
Toward the Automatic Classification of Self-Affirmed
Refactoring

Eman Abdullah AlOmara,∗, Mohamed Wiem Mkaouera, Ali Ounib

aRochester Institute of Technology, Rochester, NY, USA
bETS Montreal, University of Quebec, Montreal, QC, Canada

Abstract

The concept of Self-Affirmed Refactoring (SAR) was introduced to explore how

developers document their refactoring activities in commit messages, i.e., de-

velopers explicit documentation of refactoring operations intentionally intro-

duced during a code change. In our previous study, we have manually identified

refactoring patterns and defined three main common quality improvement cat-

egories including internal quality attributes, external quality attributes, and

code smells, by only considering refactoring-related commits. However, this ap-

proach heavily depends on the manual inspection of commit messages. In this

paper, we propose a two-step approach to first identify whether a commit de-

scribes developer-related refactoring events, then to classify it according to the

refactoring common quality improvement categories. Specifically, we combine

the N-Gram TF-IDF feature selection with binary and multiclass classifiers to

build a new model to automate the classification of refactorings based on their

quality improvement categories. We challenge our model using a total of 2,867

commit messages extracted from well engineered open-source Java projects. Our

findings show that (1) our model is able to accurately classify SAR commits,

outperforming the pattern-based and random classifier approaches, and allow-

ing the discovery of 40 more relevant SAR patterns, and (2) our model reaches

an F-measure of up to 90% even with a relatively small training dataset.

∗Corresponding author

Email addresses: eman.alomar@mail.rit.edu (Eman Abdullah AlOmar), mwmvse@rit.edu
(Mohamed Wiem Mkaouer), ali.ouni@etsmtl.ca (Ali Ouni)

Preprint submitted to Journal of LATEX Templates 22nd September 2020

ar
X

iv
:2

00
9.

09
27

9v
1 

 [
cs

.S
E

] 
 1

9 
Se

p 
20

20



Keywords: Refactoring, Self-affirmed Refactoring, Commit Classification,

Machine Learning

1. Introduction

The role of refactoring has been growing from simply improving the internal

structure of the code without altering its external behavior [1] to hold a key

driver of the agile methodologies and become one of the main practices to reduce

technical debt [2]. According to recent surveys, the research on refactoring has

been focused on automating it through recommending candidate code elements

to be refactored and which refactoring operations to apply [3, 4, 5, 6]. Yet,

more recent studies have shown that fully automated techniques are underused

in practice [7]. Indeed, there is a need to minimize the disturbance of the

existing design, by performing large refactorings, as developers typically want

to recognize and preserve the semantics of their own design, even at the expense

of not significantly improving it [7, 8, 9].

Therefore, several studies have taken a developer-centric approach by detect-

ing how developers do refactor their code [10, 11, 12] and how they document

their refactoring strategies [13, 14]. The detection of refactoring operations

and their documentation allows a better understanding of code evolution, and

challenges that trigger refactoring, including the reduction of code proneness to

errors, facilitation of API and type migrations, etc. While automating the detec-

tion of refactoring operations that are applied in the source code has advanced

recently reaching a high accuracy [12], there is a critical need for a deeper ana-

lysis of how such refactoring activities are being documented. In this context,

recent studies [13, 14] have introduced a taxonomy on how developers actually

document their refactoring strategies in commit messages. Such documentation

is known as Self-Admitted or Self-Affirmed refactoring. Documenting refactor-

ing, similarly to any type of code change documentation, is useful to decipher the

rationale behind any applied change, and it can help future developers in various

engineering tasks, such as program comprehension, design reverse-engineering,

2



and debugging. However, the detection of such refactoring documentation was

hardly manual and limited. There is a need for automating the detection of

such documentation activities, with an acceptable level of accuracy. Indeed, the

automated detection of refactoring documentation may support various applic-

ations and provide actionable insights to software practitioners and researchers,

including empirical studies around the developer’s perception of refactoring.

This can question whether developers do care about structural metrics and

code smells when refactoring their code, or if there are other factors that may

influence such non-functional changes. Furthermore, our previous study [14]

found that there are several intentions behind the application of refactoring,

which can be classified as improving internal structural metrics (e.g., cohesion,

encapsulation), removing code smells (e.g., God classes, dead code), or optim-

izing external quality attributes (e.g., testability, readability). Yet, there is no

systematic way to classify such refactoring related messages and estimate the

distribution of refactoring effort among these categories.

To cope with the above-mentioned limitations, this paper aims to automate

the detection and classification of refactoring documentation in commit mes-

sages. In particular, our objective is to analyze the feasibility and performance

of applying learning techniques to (1) identify and (2) classify refactoring doc-

umentation based on commit messages. However, the detection of refactoring

documentation is challenging, besides the inherited ambiguity of distinguish-

ing meanings, in any natural language text, a recent study has shown that

developers do misuse the term refactoring in their documentations [15], which

hardens the reliance on that keyword alone. To cope with these challenges, we

design our study to harvest a potential taxonomy that can be used to document

refactoring activities. Such taxonomy is typically threatened by the potential

false-positiveness of the collected samples. Therefore, we develop a baseline of

code changes that are known to contain refactoring activities, and we analyze

their commit messages, in order to ensure that the collected textual patterns

are meant to describe refactoring, and so, to reduce false positives. Our study

makes the following contributions:

3



• We present a two-step approach that firstly distinguishes whether a com-

mit message potentially contains an explicit description of a refactoring

effort. Then, secondly classifies it into one of the three common categories

identified in previous studies [13, 14]. To the best of our knowledge this

is the first attempt to automate the detection and classification of self

affirmed refactorings.

• We evaluate the performance of our approach by comparing it against

a keyword-based approach that relies on matching messages with known

refactoring keywords [7, 13, 16, 17, 18, 19]. Our key findings show that

our model not only outperforms the keyword-based approach, but also

accurately identifies refactoring related commits with an average accuracy

of 98% and F-measure of 98%. Furthermore, we infer which features, i.e.,

keywords, are relevant for the detection of such refactoring documenta-

tion, and we extract them to extend the list of refactoring documentation

patterns, identified in previous studies [13, 14].

• We deploy our model as a lightweight web-service that is publicly available

for software engineers and practitioners. We also publicly provide our

dataset that served us as the ground-truth, for replication and extension

purposes [20].

This paper is structured as follows. We start by explaining the notion of re-

factoring documentation (self-affirmed refactoring) and reviewing existing stud-

ies that are most related to commit messages classification in Section 3. Next,

in Section 4, we detail our two-step classification methodology. More precisely,

we elaborate on the data collection and preprocessing, choice of the classifica-

tion algorithms. Then, we evaluate our approach, in Section 5, and report a

comparative study between various classifiers, extracted from previous studies,

and we identify most influential features. We report in Section 7 the threats to

our work’s validity, before concluding and describing our future work in Section

8.

4



2. Self-Affirmed Refactoring

2.1. Definition

Commit messages are the atomic descriptions of given code change, in nat-

ural language. It augments the change with human and machine readable mean-

ing. In this study, we are interested in locating and automatically detecting

developer’s documentation of refactoring activities in commit messages. refact-

oring documentation is the textual description of what developers considers to

be a refactoring performed in their code change. The act of intentionally docu-

menting a refactoring activity is known as Self-Affirmed Refactoring (SAR) [14].

SAR is composed of a terminology that was found to be consistently used in

refactoring-related commit messages. For example, if we consider the following

commit message:

Refactor createOrUpdate method in MongoChannelStore to extract

methods and make code more readable

The developer explicitly mentions the intention of refactoring, using the

keyword “refactor”, along with providing extra information related to the re-

factoring activity: the developer reports 1) the type of refactoring operation

performed, i.e., extract method ; 2) the code elements involved in the refactoring

operation, i.e., createOrUpdate and MongoChannelStore; and 3) the intent be-

hind the refactoring, i.e., make the code more readable. This message is labeled

as Self-Affirmed Refactoring (SAR) as it totally or partially documents the re-

factoring performed in the source code.

The manual inspection of the message’s corresponding commit1, reveals 3

methods extracted from the method createOrUpdate() that belongs to the class

MongoChannelStore along with renaming a parameter to be consistent with the

update. So, the documentation has given enough background to explain the

rationale behind the refactoring (improving code readability), the operations

performed and the code elements involved.

1https://github.com/atlasapi/atlas-persistence

5



Table 1: List of Self-Affirmed Refactoring (SAR) Patterns.

Patterns

(1) Refactor* (30) Removed poor coding practice (59) Change design

(2) Mov* (31) Improve naming consistency (60) Modularize the code

(3) Split* (32) Removing unused classes (61) Code cosmetics

(4) Fix* (33) Pull some code up (62) Moved more code out of

(5) Introduc* (34) Use better name (63) Remove dependency

(6) Decompos* (35) Replace it with (64) Enhanced code beauty

(7) Reorganiz* (36) Make maintenance easier (65) Simplify internal design

(8) Extract* (37) Code cleanup (66) Change package structure

(9) Merg* (38) Minor Simplification (67) Use a safer method

(10) Renam* (39) Reorganize project structures (68) Code improvements

(11) Chang* (40) Code maintenance for refactoring (69) Minor enhancement

(12) Restructur* (41) Remove redundant code (70) Get rid of unused code

(13) Reformat* (42) Moved and gave clearer names to (71) Fixing naming convention

(14) Extend* (43) Refactor bad designed code (72) Fix module structure

(15) Remov* (44) Getting code out of (73) Code optimization

(16) Replac* (45) Deleting a lot of old stuff (74) Fix a design flaw

(17) Rewrit* (46) Code revision (75) Nonfunctional code cleanup

(18) Simplif* (47) Fix technical debt (76) Improve code quality

(19) Creat* (48) Fix quality issue (77) Fix code smell

(20) Improv* (49) Antipattern bad for performances (78) Use less code

(21) Add* (50) Major/Minor structural changes (79) Avoid future confusion

(22) Modif* (51) Clean up unnecessary code (80) More easily extended

(23) Enhanc* (52) Code reformatting & reordering (81) Polishing code

(24) Rework* (53) Nicer code / formatted / structure (82) Move unused file away

(25) Inlin* (54) Simplify code redundancies (83) Many cosmetic changes

(26) Redesign* (55) Added more checks for quality factors (84) Inlined unnecessary classes

(27) Cleanup (56) Naming improvements (85) Code cleansing

(28) Reduc* (57) Renamed for consistency (86) Fix quality flaws

(29) Encapsulat* (58) Refactoring towards nicer name analysis (87) Simplify the code

6



2.2. Categories

In our previous work [14], we manually analyzed commit messages to extract

any relevant textual patterns that can be considered as SAR. We provided a

set of 87 SAR patterns, identified across 3,795 open source projects. Table 1

demonstrates all of these patterns. Since refactoring research typically focus

on the detection of refactoring opportunities in the source code to recommend

appropriate operations, we were particularly interested in extracting the intent

behind the refactoring, to capture what typically triggers developers to refactor

their code. As seen in Table 1, intents can be either 1) generic, using high-level

keywords, such as Code cleanup, Code revision, Code reformatting & reorder-

ing etc.; or 2) specific, using keywords that are more in line with the concepts

used by tools to recommend refactoring. To further ensure the correctness of

our data, we conducted a pilot study with a sample of data to learn, explore,

and understand what challenges we faced when classifying commit messages.

Based on the pilot study, we define the three SAR categories (i.e., internal,

external, and code smell). In particular, developers typically state structural,

size, complexity, and Object-Oriented metrics, such as coupling, composition,

design size, etc. These metrics are the main drivers for many refactoring tech-

niques [5, 21, 22, 23, 24, 25], and they are known in literature as internal quality

attributes.

Also, developers do mention the correction and management of bad pro-

gramming practices, also known in refactoring studies [3, 8, 10, 26, 27, 28] as

code smells, anti-patterns, and design defects. Code Smell resolution is the re-

moval of design defects that might violate the fundamentals of software design

principles and decrease code quality. Examples of these code smells include

duplicate code, dead code, long method, blob class, etc.

Finally, we extracted intents corresponding to what literature considers as

external quality attributes. External quality attribute is the property or fea-

ture that indicates the effectiveness of a system such as understandability and

readability. Many refactoring approaches are driven by the optimization of

non-functional attributes such as testability, understandability, changeability,

7



Table 2: Quality Issues (Quality Attribute(s) & Code Smell(s)) Extracted from SAR Commits.

Internal QA External QA Code Smell

Inheritance (31.04%) Functionality (34.03%) Duplicate Code (43.52%)

Abstraction (30.63%) Performance (31.37%) Dead Code (24.84%)

Complexity (14.30%) Compatibility (13.61%) Data Class (22.93%)

Composition (12.53%) Readability (3.60%) Long Method (3.82%)

Coupling (3.81%) Stability (2.64%) Switch Statement (3.18%)

Encapsulation (3.61%) Usability (1.60%) Lazy Class (0.42%)

Design Size (2.11%) Flexibility (1.58%) Too Many Parameters (0.42%)

Polymorphism (1.50%) Extensibility (1.54%) Primitive Obsession (0.21%)

Cohesion (0.48%) Efficiency (1.51%) Feature Envy (0.21%)

Accuracy (1.05%) Blob Class (0.21%)

Accessibility (1.04%) Blob Operation (0.21%)

Robustness (0.78%)

Testability (0.75%)

Correctness (0.65%)

Scalability (0.62%)

Configurability (0.56%)

Simplicity (0.55%)

Reusability (0.45%)

Reliability (0.43%)

Modularity (0.37%)

Maintainability (0.26%)

Traceability (0.26%)

Interoperability (0.24%)

Fault-tolerance (0.16%)

Repeatability (0.07%)

Understandability (0.06%)

Effectiveness (0.06%)

Productivity (0.06%)

Modifiability (0.03%)

Reproducibility (0.03%)

Adaptability (0.03%)

Manageability (0.01%)

evolvability, and readability [29, 30, 31, 32, 33, 34].

The complete list of identified SAR patterns, per category, is depicted in

Table 2. These categories, namely, internal quality attributes, code smells, and

external quality attributes represent what existing refactoring techniques are

using to identify refactoring opportunities in the source code, in order to recom-

mend pure and root-canal refactorings, i.e., behavior preserving code changes

for the purpose of improving software quality. Figure 1 depicts how our clas-

sification clusters the existing refactoring taxonomy reported in the literature

[7, 10, 22, 35, 36, 37, 38, 39]. As can be seen, our classification covers the

majority of categories.

8



Also, it is important to note that existing studies, along with our manual

analysis, have pointed out that refactoring can also be interleaved with other

development tasks, such as updating functionalities, bug fixes, etc. We do not

consider these categories (e.g., Bug Fix, Functional etc.) as part of our classi-

fication, since it can be performed using previous studies [40, 41, 42, 43]. More

recently, Paixão et al. [44] captured these additional refactoring categories (i.e.,

Bug Fix and Feature). In the future, we plan to extend our work to capture

this taxonomy as well.

It is worth noting that there are many studies analyzing the impact of refact-

oring on 1) code smells, 2) internal quality attributes, and 3) external quality

attributes, but our work focuses on the developer’s documentation, and not on

the refactoring operations themselves and their impact. Our aim is to classify

the intent. For example, when we classify a message stating the removal of

duplicate code as a code smell, we are classifying purely the developer’s intent

of removing duplicate code, so we are not claiming that the performed refact-

oring operations had an impact on only the removal of the code smell. In fact,

these refactoring operations may also have an impact on other internal quality

attributes, but such analysis is not what we are trying to achieve in this pa-

per. Simply, we are classifying the developer’s intent and not the impact of the

refactoring operations. The impact of refactoring operations has been heavily

studied in literature and our study complements this effort by exposing what

developers do care about when they refactor.

Finally, according to a recently published survey [45], refactoring is typically

driven by intents that belong to the categories that we have used in this study.

2.3. Benefits

Commit messages are essential for not only comprehending code changes,

but for many other aspects of software development, such as as classification

of maintenance effort [40, 42], code change summarization [46], files change-

proneness and bug-proneness [47], etc. For instance, recent studies have shown

the feasibility of extracting insights of software quality from developers inline

9



F
ig

u
re

1
:

R
e
fa

c
to

ri
n
g

M
o
ti

v
a
ti

o
n
.

10



documentation. For instance, mining developers comments has unveiled how de-

velopers knowingly commit code that is either incomplete, temporary, or faulty.

Such phenomenon is known as Self-Admitted Technical Debt (SATD) [48]. Sim-

ilarly, our previous study has introduced Self-Affirmed Refactoring (SAR) [14],

defined as developers explicit documentation of refactoring operations inten-

tionally introduced as code change. Per analogy to SATD, SAR manifests as a

positive phenomenon, known to be one of the primary concepts to manage tech-

nical debt [49]. So, it is of particular interest to understand how the developer’s

intent to refactoring code leads to an adequate corrective action, i.e., SATD

resolution, especially that recent studies focus on understanding how SATD is

being removed [50, 51, 52, 53].

When it comes to refactoring documentation, revealing the intents that are

frequently pushing developers to refactor, is of a major importance for the com-

munity, especially that recent surveys have shown that refactoring tools are

under-used, and developers are still manually refactoring their code [7, 54]. And

so, these patterns can narrow the scope of refactoring towards what developers

consider to be relevant, in order to bridge the gap between refactoring tools and

their adoption in practice. However, the identification of these SAR patterns,

is human-intensive, subjective, and error-prone. Coping with the burden of

manual analysis is the main goal of this paper, by initially detecting then clas-

sifying these SAR patterns, into the above-mentioned categories. Furthermore,

the automated identification of these SAR patterns, is not straightforward, as

these keywords, are not necessarily exclusive to refactoring. Even refactoring,

being the most intuitive keyword used to describe this activity, has been also

found to be used out of its context [15].

Refactoring, just like any code change, has to be reviewed, before being

merged into the code base. However, little is known about how developers

perceive and review refactoring during the code review process, especially that

refactoring, by definition, is not intended to alter to the system’s behavior, but

to improve its structure, so its review may differ from other code changes. Yet,

there is not much research investigating the proper documentation of refactor-

11



ing, which can facilitate the process of reviewing it. Through the identification of

these SAR patterns, many example of documented refactorings can be provided

for future investigations and analysis.

3. Related Work

In this section, we report studies related to developer’s perception of re-

factoring and its documentation, along with the current state-of-the-art studies

related to commit messages classification.

3.1. Refactoring and its documentation

A number of studies have focused recently on the identification and detection

of refactoring activities during the software life-cycle. One of the common ap-

proaches to identify refactoring activities is to analyze the commit messages in

versioned repositories. Stroggylos & Spinellis [17] searched words stemming from

the verb “refactor” such as “refactoring” or “refactored” to identify refactoring-

related commits. Ratzinger et al. [16, 18] also used a similar keyword-based

approach to detect refactoring activity between a pair of program versions to

identify whether a transformation contains refactoring. The authors identified

refactorings based on a set of keywords detected in commit messages, and fo-

cusing on the following 13 terms in their search approach: refactor, restruct,

clean, not used, unused, reformat, import, remove, replace, split, reorg, rename,

and move.

Later, Murphy-Hill et al. [54] replicated Ratzinger’s experiment in two open

source systems using Ratzinger’s 13 keywords. They conclude that commit

messages in version histories are unreliable indicators of refactoring activities.

This is due to the fact that developers do not consistently document refactoring

activities in the commit messages. In another study, Soares et al. [19] com-

pared and evaluated three approaches, namely, manual analysis, commit mes-

sage (Ratzinger et al.’s approach [16, 18]), and dynamic analysis (SafeRefactor

approach [55]) to analyze refactorings in open source repositories, in terms of

12



behavioral preservation. The authors found, in their experiment, that manual

analysis achieves the best results in this comparative study and is considered as

the most reliable approach in detecting behavior-preserving transformations.

In another study, Kim et al. [7] surveyed 328 professional software engineers

at Microsoft to investigate when and how they do refactoring. They first identi-

fied refactoring branches and then asked developers about the keywords that are

usually used to mark refactoring events in commit messages. When surveyed,

the developers mentioned several keywords to mark refactoring activities. Kim

et al. matched the top ten refactoring-related keywords identified from the sur-

vey (refactor, clean-up, rewrite, restructure, redesign, move, extract, improve,

split, reorganize, rename) against the commit messages to identify refactoring

commits from version histories. Using this approach, they found 94.29% of

commits do not have any of the keywords, and only 5.76% of commits included

refactoring-related keywords.

Peruma et al. [56] investigated how method, class, and package identifier

names evolve and how this evolution was documented in the commit corres-

ponding messages. By also analyzing their surrounding refactoring operations,

the authors observed how names are influenced by their neighboring changes.

They extended their work by considering the situation where a rename is ap-

plied to an identifier whose data type is changed [57]. Such case is of an interest

to the authors as it indicates a potential change in the behavior its associated

identifier.

Prior work [58, 13, 14] has explored how developers document their refactor-

ing activities in commit messages; this activity is called Self-Admitted Refactor-

ing or Self-Affirmed Refactoring (SAR). In particular, SAR indicates developers’

explicit documentation of refactoring operations intentionally introduced during

a code change.

The existence of such patterns unlocks more studies that question the de-

veloper’s perception of quality attributes (e.g., coupling, complexity), typically

used in recommending refactoring. For instance, AlOmar et al. [59] identified

which quality models are more in-line with the developer’s vision of quality

13



optimization when they explicitly mention in the commit messages that they

refactor to improve these quality attributes. This study shows that, although

there is a variety of structural metrics can represent internal quality attributes,

not all of them can measure what developers consider to be an improvement in

their source code. Based on their empirical investigation, for metrics that are

associated with quality attributes, there are different degrees of improvement

and degradation of software quality.

3.2. Commit Classification

A wide variety of approaches to categorizing commits have been presented in

the literature. The approaches vary between performing manual classification

[10, 28, 35, 62, 67, 69], to developing an automatic classifier [60, 63, 66], to

using machine learning techniques [41, 43, 61, 64, 65, 70, 71, 72] and developing

discriminative topic modeling [68] to classify software changes. We summarize

these state-of-the-art approaches in Table 3.

Hattori and Lanza [62] developed a lightweight method to manually clas-

sify history logs based on the first keyword retrieved to match four major de-

velopment and maintenance activities: Forward engineering, Re-engineering,

Corrective engineering, and Management activities. Also, Mauczka et al. [67]

have addressed the multi-category changes manually using three classification

schemes from existing literature. Tsantalis et al. [35] conducted a multidi-

mensional empirical study on refactorings and performed a systematic labeling

of the commit messages to better understand the purpose of the applied re-

factorings. Silva et al. [10] applied a thematic analysis process to reveal the

actual motivation behind refactoring instances after collecting all developers’ re-

sponses. Further, a few studies [28, 69] propose the classification of refactoring

instances as root-canal or floss refactoring through the use of manual inspection.

Yan et al. [68] used discriminative topic modeling techniques to automatically

classifying software changes.

Mockus & Votta [60] designed an automatic classification algorithm to clas-

sify maintenance activities based on a textual description of changes. Another

14



Table 3: Characteristics of Commit Classification Studies.

S
tu

d
y

Y
e
a
r

M
a
n
u

a
l/

A
u

to
m

a
ti

c
C

la
ss

ifi
c
a
ti

o
n

M
e
th

o
d

C
a
te

g
o
ry

M
a
ch

in
e

L
e
a
rn

in
g

T
ra

in
in

g
S

iz
e

R
e
su

lt

M
o
ck

u
s

&
V

ot
ta

[6
0]

20
00

N
o/

Y
es

A
u

to
m

at
ed

C
la

ss
ifi

er
M

ai
n
te

n
an

ce
A

ct
iv

it
ie

s
N

/A
40

m
ai

n
te

n
an

ce
re

q
u

es
ts

(8
p

ar
ti

ci
p

a
n
ts

)
A

cc
u

ra
cy

:
∼

6
1
%

A
m

or
et

al
.

[6
1]

20
06

N
o/

Y
es

M
ac

h
in

e
L

ea
rn

in
g

S
w

an
so

n
’s

ca
te

go
ry

N
ai

v
eB

ay
es

40
0

co
m

m
it

s
(1

p
ar

ti
ci

p
an

t)
A

cc
u

ra
cy

:
7
0
%

A
d

m
in

is
tr

at
iv

e

H
at

to
ri

&
L

an
za

[6
2]

20
08

N
o/

Y
es

K
ey

w
or

d
s-

b
as

ed
S

ea
rc

h
F

or
w

ar
d

E
n

gi
n

ee
ri

n
g

N
/A

10
88

co
m

m
it

s
F

-m
ea

su
re

:
7
6
%

R
ee

n
gi

n
ee

ri
n

g

C
or

re
ct

iv
e

E
n

gi
n
ee

ri
n
g

M
an

ag
em

en
t

H
as

sa
n

[6
3]

20
08

N
o/

Y
es

A
u

to
m

a
te

d
C

la
ss

ifi
er

B
u

g
F

ix
in

g
N

/A
18

co
m

m
it

s
(6

p
ar

ti
ci

p
a
n
ts

)
A

g
re

em
en

t:
7
0
%

G
en

er
al

M
ai

n
te

n
an

ce

F
ea

tu
re

In
tr

o
d

u
ct

io
n

H
in

d
le

et
al

.
[4

0]
20

08
Y

es
/N

o
S

y
st

em
at

ic
L

a
b

el
in

g
S

w
an

so
n

’s
ca

te
go

ry
N

/A
20

00
co

m
m

it
s

N
o
t

m
en

ti
o
n

ed

F
ea

tu
re

A
d

d
it

io
n

N
on

-F
u

n
ct

io
n

a
l

H
in

d
le

et
al

.
[6

4]
20

09
N

o/
Y

es
M

ac
h

in
e

L
ea

rn
in

g
S

w
an

so
n

’s
ca

te
go

ry
J
48

/
N

ai
ve

B
ay

es
/

S
M

O
20

0
0

co
m

m
it

s
F

-m
ea

su
re

:
5
1
%

F
ea

tu
re

A
d

d
it

io
n

K
S

ta
r

/
IB

k
/

J
R

ip
/

Z
er

oR
A

cc
u

ra
cy

:
5
2
%

N
on

-F
u

n
ct

io
n

a
l

M
ah

m
o
o
d
ia

n
et

al
.

[6
5]

20
10

N
o/

Y
es

M
ac

h
in

e
L

ea
rn

in
g

C
or

re
ct

iv
e

&
A

d
ap

ti
ve

N
ai

v
eB

ay
es

/
A

D
tr

ee
17

00
re

q
u

es
ts

A
cc

u
ra

cy
:

7
8
%

H
in

d
le

et
al

.
[4

1]
20

11
N

o/
Y

es
M

ac
h

in
e

L
ea

rn
in

g
N

on
-F

u
n

ct
io

n
al

ru
le

/
d

ec
is

io
n

tr
ee

s
/

ve
ct

or
sp

ac
e

N
ot

M
en

ti
on

ed
R

ec
ei

ve
r

O
p

er
a
ti

n
g

S
V

M
/

C
L

R
/

H
O

M
E

R
/

B
R

C
h

a
ra

ct
er

is
ti

c
u

p
to

8
0
%

M
au

cz
ka

et
al

.
[6

6]
20

12
N

o/
Y

es
A

u
to

m
at

ed
C

la
ss

ifi
er

S
w

an
so

n
’s

ca
te

go
ry

N
/A

21
co

m
m

it
s

(5
p

ar
ti

ci
p

an
ts

)
P

re
ci

si
o
n

:
9
2
%

(S
u

b
ca

t
to

ol
)

B
la

ck
li

st
R

ec
a
ll

:
8
5
%

T
sa

n
ta

li
s

et
al

.
[3

5]
20

13
Y

es
/N

o
S

y
st

em
at

ic
L

ab
el

in
g

C
o
d

e
S

m
el

l
R

es
ol

u
ti

on
N

/A
N

ot
M

en
ti

o
n
ed

M
a
n
u

a
l

E
x
te

n
si

on

B
ac

k
w

ar
d

C
om

p
at

ab
il

it
y

A
b

st
ra

ct
io

n
L

ev
el

R
efi

n
em

en
t

M
au

cz
ka

et
al

.
[6

7]
20

15
Y

es
/N

o
S

y
st

em
at

ic
L

ab
el

in
g

S
w

an
so

n
’s

ca
te

go
ry

N
/A

96
7

co
m

m
it

s
M

a
n
u

a
l

H
at

to
ri

&
L

an
za

ca
te

go
ry

[6
2]

N
on

-F
u

n
ct

io
n

a
l

Y
an

et
al

.
[6

8]
20

16
N

o/
Y

es
T

op
ic

M
o
d

el
in

g
S

w
an

so
n

’s
ca

te
go

ry
N

/A
8
0

co
m

m
it

s
(5

p
ar

ti
ci

p
an

ts
)

F
-m

ea
su

re
:

7
6
%

S
il

va
et

al
.

[1
0]

20
16

Y
es

/N
o

S
y
st

em
at

ic
L

ab
el

in
g

R
ef

a
ct

or
in

g’
s

M
ot

iv
at

io
n

N
/A

N
/A

M
a
n
u

a
l

C
h

av
ez

et
al

.
[6

9]
20

17
Y

es
/N

o
S

y
st

em
at

ic
L

ab
el

in
g

F
lo

ss
R

ef
a
ct

or
in

g
N

/A
sa

m
p

le
of

21
19

M
a
n
u

a
l

R
o
ot

-c
an

al
R

ef
ac

to
ri

n
g

C
ed

ri
m

et
al

.
[2

8]
20

17
Y

es
/N

o
S

y
st

em
at

ic
L

ab
el

in
g

F
lo

ss
R

ef
ac

to
ri

n
g

N
/A

p
ar

t
of

sa
m

p
le

of
25

84
M

a
n
u

a
l

R
o
ot

-c
an

al
R

ef
ac

to
ri

n
g

L
ev

in
&

Y
eh

u
d

ai
[4

3]
20

17
N

o/
Y

es
M

ac
h

in
e

L
ea

rn
in

g
S

w
an

so
n

’s
ca

te
go

ry
J
48

/
G

B
M

/
R

F
11

51
co

m
m

it
s

A
cc

u
ra

cy
:

7
6
%

L
ev

in
&

Y
eh

u
d

ai
[7

0]
20

19
N

o/
Y

es
M

ac
h

in
e

L
ea

rn
in

g
S

w
an

so
n

’s
ca

te
go

ry
J
48

/
G

B
M

/
R

F
11

51
co

m
m

it
s

A
cc

u
ra

cy
:

7
6
%

H
on

el
et

al
.

[7
1]

20
19

N
o/

Y
es

M
ac

in
e

L
ea

rn
in

g
S

w
an

so
n

’s
ca

te
go

ry
L

ss
v
m

R
ad

ic
al

/
S

V
M

/
G

B
M

11
51

co
m

m
it

s
A

cc
u

ra
cy

:
u

p
to

8
9
%

x
gb

T
re

e
/

L
D

A
/

M
D

A
/

N
N

/
av

N
N

et

C
5.

0
/

R
F

/
N

ai
v
e

B
ay

es
/

L
og

it
B

o
os

t

T
h

is
w

o
rk

N
o
/
Y

e
s

M
a
ch

in
e

L
e
a
rn

in
g

S
A

R
&

n
o
n

-S
A

R
L

R
/

R
F

/
G

B
M

/
D

J
/

S
V

M
1
8
2
3

c
o
m

m
it

s
(t

w
o-

cl
as

s)
A

c
c
u

ra
c
y
:

9
8
%

In
te

rn
a
l

Q
A

L
D

-S
V

M
/

N
N

/
A

P
M

/
B

P
M

F
-m

e
sa

u
re

:
9
8
%

E
x
te

rn
a
l

Q
A

1
0
4
4

c
o
m

m
it

s
(m

u
lt

ic
la

ss
)

A
c
c
u

ra
c
y
:

9
3
%

C
o
d

e
S

m
e
ll

F
-m

e
sa

u
re

:
9
3
%

15



automatic classifier is proposed by Hassan [63] to classify commit messages as

a bug fix, introduction of a feature, or a general maintenance change. Mauczka

et al. [66] developed an Eclipse plug-in named Subcat to classify the change

messages into Swanson’s original category set (i.e., Corrective, Adaptive and

Perfective [73]), with an additional category “Blacklist”. He automatically as-

sessed if a change to the software was due to a bug fix or refactoring based

on a set of keywords in the change messages. Hindle et al. [40] performed a

manual classification of large commits to understand the rationale behind these

commits. Later, Hindle et al. [64] proposed an automated technique to classify

commits into maintenance categories using seven machine learning techniques.

To define their classification schema, they extended Swanson’s categorization

[73] with two additional changes: Feature Addition, and Non-Functional. They

observed that no single classifier is the best. Another experiment that classifies

history logs was conducted by Hindle et al. [41], in which their classification of

commits involves the non-functional requirements (NFRs) a commit addresses.

Since the commit may possibly be assigned to multiple NFRs, they used three

different learners for this purpose along with using several single-class machine

learners. Amor et al. [61] had a similar idea to [64] and extended the Swanson

categorization hierarchically. They, however, selected one classifier (i.e., Naive

Bayes) for their classification of code transactions. Moreover, maintenance re-

quests have been classified using two different machine learning techniques (i.e.,

Naive Bayesian and Decision Tree) in [65]. McMillan et al. [72] explored three

popular learners to categorize software application for maintenance. Their res-

ults show that SVM is the best performing machine learner for categorization

over the others.

Levin and Yehudai [43] automatically classified commits into three main

maintenance activities using three classification models namely, J48, Gradient

Boosting Machine (GBM), and Random Forest (RF). They found that the RF

model outperforms the two other models (accuracy: 76% versus 70% and 72%).

In their extended work [70], the RF model showed a promising accuracy of 76%.

More recently, a replicated study [71] of [43] introduced code density of a com-

16



mit to study the purpose of a change. Using code-density based classification,

they achieved up to 89% accuracy for cross project commit classification using

LogitBoost classifier.

In this paper, we build on top of these techniques to leverage an automated

identification and classification of SARs. Although the manual summarization

of SAR is useful, it is considered as a time-consuming task because of the re-

quired manual effort to derive the list of patterns. Although much work has

been done on automatically classifying commits in general, there is no cur-

rently automatic way to identify SAR patterns specifically. Several studies

[40, 43, 61, 62, 64, 66, 67, 68, 70, 71] have discussed how to automatically

classify change messages into Swanson’s general maintenance categories (i.e.,

Corrective, Adaptive, Perfective). Refactoring, in general, has been classified

as a sub-type of “Perfective” in this maintenance category. Currently, there is

no study that reports specific subcategories of refactoring extracted from real-

world scenarios of commit messages and performs an automated classification of

SAR commits. Therefore, in this paper, we push the Self-Affirmed Refactoring

research a step forward by introducing an automatic classification approach to

(1) determine whether a commit contains SAR or not (cf., Table 1), and (2)

classify SAR into its three categories (see Table 2). Compared with the pattern-

based approach, our automated approach can identify more SAR patterns that

can complement and extend the list of patterns identified in [14].

Further, in this work, we are detecting the indicators of refactoring to un-

derstand how developers document refactoring. We are not labelling refactoring

operations themselves; we are instead labelling the commit messages that are

found to contain refactoring operations. The existence of refactoring operations,

in the studied commits, can be verified by running state-of-the-art tools, such

as Refactoring Miner [12] and RefDiff [11] tools. Both of these studies indicated

that their tool achieves high accuracy (precision of 98% and 100%, and recall of

87% and 88%, respectively), which gives us confidence to use one of these tools

as a form of validation that the commits contain refactoring.

As can be seen in table 3, commit messages are extensively used in existing

17



literature to classify several maintenance-related tasks. Studies that focus on

classifying bug and feature requests have used commit messages as a primary

source of information to generate high accuracy and applicable results. However,

our approach is not restricted to a specific source of textual information. Future

work could replicate our approach with other types of metadata, e.g., issue

descriptions.

4. Approach

In this section, we first provide an overview of our approach. Then, we

elaborate on the technical details of the adopted classification technique, in the

following subsection. The overview of our approach is depicted in Figure 2, and

a sample of commit messages is demonstrated in Figure 3.

4.1. Data Collection

To collect the necessary commits, we refer to an existing large dataset of links

to GitHub repositories [74]. We perform an initial filtering, using Reaper [75],

to only navigate through well-engineered projects while verifying that they were

Java-based; the only language supported by Refactoring Miner. The authors of

this dataset classified “well-engineered software projects” based on the projects’

use of software engineering practices such as documentation, testing, and project

management. So, we ended up reducing the number of selected projects from

57,447 to 3,795.

Using “well-engineered” and “well-documented” kind of interchangeably -

although we acknowledge the potential value of having a more diverse set of

projects, and our findings may not extend to projects that are not as well-

documented, because our primary research methods rely on documentation, we

chose to focus on projects that would be likely to have high-quality document-

ation (i.e., commit messages) consistently available.

18



Figure 2: Overall Classification Framework.

19



	Classification	#1:		Binary	Classification	Example

	Classification	#2:		Multiclass	Classification	Example

SAR

Non-SAR

Internal QA

External QA

Code Smell

Figure 3: Commit Message Examples for Binary and Multiclass Classification.

20



4.2. Refactoring Detection

To extract the entire refactoring history in each project, we use the pop-

ular refactoring mining tool, i.e., Refactoring Miner [10]. Our choice to use

Refactoring Miner is justified by the fact that it achieved the highest accuracy

in detecting refactorings compared to the state-of-the-art available tools, with

a precision of 98% and recall of 87% [10, 12] along with being suitable for our

study that requires a high degree of automation in data mining. In this phase,

We collect a total of 1,208,970 refactoring operations from 322,479 commits,

applied during a period of 23 years (1997-2019).

4.3. Overall Framework

In a nutshell, the goal of our work is to automatically identify then classify

commit messages containing refactoring documentation, i.e., Self-Affirmed Re-

factorings, (for the sake of simplicity, we refer to them as SAR). Our approach

takes as input, a commit message, and makes a binary decision on whether it

contains SAR or not. If a SAR is detected, it classifies it into one of of three

common categories: (i) internal quality attribute (ii) external quality attribute,

and (iii) code smell [14]. The overall framework of our approach is depicted in

Figure 2. We formulate a two-phased approach that consists of a model building

phase and a prediction phase. In the model building phase, our goal is to build

a model from a corpus real world documented refactoring operations (i.e., com-

mit messages). In the prediction phase, the model created in the previous phase

will be used to predict categories of new refactoring-related commit messages.

Our framework takes commit messages along with their ground truth cat-

egories obtained by manual inspection as input for the training procedure ex-

tracted from different projects, provided by a previous study [14]. Based on this

input, the commit messages are preprocessed, allowing for informative featuriza-

tion. Next, for each commit message, we extract features (i.e., words) to create

a structured feature space. Then, we use the extracted features to build the

training set. In total, we experimented 9 commonly used classifiers to evaluate

our model for prediction. We selected these classifiers as they are typically used

21



in previous commit classification studies as well as several software engineering

classification/prediction problems [41, 43, 61, 64, 65, 70, 71], as outlined in Table

3. After training all models, we use a testing set to challenge the performance.

Since the model has already learned the vocabulary of N-Gram (discussed in

Section 4.4.3) and their weights from the training dataset, we extract features

from the test data based on that vocabulary and weights, and input them to

the model. Finally, the classifier will output the predicted label for each tested

commit message.

4.4. Commit Classification

Our classification process has five main phases: (1) data preparation, (2)

text cleaning and preprocessing, (3) feature extraction using N-Gram, (4) model

training and building, and (5) classifier selection and model evaluation. Since

a commit message is written in plain text, we follow the approach provided by

Kowsari et al. [76] that discussed a recent trend in text classification techniques

and algorithms.

4.4.1. Data Preparation

Our goal is to provide the classifier with sufficient commits that represent

the categories analyzed in this study. Since the number of candidate commits

to classify is large, we cannot manually process them all, and so we need to ran-

domly sample a subset while making sure it equitably represents the featured

classes, i.e., categories. Since an imbalanced training dataset or class starvation

(i.e., not having adequate instances of a certain class) could worsen the per-

formance of the model [43, 70], we make sure that the classes for two-class (i.e.,

with or without SAR) and multiclass (i.e., Internal QA, External QA, and Code

Smell) classification problems are equally distributed when preparing the data

for the training (cf. Table 4). The classification process has been performed by

the authors of the paper. To approximate the needed number of commits to add,

we reviewed the thresholds used in the studies related to commit classification

(see Table 3). The highest number of commits used in comparable studies was

22



around 2,000 commits [40, 64, 69]. Thus, we select a sample of 2,000 commits

from 3,795 projects for each classification model. Below we detail the manual

analysis of the data we use for our classification.

Table 4: Number of Instances per Class.

Dataset with SAR without SAR

1,823 instances 912 911

Dataset Internal QA External QA Code Smell

1,044 instances 348 348 348

For data preparation, building the ground truth is challenging since we are

looking for a particular set of commits. To prune the search space, we started

with using an existing dataset of commits [14], manually inspected and validated

for containing refactoring operations and an associated description at the com-

mit message. We intend to build our own dataset by choosing a subset of this

dataset, in a way to serve the purpose of the binary and multiclass classification.

To prepare the dataset of the binary classification, we need to create two

groups of commits, i.e., commits with or without SAR. The first group (with

SAR) is created by randomly sampling commits, previously known to contain

SAR patterns listed in Table 1. We further perform another round of individual

verification by the authors before adding them to the group. Commits for which

there was no full agreement by the authors were excluded from our dataset. The

second group (without SAR) can be easily created by randomly choosing commit

messages that simply do not contain these SAR patterns, but since we do want to

strengthen our decision boundary, we intend to choose commits that are closest

to neighboring regions between the two classes. To do so, for each commit

from the first group (with SAR), we locate the set of its contiguous commits

(committed either before or after), and performed by the same committer, then

we randomly sample one of them to be added to the second group (without

SAR), after manually verifying that it does not contain any description of a

refactoring activity.

23



For the multiclass classification, we build it by making sure the chosen com-

mits belong to one of the three categories listed in Table 2. To avoid involving

our interpretation, it is important to note that the description of the categories

listed in Table 2 needs to be explicit in the commit messages. We used strati-

fied sampling to select 2,000 commit messages for manual classification, divided

equally for each stratum. To ensure that these commits reported developers’

intention to perform refactoring, and to improve quality attributes or fix code

smells, we inspected these commits to remove false positives.

To avoid having false positive commits, we applied the filtering to narrow

down the commit messages eliminating the ones that are less likely to be clas-

sified as self-affirmed refactoring. We designed the filtering to help ensure that

we only trained the algorithm on higher-quality commit messages [77].

We followed the process from existing papers in filtering commit messages

[66, 78, 79]. For example, Fu et al. [78] filtered out short commit messages.

Mauczka et al. [66] used the “Blacklist” category to filter all commits, which

underlying modifications were not carried out by humans or which do not actu-

ally include any source code modifications. In our work, we apply five filtering

heuristics to narrow down the commit messages eliminating the ones that are

less likely to be classified as SAR. It is important to note that we removed short

commit messages from the training, but not from the testing set because (1)

short commit messages do not contain enough information and do not clearly

describe the purpose of code change , and (2) we want to train the classifier

on well-documented commit messages, and label commits that contain enough

information about refactorings. Prior study has pruned short commit messages

since these will be noise for the classifiers, and they did not record the cause of

the changes [78]. Some criteria we used for filtering were as follows:

• If a commit contains an alternative form of the word “refactor” such as

“re-factor*”, the commit was classified as SAR commit.

• If a commit message contains a pattern that is in a slightly different form

of one of the patterns, such as “simplify the code” and “simplify code”,

24



the commit was classified as SAR commit.

• Commits that were either too short or ambiguous were discarded. Some

examples of hard-to-classify commit messages are: “Solr Indexer ready”2,

“allow multiple collections”3, and “Auto configuration of AgiScripts”4.

• If one commit could belong to more than one class, it was excluded.

• If the quality attribute is a part of the identifier name, the commits were

excluded, e.g., “SONARJS-541 Precise issue location for ExpressionCom-

plexity (S1067)”. We discarded this commit because “complexity” is re-

ferring to a part of a class name and not a quality attribute.

The above-mentioned examples of ambiguous commit messages prevent us

from being confident, and hence, for each discarded commit message, we ran-

domly sampled another replacement. We repeated this process until we found

the commit message that we were able to confidently classify. Because of the

random nature of the process, some classes were saturated faster than others,

so we kept increasing the number of instances only for the underrepresented

classes, until we find the right balance between all classes. The criteria listed

above reduced the number of commits and helped us focus on the most insight-

ful commit messages. For the binary classification, 177 commits were removed

because of them either being short or ambiguous. Also, in our case, any mes-

sage with less than 7 characters was too short for us to decide. The evaluation

resulted in keeping 1,823 commits and 1,044 commits, respectively for two-class

and multiclass classification problems. To mitigate the risk of having a biased

dataset and to inspect the level of agreement of the manual classification, we ex-

tract stratified sample of our dataset that are classified by the first author, and

have these sample commits independently classified again by the second author.

Particularly, similar to [70], in order to inspect manual classification agreement,

2https://github.com/01org/graphbuilder
3https://github.com/0install/java-model
4https://github.com/1and1/attach-qar-maven-plugin

25



we randomly classified a 10% sample of commits, i.e., 186 and 105 commits

out of the 1823 and 1044 for two-class and multiclass classification problems,

respectively. This quantity roughly equates to a sample size with a confidence

level of 95% and a confidence interval of 8. We used Cohen’s Kappa coefficient

[80] to evaluate the inter-rater agreement level for the categorical classes. We

achieved an agreement level of 0.96 for the two-class classification, and 0.87 for

multiclass classification. According to Fleiss et al. [81], these agreement values

are considered to have an almost perfect agreement (i.e., 0.81–1.00).

The result of this classification is available in the reproduceability package

of this work, thus, it can be reused and extended [20].

4.4.2. Text Cleaning & Preprocessing

After the data preparation phase, we applied a similar methodology ex-

plained in [76, 82] for text pre-processing. In order for the commit messages to

be classified into correct categories, they need to be preprocessed and cleaned;

put into a format that the classification algorithms will process. This way, the

noise will be removed, allowing for informative featurization. To extract features

(i.e., words), we preprocess the text as follows:

• Tokenization: The goal of tokenization is to investigate the words in a

sentence. The tokenization process breaks a stream of text into words,

phrases, symbols, or other meaningful elements called tokens [76]. In our

work, we tokenize each commit by splitting the text into its constitu-

ent set of words. We also split tokens on special characters (e.g., the

string “package-level” would be separated into two tokens, “package” and

“level”).

• Lemmatization: The lemmatization process either replaces the suffix of

a word with a different one or removes the suffix of a word to get the ba-

sic word form (lemma). In our work, the lemmatization process involves

sentence separation, part-of-speech identification, and generating diction-

ary form. We split the commit messages into sentences, since input text

26



could constitute a long chunk of text. The part-of-speech identification

helps in filtering words used as features that aid in key-phrase extraction.

Lastly, since the word could have multiple dictionary forms, only the most

probable form is generated.

• Stop-Word Removal: Stop words (i.e., words and common English

words such as “is”, “are”, “if”, etc) are removed since they do not play

any role as features for the classifier [83].

• Capitalization Normalization: Since text could have a diversity of

capitalization to form a sentence and this could be problematic when clas-

sifying large commits, all the words in the commit messages are converted

to lower case and all verb contractions are expanded.

• Noise Removal: Special characters and numbers are removed since they

can deteriorate the classification. More specifically, we remove all numeric

characters, unique and duplicate special characters, email addresses and

URLs.

Table 5: Performance of Different Classifiers (Binary Classification).

Classifier Precision Recall Accuracy F-measure

Logistic Regression 0.98 0.93 0.96 0.95

Random Forest 0.98 0.98 0.98 0.98

Gradient Boosted Machine 0.98 0.98 0.98 0.98

Decision Jungle 0.97 0.94 0.95 0.95

Support Vector Machine 0.96 0.94 0.95 0.95

Locally Deep SVM 0.97 0.93 0.95 0.95

Neural Network 0.98 0.92 0.95 0.95

Averaged Perceptron Method 0.97 0.93 0.95 0.95

Bayes Point Machine 0.83 0.85 0.84 0.84

27



Table 6: Performance of Different Classifiers (Multiclass Classification).

Classifier Precision Recall Accuracy F-measure

Logistic Regression 0.93 0.93 0.93 0.93

Random Forest 0.93 0.93 0.93 0.93

One-vs-All Gradient Boosted Machine 0.93 0.93 0.93 0.93

Decision Jungle 0.89 0.88 0.88 0.88

One-vs-All Support Vector Machine 0.91 0.91 0.91 0.91

One-vs-All Locally Deep SVM 0.90 0.90 0.90 0.90

Neural Network 0.91 0.91 0.91 0.91

One-vs-All Averaged Perceptron Method 0.91 0.90 0.90 0.91

One-vs-All Bayes Point Machine 0.83 0.83 0.83 0.83

4.4.3. Feature Extraction Using N-Gram

After cleaning and preprocessing the text, we apply feature extraction to ex-

tract only the most useful information from text strings to differentiate classes

in both classification problems. In particular, we selected the N-Gram tech-

nique for feature extraction. The N-Gram technique is a set of n-word that

occurs in a text set and could be used as a feature to represent that text [76].

In general, N-Gram term has more semantic than an isolated word. Some of

the keywords (e.g., “improve”) do not provide much information when used

on its own. However, when collecting N-Gram from commit message (e.g., Re-

factor:Remove redundant method names, extract method, improve usability), the

keyword “improve” clearly indicates that this is a SAR commit. In our classi-

fication, we use bigrams since it is very common to enhance the performance of

text classification [84], and we select Fisher Score filter-based feature selection

[85, 86] to featurize text and manage the size of the text feature vector, similar

to [82]. As for the weighting function, we used the standard Term Frequency-

Inverse Document Frequency (TF-IDF) [87] due to its popularity in the research

community (the value for each N-Gram is its TF score multiplied by its IDF

score). Thus, each preprocessed word in the commit message is assigned a value

which is the weight of the word computed using this weighting scheme. TF-

IDF gives greater weight (e.g., value) to words which occur frequently in fewer

28



documents rather than words which occur frequently in many documents.

4.4.4. Model Training and Building

In this phase, we performed the 10-fold cross-validation technique to as-

sess the variability and reliability of the classifier. Specifically, for each of the

classification methods, we combined the commit messages into a single large

dataset. Then, we split the dataset into ten folds, where each fold contained an

equal proportion of commit messages. Thereafter, we performed ten evaluation

rounds with different testing dataset in which nine folds were used as training

dataset and the remaining one of the ten folds is used as the testing dataset.

We aggregated the results of the ten evaluation rounds and reported the average

performance for each classifier.

4.4.5. Classifier Selection and Model Evaluation

Selecting the proper classifier for optimal classification of the commits is a

rather challenging task [88]. Best practices suggest that developers document

their commits by providing a commit message along with every commit they

make to the repository. These commit messages are usually written using nat-

ural language, and generally convey some information about the commit they

represent. In this study, we are dealing with two-class and multiclass classific-

ation problems since the commit messages are categorized into two and three

different types as explained in Table 1 and 2, respectively. Because we have a

predefined set of categories, our approach relies on supervised machine learn-

ing algorithms to assign each commit message to one category. Since it is very

important to come up with an optimal classifier that can provide satisfactory res-

ults, several studies have compared several classifiers such as K-Nearest Neigh-

bor (KNN), Naive Bayes Multinomial, Gradient Boosting Machine (GBM), and

Random Forest (RF) in the context of commit classification into similar categor-

ies [43, 70, 82]. These studies found that Random Forest (RF) achieves high

performance. We investigated each classifier ourselves using common statistical

measures (precision, recall, accuracy, and F-measure) of classification perform-

29



ance to compare each. It is important to note that the calculation of F-measure

for multiclass classification is not supported by Azure Machine Learning (Azure

ML). Thus, to facilitate comparison and to have all statistical measures that are

consistent with two-class classification, we compute F-measure for multiclass in

terms of precision and recall using the following formula:

F = 2 ∗
(
Precision ∗Recall

Precision + Recall

)
(1)

where Precision (P) and Recall (R) are calculated as follows:

P =
tp

tp + fp
,R =

tp

tp + fn

It is worth noting that a few models that we consider are inherently binary clas-

sifiers. In order to adjust for multiclass classification, each classifier applies the

One-vs-All strategy for issues that require multiple output classes [89]. Thus,

to ensure fairness, we use One-vs-All strategy for multiclass classification when

using the following five classifiers: Gradient Boosted Machine (GMB) [90], Sup-

port Vector Machine (SVM) [91], Locally Deep SVM (LD-SVM) [92], Averaged

Perceptron Method (APM) [93], and Bayes Point Machine (BPM) [94]. The

remaining classifiers, consider in this study, are: Logistic Regression (LR) [95],

Random Forest (RF) [96], Decision Jungle (DJ) [97], and Neural Network (NN)

[98]. Our experiment is conducted using Microsoft Azure Machine Learning

(Azure ML [99]), as it provides a built-in web-service once the classification

models are deployed.

5. Results & Discussion

In this section, we conduct an empirical study to assess the performance

of our approach. To evaluate different commit classification models, we used

standard statistical measures to measure the performance of the classification

(Precision, Recall, Accuracy and F-measure). In the following, we report the

results of our research questions.

Replication package. We provide our comprehensive experiments package

available in [20] to further replicate and extend our study.

30



5.1. RQ1: Is it possible to accurately perform two-class and multi-

class SAR classification using our machine learning technique?

As shown in previous work [14], SAR can be extracted from commit mes-

sages. However, there is a lack of automatic techniques to classify them. In

this work, we performed an automated approach to classify SAR to determine

if the classification using machine learning techniques can result in high ac-

curacy. A comparison between classification algorithms is reported in Table 5

and 6. The best performing model was used to classify the test dataset. Based

on our findings, the F-measure of Random Forest (RF) and Gradient Boosting

Machine (GBM) are respectively 98% and 98% which are clearly higher than

their competitors for the two-class classification. For the multiclass, in addition

to RF and GBM, Logistic Regression (LR) outperforms the other models with

F-measure of 93%. Figures 4, 5, and 6 show the detailed performance for the

best multiclass classifiers.

Random Forest and boosting learning machines belong to the family of en-

semble learning machines, and have typically yielded superior predictive per-

formance mainly due to the fact that they both aggregate several learnings.

As for Logistic Regression, the fact that Logistic Regression achieves compar-

able performance as Random Forest and Boosting can be explained by the fact

that the underlying true model for the text data has an inherent structure that

matches the logistic regression assumption.

Another observation with regard to the classifiers accuracy is that few of

the classifiers we considered in our study (GBM, SVM, LD-SVM, APM, and

BPM) are inherently binary classifiers, and we used the One-vs-All strategy to

adapt them for multiclass. Hence, these classifiers give us higher accuracy when

performing binary classification compared to multiclass classification (98% vs

93%, respectively).Another reason for getting a different accuracy value when

identifying multiclass labels vs two-class is that some commit messages could po-

tentially belong to multiple categories. Hence, the machine learning classifiers,

considered in this study, got confused when classifying such commit messages.

Figures 7 and 8 show two cases of commit messages that confused the classifiers

31



when performing two-class and multiclass classifications, respectively. The first

commit message (Figure 7) contains a pattern (i.e., changing package name)

that is a synonym of the patterns “renam*” or “use better name”. The second

commit message (Figure 8) contains more code element-related keywords such

as “method” or “class” tend to be classified as “Code Smell” since code smell-

related commits usually contain more description of the code elements that need

to be optimized. This commit example targets to improve the flexibility at the

design phase, which should be classified as “External QA”.

Moreover, it is important to note that the classes used in this study cat-

egorize mainly the refactoring documentation and do not reflect the overall

activities of the commits. Hence, these commit messages do not strictly contain

refactoring code changes, especially that we noticed that refactoring tends to be

interleaved with other software engineering tasks, such as fixing bugs, migrating

type changes etc. Therefore, it is important to consider such context to better

understand the intention behind the application of refactoring, and this will be

our main future research direction.

Summary. We find that our approach is accurately identifying the SAR

patterns and the three common quality improvements with an F-measure

of 98% and 93% for the two-class and multiclass classification problems,

respectively.

5.2. RQ2: How effective is our machine learning approach in classi-

fying SAR?

The main goal of this research is to propose an automatic approach to clas-

sify SAR commits that can effectively outperform the classification over the

current state-of-the-art baselines, i.e., Pattern-based [14] and Random classi-

fier [79]. The selection of the two baseline approaches to compare against our

approach was similar to Da Silva et al. [79]. We opt to choose a pattern-

based approach because the methods used so far to identify refactoring com-

mits [7, 15, 16, 17, 19, 31, 54, 66] and analyze refactoring activity [19] heavily

32



LR RF GBM
0

50

10091 92 9292 92 91
97 94 96

P
re

ci
si

o
n

(%
)

Internal QA External QA Code Smell

Figure 4: Visualization of the Precision for Different Classifiers (Multiclass)

LR RF GBM
0

50

10093 91 9293 91 9294 97 95

R
ec

al
l

(%
)

Internal QA External QA Code Smell

Figure 5: Visualization of the Recall for Different Classifiers (Multiclass).

LR RF GBM
0

50

10091 91 9292 91 9195 95 95

F
-m

ea
su

re
(%

)

Internal QA External QA Code Smell

Figure 6: Visualization of the F-measure for Different Classifiers (Multiclass).

33



Figure 7: Example of Refactoring Commit Message that Confused the Classifiers (Two-class).

Figure 8: Example of Refactoring Commit Message that Confused the Classifiers (Multiclass).

rely on string matching. Other studies (e.g., [66]) that focused on classifying

commit messages on Swanson’s categories (Corrective, Adaptive, Perfective)

also used keyword-based approach. Currently, there is no evidence on how well

pattern-based approaches perform. The choice of random classifier was similar

to [79] that assumes that the detection of self-affirmed refactoring is random.

Existing studies (cf., Table 3) that have applied machine learning techniques in

similar contexts (i.e., text classification) usually evaluate their approach using

different classifiers. To compare their approach against others, they consider

the keyword-based approach. To our knowledge, the only study that considers

additional approach (i.e., random classifier) is the study by Da Silva et al. [79].

Thus, we consider keyword-based and random classifiers to compare against our

approach.

Answering this research question would shed light on whether the classific-

ation of SAR is a learning problem or not. We hypothesize that if learning

34



algorithms cannot outperform a String matching algorithm, then there is no

need for proposing such a framework. The two chosen baselines, for this invest-

igation, are listed below:

• Baseline 1 (Pattern-based technique): The pattern-based approach

in identifying SAR is proposed by AlOmar et al. [14]. In their work, they

identified 87 recurring patterns in SAR commit messages. We use these

patterns as indicators of refactoring activities, i.e., if a pattern exists in a

commit, it is then classified as a SAR.

In order to calculate the standard statistical metrics for this baseline, we

use a set of 1,823 and 1,044 commit messages (cf., Table 4) from the list

of SAR and non-SAR commits and from each class of the multiclass clas-

sification respectively. We use them to perform a manual inspection to

identify true positives (tp), true negatives (tn), false positives (fp), and

false negatives (fn). True positives are cases when the pattern-based ap-

proach correctly identified SAR commits, and true negatives are commits

correctly classified as without SAR. Similarly, false positives are commits

classified as being SAR when they are not and finally false negatives are

commits classified as without SAR when they are really SAR commits.

Thus, using the tp, tn, fp, and fn values, we compute the precision, recall,

and F-measure.

• Baseline 2 (Random classifier): Similar to Da Silva et al. [79], we

consider Random classifier as one of the baselines to compare against our

approach. The rationale behind using this random classifier to hold our

approach accountable for providing significantly better results in compar-

ison with a random classification. The precision of this approach is calcu-

lated by taking the total number of SAR over the total number of commit

messages for all projects. As for the recall, there is a 50% chance that

commit messages will be classified as SAR. The calculation of F-measure

is explained previously in Section 4.

Table 7 and Figure 9 present the experimental results of our approach com-

35



pared with baseline 1 (Pattern-based), and baseline 2 (Random classifier). For

our approach, we consider the highest F-measure score to compare against the

other two baselines. Our approach provides an improvement over the comment

patterns, outperforming it by 1.53 times and 1.45 times for two-class and mul-

ticlass respectively. We can see from Table 7 that our approach outperforms

the simple Random baseline by 1.84 times and by 22.14 times respectively for

two-class and multiclass classifications.

To better analyze our findings, after deploying our models as a web-service,

we validate the two-class and multiclass models by randomly selecting 500 and

363 new commit messages, respectively. These new commit messages contain

all types of commits (e.g., short commit messages, commits with more than two

classes, and commits with quality attributes as part of the identifier names).

We manually read through commit messages that were classified as SAR com-

mits in the prediction phase, and were classified as non SAR according to the

pattern-based approach. Intuitively, such results induce the existence of fea-

tures that represent the refactoring activity, and they are not captured by the

previous study. Indeed, we found a set of featured keywords that do indicate

refactoring activities (e.g., “Tidy code”, “repackage”, and “fix bad merge and

coding style issues”), and were not reported by any of the previous studies re-

lated to refactoring documentation. Such featured patterns could complement

the list of manually identified 87 SAR patterns. Figure 10 reveals examples of

these new patterns.

Table 7: Comparision of Statistical Measures between our Approach, Pattern-based and the Random

Classifier.

Classification
Our approach Pattern-based Random Classifier

Precision Recall F-measure Precision Recall F1 Precision Recall F-measure

Two-class 0.98 0.98 0.98 1.00 0.47 0.64 0.61 0.5 0.53

Multiclass 0.93 0.93 0.93 0.97 0.48 0.64 0.02 0.5 0.042

Two-class Improve. – – – 0.98 x 2.08 x 1.53 x 1.60 x 1.96 x 1.84 x

Multiclass Improve. – – – 0.95 x 1.93 x 1.45 x 46.5 x 1.86 x 22.14 x

36



two-class multiclass
0

20

40

60

80

10098
93

64 64

53

4

F
-m

ea
su

re
(%

)

Our approach Pattern-based Random classifier

Figure 9: Visualization of the F-measure for Different Approaches.

Summary. We find that our approach can effectively outperform the

classification over the current state-of-the-art baselines. We achieved an

F-measure of 98% when identifying SAR commits (an average improve-

ment of 1.53 x and 1.84 x over the state of the art approaches), and an

F-measure of 93% when identifying the common quality improvement

categories (an average improvement of 1.45 x and 22.14 x over the state

of the art approaches). Additionally, our approach identifies more pat-

terns that complement the list of manually identified 87 SAR patterns.

5.3. RQ3: How much training dataset is needed to effectively classify

self-affirmed refactoring?

After assessing the accuracy of our approach in classifying SAR commits,

we want to investigate the amount of training data that is needed to effectively

classify SAR. Our approach will be easily extended if a small dataset can be

used for SAR identification. On the other hand, if a large number of commits

are required, then our approach requires considerable time and effort.

To answer this research question, we incrementally add training data and

37



Figure 10: Sample of Patterns Identified by Automatic Classification.

assess the classifier’s performance. We start by randomly selecting a stratified

sample of 11,000 commits for each stratum (i.e., SAR and non-SAR commits)

provided by the authors of [14], and combining these commits into a single large

dataset. Then, we follow the classification process discussed in Section 4, which

results in 5,000 equally divided for each class. We then split the dataset into

10 folds with equal size, ensuring that each partition has the same ratio of SAR

and non-SAR commits. For the multiclass classification problem, however, we

use only a stratified sample of 1,044 commits discussed in Section 4. The reason

for only considering these commits is that we are restricted by the minimum

number of commits belonging to the code smell category. Thus, to avoid having

an imbalanced training dataset, we keep the training size as it was originally

set up. We discard the 44 commits since this number is less than the selected

batch training size.

38



1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

Commits used in training dataset

F
-m

ea
su

re
(%

)

Figure 11: F-measure Achieved by Incrementally Adding Training Data Size for Two-class Classi-

fication.

For both classification methods, we run our approach using the 10-fold cross-

validation technique, using nine folds as training data and the remaining one

for testing. Because our target is to examine the impact of the quantity of

training data on the performance of the classification, we train the classifier

adding batches of 100 commits at a time similar to [79], and evaluate their

performance on the testing dataset. For each batch of commits, we maintain

the same ratio of SAR and non-SAR commits. The process ends when all of the

training dataset is used. After each iteration, we report the average performance

for all of the folds.

Figure 11 reveals the F-measure scores when identifying SAR and non-SAR

commits. Overall, we find that the F-measure maintains almost the same level

with no significant improvement, in terms of accuracy, as the dataset size in-

creases. As can be seen, we obtain a high F-measure value starting with less

than 1000 commits. We conclude that only one fold of the training dataset is suf-

ficient to identify SAR commits with F-measure of 90%. To achieve F-measure

higher than 90%, at least one fold of 1000 is needed. Figure 12 shows the

39



100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

Commits used in training dataset

F
-m

ea
su

re
(%

)

Figure 12: F-measure Achieved by Incrementally Adding Training Data Size for Multiclass Classi-

fication.

F-measure values when classifying Internal QA, External QA, and Code Smell

commits (multiclass). In general, we notice that the F-measure value slightly in-

creases as we increase the number of commits in the training dataset. To get at

least 90% F-measure, more than 400 commits are needed. We conclude that to

achieve a performance equivalent to 80% and 90% of the high F-measure score,

only 10% and 40% of the commit messages are required respectively. To test the

significance of the difference in F-measure values, we applied the Mann-Whitney

U Test and found that the differences are not statistically significant.

Summary. We find that to achieve a performance equivalent to 90% of

the high F-measure score, only one fold of commit messages is required

for the two-class and multiclass classification problems, respectively.

6. Research Implications

This section further discusses positions our work in the spectrum of existing

studies and how it implicates current research and practice.

40



6.1. Implications for practitioners

From a practitioner’s point of view, giving enough background related to the

performed refactorings is important to facilitate the code review process. Since

there is no consensus on how to formally document refactoring activities, our

model can provide various examples of how refactoring activity has been docu-

mented. Such information can be valuable to provide examples either to learn

from or criticize. Also, since documenting code changes is enforced practice for

some companies, then our tool can be used, in synchrony with other refactoring

miners to detect when a refactoring, in the source code level, has no “expected”

documentation in the commit message level. Such a quick sanity check can

remind developers of adding any missing information. Furthermore, the review

process heavily relies on understanding the context of the preformed refactor-

ing, and since refactoring impact cannot be narrowed into one category, authors

have to clearly state their intention in order for the reviewers to properly assess

it.

Further, understanding maintenance activities is critical for practitioners

to effectively direct the evolution of their projects in terms of enhancing cost-

effectiveness, managing technical debt, and better planification of maintenance

related resources. Therefore, a plethora of studies have been performed on

automatic classification of repository artifacts (e.g., bug reports, issues, code

changes) in general, and commit messages in particular for several purposes, in-

cluding the approximation of maintenance activity [42, 43, 71], security-relevant

changes [100, 101], bug proneness [101, 102], bug fixes [103, 104]. Our work ex-

tends this existing effort by adding another dimension of the localization of

refactoring effort. The end goal of estimating maintenance activities is to sup-

port managers and developers in better evaluating the quality of their projects,

and so being more sensitive to anomalies that may arise, and the way to cope

with them.

These three categories provide software practitioners with a catalog of com-

mon refactoring documentation patterns which represent concrete examples of

common ways to document refactoring activities in commit messages. Having

41



these higher-level categories helps developers find the specific refactoring pat-

terns they are looking for faster. Generally, in industry, there is no guideline

on how to structure commit messages. This catalog of SAR patterns can en-

courage developers to follow best documentation patterns and also to further

extend these patterns to improve refactoring documentation in particular and

code changes in general. This work will also help developers to improve the

quality of the refactoring documentation and trigger the need to explore the

motivation behind refactoring. Further, these categories tell the opinion of

developers, so it is important for managers to learn developers’ opinions and

feelings especially for distributed software development practices. If developers

did not document, managers will not know their intention. Since software en-

gineering is a human-centric process, it is important for managers to understand

the intention of people working on the team. In this work, we (1) learn about

how people self-report their types of work to evaluate progress with respect to

goals for improving code quality, and (2) examine changes over time in how

developers report their own activity in order to gain insight into patterns/find

areas for improvement.

Moreover, for refactoring recommendations, if we know the intention of de-

velopers (e.g., fix code smell), we can recommend refactoring based on the inten-

tion. From refactoring commit messages, we learn from these commit message

examples and know what code elements they change, we then can optimize our

refactoring recommendation to just work on code elements they are changing.

This work will help refactoring recommending systems by narrowing their scope

(e.g., working on code fragments that developers are interested in). Current

recommender system did not look at the intention, they excluded completely

the intention of developers. Thus, these recommender systems are underused

because they did not consider this important aspect.

6.2. Implications for researchers

From a research perspective, recent studies have been focusing on automat-

ically identifying any execution of a refactoring operation in the source code

42



[11, 12, 105]. The main purpose of the automatic detection of refactoring is to

better understand how developers cope with their software decay by extract-

ing any refactoring strategies that can be associated with removing code smells

[3, 4], or improving the design structural measurements [5, 106]. However, these

techniques only analyze the changes at the source code level, and provide the

operations performed, without associating it with any textual description, which

may infer the rationale behind the refactoring application. Our proposed model

intends to bridge this gap by complementing the existing effort in accurately

detecting refactorings, by augmenting with any description that was intended

to describe the refactoring activity. As previously shown in Tables 1 and 2,

developers tend to add a high-level description of their refactoring activity, and

occasionally mention their intention behind refactoring (remove duplicate code,

improve readability), along with mentioning the refactoring operations they

apply (type migration, inline methods, etc.). Our model, combined with the

detection of refactoring operations, serves as a solid background for various em-

pirical investigations. For instance, previous studies have analyzed the impact

of refactoring operations on structural metrics [36, 107, 108]. One of the main

limitations of these studies is the absence of any context related to the applic-

ation of refactorings, i.e., it is not clear whether developers did apply these

refactoring with the intention of improving design metrics. Therefore, the use

of our model will allow the consideration of commits whose commit messages

specifically express the refactoring for the purpose of optimizing structural met-

rics, such as coupling, and complexity, and so, many empirical studies can be

revisited with a more adequate dataset.

Furthermore, our study provides software practitioners with a catalog of

common refactoring documentation patterns (cf. Tables 1 and 2) which would

represent concrete examples of common ways to document refactoring activities

in commit messages. This catalog of SAR patterns can encourage developers

follow best documentation patterns and also to further extend these patterns

to improve refactoring changes documentation in particular and code changes

in general. Indeed, reliable and accurate documentation is always of crucial

43



importance in any software project. The presence of documentation for low

level changes such as refactoring operations and commit changes helps to keep

track of all aspects of software development and it improves on the quality of

the end product. Its main focuses are learning and knowledge transfer to other

developers.

Another important research direction that requires further attention con-

cerns the documentation of refactoring. It has been known that there is a

general shortage of refactoring documentation, as developers typically focus on

describing their functional updates and bug patches. Also, there is no con-

sensus about how refactoring should be documented, which makes it subjective

and developer specific. Moreover, the fine-grained description of refactoring can

be time consuming, as typical description should contain indication about the

operations performed, refactored code elements, and a hint about the intention

behind the refactoring. In addition, the developer specification can be ambigu-

ous as it reflects the developer’s understanding of what has been improved in the

source code, which can be different in reality, as the developer may not neces-

sarily adequately estimate the refactoring impact on the quality improvement.

Therefore, our model can help to build a corpus of refactoring descriptions, and

so many studies can better analyze the typical syntax used by developers in

order to develop better natural language models to improve it, and potentially

automate it, just like existing studies related to other types of code changes

[109, 110, 111].

This work can help researchers to investigate the consistency between code

changes and the actual intention and explore whether there is an overlap or not.

6.3. Implications for educators

From an educator point of view, this study helps to teach the new genera-

tion of developers or engineers the best practice to document their refactoring

activity.

44



7. Threats to Validity

In this section, we identify potential threats to the validity of our approach

and our experiments.

Construct Validity: Since our approach heavily depends on commit mes-

sages, we used well-commented Java projects when performing our study. Thus,

the quality and the quantity of commit messages might have an impact on our

findings. Additionally, a well-commented project might not contain SAR as

developers might not document refactoring activities in the commit messages.

We mitigate this risk by choosing projects that are appropriate for our analysis.

Another potential threat relates to manual classification. Since the manual clas-

sification of training commit messages is a human intensive task and it is subject

to personal bias, we mitigate manual classification related errors by discarding

short and ambiguous commits from our dataset and replacing them with other

commits. Another important limitation concerns the size of the dataset used

for training and evaluation. The size of the used dataset was determined simil-

arly to previous commit classification studies, but we are not certain that this

number is optimal for our problem. It is better to use a systematic technique

for choosing the size of the evaluation set. Concerning the relationship between

refactoring and quality issues, we designed our study with the goal of classifying

refactoring documentation. We have not explored if the refactoring operations

detected by the Refactoring Miner tool are related to the corresponding quality

issues documented by developers in the commit messages. Further, recent stud-

ies [68, 112, 113] indicate that commit messages could capture more than one

type of classification (i.e., mixed maintenance activity). Figure 13 shows a com-

mit message could belong to internal quality attribute (since it discusses code

complexity reduction), external quality attribute (since it points out scalability

improvement), and code smell (since it explains duplicate code removal). In this

work, we have not yet investigated whether a significant number of commits can

belong to more than once class, and if so, we plan on exploring a multi-label

classification in our future work.

45



Figure 13: Example of Multi-label Refactoring Commit Message that Would Confuse the Classifiers.

External Validity: The first threat relates to the commits that are ex-

tracted only from open source Java projects. Our results may not generalize to

commercially developed projects, or to other projects using different program-

ming languages. Another threat concerns the generalization of SAR patterns

in the commit messages. Since a commit is considered SAR commits if it only

contains any of SAR patterns, this may not generalize to other projects (e.g.,

outside the Java developers community) as it may have additional expression

that could belong to SAR category.

Although we used commit messages as our primary source of text, our ap-

proach is not restricted to a specific source of textual information. In our future

work, we can replicate our approach with other types of metadata, including

issue descriptions. For this study, we chose to focus on commit messages rather

than issue descriptions, since issue descriptions can be very high level, may not

go into code change details, may not always be available, and may refer to mul-

tiple changes in the code that span or mix different purposes (e.g., bug fix and

feature request). Besides, not all projects are using issue tracker. If the issue

tracker is guaranteed to be available, it could be used as an additional source

of information.

The use of well engineered projects is a double-edged sword, while it guaran-

tees an easier labeling process, and providing less noisy data for the approach, it

46



hinders its generalizability since these projects represent only a subset of all pro-

jects. So, our model may not achieve similar (high) performance across many

projects. We tried to mitigate this concern by considering different types of

projects, belonging to different domains. We shuffled commit messages during

the training and testing to avoid any biases.

8. Conclusion

In this paper, we proposed an approach to identify and classify self-affirmed

refactoring in commit messages. We compared the performance of our approach

to pattern-based and simple random baselines. Our results show that our ap-

proach (1) is able to accurately classify SAR commits with accuracy of 98%

and 93% for two-class and multiclass classification methods, respectively, out-

performing the two state-of-the-art approaches considered in this study, and (2)

can achieve F-measure of 90% using only 1% and 40% of the commits when per-

forming two-class and multiclass SAR classifications respectively. This indicates

a relatively small training dataset is sufficient to classify SAR commits.

In the future, we plan to study the applicability of our approach to other

projects developed in different programming languages, and to other domains.

Another potential research direction is to use the current findings to build a tool

that supports the identification and detection of self-affirmed refactoring com-

mits. We also plan to conduct different user studies with our industrial partner

predict the refactoring intention of the developers and further assess whether it

aligns with what happened to his source code after applying refactoring.

References

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, d. Roberts, Refactoring: Im-

proving the Design of Existing Code, Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA, 1999.

URL http://dl.acm.org/citation.cfm?id=311424

47

http://dl.acm.org/citation.cfm?id=311424
http://dl.acm.org/citation.cfm?id=311424
http://dl.acm.org/citation.cfm?id=311424


[2] M. Fowler, J. Highsmith, et al., The agile manifesto, Software Develop-

ment 9 (8) (2001) 28–35.

[3] N. Tsantalis, T. Chaikalis, A. Chatzigeorgiou, Jdeodorant: Identification

and removal of type-checking bad smells, in: 2008 12th European Confer-

ence on Software Maintenance and Reengineering, IEEE, 2008, pp. 329–

331.

[4] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, A. De Lucia,

An empirical study on the developers’ perception of software coupling, in:

Proceedings of the 2013 International Conference on Software Engineering,

IEEE Press, 2013, pp. 692–701.

[5] G. Bavota, S. Panichella, N. Tsantalis, M. Di Penta, R. Oliveto, G. Can-

fora, Recommending refactorings based on team co-maintenance patterns,

in: Proceedings of the 29th ACM/IEEE international conference on Auto-

mated software engineering, ACM, 2014, pp. 337–342.

[6] S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou, A. Gkortzis,

P. Avgeriou, Identifying extract method refactoring opportunities based

on functional relevance, IEEE Transactions on Software Engineering

43 (10) (2016) 954–974.

[7] M. Kim, T. Zimmermann, N. Nagappan, An empirical study of refactor-

ingchallenges and benefits at microsoft, IEEE Transactions on Software

Engineering 40 (7) (2014) 633–649.

[8] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, K. Deb, Multi-criteria

code refactoring using search-based software engineering: An industrial

case study, ACM Transactions on Software Engineering and Methodology

(TOSEM) 25 (3) (2016) 23.

[9] A. Ouni, M. Kessentini, H. Sahraoui, M. S. Hamdi, Search-based refact-

oring: Towards semantics preservation, in: 28th IEEE International Con-

ference on Software Maintenance (ICSM), 2012, pp. 347–356.

48



[10] D. Silva, N. Tsantalis, M. T. Valente, Why we refactor? confessions of

github contributors, in: Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, FSE

2016, ACM, New York, NY, USA, 2016, pp. 858–870. doi:10.1145/

2950290.2950305.

URL http://doi.acm.org/10.1145/2950290.2950305

[11] D. Silva, M. T. Valente, Refdiff: detecting refactorings in version histories,

in: Proceedings of the 14th International Conference on Mining Software

Repositories, IEEE Press, 2017, pp. 269–279.

[12] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, D. Dig, Ac-

curate and efficient refactoring detection in commit history.

[13] Z. Di, B. Li, Z. Li, P. Liang, A preliminary investigation of self-admitted

refactorings in open source software (S), in: The 30th International Con-

ference on Software Engineering and Knowledge Engineering, Hotel Pull-

man, Redwood City, California, USA, July 1-3, 2018. [13], pp. 165–164.

doi:10.18293/SEKE2018-081.

URL https://doi.org/10.18293/SEKE2018-081

[14] E. A. AlOmar, M. W. Mkaouer, A. Ouni, Can refactoring be self-affirmed?

an exploratory study on how developers document their refactoring activ-

ities in commit messages, in: Proceedings of the 3nd International Work-

shop on Refactoring-accepted. IEEE, 2019.

[15] D. Zhang, B. Li, Z. Li, P. Liang, A preliminary investigation of self-

admitted refactorings in open source software, 2018. doi:10.18293/

SEKE2018-081.

[16] J. Ratzinger, T. Sigmund, H. C. Gall, On the relation of refactorings

and software defect prediction, in: Proceedings of the 2008 International

Working Conference on Mining Software Repositories, MSR ’08, ACM,

New York, NY, USA, 2008, pp. 35–38. doi:10.1145/1370750.1370759.

URL http://doi.acm.org/10.1145/1370750.1370759

49

http://doi.acm.org/10.1145/2950290.2950305
http://doi.acm.org/10.1145/2950290.2950305
http://dx.doi.org/10.1145/2950290.2950305
http://dx.doi.org/10.1145/2950290.2950305
http://doi.acm.org/10.1145/2950290.2950305
https://doi.org/10.18293/SEKE2018-081
https://doi.org/10.18293/SEKE2018-081
http://dx.doi.org/10.18293/SEKE2018-081
https://doi.org/10.18293/SEKE2018-081
http://dx.doi.org/10.18293/SEKE2018-081
http://dx.doi.org/10.18293/SEKE2018-081
http://doi.acm.org/10.1145/1370750.1370759
http://doi.acm.org/10.1145/1370750.1370759
http://dx.doi.org/10.1145/1370750.1370759
http://doi.acm.org/10.1145/1370750.1370759


[17] K. Stroggylos, D. Spinellis, Refactoring–does it improve software quality?,

in: Fifth International Workshop on Software Quality (WoSQ’07: ICSE

Workshops 2007), IEEE, 2007, pp. 10–10.

[18] J. Ratzinger, sPACE: Software Project Assessment in the Course of

Evolution, Ph.D. thesis (2007).

URL http://www.infosys.tuwien.ac.at/Staff/ratzinger/

publications/ratzinger_phd-thesis_space.pdf

[19] G. Soares, R. Gheyi, E. Murphy-Hill, B. Johnson, Comparing approaches

to analyze refactoring activity on software repositories, Journal of Systems

and Software 86 (4) (2013) 1006–1022.

[20] E. A. AlOmar, self-affirmed-refactoring repository (2020 (last accessed

September 13, 2020)).

URL https://smilevo.github.io/self-affirmed-refactoring/

[21] B. Du Bois, S. Demeyer, J. Verelst, Refactoring-improving coupling and

cohesion of existing code, in: 11th working conference on reverse engin-

eering, IEEE, 2004, pp. 144–151.

[22] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, G. Succi, A case study

on the impact of refactoring on quality and productivity in an agile team,

in: IFIP Central and East European Conference on Software Engineering

Techniques, Springer, 2007, pp. 252–266.

[23] V. Singh, V. Bhattacherjee, Evaluation and application of package level

metrics in assessing software quality, International Journal of Computer

Applications 58 (21).

[24] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb,

A. Ouni, Many-objective software remodularization using nsga-iii, ACM

Transactions on Software Engineering and Methodology (TOSEM) 24 (3)

(2015) 17.

50

http://www.infosys.tuwien.ac.at/Staff/ratzinger/publications/ratzinger_phd-thesis_space.pdf
http://www.infosys.tuwien.ac.at/Staff/ratzinger/publications/ratzinger_phd-thesis_space.pdf
http://www.infosys.tuwien.ac.at/Staff/ratzinger/publications/ratzinger_phd-thesis_space.pdf
http://www.infosys.tuwien.ac.at/Staff/ratzinger/publications/ratzinger_phd-thesis_space.pdf
https://smilevo.github.io/self-affirmed-refactoring/
https://smilevo.github.io/self-affirmed-refactoring/


[25] D. Silva, R. Terra, M. T. Valente, Recommending automated extract

method refactorings, in: Proceedings of the 22nd International Confer-

ence on Program Comprehension, ACM, 2014, pp. 146–156.

[26] N. Moha, Y.-G. Gueheneuc, L. Duchien, A.-F. Le Meur, Decor: A method

for the specification and detection of code and design smells, IEEE Trans-

actions on Software Engineering 36 (1) (2009) 20–36.

[27] G. Szóke, G. Antal, C. Nagy, R. Ferenc, T. Gyimóthy, Bulk fixing coding

issues and its effects on software quality: Is it worth refactoring?, in: 2014

IEEE 14th International Working Conference on Source Code Analysis

and Manipulation, IEEE, 2014, pp. 95–104.

[28] D. Cedrim, A. Garcia, M. Mongiovi, R. Gheyi, L. Sousa, R. de Mello,

B. Fonseca, M. Ribeiro, A. Chávez, Understanding the impact of refact-

oring on smells: A longitudinal study of 23 software projects, in: Proceed-

ings of the 2017 11th Joint Meeting on Foundations of Software Engineer-

ing, ACM, 2017, pp. 465–475.

[29] B. Du Bois, S. Demeyer, J. Verelst, Does the” refactor to understand”

reverse engineering pattern improve program comprehension?, in: Ninth

European Conference on Software Maintenance and Reengineering, IEEE,

2005, pp. 334–343.

[30] B. Geppert, A. Mockus, F. Robler, Refactoring for changeability: A way

to go?, in: 11th IEEE International Software Metrics Symposium (MET-

RICS’05), IEEE, 2005, pp. 10–pp.

[31] J. Ratzinger, M. Fischer, H. Gall, Improving evolvability through refact-

oring, Vol. 30, ACM, 2005.

[32] C. D. Newman, M. W. Mkaouer, M. L. Collard, J. I. Maletic, A study

on developer perception of transformation languages for refactoring, in:

Proceedings of the 2nd International Workshop on Refactoring, 2018, pp.

34–41.

51



[33] C. D. Newman, M. J. Decker, R. S. AlSuhaibani, A. Peruma, D. Kaushik,

E. Hill, An empirical study of abbreviations and expansions in software

artifacts, in: Proceedings of the 35th IEEE International Conference on

Software Maintenance and Evolution (ICSME), IEEE, 2019.

[34] C. D. Newman, R. S. AlSuhaibani, M. J. Decker, A. Peruma, D. Kaushik,

M. W. Mkaouer, E. Hill, On the generation, structure, and semantics

of grammar patterns in source code identifiers, Journal of Systems and

Software 170 (2020) 110740.

[35] N. Tsantalis, V. Guana, E. Stroulia, A. Hindle, A multidimensional empir-

ical study on refactoring activity, in: Proceedings of the 2013 Conference

of the Center for Advanced Studies on Collaborative Research, CASCON

’13, IBM Corp., Riverton, NJ, USA, 2013, pp. 132–146.

URL http://dl.acm.org/citation.cfm?id=2555523.2555539

[36] F. Palomba, A. Zaidman, R. Oliveto, A. De Lucia, An exploratory study

on the relationship between changes and refactoring, in: 2017 IEEE/ACM

25th International Conference on Program Comprehension (ICPC), IEEE,

2017, pp. 176–185.

[37] C. Vassallo, G. Grano, F. Palomba, H. C. Gall, A. Bacchelli, A large-

scale empirical exploration on refactoring activities in open source software

projects, Science of Computer Programming 180 (2019) 1–15.

[38] J. Pantiuchina, F. Zampetti, S. Scalabrino, V. Piantadosi, R. Oliveto,

G. Bavota, M. Di Penta, Why developers refactor source code: A mining-

based study.

[39] R. Moser, A. Sillitti, P. Abrahamsson, G. Succi, Does refactoring improve

reusability?, in: International Conference on Software Reuse, Springer,

2006, pp. 287–297.

[40] A. Hindle, D. M. German, R. Holt, What do large commits tell us?: A

taxonomical study of large commits, in: Proceedings of the 2008 Inter-

52

http://dl.acm.org/citation.cfm?id=2555523.2555539
http://dl.acm.org/citation.cfm?id=2555523.2555539
http://dl.acm.org/citation.cfm?id=2555523.2555539
http://doi.acm.org/10.1145/1370750.1370773
http://doi.acm.org/10.1145/1370750.1370773


national Working Conference on Mining Software Repositories, MSR ’08,

ACM, New York, NY, USA, 2008, pp. 99–108. doi:10.1145/1370750.

1370773.

URL http://doi.acm.org/10.1145/1370750.1370773

[41] A. Hindle, N. A. Ernst, M. W. Godfrey, J. Mylopoulos, Automated topic

naming to support cross-project analysis of software maintenance activ-

ities, in: Proceedings of the 8th Working Conference on Mining Software

Repositories, MSR ’11, ACM, New York, NY, USA, 2011, pp. 163–172.

doi:10.1145/1985441.1985466.

URL http://doi.acm.org/10.1145/1985441.1985466

[42] S. Gharbi, M. W. Mkaouer, I. Jenhani, M. B. Messaoud, On the classi-

fication of software change messages using multi-label active learning, in:

Proceedings of the 34th ACM/SIGAPP Symposium on Applied Comput-

ing, ACM, 2019, pp. 1760–1767.

[43] S. Levin, A. Yehudai, Boosting automatic commit classification into main-

tenance activities by utilizing source code changes, in: Proceedings of the

13th International Conference on Predictive Models and Data Analytics

in Software Engineering, PROMISE, ACM, New York, NY, USA, 2017,

pp. 97–106. doi:10.1145/3127005.3127016.

URL http://doi.acm.org/10.1145/3127005.3127016

[44] M. Paixão, A. Uchôa, A. C. Bibiano, D. Oliveira, A. Garcia, J. Krinke,

E. Arvonio, Behind the intents: An in-depth empirical study on software

refactoring in modern code review, 17th MSR.

[45] G. Lacerda, F. Petrillo, M. Pimenta, Y. G. Guéhéneuc, Code smells and

refactoring: A tertiary systematic review of challenges and observations,

Journal of Systems and Software (2020) 110610.

[46] P. W. McBurney, S. Jiang, M. Kessentini, N. A. Kraft, A. Armaly, M. W.

Mkaouer, C. McMillan, Towards prioritizing documentation effort, IEEE

Transactions on Software Engineering 44 (9) (2017) 897–913.

53

http://dx.doi.org/10.1145/1370750.1370773
http://dx.doi.org/10.1145/1370750.1370773
http://doi.acm.org/10.1145/1370750.1370773
http://doi.acm.org/10.1145/1985441.1985466
http://doi.acm.org/10.1145/1985441.1985466
http://doi.acm.org/10.1145/1985441.1985466
http://dx.doi.org/10.1145/1985441.1985466
http://doi.acm.org/10.1145/1985441.1985466
http://doi.acm.org/10.1145/3127005.3127016
http://doi.acm.org/10.1145/3127005.3127016
http://dx.doi.org/10.1145/3127005.3127016
http://doi.acm.org/10.1145/3127005.3127016


[47] X. Xia, D. Lo, X. Wang, X. Yang, Collective personalized change classific-

ation with multiobjective search, IEEE Transactions on Reliability 65 (4)

(2016) 1810–1829.

[48] A. Potdar, E. Shihab, An exploratory study on self-admitted technical

debt, in: Software Maintenance and Evolution (ICSME), 2014 IEEE In-

ternational Conference on, IEEE, 2014, pp. 91–100.

[49] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,

A. MacCormack, R. Nord, I. Ozkaya, et al., Managing technical debt in

software-reliant systems, in: Proceedings of the FSE/SDP workshop on

Future of software engineering research, 2010, pp. 47–52.

[50] F. Palomba, A. Zaidman, R. Oliveto, A. D. Lucia, An exploratory study

on the relationship between changes and refactoring, in: 2017 IEEE/ACM

25th International Conference on Program Comprehension (ICPC), 2017,

pp. 176–185. doi:10.1109/ICPC.2017.38.

[51] G. Bavota, B. Russo, A large-scale empirical study on self-admitted tech-

nical debt, in: 2016 IEEE/ACM 13th Working Conference on Mining Soft-

ware Repositories (MSR), 2016, pp. 315–326. doi:10.1109/MSR.2016.

040.

[52] E. d. S. Maldonado, R. Abdalkareem, E. Shihab, A. Serebrenik, An em-

pirical study on the removal of self-admitted technical debt, in: 2017

IEEE International Conference on Software Maintenance and Evolution

(ICSME), IEEE, 2017, pp. 238–248.

[53] F. Zampetti, A. Serebrenik, M. Di Penta, Automatically learning patterns

for self-admitted technical debt removal, in: 2020 IEEE 27th International

Conference on Software Analysis, Evolution and Reengineering (SANER),

IEEE, 2020, pp. 355–366.

[54] E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and how we

know it, IEEE Transactions on Software Engineering 38 (1) (2012) 5–18.

54

http://dx.doi.org/10.1109/ICPC.2017.38
http://dx.doi.org/10.1109/MSR.2016.040
http://dx.doi.org/10.1109/MSR.2016.040


[55] G. Soares, D. Cavalcanti, R. Gheyi, T. Massoni, D. Serey, M. Cornélio,

Saferefactor-tool for checking refactoring safety.

[56] A. Peruma, M. W. Mkaouer, M. J. Decker, C. D. Newman, Contextual-

izing rename decisions using refactorings and commit messages, in: 2019

19th International Working Conference on Source Code Analysis and Ma-

nipulation (SCAM), IEEE, 2019, pp. 74–85.

[57] A. Peruma, M. W. Mkaouer, M. J. Decker, C. D. Newman, Contextualiz-

ing rename decisions using refactorings, commit messages, and data types,

Journal of Systems and Software 169 (2020) 110704.

[58] A. Peruma, M. W. Mkaouer, M. J. Decker, C. D. Newman, An empirical

investigation of how and why developers rename identifiers, in: Inter-

national Workshop on Refactoring 2018, 2018. doi:10.1145/3242163.

3242169.

URL http://doi.acm.org/10.1145/3242163.3242169

[59] E. A. AlOmar, M. W. Mkaouer, A. Ouni, M. Kessentini, On the impact of

refactoring on the relationship between quality attributes and design met-

rics, in: 2019 ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM), IEEE, 2019.

[60] A. Mockus, L. G. Votta, Identifying reasons for software changes using

historic databases., in: icsm, 2000, pp. 120–130.

[61] J. Amor, G. Robles, J. Gonzalez-Barahona, A. Navarro Gsyc, J. Carlos,

S. Madrid, Discriminating development activities in versioning systems:

A case study.

[62] L. P. Hattori, M. Lanza, On the nature of commits, in: 2008 23rd

IEEE/ACM International Conference on Automated Software Engineer-

ing - Workshops, 2008, pp. 63–71. doi:10.1109/ASEW.2008.4686322.

[63] A. E. Hassan, Automated classification of change messages in open source

projects, in: Proceedings of the 2008 ACM Symposium on Applied

55

http://doi.acm.org/10.1145/3242163.3242169
http://doi.acm.org/10.1145/3242163.3242169
http://dx.doi.org/10.1145/3242163.3242169
http://dx.doi.org/10.1145/3242163.3242169
http://doi.acm.org/10.1145/3242163.3242169
http://dx.doi.org/10.1109/ASEW.2008.4686322
http://doi.acm.org/10.1145/1363686.1363876
http://doi.acm.org/10.1145/1363686.1363876


Computing, SAC ’08, ACM, New York, NY, USA, 2008, pp. 837–841.

doi:10.1145/1363686.1363876.

URL http://doi.acm.org/10.1145/1363686.1363876

[64] A. Hindle, D. M. German, M. W. Godfrey, R. C. Holt, Automatic class-

ication of large changes into maintenance categories, in: 2009 IEEE 17th

International Conference on Program Comprehension, 2009, pp. 30–39.

doi:10.1109/ICPC.2009.5090025.

[65] N. Mahmoodian, R. Abdullah, M. A. A. Murad, Text-based classification

incoming maintenance requests to maintenance type, in: 2010 Interna-

tional Symposium on Information Technology, Vol. 2, 2010, pp. 693–697.

doi:10.1109/ITSIM.2010.5561540.

[66] A. Mauczka, M. Huber, C. Schanes, W. Schramm, M. Bernhart,

T. Grechenig, Tracing Your Maintenance Work – A Cross-Project Val-

idation of an Automated Classification Dictionary for Commit Mes-

sages, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 301–315.

doi:10.1007/978-3-642-28872-2_21.

URL https://doi.org/10.1007/978-3-642-28872-2_21

[67] A. Mauczka, F. Brosch, C. Schanes, T. Grechenig, Dataset of developer-

labeled commit messages, in: 2015 IEEE/ACM 12th Working Conference

on Mining Software Repositories, 2015, pp. 490–493. doi:10.1109/MSR.

2015.71.

[68] M. Yan, Y. Fu, X. Zhang, D. Yang, L. Xu, J. D. Kymer, Auto-

matically classifying software changes via discriminative topic

model: Supporting multi-category and cross-project, Journal of

Systems and Software 113 (Supplement C) (2016) 296 – 308.

doi:https://doi.org/10.1016/j.jss.2015.12.019.

URL http://www.sciencedirect.com/science/article/pii/

S016412121500285X

56

http://dx.doi.org/10.1145/1363686.1363876
http://doi.acm.org/10.1145/1363686.1363876
http://dx.doi.org/10.1109/ICPC.2009.5090025
http://dx.doi.org/10.1109/ITSIM.2010.5561540
https://doi.org/10.1007/978-3-642-28872-2_21
https://doi.org/10.1007/978-3-642-28872-2_21
https://doi.org/10.1007/978-3-642-28872-2_21
http://dx.doi.org/10.1007/978-3-642-28872-2_21
https://doi.org/10.1007/978-3-642-28872-2_21
http://dx.doi.org/10.1109/MSR.2015.71
http://dx.doi.org/10.1109/MSR.2015.71
http://www.sciencedirect.com/science/article/pii/S016412121500285X
http://www.sciencedirect.com/science/article/pii/S016412121500285X
http://www.sciencedirect.com/science/article/pii/S016412121500285X
http://dx.doi.org/https://doi.org/10.1016/j.jss.2015.12.019
http://www.sciencedirect.com/science/article/pii/S016412121500285X
http://www.sciencedirect.com/science/article/pii/S016412121500285X


[69] A. Chávez, I. Ferreira, E. Fernandes, D. Cedrim, A. Garcia, How does

refactoring affect internal quality attributes?: A multi-project study, in:

Proceedings of the 31st Brazilian Symposium on Software Engineering,

SBES’17, ACM, New York, NY, USA, 2017, pp. 74–83. doi:10.1145/

3131151.3131171.

URL http://doi.acm.org/10.1145/3131151.3131171

[70] S. Levin, A. Yehudai, Towards software analytics: Modeling maintenance

activities, arXiv preprint arXiv:1903.04909.

[71] S. Hönel, M. Ericsson, W. Löwe, A. Wingkvist, Importance and aptitude

of source code density for commit classification into maintenance activ-

ities, in: The 19th IEEE International Conference on Software Quality,

Reliability, and Security, 2019.

[72] C. McMillan, M. Linares-Vasquez, D. Poshyvanyk, M. Grechanik, Cat-

egorizing software applications for maintenance, in: Proceedings of the

2011 27th IEEE International Conference on Software Maintenance, ICSM

’11, IEEE Computer Society, Washington, DC, USA, 2011, pp. 343–352.

doi:10.1109/ICSM.2011.6080801.

URL http://dx.doi.org/10.1109/ICSM.2011.6080801

[73] E. B. Swanson, The dimensions of maintenance, in: Proceedings of the

2Nd International Conference on Software Engineering, ICSE ’76, IEEE

Computer Society Press, Los Alamitos, CA, USA, 1976, pp. 492–497.

URL http://dl.acm.org/citation.cfm?id=800253.807723

[74] M. Allamanis, C. Sutton, Mining source code repositories at massive scale

using language modeling, in: Proceedings of the 10th Working Conference

on Mining Software Repositories, IEEE Press, 2013, pp. 207–216.

[75] N. Munaiah, S. Kroh, C. Cabrey, M. Nagappan, Curating github for en-

gineered software projects, Empirical Software Engineering 22 (6) (2017)

3219–3253.

57

http://doi.acm.org/10.1145/3131151.3131171
http://doi.acm.org/10.1145/3131151.3131171
http://dx.doi.org/10.1145/3131151.3131171
http://dx.doi.org/10.1145/3131151.3131171
http://doi.acm.org/10.1145/3131151.3131171
http://dx.doi.org/10.1109/ICSM.2011.6080801
http://dx.doi.org/10.1109/ICSM.2011.6080801
http://dx.doi.org/10.1109/ICSM.2011.6080801
http://dx.doi.org/10.1109/ICSM.2011.6080801
http://dl.acm.org/citation.cfm?id=800253.807723
http://dl.acm.org/citation.cfm?id=800253.807723


[76] K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes,

D. Brown, Text classification algorithms: A survey, Information 10 (4)

(2019) 150.

[77] S. Jiang, A. Armaly, C. McMillan, Automatically generating commit

messages from diffs using neural machine translation, in: 2017 32nd

IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE), IEEE, 2017, pp. 135–146.

[78] Y. Fu, M. Yan, X. Zhang, L. Xu, D. Yang, J. D. Kymer, Automated clas-

sification of software change messages by semi-supervised latent dirichlet

allocation, Information and Software Technology 57 (2015) 369–377.

[79] E. da Silva Maldonado, E. Shihab, N. Tsantalis, Using natural language

processing to automatically detect self-admitted technical debt, IEEE

Transactions on Software Engineering 43 (11) (2017) 1044–1062.

[80] J. Cohen, A coefficient of agreement for nominal scales, Educational and

psychological measurement 20 (1) (1960) 37–46.

[81] J. L. Fleiss, B. Levin, M. C. Paik, et al., The measurement of inter-

rater agreement, Statistical methods for rates and proportions 2 (212-236)

(1981) 22–23.

[82] P. S. Kochhar, F. Thung, D. Lo, Automatic fine-grained issue report re-

classification, in: Engineering of Complex Computer Systems (ICECCS),

2014 19th International Conference on, IEEE, 2014, pp. 126–135.

[83] H. Saif, M. Fernández, Y. He, H. Alani, On stopwords, filtering and data

sparsity for sentiment analysis of twitter.

[84] C.-M. Tan, Y.-F. Wang, C.-D. Lee, The use of bigrams to enhance text

categorization, Information processing & management 38 (4) (2002) 529–

546.

58



[85] R. O. Duda, P. E. Hart, D. G. Stork, Pattern classification, John Wiley

& Sons, 2012.

[86] Q. Gu, Z. Li, J. Han, Generalized fisher score for feature selection, arXiv

preprint arXiv:1202.3725.

[87] C. D. Manning, P. Raghavan, et al., Schü tze h. introduction to informa-

tion retrieval (2008).

[88] M. Fernández-Delgado, E. Cernadas, S. Barro, D. Amorim, Do we need

hundreds of classifiers to solve real world classification problems, J. Mach.

Learn. Res 15 (1) (2014) 3133–3181.

[89] A. C. Lorena, A. C. P. L. F. de Carvalho, J. M. P. Gama, A review

on the combination of binary classifiers in multiclass problems, Artificial

Intelligence Review 30 (1) (2009) 19. doi:10.1007/s10462-009-9114-9.

URL https://doi.org/10.1007/s10462-009-9114-9

[90] J. H. Friedman, Greedy function approximation: a gradient boosting ma-

chine, Annals of statistics (2001) 1189–1232.

[91] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.

McLachlan, A. Ng, B. Liu, S. Y. Philip, et al., Top 10 algorithms in data

mining, Knowledge and information systems 14 (1) (2008) 1–37.

[92] C. Jose, P. Goyal, P. Aggrwal, M. Varma, Local deep kernel learning

for efficient non-linear svm prediction, in: International conference on

machine learning, 2013, pp. 486–494.

[93] M. Collins, Discriminative training methods for hidden markov mod-

els: Theory and experiments with perceptron algorithms, in: Proceed-

ings of the ACL-02 conference on Empirical methods in natural language

processing-Volume 10, Association for Computational Linguistics, 2002,

pp. 1–8.

59

https://doi.org/10.1007/s10462-009-9114-9
https://doi.org/10.1007/s10462-009-9114-9
http://dx.doi.org/10.1007/s10462-009-9114-9
https://doi.org/10.1007/s10462-009-9114-9


[94] R. Herbrich, T. Graepel, C. Campbell, Bayes point machines, Journal of

Machine Learning Research 1 (Aug) (2001) 245–279.

[95] G. Andrew, J. Gao, Scalable training of l1-regularized log-linear models,

in: International Conference on Machine Learning, international confer-

ence on machine learning Edition, 2007.

[96] A. Prinzie, D. Van den Poel, Random forests for multiclass classifica-

tion: Random multinomial logit, Expert systems with Applications 34 (3)

(2008) 1721–1732.

[97] J. Shotton, T. Sharp, P. Kohli, S. Nowozin, J. Winn, A. Criminisi,

Decision jungles: Compact and rich models for classification, in: Proc.

NIPS, proc. nips Edition, 2013.

URL https://www.microsoft.com/en-us/research/publication/

decision-jungles-compact-and-rich-models-for-classification/

[98] L. K. Hansen, P. Salamon, Neural network ensembles, IEEE Transactions

on Pattern Analysis & Machine Intelligence (10) (1990) 993–1001.

[99] S. Mund, Microsoft azure machine learning, Packt Publishing Ltd, 2015.

[100] C. Rosen, B. Grawi, E. Shihab, Commit guru: analytics and risk predic-

tion of software commits, in: Proceedings of the 2015 10th Joint Meeting

on Foundations of Software Engineering, ACM, 2015, pp. 966–969.

[101] J. Eyolfson, L. Tan, P. Lam, Correlations between bugginess and time-

based commit characteristics, Empirical Software Engineering 19 (4)

(2014) 1009–1039.

[102] J. Eyolfson, L. Tan, P. Lam, Do time of day and developer experience

affect commit bugginess?, in: Proceedings of the 8th Working Conference

on Mining Software Repositories, ACM, 2011, pp. 153–162.

[103] S. Zafar, M. Z. Malik, G. S. Walia, Towards standardizing and improving

classification of bug-fix commits, in: 2019 ACM/IEEE International Sym-

60

https://www.microsoft.com/en-us/research/publication/decision-jungles-compact-and-rich-models-for-classification/
https://www.microsoft.com/en-us/research/publication/decision-jungles-compact-and-rich-models-for-classification/
https://www.microsoft.com/en-us/research/publication/decision-jungles-compact-and-rich-models-for-classification/


posium on Empirical Software Engineering and Measurement (ESEM),

IEEE, 2019, pp. 1–6.

[104] A. Sadiq, M. Mostafa, K. Sakib, On the evolutionary relationship between

change coupling and fix-inducing changes, in: Proceedings of the 14th

International Conference on Evaluation of Novel Approaches to Soft-

ware Engineering, ENASE 2019, SCITEPRESS - Science and Techno-

logy Publications, Lda, Portugal, 2019, pp. 494–501. doi:10.5220/

0007758804940501.

URL https://doi.org/10.5220/0007758804940501

[105] M. Kim, M. Gee, A. Loh, N. Rachatasumrit, Ref-finder: a refactoring

reconstruction tool based on logic query templates, in: Proceedings of the

eighteenth ACM SIGSOFT international symposium on Foundations of

software engineering, ACM, 2010, pp. 371–372.

[106] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, M. Ó Cinnéide,

Recommendation system for software refactoring using innovization and

interactive dynamic optimization, in: Proceedings of the 29th ACM/IEEE

international conference on Automated software engineering, ACM, 2014,

pp. 331–336.

[107] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, F. Palomba, An ex-

perimental investigation on the innate relationship between quality and

refactoring, Journal of Systems and Software 107 (2015) 1–14.

[108] D. Cedrim, L. Sousa, A. Garcia, R. Gheyi, Does refactoring improve soft-

ware structural quality? a longitudinal study of 25 projects, in: Proceed-

ings of the 30th Brazilian Symposium on Software Engineering, ACM,

2016, pp. 73–82.

[109] R. P. Buse, W. Weimer, Automatically documenting program changes.,

in: ASE, Vol. 10, 2010, pp. 33–42.

61

https://doi.org/10.5220/0007758804940501
https://doi.org/10.5220/0007758804940501
http://dx.doi.org/10.5220/0007758804940501
http://dx.doi.org/10.5220/0007758804940501
https://doi.org/10.5220/0007758804940501


[110] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, D. Poshyvanyk,

Changescribe: A tool for automatically generating commit messages, in:

2015 IEEE/ACM 37th IEEE International Conference on Software Engin-

eering, Vol. 2, IEEE, 2015, pp. 709–712.

[111] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, X. Wang, Neural-machine-

translation-based commit message generation: how far are we?, in: Pro-

ceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering, ACM, 2018, pp. 373–384.

[112] H. Kirinuki, Y. Higo, K. Hotta, S. Kusumoto, Hey! are you committing

tangled changes?, in: Proceedings of the 22Nd International Conference

on Program Comprehension, ICPC 2014, ACM, New York, NY, USA,

2014, pp. 262–265. doi:10.1145/2597008.2597798.

URL http://doi.acm.org/10.1145/2597008.2597798

[113] P. J. Guinan, J. G. Cooprider, S. Faraj, Enabling software development

team performance during requirements definition: A behavioral versus

technical approach, Information Systems Research 9 (2) (1998) 101–

125. arXiv:https://doi.org/10.1287/isre.9.2.101, doi:10.1287/

isre.9.2.101.

URL https://doi.org/10.1287/isre.9.2.101

62

http://doi.acm.org/10.1145/2597008.2597798
http://doi.acm.org/10.1145/2597008.2597798
http://dx.doi.org/10.1145/2597008.2597798
http://doi.acm.org/10.1145/2597008.2597798
https://doi.org/10.1287/isre.9.2.101
https://doi.org/10.1287/isre.9.2.101
https://doi.org/10.1287/isre.9.2.101
http://arxiv.org/abs/https://doi.org/10.1287/isre.9.2.101
http://dx.doi.org/10.1287/isre.9.2.101
http://dx.doi.org/10.1287/isre.9.2.101
https://doi.org/10.1287/isre.9.2.101

	1 Introduction
	2 Self-Affirmed Refactoring
	2.1 Definition
	2.2 Categories
	2.3 Benefits

	3 Related Work
	3.1 Refactoring and its documentation
	3.2 Commit Classification

	4 Approach
	4.1 Data Collection
	4.2 Refactoring Detection
	4.3 Overall Framework
	4.4 Commit Classification
	4.4.1 Data Preparation
	4.4.2 Text Cleaning & Preprocessing
	4.4.3 Feature Extraction Using N-Gram
	4.4.4 Model Training and Building
	4.4.5 Classifier Selection and Model Evaluation


	5 Results & Discussion
	5.1 RQ1: Is it possible to accurately perform two-class and multiclass SAR classification using our machine learning technique?
	5.2 RQ2: How effective is our machine learning approach in classifying SAR?
	5.3 RQ3: How much training dataset is needed to effectively classify self-affirmed refactoring?

	6 Research Implications
	6.1 Implications for practitioners
	6.2 Implications for researchers
	6.3 Implications for educators

	7 Threats to Validity
	8 Conclusion

