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Abstract

In this paper, the term formula code refers to fragments of source code that implement a mathe-
matical formula. We present empirical studies that analyze the diversity and frequency of formula
code in open-source-software projects. In an exploratory study, we investigated what kinds of
formulas are implemented in real-world Java projects and derived syntactical patterns and con-
straints. We refined these patterns for sum and product formulas to automatically detect formula
code in software archives and to reconstruct the implemented formula in mathematical notation.
In a quantitative study of a large sample of engineered Java projects on GitHub we analyzed
the frequency of formula code and estimated that one of 700 lines of code in this sample im-
plements a sum or product formula. For a sample of scientific-computing projects, we found
that one of 100 lines of code implements a sum or product formula. To assess the need for tool
support, we investigated the helpfulness of comments for program understanding in a sample of
formula-code fragments and performed an online survey. Our findings provide first insights into
the characteristics of formula code, that can motivate further studies on the role of formula code
in software projects and the design of formula-related tools.
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On the Diversity and Frequency of Code Related to Mathematical
Formulas in Real-World Java Projects

1. Introduction

Since there exists a wide range of mathematical formulas and their implementations, in the
context of this paper, we use the term formula code to denote fragments of source code that
compute a numerical value (scalar, vector, matrix) in a way that can be expressed in a common
mathematical notation [1] or by a mixed form of source code artifacts and maths symbols.

The correct and performant implementation of mathematical aspects is a crucial part influ-
encing the success of a software system. The destruction of the Mariner 1 spacecraft in 1962
caused a $18.5 million financial damage due to a faulty implementation of a mathematical for-
mula in FORTRAN, in particular a missing superscript bar ‘signifying a smoothing function, so
the formula should have calculated the smoothed value of the time derivative of a radius’ [2, 3, 4].
This is only one prominent example where formula code happens to be a critical part of a soft-
ware system. An incident during Qantas Flight 72 in 2008 shows that it is often not the formula
implementation alone that may cause potentially catastrophic outcomes, but the assumptions be-
ing made when specifying the intended behaviour. On that flight, the way in which the Airbus
A330-300’s flight control computer determined an important flight parameter based on the aver-
age and median values of three sensor outputs plus a combination of heuristics to deal with spike
values caused the airplane to enter a steep descent, injuring passengers and crew members [5].

The general discipline of software engineering is studded with problem solving and therefore
with mathematical reasoning [6]. Thus maths is omnipresent in the work of a software engineer
and represented in the software systems’ code base by the utilization of one or more programming
languages. Furthermore, the early detection of defects in maths implementations and discovery
of opportunities to increase the software’s performance within the development of a software
system could save hours of testing and consumption of resources, especially in long running
computational environments, such as scientific or high performance computing. Software devel-
opment tools supporting the implementation and comprehension of formula code would not only
be of advantage in such specialized scientific domains. To some extent every computer program
contains at least some logic or discrete mathematics like combinatorics, probability theory, graph
theory or number theory.

In psychological studies Landy et al. investigated the importance of spatial relationships in
mathematical notations [7]. For example, test persons falsely rated the equation a + b ∗ c + d =

c+d ∗a+b valid, if the distance between symbols did not correspond to the operator precedence.
The authors concluded ‘that competent symbolic reasoners typically rely on semantically irrel-
evant properties of notational formulae in order to quickly and accurately—but also sometimes
inaccurately—solve symbolic reasoning problems.’ Thus, we assume that a mathematical rep-
resentation is beneficial in order to reduce both the time for comprehending the code as well as
assessing its correctness. In mathematical notation, operators and symbols are arranged in two
dimensions allowing a more compact view.

When we started this project, we found ourselves in the situation that we could not find much
work to build on. Surprisingly, although mathematical formulas obviously play an important
role in programming, so far, software engineering research has not empirically studied the im-
plementation of formulas in common programming languages nor developed much tool support
for implementing, debugging and optimizing formulas. Research as well as tools have rather
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focused on different levels of program abstractions (e.g. statement, class, or package level) or
on higher-level abstractions (e.g. features, aspects, or components). In general purpose pro-
gramming languages such as Java, Python or C++, formula code does not simply correspond to
a syntactical category such as expression: Not all expressions in a program implement a formula
(e.g. fopen(fname)!=-1) and not all formulas are implemented as expressions (e.g. program
code for

∑n
i=1 ai typically uses for-loops). Identifying formula code and making software de-

velopers aware of recurring patterns, best practices, pitfalls, and useful ’hacks’ related to the
implementation of mathematical aspects as well as simply showing the code in maths like no-
tation can help to reduce development time and technical risk, as well as the effort for code
comprehension and communication, particularly in cross disciplinary development teams, where
experts of mathematically predominant domains, e.g. mathematicians or chemical scientists, and
software developers tightly work together.

Our vision is that better understanding of the characteristics of formula code will help to
develop novel tools, beyond formula editors, for understanding, maintaining, debugging and
optimizing formula code as well as to design new APIs and language features to enhance a
software systems maintainability and thus its overall code quality.

To gain insights on the use of formula code in real software projects and as a basis for future
research on tool support and language design, we want to answer the following two research
questions:

RQ1 (Diversity): What kinds of formula code occur in real-world software projects?

RQ2 (Frequency): How frequent is formula code both at file and line granularity?

To answer these research questions, we performed two studies, one qualitative and one quan-
titative study. For our qualitative study, we ran a keyword-based search to find formula code in
open source Java projects on GitHub (Section 3). While this keyword-based approach suffers
both from low recall and low precision and requires a lot of manual post-processing, it helped
us to find an initial set of real-world formula code samples, that we then manually analyzed in
order to gain first insights on the kinds of formula code that exist (RQ1) and to derive patterns of
formula code (Section 4).

While there exist programming languages such as FORTRAN or MATLAB that are tailored
for numerical computation, even in those languages there exists a conceptual gap between im-
perative language features and the declarative nature of mathematical formulas. Nevertheless,
imperative languages such as Ada are still commonly used to implement mathematical formulas,
for example in the aviation industry [8, 9]. However, mathematical formulas do not only play a
role in safety-critical domains like aviation, they are also central to many concepts in computer
graphics, machine learning or finance. We decided to focus on a general-purpose programming
language, Java, because not having direct support for implementing mathematical formulas, for
example by having a matrix datatype and related operations, adds an additional indirection layer
that makes it even harder for developers who need to implement mathematical formulas in such
languages. Our study has shown that, while relatively rare, mathematical formulas are being im-
plemented in Java. In some of our sampled projects more than 5% of source code implemented
a sum or product formula and every 4th loop in the scientific computing projects implemented
such a formula.

Given the diversity of the formulas that we found, we decided to focus on sum and product
formulas for our quantitative analysis, because they are structurally non-trivial and we expected
them to occur quite frequently. We will use the term SP-formulas in the rest of this paper to
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refer to sum and product formulas and the term SP-formula code to refer to source code we can
express as SP-formulas in a mathematical notation. The derived patterns from the quantitative
study form the basis of our pattern-based method for detecting SP-formula code (Section 5.1).
Our approach is not only able to classify source code as SP-formula code, but also to reconstruct
the formula implemented by the code in mathematical notation. Our evaluation shows that the
pattern-based method has a very high precision (almost 100%) and a modest recall (31%) for
SP-formula code. Moreover, for 85% of the detected SP-formula code the reconstructed formula
was both correct and completely described the computation of the matched code. Finally, to
answer research question RQ2, we applied the tool on a sample of 1000 different open source
Java projects to detect SP-formula code on GitHub (Section 5). For a smaller sample, we also
compared the densities from arbitrary application domains with those in scientific computing.

Furthermore, to assess the need for tool support related to formula code, we performed two
small studies. First, we investigated the source-code comments of 139 real-world formula code
fragments and observed that they are rarely commented in a way that helped to better compre-
hend the implemented formula. Second, in an online survey, we examined whether showing a
reconstructed mathematical formula next to the formula code supports the defect detection task.
For the survey we selected four real-world formula code fragments of different complexity. Due
to the low number of participants that actually completed the survey, the quantitative results com-
paring their performance with and without showing the reconstructed formula are not conclusive.
However, for complex formulas the accuracy scores considerably decreased, which offers ample
room for tool development. This adds to our assumption that tools can improve development
tasks related to formula code. Moreover, the vast majority of the participants found a tool that
reconstructs the mathematical formula from the source code as helpful.

In summary our contributions are: A first qualitative study investigating the nature of formula
code; a set of recurring formula code patterns derived from the findings in the qualitative study; a
quantitative study on the density of sum and product formula code in open source Java projects.

2. Related Work

Work on automatic layout of formulas based on textual specifications as well as graphical for-
mula editors [10, 11, 12] dates at least back to the seventies. There is also a considerable amount
of research on producing internal representations from graphical ones using image recognition
techniques [13, 14].

In the area of programming, recent work includes the integration of a formula editor in a
common IDE as a domain specific language extension using Jetbrains MPS [15].

Since the advent of mining software repositories, researchers have developed numerous
methods for analyzing software repositories to detect patterns in the source code (e.g., aspects[16]
or API patterns [17]) or its changes (e.g., recommended changes [18] or refactorings [19]).

The only work on reconstructing mathematical formulas from source code has been pub-
lished by Moser et al. [20, 21]. Their RbG tool extracts formulas from annotated source code to
produce a documentation of the source code. The tool was developed for Fortran and C++, re-
quires manual annotations, uses static program analysis and covers only a small part of possible
formulas.

While there exist tools for searching mathematical formulas in documents (e.g., using tree-
edit distance [22]) or for searching mathematical expressions in software binaries [23] (using
fingerprints) in order to build a search system which is capable of querying for software libraries
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implementing a mathematical term, to our knowledge, so far, no methods for detecting formula
code in software repositories or empirical studies on formula code in common programming
languages have been published. To some extent, almost every implementation of a mathematical
formula is working with numerical values such as integer or floating point numbers.

The computation of numerical values comes with its own challenges and pitfalls. Recently,
studies on characteristics such as categories, symptoms, frequencies and possible fixes of numer-
ical bugs have been conducted by Di Franco et al. [24]. They have neither investigated patterns
in the code of numerical computations nor tried to detect it automatically, but focused on bugs
which are related to these code fragments. While parts of numerical computations can be de-
scribed by formulas, they are often more algorithmic in nature.

3. Keyword-Based Search for Formula Code

To get first insights into what kinds of formulas are actually implemented in real-world soft-
ware projects (RQ1) we conducted a qualitative study using GitHub as our data source. With
more than 96 million repositories and 31 million contributors involved (as of September 2018
[25]), GitHub is one of the most popular code hosting platforms today. It is not only used by
developers for their personal projects, but also by large companies such as Google, Microsoft,
or Facebook. We restricted our search to projects containing Java source code, since Java is one
of the most popular general purpose programming languages according to the IEEE language
ranking (as of July 2018 [26]) and the TIOBE index (as of October 2018 [27]). Our decision to
investigate Java projects is based on the assumption that they contain code that was developed
by programmers of all levels from novices to experts with respect to their programming as well
as maths skills.

To find formula code, we searched for certain keywords in the commit messages and code
comments, because software developers use these annotations to document and communicate
various aspects of source code artifacts and changes, including their intent. For our study, we
wanted to find program code that a developer documented to be associated with mathematical
formulas. Hence, we searched for occurrences of the keywords ‘formula’, ‘equation’, ‘math’,
‘theorem’, ‘sum of’ and ‘product over/of’ within the Git commit logs and comment sections of
Java code . While our list of keywords is certainly not comprehensive, it allowed us to find a
sufficiently large and divers set of samples for our subsequent manual analysis.

In a first attempt, we utilized the Boa language and infrastructure [28] to retrieve candidates.
We conducted a search on the ‘2015 September/GitHub’ dataset available through Boa. This
approach revealed only a modest number of useful hits. Furthermore it was a time consuming
task to deduce the interesting code fragments, if existent, from the commit log messages since a
commit usually relates to multiple files and thus required a significant amount of manual effort
to identify the relevant file and source-code fragment in this file. Thus we changed our strategy
and only searched in the source code comments, because the comments are in the same file and
usually very close to the source code fragments that they annotate. Unfortunately, Boa did not
provide access to source code comments, since they were not contained in its data model. As a
consequence, we switched to Google Big Query [29] (GBQ), a web service for searching GitHub
using the GBQ GitHub and GHTorrent datasets, that allows executing SQL-queries to search for
keywords within source code comments of Java files.
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3.1. Exploratory study
With the help of GBQ, we created one big CSV file containing all matches of each keyword

mentioned above. Each match is recorded as a tuple with the following data:

(id, match, link, line, repo name, path)

where id denotes a file identifier in the GBQ GitHub dataset, match the matched keyword, link
the link to the respective repository on GitHub, repo name the corresponding repository name
consisting of the account as well as project name and path denotes the path of the file containing
the match.

The goal of our qualitative analysis was to find common properties of real-world formula
code. To this end, we followed an iterative analysis process borrowing some ideas (open coding,
iteration, theoretical sampling and saturation) from Grounded Theory [30]:

1. Compute a set of matches (sample) using feedback from the previous iteration to adapt the
sampling strategy and collect data that will more likely lead to new insights (theoretical
sampling).

2. For each match:

• Decide whether the source code fragment implements a formula
• Try to reconstruct the underlying mathematical formula, observe and describe phe-

nomena of the formula and the formula code (open coding).

3. If the analysis of the sample lead to new insights (i.e. new or refined codes) then repeat the
analysis with another sample (Step 1 ). Otherwise, our codes cover all relevant phenomena
(theoretical saturation).

Following the above process, we conducted 4 iterations of group sessions until we reached a
saturation on our observations. In the first iteration, we used the keywords ‘theorem’, ‘formula’,
‘equation’, and ‘sum of’ and ranked the projects by the number of matches and started to man-
ually inspect the matches of the top ten projects and tried to reconstruct the underlying formula.
Very quickly it became apparent that the majority of these matches were commented out Java
code fragments with references to the class java.lang.Math, in particular calls to functions of
this standard library like Math.sqrt(...) (see supplementary material [31]). So, we actually
had many false positives and we stopped coding after looking at 12 matches. In these matches
we observed already 16 of the 17 properties that are shown in Table 1. To reduce the number
of false positives, we removed the keyword ‘math’ from the query and computed for the second
iteration a sample which we sorted by popularity to filter small toy projects. We coded another
21 matches and observed only one additional property, namely co-index variables. For the third
iteration we decided to search for the keywords ‘product of’ and ‘product over’, because we
thought that they are computed in a similar way as sums, but we wanted to check whether there
are any differences except for the multiplication operation in their implementations. In contrast
to the keyword ‘sum of’, for the keyword ‘product of’ we got a lot of false positives, thus we
coded only 4 including one dot product of of two vectors: float dot = (crossX * dx

+ crossY * dy); We did not observe any new properties. To make sure, that we did not miss
relevant phenomena because of our choice of projects and ranking of the matches, we searched
for all keywords in a random selection of projects and randomly chose 10 matches that we coded.
Again, we did not observe any new relevant properties.

In summary, we used the following four samples for our qualitative analysis:
6



Figure 1: Formula reconstructed from code in Listing 2

Top10M: Matches of top 10 projects sorted by number of matches per project (keywords: theo-
rem, formula, math, equation, sum of)

Top50P1: Matches of top 50 projects sorted by popularity (keywords: theorem, formula, equa-
tion, sum of)

Top20P2: Matches of top 20 projects sorted by popularity (keywords: product of, product over)

Random: Matches randomly selected (keywords: theorem, formula, equation, sum of, product
of, product over)

In total, we closely inspected 142 matches from 101 different open source Java projects on
GitHub and found 47 matches from 21 different projects to be formula code. For those matches,
we reconstructed the underlying mathematical formula of each fragment (example shown in
Figure 1). The observed and coded phenomena include control flow statements, roles of vari-
ables, comprehensibility and mathematical data type. Note, albeit we consider the Java language
feature of lambda expressions being close to a mathematical notation, it did not occur once in
our qualitative study. For reconstructing the formula, the comments were rarely helpful. In
most cases the comments simply stated what was computed, e.g. // Calculate chi-square

scores. In 5 cases the comments contained a reference to the literature or the web. In one
case, the formula was explicitly given in the comment. In two cases only meta-information
was given in the comment (// It’s a weird formula, but tests prove it works.,
// formula below does not work with very large doubles).

Control-Flow Statements. As shown in Table 1, 24 of the 47 verified formula code fragments
made use of a for-loop of which 12 were simple non nested for-loops, eight were double nested
for-loops (one nested into another) and four were triple nested for-loops. We only found two
examples where while-loops were used to implement a mathematical formula—one was non
nested and the other double nested. Furthermore, our findings revealed that most sum and product
formulas were implemented using for-loops, which is not surprising as for-loops are closer to
the mathematical representation than other loops. The same holds for formulas which required
iterating through a vector or matrix. The conditional statement (if) was found 16 times, either
within a loop body to function as a filter (seven times) or completely outside of any loop (nine
times). In three cases, we also determined an incremental computation which means that, at
runtime, a series of method calls resulted in a more complex implementation of a mathematical
formula—the formula actually describes the invariant of the value of a variable. For example,
the method put(float value) in the class FloatCounter of the project libgdx/libgdx
(Listing 1) incrementally updates simple statistical values, such that average equals 1

n
∑n

i=1 vi

where n is the current value of count and vi are the actual values of the parameter value of all
invocations of the method:
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Table 1: Properties of the coded samples

control-flow mathematical
statements roles of variables comprehensibility data type

Sample coded fo
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Top10M 12 4 1 5 1 9 3 5 0 7 11 9 3 4 9 2 5
Top50P1 21 10 1 8 2 17 12 13 2 11 18 11 8 5 7 8 8
Top20P2 4 3 0 0 0 4 3 3 0 3 4 4 1 1 3 3 3
Random 10 7 0 3 0 9 4 7 1 7 10 7 6 2 4 2 6
Total 47 24 2 16 3 39 22 28 3 28 43 31 18 12 23 15 22

Listing 1: Formula code in FloatCounter.java [32]

p u b l i c vo id p u t ( f l o a t v a l u e ) {
l a t e s t = v a l u e ;
t o t a l += v a l u e ;
c o u n t ++;
a v e r a g e = t o t a l / c o u n t ;
. . .

Albeit recursive implementations are considered to be more elegant and closer to the mathe-
matical specification, we found no recursively implemented mathematical formula in our sample.
This may be due to the fact that recursive implementations suffer from performance penalties.
Moreover, Grechanik et al. [33] analyzed 30.000 Java projects on SourceForge and found that
less than 4% of all methods were recursive.

Roles of Variables. We categorized variables by the way they are initialized, read and changed
in the formula code—i.e. the roles they play in the code. Table 1 lists the different roles of
variables that we found in our examples. These different kinds of variable roles mostly refer to
their use within a loop. First of all, it makes a difference whether a variable is read or written in
the code. If a variable is only read, it is usually a parameter of a method, a field or a constant.
More interesting are the write-accessed variables. Here, we distinguish accumulator variables,
indexing variables and co-indexing variables. Accumulator variables are used to accumulate
a value over every iteration of a loop and occur on the left side of an assignment expression.
Indexing variables are usually incremented in each iteration of a loop and are mainly used to
access data structures like arrays or collections, or used in an expression to generate a series of
values. In for-loops, the indexing variable is usually explicitly defined in the head of the loop.

A co-indexing variable, like the name suggests, is a variable that indirectly depends on the
value of the current indexing variable and is possibly used in expressions in each iteration of the
loop. For example, the variable pixel in the method analyze() of the class HOGFeature.java
in the project airbnb/aerosolve is a co-index of the index variable i (see Listing 2). We only
found few instances of co-indexing variables in our coded examples. Finally, we also found
temporary variables, which were used to split the computation of an expression into several
steps. We assume that temporary variables were often used to increase readability and to support
debugging.
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Listing 2: SP-Formula code in HOGFeature.java [34]

/ / Compute sum o f a l l c h a n n e l s per p i x e l
f o r ( i n t y = 0 ; y < h e i g h t ; y++) {

f o r ( i n t x = 0 ; x < wid th ; x++) {
i n t p i x e l = image . getRGB ( x , y ) ;
f o r ( i n t i = 0 ; i < 3 ; i ++) {

lum [ x ] [ y ] += p i x e l & 0 x f f ;
p i x e l = p i x e l >> 8 ;

}

lum [ x ] [ y ] /= 3 ;
} }

Roles of variables have also been investigated in computer science education research [35].
Our roles of variables correspond to the ones identified by Taherkhani et al. [36] in their inves-
tigation of implementations of sorting algorithms. Our term indexing variable relates to their
definition of a stepper, our term co-indexing variable to their definition of a follower, and our
term accumulation variable to their understanding of a gatherer. Finally, they denote constants
or read-only variables as fixed values.

Often, valuable context information was encoded in the name of a variable, e.g. C phi (Cφ)
or xbar (x). We assume that developers name variables or other artifacts like this when they
program according to a visual representation of a mathematical formula. This way, a mental and
partly visual connection between the program code and the underlying mathematical representa-
tion is established to increase the recognition value of the formula within the code.

Comprehensibility. The effort for reconstructing the formulas was influenced by several factors
(see Table 1). In many cases, the formulas could be reconstructed by inspecting the code frag-
ment and without additional context information. In other cases, we had to inspect the code
surrounding the actual denoted formula, because the code of the complete implementation can
be fragmented in many lines of code, methods or even classes.
Furthermore, we recorded whether we were able to express the documented formula code in
a mathematical notation (row expressible in Table 1). The few cases for which we could not
reconstruct the underlying formula, but which were annotated by the developers to be implemen-
tations of some formula, are either indications of our limited domain knowledge or examples of
how performance improvements obfuscate the program code.
A related property of the formula code is its proximity to the mathematical representation. With
33 of 47 coded matches, the majority of the inspected formula code examples are quite close
to their mathematical notation. When reconstructing the formulas, we often caught ourselves
mixing mathematical notations with simple program code artifacts, e.g. function calls or array
accesses. Therefore, we also coded whether a code fragment could be more intuitively described
by a mixed representation of mathematical symbols and program code notation, even if we were
able to reconstruct a purely mathematical representation as well. Figure 1 shows an example
where we embedded code fragments into the mathematical representation since the bit opera-
tions & and >> are programming specific and have no corresponding semantically equal symbols
in maths. Altogether, for 18 of 47 coded examples, we found that such a mixed form might be
an appropriate alternative representation.
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Mathematical Data Type. Twelve of the 47 formula code examples implement matrix operations
or calculations on matrices in general. Usually, matrices were implemented with the help of two-
dimensional arrays either directly or indirectly through utility classes. But simply assuming a
formula code example is implementing matrix calculations when detecting a two dimensional
array is not always correct. Among other things, the correct sizes of the dimensions were nec-
essary to consider a two dimensional array to be a matrix implementation. Furthermore, a two
dimensional array in conjunction with a nested for-loop may not have been intended to be an
actual matrix operation even though one could express it as such. Almost twice as many formula
code examples (22 of 47) dealt with vector calculations or points in 2D or 3D space. In the
coded examples, vector mathematics was implemented in three different ways: by arrays (e.g.
v[0]), by separate scalar variables for each dimension of a vector (e.g. v x, mostly for 2D or 3D
vectors), or by utility classes (e.g. v.get(0)).
Finally, 15 of 47 examples implemented a mathematical series with a single loop. In mathe-
matics, a series is an infinite sum which of course is not implemented as such and thus outlines
an important difference between program code representation and mathematical notation of the
same formula.

4. Derived Formula Code Patterns

In our exploratory study, we found many different structural aspects and other phenomena re-
lated to formula code. We also gained more insights in what developers annotated to be program
code implementing a mathematical formula. Moreover, we were also able to derive patterns of
typical formula code examples from our observations. In this section we will explain these in
detail.

Since more than half of the examples in our qualitative study used for-loops, we focus on
loop-related patterns in the following. In particular, we look at those using for or foreach
to implement a sum or product formula. In this section, we exemplary present a simple (non
nested) for-loop and a nested foreach-loop pattern in an abstract notation including derived
constraints for a transformation of the code to a formula representation in mathematical notation.
Please note that arithmetic operations and function calls may occur in expressions within these
formulas. All patterns that we implemented in our detection tool to perform the case study in
Section 5 can be described in the same manner.

4.1. Non-nested for loops

A pattern of typical implementations of sum and product formulas using a for loop is pre-
sented in Pattern 1:

Pattern 1: Syntactic pattern for implementations of sum/product formulas using a for-loop

for ( index = exp1;

index < exp2;

[ index=index+1 | index+=1 | ++index | index++ ] ) {

block1
[ accu = accu op exp3; | accu op= exp3; ]

block2
}

10



In this pattern, we used the variable roles introduced in the previous section to name the meta
variables. The meta variables expri are placeholders for arbitrary expressions, blocki for any
possible other program code at those positions. This implies that the code implementing a for-
mula can be embedded in other program code and that only a small slice of code forms the actual
formula code that we can represent in mathematical notation. In the above pattern, we increment
the indexing variable by one in each iteration and make use of the comparison operator less than
in the loop conditional. This is due to the fact that it is the most common utilization of a for-
loop in this context, and a stepping of one is consistent with the semantics of a mathematical
sum or product. Other loop-conditions or increments are conceivable but would result in a more
complex mathematical representation albeit some, e.g. using the comparison operator less than
or equal, are trivial adjustments. In the patterns that we implemented, we therefore allowed other
relational operators as well. Assuming that the value of the variable accu is accu0 before the first
execution of the for-loop, the mathematical formula that relates to the formula code pattern in
Pattern 1 is described by the following formula template:

accu = accu0 op
exp2−1∑

index=exp1

exp3 if op ∈ {+, -} (1)

accu = accu0 ∗

exp2−1∏
index=exp1

exp3 if op ∈ {*} (2)

accu = accu0 ∗

exp2−1∏
index=exp1

1
exp3

if op ∈ {/} (3)

However, many program code fragments that match with the syntactic pattern may not imple-
ment the formula described by the formula template, e.g. because they change the accumulator
or indexing variables in the code blocks or expressions. Hence, we extended the pattern with ad-
ditional constraints to reduce the number of false positives. To this end, we define the functions
vars() and writes() which we will later use to formulate the constraints.

vars(e) = {x | x occurs in e} (4)
vars({e1, . . . , ek}) = vars(e1) ∪ · · · ∪ vars(ek) (5)

writes(b) = {v | v=e occurs in b} (6)
writes({b1, . . . , bk}) = writes(b1) ∪ · · · ∪ writes(bk) (7)

The first two constraints require that the accumulation variable accu shall not occur in the
expressions expr2 and expr3 and the indexing variable index shall not occur in expr2:

accu < vars({exp2, exp3) (8)
index < vars(exp2) (9)

We allow that the accumulation variable occurs in expr1, because it will only be evaluated
once during the initialization of the indexing variable and at that time it will have its initial value
accu0. It must not occur in expr2, because then it would occur on both sides of the equal sign in
the formula. The indexing variable must not occur in expr2, because otherwise the upper bound
of the sum or product would not be constant but reevaluated in each iteration.

11



The following three constraints require that any variable occurring in expr2 and expr3 as well
as the variables accu and index will not be written within the body of the loop, i.e. that there are
no assignment statements assigning new values to these variables:

accu < writes({block1, block2}) (10)
index < writes({block1, block2, exp3}) (11)

vars({exp2, exp3}) ∩ writes({block1, block2, exp2, exp3}) = ∅ (12)

Variables can not only be changed directly through assignments, but also indirectly through
method calls in the body of the loop. In this case, the method has a side effect: Rountev [37]
describes a side effect of a method as ‘(...) state changes that can be observed by code that
invokes the method’. Thus, if all methods called in the body of the loop are side-effect free, we
can be certain that they don’t change the relevant variable values. We did not add a constraint on
side-effect-freeness, because it would require a full-fledged static program analysis.

4.2. Nested loops

We also defined patterns for nested loops, loops which iterate over arrays, and foreach-
loops which iterate over collections (including arrays). As an example, we present a pattern with
two nested foreach-loops below:

Pattern 2: Syntactic pattern for implementations of computing a vector of sums/products using two nested foreach-loops

for( entry : exp1 ) {

block1
for( elem : exp2 ) {

block2
[ entry = entry op exp3 | entry op= exp3 ]

block3
}

block4
}

In the formula template related to this pattern, we use the mathematical notation for an indexed
family: entry op

∑
elem∈exp2

exp3


entry∈exp1

if op ∈ {+, -} (13)

entry ∗
∏

elem∈exp2

exp3


entry∈exp1

if op ∈ {*} (14)

entry ∗
∏

elem∈exp2

1
exp3


entry∈exp1

if op ∈ {/} (15)
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To reduce the number of false positives we define the following constraints for the nested foreach
pattern:

entry < writes(
4⋃

i=1

blocki) (16)

elem < writes({block2, block3}) (17)

vars(exp1) ∩ writes(
4⋃

i=1

blocki) = ∅ (18)

vars({exp2, exp3}) ∩ writes({block2, block3, exp3}) = ∅ (19)

4.3. Vector arithmetics
Although we did not use these patterns in our later analysis, we also defined patterns for

vector addition and scalar product. We present a pattern for the 2D vector space which can easily
be extended to more dimensions. Note that Pattern 1 would apply for scalar products as well if
they are implemented using a for-loop. Furthermore, we did not observe any vector addition
with more than three dimensions being implemented in the manner of the following pattern.

Pattern 3: Syntactic patterns for implementations of vector addition and scalar product

Scalar product:

var = exp1,1 * exp2,1 + exp1,2 * exp2,2 ;

Vector addition:

var1 = exp1,1 + exp2,1 ;

var2 = exp1,2 + exp2,2 ;

The formula template for these patterns uses typical vector notation:

var =

〈(
exp1,1
exp1,2

)
,

(
exp2,1
exp2,2

)〉
and

(
var1
var2

)
=

(
exp1,1
exp1,2

)
+

(
exp2,1
exp2,2

)
(20)

The above patterns would match with far too many assignments in the source code, thus we add
the following constraints. Our constraints are based on the observation that certain suffixes occur
often: .x; getX() or [0] and that certain naming conventions are used, e.g. sx or s1, to access
components of a vector. First, we define the following auxiliary functions:

source(e) = e′, if e = e′.s and s ∈ {x, y, getX(), getY(), get(0), get(1)} or e = e′[i] (21)
source(e) = p, if e = ps is a variable name with prefix p and suffix s ∈ {x, y, 0, 1} (22)

index(e) = 0, if e = e′.s and s ∈ {x, getX(), get(0)}
or e = e′[0] or e is a variable name with suffix s ∈ {x, 0}

(23)

index(e) = 1, if e = e′.s and s ∈ {y, getY(), get(1)}
or e = e′[1] or e is a variable name with suffix s ∈ {y, 1}

(24)

Now we can define the following constraints:

source(e1,1) = source(e1,2) and source(e2,1) = source(e2,2) (25)
index(e1,1) = index(e2,1) and index(e1,2) = index(e2,2) (26)
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For the vector addition we also require:

index(var1) = index(e1,1) = index(e2,1) (27)
index(var2) = index(e1,2) = index(e2,2) (28)

source(var1) = source(var2) (29)

Now the formula templates can be rewritten as:

var =
〈

source(exp1,1), source(exp2,1)
〉

(30)
source(var1) = source(exp1,1) + source(exp2,1) (31)

Note that the presented patterns with the given constraints are only a heuristics to be able
to find candidates for formula code, i.e. instances of the pattern within Java software projects.
The patterns neither define necessary nor sufficient conditions of program code implementing,
for example, a sum or product formula.

5. SP-Formula Code on GitHub

To answer research question RQ2, we performed a quantitative study on two different sam-
ples of open source Java projects on GitHub. To automate the search for formula code, in par-
ticular SP-formula code, we developed a detection tool which employs refined variations of the
patterns introduced in Section 4. First, we present some detail on the SP-formula code detec-
tion tool, in particular on the patterns it can detect and its evaluation in terms of precision and
recall. Next, we introduce a sample of engineered Java software projects of arbitrary topic (see
GitHub topics [38]) and present the results obtained by our tool for this sample. We also look at
the application domains of the projects with highest SP-formula code densities. Thereafter, we
describe another sample consisting solely of Java projects with topic scientific-computing and
discuss the results computed by our tool for this sample.

5.1. Pattern-Based SP-Formula Code Detection Tool
For our study, we used a shell script that clones each project from a given list of GitHub

projects and checks out their configured default branch. The detection tool reads all Java files of
these projects one after another (comments in the source code are removed) and searches for all
patterns in parallel to exploit multiple CPU cores. Each pattern is implemented as a compiled
regular expression. Although the regular expressions cannot match every syntactic pattern of
the Java programming language, the approach performed pretty well for our purposes as it also
captures and preprocesses pattern-specific elements like variable roles, such that the constraints
associated with each pattern can be tested. The tool tests the nested SP-formula code patterns first
and then the non-nested SP-Formula-code patterns (see Table 2). Every match of the non-nested
patterns will be checked for intersection with all matches of the nested patterns. If an intersection
exists, the respective non-nested match will be discarded. Matched code fragments that satisfy
the constraints are attached to the output which is stored in form of a CSV file. This file lists
for each entry, the line numbers of the start and end of the match, the source code of the code
fragments, the inferred formula in mathematical notation as well as other detailed information
about the source like project name, file name and GitHub path. The inferred formula is basically
an instance of our formula templates and is stored in the file both in a textual representation as
well as in MathML.
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Listing 3: Regular expression for non-nested for-loop implementing a sum/procuct (Pattern 1)

Pattern.compile(

// head of loop

"(?<lineOuterFor >for"+b+"\\((?:"+b+DT+b2+")?"+

"(?<ind0 >"+VAR+")"+b+"="+b+"(?<exp00 >"+EXP+")"+

b+";"+b+"\\k<ind0 >"+b+"(?<relOp0 >"+REL_OP+")"+b+

"(?<exp10 >"+EXP+")"+b+";"+ITER0_INCREASE+"\\))\\s*+"

// body in brackets

+ "(?:\\{\\s*?" +

"(?<blockFiOu >"+BLOCKR+"\\s++)" +

"(?<lineAssiA >"+ACCUA_ASSIGNMENT+";)\\s*+" +

"(?<blockSeOu >"+BLOCKP+")\\s*+" +

"\\}"

// no brackets

+ "|" +

"(?<lineAssiB >"+ACCUB_ASSIGNMENT+";))"

);

Listing 3 shows the regular expression for Pattern 1 (all pattern implementations are avail-
able in the supplementary material [31]). Note that the regular expression is built using String
constants like VAR and EXP which themselves contain regular expressions.

We implemented the 10 patterns listed in Table 2 to detect SP-formula code. On average, the
regular expressions for non-nested loops consist of 8 lines of code without comments, those for
nested loops of 28 lines.

Table 2: Patterns implemented by the tool

Pa
tte

rn
s

fo
r

no
n-

ne
st

ed
lo

op
s

FIS for-loop for sum/product
FES foreach-loop for sum/product
FIA for-loop for arrays
FEC foreach-loop for arrays/collections

Pa
tte

rn
s

fo
r

ne
st

ed
lo

op
s

NFISS for-loops for sum/product of sums/products
NFESS foreach-loops for sum/product of sums/products
NFIAS for-loops for array of products/sums
NFECS foreach-loops for array/collection of products/sums
NFIAA for-loops for array of arrays
NFECC foreach-loops for array/collection of arrays/collections

Evaluation. To evaluate our approach to detect SP-formula code in software repositories we
applied our tool with the patterns listed in Table 2 to random samples of Java files on GitHub. As
validation metrics we use recall and precision:

• Recall: How many of the SP-formula code fragments in a sample are automatically de-
tected?
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• Precision: To what extent are the detected SP-formula code fragments correct?

More precisely, let F be the set of all formula code fragments in the sample, and D be the
detected formula code fragments. Then the recall is the number of correctly found formula code
fragments divided by all correct formula code fragments, i.e., recall =

|D∩F|
|F| , and the precision

is the number of correctly found formula code fragments divided by all found formula code
fragments, i.e., precision =

|D∩F|
|D| . Based on the GBQ GitHub and GHTorrent dataset, we

retrieved a list of 21,052,682 Java filenames (including full path information) on GitHub. The
list does not include any forked repositories and duplicates, i.e. files with the same hash value.
To draw random samples from the above data set we used the statistical programming language
R and its uniform distributed function ‘runif’. To measure the recall of our approach we used
a sample of 1,000 Java files, to measure its precision we used a sample of 10,000 files. Since
the GBQ GitHub and GHTorrent datasets are off-line mirrors of GitHub metadata, each sample
contained names of files which have already been moved, removed or renamed on GitHub. Thus,
we could not download the source code of all files leading to a sample size of 878 and 8,960,
respectively.

Oracle. For computing the recall, we created an oracle data set by manually inspecting the
complete sample of 878 files and annotating the formula code fragments that we found. We
annotated the code fragments in a group discussion in order to reduce subjective biases. To
annotate the fragments, we enclosed them in XML-tags which can be nested. The choice of the
tags <SimpleNestedLoop>, <DoubleNestedLoop>, <SimpleArithmetic>, <Matrix>, and
<Vector> is based on the results of our keyword-based search. Finally, we manually found
and annotated 145 formula code fragments in 53 of the 878 files (6.04%). These formula code
fragments made up 1,064 lines of 142,419 total lines of code (0.75%). These annotated formula
code fragments contained SP-formula code in 110 cases (75.86%). Almost all remaining cases
were annotated with <SimpleArithmetic> which we used to describe simple, but non-trivial
arithmetic expressions. The mathematical representation of those expressions may have some
added value compared to the representation in program code, e.g.

√
5 instead of Math.sqrt(5).

Matrices and vectors were only used in 4 lines outside of loops.

Recall. Our tool found 34 of 110 SP-formula code fragments in the oracle data set. Thus, the
recall is 30.91%. In cases where both an inner and outer loop each represent an SP-Formula code
fragment, the tool would only consider the outer one. However, in our evaluation this case never
happened.

Precision. To measure the precision we applied our tool to the 8,960 Java files of the second,
non-annotated sample. For each detected formula code fragment, we manually checked whether
the matched code fragment implemented an SP-formula. We also recorded whether the inferred
formula covered the matched code fragment completely or only a part of it.

Our tool found 181 matches. All of these matches contained SP-formula code. 153 code
fragments got completely specified by the inferred formula in mathematical notation. For 23
matches the tool inferred a correct formula that, however, did not describe the whole code ex-
cerpt. Only in 5 cases we found that the inferred mathematical formula was inadequate or wrong
(2.76%). Thus, if we only take into account whether the match contained formula code, the pre-
cision was 100%. If we require that the inferred formula is correct, the precision was 97.23%,
and if we require that the inferred formula is correct and completely describes the effect of the
code matched, the precision was 84.53%.

16



Formula code density. To quantify how often formula code occurs in real world software (RQ2),
we define two different measures for the formula code density—one based on lines of codes ρLOC

and one based on number of unique files ρ f iles:

ρ f iles =
#files containing formula code

#all scanned files
(32)

ρLOC =
#lines with formula code in all scanned files

#lines of all scanned files
(33)

The formula code densities in our oracle data set, i.e. based on all manually identified and
annotated formula code fragments, were ρ f iles = 53

878 = 6.04% and ρLOC = 1,064
142,419 = 0.76%.

In other words, in our oracle data set on average one of 130 lines of code was part of a code
fragment which we annotated as formula code.

5.2. SP-Formula Code in engineered Java software projects on GitHub
In the following, we introduce the examined sample of randomly chosen open source Java

stargazer projects, present results of our detection tool for this sample and look at the application
domains of the SP-formula code-rich projects.

Stargazers. We used the stargazers-based classifier approach with threshold 10 which according
to a recent study by Munaiah et al. [39] has high precision (97%) and a reasonable recall (32%)
to predict whether a GitHub project is an engineered software project and thus is sufficient for
our purposes. First, we generated a sample of randomly chosen non-forked open source Java
projects from GitHub excluding the already examined projects from our preliminary qualitative
study. We utilized the GBQ GHTorrent dataset to retrieve the initial project list which contained
255,561 projects (as of January, 8th 2019). Next, we filtered the list by watcher (Stargazers)
count greater than 10. The filtered list contained 28,139 projects, from which we randomly drew
1000 with the help of the statistical programming language R. The results of applying our SP-
formula code detection tool to the Stargazers sample, the SciC (scientific computing) sample
(see Subsection 5.3) as well as aggregated results are shown in Table 3. It lists the total number
of projects investigated in each sample (#projects), the number of projects containing any kind
of Java code at all (#nonempty), the number of projects which contained any SP-formula code
detected by the tool (#fc projects), the total number of Java files within the complete sample
(#files), the total number of files which contained any SP-formula code detected by the tool (#fc
files), the total number of lines of Java code in the complete sample (LOC), the total number
of detected lines of SP-formula code (LOFC), the total number of matches found by the tool in
the complete sample (#matches) as well as code densities for actually detected SP-formula code
ρS P

f iles and ρS P
LOC based on the definitions of general formula code densities in Equation 32 and 33,

respectively.
Assuming, that the distribution of SP-formula code in the samples is the same as in the oracle,

we can use the recall of 31% determined in Section 5.1 to compute a rough estimation of the real
SP-formula code densities ρ̃ S P

LOC = 1
recall ρ

S P
LOC , resp. ρ̃ S P

f iles = 1
recall ρ

S P
f iles.

LOC was computed with the Unix command cloc (version 1.74) and does neither include
comments nor performs a uniqueness test on files. The same holds for LOFC computed by
our tool, since it removes comments before scanning the files and processes every file in the
project. Further statistical analyses were done with R. In total, we scanned 199,457 Java files
from 949 open source Java projects of arbitrary topic available on GitHub using the patterns
listed in Table 2. Below, we present the results for this sample.
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Table 3: Results of the SP-formula code detection tool for each sample

Sample Stargazers SciC Sum
#projects 1000 14 1014

#nonempty 949 14 963
#fc projects 266 11 277

#files 199,457 4050 203,507
#fc files 1713 199 1,912

LOC 30,275,938 548,976 30,824,914
LOFC 13,094 1,794 14,888

#matches 2,858 515 3,373
ρS P

f iles 0.85% 4, 91% 0.94%
ρS P

LOC 0.043% 0.32% 0.048%
ρ̃ S P

f iles 2.74% 15.84% 3, 03%
ρ̃ S P

LOC 0.14% 1, 03% 0.15%

Results for Stargazers. Our detection tool yielded 2,858 SP-formula code matches in 266 of
949 projects (28%) respectively in 1713 of 199,457 Java files in this sample. The detected SP-
formula code was spread over 13,094 lines of 30,275,938 total lines of Java code. Thus, the
densities of SP-formula code in this sample are ρS P

f iles = 0.85% and ρS P
LOC = 0.043%. Practically

speaking, on average the tool detected SP-formula code in one of 117 files respectively in one of
2325 lines of code. As can be seen in Figure 3, every pattern derived from our preliminary study
occurred in the Stargazers sample, which confirms their relevance. Nevertheless, the non-nested
loop patterns FIS, FES and FIA are more common than the nested ones. Compared to the other
non-nested loop patterns, the pattern FEA describing a foreach-loop that traverses an array sticks
out, because it is rarely found.
Considering the absolute number of matches is not sufficient to tell if a project contains much SP-
formula code. Therefore, we further investigate the SP-formula code density, ρS P

LOC introduced
earlier in this section to identify SP-formula code rich projects. A corresponding scatter plot is
presented in Figure 2. It becomes apparent that only few projects (18, with a density ρS P

LOC greater
or equal to 0.01) have comparatively high formula code densities, i.e. at least 1 of 100 lines of
code is part of SP-formula code. Table 4 shows the complete list of these projects.

The 18 projects with high SP-formula code density form the basis for a coding of the respec-
tive application domains and thus towards further investigations concerning RQ2.

Application Domains. As there was no sufficiently exact and efficient way to automatically de-
termine the application domain of GitHub projects, we manually inspected the web sites of the
projects to extract this information. While GitHub offers the feature topics [38], this feature is
not sufficiently informative for the majority of projects examined in this work.

As it was not possible with reasonable effort to determine the application areas for all projects
included in our sample, we decided to take a closer look at the application domains of the projects
having a high SP-formula code density, more precisely, the top 18 projects of the Stargazers
sample in terms of ρS P

LOC as presented in Table 4. Again we applied open and axial coding to
determine the application domains based on the descriptions of these projects on GitHub and
names of code artifact, such as classes and packages. In total, we performed two iterations
involving three of the four authors, where we abstracted from more specific to more generic
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Figure 2: Jittered scatter plot of SP-formula code densities ρS P
LOC across all projects for each sample.



Table 4: Top 18 projects of the Stargazers sample having high (greater or equal to 0.01) SP-formula code densities
ordered by ρS P

LOC including their respective coded application domain.

Project LOFC LOC ρS P
LOC Application Domain

grunka/Fortuna 87 1476 5.8% Cryptography
hfut-dmic/ContentExtractor 16 355 4.5% Information Retrieval
eljefe6a/UnoExample 3 75 4.0% Programming Model
radzio/AndroidOggStreamPlayer 272 7068 3.8% Signal Processing
brendano/myutil 319 10930 2.9% Statistics
InfiniteSearchSpace/Automata-Gen-3 100 3694 2.7% Simulation
DASAR/Minim-Android 186 9604 1.9% Signal Processing
hanks/Natural-Language-Processing 79 4358 1.8% Natural Language Processing
liuxang/LivePublisher 11 636 1.7% Signal Processing
sudohippie/throttle 12 730 1.6% Computer Networks
jlmd/SimpleNeuralNetwork 6 423 1.4% Machine Learning
ozelentok/CodingBat-Soultions 36 2593 1.3% Programming Language Practice
aliHafizji/CreditCardEditText 4 307 1.3% Mobile User Interface
quiqueqs-BabushkaText 4 318 1.2% Mobile User Interface
jroper-play-promise-presentation 3 239 1.2% Programming Model
jestan/netty-perf 8 669 1.1% Computer Networks
chipKIT32/chipKIT32-MAX 674 62409 1.0% Micro-Controller
martijnvdwoude/recycler-view-merge-adapter 3 281 1.0% Mobile User Interface

categories. The resulting application domains are also shown in Table 4.
The results of the application domain coding do partially coincide with our expectations. One

SP-formula code dense project is a practice project, where features of the Java programming lan-
guage are exercised. Another two projects highlight a certain programming model. Furthermore,
three projects are concerned with mobile user interface elements. These projects form outliers in
the sense that their high formula code density is due to their low number of lines of code, because
they only contain a single SP-formula code match (see Table 4).
The other twelve projects draw a different application domain picture. We labeled three projects
with Signal Processing as they dealt with either audio or video encoding, respectively trans-
fer. Besides that, we assigned the labels Computer Networks, Statistics, Information Retrieval,
Neural Networks, Natural Language Processing, Micro-Controller, Simulation and Cryptog-
raphy to characterize the application domains of the remaining SP-formula code dense projects.
For each of the labels assigned to these twelve projects, we can associate the application of
mathematical formulas. Surprisingly, neither domains like computer graphics and games, nor
chemistry and physics, which one typically subsumes by the term scientific-computing, occurred
among the projects with the highest SP-formula-code density in our sample. Nonetheless, the
majority of the assigned labels seem related to scientific-computing. Thus, projects of this ap-
plication domain seem promising in terms of frequency of SP-formula code and we investigate a
thematically more focused sample as described in the following.

5.3. SP-Formula Code in Scientific-Computing Java Projects on GitHub
Due to the unexpected distribution of application domains among the projects with the high-

est SP-formula-code density, we drew another sample solely consisting of Java repositories with
topic scientific-computing.
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SciC. To generate this topic-specific sample directly from the GitHub website, we used the
search term language:Java topic:scientific-computing to query Java repositories. The
14 resulting repositories (as of January, 9th 2019) do neither intersect with the already examined
projects of our preliminary qualitative study nor with the sample Stargazers.
We followed the exact same approach to compute the data for the sample SciC as we did for the
other sample. The results are listed in the second column in Table 3.

Results for SciC. A total of 4050 Java files and 548,976 lines of code were scanned in this
sample. The tool detected 515 SP-formula code matches in eleven of 14 projects (78.5%) in
199 different Java files and 1,794 lines of SP-formula code. Hence the density of detected SP-
formula code based on files and lines of code is ρS P

f iles = 4.91% and ρS P
LOC = 0.32%, respectively.

In Figure 2 we can see that 11 of the 14 projects have a considerably higher SP-formula code
density than most of the projects in the Stargazers sample. Furthermore, Figure 2 reveals that
six of the implemented patterns also occur in this sample. Note, that in contrast to the Stargazers
sample, here the two patterns NFIAA and NFIAS have a high density.

6. Discussion

6.1. Diversity of Formula Code
From our qualitative study, we can conclude that there exists a wide range of formula code.

On that basis, we can give first answers to research question RQ1: One general observation is that
the full extent of an implemented formula was often not directly recognizable. For some samples
in our qualitative study, it took considerable effort to track down the complete implementation
of a documented formula. Especially when the code fragments were split across different source
code artifacts such as classes or files. We manually inspected 142 matches and classified 47
as real formula code. While the formula code was certainly diverse, almost half of the code
involved for-loops, and also almost half of the code used arrays. We found several examples
of incremental implementations of formulas. In these cases, the code may only implement the
formula when we assume a certain dynamic behavior, such as a certain sequence of method
calls or object instantiations. Detecting these kinds of formula implementations and asking the
programmer to add assertions to the code to assure the correct dynamic behavior could help to
prevent erroneous usage. Furthermore, reconstructing a formula in mathematical notation from
the code was a very valuable and intuitive part in the process of code comprehension. From that
point of view, it is obvious that one integral requirement for formula code support is the visual
mathematical representation of the respective code.

Splitting. We also found that very often, complex expressions are split into multiple partial com-
putations storing the interim results in temporary variables — either with names that intend to
describe the computational part it represents, or with simple names such as tmp. The developers
often followed an approach in which they split the expressions by operator precedence. For ex-
ample, fractions the numerator and denominator computations are separated, stored in temporary
variables and then divided in a subsequent statement. Besides the motivation of making the code
more reusable and readable, developers seem to also split large expressions to facilitate debug-
ging of the formula code. The splitting of computations makes it possible to leverage interactive
break-point debuggers to investigate the interim results as well as assure correct application of
arithmetic operations and functions according to their sequence and precedence. Current inter-
active debuggers only support line-by-line evaluation of code. A more fine grained approach in
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which single operations in the same line can be investigated seems helpful. For formula code,
an interactive mathematical visualization where parts of a formula could be collapsed, expanded,
evaluated, used as break-points and also be edited with respective effectual code changes would
form a promising extension to current debugging mechanisms.

Naming and Formatting. The scope of arithmetic computations is not limited to scalar values.
We often found groups of variables coherent in the way they were named and the kind of op-
erations applied to them. These variables were actually used to represent a single element of a
vector or matrix. We found these groups of variables being modeled either as object variables
encapsulated in a class and thus programmatically specifying their coherence, or completely un-
bounded as local variables. The formatting of corresponding code snippets gives the impression
that developers try to visually form a vector or matrix in a known mathematical way. For vectors,
we often discovered a vertical arrangement such that every component of a vector is computed
subsequently in its own line of code. For matrices, the variables are sub-grouped for every row
and column in a similar approach as for vectors, i.e. for each row- and column vector separately.
This gives us even more evidence that developers want to have a visual representation of the
formula code close to its mathematical representation.

Arrays. In total, 36 out of the 47 investigated code examples in our qualitative study were con-
cerned with vector or matrix computations. Besides the low level modeling of vectors and matri-
ces through semantic groups of variables, arrays are being used for this purpose. Surprisingly,
also one-dimensional arrays are being used to model matrices. It is possible that developers
want to avoid the computational overhead involved with n-dimensional arrays. In Java an n-
dimensional array is actually a one dimensional array with pointers to (n-1)-dimensional arrays.
Hence, we assume that developers intend to trade computing offsets for dereferencing point-
ers. Among others, this represents one phenomenon where we encountered a performance op-
timization at the expense of the formula’s recognizability and thus overall code readability and
maintainability.

Loops. Along with the utilization of arrays comes the application of loops, not only to iterate
through arrays, but also, and in particular, to implement sum and product formulas. Those kinds
of formulas occurred not only in vector/matrix contexts but also in scalar computations and
sequences. In our small sample in Section 3, for-loops with an indexing variable were the
predominant kind of loops used. This is not surprising, since these are already syntactically
very close to the

∑
or

∏
operators in mathematics. Nested conditionals within the loops body

could directly be translated to a part of the mathematical representation. Only in a few cases the
formula code contained extra code, for example debug statements.

While the while-loop plays a secondary role in our findings of the qualitative study, the
foreach-loop turns out to be relevant in the context of formula code as well. foreach-loops are
mostly applied on collections and in particular to traverse them where the sequence of processing
the elements does not play a significant role. In the formula code context, foreach-loops can
not only be used to implement sum and product formulas over collections, but also to implement
logical formulas (predicates) related to these collections using the universal quantifier ∀ and
existential qualifier ∃. The derived code patterns for sum and product formulas of Section 4
concentrate on for and foreach-loops in simple and nested variants.
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6.2. Frequency of Formula Code

To answers research question RQ2, we decided to investigate the frequency of formula code
for sums and products in terms of formula code densities as defined in Section 5.1. These met-
rics are relative to the size of the projects and thus give a better impression than absolute num-
bers of matches and are comparable between projects. Above all, we found a 7.4 times higher
SP-formula code density in sample of scientific-computing projects compared to the one of en-
gineered software projects. Within the latter sample, we also found the SP-formula code-rich
projects came from application domains related to scientific-computing. Nonetheless, the small
size of the SciC sample calls for repeating the study as soon as more scientific-computing Java
projects become available on GitHub.

Estimations. Based on our detection tool’s recall, we determined a rough estimation of SP-
formula code density of ρ̃ S P

LOC = 0.14% for the Stargazers sample and ρ̃ S P
LOC = 1.03% for the

SciC sample. In other words, we estimate that about 1 of 700 lines of code in an engineered
Java software project and 1 of 100 lines in a scientific-computing Java software project is part of
an implementation of a sum or product formula. What does this mean in practice? The daily
programming tasks of a software developer are not limited to writing code. Tasks related to the
project’s code base comprise writing, editing and, to a major proportion, reading and with that
comprehending the code. Thus, we are certain that an average software developer gets in touch
with SP-formula code multiple times a work week.

Patterns. In our quantitative study, we have shown the relevance of all patterns in the context
of formula code. Figure 3 reveals that in the Stargazers sample, every SP-formula code pattern
was detected at least once. In the SciC sample, six of the eight patterns appeared. Furthermore,
the three SP-formula code patterns FES, FIA and FIS (all based on non-nested for-loops) are
the most frequent patterns in both samples (Figure 3). We determine a 3.7, 46.2 respectively
10.6 times higher density of these patterns in the SciC sample. Besides that, we discover higher
densities for the nested SP-formula code patterns in the SciC sample as well. This represents
another insight showing an increased relevance of the patterns as well as an increased probability
to encounter SP-formula code in scientific-computing projects.

Percentage of loops implementing formulas. To put the SP-formula code density into perspec-
tive, we investigated how many (nested) for-loops occur in the source code and how many of
these actually implement SP-formulas. To this end, we implemented two patterns using regular
expressions, similar to the SP-formula code patterns, in order to detect simple (non-nested) and
nested for- and foreach-loops. In the following, we use the term loops to refer to both for-
and foreach-loops. We applied our detection tool (Subsection 5.1) with the new patterns to en-
sure comparability. Table 5 summarizes the detection tool’s results for the general loop patterns.
We report for both simple and nested loops the total number of matches in the whole sample
(#matches), the total number of files in which a match occurred (#files) and the total number of
projects in which a match occurred (#projects). The tool yielded 114.793 simple and 9,558 nested
loops in the Stargazers sample. Surprisingly, in 156, respectively 534 of the 946 projects, i.e.
in 16,49%, respectively 56.44%, no simple, respectively nested loops were found. In contrast,
2,738 SP-formula code matches, based on simple loops and 120 SP-formula code matches based
on nested loops were detected in this sample. Therefore, 2.38% (every 42nd) of all simple loops
and 1.25% (every 80th) of all nested loops implement a sum of product formula according to our
definition. When we apply a rough estimation depending on the detection tool’s recall, in 7.71%
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Table 5: Results of the detection tool for each sample utilizing the general loop patterns.

Simple for-loops Nested for-loops
Sample #matches #files #projects #matches #files #projects
Stargazers 114,793 38,143 790 9,558 5,278 412
SciC 6,350 1,255 13 1,685 460 10

(every 13th) a simple and in 4.06% (every 25th) a nested loop implements a SP-formula. In the
SciC sample, we found 6,350 simple and 1,685 nested loops. The SP-formula code matches in
this sample amount to 483 simple and 32 nested loops. Thus, 7.60% (every 13th), respectively
1.89% (every 52nd) of all investigated simple, respectively nested loops form a SP-formula ac-
cording to our definition. Taking the detection tool’s recall into account, we roughly estimate
that 24.60% (every 4th) for simple, and 6.14% (every 16th) for nested loops implement sum or
product formulas.

Overall, we think that it is reasonable to assume that formula code in scientific-computing is
more frequent, more diverse and more complex than in most other application areas.

Figure 3: Density of SP-formula code matches for each pattern relative to LOC per sample.

6.3. Comments and Formula Code

To investigate to what extent formula code is documented we manually inspected the 53
files of the oracle data set (Section 5.1) that contained formula code fragments (see supplemen-
tary material [31]). For nested formula code, we only recorded information about source code
comments for the outermost level. We found, that 54% of these 139 outermost formula code
fragments were commented (8% on the file or class level, 30% on the method level and 16% on
the statement level), but only for 26% of the formula code fragments the comments actually doc-
umented the semantics of the formula and we found that only 9% of the comments provided non
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Table 6: Properties of the comments in 139 formula code fragments of the oracle data set

Type of formula code
all non-nested loop nested loop simple arithmetic

Formula code fragments 139 82 21 35
Comments in these fragments 75 41 12 21
Comments that ...
document the semantics 36 17 4 15
are helpful for program understanding 13 5 1 7
refer to an external source 3 0 1 2

obvious information that was helpful for understanding the formula code. In most cases com-
ments that related to the semantics simply described the result like “// get longitude” at the
statement level or both the result and the parameters in the method header using JavaDoc. In few
cases, comments documented not only what is computed, but also how it is computed. Only three
comments referred to external resources for documentation: one to a book, one to Wikipedia and
one by mentioning the name of the formula. Many of the other comments were related to devel-
opment tasks, e.g. “//FIXME: This needs a much more efficient implementation”.

Distinguishing the types of formula code, we found that 20% of formula code that did not
involve loops (simple arithmetic) had comments that were helpful for understanding the code.
At only 6% resp. 5%, this ratio was much lower for simple and double nested loops. Thus, at
least in our oracle data set, SP-formula code was rarely commented in a way that helped to better
comprehend the implemented formula.

6.4. The Need for Tool Support

The scarcity of helpful source code comments is a first indication that there is a need for tools
to help developers better understand formula code. To answer this question from a programmers’
point of view, we conducted a small online survey with computer science students. The survey
consisted of four bug finding tasks in real-world formula code and a socio-demographic ques-
tionnaire. We recorded accuracy as well as completion time for each task.

For each task, we presented a task page with the source code of the defective formula im-
plementation and additional information (as described below) to the participants (see Figure 4).
To finish the task, they had to answer with yes or no if they were able to find the error in the
code. We used the time span between showing the task page with the source code and answering
with yes or no as the task completion time. On the next page the participants had to describe the
error. With the help of that description we were able to determine whether they really found the
error in the formula code. Finally, we asked all participants whether they thought, that a tool for
reconstructing mathematical formulas from program code would be helpful? They had to answer
this question with yes or no, and could provide additional remarks, if they wanted to.

For the tasks we selected four formula code fragments from GitHub that we already investi-
gated in our qualitative study (Section 3). We chose two simple code fragments (Set A: trace of a
matrix (Task 1) and scalar product (Task 2)) and two more complex fragments (Set B: Chi-Square
test of independence (Task 3) and l’Huilier’s theorem (Task 4)). For tasks in Set B, additional
documentation from Wikipedia resp. MathWorld about the implemented formula was shown on
the task page. We manually injected defects into the formula code in a way such that the tasks
in the same set were of approximately the same difficulty. Furthermore, each participant had to
solve one task in each set with resp. without the reconstructed formula displayed close to the
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Figure 4: Task 4 of the online survey.

formula code on the task page. We used a within-subject design as shown in Table 7 with the
reconstructed formula as the factor of the experiment. We provide a print version of the entire
online survey for both groups and the corresponding results in the supplementary material [31].

We sent invitation mails to 266 computer science students. To motivate study participation,
we raffled three e 20 vouchers among the participants. In total, 27 of these actually completed
the survey, after data cleaning based on a minimum total task completion time of 60 seconds 17
participants (9 bachelor, 6 master, and 2 PhD students) remained in the data set (with a mean task
completion time of 236 seconds and a mean duration of completing the survey of 21 minutes).

For each participant we computed the sum of correctly solved tasks as a accuracy score for
each set of tasks. The mean scores are shown in Table 8. As expected, the scores for Set B
were lower than those for Set A, actually about half the size, indicating that the tasks in Set B

Table 7: Study design: task pages with and without reconstructed formula

Set A Set B
Task 1 Task 2 Task 3 Task 4

Group 1 w w/o w w/o
Group 2 w/o w w/o w
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Table 8: Mean accuracy scores for all participants, participants with resp. without affinity for mathematics

All
With Without

Set A 0.53 0.76
Set B 0.24 0.35

Math
With Without

Set A 0.56 0.78
Set B 0.11 0.22

No Math
With Without

Set A 0.50 0.75
Set B 0.38 0.50

were more difficult. Unfortunately, when comparing the two treatments, with and without re-
constructed formula, we found that for both sets the participants performed better without the
reconstructed formula. This finding did certainly not meet with our expectations and maybe due
to the small number of participants. This assumption is backed by the even more unexpected
finding that for more difficult tasks (Set B) students with affinity to mathematics (9 of 17 in this
data set) performed much worse than the rest. Here we used the socio-demographic data pro-
vided by the students whether they chose mathematics as an advanced course at high school or
selected mathematics as the minor subject at university as an indicator of their affinity to math-
ematics. Also, if we only look at Task 2, 85.5% of the students in Group 2, but only 77,7% in
Group 1 solved this task correctly. In other words, for Task 2 the treatment with the reconstructed
formula had higher accuracy.

In total, 16 out of 17 participants found it helpful to have a tool that reconstructs mathematical
formulas from the source code. Six of these provided an additional remark. We coded their
remarks and identified three reasons why they found such a tool to be helpful:

Math rich software projects: One participant stated that such a tool would be helpful in “(...)
software projects such as simulation software where many (physical) formulas have to be
implemented”.

Testing formula code: Four participants suggested that a tool that reconstructs a mathematical
formula from the source code is helpful on assessing the correctness of the implementation.

Defect detection in formula code: One participant found it “frustrating to not find a defect in
formula code which really can become very complex” and that “such a tool certainly can
simplify that”.

Our results show that with increasing complexity of the code (Set B vs Set A), the perfor-
mance considerably decreased. Thus, a tool should focus on the more complex cases to address
this performance gap. While the performance results in our survey did not provide sufficient and
clear evidence that showing the reconstructed formula next to the formula code is sufficient to
support understanding of formula code, the vast majority of the participants agreed that a tool for
reconstructing formulas would be helpful.

7. Limitations

To classify a code fragment as formula code, we do not require that the programmer’s orig-
inal intention was to implement a mathematical formula, but instead it is sufficient that the im-
plemented computation could be expressed by a mathematical formula. On the other hand, some
program code fragments that really implement a mathematical formula might not directly be ex-
pressible in a mathematical notation since the respective code is already too far away from the
maths, possibly due to performance optimizations, refactorings or applied coding hacks.

Each of the empirical studies presented in this paper comes with its own limitations.
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Qualitative Analysis of Formula Code Examples. The formula code examples that we manually
inspected were selected based on keywords occurring in their comments. Undocumented formula
code, i.e. code that had none of our keywords in its comments, may have different properties.
Furthermore, while our selection of keywords certainly introduces a bias toward sum and product
formulas, it did not affect the oracle data set, since we annotated any formula code that we found.
We also tried to increase credibility and transferability by following established coding methods
and by discussing all reconstructed formulas in group sessions with all authors. This also holds
for our coding of the application domains.

Quantitative Tool Evaluation. While the tags that we used to annotate the oracle data set were
based on the results of the qualitative study, we did not exclude any kind of formula code only
because it was not considered in the qualitative study. However, the annotation of the oracle data
set depends on the subjective assessment whether some code fragment implements a formula.

Quantitative Analysis of SP-formula code on GitHub. We tried to carefully distinguish between
the SP-formula code detected by our tool and the SP-formula code actually present in a sample.
We used a randomized, stargazer-based sampling strategy to increase the generalizability of our
findings to engineered software projects on GitHub. The generalizability of our results for the
sample SciC is strongly limited by the small size of the sample.

To enable other researchers to verify our results, we provide all data that is not protected by
copyright (e.g. content of GitHub repos) as supplementary material [31].

8. Conclusion

So far, research in software engineering has focused on the synthesis but not the analysis of
formula code. In this paper, we first presented a qualitative study designed for gaining insights
into the diversity of formula code in real world Java projects (RQ1). We found that code that de-
velopers document as formula code has special properties. The observed phenomena range from
coded mathematical notation in the names of variables, complex arithmetic operations split by a
debugging or precedence strategy, groups of variables with coherent naming and coherently ap-
plied operations, over sum and product formulas based on for-loops up to incremental formula
implementations that depend on the dynamic behavior (call sequence). In particular, we find it
promising to provide an alternative representation of the respective code in terms of a mathemat-
ical notation. During our qualitative study, deriving such a mathematical representation of the
code supported the process of code comprehension to a great extent. If those code visualizations
are made interactive and reachable directly from within the source code editor, we assume that
they would greatly facilitate debugging of formula code [40]. Designing and implementing such
debugging features and assessing their usability and efficiency are part of our plans for future
research.

Furthermore, we presented an approach to detect SP-formula code using syntactic patterns
in combination with a set of constraints on the variables occurring in the matched code frag-
ments. We derived these patterns based on our preliminary qualitative study and evaluated the
effectiveness of our approach in terms of recall and precision. On that basis, we performed a
case study to investigate the frequency of SP-formula code in a sample of 1,000 open source
Java stargazer projects on GitHub (RQ2). We also looked at the application domains of the
SP-formula code-rich projects and found a major overlap with scientific, respectively technical
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subject areas, e.g. information retrieval, signal processing, computer networks, statistics, ma-
chine learning and simulation. This inspired us to also apply our tool to a sample consisting
solely of scientific-computing projects (SciC). Since they give a more realistic impression on the
real distribution of SP-formula code in open source Java projects, here, we only give densities
estimated based on our detection approach’s recall. The absolute numbers have been presented
and discussed in the previous sections. We estimate that one of 700 lines of code in the Stargaz-
ers and even one of 100 lines of code in the SciC sample is part of an implementation of a sum
or product formula. In addition to the line-based metrics, we also computed the total number of
simple and nested for-loops and foreach-loops in the samples. We estimate that in the stargaz-
ers sample every 13th simple respectively 25th nested loop implements a sum or product. In the
SciC sample the ratio is considerably higher: every 4th simple respectively 16th nested loop.
Based on these numbers, it is reasonable to assume that an average software developer will have
to write, or at least comprehend, SP-formula code multiple times a work week.

With two small studies, we explored the potential of specialized tools for formula code.
First, we investigated the source-code comments of 139 real-world formula code fragments. We
found that the comments rarely supported the code comprehension task of the implementation
of a formula. This lack of helpful comments could be mitigated by tools for (semi-)automated
source-code commenting or documentation of formula code are promising research objectives.
Second, in an online survey, we examined whether showing reconstructed mathematical formulas
next to the formula code supports the defect detection task. To this end, we selected four real-
world formula code fragments of different complexity. The performance results in our survey
did not provide clear evidence that showing the reconstructed formula next to the formula code
supports defect detection, and with that the code comprehension task on formula code. Except
for one, all participants agreed that a tool for reconstructing formulas from source-code would
be helpful. They found tools for formula code helpful especially applied on defect detection and
verification resp. testing tasks while implementing a mathematical formula as well as in maths
rich software projects.

As we determine a 7.4 times higher SP-formula code density in the SciC sample, we think
that the design of tools and language features specialized for formula code in this domain is
a promising route for future research. Thus, we intend to enhance and extend the patterns in
our tool, e.g., by adding vector and matrix patterns, and in particular, we want to investigate
other programming languages such as Python, which are more common in the field of scientific-
computing.
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