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Abstract— The architectural style of microservices has been 

gaining popularity in recent years. In this architectural style, small 

and loosely coupled modules are deployed and scaled 

independently to compose cloud-native applications. Carrier-

grade service providers are migrating their legacy applications to 

a microservice based architecture running on Kubernetes which is 

an open source platform for orchestrating containerized 

microservice based applications. However, in this migration, 

service availability remains a concern. Service availability is 

measured as the percentage of time the service is provisioned. High 

Availability (HA) is achieved when the service is available at least 

99.999% of the time. In this paper, we identify possible 

architectures for deploying stateful microservice based 

applications with Kubernetes and evaluate Kubernetes from the 

perspective of availability it provides for its managed applications. 

The results of our experiments show that the repair actions of 

Kubernetes cannot satisfy HA requirements, and in some cases 

cannot guarantee service recovery. Therefore, we propose an HA 

State Controller which integrates with Kubernetes and allows for 

application state replication and automatic service redirection to 

the healthy microservice instances by enabling service recovery in 

addition to the repair actions of Kubernetes. Based on experiments 

we evaluate our solution and compare the different architectures 

from the perspective of availability and scaling overhead. The 

results of our investigations show that our solution can improve 

the recovery time of stateful microservice based applications by 

50%. 

Keywords— Microservices; Containers; Kubernetes; Failure; 

Availability; Elasticity 

I. INTRODUCTION 

With the adoption of cloud computing [1], the microservices 

architectural style [2] has drawn a substantial amount of 

attention in the software engineering community. The 

microservice based architecture tackles the challenges of 

building cloud-native applications that leverage the 

opportunities given by the cloud infrastructure [3]. 

Microservices [4] are a realization of the service-oriented 

architectural style of building software composed of small 

services that can be deployed and scaled independently [5]. Each 

microservice has a separate business functionality, runs as a 

                                                           
* This paper is an extended version of [13]. 

separate process, and communicates through lightweight 

mechanisms [2].  

The fine granularity of this architectural style makes the 

scaling flexible and efficient as each microservice can evolve at 

its own pace. Moreover, compared to monolithic applications, 

the small microservices can restart faster in case of failure 

recovery or at the time of their upgrade. Microservices are 

loosely coupled and the failure of one microservice should not 

affect other microservices of the system. Because of these 

characteristics, adopting the architectural style of microservices 

can improve the service availability of applications [2]. Service 

availability is a non-functional requirement defined as the 

percentage of time a service is provisioned [6]. High Availability 

(HA) is achieved when the system is available at least 99.999% 

of the time. Therefore, the total downtime allowed in one year 

for highly available systems is around 5 minutes [7]. 

To leverage the benefits of microservice based architectures, 

one needs to use technologies aligned with the characteristics of 

this architectural style. Containerization is a technology which 

enables virtualization at the operating system level [8]. 

Containers are lightweight and portable and therefore, they are 

suitable for building microservices. Docker [9] is the leading 

container platform which packages the application code and its 

dependencies together to ship them as a single container image. 

Containers are running instances of container images. Even 

containers running on the same machine are isolated and are not 

aware of each other. Thus, there is a need for an orchestration 

platform to manage the deployment of containers. Kubernetes 

[10] is an open-source container orchestration platform which 

enables the automated deployment, scaling, and management of 

containerized applications. Kubernetes, through its monitoring 

and auto-healing mechanisms, alleviates the complexity of 

implementing application resiliency. Kubernetes has become the 

leading orchestration platform for containerized microservice 

based applications. 

Organizations migrate their legacy applications to cloud-

native architectures by adopting the architectural style of 

microservices [11]. These microservice based applications are 

containerized and orchestrated by Kubernetes predominantly.  



The characteristics of microservices and containers – such as 

being small and lightweight – naturally contribute to improving 

service availability [12]. Kubernetes heals its managed 

microservices [10] by restarting the failed containers and 

replacing or rescheduling them when their hosts fail. Moreover, 

to ensure access only to healthy containers, Kubernetes does not 

advertise the unhealthy containers until they are ready again. 

Nevertheless, these measures may not be sufficient for carrier-

grade service providers and service availability as an important 

non-functional requirement still remains a concern for them. 

Redundancy is the most adopted mechanism for enabling 

HA [6] and Kubernetes automatically replicates microservice 

instances considering them independent. However, such 

replication of microservice instances can only improve the 

service availability of stateless microservice based applications. 

The reason is that only stateless microservices have 

interchangeable instances and therefore can be easily replaced. 

The same does not hold for stateful microservices, whose current 

operations depend on the result of their previous operations.  

With stateful microservice based applications, each 

microservice instance has its own state, which need to be known 

to other microservice instances to be able to take over when it 

fails. Therefore, replicating a stateful microservice instance 

requires replicating its state to maintain its service availability 

with continuity. To address this issue, stateful microservice 

based applications are often deployed as microservice instances 

that store their states in external databases making them virtually 

stateless. The assumption is that the database takes care of the 

data replication. Unfortunately, this replication does not 

necessarily improve service availability. Indeed, although the 

state is replicated and available in the database for other 

instances, the microservice instances are not aware of each other 

and each other’s failure. Hence, they cannot automatically 

resume the service of each other if failure happens. Kubernetes 

also provides some support for the deployment of stateful 

microservice based applications. In this paper, we discuss the 

reference architectures offered by Kubernetes for managing 

stateful microservices; and we discuss their availability 

challenges. In a previous work [13],  to address these challenges 

we proposed an HA State Controller that improves the 

availability of stateful microservice based applications deployed 

with Kubernetes. This HA State Controller allows for the 

automatic service redirection to the healthy microservice 

instances through the management of secondary labels. 

However, the elasticity of such microservice based applications 

was not considered. Our solution in [13] only allowed for one 

active and one standby microservice instances. 

This paper extends our previous work [13] as follows: 

• We enhance the HA State Controller to manage the 
availability of an application as it scales in and out 
by allowing multiple active and standby 
assignments.  In other words we enhance the HA 
State Controller in [13] to work with multiple active 
and standby instances, which may dynamically 
change over time due to workload change. 

• We evaluate the enhanced HA State Controller 
from the perspectives of availability and scaling 
overhead through a series of experiments. The goal 
of our experiments is to answer the following 
research questions (RQ). 

o RQ1: What is the impact of the HA State 

Controller on the provided availability?  

o RQ2: What is the impact of scaling during 

failover on the availability that the HA State 

Controller can provide for its managed 

microservices? 

o RQ3: What is the overhead of the HA State 

Controller at scaling? 

o RQ4: What is the impact of simultaneous 

failures of active pods on the outage of each 

failed pod? 

The rest of the paper is organized as follows. In Section II, 

we provide some background information on Kubernetes. In 

Section III, we discuss the Kubernetes architectures for 

deploying stateful microservice based applications and their 

challenges with respect to availability. To address these 

challenges, we propose a solution in Section IV and evaluate our 

proposal in Section V through a set of experiments. We discuss 

the related work in Section VI, followed by a conclusion in 

Section VII. 

II. BACKGROUND 

Kubernetes is the leading orchestration platform for 

containerized applications.  

A Kubernetes’s cluster can be composed of virtual or 

physical machines and it follows the master-slave architecture. 

The processes required to bring the cluster to a desired state run 

on the master node. To ensure the HA of the cluster 

management, the master node and its processes should be 

replicated [14]. 

Kubernetes deploys and manages containerized 

microservices in the form of pods [10]. A pod is the smallest unit 

whose lifecycle is managed by Kubernetes. Multiple containers 

can be grouped into a single pod. They will all get the same IP 

address, which is the virtual IP address of the pod. Containers 

within a pod may be accessed separately through different ports. 

Considering that one of the goals of the microservice based 

architecture is to make the building blocks of an application 

loosely coupled, it is recommended to include only one 

container in each pod [10]. 

Controllers are entities that manage the pods’ lifecycle and 

responsible for creating and maintaining the required number of 

pods according to the specification given in the pod template in 

the controller’s resource specfication. Kubernetes has different 

types of controllers each of which is used for a different purpose. 

For example, Deployment controllers are mainly used for 

managing stateless application pods while StatefulSet 

controllers manage stateful application pods [10].  



Controllers delete and reschedule pods dynamically based on 

changes in the cluster. Therefore, the IP addresses of pods 

change often and are not reliable for communication. Instead 

Kubernetes offers customizable labels assigned to pods to select 

them, e.g., for communication based on these labels. From 

Kubernetes perspective these labels stay the same when pods are 

rescheduled. Kubernetes also defines an abstraction called 

Service, which has a static virtual IP address. Services select 

pods as their communication endpoints based on their labels. All 

requests received at the IP address of a service are load balanced 

among the service endpoints in a random or round-robin manner 

[10]. 

As mentioned above, in Kubernetes stateful application pods 

are deployed by StatefulSet controllers. To cater for the 

statefulness, StatefulSet pods are provided with storage for their 

state data. Kubernetes abstracts the details of storage 

provisioning by two API resources: Persistent Volume (PV) and 

Persistent Volume Claim (PVC). A PV is a piece of storage in 

the cluster whose lifecycle is independent of the pods using it. 

PVs can be provisioned dynamically or statically. A PVC, on the 

other hand, is a request for storage made by a pod that binds the 

pod to a specific PV. Binding means that if the pod is restarted 

or rescheduled with the same identity, its PVC will be assigned 

to the same PV [10]. Moreover, in the event where the 

StatefulSet controller receives a request to scale-in the 

application, it will only remove the required number of pods and 

will keep the PVCs. However, the state data stored on the PVCs 

will not be reachable by clients until their corresponding pods 

are recreated. For stateful applications, the assumption is that the 

application state data are stored on a persistent storage 

represented by the PV, which is outside of the Kubernetes 

cluster. Meaning that, Kubernetes is not in charge of managing 

the PVs and it only consumes them. 

III. STATEFUL MICROSERVICE BASED ARCHITECTURES AND 

AVAILABILITY MANAGEMENT WITH KUBERNETES 

In this section, we describe the Kubernetes architectures 

offered for deploying pods of stateful microservice based 

applications and discuss their challenges with respect to 

availability. 

A. Architectures for Deploying Stateful Applications with 

Kubernetes 

For stateful microservice based applications, Kubernetes 

provides different solutions. Kubernetes’ primary controller for 

deploying stateful applications is the StatefulSet controller. A 

StatefulSet controller specification includes a PVC template 

which describes the characteristics of the PVs such as capacity, 

access mode, etc., that a pod of the StatefulSet can be bound to. 

For each pod created by a StatefulSet controller, a PVC is 

created based on the PVC template that binds the pod to a PV, 

which matches the criteria described in the PVC template. As a 

result, each pod has a separate PV where it can store its state 

data. A PV is accessible only by the pod it is bound to. This 

means, that a pod cannot access other pods’ PVs and state data. 

Therefore, a mechanism such as sticky sessions is needed to 

ensure that a client is always served by the same server (i.e., 

same pod). The reason is that a client’s request should always be 

sent to a pod who has the client’s state data. 

Fig. 1 shows the architecture for deploying stateful 

applications using a StatefulSet controller.  

 

As shown in Fig. 1, the names of StatefulSet pods are 

composed of the name of the StatefulSet controller (“MS”) and 

an ordinal index (MS-0, MS-1… MS-(n-1)). One of the 

differences between StatefulSet pods compared to pods 

managed by other controllers is that they are created and deleted 

sequentially. That is, MS-1 will be created only when MS-0 is 

running and ready. Another difference is that StatefulSet pods 

have persistent identities. Meaning that if MS-0, which stores its 

state data in PV0, fails, the StatefulSet controller will restart the 

pod with the same identity. Therefore, the new incarnation of 

MS-0 will be bound to PV0 again, and it will have access to its 

state data stored by its previous incarnations. 

Although StatefulSet controllers are the recommended 

controllers for deploying stateful application pods, one can use 

Deployment controllers for this type of application as well. 

Similar to StatefulSets, the stateful Deployment pods can store 

their state data in a PV. However, with Deployment controllers, 

all pods have to share the same PV. Accordingly there is no PVC 

template in a Deployment controller specification. Instead, one 

PVC is created before deploying the application and it will be 

used by all pods of the application once they are deployed by the 

Deployment controller. Fig. 2 shows the architecture for 
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Fig. 1. Deploying stateful applications with StatefulSet controllers. 
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Fig. 2. Deploying stateful applications with Deployment controllers. 

 

 



deploying stateful applications using a Deployment controller. 

In this architecture, the PV is shared between all pods. 

Therefore, all pods can have access to all state data and could 

serve any client. 

B. Availability Challenges 

Kubernetes provides an auto-healing mechanism for the 
applications it manages through restarting their failed 
containers/pods on the same host, or rescheduling them on 
another when their host fails. Although these repair actions can 
improve the availability of the applications deployed with 
Kubernetes, state replication remains the most important feature 
to achieve high availability (HA).  

As discussed before, Kubernetes’ controllers such as 

StatefulSet and Deployment are able to maintain multiple pod 

replicas. However, from an availability perspective, only 

stateless applications benefit from replicating their pods. The 

reason is that that the mechanism provided for replicating the 

state of the pods is not sufficient. The availability of stateful 

applications is not improved by increasing the number of pod 

replicas. For stateful applications still the only mechanism for 

maintaining availability with Kubernetes is through the repair of 

the failed pods. Let us explain our view through an example.  

If the application is deployed by a StatefulSet controller as 

shown in Fig. 1, if one pod fails, the other pods cannot resume 

the service of the failed pod because: (1) the state data for each 

pod are stored separately and other pods do not have access to 

them. (2) the pods are isolated and are not aware of each other’s 

failure. Therefore, we can only rely on the failed pod being 

restarted with the same identity so it can restore from its own PV 

the last stored state before the failure. This means that the service 

can be recovered with continuity, but the clients need to wait for 

the failed pod to be restarted, which may be too slow for some 

applications.  

Moreover, in certain failure scenarios, the failed pod will not 

be repaired by Kubernetes. For example, with the architecture in 

Fig. 1, if the service outage is due to node shutdown, the pod 

will not be restarted and the service will not be recovered unless 

the node rejoins the cluster. The reason is that Kubernetes cannot 

differentiate between node failure and network partitioning, and 

to avoid having multiple pods running on different nodes with 

the same identity, it will not automatically create a pod to replace 

the one on the unresponsive node. Unlike StatefulSet controllers, 

pods deployed by Deployment controllers (Fig. 2) are 

automatically rescheduled on other nodes when their hosts fail. 

However, this would not mean that the failed pod’s service is 

recovered. The reason is that Deployment controller pods do not 

have sticky identities and after restart, they will have a new 

identifier and they will not be aware of the identity or the 

location where the failed pod’s state data is stored. Thus, we 

cannot rely on the restart procedure for recovering the stored 

service state. 

In a previous work [13], we evaluated the level of availability 

Kubernetes can provide for stateful applications solely through 

its repair actions. In our experiments in the scenarios where 

service outage was due to application container failure, the total 

service outage was 2.159 seconds on average. This meant that 

for our application to meet the high availability requirements, no 

more than 146 application container failures could be tolerated 

in one year. We also conducted experiments with the scenario 

where the service outage was due to node reboot. In this 

scenario, the node became responsive again and rejoined the 

cluster and therefore, the service was recovered. However, the 

service recovery depended on the node start-up time, which in 

our experiments was measured 126.4 seconds on average, which 

resulted in a total outage of 164.507 seconds. This meant that to 

meet high availability requirements, only one failure due to node 

reboot could be tolerated in one year.  

These experiments showed that relying on the repair actions 

of Kubernetes was not enough for satisfying high availability 

requirements and additional mechanisms were needed for 

Kubernetes to decouple service recovery from the repair of the 

failed pod.  

In the next section, we introduce our solution that integrates 

with Kubernetes and improves the availability by recovering the 

service before the failed pod is repaired by Kubernetes. 

IV. A STATE CONTROLLER ENHANCED WITH ELASTICITY 

As mentioned earlier, the main challenge with respect to 

availability for the applications deployed with Kubernetes is that 

in case of failure, the failed pod should be repaired for the 

service to be recovered. It is possible to address this issue by 

keeping a redundant pod (i.e., a standby pod) which has the state 

of the failed pod that was providing the service (i.e., active pod), 

and therefore it can take over in providing the service. In 

addition to the active pod replicating its state to the standby pod, 

it is necessary for the standby pod to be notified when its active 

pod has failed. Moreover, elasticity also needs to be considered. 

That is, multiple active pods providing a service should be 

possible whose states need to be protected by standby pods. It 

should be possible to scale out/in the pods while maintaining 

service availability. 

We address these issues by a solution which integrates the 

concept of HA states (i.e., active and standby) with Kubernetes 

and improves the availability of stateful microservice based 

applications by recovering the service before the failed pod has 

been repaired. In this solution, a HA State Controller (SC) 

component is integrated with Kubernetes. It communicates with 

the Kubernetes API server and monitors the cluster events and 

reacts to them. The proposed SC assigns an HA state to running 

pods and provides a mechanism for the active pod to replicate 

its state data to its standby pod. The SC detects the scale-out and 

scale-in events and reacts to them by assigning to and removing 

from pods their HA states.  The State Controller can have more 

than one state replication service created automatically. The 

State Controller holds pairs of pods as active and standby and 

identifies a pair by adding a “peer” label to the standby pod, 

which gets its corresponding active pod’s name. The SC also 

reacts to pod failures. In case of failure of an active pod it notifies 

its corresponding standby pod for initiating the failover process. 



Fig. 3 provides an overall picture of the State Controller  
behavior. The first part of this diagram is about HA state 
assignment and pod labelling while the second half is about the 
State Controller reactions to the events. In addition to this high 
level behavior of the state controller we provide a lower level  
algorithm (Algorithm 1). Hereafter, we summarize the steps in 
this high level diagram and put them in relation with the lower 
level algorithm (Algorithm 1), showing for each step how it is 
implemented and the corresponding instructions in Algorithm 1 
using labels.   

1. The State Controller sorts running pods based on their 
creation time (L30) 

2. As long as there are pods without HA state and peer labels 
(L31:L39): 

a. It picks the oldest two pods (L33) 

b. It assigns HA state and peer labels to both pods and 
removes them from the sorted list (L34:L38) 

3. The State Controller now watches the events of the 
Kubernetes API server (L4:L27) 

a. If the event corresponds to the service state of a pod 
changing to “not ready” then this is a failure event 
(L7:L19) 

i. If the failed pod had the active HA state (L9:L15) 

1. The State Controller assigns active 
HAState to the standby pod which was the 
peer of the failed active pod. The new 
active pod becomes the endpoint of the 
application service and restores the last 
state from its storage area in the PV and 
resumes the service. 

2. The State Controller assigns standby 
HAState to the failed pod and deletes the 
state replication service of the failed active 
pod 

3. The State Controller creates the replication 
service for the new active pod 

ii. If the failed pod had the standby HAState, the State 
Controller ensures that the failed pod is assigned the 
standby HAState after it is repaired (L16:L19) 

b. If the event corresponds to a scaling event (L20:L26) 

i. In case of a scale out, then go to step 1 (L22) 

ii. In case of a scale in, the State Controller deletes the 
state replication service for a deleted active-standby 
pair (L25) 

In the following subsections, we elaborate on these different 
responsibilities of the State Controller (i.e. HA state assignment, 
state replication, handling elasticity, handling failures). 

The proposed SC can be integrated with Kubernetes without 
any change to the Kubernetes source code. It can be integrated 
with StatefulSet controllers (see Fig. 4) as well as with 
Deployment controllers (see  Fig. 5). The difference between 
these two architectures is in the way the pods of each controller 
store their state data.  As discussed in Section III, with 
StatefulSet controllers, each pod has a separate persistent 
volume (Fig. 4) while with Deployment controllers all pods 
share the same persistent volume (Fig. 5). Therefore, in the 
latter, each pod creates a storage area for itself when it is 
deployed in order to separate its state from other pods.  

 

Fig. 3. Activity diagram of the HA State Controller. 

A. HA State Assignment 

One role of the SC is to assign an HA state to pods through 

the management of secondary labels and environment variables. 

That is, determining whether a pod should be active or standby.  



Algorithm 1. HA State Controller algorithm 

 



In order to do so, the SC communicates with the API server 

and gets the list of running pods and sorts them based on their 

creation time. Out of this ordered list of pods, the SC selects 

pairs of pods and for each pair, it assigns a secondary label called 

the “HAState” label with the value of active to one pod and 

standby to the other pod. The assumption is that an even number 

of pods are deployed. In this solution, the service that exposes 

the application (i.e., application service) redirects the incoming 

requests to pods that have the HAState label with the value of 

active. Therefore, when the SC assigns active HA state to pods, 

it adds these pods to the endpoints list of the application service. 

In addition, the SC identifies pod-pairs by adding a “peer” label 

to pods. The standby pod’s peer label is set to its corresponding 

active pod’s name and the active pod’s “peer” label gets its 

corresponding standby pod’s name. 

In addition to the labels, the SC also creates and populates an 

environment variable – the HAState variable – within each pod 

to make the pod aware of its HA state. A process is included in 

the container image of all pods, which we call the entrypoint 

process, periodically checks the “HAState” variable and makes 

decisions according to the changes that the SC makes to the 

“HAState” variable. For example, if the “HAState” variable 

changes from standby to active, it will call the service resume 

process. 

B. State Replication 

Besides assigning HA states to pods, the SC implements a 

mechanism for the active pod to replicate its state data to its 

standby pod. The SC enables the state replication by 

automatically creating a Kubernetes service for each pair of 

active-standby  that exposes the standby pod to the active pod. 

The state replication service redirects the incoming requests to a 

pod that has the “HAState” label with the value of standby and 

the “peer” label with the value of the active pod’s name. The SC 

names the state replication service for each pair as “replicate-

{the active pod’s name}”. Therefore, the active pod does not 

need to know the IP address and can discover the service based 

on this naming pattern. For example, an active pod named 

PodA0 sends its state data by an HTTP request to a state 

replication service named “replicate-PodA0”. This is done in the 

pod’s checkpointing process, which periodically also saves the 

state data in the storage. This way, the standby pod will have the 

state of the active pod. Although the checkpointing process for 
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Fig. 4. Integrating the State Controller with StatefulSet controllers. 
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Fig. 5. Integrating the HA State Controller with Deployment controllers. 

 

 



every application can be implemented in a different way, the 

state replication service is application agnostic as long as the 

application is able to store and transfer its state data through 

HTTP requests. 

C. Handling Elasticity 

For microservice based applications, it is common for the 

number of microservice instances to increase or decrease 

frequently. Therefore, we designed the SC in such a way that it 

can handle multiple active and standby assignments, it detects 

the scale-out and scale-in events, and reacts to the addition and 

deletion of pods. The assumption is that the pods are added or 

deleted in pairs. For the scale-out scenario, for every pair of pods 

that are deployed, the SC assigns active and standby HA state to 

pods and creates a state replication service. The SC guarantees 

service protection for scale-in scenario only if the application is 

deployed by a Statefulset controller. The reason is that unlike 

Deployment controllers, when a Statefulset controller receives a 

scale-in request, it deletes the requested number of pods in the 

reverse order that they were created. The SC reacts to the scale-

in event by removing the pairs from its list and deletes their 

corresponding state replication services.  

D. Handling Failures 

An important task of the SC is to detect the failure of active 

pods and inform their corresponding standby pods to resume the 

service, which was provided by the failed active pod. When a 

pod fails, its service state changes into “not ready” and this 

change is recorded as an event by the API server. To detect the 

failure of pods the SC monitors the API server events. If the 

failed pod had the standby HA state, the SC will wait for the pod 

to be repaired and will assign the standby HA state to the 

repaired pod again. If the failed pod had the active HA state, the 

procedure will be different. In this case, the SC will change the 

“HAState” label and variable of the standby pod corresponding 

to the failed active pod from standby to active. As mentioned 

before, when the “HAState” variable changes from standby to 

active, the entrypoint process will call the service resume 

process. Since the new active pod has the last saved state of the 

failed active pod, it is able to resume the service from that point 

as soon as it is added to the endpoint list of the application 

service due to the change the “HAState” label. The SC also 

removes the corresponding state replication service. The SC will 

assign the standby HA state to the failed pod after it is repaired. 

Moreover, a new state replication service will be created to 

which the newly active pod replicates its state data. 

V. AVAILABILITY AND PERFORMANCE EVALUATION 

In this paper, we evaluate through a set of experiments the 

achievable availability as well as the scaling overhead of 

integrating the SC with Kubernetes. 

A. Experiments’ Settings 

The setting for these experiments is a Kubernetes cluster in 

a private cloud which is composed of eight worker nodes and 

one master node running on the OpenStack cloud. Ubuntu 16.04 

is the OS running on all nodes. Kubernetes 1.12.1 runs on all 

VMs and the container engine is Docker 17.09. Network Time 

Protocol (NTP) [15] is used for time synchronization between 

the nodes. The application deployed is a stateful Video on 

Demand (VoD) application, where each client can request a 

video to be streamed. The same pod template is used for all 

experiments that has one container image in which the VideoLan 

Client (VLC) [16] is installed as the video streaming application. 

To ensure service continuity, the container image has a 

checkpointing process which, whenever the pod receives a 

request from a client to stream a video, starts to checkpoint the 

elapsed time of the video to the location where its PV is 

mounted. The streaming position, which is the state data in this 

case, is stored for each client separately. 

B. Metrics 

In our experiments, we measure the following metrics: 

Availability metrics: The metrics we measure to evaluate 

the availability in our experiments are composed of reaction 

time, repair time, recovery time, and total outage time. The 

reaction time is measured as the time between the failure event 

and the first reaction of Kubernetes that reflects that the failure 

event was detected. The repair time is the time between the first 

reaction of Kubernetes and the repair of the pod failed due to the 

failure event. The recovery time is the time between the first 

reaction of Kubernetes to the failure event and when the service 

is available again. The total outage time. that is, the duration for 

which the service was not available, is the sum of the reaction 

time and the recovery time. These metrics and their relations are 

shown in Fig. 6. In Fig. 6 (a) the sequence of events is for 

Kubernetes without the SC whereas in Fig.6 (b), the sequence is 

for the architectures where the SC is integrated. As it is depicted 

in Fig. 6, the SC reduces the outage time by recovering the 

service before the failed unit is repaired. 

Scaling time: The delay from the moment of sending the 

scaling request until the last pod is deployed and ready (or 

deleted, in case of scale in) in reaction to the scaling request. 

reaction time recovery time
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Fig. 6. Availability metrics. a) for the measurement of the architetcures 

without  the SC. b) for the measurement of the architetcures with the SC. 

 

 



HA state assignment time: The delay from the moment of 

sending the scaling request until the State Controller assigns the 

HA state to the last added pod. 

In the following, the application is always scaled in or out by 

two. That is, the number of pod replicas is always even. 

C. Experiments, Results, and Analysis 

In this section, we evaluate the achievable availability as 

well as the scaling overhead of integrating the SC enriched with 

elasticity with Kubernetes. We aim at answering the research 

questions introduced earlier in the paper. Note that the 

measurements shown in the tables represent averages of 10 

different experiments. 

a) RQ1: What is the impact of the SC on the provided 

availability? 

To address this research question, we measure the 

availability metrics for the architectures in Fig. 1 and Fig. 2 

(n=1) as a baseline. In these cases the number of pods will not 

impact the availability, because other pods would not know 

about the failure and do not have access to the state data of the 

failed pod, therefore cannot recover the service. We compare the 

results with those of the architectures in Fig. 4 and Fig 5 (n=2) 

where the SC is integrated with Kubernetes. 

Experiments 

In this set of experiments, we are interested in measuring the 

service outage when a failure happens. While our solution can 

handle different types of failures (e.g., pod process failure and 

node failure), we only consider the failure scenario where 

service outage is due to application container failure. In this 

scenario, the failure is simulated by killing the VLC container 

process from the OS. When Kubernetes detects the crash of the 

VLC container, it brings the pod to a state where the pod will not 

receive new requests. That is, it sets the pod’s service state to 

“not ready”. This time marks the reaction time. The repair time 

is marked by the time when Kubernetes restarts the VLC 

container and repairs the pod, i.e. its service state is “ready”. The 

service is considered recovered when the video has started 

streaming from the last saved checkpoint before the failure. 

Results and Analysis 

The results of this set of experiments are shown in TABLE 

I. The results show a 46% improvement of the recovery time 

when the proposed SC is used with the StatefulSet controller and 

55% improvement when the SC is used with the Deployment 

controller. The reason for this improvement is that, unlike in 

case of the architectures of Fig. 1 and Fig. 2, with the SC 

integrated we no longer need to wait for the failed pod to be 

repaired to have the service recovered. With the architectures of 

Fig 4 and Fig. 5, after the reaction of Kubernetes to the failure 

of the active pod (i.e. setting its service state “not ready”), the 

SC changes the “HAState” label and variable of the standby pod 

to active and accordingly this newly active pod will read the last 

stored state from the storage and resume the service. The results 

show that it takes longer for Kubernetes to repair the pod than it 

takes for the SC to assign the active HA state to the standby pod. 

We can also observe that integrating the SC and increasing the 

number of pods add some overhead to the reaction time. 

However, the increase in the reaction time is insignificant 

compared to the improvement in the recovery time. 

b) RQ2:What is the impact of scaling during failover on 

the availability that the SC can provide for its managed 

microservices? 

 To answer this question, we consider the architectures in 

Fig. 4 and Fig. 5 where the SC is integrated with Kubernetes. 

We measure the availability metrics when a scaling request is 

sent during the execution of a failover to evaluate the impact of 

simultaneous scaling and failure events. 

Experiments 

We conduct this set of experiments with two 

scenarios: scale-out and scale-in. For the scale-out scenario, we 

consider both architectures of Fig. 4 and Fig. 5 where we have 

one active and one standby pods (n=2). To simulate a failure, 

we forcefully kill the application container of the active pod, 

which streams the video. While the service is being recovered 

by the SC, we request to scale the application to four pods. We 

measure the availability metrics for the failed pod as well as the 

scaling time and the HA state assignment time for the added 

pods. We compare the availability metrics of this set of 

experiments with those where no scaling event has happened 

during failover. Moreover, we compare the scaling time and HA 

state assignment time of this set of experiments with those 

where no failure has happened during scaling the application. 

In the scale-in scenario, we only consider the architecture 

with the StatefulSet controller and we have two active-standby 

pairs of pods (n=4). To simulate a failure we forcefully kill the 

application container of the “oldest” active pod which streams a 

video. To measure scaling time we also set the graceful 

termination period of pods to zero. meaning that when a pod is 

ordered to be terminated it is executed immediately. In this 

scenario, we measure the availability metrics for the failed pod 

as well as the scaling time for the deleted pod. We compare the 

availability metrics of these experiments with those where no 

scaling event had happened during failover. Again, we compare 

the scaling time of this set of experiments with those where no 

failure had happened during scaling the application. 

 

TABLE I. THE IMPACT OF INTEGRATING THE SC WITH KUBERNETES ON THE 

PROVIDED AVAILABILITY (RQ1). 

Architecture 

(unit = seconds) 

Reaction 

Time 

Repair 

Time 

Recovery 

Time 

Outage 

Time 

StatefulSet controller  
(Fig. 2, n=1) 

0.679 1.029 1.480 2.159 

StatefulSet controller 

integrated with the SC 
(Fig. 4, n=2) 

0.719 1.083 0.793 1.512 

Deployment controller  

(Fig. 1, n=1) 
0.554 1.021 1.534 2.088 

Deployment controller 
integrated with the SC 

(Fig 5, n=2) 

0.784 1.244 0.688 1.472 

 



Results and Analysis 

The results of this set of experiments are shown in TABLE 

II. The results show that when a scaling event happens during 

recovery, the outage time increases by 12% and 16%, 

respectively, for the scale-out and scale-in scenarios. We also 

evaluate the impact of scaling during failover on the scaling time 

by comparing them with the experiments where the only event 

is the scaling (without any simultaneous failure). The results of 

the experiments for both scale-out and scale-in scenarios show 

that when a failure happens during scaling, the scaling time 

increases by 66% for the scale-out and by 12% for the scale-in 

scenario. Moreover, for the scale-out scenario, the HA state 

assignment time also increases by 56% on average. The reason 

is that when scaling is triggered while a failover is in progress, 

the SC is busy with the failover process and it assigns the HA 

states with some delay.  

It is important to note that TABLE II does not include results 

for the scale-in scenario for an architecture where the SC is used 

with a Deployment controller (as in Fig. 5). The reason is that in 

this case the scale-in request may result in deleting the standby 

pod of the failed active pod. Indeed, with this architecture, there 

is no order associated with the pods that would apply at their 

deletion, for example, when the application is scaled in. 

Therefore, it is not possible to guarantee the simultaneous 

execution of the service recovery and scale-in with this 

architecture. 

c) RQ3: What is the overhead of the SC at scaling? 

In this research question, we are interested in evaluating the 

impact of the SC on the time it takes for the application to be 

scaled by Kubernetes. We conduct the experiments with the 

architectures of Fig. 1, Fig. 2, Fig. 4, and Fig. 5. 

Experiments 

We conduct the experiments again for two scenarios: scale-

out and scale-in. We again set the graceful termination period of 

the pods to zero. For the scale-out scenario, we consider all four 

architectures where the number of pods initially deployed is two 

(n=2). In each round of the experiments, we scale the application 

from two pods to k pods where k gets one of the values in {4, 8, 

16, 32, 64, and 128}. For this scenario, we measure the scaling 

time and HA state assignment time. 

For the scale-in scenario, we consider the same architectures. 

However, in each round of the experiments, the number of pods 

initially deployed (i.e., n) gets one of the values in {4, 8, 16, 32, 

64, and 128}. In each round of the experiments, we scale in the 

application to 2 pods. For this scenario, we only measure the 

scaling time. 

Results and Analysis 

The measurements for the scale-out and scale-in scenarios 

are shown in TABLE III and TABLE IV, respectively. For the 

scale-out scenario (TABLE III), when the application is 

deployed as a StatefulSet, integrating the SC has a scaling 

overhead of 7.5% on average. Integrating the SC with a 

Deployment controller also increases the scaling time by 10.5% 

on average. The standard deviation for these measurements does 

not go above 23% of the average. Moreover, as it is shown in 

TABLE III and TABLE IV, the application deployed by a 

Deployment controller have shorter scaling and HA state 

assignment times compared to when it is deployed as a 

StatefulSet. The reason is that the pods deployed by Deployment 

controllers are created in parallel while with StatefulSet 

controllers they are created in sequence which takes more time. 

While fast start-up time can be considered as a benefit of 

deploying the applications with Deployment controllers, one 

should take into consideration that service protection is not 

guaranteed with Deployment controllers in scale-in scenarios. 

Indeed, Deployment controllers do not scale-in the application 

in an ordered manner and the active-standby pairs of pods might 

not be deleted together in the scale-in process. For the scale-in 

scenario (TABLE IV), the scaling overhead of the SC with 

StatefulSet controllers and with Deployment controllers is, 

respectively, 31% and 27% on average. The standard deviation 

for these measurements does not go above 28% of the average. 

Similar to the scale-out scenario, we also notice that applications 

deployed with Deployment controllers have a shorter scaling 

time. The reason is the same, i.e., that the pods deployed with 

Deployment controllers are deleted in parallel while with 

StatefulSet controllers, they are deleted in a predefined order 

which takes longer time. 

  

TABLE II. EVALUATION OF THE PROVIDED AVAILABILITY WHEN SCALING HAPPENS DURING FAILOVER (RQ2). 

Scenario Architecture Event 
Reaction 

Time 

Repair 

Time 

Recovery 

Time 

Outage 

Time 

Scaling 

Time 

HA state 

Assignment time 

Scale-out 

StatefulSet controller 
integrated with the SC 

(Fig. 4, n=2) 

Active pod fails 0.719 1.083 0.793 1.512 NA NA 

Application is 
scaled out to 4 

NA NA NA NA 4.234 5.653 

Scaling and 

failover overlap 
0.689 1.161 1.012 1.701 7.049 7.293 

Deployment controller 
integrated with the SC 

(Fig. 5, n=2) 

Active pod fails 0.784 1.244 0.688 1.472 NA NA 

Application is 
scaled out to 4 

NA NA NA NA 3.016 3.060 

Scaling and 

failover overlap 
0.607 1.205 1.028 1.635 5.055 5.608 

Scale-in 

StatefulSet controller 

integrated with the SC 

(Fig. 4, n=4) 

Active pod fails 0.719 1.083 0.793 1.512 NA NA 

Application is 

scaled in to 2 
NA NA NA NA 0.712 NA 

Scaling and 

failover overlap 
0.581 1.468 1.172 1.754 0797 NA 

 



  

TABLE III. SCALING AND HA STATE ASSIGNMENT OVERHEAD FOR THE SCALE-OUT SCENARIO (RQ3). 

Architecture 

(n=2) 

metric 

(unit: seconds) 
2 to 4 2 to 8 2 to 16 2 to 32 2 to 64 2 to 128 

StatefulSet controller 

(Fig. 2) 
scaling time 4.099 15.056 47.722 119.674 297.470 753.045 

StatefulSet controller integrated 
with the SC (Fig. 4) 

scaling time 4.234 16.692 49.937 131.726 312.037 842.068 

HA state 

assignment time 
5.653 17.018 51.865 133.373 316.107 845.114 

Deployment controller 

(Fig. 1) 
scaling time 2.979 4.459 7.956 15.237 31.574 80.694 

Deployment controller 

integrated with the SC (Fig. 5) 

scaling time 3.016 4.914 8.856 17.428 35.248 92.240 

HA state 

assignment time 
3.060 6.763 16.142 35.290 73.001 147.798 

TABLE IV. SCALING OVERHEAD FOR THE SCALE-IN SCENARIO (RQ3). 

Architecture 

n={4, 8, 16, 32, 64, and 128} 

metric 

(unit : seconds) 
4 to 2 8 to 2 16 to 2 32 to 2 64 to 2 128 to 2 

StatefulSet controller (Fig. 2) 

scaling time 

0.555 1.353 2.613 5.459 11.440 26.062 

StatefulSet controller integrated 
with the SC (Fig. 4) 

0.712 1.512 3.148 6.407 14.463 48.662 

Deployment controller (Fig. 1) 0.566 0.827 1.370 1.944 3.375 7.007 

Deployment controller 

integrated with the SC (Fig. 5) 
0.641 1.327 1.555 2.375 4.441 8.821 

 



d) RQ4: What is the impact of simultaneous failures of 

active pods on the outage time of each failed pod? 

By this research question, we evaluate the SC performance 

in terms of availability when multiple active pods fail at the same 

time. Meaning that another failure happens while the SC is still 

in the process of handling the failover for the previously failed 

pod.  

Experiments 

We conduct a set of experiments with the architectures of 

Fig. 4 and Fig. 5 where the SC is used, respectively, with a 

StatefulSet controller and with a Deployment controller. For 

each architecture, the number of deployed pods is equal to ten 

(n=10). In each set of experiments, we simultaneously kill the 

application container of k active pods where k takes values from 

{1, 2, 3, 4, and 5}. In each round of the experiments, we measure 

the availability metrics for each failed pod separately and 

compare how simultaneous failures of multiple active pods 

affects their availability metrics. 

Results and Analysis 

The measurements of the experiments for RQ4 are shown in 

the diagrams of Fig. 7 and Fig. 8. These diagrams show that 

when multiple pods fail simultaneously, the later the pod’s 

failure is detected, the longer it takes for the SC to recover the 

service for that pod. The reason is that the SC handles events in 

a FIFO (first-in-first-out) manner, so when a pod’s failure is 

detected, it is put as an event in a queue. The SC will recover its 

service only after the recovery of other pods’ that were inserted 

in the queue before this.  

D. Threats to Validity 

The following threats can affect the validity of our results. 

First, we conducted our experiments in a relatively small 

Kubernetes cluster. In larger clusters where the number of nodes 

is high, Kubernetes may behave differently which might result 

in different availability and scaling overhead measurements as 

the Kubernetes’ performance can change in such clusters. Also, 

for the scaling overhead measurements, the maximum number 

of pods that could be deployed in a reasonable time was limited 

to around 128 pods for a cluster with 8 worker nodes. With larger 

clusters, it will be possible to measure the scaling time for a 

larger number of pods and reach more accurate results.  

Another threat to the validity of our results is related to the 

tools and mechanisms used in our experiments for measuring the 

time. We rely on the timestamps reported in Kubernetes and 

Docker logs. However, one can instrument the containers in 

order to achieve a more precise measurement. Finally, we only 

considered the case of an on demand video streaming 

application and other types of applications should be considered 

before generalizing the results. 

VI. RELATED WORK 

 Researchers and practitioners have adopted the 

microservices paradigm in several domains, such as the cloud 

computing [20, 21, 22], service computing [23, 24], internet of 

things [25], to take advantage of its benefits both in the 

development and operational phases [20, 26, 27].  In this paper, 

we are interested in the operational phase. Thus, in our review 

of related work, we first discus the state of the art on 

microservices and containers orchestration, before focusing on 

works related to the availability of stateful microservice-based 

applications. Table V summarizes this section by categrozing all 

related work, including our paper, with respect to certain criteria 

such as workload type and management objectives. 

Kubernetes is the de-facto open-source container 

orchestration platform. Several recent studies built on 

Kubernetes to propose enhancement and more efficient 

container scheduling and orchestration approaches. In [28] 

Zhong et al. propose a task allocation strategy to make container 

scheduling and scaling decisions in a cost-efficient manner 

through resource utilization optimization and elastic resource 

pricing. Three main features were considered, first the support 

of heterogeneous job configurations to optimize the initial 

placement of containers into existing resources by task packing. 

Second, a cluster size adjustment to meet the changing workload 

through autoscaling algorithms is proposed. Finally, the 

rescheduling mechanism to shut down underutilized VM 

instances for cost-saving and reallocate the relevant jobs without 

losing task progress is considered. Pascinsk et al. [29] developed 

a Kubernetes-based Global Cluster Manager specialized in 

geographic orchestration of network-intensive workloads. It 

supports autonomic task arrangement. This manager 

automatically selects the best geographically available 
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Fig. 7. Service Outage of simultaneously failed pods – The SC integrated 

with a StatefulSet controller (RQ4). 
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Fig. 8. Service Outage of simultaneously failed pods – The SC integrated 

with a Deployment controller (RQ4). 

 

 



computing resource within the defined data centres according to 

a QoS model of the software components. Chung et al. [30] 

proposed Stratus a container-based cluster scheduler designed 

for batch job scheduling on public clouds. It exploits the cloud 

properties and runtime estimates to reduce the cost of cluster 

jobs execution by packing jobs that should complete around the 

same time. Stratus aggressively packs tasks into machines, it 

uses task migration to clear under-utilized instances. Stratus 

actively avoids having leased machines that are not highly 

utilized, trying to make allocated resources be either mostly full 

or empty, so they can be released to reduce the cost. In [31], the 

authors designed a customized scheduler on top of the 

Kubernetes platform by extending the existing rescheduling 

feature for better arrangements of task co-location. The 

proposed solution integrates the use of schedulers, autoscalers, 

and reschedulers as a mechanism to make container 

orchestration systems cloud-aware.  The scheduler optimizes the 

initial placement of containers, the autoscaler enables the current 

demand for resources to be met and underutilized or idle nodes 

to be shut down, while the rescheduler allows for the initial 

placement of containers to be revised at runtime for better 

resource utilization. Similarly, to the previously mentioned 

works, our solution builds on Kubernetes. However, in contrast 

to the aforementioned works, we rely on the native scheduling 

and orchestration mechanisms of Kubernetes. We provide an 

availability management solution without altering the default 

behavior of Kubernetes. This will ease the integration and the 

adoption of the availability management solution. 

Kang et al. in [17] propose a microservice based architecture 

and use containers to operate and manage the cloud 

infrastructure services. In their architecture, each container is 

monitored by a sidekick container and in case of failure, 

recovery actions are taken. In their experiments, the considered 

stateful microservice is a MySQL database in the active-active 

mode. For synchronizing data between microservice instances, 

they suggest shared storage and application level data 

replication. In the former, all MySQL microservice instances 

access the same data while in the latter the database process 

replicates the data across the cluster. However, one cannot 

guarantee service recovery and continuity only by replicating the 

state data between microservice instances. For recovery with 

service continuity, a microservice instance needs to detect or be 

notified about the failure to access the replicated data and 

continue the service. Also, it should be clear where the state data 

of each microservice instance is stored. In our solution, a state 

replication mechanism is provided through which the active pod  

can replicate its state data to the standby pod and a third party 

(the HA State Controller) notifies the standby pod if its 

corresponding active pod fails. Moreover, each pod stores its 

data separately and is aware of the location of its data. From the 

perspective of the adoption of the proposed solution in practical 

scenarios, the authors in [17] opted for their own implementation 

of a microservice architecture instead of building on top of the 

existing ecosystem such as Kubernetes and Docker Swarm. Our 

solution is based on Kubernetes’ principles and has been 

integrated easily with Kubernetes, and thus it could easily be 

adopted in practice. Our solution closes existing gaps in 

Kubernetes with respect to stateful microservice-based 

applications. 

Netto et al. in [18] propose KRaft, an incorporation of the 

Raft [19] consensus algorithm in Kubernetes for state machine  

replication. With this incorporation, requests sent to the 

Kubernetes managed application can be executed in the same 

order by all containers which results in synchronizing the states 

of all containers. In their work, containers include processes for 

communicating with the Kubernetes API server. Through this 

communication, each container periodically asks about the IP 

addresses of other replicas. In the original Raft algorithm, it is 

only the leader that can accept requests. However, in 

Kubernetes, all replicas can receive requests. Therefore, in their 

work, they made modifications to the containers so when a non-

leader replica receives a request, it redirects the request to the 

leader and after the request is executed, the leader receives the 

request and sends it back to the client. This way, if the leader 

fails, other replicas can become the leader and continue the 

service. Compared to our solution, the level of protection 

provided by the KRaft algorithm is stronger. However, this 

comes at the cost of increase in the resource usage. With the 

KRaft algorithm, to handle one failure, for each container that 

provides a service two extra containers need to be running. With 

our solution, however, one extra container is enough for 

recovering the service after a single failure. With respect to the 

methodology, the solution in [18] was only evaluated from the 

perspective of resource consumption (CPU, memory, 

throughput, and latency). However, a key characteristics of 

microservices and application managed with Kubernetes is their 

flexibility of scaling. This has not been handled in [18] in 

contrast to our solution  and the experiments we conducted.   

TABLE V. COMPARISON WITH RELATED WORK 

Related 

work 

Supported 

workload type 

Container management objective 

Stateful  Stateless Elasticity Availability Scheduling 

[17] X   X  

[18] X   X  

[28]  X X  X 

[29]  X   X 

[30]  X X  X 

[31]  X   X 

Our 

work 
X  X X 

 

 

VII.  CONCLUSION 

In this paper, we evaluated the availability provided by 

Kubernetes’ repair actions for stateful applications and proposed 

a solution to improve this availability. Our solution enables the 

recovery of the service independently from the repair of the 

failed pod. It proposes a SC which allows for failure handling at 

the platform (i.e., Kubernetes) level by automatically redirectig 

services to healthy pods through the management of secondary 

labels. The SC is also capable of managing the availabilty of the 

application when it is scaled, i.e. the number of pods changes, 

by forming and maintaining  pairs of active-standby pods. 



In our evaluations of the SC it was shown that integrating 

our solution improved service recovery by 50% on average. 

However, we observed that when a scaling event happened 

while the SC was carrying out a failover, the outage time 

increased by 16% and the HA state assignment time also 

increased by 48% for the scale-out scenario. Moreover, we 

measured the scaling overhead of the SC integrated with 

Kubernetes between 7.5% and 10.5%. We also observed that 

both scaling and HA state assignment were done faster when the 

application was deployed by a Deployment controller as 

opposed to when it is deployed by a StatefulSet controller. 

Indeed, unlike StatefulSet controllers, the Deployment 

controllers do not add or delete pods in any particular order and 

one by one. While the fast deployment and HA state assignment 

of pods can be considered as a reason to deploy an application 

by a Deployment controller, one should consider the potential 

drawbacks of deploying stateful applications with Deployment 

controllers as well. In particular, considering our SC with 

Deployment controllers, service protection cannot be guaranteed 

in and after scale-in, because Deployment controllers do not 

scale-in the application pods in a guaranteed order and therefore 

active-standby pairs of pods might not be deleted at scale-in 

together. We also evaluated the availability provided by the SC 

when multiple active pods failed simultaneously, and observed 

that the later the failure of a pod was detected by the SC, the 

longer its recovery took.  

We identify high resource usage as a limitation of our 

solution which is related to the 2N redundancy model where 

each standby microservice protects only one active 

microservice. As future work, this limitation can be addressed 

by implementing other redundancy models to share a standby 

microservice instance between a number of active microservice 

instances. Another limitation of our solution is that service 

protection is not guaranteed with Deployment controllers in 

scale-in scenarios. Our solution can be modified to reassign 

active and standby states to remaining pods after a scale-in so 

we can ensure that no active (or standby) pod will lose its peer. 
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