

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 23, 2024

Scrum versus Rational Unified Process in facing the main challenges of product
configuration systems development

Shafiee, Sara; Wautelet, Yves; Hvam, Lars; Sandrin, Enrico; Forza, Cipriano

Published in:
The Journal of Systems and Software

Link to article, DOI:
10.1016/j.jss.2020.110732

Publication date:
2020

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Shafiee, S., Wautelet, Y., Hvam, L., Sandrin, E., & Forza, C. (2020). Scrum versus Rational Unified Process in
facing the main challenges of product configuration systems development. The Journal of Systems and
Software, 170, Article 110732. https://doi.org/10.1016/j.jss.2020.110732

https://doi.org/10.1016/j.jss.2020.110732
https://orbit.dtu.dk/en/publications/08322b7d-a186-488e-a612-f06fd174d268
https://doi.org/10.1016/j.jss.2020.110732

 یاھو

1

 یاھو

Scrum versus Rational Unified Process in facing the main challenges of
product configuration systems development

Abstract
Product configuration systems (PCSs) are software applications that enable companies to customise
configurable products by facilitating the automation of sales and engineering. Widely used in various
industries, PCSs can bring substantial benefits and constitute a fundamental tool for mass customization.
However, serious challenges in PCS development have been reported. Software engineering approaches, such
as the rational unified process (RUP) and Scrum, have been adopted to realise high-quality PCSs, but research
insights on their use in PCS development are very limited, and their different capabilities to address PCS
challenges are almost totally unexplored. This article illustrates the application of RUP and Scrum in PCS
development and compares their contributions to addressing PCS development challenges. To perform this
comparison, four PCS projects in a company that moved from RUP to Scrum are analysed. The evidence
provided suggests that moving from RUP to Scrum has a positive effect in facing organizational, IT-related
and resource constraint challenges. The results also highlight worsening knowledge management and
documentation, product modelling and visualisation. The findings suggest the adaptation of Scrum for PCS
development to reinforce Scrum’s knowledge-related capabilities.

Keywords: Product configuration systems (PCSs); agile; Scrum; rational unified process (RUP)

 یاھو

2

 یاھو

1 Introduction
Product configuration systems (PCSs) are software systems that support sales, engineering and production
processes (Felfernig et al., 2014; Forza and Salvador, 2006) by incorporating product-related information
about features, structures, production processes, costs and prices (Forza and Salvador, 2006). The information
required to provide this support is modelled and included in the PCSs during their implementation (Forza and
Salvador, 2006; Hvam et al., 2008). Widely used in various industries, PCSs bring substantial benefits to both
suppliers of customised products who are seeking an optimal balance between customisation and operational
performance (Ardissono et al., 2003; Forza and Salvador, 2002a; Trentin et al., 2012) and to customers who
are looking for and co-designing product variants that better match their needs (Kamis et al., 2008; Sandrin,
2017; Sandrin et al., 2017; Trentin et al., 2013). PCSs are therefore recognized as a crucial component in
implementing mass customization (Suzić et al., 2018a, 2018b).

Unfortunately, companies face various challenges in developing and using PCSs (Kristjansdottir et al., 2018;
Shafiee, 2017). Among the most important are the knowledge acquisition and product modelling required for
complex products and the communication difficulties between domain and configuration experts (Shafiee et
al., 2018). A third challenge regards documenting PCSs, which is often not maintained after PCSs become
operational because the process is too time-consuming (Haug and Hvam, 2007). These and other challenges
increase the risk of PCS project failure (Kristjansdottir et al., 2018) – good management of the PCS
development process is required to avoid this (Shafiee et al., 2014).

The rational unified process (RUP), known simply as the ‘unified process’, is a popular iterative and
incremental software development framework (Kruchten, 2007; Shuja and Krebs, 2007). It has inspired the
development of PCS projects for years (Hvam et al., 2008; Shafiee et al., 2014), even though its application in
PCS projects has not received specific investigation. It is often described as plan-driven, as the entire
(iterative) software development life cycle is planned at an early phase of the project based on the units of
functionality of the software system under development, known as ‘use cases’ (Rubin, 2012; Usman et al.,
2014; Wautelet et al., 2017). This approach emphasises predictability and stability in a project (Boehm, 2012).
Plan-driven methods are often used to handle software development projects that support heavy industrial
processes in relatively stable business environments and highly critical products (Kruchten, 2007). However,
RUP can be heavy – therefore, more agile software development methods have been proposed. Scrum is the
most common (Ambler, 2002), offering better communication and faster documentation (Ambler, 2002; Selic,
2009). Previous research has identified shorter development cycles, higher customer satisfaction, lower bug
rates and quicker adaptation to rapidly changing business requirements as the benefits of Scrum and other agile
methods (Boehm, 2012; Miller and Larson, 2005; Moe et al., 2010). Thus, Scrum has often replaced RUP in
several software development projects (Dybå and Dingsøyr, 2008).

Although the literature has signalled the importance of RUP and agile approaches in PCS development
projects, to the best of the authors’ knowledge, no study has compared these approaches in the case of PCS to
inform and assist practitioners in their PCS development efforts. Various studies have focused on the two
methods’ pros and cons in general software development projects (Cho, 2009; Larman, 2004; Noordeloos et
al., 2012; Usman et al., 2014). Other studies have investigated the tailoring/adaptation of agile methods
(Campanelli et al., 2018; Campanelli and Parreiras, 2015), and others agile methods’ challenges (Drury-
Grogan et al., 2017) in general software development projects. However, the authors cannot guess how
applicable the results of these studies are to PCS projects due to the numerous differences between PCS
projects and other software development projects. For example, determining the scope of the project and plan
activities in the early phases of PCS development is a crucial and difficult task due to the complexity of the

 یاھو

3

 یاھو

knowledge characterizing these projects (Shafiee et al., 2014). The knowledge modelled in PCSs is extensive
and must continually be validated by domain experts (Shafiee et al., 2018) – intense communication between
the configuration team and domain experts is therefore vital (Forza and Salvador, 2002b). Not only the
knowledge but also the users of this knowledge have different functions (Forza and Salvador, 2006) –
consequently, there is a vast range of stakeholders, and the system requirements involve intensive user
interaction (Shafiee, 2017; Studer et al., 1998). Specific, detailed and comprehensive documentation and
maintenance of product knowledge results are therefore unique in PCS projects (Haug and Hvam, 2007;
Shafiee et al., 2017). Due to the differences and diversities in required knowledge, PCSs evolve during project
life cycles and are evaluated differently from general software development projects.

Considering the practical relevance of the method chosen to develop PCS, the challenges associated with PCS
projects and the paucity of research on the use of RUP and Scrum in PCS projects, this paper provides
empirical evidence for using RUP and Scrum during PCS project development. It also compares their
applications and effects on PCS challenges. To pursue this aim, the paper considers PCS projects executed in a
company that moved from RUP to Scrum in PCS development in 2016. This company, a large engineer-to-
order manufacturer that operates globally and is specialised in catalyst production and process plant
technology, has considerable experience in PCS projects and is accustomed to professionally managing these
projects. Scientifically comparing the impact and results of (software) development methods is inherently very
difficult. In addition to the organisational environment’s influence on the PCS development process, various
internal factors are likely to affect the project’s realisation and success. Consequently, the four projects
included in the present empirical investigation were selected according to literal and theoretical replication
logic. Specifically, these projects are similar because the project team, the type and size of the project, the
complexity of the project and the software platform, architecture and integrations are the same. However, the
method chosen to manage them (either RUP or Scrum) is different and constitutes the element of variability
across projects. The comparison of the four projects is based on archival data as well as on interviews and
follow-up meetings with four project members who participated in all four projects. This information is
complemented by non-systematic direct observation during project planning and execution performed by two
of the authors.

This paper describes and compares RUP and Scrum via the performed activities and challenges of PCS
projects. It provides evidence that the advantages Scrum provides in PCS projects are aligned with those
reported for general software development projects. However, there are also some weaknesses with Scrum that
are particular to PCSs and are related to specific PCS challenges. This new evidence on Scrum and RUP
application in PCS projects is valuable for both researchers and practitioners. The results also indicate a
direction to develop new ways to face the challenges of PCS implementation and maintenance by adapting the
documentation part of Scrum to PCS development.

The remainder of the paper is structured as follows. Section 2 discusses the relevant literature, and section 3
explains the study’s research method. Section 4 describes the characteristics of the case study, and section 5
discusses the results obtained. Section 6 presents the study’s implications for research and practice.

2 Literature background
2.1 Rational unified process (RUP) vs Scrum in general SW development projects

RUP is a software development methodology that does not follow the traditional waterfall approach (Usman et
al., 2014) but prescribes various incremental iterations to obtain user feedback, which is useful for aligning the
software solution with user requirements (Ambler, 2002). Each iteration goes through four phases: inception,

 یاھو

4

 یاھو

elaboration, construction and transition (Ambler, 2002; Kruchten, 2007; Shafiee et al., 2014). In each iteration,
sets of activities (called ‘disciplines’) are performed (Kruchten, 2007). The core disciplines are business
modelling, requirements, analysis and design, implementation, testing and deployment; the support disciplines
are configuration and change management, project management and environment (Cho, 2009). The majority of
each set of activities is performed in one phase, though part is performed in other phases as well (Kruchten,
2007).

Scrum is an agile software development methodology. The agile principles include customer satisfaction,
embracing change during development and an active collaboration between experts and software developers
(Paetsch et al., 2003). Despite RUP, a Scrum-managed project is typically comprised of short iterations (called
‘sprints’) lasting from 2–4 weeks to enable rapid feedback from the to-be system’s users and stakeholders on
the basis of the built releases (Vlietland et al., 2016; Wautelet et al., 2017). The development team fills a so-
called product backlog (i.e. a prioritised set of software functions or tasks that must be built or supported)
(Rubin, 2012). The Scrum team is responsible for developing a system supporting the elements documented in
the sprint backlog (Rising and Janoff, 2000). With the product backlog as the main guidance, the development
team first builds solutions for the highest-priority features. Determining priority is done using various factors,
even though the potential business value is usually the most important element. When the team is out of
resources (e.g. time), the features that have yet to be implemented become of secondary priority. The Scrum
master arranges daily meetings, maintains a record of the meetings to gauge the team’s velocity (Cho, 2009),
tries to resolve any production problems and coordinates activities between the Scrum team and the rest of the
organisation. The product owner (Larman and Vodde, 2013) exclusively represents the customers, eliciting
their requirements and sending them a prioritised list called a ‘product backlog’ (Cervone, 2011).

Both RUP and Scrum are methods for software development that are iterative, prescribe self-managed teams,
focus on continuous quality control and learn lessons at the end of an iteration (Collaris and Dekker, 2010).
Even though they share several management practices, their scope is different. RUP covers the entire
development life cycle, whereas Scrum leaves out the choice of design and implementation techniques and
artefacts. More specifically, RUP is a complete method that defines artefacts, roles, activities and supporting
tools (Iacob, 2008); Scrum only defines roles, management principles and basic requirements artefacts
(Ambler, 2005).

The fundamental difference between Scrum and RUP is that RUP projects are managed in an end-to-end
fashion – each iteration and phase are predetermined (in number and length) during the earliest stages of the
project (Usman et al., 2014). Iterations theoretically cover each discipline, and a full cycle should be
performed before moving on to the next one. In Scrum, the scope of the next iteration (sprint) is determined at
the end of the previous one, and the number and length of the following sprints are undetermined until the
sprint is effectively tackled. The elements that are the subject of an iteration are also selected in different ways
in RUP and Scrum. RUP has a formal risk management approach, dictating that requirements with the highest
risk exposure are tackled first; Scrum prescribes a focus on the requirements delivering the highest business
value (Appleton et al., 2003; Rubin, 2012; Usman et al., 2014). In addition, requirements representation is
different in RUP and Scrum, which has a direct effect on how changes are managed. RUP builds requirements
models based on (coarse-grained) use cases (Rubin, 2012; Usman et al., 2014), whereas Scrum uses (fine-
grained) user stories (Wautelet et al., 2014). In RUP, changes in requirements are traced back to the scope of a
specific use case and tackled within an iteration focusing on that use case. In the Scrum process, a change can
be immediately tackled in the form of fine-grained user stories to be addressed in the next sprint (Cho, 2009;
Noordeloos et al., 2012). RUP requirements representation is inherently more efficient for the heavy, process-
driven applications typically found in industrial environments (Kruchten, 2007), whereas Scrum performs
much better for user-driven applications, such as in the service sector (Noordeloos et al., 2012; Rubin, 2012).

 یاھو

5

 یاھو

Several advantages derive from using the RUP method when compared to pure waterfall approaches: improved
governance, regular feedback to stakeholders, improved risk management, implementation of the actual
requirements, the ability to early discover whether the architecture of the system to be developed works and
continues to meet the changing needs of stakeholders thus mitigating technical risks, and finally developers
focus on what really matter (i.e. software development) and not on bureaucracy (Ambler, 2005). RUP also
provides high predictability, stability and good quality for large-scale projects (Boehm and Turner, 2005) as
well as a systematic mechanism and formalised means of capturing user requirements through elicitation
techniques that differ from those associated with agile methods (Boehm and Turner, 2005). The main
challenge associated with RUP is that it often exceeds budgetary constraints and is often behind schedule,
especially when requirements change (Boehm, 2012). When using RUP, people work in a more isolated
manner and with limited communication (Noordeloos et al., 2012). In order to manage and maintain the
system, RUP focuses on producing more documentation.

Scrum solves some of these challenges, as it eases coordination and collaboration among multiple teams
(Vlaanderen et al., 2011). Better teamwork and better communication result in higher-quality products
(Hanakawa and Okura, 2004). Scrum enhances coordination by introducing specific practices involving
multiple teams, such as planning sprints and reviews and product refinements (Vlietland et al., 2016). The final
success of a project conducted with Scrum strongly depends on the development team (Cardozo et al., 2010),
who makes development decisions based on a consensus; this implies that the team has a high degree of
control over what is effectively built (Cho, 2009).

Even though Scrum and agility in general have proven beneficial, several organisations are still reluctant to
make the switch. Indeed, Cho (2009) highlighted that agile methods 1) have a huge impact on the
documentation produced (the latter is considerably reduced) with a team that strongly relies on tacit
knowledge, 2) are not yet suitable for safety-critical systems where formal proofs need to be furnished, 3) are
not a good fit for software projects where stability is critical, 4) can be used successfully only by trained
people with a high degree of freedom and 5) are poorly scalable. Agile development and Scrum have
limitations such as their light documentation and poor fit for large-scale projects (Collaris and Dekker, 2010;
Usman et al., 2014).

2.2 Differences between general software development and PCS projects
PCS projects present several important differences from other kinds of software development projects
(Kristjansdottir et al., 2018) that mainly relate to the special role that product-related knowledge plays.

Knowledge diversity and complexity as well as continual extension and changes inherent to PCS projects
during planning make their scoping process challenging. Knowledge diversity includes very different aspects
of product knowledge, such as various representations of the knowledge to different stakeholders (e.g.
customers and engineers), product features, product components, product production processes, feasible
combinations, costs and prices, etc. General software development projects’ scopes are often determined
differently from PCS because they do not always involve extensive product knowledge (Shafiee et al., 2014).

The second difference is the varying levels of detail in each step of a PCS project. The knowledge modelled in
PCSs is considerably diverse and requires domain experts’ confirmation (Basili and Weiss, 1984). Thus,
modelling tools are introduced to simplify communication between the configuration engineers and domain
experts (Forza and Salvador, 2002a). A lack of testing and validation of this knowledge can cause output
errors, even in the case of very minor misunderstandings.

 یاھو

6

 یاھو

The third difference comprises of the highly detailed documentation of PCSs’ product-related knowledge
(Haug and Hvam, 2007). It should be translated to non-technical language so as to be explicit across the
organisation. In PCSs, a great deal of knowledge must be shared among the actors located along the supply
chain who are involved in conceiving, building and marketing the customised products.

Moreover, the continuous updates and changes in product knowledge call for an intense knowledge
maintenance and documentation process (Felfernig et al., 2000; Friedrich et al., 2014). In contrast, the
documentation in general software development projects consists of a summarised explanation of the codes
(Coram and Bohner, 2005) and not necessarily the details of the product-related knowledge; thus, the required
knowledge for these projects is not constantly updated (Coram and Bohner, 2005).

2.3 Challenges of PCS development projects
PCS development projects come with genuine challenges, as recognised by the first academic article that
considered PCS (Barker et al., 1989) and then by many subsequent publications (e.g. Aldanondo et al., 2000;
Ardissono et al., 2003; Ariano and Dagnino, 1996; Forza and Salvador, 2002a; Heiskala et al., 2007).
Kristjansdottir et al. (2018) provide a detailed discussion of the main PCS development challenges; Table 1
contains a synthesis of their main results.

Table 1. Challenges reported for PCS development projects (Kristjansdottir et al., 2018)
Categories of PCS

management challenges
Relative

importance Description Specific challenges

Resource constraints Low Lack of personnel to model the PCS and to gather
and provide information, dependency on resources

• Lack of resources
• Vulnerability if key personnel leave

Product-related
challenges Low

Challenges in the product range, commonly
described as complexity of the product structure and
continuous change in products

• Complexity of product structures
• Continuous change in product offerings

IT (technical) challenges Medium

All technical challenges related to IT systems (e.g.
software personalisation, user interface design, scope
expansion, interaction with software suppliers,
functionalities)

• Software development
• Systems design for user-friendliness

Knowledge acquisition
challenges High

Difficulties in knowledge gathering and availability
of information in the development and maintenance
phases

• Difficulty acquiring the correct knowledge
• Lack of the requisite knowledge to meet
users’ and customers’ needs
• Failure to communicate knowledge in the
maintenance phase

Product modelling
(knowledge
representation)
challenges

Medium Challenges related to formalising the product
knowledge and model to be embedded in the PCS

• Complexity due to lack of product range
overview
• Correctness of specifications generated by
the configurator according to the product
model
• Lack of knowledge related to product
modelling

Organisational challenges Very high Lack of support from management, resistance to
change, allocation of resources

• Lack of support from top management
• Resistance to using the PCS
• Disagreements about the scope of the
configurator

2.4 RUP and Scrum in PCS development projects
Research on the use of RUP versus Scrum to manage PCS development projects is lacking. This is evidenced
by the absence of journal articles in Scopus and Web of Science databases when the search [(RUP OR
‘Rational Unified Process’) AND Scrum AND configur*] is performed in these databases in the title, abstract
and keywords. This gap is the result of a general paucity in research on both RUP and Scrum in managing PCS
projects.

 یاھو

7

 یاھو

Focusing on just RUP in PCS projects, only one relevant journal article was found after examining the results
provided by the search string [(RUP OR ‘Rational Unified Process’) AND configur*] performed in the same
fields and databases as mentioned above. By considering the references cited in this article and the publications
that cite this article, only four publications emerged that dealt, to a limited extent, with RUP in PCS projects.
Hvam et al. (2008) proposed a procedure to develop PCSs by building on different methods, including RUP.
Hvam et al.’s (2008) PCS development procedure consisted of seven stages: 1) development of the
specification processes, 2) analysis of the product range, 3) object-oriented modelling, 4) object-oriented
design, 5) programming, 6) implementation and 7) maintenance and further development. Focusing only on the
inception of a PCS development process, Shafiee et al. (2014) presented an ad hoc framework inspired by RUP
to support the initial PCS scoping process; they proved its usefulness in supporting early clarification and
scoping. Shafiee et al. (2016) used five case companies to investigate applying Hvam et al.’s (2008) procedure.
Shafiee et al. (2018b) found several RUP tools to be beneficial while scoping PCS projects. However, none of
these publications presented a full application or the pros and cons of using RUP in PCS development projects.

Regarding the use of Scrum to manage PCS development projects, no journal articles emerged after examining
the results yielded by the search string [Scrum AND configur*], which was performed in the same fields and
databases as mentioned above. This is quite surprising, given the increasing attention that researchers are
paying to Scrum on the one side and PCS on the other. This could be understandable if Scrum was not used for
PCS development projects, but some companies made or are making a transition from RUP to Scrum to
manage their PCS development projects, and many others are debating whether it is effective to use Scrum for
PCS projects.

Since PCS development projects have important differences from general IT projects (see subsection 2.3), it is
impossible to infer that the research findings obtained about using RUP and Scrum in general IT projects also
hold for PCS projects. This would be not a large problem if PCS projects were easy to manage and highly
successful, but there are many significant challenges that undermine their success (see subsection 2.4).
Consequently, the limited research on the use of RUP and Scrum in PCS development create several open
questions that are important for practice: Do RUP and Scrum work for PCS projects? Which one of these
works better for PCS projects? Do RUP and Scrum need adaptations in order to work for PCS projects? Do
RUP and Scrum address PCS challenges? Which PCS challenges are alleviated/worsened by RUP? Which
PCS challenges are alleviated/worsened by Scrum? There is a need to further investigate the possibility of
using RUP and Scrum in PCS development.

3 Research aim and method
3.1 Research aim

This article intends to at least partially cover this paucity of research by answering the research question, What
are the differences between RUP and Scrum with respect to how PCSs are developed and their impact on PCS
development challenges? Doing this not only provides indications on the application of RUP and Scrum in
PCS projects, but it also offers evidence about whether Scrum can perform better than RUP in some of the
challenges with ‘traditional’ PCS development identified in the literature.

3.2 The case study method
A case study was designed in accordance with the initial stage of the research on the present topic (Edmondson
and Mcmanus, 2007). Case studies permit researchers to identify and describe key variables, uncover linkages
between variables and understand the ‘whys’ behind these relationships (Voss et al., 2002; Yin, 2009). This
type of empirical enquiry investigates a contemporary phenomenon within its real-life context (Yin, 2009) and
is therefore a particularly good fit for software engineering research (Runeson et al., 2012; Runeson and Höst,

 یاھو

8

 یاھو

2009). Case study research enables deep observation of the phenomenon under investigation, and for a given
set of available resources, fewer cases allow for deeper observation (Voss et al., 2002).

Multiple case study was chosen because it allows for the observation of different life cycles – that of RUP and
that of Scrum – in PCS projects and their impacts on PCS challenges. Specifically, the research is based on a
multiple case study of four PCS development projects (i.e. cases) within the same company.

3.3 The company
The extreme case decision rule was followed to select the company (e.g. Benbasat et al., 1987; Yin, 2009)
because the selected company represents a highly relevant and rare context for this study’s enquiry.
Specifically, the selected organisation has considerable experience in PCS projects and is accustomed to
professionally managing these projects. In 2016, it moved from RUP to Scrum to develop its PCS. That this
company has experience with both software development approaches makes it quite a unique case that suits the
objectives of the present study particularly well.

The company is a large engineer-to-order manufacturer that operates globally and specialises in catalyst
production and process plant technology. It is an industrial partner involved in one of the university research
studies in the field of PCS projects. This relationship enabled two members of the research team to observe, at
a different level but not in a systematic way, RUP-guided and Scrum-guided PCS projects, including the
considered ones, as they were happening. Both the company and the researchers wished to understand how
RUP and Scrum work in PCS development. Consequently, the company’s top management supported the
present study by granting complete access to its data sources and guaranteeing the participants’ commitment to
the project.

Notably, contextual variables may affect the challenges associated with PCS projects and the successful
application of RUP and Scrum methods. Although performing the study in one organisational setting has the
disadvantage of limiting the generalizability of the results, it has the advantage of controlling for a number of
contextual variables – such as organisational characteristics and culture – that could confound the results and
lead to spurious relationships.

3.4 The unit of analysis and the choice of PCS projects
The present study’s unit of analysis is the PCS project. The enquiry mainly concerns the challenges that a PCS
project encounters when it is managed with RUP or Scrum. Even within the same company, the challenges that
a PCS project encounters, as well as the successful application of RUP and Scrum methods, may differ because
different software is used, because different degrees of application complexity are involved, because projects
have different sizes, because of differing levels of experience with the software development resources,
because PCS projects have different degrees of predictability, different requirements, etc. All these factors may
influence the effects of RUP and Scrum on PCS projects. However, the retrospective selection of cases
allowed the researchers to mitigate these negative effects because ‘retrospective cases allow for more
controlled case selection’ (Voss et al., 2002, p. 202). Therefore, PCS projects that were as similar as possible
in all these respects were selected by considering projects on the most popular catalysts at the company. In this
way, many projects were similar in terms of product technology and key characteristics. The researchers chose
projects in which the only relevant feature that changed was the method used – either RUP or Scrum.

Four of the company’s projects were selected as cases following literal and theoretical replication logic
(Runeson and Höst, 2009; Voss et al., 2002; Yin, 2009). The first two PCS projects (Projects 1 and 2) were
developed using RUP; the other two (Projects 3 and 4) were developed using Scrum. The PCS development
team members had 2–10 years of experience working with both methods. The four projects shared the
following characteristics: 1) origin in the same company, 2) a PCS for products with almost the same level of
complexity (medium to medium-high), 3) use of either RUP or Scrum for PCSs, 4) potential access to
management and senior experts at the companies, 5) development of all the selected PCSs in one specific

 یاھو

9

 یاھو

software platform, 6) similar requirements, 7) similar users (engineers), 8) similar development team and the
involvement of similar tasks and 9) knowledge of similar setups, software architecture and integrations.

3.5 Time-phased overview of the research
Figure 1 uses a workflow to depict the research activities in the present study. The PCS development team (i.e.
the one working on the various PCS projects) had been established seven years prior to the start of the present
study; it had used RUP for five years and has used Scrum for two years (see the timeline underneath the
workflow in Figure 1).

Literature
review

Conduct
Interview 1

Analyse
archived

documents+

Questionnaire for
interviews

Conduct
Interview 2

Conduct
Interview 3

Conduct
Interview 4

Analyse
results of
interviews

Analyse final
results

Archived
documents

RUP

5 years

2 selected projects
were developed
based on the Scrum
(Cases 3,4)

2 years

2 selected projects
were developed
based on the RUP
(Cases 1,2)

5 months

Scrum
All interviews
are done!

4 months 3 months

Results are
announced!

1 month

Tables and
results

Results
confirmation in

the feedback
meeting

+

Figure 1. Time-phased study activities.

First, two activities were performed in parallel: 1) Literature review. As explained above, the research team
consulted relevant sources to build up and present background knowledge on the subject. 2) Analyse archived
documents. The research team analysed and discussed the available documents on the different PCS
development projects that the case organisation had analysed and archived. These two parallel activities took
the research team five months to complete, and together, they led to the creation of a questionnaire that was
used to conduct study interviews.

Subsequently, the following research activities were completed sequentially: 3) Conduct interviews. Each
interviewee was interviewed separately from the others. In each interview, the entire questionnaire was filled
in, and all four projects were considered. In total, the interview activities took about four months to complete.
4) Analyse the results of the interviews. The research team then tabulated, discussed and analysed all the
interview and document results. 5) Confirm the results in the feedback meeting. The research team presented
the results to the interviewees and other PCS development professionals in the case company to share the
findings and to get feedback to enhance the results’ validity. 6) Analyse the final results. This last activity
involved analysing the final comments, remarks and issues the professionals at the feedback meeting raised.
Together with the two previous activities, this took three months to complete.

 یاھو

10

 یاھو

3.6 Data collection
Data collection was performed using multiple data sources via non-systematic direct observation, archived
document analysis and semi-structured interviews. Two members of the research team performed the direct
observation. The first observed the considered PCS projects as well as other PCS projects at a high level of
interaction with the company, learning about the context and the reasons that motivated the company to move
from RUP to Scrum. The second observed all four considered projects and other PCS projects (eight RUP and
five Scrum); the researcher also participated in several meetings and activities. For both observers, their work
was significant in terms of the information acquired, but it was not systematic.

3.6.1 Archived documents
All the available documents generated during the four projects were collected and studied. Specifically, for the
two RUP-based PCS projects, the following documents were analysed: project description for the initiation
phase (including budget, stakeholder analysis, risks and involved resources), meeting minutes and discussions,
all the documents relevant to the analysis in different phases (use case diagrams, AS-IS and TO-BE flowcharts,
the product variant master (PVM), unified modelling language (UML) class diagrams and Class-responsibility-
collaboration (CRC) cards) and maintenance charts. For the two Scrum-based PCS projects, the following
documentation was analysed: sprint recovered from Jira (a software platform that allows users to track all the
Scrum management artefacts such as backlogs, task prioritization, and task allocation), including all the
stories, assigned resources, story points, dependencies, acceptance criteria, testing story points, feedback and
comments, etc.; and the meeting minutes for each project, including daily Scrum, print planning, sprint review
(lessons learned, what went well, what can be improved) and feedback meetings. These documents were used
as literal recordings of past events, constituting how the researchers observed the PCS development process as
it happened. Understanding of these documents was greatly facilitated by the insights gained through the non-
systematic direct observations performed by two of the researchers. Several short phone calls and short
meetings were conducted to clarify confusing information.

The in-depth reading of the documents allowed the researchers to understand the context of the projects and
build an identity card for them. It also allowed them to ascertain what artefacts were produced and used during
the RUP- and Scrum-based projects. Noticeably, the archived documents were not originally developed with
the intention to provide data for case study research – the case organisation required them in order to document
the projects. On the one hand, this limited the researchers’ capability to collect information, and on the other
hand, it did not influence the knowledge documentation and project documentation of the four considered
projects.

The identity cards we build were quite extensive. In order to check them at the company and use them during
interviews to have facts on hand as well as our reconstruction of each PCS case, we split them into different
figures, sub tables and slides. In Figure 2, we report the most important slide, which contains the scope of the
project, team members, and time investments for the Project 1 as planned before the launch of the project. For
RUP-based PCS projects, we added also PVM diagrams (an excerpt from Project 2 is reported in Figure 3).
For Scrum-based projects, we included also the list of the user stories with all the details generated from the
Jira system to consider the exact time and resources (Figure 4 report this for Project 4).

 یاھو

11

 یاھو

Figure 2. Excerpt from the slides used to show a PCS project identity card to the company

Figure 3. Excerpt from a PVM included in the identity card of a RUP-based PCS project

 یاھو

12

 یاھو

Figure 4. Excerpt from the list of user stories included in the identity card of a SCRUM-based PCS project

3.6.2 Interviews
In accordance with the research objectives, the interviews were designed to systematically compare the RUP
and Scrum approaches with respect to PCS project challenges. The interview process was semi-structured and
involved experienced researchers and experienced PCS project stakeholders.

3.6.2.1 The interviewer team
The team consisted of three authors of the paper including one specialist in software development life cycles,
one specialist in PCS and one specialist in both domains. Having in-depth knowledge of the RUP and Scrum
PCS development processes enabled the team to prompt the interviewees to elaborate upon and justify their
answers.

3.6.2.2 The interviewed PCS development teams
The interviews were conducted between 2017 and 2018 after the case organisation completely abandoned RUP
in 2016 and immediately adopted Scrum. Interviewee selection was based on several criteria, including
similarities and differences in controlling the confounding factors and collecting different point of views
caused by different experiences.

The four selected interviewees were the only personnel members who were present in all four PCS projects,
which enabled them to answer every question about the four projects. They all had years of experience in PCS
development using both RUP and Scrum, and they had all experienced the case company’s transition from
RUP to Scrum. Thus, they could critically compare their experiences with RUP and Scrum in the PCS projects.

They also had different backgrounds and differing years of experience with PCSs, IT projects and Scrum;
hence, they had different perspectives, expectations and concerns regarding Scrum and RUP. They all had
years of experience (4, 6, 7, and 12 respectively) in PCS development, they all used both RUP and Scrum and
they had all experienced the case company’s transition from RUP to Scrum. More precisely, the first
interviewee had 10 years of experience as software developer plus 4 years of experience working with PCS
projects and she was a certificate Scrum master with 5 years of experience in Scrum. The second interviewee

 یاھو

13

 یاھو

had 6 years of experience as a configuration engineer at the same company with 3 years of experience working
with Scrum. The third interviewee was a software developer with 7 years of experience plus 7 years of
experience working with PCS projects and a scrum expert in the last 3 years. The last interviewee was the
group leader who was a configuration engineer with 12 years of experience and more than 4 years of
experience working with Scrum. They played different roles in the PCS teams, ranging from technical
developer and project manager to tester and domain expert. The roles may have varied from project to project,
but overall, in the Scrum projects, they were product owners, business analysts, requirements engineers, Scrum
masters, software designers, developers and testers. Hence, they could share their varying perspectives,
allowing the researchers to consider different PCS challenges from different angles.

3.6.2.3 The questionnaire
In order to explore the differences among RUP and Scrum in facing PCS challenges, a set of statements were
developed based on the literature and archival data analysis (see Column 1, Table 4 in the Results section). The
level of agreement with each statement was measured on a 5-point Likert scale (see Columns 3–7 of Table 4).
Specifically, the interviewees were asked to evaluate the contributions of Scrum versus RUP with respect to
specific aspects of the six main PCS challenge categories (see Table 1). In order to facilitate the respondents
and not introduce differences that could affect comparisons among the answers to different statements, each
statement was constructed as ‘Scrum . . . when compared to RUP’. The entire research team thoroughly
discussed each question.

3.6.2.4 The interview process
The semi-structured interview began by presenting the reconstructed identity card for each of the four projects.
While going through these, further information on each project was solicited to improve the overall picture of
each PCS project. This process of going through each project in detail prompted respondents to recall previous
projects in order to prepare them for their comparison questions. As a second step, the interviewees filled in all
the closed Likert-scaled questions on the questionnaire. Notably, the questionnaire was emailed to the
interviewees before the interviews. If the interviewees felt the need to justify their answers, the interviewer/s
recorded the justifications and asked for further detail if necessary. Therefore, the questions were written and
asked such that the respondents were free to add comments or opinions (Hollway and Jefferson, 2000). Once
the respondents filled in the questionnaires, the interviewers asked them to justify any answers they had not
previously commented upon. Finally, the interviewers asked further questions about the impact of RUP and
Scrum on PCS challenges that corresponded to the interviewees’ reflections on the PCS project comparisons.

Each interview involved a single respondent addressing all four projects and all the planned questions. The
synthesis of the answers to the open-ended questions can be found in the last columns of the questionnaire in
Table 4. The open-ended portion of the interview not only facilitated the collection of background information
to enhance the richness of this comparative study (Yin, 2009), but it allowed the researchers to understand why
interviewees considered Scrum to be superior/inferior to RUP. The respondents explained what the situation
was like before with RUP and how it was currently with Scrum, describing some specific facts about the tools
used in RUP PCS projects. Their scores on the answers they gave regarding case projects, explaining why they
provided a given answer and digging into the underlying reasons informed the results. For each interview, a
researcher reported the interview answers in a text file and returned the file to the respondent to check and
confirm the interview content.

3.7 Data analysis
As anticipated in Section 3.5 and depicted in Figure 1, data analysis were performed in various phases of the
present research. Each analysis built on the results of previous analysis and on the additional data gathered
since the last analysis. Both qualitative and quantitative data were structured into tables to identify regularities
(as recommended in Runeson and Höst, 2008) and to communicate similarities and differences among cases.

 یاھو

14

 یاھو

An initial analysis was done on the archival documents collected before the questionnaire design. Two of the
researchers independently went through all the documents and identified all the data relevant for understanding
each case. They inserted these data in tables, thus building an identity card for each PCS project that included
project context (organisational and team culture), scope, duration, number and roles of employees involved,
number of users for the solution, used or produced artefacts, applied theories, planning approaches, meeting
disciplines, etc. Subsequently, the identity cards were compared, and their differences were resolved by
involving a third researcher. Phone calls were made at this stage to collect missing information and to clarify
doubts. To facilitate cross-case comparison, each case was described as phases (sets of activities related to a
common theme) that were similar for RUP and Scrum. The subsequent cross-project comparison considered
phase-by-phase performed activities and the roles involved; they continued by comparing the PCS projects on
aspects that were possibly related to PCS challenges. This analysis produced a first description of the four
projects, helped design a focused explorative questionnaire and identified specific aspects to investigate in an
open way in the interview phase.

A second set of analysis was performed in parallel with the interviews. The identity cards were used at the
beginning of each interview to help the interviewed remember the case projects and to gather additional data
on each project, enriching its description. Consequently, the cross-case comparison obtained with the first
analysis was further and further refined. However, this refinement process enriched but did not significantly
change the previously obtained picture, thus increasing the researchers’ confidence in the obtained results. The
analysis performed in parallel with the interviews considered the closed questions from the questionnaire, the
related explanations provided by the interviewed PCS team members and other answers to open questions (to
address comments, extra explanations and reasons) related to identified issues during the analysis performed
before the interviews as potentially related to PCS challenges. The answers to the open questions and the
discussions about the answers to the closed questions were coded, cross-tabulated and analysed to find patterns
and shared explanations. These analysis informed the interviewers’ understanding, enabling them to provide
additional new stimuli during discussions in subsequent interviews. After concluding the interviews, the
various results on the influence of RUP and Scrum on PCS challenges were consolidated.

Finally, feedbacks from presenting the results to the interviewees and other PCS professionals at the case
company were considered. The comments and issues they raised led the researchers to deepen some
explanations, and in a couple of cases, partially modify them. At this point, the researchers were confident of
the results.

4 Results
4.1 How PCS projects were performed with RUP and Scrum

The four projects had some small differences in their considered products: they were all the most popular
catalysts at the case company, but they differed regarding product size. They also presented some differences
in their complexity. Consequently, the number of product attributes considered in the corresponding PCS
projects varied from 1,300–2,500. The number of constraints inserted in the corresponding PCS varied from
800–2,000.

Project duration also differed. The total duration of a project is the time from when the decision has been made
to launch it to when it is completed. The net duration of the project is the time from the actual start of project
activities to when the project has been closed, removing all the waiting times and decision pauses. However,
the main differences between their duration is neither to be imputed to the differences in products and
complexity involved nor on some different difficulties encountered during their execution. The comparison of

 یاھو

15

 یاھو

the four projects showed small differences between Projects 1 and 2 on the one hand and between Projects 3
and 4 on the other. In contrast, there were big differences in duration time between projects 1 and 2 versus
Projects 3 and 4; these differences were due to the methods used (i.e. RUP or Scrum).

One key difference between RUP-based and Scrum-based PCS projects concerned the number of iterations: 2–
3 in the first RUP projects and 9–10 in the second Scrum ones. RUP-based PCS projects were organised in big
revisions to develop and test their deliverables, with larger projects organised via more revisions. Scrum-based
projects were organised in fixed sprints, with larger projects executed in more sprints.

Table 2. Main project figures

Comparison aspect RUP-guided PCS development Scrum-guided PCS development

PCS projects Project 1 (RUP) Project 2 (RUP) Project 3 (Scrum) Project 4 (Scrum)

Total duration (months) 15 20 12 10

Net duration (months) 8 12 11 8

Project split 2 iterations 3 iterations 10 sprints 9 sprints
Number of attributes ~1,500 ~1,900 ~2,000 ~1,500

Number of constraints ~1,000 ~1,200 ~1,400 ~1,000

What follows is a presentation of similarities between Projects 1 and 2 (RUP-based) and similarities between
Projects 3 and 4 (Scrum-based). This description depicts what RUP-based and Scrum-based PCS projects look
like, which is not currently available in the literature.

4.1.1 RUP-based projects
4.1.1.1 Project values
In the two RUP projects, the main guiding values were systematic progression and risk reduction.

4.1.1.2 Roles and main tasks
The project roles included domain experts (two in Project 1, three in Project 2), end users (varied and increased
from the scoping to the implementation phase of the project: 5–8 in Project 1, 8–10 in Project 2), stakeholders
(10–13 in Project 1, 15–17 in Project 2), a product owner, a project manager and a development team
composed of two IT professionals (a configuration engineer and a developer). In these two projects, the
domain experts were chemical engineers from the sales department. These experts knew the types, the
characteristics, the functioning and the production process of the catalysts. They were the source of product
knowledge inserted into the PCS, both from the customer and the technical point of view. These experts were
responsible for communicating the product knowledge and their system requirements and verifying and
validating the knowledge inserted into the PCS. The end users were the stakeholders who would be the
potential users of the system – in these projects, few were the domain expert resources who provided
knowledge. The rest of the end users, who were not directly considered to be project resources, were not
supposed to but were allowed to provide the team with functional requirements and feedback. The stakeholders
included all the domain experts, end users and top managers who were directly or indirectly involved in these
projects. The stakeholders attended steering committee meetings to discuss their requirements and feedback.
The product owner was responsible for modelling the product knowledge inside the configurator. The project
manager was responsible for all the planning, scoping, product and process analysis and knowledge
management. The configuration engineer modelled and tested the configurator. Finally, the developer
integrated PCS with other IT platforms (i.e. ERP, CAD, CRM and simulation systems) and tested the
integration.

 یاھو

16

 یاھو

4.1.1.3 Task assignment
The assignments for the IT professional were defined in the beginning of each project, with no flexibility to
assign tasks to another resource if needed. This criterion sought to minimise uncertainty and increase
efficiency in the task execution, as each person was dedicated to activities aligned with their specialisation.
Domain experts were mainly used in a sequential way – they were usually busy with other tasks related to their
regular duties. The parallel use of IT professionals and domain experts was not planned but occurred as
needed.

4.1.1.4 Activity organisation
Project planning was detailed in the very beginning and subsequently neither re-planned nor further detailed.
Initially, the projects were divided into different versions or releases1 (with bigger projects broken down into
more versions than the smaller projects). In a PCS project, a version can be a part of a product, a full product
family, a category/group of similar product variants, etc. For example, the PCS of Project 2 was divided into
three main parts corresponding to the categories of the catalyst type. The core of a project was developed in the
first version – additional knowledge to complete the project was added in the subsequent versions. For each
version, all the knowledge acquisition was performed first, then all the modelling and testing were performed
to release one version of the project. Each week for each version, the development team met to discuss the
progresses or barriers and report the status of the project to the team and project manager, who would decide if
further action was required. Every month for Project 1 and every two months for Project 2, workshops for end
users were conducted to demonstrate the system and ask for feedback before releasing major developments.
Approximately every six months, a big version of the project was released during a workshop for all the
stakeholders. Here, the PCS was demonstrated, and feedback and comments were collected to see if the project
was headed in the right direction.

4.1.1.5 PCS scoping and modelling
All project scoping was done and documented at the beginning of the project, including defining all the details
to prepare for big releases. Here, the product owner and the project manager made decisions on the to-be
configuration process, PCS functionalities, PCS outputs, IT architecture, integration with other IT platforms
(such as CAD systems) and products to include in the PCS. The starting point for defining the project goals
was the stakeholders’ requirements.

Stakeholders’ requirements were defined by the product owner, who recorded them in various documents;
subsequently, the project manager formalised these requirements using use-case diagrams and flowcharts.
Requirements were prioritised based on risks in the very beginning of the project when PCS delivery was split
into different versions; they were refined during the project only if the project manager requested it.
Stakeholders’ requirements were translated into goals by the project manager. These requirements were
strongly dependent upon the product variety included in the PCS and the configuration process created by the
PCS. Thus, a detailed analysis of the product and the configuration process was performed in Projects 1 and 2.

An overview of the variety of products to be incorporated into the PCS was created at the beginning of the
projects. Here, the product knowledge analysis was very detailed, complete and elaborate to understand the
product structure and variety. Hence, the project managers created large PVMs and discussed all the rules and
features of the product. A PVM is a hierarchical representation of a product family structure composed of two
parts: one shows the elements (e.g. groups, modules, parts, components) a product can consist of, and the other
describes the possible variants and constraints of these elements (Hvam et al., 2008). An excerpt of PVM is
presented in Figure 3. This hierarchical representation allows for the division of the projects following the
product hierarchy. A PVM is a representation that is specifically adopted in developing PCS because it enables

1 A release is a project deliverable; it is complete and ready to be delivered to the project customer.

 یاھو

17

 یاھو

detailed analysis and visualisation of the product range to be modelled inside the PCS. Beside PVMs, the
product knowledge was documented in CRC cards, which are cards that describe characteristics and properties
of the PVM elements (classes). A CRC card defines a class by including the class’ name, its possible place in a
hierarchy, a date, the name of the person responsible for the class, the class’ task (responsibility), the class’
attributes and methods and which classes it collaborates with (collaboration) (Hvam et al., 2008). In addition,
documentation using a class diagram – a type of UML diagram that describes the structure of a system – was
done for the cases requiring further representation. The project manager analysed, documented and visualised
the configuration process using detailed flowcharts at the beginning of the project. Here, all the PCS
functionalities and outputs were defined, such as generating the bill of materials, price calculations, a technical
summary and a sales report.

IT architecture for required software developments was determined in the initiation phase and then
documented. Further IT developments such as extra features and integrations were planned in the beginning as
well based on stakeholders’ requirements.

There were also several frequent steering committee meetings to deal with reporting on the project’s status and
making decisions about the project (e.g. if the project needed more resources, this had to be evaluated and
decided upon in the steering committee meetings).

4.1.1.6 Implementation and software integration
The PCS implementation consisted of all the activities required to get the software up and running. Modelling
the product process-related knowledge into the PCS and writing related programs were performed by the
configuration engineer. Integrating the PCS with other IT systems (e.g. CAD for 2D and 3D images, ERP for
the product-related knowledge, CRM for the knowledge related to the customers, simulation tools to simulate a
specific process) were performed by the developer. In this phase, the IT professionals performed all the
activities to complete the defined PCS version.

4.1.1.7 Testing
There were two rounds of testing performed every two months for Project 1 and every three months for Project
2. The first round was technical IT team testing. For each PCS project release, the project manager, the
configuration engineer and the developer met to define test cases and test the system from a technical
perspective, ensuring the system did not have any bugs.

The second round comprised stakeholder testing. Here, domain experts verified the knowledge modelled in the
configurator. This round also contained unplanned meetings and workshops with domain experts to gather
stakeholders’ feedback after each release, such as their opinions about user interface.

Once the PCS version passed both technical and stakeholder testing, it received final approval and entered the
deployment phase. For small issues such as minor changes in user interface or adding new knowledge to the
product, the PCS version went back to the development phase to be fixed. For some fundamental requests with
a high amount of required time and resources, a new project was planned and scoped (e.g. one fundamental
change was a new integration that was critical but that was overlooked during the project scoping and planning
phases).

4.1.1.8 Deployment
Deployment made employees use the new PCS and abandon the previous PCSs and routines (made of Excel
sheets and manual actions). Deployment was done one time per project when the system was totally
completed, ready for use and approved. The project manager presented the approved system to the
stakeholders as the new system that would be used. The manager also answered their questions regarding

 یاھو

18

 یاھو

system functionality and quality. Any major criticisms could lead to structural changes. For example, they
asked to include the product packaging in the PCS models. However, adding packaging in a PCS required a
new discipline of knowledge as well as making structural changes to the PCS. In this case, stakeholders had to
ask for a new project. In another example, they asked that the packing and transportation (including insurance
and prices) be optimised – these requests were assigned as project maintenance and updates.

4.1.1.9 Maintenance and updates
In the two RUP-based PCS projects, maintenance consisted of fixing bugs, continuously improving the system
after its launch and implementing changes in the product structure or in the configuration process. In these two
projects, the IT professional responsible for a part during the development phase was responsible for the same
part in the event of necessary maintenance and updates. When the professional was not available or was
assigned to other projects, the maintenance task waited until the professional was available. Maintenance was
prioritised by domain experts based on the mentioned risks and documented in PVMs, CRC cards, class
diagrams and extra documents (e.g. notes and minutes of meetings).

4.1.2 Scrum-based projects
4.1.2.1 Project values
In the two Scrum projects, the main guiding value was rapidity in delivering tangible value.

4.1.2.2 Roles and main tasks
The project roles involved domain experts (six in Project 3, five in Project 4), end users (10–13 in Project 3, 8–
11 in Project 4), stakeholders (17–20 in Project 3, 15–17 in Project 4), a product owner, a project manager, a
Scrum master, an application manager and the development team (two configuration engineers, two developers
and a tester for Project 3 and a configuration engineer, a developer and a tester for Project 4).

In these two PCS projects, all the domain experts were chemical engineers from the sales department with
different expertise in chemical process, technical services and sales management. As for RUP projects, these
experts were responsible for transferring the product knowledge and system requirements and verifying and
validating the knowledge inserted into the PCS. Unlike RUP projects, these experts were selected based on the
different disciplines involved in each part of the project. End users, stakeholders, the product owner and the
project manager had similar roles as in RUP projects. The application manager was added as a new resource to
the project; this person managed the IT team and all of the projects and project managers working in parallel.
The Scrum master arranged the daily meetings and maintained a record of them to resolve any production
problems and coordinated activities between the Scrum team and the rest of the organisation. Specifically, in
these two Scrum-based projects, the product owner, the application manager and the project manager discussed
and established the project scope. The application manager and the project manager were responsible for
discussing and defining the IT architecture aligned with the development team. The configuration engineers
(modelers) modelled all the product knowledge into the platform based on the project manager planning and
scoping the project. The developers were responsible for aligning the integration and plugins (i.e. ERP, CAD,
CRM or simulation systems). Finally, the tester was responsible for testing and verifying each user story.

4.1.2.3 Task assignment
Scrum projects were flexible in terms of task allocation. The development team members were allowed to
work in parallel on different projects, accepted user stories from different projects and even changed roles if
needed. Multiple resources were allocated to several projects based on task and priority. This means that not
only could the team work across projects and in parallel to save time and increase efficiency but they could
accept different tasks based on their expertise and availability. Domain experts were used in parallel when a
particular source of knowledge was needed; parallel use of team members and domain experts was also
allowed.

 یاھو

19

 یاھو

4.1.2.4 Activity organisation
Project planning was defined with different levels of detail at different points in time. In the initiation of each
project there was an overall description, assessment and planning of the project at a high level of abstraction.
Projects were broken down into very small releases to be delivered one by one every three weeks. For each
sprint, a detailed planning was done. This planning activity took place regularly every three weeks.

A preliminary activity in Scrum-based projects was backlog grooming. Here, the product owner and the project
manager broke the task into smaller items/activities that composed the backlog. A Scrum grooming, where the
project manager, project owner and Scrum master groomed the tasks, took place before each planning meeting.
Then, the tasks were prioritised based on resource availability.

During sprint planning, the development team selected a subset of product backlog items and agreed to
complete them in three weeks. Sprint planning started with a Scrum planning meeting attended by the whole
team, the business owner and the project manager. Typical questions this meeting answered were as follows:
What is this sprint’s capacity for different resources (story points per person)? What tasks from the backlog
should be prioritised? What are the estimated story points (as per the project managers) and resources? The
Scrum master managed the sprint planning. This person knew the available time of each resource in advance
and was capable of planning for this adequately. The team members inserted their availability one week in
advance to facilitate the Scrum planning. Team members created sprint backlogs during sprint planning.

After the activities of a sprint were defined, the sprint began. During each sprint, which in these two projects
lasted for three weeks, the development team worked to develop the part of the system that had been defined in
the sprint planning. Every morning during a sprint, a daily Scrum meeting (15 minutes) was conducted to
manage workflow. In this meeting, the IT team considered the tasks done the day before and the tasks to be
done that day and discussed the project obstacles and blockers. Typical questions included, What did you do
since the last Scrum meeting? Did you encounter any obstacles? What will you do before the next Scrum
meeting?

At the end of each sprint, a sprint review (retrospective) meeting was attended by development team and (most
of the time) the product owner. They reviewed what went well in the sprint that had just ended and what could
be improved; they then defined the sprint that had to start immediately after the meeting (i.e. task
prioritisation) and planned it in detail (i.e. assigned tasks to resources). This review was internal and IT-
related; it concerned how to work better and how to make the team more efficient. Typical questions for this
meeting were, What went well in this sprint? What went poorly in this sprint? What did you learn? What are
the suggested improvements for the next sprint?

Every three weeks, at the end of each sprint, there was a sprint review and a feedback meeting that included
the team members, stakeholders and product owner. The stakeholders and Scrum team inspected the delivered
product. The lessons learned and improvements from the previous sprint were documented. The questions
asked during the sprint review meeting were, What are the testing results for the deliverables from this sprint?
What is the feedback regarding the tested materials? What changes (upgrades) are needed?

Every month, a steering committee meeting was attended by the project owner, project manager, domain
experts and the stakeholders, including relevant top managers. The purpose of this meeting was to report to the
top managers and stakeholders who were not directly involved, observe the project’s progress and gather
feedback. Here, participants discussed the overall results and whether everything was headed in the right
direction.

 یاھو

20

 یاھو

4.1.2.5 PCS scoping and modelling
The project scoping was done at a high level of abstraction at the beginning of the project and then detailed
and refined sprint by sprint. The product owner and the project manager made the same (i.e. the same as during
the RUP PCS projects) decisions about the project goals, starting from the stakeholders’ requirements as
defined by the product owner via documents and notes. The project manager then formalised these
requirements with user stories and acceptance criteria. The project manager translated the requirements into
goals and prioritised them based on the business value of each sprint. In the two Scrum projects, the
knowledge regarding product and configuration processes were documented mainly as user stories.

Product knowledge was analysed using only the readily available documents and notes at the beginning to
define the project’s overall scope. Then, in each sprint, the detailed product-related information was included
in the user stories reported in the backlog without using PVM, CRC cards or class diagrams. In the end, the
product knowledge documentation was located in the user stories and in each PCS release. The configuration
process was documented in user stories and in the Scrum platform (Jira) during the sprints.

Similarly, the IT architecture for required software developments was managed in the sprints. Further IT
developments such as extra features and integrations were planned at the beginning and done during the
relevant sprint.

4.1.2.6 Implementation and software integration
The nature of the PCS implementation activities did not differ from the PCS RUP-based projects. In the Scrum
projects, these activities where performed in each sprint according to the sprint planning in order to complete
the defined release.

4.1.2.7 Testing
Testing was performed per sprint every three weeks, including both technical and stakeholder testing. The
tester, who was part of the IT development team, performed this activity by using the test cases that the IT
team had predefined and planned. Technical testing of each user story was done during the sprint. Before the
end of the sprint, the release was sent to stakeholders for testing. Therefore, the team members received
feedback from users every three weeks, and when possible, from the product owner and the steering
committee.

In the two Scrum-based projects, requests for changes were all within the scope of the projects and
immediately defined and inserted as new user stories in the backlog.

Finally, when a version passed the test, the tester and the stakeholders approved the executed sprint, making it
possible to arrange the next sprint with upcoming tasks. Otherwise, based on feedback or comments on
knowledge validity, new tasks were defined for the next sprint – some of the modelling and development tasks
has to be repeated based on a request or on knowledge that had to be corrected.

4.1.2.8 Deployment
Like in the RUP-based PCS projects, system deployment was done once per project – when the system was
totally completed, ready to use and approved. While in theory opposed to the Scrum principles, this approach
has been adopted because of the high amount of interdependencies presented in the considered PCSs. Indeed, it
is very complicated to proceed to the deployment of a partial PCS because this leads to incomplete or even
inconsistent (thus unbuildable) product configurations. The insertion of a complete set of constraints (which
imply touching all the dimensions of the knowledge to be inserted in the PCS) is necessary to be able to
perform a complete and feasible configuration even for a subset of the considered products. Once all of the
product feature interdependencies are considered, the system is usable in a live environment. So while each

 یاھو

21

 یاھو

release is validated with users and stakeholders at the end of each sprint, as typically done in Scrum based
software development projects, the actual deployment is not done in a phased or staged approach but rather at
once with a consistent system at the end of the project. Deployment is thus done on the basis of the final
release for all the involved and potential stakeholders. The product owner took responsibility for changing the
routines and people’s mind-sets in order to replace the old systems in use. In the two projects, the approved
PCSs were adopted immediately, as they were approved or modified by involving stakeholders in frequent
meetings. This frequent involvement ensured the constant engagement of stakeholders during the project and
the PCS’ good alignment with their expectations.

4.1.2.9 Maintenance and updates
In these two projects, maintenance was assigned to any one member of the development team as soon as
possible by including the request in the sprint. Unfortunately, in these two projects, maintenance suffered from
little documentation, as it was based mainly on user stories.

4.2 How PCS project challenges were addressed
In order to gather the effects of the PCS challenges from Scrum in comparison with RUP, factual data
(collected mainly though archival data and interviews) and judgments provided by PCS development team
members (collected through questionnaire-based semi-structured interviews) are provided. Table 3 presents the
factual data that provides further elements characterising RUP- and Scrum-based PCS projects on one side and
PCS challenges for each project on the other. Table 4 presents the results of the interviews on the influences of
Scrum compared to those of RUP on PCS challenges. While Table 5 provides objective evidence about
whether and how a certain challenge was faced, Table 6 provides judgment-based evidence and explanations
of why Scrum performed better or worse than RUP in facing PCS challenges.

In Table 3, the first column refers to the PCS projects challenges as reported from literature and highlighted in
section 2.3 and Table 1. The second column addresses the details of each of the challenges based on the
description and details of each of the challenges highlighted in Table 1. The rest of the table provides the
numbers and explanation to compare the performance of the RUP and Scrum projects.

Table 3. Project performance data

PCS challenge Dimension of impact
RUP Scrum

Project 1 Project 2 Project 3 Project 4

Human resources
constraints

1. a) Time of IT project
development team assigned in
each project

~15 months ~20 months ~12 months ~10 months

1. b) Amount of use of IT project
development team (full time
equivalent in person–month [pm])

Conf. engineer: 8
pm
Developer: 1 pm

Conf. engineer: 12
pm
Developer: 2 pm

Conf. engineers: 11
pm
Developers: 2 pm
Tester: 1 pm

Conf. engineer: 8 pm
Developer: 1 pm
Tester: 1 pm

2. a) Time of domain experts
assigned in each project

2 resources:

R1: 8 months
R2: 2 months

3 resources:
R1: 9 months
R2: 2 months
R3: 1 months

6 resources:
R1: 4 months
R2, R3, R4, R5, R6:
1 month for each of
them

5 resources:
R1: 2 months
R2, R3, R4, R5: 1
month for each of
them

2. b) Amount of use of domain
experts (in person–month
[pm])

2 resources (1
resource assigned
per time):

R1: 4 pm
R2: 1 pm

3 resources (1
resource assigned
per time):
R1: 5 pm
R2: 1 pm
R3: 1 pm

6 resources (1-2
resources assigned
per time):
R1: 2 pm
R2: 1 pm
R3, R4, R5, R6: 1
pm in total

5 resources (2
resources assigned
per time):
R1: 1 pm
R2: 1 pm
R3, R4, R5: 1 pm in
total

 یاھو

22

 یاھو

Product-related
challenges

3. Tools to handle complexity of
the product range in PCS project
development

PVM helps to
handle the
complexity

PVM and class
diagrams help to

handle the
complexity

No tool for visualisation and overview

4. a) Management of product
changes and time devoted to this

As the project development and
maintenance were longer, they were

normally behind the schedule to keep up
with the changes:

They immediately made a user story for the
changes, and one of the resources took over

the task based on availability:

~1 month ~2 months 2 weeks 1 week

4. b) Average time per year for
maintenance/updates

3 months: around
1–2 person-months

5 months: around
2–3 person-months

2 months: ~
1 person–month

2 months: ~
1 person–month

IT (technical)
challenges

5. Main IT technical challenges
and time devoted to solving
serious challenges

Integration,
IT project management,

lack of resource from domain experts

There were few challenges because there
were so many different experts in the team
who specialised in different fields. Thus, in
case of need, the tasks were easily assigned.

2 months: ~1

person–month

1 month: ~2

person–week

2 weeks: ~4
person–day

1 week: ~2 person–
day

6. User assessment of PCS
friendliness

They did not complain but were not
completely satisfied.

They were satisfied because they tested the
system in every sprint and could see the

deliverables in the system.

7. User interface, requests for user
interface changes (if any) and
rounds devoted to addressing
them

Because the same software was used, the user interface was the same; what was different
was how they modelled the product and determined the project scope and details.

Good
Request for modifications: Aligned closely with requirements and

approved iteratively 2 rounds of changes 5 rounds of changes

Knowledge
acquisition
challenges

8. a) Number of errors related to
low-quality knowledge acquisition

~10 ~13 ~4 ~2

8. b) Number of rules that were
rewritten due to poor knowledge
acquisition

~15 ~30 ~5 ~3

9. Number of pages (or equivalent
of pages) in the project
documentation

Complete PVM: The documentation consisted entirely of the
user stories and explanation of the tasks 10 pages 6 pages

10. Average time between a
request to update PCS knowledge
and the updating of this knowledge

1 month 2 months 2 weeks 1 week

Product modelling
(knowledge

representation)
challenges

11. Modalities of knowledge
representation and visualisation

PVM Nothing

12. Modalities used to
communicate with PCS
stakeholders

The communication was available every: Very high level: daily internal meetings,
workshops and testing (every 3 weeks) 1–2 months. 2–3 months.

Organisational
challenges

13. Number of episodes of serious
resistance to changes

1 2 Never

Table 2 and Table 3 suggest that Scrum-based PCS development projects are faster than RUP-based ones in
terms of total duration (10–12 months versus 15–20 months) because they involve more domain experts (5–6
versus 2–3) and use more of them in parallel (2 versus 1), use more IT professionals (3–5 versus 2) and use
more domain experts and IT professionals in parallel (3–5 versus 2). However, RUP projects use almost the
same IT resources (9–14 pm versus 10–14 pm) and more domain expert resources (5–7 pm versus 3–4 pm). In
addition, RUP-based projects are more behind the schedule to keep up with product changes than Scrum-based
ones (1–2 pm versus 1–2 pm). Finally, the consumption of resources for maintenance/updates are higher for
RUP versus Scrum (1–3 pm versus 1 pm).

 یاھو

23

 یاھو

As far as the product-related and knowledge acquisition challenges, RUP-based PCS projects used tools (like
PVM and class diagrams) to handle the product range complexity, whereas Scrum-based ones did not use tools
to visualise and gain an overview of this product variety-related complexity. Regarding knowledge acquisition
challenges, RUP-based projects presented more errors (approximately 10–13 versus 2-4) and more rewritten
rules (approximately 15–30 versus approximately 3–5) due to a low-quality acquisition of knowledge.
However, while in Scrum the lower percentages of rewritten rules (< 0.4%) are due to multiple and frequent
validations, in RUP the limited percentages of rewritten rules (≤ 2.5%) are due to accurate and systematic
knowledge elicitation and formalisation. Finally, they were slower in fulfilling requests to update PCS
knowledge (1–2 months versus 1–2 weeks).

As far as the IT (technical) challenges, Scrum-based PCS developments encountered fewer serious IT
challenges that, when encountered, were solved more rapidly (1–2 weeks versus 1–2 months) due to the
presence of more experts who were specialised in different fields. In Scrum-based PCS projects, users were
more satisfied because they tested the system in every sprint and could see the deliverables in the system.
Further, the user interfaces were more aligned with user requirements due to their iterative approval. RUP-
based projects had less frequent communication with stakeholders (every 1–2 and 2–3 months versus every 3
weeks). Finally, regarding organisational challenges, Scrum-based projects did not present episodes of serious
resistance to changes, whereas RUP-based projects faced 1–2 episodes.

Table 4 presents the results of the interviews. It reflects the format (with the difference that column 1 was not
provided and columns 8 and 9 where collapsed and headed by “Any comment?”) and reports exactly the
interviews statements as emailed and discussed during interview sessions. The first column lists the main
categories of challenges related to the PCS projects reported from literature and highlighted in section 2.3 and
Table 1. The second column presents the statements while the column 3-7 are the Likert-scaled answers
provided for the interviewees. Column 8 and 9 provide the interviewees with the opportunity to explain the
reasons for their answers to the Likert-scaled statement respectively for RUP and Scrum.

Table 4. Results of interviews related to the benefits of Scrum compared to RUP based on PCS challenges

Challenges
related to the
management

of PCSs

Statements

St
ro

ng
ly

 d
isa

gr
ee

D
is

ag
re

e

N
eu

tr
al

A
gr

ee

St
ro

ng
ly

 a
gr

ee

Comments on RUP (why?) Comments on Scrum (why?)

Resource
constraints

1. Scrum reduced the time
and resources needed from
the IT project
development team for
PCS projects when
compared to RUP.

 1 3

• Highly structured overview and
framework

• Detailed planning at the
beginning

• Component-based development
• Management of software changes

• Faster development in Scrum
• More convenient to allocate

resources in Scrum
• A good estimation tool (user stories

and story points) in Scrum

2. Scrum reduced the time
and resources needed from
the domain experts for PCS
projects when compared to
RUP.

 2 2
• Iterative testing, validation and

improvements from domain
experts

• User stories in Scrum helped the
business see blockers

• Better communication
• Frequent constant validation and

testing

Product-related
challenges

3. Scrum managed the
complexity of the product
range in PCS project
development better than
RUP.

 2 1 1

• Flexible integration of dedicated
tools for product modelling

• Product model visualisation
• Detailed discussion with

stakeholders regarding product-
related challenges

• Scrum did not support the
visualisation and analysis of
product knowledge

• Scrum did not suggest a tool for
product overview like RUP did

• Breaking down the tasks into user
stories in Scrum clarified the
problem domain

 یاھو

24

 یاھو

4. Scrum mitigated the
challenges of product
updates and the
development rate in PCS
projects when compared
to RUP.

 3 1

• Slow development and
maintenance procedure

• Full understanding of the product
structure at the beginning of the
project to create a full picture

• Faster maintenance in Scrum
• Faster development in Scrum
• User stories in Scrum hastened all

the phases of development

IT (technical)
challenges

5. Scrum mitigated the
technical software
challenges in PCS projects
when compared to RUP.

 4 • Slow and detailed development

• The IT technical challenges were
quickly identified and prioritised in
Scrum.

• Allocation of tasks to the
appropriate resources in Scrum

6. Scrum mitigated the
challenges of design
thinking, input/output
requirements and system
friendliness in PCS
projects when compared
to RUP.

 2 2 • Tools for functional and non-
functional requirements

• Scrum employed user stories and
sprint reviews for requirement
analysis.

• Good communication in Scrum
• More iterative testing and feedback

in Scrum

7. Scrum improved the user
interface in PCS projects
when compared to RUP.

 3 1
• Iterative testing, but no fixed

meeting

• Fixed sprint reviews for discussions
in Scrum

• Scrum enabled responsiveness to
rapid changes in stakeholders’
requirements

Knowledge
acquisition
challenges

8. Scrum performed better
regarding PCS project
knowledge acquisition
when compared to RUP.

 3 1

• Framework and tools for
knowledge management

• Comprehensive knowledge
acquisition at the beginning of
the project

• Tacit knowledge in Scrum
• Poor documentation in Scrum
• No structured framework or tool for

knowledge acquisition in Scrum

9. Scrum performed better
regarding PCS project
knowledge documentation
when compared to RUP.

1 3 • Comprehensive documentation
of knowledge

• Once the sprint was done, all the
documented knowledge from the
user stories was difficult to find and
document in Scrum

• Very light and agile documentation
in Scrum

10. Scrum performed better
in terms of maintaining
and updating the
knowledge in the
maintenance phase of PCS
projects when compared
to RUP.

 4 • Explicit available knowledge

• Scrum successfully kept track of
user stories and bugs.

• Fast maintenance in Scrum due to
quick adaptation to required
changes

Product
modelling

(knowledge
representation)

challenges

11. Scrum performed better
regarding PCS project
knowledge visualisation
and representation when
compared to RUP.

 2 2
• Visualisation tools such as

product tree structures

• No product visualisation due to the
speed of development in Scrum

12. Scrum performed better
in terms of
communicating with
stakeholders regarding the
product model in PCS
projects when compared
to RUP.

 2 2
• No fixed meeting with

stakeholders
• Iterative testing

• Fixed sprint review meetings in
Scrum helped a great deal.

• Satisfactory relationship with the
customer in all sprints in Scrum

• Continuous iterative testing in
Scrum

Organisational
challenges

13. Scrum performed better
in terms of supporting
change management
regarding resistance to
using the PCS when
compared to RUP.

 1 3 • Not very successful in terms of
change management

• Alignment of the requirements in
Scrum

• Scrum was fast enough to keep up
with the changes.

• Scrum was very good in terms of
involving the stakeholders.

14. Scrum performs better
in terms of supporting the
agreements of PCS
projects’ scoping when
compared to RUP.

 4
• Implementation difficulties due

to the lack of communication
• Failure in change management

• Breaking down the tasks helped a
great deal in scoping the project in
Scrum

• Acceptance criteria for each user
story helped team members to
understand the stakeholders and the
scope in Scrum

 یاھو

25

 یاھو

Table 4 shows that on 9 out of 14 of the challenges, Scrum provides better support than RUP. Interestingly, in
two aspects (9 – knowledge documentation, and 11 – knowledge visualisation and representation), RUP
performs better than Scrum. In two aspects (3 – managing the complexity of the product range, and 8 –
knowledge acquisition), RUP and Scrum are almost equivalent. These results indicate that Scrum is generally
superior to RUP in facing PCS challenges; however, it presents some limitations on knowledge management,
where RUP performs better. However, awareness of the limitation of Scrum in terms of PCS project
management would assist practitioners with risk management.

5 Discussion
5.1 SCRUM versus RUP in PCS project activities

Table 5 comparatively synthesises and visualises the results reported in section 4.1 and some information on
PCS development project performance reported in Table 3. Table 5 is designed to highlight the differences
between RUP-based and Scrum-based PCS development activities (and performance) and to compare these
differences to those observed in RUP-based and Scrum-based general software development activities (and
performance). In order to reach the intended comparison objectives effectively, we grouped the first four
coding categories reported in sections 4.1.1 and 4.1.2 (namely project values, roles and main tasks, task
management and activity organisation) into a common super-category called organisational approach. Vice
versa we split the PCS scoping and modelling category into four subcategories namely stakeholder
requirements, product knowledge, configuration process, and goals. Given that this table could be read fast by
the audiences without the need to read the entire paper. In order to avoid misinterpretation we replace the
technical expression “implementation and software integration” with a more intuitive term “working on the
software”. Table 5 starts with the organisational approach (something that is usually decided before a specific
PCS project starts but that highly influences how the PCS project is conducted), continues with the project
realization activities (that revisit the phases of PCS development procedure which has been proposed by Hvam
et al. (2008) considering various methods, including RUP but not Scrum), and ends with the PCS project
performance that can be fully appreciated only after the project completion. Table 5 is detailed enough to avoid
becoming generic; it is also self-explanatory to allow the present discussion to be limited to the main findings
that emerged.

Table 5. RUP versus Scrum in PCS developments and comparison with RUP–Scrum differences in general software development

PCS projects Different
from

general
SW?

RUP-guided PCS development Scrum-guided PCS development

Organisational
approach

• Progress systematically reducing risks
• Make best use of specialisations sequentially
• Very detailed analysis and planning at the beginning
• Release the PCS in big chunks
• Moderate contact with stakeholders during the project

• Progress rapidly delivering value
• Use more IT professionals and more domain experts
• Use them in parallel and interchangeably
• Plan, develop, test and deliver PCS parts such that they

are small enough to be completed in three weeks
• Fast, high-level planning at the beginning, focused

detailed planning every three weeks and face-to-face
daily microplanning and control

No

Stakeholder
requirements

Defined by product owner, who records them in any kind of document; subsequently formalised by the project
manager

No • Using use-case diagrams and flowcharts
• Prioritised (based on risks) in the very beginning of the

project when PCS delivery is split into different versions

• Using user stories and acceptance criteria
• Prioritised (based on business value) in different sprints

 یاھو

26

 یاھو

RUP-based PCS projects follow a systematic approach that performs a deep analysis of what has to be
developed before starting its realisation; they also document everything very accurately to ensure good
implementation and future maintenance and enhancements. Team member assignment is based on specific
knowledge and competencies (remember that in PCS projects, the required knowledge and competencies are

• Refined if requested by project manager • Detailed and refined sprint by sprint

Product
knowledge

• Much detailed at the beginning
• Making big PVMs and discussing all the rules and features

of the product
• Analysed and visualised through PVM, documented in

PVMs and CRC cards and eventually in class diagrams

• Overall analysis at the beginning to define the project’s
scope

• Detailed analysis in each sprint using user stories
reported in the backlog

• Not visualised

Yes

Configuration
process

• Analysed, documented and visualised using flowcharts in a
detailed way at the beginning of the project

• Documented in user stories and in Jira (the Scrum
platform) in different sprints along the project

• Not visualised
No

Goals

Stakeholder requirements are translated into goals by the project manager. The decisions on the to-be configuration
process, PCS functionalities, PCS outputs, IT architecture, integration with other IT platforms (such as CAD systems),
products to be included in PCS etc. (i.e. scoping decisions) are made by the product owner and project manager

No • In a very detailed way at the beginning of the project
• Carefully documented using also PVM and CRC cards,

class diagrams and visualised in PVMs

• At overall level at project beginning, specifying
acceptance criteria, PCS features, user interfaces,
stakeholder requirements, extra IT development, etc.

• More detailed decisions made every three weeks in the
middle of each sprint for the subsequent one

Working on the
software

Modelling product process-related knowledge into PCS, writing programs and realising integrations of PCS with other
IT systems (such as CAD, ERP, CRM, simulation tools). The activities are not different between RUP and Scrum, even
though they are done with a different organisation and timeline (see first row)

No

Testing

Technical IT team testing (around every 2–3 months)
• Several frequent IT team meetings
Stakeholder testing (around every 2–3 months)
• Some un-planned meetings and workshops to gather

stakeholder feedback after each release
• Sometimes feedback arrive too late, and fundamental

changes to the project are needed
• If the PCS version passes both technical and stakeholder

testing, it receives the final approval and passes to
deployment.

• Otherwise, (a) for small issues, it goes back to the
development phase to be fixed, while (b) for fundamental
requests with more than a specific amount of required time
and resources, a new project will be planned and scoped.

Technical testing (during sprint for each user story),
frequent testing by software specialist tester based on the
test cases predefined and planned by the IT team
Stakeholder testing (e.g. around every three weeks)
• Team members, stakeholders and the product owner

inspect and discuss the release in the sprint review and
feedback meeting (every three weeks).

• If the test of the prioritised user story is passed, then the
tester and the stakeholders will approve that sprint and
move on to the next user stories.

• If changes and further developments of the PCS are
needed, than they are immediately defined and listed in
the backlog as a new user story.

No

Deployment

• Deployment is done once per project when the system is totally completed, ready to be used and approved
• Make employees using the new PCS and abandon the previous system made of Excel sheets and manual actions

Yes
• The project manager presents the approved system to the

stakeholders as the new system to be used and answers
their questions

• If stakeholders need something else, they have to ask for
maintenance or even a new project

• Product owner takes responsibility for changing the
routines and mind-set to replace the old system in use

• The approved system is expected to be used
immediately since this is facilitated by frequent
meetings and constant engagement of stakeholders
during the project

Maintenance
and updates

• Wait for the availability of the developer of the part to be
updated

• Maintenance is advantaged by good documentation in
PVMs, class diagrams and extra documents such as notes

• Are assigned to any one of the PCS developers’ team
• Maintenance suffers from little documentation that is

mainly user stories
No

Performance
• Slower, more consumption of resources, lower user

satisfaction and acceptance, more need for maintenance,
slow and behind the schedule maintenance and updates

• Faster, more use of resources, higher user satisfaction
and acceptance, less need for maintenance and fast
maintenance and updates

No

 یاھو

27

 یاھو

very differentiated) and tends to follow a sequential approach: if one activity A needs input from activity B,
then activity B must be well completed before starting activity A. All the activities must be done in a planned
way by specialised people with limited uncertainty. It is important to reduce uncertainty from the beginning of
the project to increase quality and efficiency. Scrum-based PCS projects work with a completely different
view, as they aim at delivering fast value. This is important for acceptance of the PCS since people can
appreciate and become accustomed to the new system. To be rapid, in Scrum-based projects, more IT
professionals and even more domain experts are involved and work much more in parallel both within and
across roles. To assure correspondence with users’ requirements, in Scrum-based PCS projects, there are not
only more frequent interactions with stakeholders to gain detailed input but also more frequent testing. Both
user need determination and PCS artefact definition are spread over time and evolve. In Scrum-based PCS
projects, the team accepts that they will not have detailed control of the overall project, but they do not accept
being late with what is planned for the next three weeks. In contrast, in RUP-based PCS projects, teams do not
accept moving on without having removed even small uncertainties that may affect the quality and the
performance of the project. In order to do this, the teams accept that they can spend more time than planned in
the analysis and documentation of products, configuration processes and determining which PCS
characteristics to develop. These fundamental organisational differences between Scrum-based and RUP-based
PCS projects are not so different from what has been observed in general software projects (Collaris and
Dekker, 2010; Noordeloos et al., 2012).

Scrum-based PCS development is faster than RUP-based development. This is due both to the greater
concurrent performing of activities and the lower amount of activities that must be redone due to erroneous
knowledge. They are more aligned with users’ requests and highly accepted by users. This is due to the greater
stakeholder involvement and more frequent and focused testing. It also leads to superior development
efficiency, as witnessed by lower consumption of working time from both IT professionals and domain
experts. This is due to more confined chunks of work that reduce complexity, more detailed control of
everyday problems that prevent blockers, and easier access to the specific knowledge that is required. Likely,
greater collaboration and the possibility of substituting written memory with human memory played an
important role in reaching these results. Overall, these differences in performance between Scrum-based and
RUP-based PCS development are similar to those observed in general software development (Collaris and
Dekker, 2010; Noordeloos et al., 2012).

Most of the differences detected between Scrum-based and RUP-based PCS development are similar to the
differences observed for general software development. However, one difference is highlighted for PCS –
namely, product knowledge documentation. While in Scrum, user stories are used both in PCS and general
software development, in RUP, tools such as PVM, CRC cards and class diagrams are used only in PCS
projects. This may seem like a small difference, but it is significant because product knowledge elicitation,
documentation and updates determine the quality of a PCS to such an extent that this can cause a team to
abandon a PCS. Even the first case reported in the literature about a PCS showed heaviness of PCS update and
maintenance due to changes in product characteristics (Barker et al., 1989). Knowledge acquisition and
product modelling (knowledge representation) are among the most important challenges of PCS projects
(Kristjansdottir et al., 2018). So, the Scrum limitation on knowledge representation should not be
underestimated, even though the Scrum-based PCS projects analysed here (as well as the other Scrum-based
PCS projects performed in the case company) were successful.

One similarity observed between Scrum-based and RUP-based PCS development which is different from what
is reported in the literature for general software development projects. In the considered PCS development
projects, the deployment has been done once the full system was ready. In order to have a PCS that assures
feasible configurations even for a subset of products, all relevant constraints had to be inserted. In addition, to

 یاھو

28

 یاھو

unlock the benefits of PCS in the considered cases, a complete family of products was needed to be inserted
and implemented. However, we suggest that this finding likely depends on the complexity of the product and
on the way the configuration task is organised before the introduction of PCS. Therefore, no doubt that this
specific finding deserves further inquiry.

5.2 Scrum versus RUP in facing PCS project challenges

Table 6 summarises the results presented in section 4.2. It concerns the difference between Scrum and RUP in
overcoming PCS challenges. The importance of PCS challenges is taken from (Kristjansdottir et al., 2018).
Here, Scrum performs better than RUP in facing more PCS challenges, but not for all of them. Hereafter, these
results are discussed by considering how the key differences of RUP and Scrum-based PCS projects reflect
PCS challenges.

Table 6. Summary of RUP and Scrum contributions in facing PCS project development challenges

PCS challenge
Importance of
the PCS
challenge

More effective
method to face the
PCS challenge

Key justifications

Organisational
challenges Very high Scrum Scrum performed better regarding communication, involving stakeholders

and their requirements and change management.

Knowledge acquisition
challenges High RUP

RUP performed better because of the available tool for knowledge
management, comprehensive knowledge acquisition and comprehensive
documentation.

Product modelling
(knowledge
representation) challenges

Medium
It depended on the
aspect being
considered

RUP empowered the team with knowledge visualisation and validation
tools. Scrum empowered the team with strong communication, meetings
and stakeholder involvement.

IT (technical)
challenges Medium Scrum Scrum performed better due to superior task prioritisation and allocation,

iterative testing and continuous feedback.

Resource constraints Low Scrum Scrum performed better because of the fast development and iterative
releases, management of the impediments and flexibility in changing roles.

Product-related challenges Low
It depended on the
aspect being
considered

RUP empowered the team with knowledge visualisation and modelling
tools for a full understanding of the product structure. Scrum empowered
the team with strong collaboration, frequent knowledge validation and fast
development, maintenance and updates.

5.2.1 Knowledge documentation

The RUP-based PCS projects strongly relied on configuration processes and product documentation using
PVM and CRC cards. The latter performed well for knowledge modelling and visualisation, were used as a
basis for discussions during meetings and could easily be integrated into the RUP process. Scrum avoided the
need for heavy documentation: knowledge representation and product modelling were performed by
modelling/expressing all the product specifications and constraints in the form of user stories. This had the
advantage of driving the scope of iterations by user story selection, enabling faster development (Wautelet et
al., 2014). Nevertheless, employing user stories also made it impossible to visualise knowledge and to express
the full complexity of a PCS. In terms of traceability, user stories did not allow consistent, long-term
documentation of developments (Dwivedi, 2013). Furthermore, many constraints could not be expressed in
natural language in the form of user stories and therefore required more formal documentation. As a result, in
relation to some specific PCS challenges where knowledge documentation played an important role in product
modelling and representation and some aspects of knowledge acquisition, maintenance and update (e.g.

 یاھو

29

 یاھو

Aldanondo et al., 2000; Ardissono et al., 2003; Felfernig et al., 2000; Haug and Hvam, 2007; Heiskala et al.,
2007), Scrum performed weakly, or at least was not better than RUP.

5.2.2 Knowledge elicitation and validation

In RUP-based projects knowledge, is elicited and systematised at the beginning of the project through specific
representation tools (e.g. PVM, CRC cards and class diagrams). These representation tools allow for a better
understanding of product knowledge between domain experts and IT professionals and are a first control and
validation of the knowledge by domain experts. At the end of the version development, domain experts test
and validate the knowledge and the system though the inspection of the PCS artefact version. In Scrum-based
PCS development, knowledge is incrementally elicited from domain experts, immediately implemented in the
PCS and validated by domain experts by inspecting the PCS artefact in each sprint. Consequently, in RUP, the
quality of the whole knowledge encompassed in a PCS is guaranteed by checking all the knowledge before
starting the project (because it has been incorporated into the PVM) and after each release, while in Scrum,
small amounts of knowledge are elicited, controlled and inserted directly into the PCS and test per sprint.
Therefore, RUP performs better than Scrum in managing the complexity of the product range as well as
knowledge visualisation and representation in PCS project development, which are recognised in several
works (e.g. Aldanondo et al., 2000; Ardissono et al., 2003; Felfernig et al., 2000; Forza and Salvador, 2002b,
2002a; Haug and Hvam, 2007; Heiskala et al., 2007) to be specific aspects of product-related challenges and
product modelling challenges, respectively.

5.2.3 Collaboration, support and overall momentum

Scrum-based projects involve more IT and more domain experts in total and in parallel. This is a sign that the
project is vital for the organisation and that enough resources are provided. More people formally assigned in
the projects means more responsibility for results and immediate support, when needed. In Scrum, the projects
progress rapidly, valuable outputs become visible to stakeholders much earlier and new valuable outputs are
continuously delivered. This creates momentum in the organisation, and this momentum helps to find support
in a virtuous cycle. In addition, this process both presents small bites of changes at a time, thus making them
more digestible, and offers opportunities to provide feedback. This feedback is immediately considered and
greatly affects the project. Altogether, this method of working reduces resistance to change. The final
consequence is that the main PCS challenges (i.e. organisational challenges) (e.g. Ariano and Dagnino, 1996;
Barker et al., 1989; Forza and Salvador, 2002a; Heiskala et al., 2007) are better faced with Scrum.

5.2.4 Consumption of resources

Scrum-based projects consume fewer human resources than RUP-based ones even though they involve more
IT specialists and more domain experts. This is not due to only the reduction in the documentation overload,
but it is based on several interrelated aspects of the Scrum way to work. There are other inefficiencies removed
via the Scrum approach that deserve ad hoc investigations. Overall, the resource constraint challenges (e.g.
Aldanondo et al., 2000; Ariano and Dagnino, 1996; Barker et al., 1989; Forza and Salvador, 2002b; Heiskala et
al., 2005) benefit from Scrum since it reduces the consumption of resources in PCS projects.

5.3 Threats to validity

This section exposes the threats to the study’s validity and recalls the main adopted countermeasures. The
discussion is organised via three aspects: construct validity, internal validity and external validity.

 یاھو

30

 یاھو

With respect to construct validity, which ‘is the extent to which we establish correct operational measures for
the concepts being studied’ (Voss et al., 2002, p. 211) and ‘reflects to what extent the operational measures
that are studied really represent what the researcher have in mind and what is investigated according to the
research questions’ (Runeson and Höst, 2008, p. 153), the main threat is that the interview questions are not
interpreted by the interviewees in the way the interviewers intend. To increase construct validity, three forms
of triangulation were implemented: observer triangulation, data (source) triangulation and methodological
triangulation (Runeson and Höst, 2009). First, the research team that performed the interviews and document
analysis consisted of three researchers, allowing observer triangulation. Interviews were recorded (with the
authorisation of the interviewees) and subsequently systematically analysed by researchers both independently
and as a team to avoid misinterpretations. Results analysis was conducted with the entire research team to
avoid misinterpretations. Regarding data (source) triangulation, the same questions were asked of all four
interviewees, thus ensuring multiple response sources. Several interviews were conducted using the same set
of questions with people playing (or having played) various roles in the PCS development team. By collecting
data on the same aspects from different points of view, the researchers increased the validity of the data used to
make inferences. In addition, both data (source) and methodological triangulations were applied by using
factual data related to each PCS challenge in addition to qualitative interviews, non-systematic direct
observation and company documents produced during each project (which the researchers had completely at
their disposal). The long-term trusting relationship between the researchers and the investigated company
provided multiple advantages for increasing construct validity (Runeson et al., 2012), such as a better
understanding of how participants interpreted terms, more information transparency and correctness and the
participants spending more time providing relevant information.

Internal validity ‘is of concern when causal relations are examined’ (Runeson and Höst, 2008, p. 154) and ‘is
the extent to which we can establish a causal relationship, whereby certain conditions are shown to lead to
other conditions, as distinguished from spurious relationships’ (Voss et al., 2002, p. 211). The major threat to
internal validity is that interview answers regarding the impact of RUP and Scrum on PCS development
challenges might reflect respondents’ biased opinions on the adopted development method rather than how the
method truly performs. Also, the roles played by the respondents within the PCS development team might
influence their knowledge of the project management and engineering activities being performed.
Consequently, the knowledgeability of interviewees in answering some of the questions may vary. However,
all the countermeasures the present researchers adopted for construct validity allowed them to increase internal
validity – in particular, the justifications provided by each interviewee about each one of his or her judgements
(see columns 8 and 9, Table 4) and confronting their judgments (Table 4) with objective data (Table 3). In
addition, using multiple cases (with both theoretical and literal replications) permitted the researchers to detect
a similar pattern of causal relations between RUP and Scrum and PCS challenges across cases, thus increasing
the validity of the findings. The other threat to internal validity is the duration of RUP and Scrum at the case
company. Based on Figure 1, the duration of working and experiencing RUP is 5 years while this period is
around 3 years for the Scrum projects. Even though the durations of experiencing RUP and Scrum are long
enough for this research, we signal that the duration of experiencing RUP is longer than the duration of
utilizing Scrum for PCS projects at the case company.

The threat to external validity concerns the fact that the results may not be generalizable beyond the
investigated case studied (Runeson and Höst, 2009; Voss et al., 2002). Even though the findings of this study
are based on multiple projects, they are drawn from a single organisation. The results can be extended and are
likewise relevant to companies that have similar characteristics to the company analysed here that are planning
to begin an agile transformation in comparable circumstances. In addition, several, if not all, of the
mechanisms presented here to explain the impact of RUP and Scrum on project performance and PCS
challenges are valid far beyond the kind of company that was analysed. However, further studies should be

 یاھو

31

 یاھو

performed in different contexts, such as with companies that are moving to Scrum without having used RUP
before or in small and medium enterprises where some IT experts are external to the company, and the internal
domain experts are overloaded. The authors of this article expect that the results hold globally, even in these
contexts; however, they also expect some peculiarities that could call for specific adaptations of Scrum and
RUP for PCS projects.

6 Conclusions
PCSs can bring substantial benefits to companies, such as shorter lead times for generating quotations, fewer
errors, use of fewer resources, less routine work and improved on-time delivery (Haug et al., 2019; Hvam et
al., 2013; Trentin et al., 2012, 2011). Unfortunately, PCS projects present certain difficulties, such as resource
constraints, product-related challenges, technical challenges, knowledge acquisition challenges, product
modelling challenges and organisational challenges (Kristjansdottir et al., 2018). The method used for
planning, developing, implementing and maintaining PCS projects may influence these challenges. Agile
methods like Scrum are renowned for overcoming certain shortcomings of the traditional methods of software
development. Unfortunately, the differences between PCSs and other software development projects concern
several aspects – knowledge complexity and extensions, maintenance and documentation, knowledge
modelling techniques, etc. (Shafiee et al., 2018). PCS projects being different from other software development
projects, it is not obvious that the advantages of Scrum compared to those of the RUP hold for PCS projects as
well. For these practically and scientifically relevant reasons, the present paper investigated the differences
between Scrum and RUP in managing PCS projects as well as the consequent differences between their
impacts on the challenges of PCS projects.

The study provided empirical evidence that both RUP and Scrum can be effective to develop PCS. However,
the way the work proceeds differs vastly in the two approaches. In Scrum, user stories for PCS specifications,
frequent interaction with users and domain experts and focusing sprints on the most valuable aspects make
PCS development more accepted and supported by the organisation. This is similar to what happens with other
software engineering projects. However, the speed and flexibility in specification definition and in knowledge
formalisation are obtained at the expense of knowledge visualisation, as PVM and CRC cards are not replaced
by equally capable tools for knowledge representation. So, for one of the aspects that most differentiates PCS
projects from other software engineering projects, Scrum presents a weakness or at least is not able to perform
better than RUP.

The comparison of RUP- and Scrum-managed PCS projects highlighted that both methods helped with PCS
challenges; however, they did so differently. Scrum performed better in facing organisational challenges –
recognised as often being the biggest challenges – and also in facing IT challenges and resource-constraint
challenges. In contrast, RUP performed better in knowledge acquisition challenges. So, even though Scrum
presents several advantages over RUP, it is not automatically the best choice.

The results of this study can be used as guidelines and warnings for transitions to Scrum in companies
conducting PCS projects. In particular, such companies should focus on finding the right amount of PCS
requirements and design representation either in user stories or via an adequate way to integrate artefacts, like
PVM and CRC cards, keeping these fully consistent with the knowledge depicted in the user stories.

Overall, these results show that Scrum has several advantages but is lacking in the areas of documentation and
visualisation of PCS knowledge. Notably, knowledge management is crucial for PCS, and once again, the
results confirm that PCSs have special needs in terms of knowledge management that differentiate them from
other IT systems (Shafiee et al., 2018). Therefore, both practice and research should consider integrating
adequate documentation tools and knowledge representation in managing PCS projects. Several solutions can

 یاھو

32

 یاھو

be envisaged in order to bypass these shortcomings. The most promising possibility would be to integrate
PVM and CRC cards into Scrum, even though the process is driven by user stories. Both requirement–
representation artefacts could be used in parallel, but consistency should then be ensured. A computer-aided
software engineering tool can be specifically developed to edit the PVM and the user stories at the same time
and to ensure maximum consistency between these two requirement–representation artefacts (Shafiee et al.,
2019). Another possibility would be to include more formal requirement–representation artefact elements in
user stories; this would reduce the appeal of these artefacts, which is primarily based on their simplicity in
writing and understanding.

The present study has several limitations that should be addressed in future research. The decision to conduct
this study in a single company allowed the researchers to control for numerous influencing factors but limited
the generalisability of the results. In addition, the single organisational context and the similarity of the chosen
PCS projects did not allow the researchers to detect potential contingencies due to specific contexts, which
could have affected the effectiveness of the PCS development. Therefore, in order to enhance the external
validity of the results and to identify relevant contingencies, future qualitative and quantitative studies should
be performed in different research settings or using larger statistical samples.

References
Aldanondo, M., Rouge, S., Ve, M., 2000. Expert configurator for concurrent engineering : Caméléon on

software and model. Journal of Intelligent Manufacturing 11, 127–134.
https://doi.org/10.1023/A:1008982531278

Ambler, S., 2002. Agile modeling: effective practices for extreme programming and the unified process, Guide
to the Unified Process featuring UML, Java and Design Patterns. John Wiley & Sons.

Ambler, S.W., 2005. A manager’s introduction to the rational unified process (RUP).
http://www.ambysoft.com.

Appleton, B., Konieczka, S., Berczuk, S., 2003. Agile change management: From first principles to best
practices. CM Journal.

Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G., Schafer, R., Zanker, M., 2003. A
framework for the development of personalized, distributed web-based configuration systems. AI
Magazine 24, 93–110. https://doi.org/10.1609/aimag.v24i3.1721

Ariano, M., Dagnino, A., 1996. An intelligent order entry and dynamic bill of materials system for
manufacturing customized furniture. Computers & Electrical Engineering 22, 45–60.
https://doi.org/10.1016/0045-7906(95)00027-5

Barker, V.E., O’Connor, D.E., Bachant, J., Soloway, E., 1989. Expert systems for configuration at Digital:
XCON and beyond. Communications of the ACM 32, 298–318. https://doi.org/10.1145/62065.62067

Basili, V.R., Weiss, D.M., 1984. A methodology for collecting valid software engineering data. IEEE
Transactions on Software Engineering SE-10, 728–738. https://doi.org/10.1109/TSE.1984.5010301

Benbasat, I., Goldstein, D.K., Mead, M., 1987. The case research strategy in studies of information systems.
MIS Quarterly 11, 369. https://doi.org/10.2307/248684

Boehm, B., 2012. Get ready for agile methods, with care. International Journal of Engineering Science &
Technology 4, 23–29. https://doi.org/10.1109/2.976920

Boehm, B., Turner, R., 2005. Management challenges to implementing agile processes in traditional

 یاھو

33

 یاھو

development organizations. IEEE Software 22, 30–39. https://doi.org/10.1109/MS.2005.129

Campanelli, A.S., Camilo, R.D., Parreiras, F.S., 2018. The impact of tailoring criteria on agile practices
adoption: A survey with novice agile practitioners in Brazil. Journal of Systems and Software 137, 366–
379. https://doi.org/10.1016/j.jss.2017.12.012

Campanelli, A.S., Parreiras, F.S., 2015. Agile methods tailoring–A systematic literature review. Journal of
Systems and Software 110, 85–100. https://doi.org/10.1016/j.jss.2015.08.035

Cardozo, E., Araújo Neto, B., Barza, A., França, C., da Silvia, F., 2010. SCRUM and productivity in software
projects: A systematic literature review. 14th International Conference on Evaluation and Assessment in
Software Engineering (EASE) 1–4.

Cervone, H.F., 2011. Understanding agile project management methods using Scrum. OCLC Systems &
Services: International Digital Library Perspectives 27, 18–22.
https://doi.org/10.1108/10650751111106528

Cho, J., 2009. A hybrid software development method for large-scale projects: Rational unified process with
scrum. Issues in Information Systems 10, 340–348.

Collaris, R.-A., Dekker, E., 2010. Scrum and RUP: A comparison doesn’t go on all fours. Agile Record 62–65.

Coram, M., Bohner, S., 2005. The impact of agile methods on software project management. 12th IEEE
International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)
363–370. https://doi.org/10.1109/ECBS.2005.68

Drury-Grogan, M.L., Conboy, K., Acton, T., 2017. Examining decision characteristics and challenges for agile
software development. Journal of Systems and Software 131, 248–265.
https://doi.org/10.1016/j.jss.2017.06.003

Dwivedi, R., 2013. Configuration issues and efforts for configuring agile approaches: Situational based method
engineering. International Journal of Computer Applications 61, 23–27. https://doi.org/10.5120/10021-
4941

Dybå, T., Dingsøyr, T., 2008. Empirical studies of agile software development: A systematic review.
Information and Software Technology 50, 833–859. https://doi.org/10.1016/j.infsof.2008.01.006

Edmondson, A.M.Y.C., Mcmanus, S.E., 2007. Methodological fit in management field research. Academy of
Management Review 32, 1155–1179. https://doi.org/10.5465/AMR.2007.26586086

Felfernig, A., Friedrich, G.E., Jannach, D., 2000. UML as domain specific language for the construction of
knowledge-based configuration systems. International Journal of Software Engineering and Knowledge
Engineering 10, 449–469. https://doi.org/10.1016/S0218-1940(00)00024-9

Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J., 2014. Knowledge-based Configuration From Research to
Business Cases. Morgan Kaufmann, Newnes, NWS, Australia. https://doi.org/10.1016/B978-0-12-
415817-7.00029-3

Forza, C., Salvador, F., 2006. Product information management for mass customization: Connecting customer,
front-office and back-office for fast and efficient customization. Palgrave Macmillan, New York, NY.

Forza, C., Salvador, F., 2002a. Managing for variety in the order acquisition and fulfilment process: The
contribution of product configuration systems. International Journal of Production Economics 76, 87–98.
https://doi.org/10.1016/S0925-5273(01)00157-8

Forza, C., Salvador, F., 2002b. Product configuration and inter-firm coordination: An innovative solution from

 یاھو

34

 یاھو

a small manufacturing enterprise. Computers in Industry 49, 37–46. https://doi.org/10.1016/S0166-
3615(02)00057-X

Friedrich, G., Jannach, D., Stumptner, M., Zanker, M., 2014. Knowledge engineering for configuration
systems, in: Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J. (Eds.), Knowledge-Based Configuration:
From Research to Business Cases. Morgan Kaufmann, pp. 139–155. https://doi.org/10.1016/B978-0-12-
415817-7.00011-6

Hanakawa, N., Okura, K., 2004. A project management support tool using communication for agile software
development, in: 11th Asia-Pacific Software Engineering Conference. pp. 316–323.
https://doi.org/10.1109/APSEC.2004.8

Haug, A., Hvam, L., 2007. The modelling techniques of a documentation system that supports the
development and maintenance of product configuration systems. International Journal of Mass
Customisation 2, 1–18. https://doi.org/10.1504/IJMASSC.2007.012810

Haug, A., Shafiee, S., Hvam, L., 2019. The costs and benefits of product configuration projects in engineer-to-
order companies. Computers in Industry 105, 133–142. https://doi.org/10.1016/j.compind.2018.11.005

Heiskala, M., Paloheimo, K., Tiihonen, J., 2007. Mass customization with configurable products and
configurators: A review of benefits and challenges, in: Mass Customization Information Systems in
Business. IGI Global, Finland, pp. 75–106. https://doi.org/10.4018/978-1-59904-039-4.ch001

Heiskala, M., Tiihonen, J., Paloheimo, K., 2005. Mass customization of services: Benefits and challenges of
configurable services, in: Frontiers of E-Business Research (FeBR 2005). Tampere, Finland, pp. 206–
221.

Hollway, W., Jefferson, T., 2000. Doing qualitative research differently: Free association, narrative and the
interview method. Routledge, London, UK.

Hvam, L., Haug, A., Mortensen, N.H., Thuesen, C., 2013. Observed benefits from product configuration
systems. International Journal of Industrial Engineering: Theory, Applications and Practice 20, 329–338.

Hvam, L., Mortensen, N.H., Riis, J., 2008. Product customization. Springer-Verlag, Berlin Heidelberg,
Germany. https://doi.org/10.1007/978-3-540-71449-1

Iacob, I., 2008. Extreme programming and rational unified process – Contrasts or synonyms? Journal of
Information Systems & Operations Management 2, 122–134.

Kamis, A., Koufaris, M., Stern, T., 2008. Using an attribute-based decision support system for user-customized
products online: An experimental investigation. MIS Quarterly 32, 159–177. https://doi.org/Article

Kristjansdottir, K., Shafiee, S., Hvam, H., Forza, C., Mortensen, N.H., 2018. The main challenges for
manufacturing companies in implementing and utilizing configurators. Computers in Industry 100, 196–
211. https://doi.org/10.1016/j.compind.2018.05.001

Kruchten, P., 2007. The rational unified process: An introduction, 3rd ed. Addison-Wesley Professional.

Larman, C., 2004. Agile and iterative development: A manager’s guide, communication. Addison-Wesley
Professional.

Larman, C., Vodde, B., 2013. Scaling agile development: Large and multisite product development with large-
scale scrum. CrossTalk 9, 8–12.

Miller, K.W., Larson, D.K., 2005. Agile software development: Human values and culture. IEEE Technology
and Society Magazine 24, 36–42. https://doi.org/10.1109/MTAS.2005.1563500

 یاھو

35

 یاھو

Moe, N.B., Dingsøyr, T., Dybå, T., 2010. A teamwork model for understanding an agile team: A case study of
a Scrum project. Information and Software Technology 52, 480–491.
https://doi.org/10.1016/j.infsof.2009.11.004

Noordeloos, R., Manteli, C., Vliet, H. Van, 2012. From RUP to Scrum in global software development: A case
study. 2012 IEEE Seventh International Conference on Global Software Engineering 31–40.
https://doi.org/10.1109/ICGSE.2012.11

Paetsch, F., Eberlein, A., Maurer, F., 2003. Requirements engineering and agile software development. 12th
IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
308–313. https://doi.org/10.1109/ENABL.2003.1231428

Rising, L., Janoff, N.S., 2000. The Scrum software development process for small teams. IEEE Software 17,
26–32. https://doi.org/10.1109/52.854065

Rubin, K.S., 2012. Essential Scrum: A practical guide to the most popular agile process. Addison-Wesley.

Runeson, P., Höst, M., 2009. Guidelines for conducting and reporting case study research in software
engineering. Empirical Software Engineering 14, 131–164. https://doi.org/10.1007/s10664-008-9102-8

Runeson, P., Host, M., Rainer, A., Regnell, B., 2012. Case study research in software engineering: Guidelines
and examples. John Wiley & Sons.

Sandrin, E., 2017. Synergic effects of sales-configurator capabilities on consumer-perceived benefits of mass-
customized products. International Journal of Industrial Engineering and Management 8, 177–188.

Sandrin, E., Trentin, A., Grosso, C., Forza, C., 2017. Enhancing the consumer-perceived benefits of a mass-
customized product through its online sales configurator. Industrial Management & Data Systems 117,
1295–1315. https://doi.org/10.1108/IMDS-05-2016-0185

Selic, B., 2009. Agile documentation, anyone? IEEE Software 26, 11–12.

Shafiee, S., 2017. Conceptual modelling for product configuration systems. Technical University of Denmark,
Denmark.

Shafiee, S., Friis, S.C., Lis, L., Harlou, U., Wautelet, Y., Hvam, L., 2019. A database administration tool to
model the configuration projects. IEEE International Conference on Industrial Engineering and
Engineering Management 2019-Decem, 341–345. https://doi.org/10.1109/IEEM.2018.8607654

Shafiee, S., Hvam, L., Bonev, M., 2014. Scoping a product configuration project for engineer-to-order
companies. International Journal of Industrial Engineering and Management 5, 207–220.

Shafiee, S., Hvam, L., Haug, A., Dam, M., Kristjansdottir, K., 2017. The documentation of product
configuration systems: A framework and an IT solution. Advanced Engineering Informatics 32, 163–175.
https://doi.org/10.1016/j.aei.2017.02.004

Shafiee, S., Kristjansdottir, K., Hvam, L., 2016. Industrial experience from using the CPM procedure for
developing, implementing and maintaining product configuration systems, in: 18th International
Conference on Industrial Engineering (IJIE 2016). Seoul, South Korea.

Shafiee, S., Kristjansdottir, K., Hvam, L., Forza, C., 2018. How to scope configuration projects and manage
the knowledge they require. Journal of Knowledge Management 22, 982–1014.
https://doi.org/10.1108/JKM-01-2017-0017

Shuja, A.K., Krebs, J., 2007. IBM Rational unified process reference and certification guide: solution designer
(RUP). IBM Press.

 یاھو

36

 یاھو

Studer, R., Benjaminsc, V.R., Fensela, D., 1998. Knowledge engineering: Principles and methods. Data &
Knowledge Engineering 25, 161–197. https://doi.org/10.1016/S0169-023X(97)00056-6

Suzić, N., Forza, C., Trentin, A., Anišić, Z., 2018a. Implementation guidelines for mass customization: Current
characteristics and suggestions for improvement. Production Planning and Control 29, 856–871.
https://doi.org/10.1080/09537287.2018.1485983

Suzić, N., Sandrin, E., Suzić, S., Forza, C., Trentin, A., Anišić, Z., 2018b. Implementation guidelines for mass
customization: A researcher-oriented view. International Journal of Industrial Engineering and
Management 9, 229–243.

Tiihonen, J., Soininen, T., Männistö, T., Sulonen, R., 1998. Configurable products: Lessons learned from the
Finnish industry, in: 2nd International Conference on Engineering Design and Automation (ED&A ’98).

Trentin, A., Perin, E., Forza, C., 2013. Sales configurator capabilities to avoid the product variety paradox:
Construct development and validation. Computers in Industry 64, 436–447.
https://doi.org/10.1016/j.compind.2013.02.006

Trentin, A., Perin, E., Forza, C., 2012. Product configurator impact on product quality. International Journal of
Production Economics 135, 850–859. https://doi.org/10.1016/j.ijpe.2011.10.023

Trentin, A., Perin, E., Forza, C., 2011. Overcoming the customization-responsiveness squeeze by using
product configurators: Beyond anecdotal evidence. Computers in Industry 62, 260–268.
https://doi.org/10.1016/j.compind.2010.09.002

Usman, M., Soomro, T.R., Brohi, M.N., 2014. Embedding project management into XP, SCRUM and RUP.
European Scientific Journal 10, 293–307. https://doi.org/10.19044/esj.2014.v10n15p%25p

Vlaanderen, K., Jansen, S., Brinkkemper, S., Jaspers, E., 2011. The agile requirements refinery: Applying
SCRUM principles to software product management. Information and Software Technology 53, 58–70.
https://doi.org/10.1016/j.infsof.2010.08.004

Vlietland, J., Van Solingen, R., Van Vliet, H., 2016. Aligning codependent Scrum teams to enable fast
business value delivery: A governance framework and set of intervention actions. Journal of Systems and
Software 113, 418–429. https://doi.org/10.1016/j.jss.2015.11.010

Voss, C., Tsikriktsis, N., Frohlich, M., 2002. Case research in operations management. International Journal of
Operations & Production Management 22, 195–219. https://doi.org/10.1108/01443570210414329

Wautelet, Y., Heng, S., Kiv, S., Kolp, M., 2017. User-story driven development of multi-agent systems: A
process fragment for agile methods. Computer Languages, Systems and Structures 50, 159–176.
https://doi.org/10.1016/j.cl.2017.06.007

Wautelet, Y., Heng, S., Kolp, M., Mirbel, I., 2014. Unifying and extending user story models, in: Jarke, M.,
Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (Eds.), Advanced
Information Systems Engineering. Springer International Publishing, Cham, pp. 211–225.
https://doi.org/10.1007/978-3-319-07881-6_15

Yin, R.K., 2009. Case study research: Design and methods (applied social research methods). Sage, Thousand
Oaks, CA.

	Abstract
	1 Introduction
	2 Literature background
	2.1 Rational unified process (RUP) vs Scrum in general SW development projects
	2.2 Differences between general software development and PCS projects
	2.3 Challenges of PCS development projects
	2.4 RUP and Scrum in PCS development projects

	3 Research aim and method
	3.1 Research aim
	3.2 The case study method
	3.3 The company
	3.4 The unit of analysis and the choice of PCS projects
	3.5 Time-phased overview of the research
	3.6 Data collection
	3.6.1 Archived documents
	3.6.2 Interviews
	3.6.2.1 The interviewer team
	3.6.2.2 The interviewed PCS development teams
	3.6.2.3 The questionnaire
	3.6.2.4 The interview process

	3.7 Data analysis

	4 Results
	4.1 How PCS projects were performed with RUP and Scrum
	4.1.1 RUP-based projects
	4.1.1.1 Project values
	4.1.1.2 Roles and main tasks
	4.1.1.3 Task assignment
	4.1.1.4 Activity organisation
	4.1.1.5 PCS scoping and modelling
	4.1.1.6 Implementation and software integration
	4.1.1.7 Testing
	4.1.1.8 Deployment
	4.1.1.9 Maintenance and updates

	4.1.2 Scrum-based projects
	4.1.2.1 Project values
	4.1.2.2 Roles and main tasks
	4.1.2.3 Task assignment
	4.1.2.4 Activity organisation
	4.1.2.5 PCS scoping and modelling
	4.1.2.6 Implementation and software integration
	4.1.2.7 Testing
	4.1.2.8 Deployment
	4.1.2.9 Maintenance and updates

	4.2 How PCS project challenges were addressed

	5 Discussion
	5.1 SCRUM versus RUP in PCS project activities
	5.2 Scrum versus RUP in facing PCS project challenges
	5.3 Threats to validity

	6 Conclusions
	References

