful for the specification and analysis of SOA-based IoT

applications. In this way, the set of requirements that drove the development of the

framework must be reviewed, aiming to identify the functionalities that may provide

greater utility for the specification and analysis of SOA-based IoT applications.

For the execution of the evaluation study of IoTDraw, we counted on the participation of 10 software engineers. All

the participants have at least five years of experience in the specification and development of software systems in the

industry. Furthermore, the participants have knowledge about UML, SOA, and the concepts of the Internet of Things,

which has enabled them to develop prototypes of sensing applications with Arduino [73] and Raspberry Pi [74].

To support the evaluation, it was necessary to perform a training about basic functionalities of IoTDraw. Since the

tool was conceived on Eclipse Papyrus, we also provide explanation and examples of usage of such a tool. In the training,

we discuss IoT application domains based on the real applications developed by Libelium [36]. Quality attributes for IoT

were also analyzed and discussed.

After the training, the participants were asked to conceive a hypothetical set of functional requirements for an SOA-

based IoT application for a domain of choice. After this task, the participants were asked to specify an application by

using the IoTDraw to fulfill such requirements. Next, we ask the participants to analyze the specified application in light

of the current QoS attributes supported by the IoTDraw. Finally, the participants evaluate the framework by answering a

Google Form. The answers were stored in a spreadsheet and analyzed according to the criteria introduced earlier.

5.3.2 Results

After performing the study and the participants answering the evaluation form, we analyze the answers. Firstly, we

group them within the categories introduced before (i.e., TA, BA, PA, PD, BD, TD). Such grouping is presented in Table

9. Next, for each question, we apply the configuration model introduced in Table 7 and Table 8.

Table 9. Configuration of the concept assigned to each question of GQM model

Questions
Number of answers

TA BA PA PD BD TD

It was easy to learn the IoTDraw framework 3 4 3 0 0 0

I was able to use the IoTDraw in the way I want to 3 2 4 1 0 0

I understand what happened in my interaction with IoTDraw 7 2 1 0 0 0

It was easy to specify and analyze the IoT application by using

IoTDraw
2 5 2 1 0 0

I consider the IoTDraw framework useful to specify and

analyze SOA-based IoT applications
8 1 1 0 0 0

The IoTDraw allows to specify and analyze an SOA-based IoT

application following the activities defined in the development

process

8 1 1 0 0 0

The usage of the IoTDraw allow enhancing the specification

and analysis of SOA-based IoT applications
7 2 1 0 0 0

In general, it can be seen a trend of agreement with the questions proposed for evaluation of the IoTDraw. By

classifying the answers according to the configurations presented in Table 7 and Table 8, we have the following results

presented in Table 10. An important result of our study is that any participant broadly or totally disagrees with questions

regarding ease of use and usefulness of IoTDraw. The improvements pointed by the participants will be addressed as

future work.

Table 10. Interpretation model regarding the ease of use of IoTDraw

Criteria Interpretation Agree

Ease of

use

IoTDraw is easy to use. It is not necessary improvements regarding usability, in such a way that

the tool can be used immediately to support the specification and analysis of SOA-based IoT

applications.

43.3%

IoTDraw is easy to use. However, the participants identified opportunities for improvements

considering the ease of use.
56.7%

IoTDraw is not easy to use. Therefore, the usability of the framework should be reviewed based

on usability heuristics described in the technical literature and in the participants’ comments.
0%

Usefulness

IoTDraw is very useful for the specification and analysis of SOA-based IoT applications. It is not

necessary to implement improvements regarding aspects of utility; thus, the framework can be

used immediately to support the specification and analysis of SOA-based IoT applications.

62.5%

IoTDraw is very useful for the specification and analysis of SOA-based IoT applications.

However, the participants identified opportunities for improvements considering the usefulness of

the framework.

37.5%

IoTDraw is not very useful for the specification and analysis of SOA-based IoT applications. In

this way, the set of requirements that drove the development of the framework must be reviewed,

aiming to identify the functionalities that may provide greater utility for the specification and

analysis of SOA-based IoT applications.

0%

6 Related Work

In this section, we analyze the related work in the context of IoT (UML4IoT [9], ArchWiSeN [10], COMFIT [6], Patel

& Cassou [4], IoT Link [75], ThingML [20], and ELIoT [76]) and Cyber-Physical Systems (Zhang [77], TERRA [78],

and Thramboulidis [79]), which can be seen as a superset of IoT. Initially, we introduce each study, highlighting their

characteristics that are related to our work. Next, we analyze the existing works, compared to our proposal, in the light of

two different aspects, which constitute key contributions of our work. The first aspect is the expressiveness of the

SoaML4IoT metamodel in comparison with the other proposals. The second aspect regards how well our proposal and

related studies fulfil a set of requirements that a modeling framework must meet in order to enable the precise

representation and simulation of SOA-based IoT applications, as introduced by the literature.

The UML4IoT [9] consists of a UML profile comprising concepts for representing low-level mechatronic components

and IoT sensors for manufacturing systems. The authors consider an IoT manufacturing system as a composition of cyber-

physical, cyber and human components, and the IoT acts as glue for the integration of such components. The profile

exploits the OMA LWM2M application protocol [80] and IPSO smart objects [81], which focus on modeling the exposed

interface of simple smart objects. The DSL has implicit execution semantics. It provides a code generator of the IoT-

compliant layer that is required for the cyber-physical component to be integrated into the analyzed IoT manufacturing

environment.

The ArchWiSeN (Architecture for Wireless Sensor and Actuator Networks) [10] is an infrastructure based on Model-

Driven Architecture (MDA) [8] for Wireless Sensor Networks. As a particular vision of MDD proposed by the OMG;

thus, MDA is built on OMG standards (e.g., UML, MOF). It relies on the creation of models in different levels of

abstraction (business, application, and platform technology), and on performing a set of model-to-model and model-to-

code transformations. Thus, in MDA approaches, the execution semantics is essentially implicit in the translators. The

authors of ArchWiSeN [10] propose a generic middleware metamodel as well as platform-specific metamodels aiming to

support the code generation and UML-based DSLs.

Similarly to ArchWiSeN, the authors of COMFIT (Cloud and Model based IDE for the Internet of Things) [6] also

propose a development environment built on MDA principles. It provides a graphical modeling language based on UML

for designing applications focused on WSN applications. The framework encompasses a generic middleware metamodel

including concepts shared among different WSN solutions. The objective is to generate middleware models tailored to

the application requirements while respecting the resource constraints of the devices.

Patel and Cassou [4] present an MDD framework for IoT applications that addresses the lack of division of roles and

the heterogeneity of devices in different phases of the IoT application development life cycle. The authors identify the

stakeholders in WSN systems and propose a set of textual DSLs providing abstractions for specifying different types of

devices of the WSN domain. The execution semantics of these languages are defined implicitly, through code-generators

that translate the models into the formal target languages.

The authors of IoTLink [75] propose a framework to help inexperienced developers to create IoT applications. To

achieve this goal, IoTLink provides graphical DSLs based on the MDA that encapsulate the complexity of communicating

with devices and services on the Internet. Furthermore, the proposed approach also abstracts devices as virtual objects

that are accessible through different communication technologies. A code generator specifies the execution semantics, by

translating the compliant models into Java code.

The ThingML [20] framework consists of a textual modeling language and a set of tools for developing IoT

applications. The modeling language is aligned with UML by applying concepts of statecharts and components. The tools

encompass code generators to translate the models created with the proposed language into formal target languages. These

tools comprise the implicit execution semantics of ThingML.

ELIoT [76] is an IoT application development platform that provides a textual DSL comprising concepts to represent

Internet-connected smart devices. Unlike the other approaches, the execution semantics of the DSL provided by ELIoT

is defined explicitly. Thus, as allowed by IoTDraw, system models created with such a language can be executed in a run-

time engine platform provided by the approach. The DSL provided by ELIoT is based on Erlang [82], a programming

language used to build real-time systems. Thus, specifying IoT applications with ELIoT assumes that the user has

intermediate knowledge of Erlang.

In the context of CPS, in [77] the author proposes an approach to support the specification and modeling of automotive

cyber-physical systems based on systems-of-systems engineering. A formal specification method was applied in the

requirement analysis process in order to ensure that the software requirements model satisfies the required system

function, performance goals and constraints, including safety. The author applied ModelicaML, whose execution

semantics is defined explicitly, allowing the execution of ModelicaML-based models. The metamodel proposed by the

authors encompasses low-level, electronic components of IoT devices.

Similar to the previous work, the Twente Embedded Real-time Robotic Application (TERRA) [78] is an MDD tool

suite, supporting the design of IoT applications that also focuses on electronic components of IoT devices. Its tools range

from a DSL and editors to graphically design the models to code generation tools to convert the models into source code.

All structures of the TERRA models are defined by meta-models. These meta-models define all model elements and their

usage. TERRA adopts code generation to execute the models, thus, the execution semantics is defined implicitly in the

translator.

Finally, the work proposed by Thramboulidis [79] introduces a modeling framework for Industrial automation systems

(IASs). The software for IAS commonly integrates mechanics and electronics. The framework is based on a cyber-

physical system-based approach and can also be used to generate implementations on the various ARM-based embedded

boards that have recently appeared in the market. These implementations are performed through a translation from the

models into the target boards, thus, applying the implicit semantics to simulate the models.

6.1 Expressiveness analysis

The expressiveness concerns the degree to which a language allows its users to capture phenomena in the domain

[83]. Thus, the more aspects of the domain of interest can be represented by the language, the higher expressiveness such

language has. In light of the framework for measuring expressiveness in conceptual modeling proposed by Patig [84], we

assess the expressiveness of IoTDraw metamodel comparing it with the related work introduced above.

In the Patig’s framework, 𝐷1 and 𝐷2 denote two metamodels, whose expressiveness is to be compared. The models

are represented by 𝑀(𝐷1) and 𝑀(𝐷2), respectively. Two metamodels 𝐷1 and 𝐷2 are equally expressive if every model of

𝐷1 is also a model of 𝐷2 and vice-versa, i.e., 𝑀(𝐷1) = 𝑀(𝐷2). On the other hand, a description 𝐷1is more expressive than

a description 𝐷2 if all models of 𝐷2 are proper subsets of the models of 𝐷1, that is, 𝑀(𝐷1) ⊃ 𝑀(𝐷2). In other words, 𝐷1

provides all elements to create 𝑀(𝐷2), including the elements to create 𝑀(𝐷1). In our evaluation, we compare the

expressiveness of 𝑀(IoTDraw), 𝑀(UML4IoT) [9], 𝑀(ArchWiseN) [10], 𝑀(COMFIT) [6], 𝑀(Patel&Cassou) [4],

 𝑀(IoT Link) [75], 𝑀(ThingML) [20], 𝑀(ELIoT) [76], 𝑀(Zhang) [77], 𝑀(TERRA) [78], and 𝑀(Thramboulidis) [79].

The expressiveness of the metamodels are verified according to a set of statements that the models can represent. By

statement, we mean a syntactic expression and its meaning. As introduced by the Patig’s framework, first-order predicate

logic [85] can be used as a common description language to represent the statements, because of the comprehensible

definition of its models. Thus, each statement is modeled as an atomic formula, representing one a portion description of

the domain of interest.

In order to conceive the list of statements to compare the expressiveness of SoaML4IoT metamodel with related

works, we analyze proven reference models of IoT and SOA. Reference models represent a set of essential concepts and

relationships between them concerning a specific domain abstractly [86]. They are based on a small number of unifying

concepts and can be used as a basis for explaining a given domain. We identified key concepts covered by such reference

models and represent them as first-order logic statements. For the IoT domain, we analyze the IoT Architectural Reference

Model (IoT-ARM) [11], the WSO2 IoT Reference Architecture [28], and the IEEE Standard for an Architectural

Framework for Internet of Things (P2413) [58]. Considering the SOA style, we analyze the OASIS [87] and SOA

Ontology [88], which are two of the most popular reference models for SOA.

The set of statements is listed in Table 11. Besides identifying key elements of the IoT domain, these statements

represent the expressivity of the metamodel to allow answering design questions related to the SOA style.

Table 11. Statements for SOA-based modeling frameworks

Statement Description

S1 𝑖𝑜𝑡𝑆𝑦𝑠𝑡𝑒𝑚(𝑖) The IoT system 𝑖

S2 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚(𝑝) The platform 𝑝

S3 𝑐𝑙𝑜𝑢𝑑(𝑝) The platform 𝑝 is of type cloud

S4 𝑓𝑜𝑔(𝑝) The platform 𝑝 is of type fog

S5 𝑑𝑒𝑣𝑖𝑐𝑒(𝑑) The platform 𝑝 is of type device

S6 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐸𝑛𝑡𝑖𝑡𝑦(𝑒) The physical entity 𝑒

S7 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑙, 𝑒) The location 𝑙 of physical entity 𝑒

S8 𝑖𝑠𝐴𝑡𝑡𝑎𝑐ℎ𝑒𝑑𝑇𝑜(𝑑, 𝑒) The device 𝑑 is attached to the physical entity 𝑒

S9 𝑡𝑎𝑠𝑘(𝑡, 𝑑) The task 𝑡 performed by the device 𝑑

S10 𝑛𝑒𝑡𝑤𝑜𝑟𝑘(𝑛) The network 𝑛

S11 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑎) The application 𝑎

S12 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑐, 𝑎) The component 𝑐 of the application 𝑎

S13 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟(𝑐) The role 𝑚 of the component 𝑐

S14 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟(𝑑) The role of the device 𝑑

S15 𝑠𝑒𝑟𝑣𝑖𝑐𝑒(𝑡, 𝑠) The task 𝑡 is exposed by the service 𝑠

S16 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡(𝑠, 𝑡) The contract 𝑡 of the service 𝑠

S17 𝑐ℎ𝑜𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦(𝑠, ℎ) The choreography ℎ of the service 𝑠

S18 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑇𝑦𝑝𝑒(𝑠, 𝑚) The message type 𝑚 of the service 𝑠

S19 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡(𝑟) The requirement 𝑟

S20 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙(𝑟, 𝑓) The type 𝑓 (Functional) of requirement 𝑟

S21 𝑞𝑜𝑠(𝑟, 𝑞) The type 𝑞 (QoS) of requirement 𝑟

S22 𝑚𝑢𝑠𝑡𝐹𝑢𝑙𝑓𝑖𝑙𝑙(𝑎, 𝑟) The application 𝑎 must fulfill the requirement 𝑟

S23 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑢, 𝑖) The simulation 𝑢 of an IoT system 𝑖

S24 𝑡𝑖𝑚𝑒𝑟(𝑡, 𝑢) The simulation timer 𝑡 of the simulation 𝑢

S25 𝑒𝑣𝑒𝑛𝑡(𝑣) The simulation event 𝑣

S26 𝑠𝑡𝑎𝑡𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(𝑥) The state variable 𝑥

S27 𝑠𝑡𝑎𝑡𝑒(𝑦) The simulation state 𝑦

S28 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑧) The simulation activity 𝑧

After introducing the statements, in Table 12 we compare the expressivity of our proposal with the existing modeling

frameworks for IoT, with focus on their capability to represent SOA-based concepts. In our analysis, we search for

concepts that are first-class elements in the modeling languages.

Table 12. Expressivity comparison between our approach and related work

𝑴(𝐈𝐨𝐓𝐃𝐫𝐚𝐰) [9] [10] [6] [4] [75] [20] [76] [77] [78] [79]

S1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

S2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

S3 ✓ - - ✓ - ✓ - - - - -

S4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - -

S5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

S6 ✓ ✓ - - - ✓ - - - ✓ ✓

S7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

S8 ✓ - - - - - ✓ ✓ - ✓ -

S9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

S10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

S11 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

S12 ✓ - - - - - ✓ - ✓ ✓ ✓

S13 ✓ - - - - - - - - - -

S14 ✓ - - - - - ✓ ✓ ✓ - -

S15 ✓ - - - - - ✓ ✓ - - -

S16 ✓ - - - - - - - - - ✓

S17 ✓ - - - - - - - - - -

𝑴(𝐈𝐨𝐓𝐃𝐫𝐚𝐰) [9] [10] [6] [4] [75] [20] [76] [77] [78] [79]

S18 ✓ - - - - - ✓ ✓ - ✓ -

S19 ✓ - ✓ ✓ - - - - - - -

S20 ✓ - ✓ ✓ - - - - - - -

S21 ✓ - ✓ ✓ - - - - - - -

S22 ✓ - ✓ ✓ - - - - - - -

S23 ✓ - - - - - - ✓ - - -

S24 ✓ - - - - - - ✓ - - -

S25 ✓ - - - - - - ✓ - - -

S26 ✓ - - - - - - ✓ - - -

S27 ✓ - - - - - - ✓ - - -

S28 ✓ - - - - - - ✓ - - -

✓= the framework provides concepts to represent the statement -= the framework does not provide concepts

to represent the statement.

As presented in Table 12, it can be observed that SoaML4IoT is more expressive than the related works concerning

the analyzed aspects. Most of the modeling frameworks provide concepts to represent elements of the IoT domain, that

is, platforms (cloud, fog, device), tasks, networks, applications, and physical entities. However, many of the frameworks

organize their applications as a monolithic software unit, i.e., they do not allow representing the application as a

composition of components. Considering the concepts regarding SOA, none of the analyzed approaches provides first-

class elements to represent participants roles, contracts, or choreography. The framework ThingML [20], indeed, is based

on the services approach, however, it does not support a clear definition of aspects related to service contract and

choreography.

Considering aspects related to requirements specification, only the approaches ArchWiseN [10] and COMFIT [6]

provide components for representing functional and non-functional requirements. Such frameworks are based on MDA

[8], in which the Platform-Independent Model (PIM) receives as an input the requirements that will define the behavior

of the system. In the following, the PIM is transformed into the Platform-Specific Model (PSM), which specifies the

technological aspects in detail aiming to address the requirements elicited earlier. The other approaches assume that

application logic and application requirements have been previously defined and does not provide components related to

functional and non-functional requirements.

Finally, only the framework ELIoT [76] provides concepts related to model execution and simulation, which allows

simulating its models without requiring transforming its compliant models into another language. As a simulator, the

framework allows representing the concepts of computational simulation, such as, timer, event, state and activity.

It can therefore be concluded that our proposal allows representing a wide range of characteristics of both the IoT and

SOA domains, making it the most expressive approach for building SOA-based IoT applications, to the best of our

knowledge.

6.2 Modeling framework analysis considering requirements elicited by the literature

Besides expressiveness, the literature indicates other elements that a modeling framework must provide in order to

allow the precise representation and simulation of systems in general and, more specifically, SOA-based IoT applications.

Such elements can be seen as requirements that a modeling framework must fulfill. The requirements are introduced by

Brambilla and others [8] and complemented by Tatibouët and others [43]. In the following, we introduce each

requirement, followed by the analysis of their fulfillment by IoTDraw and the related work.

Expressiveness (MFR1): The first requirement that shall be addressed by an MDD framework is to provide a metamodel

with a coherent set of concepts related to the IoT domain in general and, more specifically, the SOA style. The concepts

shall be represented as first-class elements, supporting the identification of key components of an SOA-based IoT

application. The concepts from both IoT and SOA domain must have an explicit relation, allowing to identify the roles of

the IoT components considering the services approach.

Well-Defined Notation (MFR2): Aiming to allow the representation of IoT systems, the second requirement that shall

be addressed by a modeling framework is to provide a well-defined notation. It must cover the elements of its metamodel

and provide a tool to support the specification of IoT systems by using the DSL.

Extensibility (MFR3): The third requirement that shall be addressed by a modeling framework is a clear definition on

how to extend it to allow representing other aspects that are not covered by the DSL.

Explicit Execution Semantics (MFR4): To execute and simulate the model allowing answering questions at design-

time, the DSL must provide the execution semantics explicitly, avoiding applying translational approaches, and

supporting the architectural decision-making process. Therefore, the third requirement for a modeling framework is that

the execution semantics of the modeling language must be explicitly specified.

Table 13 provides an overview of the fulfillment of the modeling frameworks regarding the requirements MFR1

to MFR4, that is, Expressiveness (MFR1), Well-Defined Notation (MFR2), Extensibility (MFR3), and Explicit Execution

Semantics (MFR4). From the table, we can first observe that none of the frameworks entirely fulfills our requirements.

Table 13. Requirements fulfilling of related work

Framework MFR1 MFR2 MFR3 MFR4

IoTDraw ✓ ✓
4,5 ✓ ✓

UML4IoT [9] o2 ✓
4,5 o 6

7

ArchWiSeN [10] o2 ✓
4,5 o 6

7

COMFIT [6] o2 ✓
4,5 o 6

7

Patel & Cassou [4] o1 ✓
3

7

IoTLink [75] o1 ✓
4,5 o 6

7

ThingML [20] o1 ✓
3,5 o 6

7

ELIoT [76] o1 ✓
3 ✓

Zhang [77] o1 ✓
4,5 o 6

7

TERRA [78] o1 ✓
3

7

Thramboulidis [79] o1 ✓
4,5 o 6

7

✓= requirement fulfilled; = requirement not fulfilled o = requirement partially fulfilled;
1 provides concepts of IoT but lack SOA-related elements; 2 focus on WSN; 3 textual; 4 graphical;
5 based on UML; 6 it is possible to extend due the subjacent technology used to create the DSL,

however, the approach has unclear extensibility rules; 7 implicit execution semantics.

We can observe that IoTDraw fulfills all the requirements for modeling frameworks. In the previous section, we

analyze the expressivity of IoTDraw, when comparing it with other approaches. As introduced in Section 4.2, our

framework provides a DSL based on UML, the SoaML4IoT. Section 4.4 introduces the extensibility rules of SoaML4IoT.

Finally, as presented in Section 4.3, SoaML4IoT provides an explicit execution semantics, which allows the execution of

SoaML4IoT-based models. The analysis of how the frameworks proposed by related works fulfill the abovementioned

requirements is presented below.

The “Expressiveness” requirement, MFR1, is partially fulfilled by all the surveyed modeling frameworks. However,

the approaches provide conceptualizations for either IoT systems in general, without concepts related to the SOA style,

or specifically for Wireless Sensor Networks (WSN). When providing only general concepts for IoT, the approaches lack

concepts to identify elements of SOA-based systems. On the other hand, modeling approaches that focus on WSN have

a comprehensive set of concepts and related properties regarding devices and networks. In this sense, it is possible to

represent several aspects of the infrastructure of the IoT system. However, without elements regarding upper abstraction

levels, such as the applications’ architecture, the model can be incomplete, lacking the support for the representation and

analysis of the system. The requirement MRF2 “Well-Defined Notation” is also fulfilled by all the surveyed modeling

frameworks. Most of them provide graphical notation representing the domain concepts. An important finding is that

most of the graphical notations is based on UML, which reinforced our decision to use OMG standards to build our work

on.

Regarding the third requirement (MFR3) – “Extensibility,” an interesting finding is that none of the surveyed

approaches provides clear specifications of extensibility rules to extend the DSLs, which would allow representing other

aspects that the language does not provide. The extension of DSLs built on UML can follow the profiling mechanism.

Without formalizing extensibility rules of the approaches, the authors transfer the extension process of their languages to

the modelers, who may extend the language in an ad-hoc fashion. However, this is risky, since the extension may cause

the DSL to become incompatible with the metamodel and other components of the modeling frameworks.

Finally, regarding the fourth requirement (MFR4) – “Explicit Execution Semantics” – we identify that only ELIoT

[76] provides explicit execution semantics. On the other hand, all the other surveyed approaches provide DSLs with

implicit execution semantics; thus, requiring translating the system description into a formal language to execute it.

Another interesting finding is that none of the approaches focuses on supporting the architectural decision-making

process. That is, the approaches do not provide mechanisms to predict at design time the properties of systems’ artefacts.

Instead, the proposals focus on generating code for the platforms. However, in this way, it is difficult to answer design

questions and analyze the impact of design decisions on the architecture, since the execution models refer to the

application code itself. To execute and simulate the system behavior it would be necessary to deploy the components in

the platforms and verify the various design alternatives at runtime.

7 Final Remarks and Future Work

Through IoTDraw, the modelers would be able to identify key elements regarding both IoT and SOA style, considering
the specification of periodic applications. Our framework helps to answer important design questions, supporting the
architectural decision-making process. Even for the simple scenario of FW application, with a reduced number of
platforms and components, it would be difficult to answer the design questions without the support of the IoTDraw.
Considering a more complex scenario, it may become humanly infeasible to select the best architectural configuration
without a supporting framework. Finally, the study conducted with software engineers of the industry has identified that
our framework is easy to be used and, primarily, useful for the specification and analysis of SOA-based periodic IoT
applications.

The SoaML4IoT extends the SoaML profile by enhancing its metamodel with IoT-specific concepts. Therefore, we
follow the SoaML design, which does not specify any constraint to support model validation. In our approach, the only
constraints that support the modelers to conceive models that are compliant with SoaML4IoT metamodels are the
relationships and cardinalities. Important future work is to analyze which constraints should be created furthering the
correctness of the models. Such constraints must reflect rules of the IoT applications domain. Since SoaML4IoT is fully
OMG-compliant, the constraints can be written in OCL, for example, as invariants and pre- and post-conditions. Another
direction is to advance the framework to support security and cost estimation specification and analysis, as such aspects
were pointed as important concerns when developing IoT applications. Supporting security issues will require a deeper
analysis, while concerning the cost estimation feature, we envision the possibility of extending SoaML4IoT by adding
new tagged values representing the cost model of the provider. The calculation could be performed by creating a fUML
Activity Diagram, and integrate it with the application behavior (e.g., Figure 6).

The current version of IoTDraw does not cover elements related to self-configuration. In IoT systems that encompass
dozens to thousands of interacting IoT devices, this is an important ability to allow the system to adapt itself to
environmental changes. Therefore, extend or integrate SoaML4IoT with reference models that provide concepts related
to self-configuration, such as MAPE-K [89], is one important direction of this work. Finally, we envision the integration
of SoaML4IoT with microservices metamodels. Thus, it would be possible to specify architecture with vertical
decomposition, allowing to define an arbitrary number of hierarchical levels and a more fine-grained deployment
optimization.

Acknowledgments

This study was partially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil
(CAPES), through Finance Code 001, and by São Paulo Research Foundation – FAPESP, through grant number
2015/24144-7. Paulo Pires and Flávia Delicato are CNPq Fellows

References

[1] R. Buyya and A. V. Dastjerdi, Eds., Internet of Things: Principles and Paradigms. Elsevier, 2016.

[2] A. Pathak and V. K. Prasanna, “High-Level Application Development for Sensor Networks: Data-Driven Approach,” in Theoretical Aspects

of Distributed Computing in …, 2011, pp. 865–891.

[3] S.-H. Yang, “Principle of Wireless Sensor Networks,” in Wireless Sensor Networks: Principles, Design and Applications, Springer, 2014, p.

7.

[4] P. Patel and D. Cassou, “Enabling High-level Application Development for the Internet of Things,” J. Syst. Softw., vol. 103, pp. 62–84, Jan.

2015, doi: 10.1016/j.jss.2015.01.027.

[5] P. Patel, B. Morin, and S. Chaudhary, “A model-driven development framework for developing sense-compute-control applications,” in

Proceedings of the 1st International Workshop on Modern Software Engineering Methods for Industrial Automation - MoSEMInA 2014,

2014, pp. 52–61, doi: 10.1145/2593783.2593784.

[6] C. M. de Farias et al., “COMFIT: A development environment for the Internet of Things,” Futur. Gener. Comput. Syst., 2016, doi:

10.1016/j.future.2016.06.031.

[7] T. Rodrigues, F. C. Delicato, T. Batista, P. F. Pires, and L. Pirmez, “An approach based on the domain perspective to develop WSAN

applications,” Softw. Syst. Model., vol. 16, no. 4, pp. 949–977, Sep. 2015, doi: 10.1007/s10270-015-0498-5.

[8] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engineering in Practice. Morgan & Claypool Publishers, 2012.

[9] K. Thramboulidis and F. Christoulakis, “UML4IoT—A UML-based approach to exploit IoT in cyber-physical manufacturing systems,”

Comput. Ind., vol. 82, pp. 259–272, Oct. 2016, doi: 10.1016/j.compind.2016.05.010.

[10] T. C. Rodrigues, T. Batista, F. C. Delicato, and P. de F. Pires, “Architecture-Driven Development Approach for WSAN Applications,” in

2015 IEEE 13th International Conference on Embedded and Ubiquitous Computing, 2015, pp. 68–75, doi: 10.1109/EUC.2015.15.

[11] A. Bassi et al., Eds., Enabling things to talk: Designing IoT solutions with the IoT Architectural Reference Model. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2013.

[12] P. Spiess et al., “SOA-Based Integration of the Internet of Things in Enterprise Services,” in 2009 IEEE International Conference on Web

Services, 2009, pp. 968–975, doi: 10.1109/ICWS.2009.98.

[13] T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall, 2005.

[14] ISO/IEC, “ISO/IEC 25010:2011 - Systems and software engineering -- Systems and software Quality Requirements and Evaluation (SQuaRE)

-- System and software quality models,” 2011.

[15] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice. Addison-Wesley, 2012.

[16] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, “Interacting with the SOA-Based Internet of Things: Discovery, Query,

Selection, and On-Demand Provisioning of Web Services,” IEEE Trans. Serv. Comput., vol. 3, no. 3, pp. 223–235, Jul. 2010, doi:

10.1109/TSC.2010.3.

[17] Microsoft, “Azure IoT,” 2019. .

[18] Amazon, “AWS IoT,” 209AD. .

[19] A. Farahzadi, P. Shams, J. Rezazadeh, and R. Farahbakhsh, “Middleware technologies for cloud of things: a survey,” Digit. Commun.

Networks, vol. 4, no. 3, pp. 176–188, Aug. 2018, doi: 10.1016/J.DCAN.2017.04.005.

[20] B. Morin, N. Harrand, and F. Fleurey, “Model-Based Software Engineering to Tame the IoT Jungle,” IEEE Softw., vol. 34, no. 1, pp. 30–36,

Jan. 2017, doi: 10.1109/MS.2017.11.

[21] R. H. Reussner et al., Modeling and Simulating Software Architectures -- The Palladio Approach. The MIT Press, 2016.

[22] P. Clements et al., Documenting Software Architectures: Views and Beyond. Pearson Education, 2010.

[23] I. S. Udoh and G. Kotonya, “Developing IoT applications: challenges and frameworks,” IET Cyber-Physical Syst. Theory Appl., vol. 3, no. 2,

pp. 65–72, Jun. 2018, doi: 10.1049/iet-cps.2017.0068.

[24] Libelium, “IoT Survey: key concerns and barriers to develop successful projects,” 2019. [Online]. Available: http://www.libelium.com/iot-

survey-key-concerns-and-barriers-to-develop-successful-projects/.

[25] B. Costa, P. F. Pires, and F. C. Delicato, “Modeling SOA-Based IoT Applications with SoaML4IoT,” in Proceedings of the IEEE 5th World

Forum on Internet of Things (to apper), 2019.

[26] OMG, “Service oriented architecture Modeling Language (SoaML) Specification. Version 1.0.1,” 2012.

[27] OMG, “Unified Modeling Language - UML, Version 2.5.1,” 2017. Accessed: 02-Apr-2018. [Online]. Available:

https://www.omg.org/spec/UML/About-UML/.

[28] P. Fremantle, “A Reference Architecture For the Internet of Things.” WSO2, 2014.

[29] OMG, “Semantics Of A Foundational Subset For Executable UML Models (FUML),” 2017. http://www.omg.org/spec/FUML/ (accessed

Dec. 10, 2015).

[30] “Moka,” 2015. https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution (accessed Dec. 10, 2015).

[31] M. N. O. Sadiku, Y. Wang, S. Cui, and S. Musa, “Industrial Internet of Things,” Int. J. Adv. Sci. Res. Eng., vol. 3, no. 11, 2017, doi:

10.7324/IJASRE.2017.32538.

[32] H. Koziolek, A. Burger, and J. Doppelhamer, “Self-Commissioning Industrial IoT-Systems in Process Automation: A Reference

Architecture,” in Proceedings - 2018 IEEE 15th International Conference on Software Architecture, ICSA 2018, 2018, pp. 196–205, doi:

10.1109/ICSA.2018.00029.

[33] D. Großmann, M. Braun, B. Danzer, and M. Riedi, FDI - Field Device Integration. Berlin, Germany: Vde Verlag GmbH, 2013.

[34] ISA, “ANSI/ISA95.” https://isa-95.com/ (accessed Nov. 11, 2019).

[35] F. C. Delicato, P. F. Pires, and T. Batista, Middleware Solutions for the Internet of Things. London, United Kindom: Springer, 2013.

[36] D. Gascon and A. Asin, “Top 50 Internet of Things Applications - Ranking | Libelium,” 2018.

http://www.libelium.com/resources/top_50_iot_sensor_applications_ranking/ (accessed Jan. 22, 2018).

[37] B. Elvesæter, A.-J. Berre, and A. Sadovykh, “Specifying Services using the Service Oriented Architecture Modeling Language (SoaML) - A

Baseline for Specification of Cloud-based Services,” in Proceedings of the 1st International Conference on Cloud Computing and Services

Science, 2011.

[38] N. Dragoni et al., “Microservices: Yesterday, today, and tomorrow,” in Present and Ulterior Software Engineering, Cham: Springer

International Publishing, 2017, pp. 195–216.

[39] C. Pahl and P. Jamshidi, “Microservices: A Systematic Mapping Study,” in Proceedings of the 6th International Conference on Cloud

Computing and Services Science, 2016, pp. 137–146, doi: 10.5220/0005785501370146.

[40] M. Bruce and P. A. Pereira, Microservices in action. 2019.

[41] F. Rademacher, J. Sorgalla, and S. Sachweh, “Challenges of domain-driven microservice design: A model-driven perspective,” IEEE Softw.,

vol. 35, no. 3, pp. 36–43, May 2018, doi: 10.1109/MS.2018.2141028.

[42] T. Mayerhofer, “Defining Executable Modeling Languages with fUML. Ph.D. Dissertation,” Inst. Softw. Technol. Interact. Syst., 2014,

[Online]. Available: https://publik.tuwien.ac.at/showentry.php?ID=233990&lang=2.

[43] J. Tatibouët, A. Cuccuru, S. Gérard, and F. Terrier, “Formalizing execution semantics of UML profiles with fUML models,” Lect. Notes

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8767, pp. 133–148, 2014, doi: 10.1007/978-3-319-

11653-2_9.

[44] ISO, “ISO 18629, Process Specification Language,” 2004. [Online]. Available: http://www.nist.gov/psl.

[45] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns – Elements of Reusable Object-Oriented Software. 2002.

[46] Google, “Overview of Internet of Things,” 2018. https://cloud.google.com/solutions/iot-overview (accessed Jun. 26, 2018).

[47] A. Taivalsaari and T. Mikkonen, “A Roadmap to the Programmable World: Software Challenges in the IoT Era,” IEEE Softw., vol. 34, no. 1,

pp. 72–80, Jan. 2017, doi: 10.1109/MS.2017.26.

[48] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet of things,” in Proceedings of the first edition of

the MCC workshop on Mobile cloud computing - MCC ’12, 2012, p. 13, doi: 10.1145/2342509.2342513.

[49] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of Things for Smart Cities,” IEEE Internet Things J., vol. 1, no. 1,

pp. 22–32, Feb. 2014, doi: 10.1109/JIOT.2014.2306328.

[50] IEEE, “IEEE 802.15 WPANTM Task Group 4e (TG4e).” http://www.ieee802.org/15/pub/TG4e.html (accessed Jul. 24, 2017).

[51] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol (CoAP) - RFC 7252,” 2014. https://tools.ietf.org/html/rfc7252.

[52] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of IPv6 Packets over IEEE 802.15.4 Networks - RFC4944.” IETF,

2007.

[53] T. Winter et al., “RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks - RFC6550.” IETF, 2012, [Online]. Available:

https://tools.ietf.org/html/rfc6550.

[54] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing As a Service Model for Smart Cities Supported by Internet of Things,”

Trans. Emerg. Telecommun. Technol., vol. 25, no. 1, pp. 81–93, 2014, doi: 10.1002/ett.2704.

[55] A. Alfieri, A. Bianco, P. Brandimarte, and C. F. Chiasserini, “Maximizing system lifetime in wireless sensor networks,” Eur. J. Oper. Res.,

vol. 181, no. 1, pp. 390–402, 2007, doi: 10.1016/j.ejor.2006.05.037.

[56] S. Ouni and Z. T. Ayoub, “Predicting Communication Delay and Energy Consumption for IEEE 802.15.4/zigbee Wireless Sensor Networks,”

Int. J. Comput. Networks Commun., vol. 5, 2013.

[57] S. C. Ashraf, R. Amin, M. Alghobiri, and T. A. Malik, “Ensuring Reliability & Freshness in Wireless Sensor Networks,” in Proceedings of

2010 International Conference on Intelligent Network and Computing (ICINC 2010), 2010.

[58] IEEE, “IEEE P2413 Working Group,” 2015. http://grouper.ieee.org/groups/2413/ (accessed Aug. 03, 2015).

[59] J. Banks, J. S. Carson, B. L. Nelson, and M. D. Nicol, Discrete-Event System Simulation, 5th ed. Prentice Hall, 2009.

[60] “OMG Model Driven Architecture.” http://www.omg.org/mda/ (accessed Mar. 03, 2015).

[61] C. Richardson, POJOs in Action: Developing Enterprise Applications with Lightweight Frameworks, 1st ed. Greenwich, CT.

[62] F. D. Davis, “User acceptance of information technology: system characteristics, user perceptions and behavioral impacts,” Int. J. Man. Mach.

Stud., vol. 38, no. 3, pp. 475–487, Mar. 1993, doi: 10.1006/imms.1993.1022.

[63] Libelium, “e-Health Sensor Platform V2.0 for Arduino and Raspberry Pi [Biometric / Medical Applications],” 2015. https://www.cooking-

hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical (accessed Jul. 18, 2016).

[64] A. Cocchia, “Smart and Digital City: A Systematic Literature Review,” Springer, Cham, 2014, pp. 13–43.

[65] T. Erl, SOA Principles of Service Design. Prentice Hall, 2007.

[66] M. N. Halgamuge, M. Zukerman, K. Ramamohanarao, and H. L. Vu, “An Estimation of Sensor Energy Consumption,” Prog. Electromagn.

Res. B, vol. 12, pp. 259–295, 2009, doi: 10.2528/PIERB08122303.

[67] M. Laitkorpi et al., “RESTful, resource-oriented architectures: a model-driven approach,” Web Inf. Syst. …, pp. 173–180, Jul. 2013, doi:

10.1109/ICWS.2009.63.

[68] T. Erl, B. Carlyle, C. Pautasso, and R. Balasubramanian, “SOA with REST: Principles, Patterns &Constraints for Building Enterprise

Solutions with REST,” Aug. 2012.

[69] P. Legris, J. Ingham, and P. Collerette, “Why do people use information technology? A critical review of the technology acceptance model,”

Inf. Manag., vol. 40, no. 3, pp. 191–204, Jan. 2003, doi: 10.1016/S0378-7206(01)00143-4.

[70] R. do Espírito Santo, “Serviços de Apoio ao Planejamento de Revisões Sistemáticas da Literatura,” Master Diss., vol. PESC-Pro, 2012.

[71] E. Hernandes, A. D. Thommazo, and S. Fabbri, “Avaliação da ferramenta StArt utilizando o modelo TAM e o paradigma GQM,” in

Proceedings of 7th Experimental Software Engineering Latin American Workshop (ESELAW’10), 2010, pp. 30–39.

[72] R. van Solingen et al., “Goal Question Metric (GQM) Approach,” in Encyclopedia of Software Engineering, Hoboken, NJ, USA: John Wiley

& Sons, Inc., 2002.

[73] Arduino, “Arduino Board Uno,” 2017. https://www.arduino.cc/en/Main/ArduinoBoardUno (accessed Mar. 18, 2017).

[74] R. P. Foundation, “Raspberry Pi.” https://www.raspberrypi.org (accessed Feb. 02, 2019).

[75] F. Pramudianto et al., “IoTLink: An Internet of Things Prototyping Toolkit,” in Proceedings - 2014 IEEE International Conference on

Ubiquitous Intelligence and Computing, 2014 IEEE International Conference on Autonomic and Trusted Computing, 2014 IEEE International

Conference on Scalable Computing and Communications and Associated Sy, 2014, pp. 1–9, doi: 10.1109/UIC-ATC-ScalCom.2014.95.

[76] A. Sivieri, L. Mottola, and G. Cugola, “Building Internet of Things software with ELIoT,” Comput. Commun., vol. 89–90, pp. 141–153, Sep.

2016, doi: 10.1016/j.comcom.2016.02.004.

[77] L. Zhang, “Modeling large scale complex cyber physical control systems based on system of systems engineering approach,” in ICAC 2014

- Proceedings of the 20th International Conference on Automation and Computing: Future Automation, Computing and Manufacturing, 2014,

pp. 55–60, doi: 10.1109/IConAC.2014.6935460.

[78] M. M. Bezemer, “Cyber-physical systems software development : way of working and tool suite,” University of Twente, Enschede, The

Netherlands, 2013.

[79] K. Thramboulidis, “A cyber-physical system-based approach for industrial automation systems,” Comput. Ind., vol. 72, pp. 92–102, Sep.

2015, doi: 10.1016/j.compind.2015.04.006.

[80] O. M. A. (OMA), “Lightweight Machine to Machine Technical Specification.” .

[81] I. P. for S. O. (IPSO) Alliance, “IPSO SmartObject Guideline.” .

[82] Erlang, “Erlang,” 2019. https://www.erlang.org/ (accessed Nov. 11, 2019).

[83] J. Horkoff, F. B. Aydemir, F.-L. Li, T. Li, and J. Mylopoulos, “Evaluating Modeling Languages: An Example from the Requirements

Domain,” Concept. Model., pp. 260–274, Oct. 2014, doi: 10.1007/978-3-319-12206-9_21.

[84] S. Patig, “Measuring Expressiveness in Conceptual Modeling,” Springer, Berlin, Heidelberg, 2004, pp. 127–141.

[85] J.-F. Monin and M. G. Hinchey, Eds., Understanding Formal Methods. London: Springer London, 2003.

[86] E. Y. Nakagawa, F. Oquendo, and J. C. Maldonado, “Reference Architectures,” in Software Architecture 1, Chichester, UK: John Wiley &

Sons, Ltd, 2014, pp. 55–82.

[87] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and R. Metz, “Reference Model for Service oriented Architecture,” 2006. [Online].

Available: https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm.

[88] T. O. Group, “Service-Oriented Architecture Ontology Version 2.0.” http://www.opengroup.org/soa/source-book/ontologyv2/index.htm

(accessed Jul. 11, 2018).

[89] IBM, “An architectural blueprint for autonomic computing,” 2005. [Online]. Available: http://www-03.ibm.com/autonomic/pdfs/AC

Blueprint White Paper V7.pdf.

