
A Kubernetes Controller for Managing the Availability of

Elastic Microservice Based Stateful Applications*

Leila Abdollahi Vayghan

Engineering and Computer

Science

Concordia University

Montreal, Canada

l_abdoll@encs.concordia.ca

Mohamed Aymen Saied

Computer Science and Software

Engineering Department

Laval University

Quebec, Canada

mohamed-

aymen.saied@ift.ulaval.ca

Maria Toeroe

Ericsson Inc.

Montreal, Canada

maria.toeroe@ericsson.com

Ferhat Khendek

Engineering and Computer

Science

Concordia University

Montreal, Canada

ferhat.khendek@concordia.ca

Abstract— The architectural style of microservices has been

gaining popularity in recent years. In this architectural style, small

and loosely coupled modules are deployed and scaled

independently to compose cloud-native applications. Carrier-

grade service providers are migrating their legacy applications to

a microservice based architecture running on Kubernetes which is

an open source platform for orchestrating containerized

microservice based applications. However, in this migration,

service availability remains a concern. Service availability is

measured as the percentage of time the service is provisioned. High

Availability (HA) is achieved when the service is available at least

99.999% of the time. In this paper, we identify possible

architectures for deploying stateful microservice based

applications with Kubernetes and evaluate Kubernetes from the

perspective of availability it provides for its managed applications.

The results of our experiments show that the repair actions of

Kubernetes cannot satisfy HA requirements, and in some cases

cannot guarantee service recovery. Therefore, we propose an HA

State Controller which integrates with Kubernetes and allows for

application state replication and automatic service redirection to

the healthy microservice instances by enabling service recovery in

addition to the repair actions of Kubernetes. Based on experiments

we evaluate our solution and compare the different architectures

from the perspective of availability and scaling overhead. The

results of our investigations show that our solution can improve

the recovery time of stateful microservice based applications by

50%.

Keywords— Microservices; Containers; Kubernetes; Failure;

Availability; Elasticity

I. INTRODUCTION

With the adoption of cloud computing [1], the microservices

architectural style [2] has drawn a substantial amount of

attention in the software engineering community. The

microservice based architecture tackles the challenges of

building cloud-native applications that leverage the

opportunities given by the cloud infrastructure [3].

Microservices [4] are a realization of the service-oriented

architectural style of building software composed of small

services that can be deployed and scaled independently [5]. Each

microservice has a separate business functionality, runs as a

* This paper is an extended version of [13].

separate process, and communicates through lightweight

mechanisms [2].

The fine granularity of this architectural style makes the

scaling flexible and efficient as each microservice can evolve at

its own pace. Moreover, compared to monolithic applications,

the small microservices can restart faster in case of failure

recovery or at the time of their upgrade. Microservices are

loosely coupled and the failure of one microservice should not

affect other microservices of the system. Because of these

characteristics, adopting the architectural style of microservices

can improve the service availability of applications [2]. Service

availability is a non-functional requirement defined as the

percentage of time a service is provisioned [6]. High Availability

(HA) is achieved when the system is available at least 99.999%

of the time. Therefore, the total downtime allowed in one year

for highly available systems is around 5 minutes [7].

To leverage the benefits of microservice based architectures,

one needs to use technologies aligned with the characteristics of

this architectural style. Containerization is a technology which

enables virtualization at the operating system level [8].

Containers are lightweight and portable and therefore, they are

suitable for building microservices. Docker [9] is the leading

container platform which packages the application code and its

dependencies together to ship them as a single container image.

Containers are running instances of container images. Even

containers running on the same machine are isolated and are not

aware of each other. Thus, there is a need for an orchestration

platform to manage the deployment of containers. Kubernetes

[10] is an open-source container orchestration platform which

enables the automated deployment, scaling, and management of

containerized applications. Kubernetes, through its monitoring

and auto-healing mechanisms, alleviates the complexity of

implementing application resiliency. Kubernetes has become the

leading orchestration platform for containerized microservice

based applications.

Organizations migrate their legacy applications to cloud-

native architectures by adopting the architectural style of

microservices [11]. These microservice based applications are

containerized and orchestrated by Kubernetes predominantly.

The characteristics of microservices and containers – such as

being small and lightweight – naturally contribute to improving

service availability [12]. Kubernetes heals its managed

microservices [10] by restarting the failed containers and

replacing or rescheduling them when their hosts fail. Moreover,

to ensure access only to healthy containers, Kubernetes does not

advertise the unhealthy containers until they are ready again.

Nevertheless, these measures may not be sufficient for carrier-

grade service providers and service availability as an important

non-functional requirement still remains a concern for them.

Redundancy is the most adopted mechanism for enabling

HA [6] and Kubernetes automatically replicates microservice

instances considering them independent. However, such

replication of microservice instances can only improve the

service availability of stateless microservice based applications.

The reason is that only stateless microservices have

interchangeable instances and therefore can be easily replaced.

The same does not hold for stateful microservices, whose current

operations depend on the result of their previous operations.

With stateful microservice based applications, each

microservice instance has its own state, which need to be known

to other microservice instances to be able to take over when it

fails. Therefore, replicating a stateful microservice instance

requires replicating its state to maintain its service availability

with continuity. To address this issue, stateful microservice

based applications are often deployed as microservice instances

that store their states in external databases making them virtually

stateless. The assumption is that the database takes care of the

data replication. Unfortunately, this replication does not

necessarily improve service availability. Indeed, although the

state is replicated and available in the database for other

instances, the microservice instances are not aware of each other

and each other’s failure. Hence, they cannot automatically

resume the service of each other if failure happens. Kubernetes

also provides some support for the deployment of stateful

microservice based applications. In this paper, we discuss the

reference architectures offered by Kubernetes for managing

stateful microservices; and we discuss their availability

challenges. In a previous work [13], to address these challenges

we proposed an HA State Controller that improves the

availability of stateful microservice based applications deployed

with Kubernetes. This HA State Controller allows for the

automatic service redirection to the healthy microservice

instances through the management of secondary labels.

However, the elasticity of such microservice based applications

was not considered. Our solution in [13] only allowed for one

active and one standby microservice instances.

This paper extends our previous work [13] as follows:

• We enhance the HA State Controller to manage the
availability of an application as it scales in and out
by allowing multiple active and standby
assignments. In other words we enhance the HA
State Controller in [13] to work with multiple active
and standby instances, which may dynamically
change over time due to workload change.

• We evaluate the enhanced HA State Controller
from the perspectives of availability and scaling
overhead through a series of experiments. The goal
of our experiments is to answer the following
research questions (RQ).

o RQ1: What is the impact of the HA State

Controller on the provided availability?

o RQ2: What is the impact of scaling during

failover on the availability that the HA State

Controller can provide for its managed

microservices?

o RQ3: What is the overhead of the HA State

Controller at scaling?

o RQ4: What is the impact of simultaneous

failures of active pods on the outage of each

failed pod?

The rest of the paper is organized as follows. In Section II,

we provide some background information on Kubernetes. In

Section III, we discuss the Kubernetes architectures for

deploying stateful microservice based applications and their

challenges with respect to availability. To address these

challenges, we propose a solution in Section IV and evaluate our

proposal in Section V through a set of experiments. We discuss

the related work in Section VI, followed by a conclusion in

Section VII.

II. BACKGROUND

Kubernetes is the leading orchestration platform for

containerized applications.

A Kubernetes’s cluster can be composed of virtual or

physical machines and it follows the master-slave architecture.

The processes required to bring the cluster to a desired state run

on the master node. To ensure the HA of the cluster

management, the master node and its processes should be

replicated [14].

Kubernetes deploys and manages containerized

microservices in the form of pods [10]. A pod is the smallest unit

whose lifecycle is managed by Kubernetes. Multiple containers

can be grouped into a single pod. They will all get the same IP

address, which is the virtual IP address of the pod. Containers

within a pod may be accessed separately through different ports.

Considering that one of the goals of the microservice based

architecture is to make the building blocks of an application

loosely coupled, it is recommended to include only one

container in each pod [10].

Controllers are entities that manage the pods’ lifecycle and

responsible for creating and maintaining the required number of

pods according to the specification given in the pod template in

the controller’s resource specfication. Kubernetes has different

types of controllers each of which is used for a different purpose.

For example, Deployment controllers are mainly used for

managing stateless application pods while StatefulSet

controllers manage stateful application pods [10].

Controllers delete and reschedule pods dynamically based on

changes in the cluster. Therefore, the IP addresses of pods

change often and are not reliable for communication. Instead

Kubernetes offers customizable labels assigned to pods to select

them, e.g., for communication based on these labels. From

Kubernetes perspective these labels stay the same when pods are

rescheduled. Kubernetes also defines an abstraction called

Service, which has a static virtual IP address. Services select

pods as their communication endpoints based on their labels. All

requests received at the IP address of a service are load balanced

among the service endpoints in a random or round-robin manner

[10].

As mentioned above, in Kubernetes stateful application pods

are deployed by StatefulSet controllers. To cater for the

statefulness, StatefulSet pods are provided with storage for their

state data. Kubernetes abstracts the details of storage

provisioning by two API resources: Persistent Volume (PV) and

Persistent Volume Claim (PVC). A PV is a piece of storage in

the cluster whose lifecycle is independent of the pods using it.

PVs can be provisioned dynamically or statically. A PVC, on the

other hand, is a request for storage made by a pod that binds the

pod to a specific PV. Binding means that if the pod is restarted

or rescheduled with the same identity, its PVC will be assigned

to the same PV [10]. Moreover, in the event where the

StatefulSet controller receives a request to scale-in the

application, it will only remove the required number of pods and

will keep the PVCs. However, the state data stored on the PVCs

will not be reachable by clients until their corresponding pods

are recreated. For stateful applications, the assumption is that the

application state data are stored on a persistent storage

represented by the PV, which is outside of the Kubernetes

cluster. Meaning that, Kubernetes is not in charge of managing

the PVs and it only consumes them.

III. STATEFUL MICROSERVICE BASED ARCHITECTURES AND

AVAILABILITY MANAGEMENT WITH KUBERNETES

In this section, we describe the Kubernetes architectures

offered for deploying pods of stateful microservice based

applications and discuss their challenges with respect to

availability.

A. Architectures for Deploying Stateful Applications with

Kubernetes

For stateful microservice based applications, Kubernetes

provides different solutions. Kubernetes’ primary controller for

deploying stateful applications is the StatefulSet controller. A

StatefulSet controller specification includes a PVC template

which describes the characteristics of the PVs such as capacity,

access mode, etc., that a pod of the StatefulSet can be bound to.

For each pod created by a StatefulSet controller, a PVC is

created based on the PVC template that binds the pod to a PV,

which matches the criteria described in the PVC template. As a

result, each pod has a separate PV where it can store its state

data. A PV is accessible only by the pod it is bound to. This

means, that a pod cannot access other pods’ PVs and state data.

Therefore, a mechanism such as sticky sessions is needed to

ensure that a client is always served by the same server (i.e.,

same pod). The reason is that a client’s request should always be

sent to a pod who has the client’s state data.

Fig. 1 shows the architecture for deploying stateful

applications using a StatefulSet controller.

As shown in Fig. 1, the names of StatefulSet pods are

composed of the name of the StatefulSet controller (“MS”) and

an ordinal index (MS-0, MS-1… MS-(n-1)). One of the

differences between StatefulSet pods compared to pods

managed by other controllers is that they are created and deleted

sequentially. That is, MS-1 will be created only when MS-0 is

running and ready. Another difference is that StatefulSet pods

have persistent identities. Meaning that if MS-0, which stores its

state data in PV0, fails, the StatefulSet controller will restart the

pod with the same identity. Therefore, the new incarnation of

MS-0 will be bound to PV0 again, and it will have access to its

state data stored by its previous incarnations.

Although StatefulSet controllers are the recommended

controllers for deploying stateful application pods, one can use

Deployment controllers for this type of application as well.

Similar to StatefulSets, the stateful Deployment pods can store

their state data in a PV. However, with Deployment controllers,

all pods have to share the same PV. Accordingly there is no PVC

template in a Deployment controller specification. Instead, one

PVC is created before deploying the application and it will be

used by all pods of the application once they are deployed by the

Deployment controller. Fig. 2 shows the architecture for

SS

StatefulSet

name: MS
replicas: n

service:
-name: myService
-selector:

app: myApp
MS-(n-1)

labels:
app: myApp

PV-(n-1)P
V

C
-(

n
-1

)

MS-0

labels:
app: myApp

PV-0P
V

C
-0

…

Fig. 1. Deploying stateful applications with StatefulSet controllers.

Deployment

replicas: n

service:
-name: myService
-selector:

app: myApp
PodA(n-1)

labels:
app: myApp

PodA0

labels:
app: myApp

PV-0

P
V

C
-0

D

…

Fig. 2. Deploying stateful applications with Deployment controllers.

deploying stateful applications using a Deployment controller.

In this architecture, the PV is shared between all pods.

Therefore, all pods can have access to all state data and could

serve any client.

B. Availability Challenges

Kubernetes provides an auto-healing mechanism for the
applications it manages through restarting their failed
containers/pods on the same host, or rescheduling them on
another when their host fails. Although these repair actions can
improve the availability of the applications deployed with
Kubernetes, state replication remains the most important feature
to achieve high availability (HA).

As discussed before, Kubernetes’ controllers such as

StatefulSet and Deployment are able to maintain multiple pod

replicas. However, from an availability perspective, only

stateless applications benefit from replicating their pods. The

reason is that that the mechanism provided for replicating the

state of the pods is not sufficient. The availability of stateful

applications is not improved by increasing the number of pod

replicas. For stateful applications still the only mechanism for

maintaining availability with Kubernetes is through the repair of

the failed pods. Let us explain our view through an example.

If the application is deployed by a StatefulSet controller as

shown in Fig. 1, if one pod fails, the other pods cannot resume

the service of the failed pod because: (1) the state data for each

pod are stored separately and other pods do not have access to

them. (2) the pods are isolated and are not aware of each other’s

failure. Therefore, we can only rely on the failed pod being

restarted with the same identity so it can restore from its own PV

the last stored state before the failure. This means that the service

can be recovered with continuity, but the clients need to wait for

the failed pod to be restarted, which may be too slow for some

applications.

Moreover, in certain failure scenarios, the failed pod will not

be repaired by Kubernetes. For example, with the architecture in

Fig. 1, if the service outage is due to node shutdown, the pod

will not be restarted and the service will not be recovered unless

the node rejoins the cluster. The reason is that Kubernetes cannot

differentiate between node failure and network partitioning, and

to avoid having multiple pods running on different nodes with

the same identity, it will not automatically create a pod to replace

the one on the unresponsive node. Unlike StatefulSet controllers,

pods deployed by Deployment controllers (Fig. 2) are

automatically rescheduled on other nodes when their hosts fail.

However, this would not mean that the failed pod’s service is

recovered. The reason is that Deployment controller pods do not

have sticky identities and after restart, they will have a new

identifier and they will not be aware of the identity or the

location where the failed pod’s state data is stored. Thus, we

cannot rely on the restart procedure for recovering the stored

service state.

In a previous work [13], we evaluated the level of availability

Kubernetes can provide for stateful applications solely through

its repair actions. In our experiments in the scenarios where

service outage was due to application container failure, the total

service outage was 2.159 seconds on average. This meant that

for our application to meet the high availability requirements, no

more than 146 application container failures could be tolerated

in one year. We also conducted experiments with the scenario

where the service outage was due to node reboot. In this

scenario, the node became responsive again and rejoined the

cluster and therefore, the service was recovered. However, the

service recovery depended on the node start-up time, which in

our experiments was measured 126.4 seconds on average, which

resulted in a total outage of 164.507 seconds. This meant that to

meet high availability requirements, only one failure due to node

reboot could be tolerated in one year.

These experiments showed that relying on the repair actions

of Kubernetes was not enough for satisfying high availability

requirements and additional mechanisms were needed for

Kubernetes to decouple service recovery from the repair of the

failed pod.

In the next section, we introduce our solution that integrates

with Kubernetes and improves the availability by recovering the

service before the failed pod is repaired by Kubernetes.

IV. A STATE CONTROLLER ENHANCED WITH ELASTICITY

As mentioned earlier, the main challenge with respect to

availability for the applications deployed with Kubernetes is that

in case of failure, the failed pod should be repaired for the

service to be recovered. It is possible to address this issue by

keeping a redundant pod (i.e., a standby pod) which has the state

of the failed pod that was providing the service (i.e., active pod),

and therefore it can take over in providing the service. In

addition to the active pod replicating its state to the standby pod,

it is necessary for the standby pod to be notified when its active

pod has failed. Moreover, elasticity also needs to be considered.

That is, multiple active pods providing a service should be

possible whose states need to be protected by standby pods. It

should be possible to scale out/in the pods while maintaining

service availability.

We address these issues by a solution which integrates the

concept of HA states (i.e., active and standby) with Kubernetes

and improves the availability of stateful microservice based

applications by recovering the service before the failed pod has

been repaired. In this solution, a HA State Controller (SC)

component is integrated with Kubernetes. It communicates with

the Kubernetes API server and monitors the cluster events and

reacts to them. The proposed SC assigns an HA state to running

pods and provides a mechanism for the active pod to replicate

its state data to its standby pod. The SC detects the scale-out and

scale-in events and reacts to them by assigning to and removing

from pods their HA states. The State Controller can have more

than one state replication service created automatically. The

State Controller holds pairs of pods as active and standby and

identifies a pair by adding a “peer” label to the standby pod,

which gets its corresponding active pod’s name. The SC also

reacts to pod failures. In case of failure of an active pod it notifies

its corresponding standby pod for initiating the failover process.

Fig. 3 provides an overall picture of the State Controller
behavior. The first part of this diagram is about HA state
assignment and pod labelling while the second half is about the
State Controller reactions to the events. In addition to this high
level behavior of the state controller we provide a lower level
algorithm (Algorithm 1). Hereafter, we summarize the steps in
this high level diagram and put them in relation with the lower
level algorithm (Algorithm 1), showing for each step how it is
implemented and the corresponding instructions in Algorithm 1
using labels.

1. The State Controller sorts running pods based on their
creation time (L30)

2. As long as there are pods without HA state and peer labels
(L31:L39):

a. It picks the oldest two pods (L33)

b. It assigns HA state and peer labels to both pods and
removes them from the sorted list (L34:L38)

3. The State Controller now watches the events of the
Kubernetes API server (L4:L27)

a. If the event corresponds to the service state of a pod
changing to “not ready” then this is a failure event
(L7:L19)

i. If the failed pod had the active HA state (L9:L15)

1. The State Controller assigns active
HAState to the standby pod which was the
peer of the failed active pod. The new
active pod becomes the endpoint of the
application service and restores the last
state from its storage area in the PV and
resumes the service.

2. The State Controller assigns standby
HAState to the failed pod and deletes the
state replication service of the failed active
pod

3. The State Controller creates the replication
service for the new active pod

ii. If the failed pod had the standby HAState, the State
Controller ensures that the failed pod is assigned the
standby HAState after it is repaired (L16:L19)

b. If the event corresponds to a scaling event (L20:L26)

i. In case of a scale out, then go to step 1 (L22)

ii. In case of a scale in, the State Controller deletes the
state replication service for a deleted active-standby
pair (L25)

In the following subsections, we elaborate on these different
responsibilities of the State Controller (i.e. HA state assignment,
state replication, handling elasticity, handling failures).

The proposed SC can be integrated with Kubernetes without
any change to the Kubernetes source code. It can be integrated
with StatefulSet controllers (see Fig. 4) as well as with
Deployment controllers (see Fig. 5). The difference between
these two architectures is in the way the pods of each controller
store their state data. As discussed in Section III, with
StatefulSet controllers, each pod has a separate persistent
volume (Fig. 4) while with Deployment controllers all pods
share the same persistent volume (Fig. 5). Therefore, in the
latter, each pod creates a storage area for itself when it is
deployed in order to separate its state from other pods.

Fig. 3. Activity diagram of the HA State Controller.

A. HA State Assignment

One role of the SC is to assign an HA state to pods through

the management of secondary labels and environment variables.

That is, determining whether a pod should be active or standby.

Algorithm 1. HA State Controller algorithm

In order to do so, the SC communicates with the API server

and gets the list of running pods and sorts them based on their

creation time. Out of this ordered list of pods, the SC selects

pairs of pods and for each pair, it assigns a secondary label called

the “HAState” label with the value of active to one pod and

standby to the other pod. The assumption is that an even number

of pods are deployed. In this solution, the service that exposes

the application (i.e., application service) redirects the incoming

requests to pods that have the HAState label with the value of

active. Therefore, when the SC assigns active HA state to pods,

it adds these pods to the endpoints list of the application service.

In addition, the SC identifies pod-pairs by adding a “peer” label

to pods. The standby pod’s peer label is set to its corresponding

active pod’s name and the active pod’s “peer” label gets its

corresponding standby pod’s name.

In addition to the labels, the SC also creates and populates an

environment variable – the HAState variable – within each pod

to make the pod aware of its HA state. A process is included in

the container image of all pods, which we call the entrypoint

process, periodically checks the “HAState” variable and makes

decisions according to the changes that the SC makes to the

“HAState” variable. For example, if the “HAState” variable

changes from standby to active, it will call the service resume

process.

B. State Replication

Besides assigning HA states to pods, the SC implements a

mechanism for the active pod to replicate its state data to its

standby pod. The SC enables the state replication by

automatically creating a Kubernetes service for each pair of

active-standby that exposes the standby pod to the active pod.

The state replication service redirects the incoming requests to a

pod that has the “HAState” label with the value of standby and

the “peer” label with the value of the active pod’s name. The SC

names the state replication service for each pair as “replicate-

{the active pod’s name}”. Therefore, the active pod does not

need to know the IP address and can discover the service based

on this naming pattern. For example, an active pod named

PodA0 sends its state data by an HTTP request to a state

replication service named “replicate-PodA0”. This is done in the

pod’s checkpointing process, which periodically also saves the

state data in the storage. This way, the standby pod will have the

state of the active pod. Although the checkpointing process for

r/w

SS

StatefulSet

API Server SC

Application Service:
Selects pods with labels:

app: VoD
HAState: Active

Replicas = n

app: VoD
HAState: Active

VoD-0PV0

Replication Service:
name: replicate-VoD-0
Selects pods with labels:

app: VoD
HAState: Standby
Peer: VoD-0

r/w

app: VoD
HAState: Active

VoD-(n-2) PV(n-2)

replicates

w

app: VoD
HAState: Standby
Peer: VoD-0

VoD-1PV1

Replication Service:
name: replicate-VoD-(n-2)
Selects pods with labels:

app: VoD
HAState: Standby
Peer: VoD-(n-2)

replicates

w

app: VoD
HAState: Standby
Peer: VoD-(n-2)

VoD-(n-1) PV(n-1)

. . .

. . .

. . .

Fig. 4. Integrating the State Controller with StatefulSet controllers.

replicates

r/w

API Server SC

Application Service:
Selects pods with labels:

app: VoD
HAState: Active

Replicas = n

app: VoD
HAState: Active

PodA0

Replication Service:
name: replicate-PodA-0
Selects pods with labels:

app: VoD
HAState: Standby
Peer: PodA0

r/w

app: VoD
HAState: Active

PodA(n-2)

w

app: VoD
HAState: Standby
Peer: PodA0

PodA1

Replication Service:
name: replicate-PodA-(n-2)
Selects pods with labels:

app: VoD
HAState: Standby
Peer: PodA(n-2)

replicates

w

app: VoD
HAState: Standby
Peer: PodA(n-2)

PodA(n-1)

. . .

. . .

Deployment

D

PodA(n-1)

storage area

PV0

PodA(n-2)

storage area

PodA1

storage area

PodA0

storage area

Fig. 5. Integrating the HA State Controller with Deployment controllers.

every application can be implemented in a different way, the

state replication service is application agnostic as long as the

application is able to store and transfer its state data through

HTTP requests.

C. Handling Elasticity

For microservice based applications, it is common for the

number of microservice instances to increase or decrease

frequently. Therefore, we designed the SC in such a way that it

can handle multiple active and standby assignments, it detects

the scale-out and scale-in events, and reacts to the addition and

deletion of pods. The assumption is that the pods are added or

deleted in pairs. For the scale-out scenario, for every pair of pods

that are deployed, the SC assigns active and standby HA state to

pods and creates a state replication service. The SC guarantees

service protection for scale-in scenario only if the application is

deployed by a Statefulset controller. The reason is that unlike

Deployment controllers, when a Statefulset controller receives a

scale-in request, it deletes the requested number of pods in the

reverse order that they were created. The SC reacts to the scale-

in event by removing the pairs from its list and deletes their

corresponding state replication services.

D. Handling Failures

An important task of the SC is to detect the failure of active

pods and inform their corresponding standby pods to resume the

service, which was provided by the failed active pod. When a

pod fails, its service state changes into “not ready” and this

change is recorded as an event by the API server. To detect the

failure of pods the SC monitors the API server events. If the

failed pod had the standby HA state, the SC will wait for the pod

to be repaired and will assign the standby HA state to the

repaired pod again. If the failed pod had the active HA state, the

procedure will be different. In this case, the SC will change the

“HAState” label and variable of the standby pod corresponding

to the failed active pod from standby to active. As mentioned

before, when the “HAState” variable changes from standby to

active, the entrypoint process will call the service resume

process. Since the new active pod has the last saved state of the

failed active pod, it is able to resume the service from that point

as soon as it is added to the endpoint list of the application

service due to the change the “HAState” label. The SC also

removes the corresponding state replication service. The SC will

assign the standby HA state to the failed pod after it is repaired.

Moreover, a new state replication service will be created to

which the newly active pod replicates its state data.

V. AVAILABILITY AND PERFORMANCE EVALUATION

In this paper, we evaluate through a set of experiments the

achievable availability as well as the scaling overhead of

integrating the SC with Kubernetes.

A. Experiments’ Settings

The setting for these experiments is a Kubernetes cluster in

a private cloud which is composed of eight worker nodes and

one master node running on the OpenStack cloud. Ubuntu 16.04

is the OS running on all nodes. Kubernetes 1.12.1 runs on all

VMs and the container engine is Docker 17.09. Network Time

Protocol (NTP) [15] is used for time synchronization between

the nodes. The application deployed is a stateful Video on

Demand (VoD) application, where each client can request a

video to be streamed. The same pod template is used for all

experiments that has one container image in which the VideoLan

Client (VLC) [16] is installed as the video streaming application.

To ensure service continuity, the container image has a

checkpointing process which, whenever the pod receives a

request from a client to stream a video, starts to checkpoint the

elapsed time of the video to the location where its PV is

mounted. The streaming position, which is the state data in this

case, is stored for each client separately.

B. Metrics

In our experiments, we measure the following metrics:

Availability metrics: The metrics we measure to evaluate

the availability in our experiments are composed of reaction

time, repair time, recovery time, and total outage time. The

reaction time is measured as the time between the failure event

and the first reaction of Kubernetes that reflects that the failure

event was detected. The repair time is the time between the first

reaction of Kubernetes and the repair of the pod failed due to the

failure event. The recovery time is the time between the first

reaction of Kubernetes to the failure event and when the service

is available again. The total outage time. that is, the duration for

which the service was not available, is the sum of the reaction

time and the recovery time. These metrics and their relations are

shown in Fig. 6. In Fig. 6 (a) the sequence of events is for

Kubernetes without the SC whereas in Fig.6 (b), the sequence is

for the architectures where the SC is integrated. As it is depicted

in Fig. 6, the SC reduces the outage time by recovering the

service before the failed unit is repaired.

Scaling time: The delay from the moment of sending the

scaling request until the last pod is deployed and ready (or

deleted, in case of scale in) in reaction to the scaling request.

reaction time recovery time

repair time

outage time

first reaction of
Kubernetes

failed unit is
repaired

service is
availablefailure

time

a)

b)

reaction time recovery time

outage time

first reaction of
Kubernetes

failed unit is
repaired

service is
availablefailure

time

repair time

Fig. 6. Availability metrics. a) for the measurement of the architetcures

without the SC. b) for the measurement of the architetcures with the SC.

HA state assignment time: The delay from the moment of

sending the scaling request until the State Controller assigns the

HA state to the last added pod.

In the following, the application is always scaled in or out by

two. That is, the number of pod replicas is always even.

C. Experiments, Results, and Analysis

In this section, we evaluate the achievable availability as

well as the scaling overhead of integrating the SC enriched with

elasticity with Kubernetes. We aim at answering the research

questions introduced earlier in the paper. Note that the

measurements shown in the tables represent averages of 10

different experiments.

a) RQ1: What is the impact of the SC on the provided

availability?

To address this research question, we measure the

availability metrics for the architectures in Fig. 1 and Fig. 2

(n=1) as a baseline. In these cases the number of pods will not

impact the availability, because other pods would not know

about the failure and do not have access to the state data of the

failed pod, therefore cannot recover the service. We compare the

results with those of the architectures in Fig. 4 and Fig 5 (n=2)

where the SC is integrated with Kubernetes.

Experiments

In this set of experiments, we are interested in measuring the

service outage when a failure happens. While our solution can

handle different types of failures (e.g., pod process failure and

node failure), we only consider the failure scenario where

service outage is due to application container failure. In this

scenario, the failure is simulated by killing the VLC container

process from the OS. When Kubernetes detects the crash of the

VLC container, it brings the pod to a state where the pod will not

receive new requests. That is, it sets the pod’s service state to

“not ready”. This time marks the reaction time. The repair time

is marked by the time when Kubernetes restarts the VLC

container and repairs the pod, i.e. its service state is “ready”. The

service is considered recovered when the video has started

streaming from the last saved checkpoint before the failure.

Results and Analysis

The results of this set of experiments are shown in TABLE

I. The results show a 46% improvement of the recovery time

when the proposed SC is used with the StatefulSet controller and

55% improvement when the SC is used with the Deployment

controller. The reason for this improvement is that, unlike in

case of the architectures of Fig. 1 and Fig. 2, with the SC

integrated we no longer need to wait for the failed pod to be

repaired to have the service recovered. With the architectures of

Fig 4 and Fig. 5, after the reaction of Kubernetes to the failure

of the active pod (i.e. setting its service state “not ready”), the

SC changes the “HAState” label and variable of the standby pod

to active and accordingly this newly active pod will read the last

stored state from the storage and resume the service. The results

show that it takes longer for Kubernetes to repair the pod than it

takes for the SC to assign the active HA state to the standby pod.

We can also observe that integrating the SC and increasing the

number of pods add some overhead to the reaction time.

However, the increase in the reaction time is insignificant

compared to the improvement in the recovery time.

b) RQ2:What is the impact of scaling during failover on

the availability that the SC can provide for its managed

microservices?

 To answer this question, we consider the architectures in

Fig. 4 and Fig. 5 where the SC is integrated with Kubernetes.

We measure the availability metrics when a scaling request is

sent during the execution of a failover to evaluate the impact of

simultaneous scaling and failure events.

Experiments

We conduct this set of experiments with two

scenarios: scale-out and scale-in. For the scale-out scenario, we

consider both architectures of Fig. 4 and Fig. 5 where we have

one active and one standby pods (n=2). To simulate a failure,

we forcefully kill the application container of the active pod,

which streams the video. While the service is being recovered

by the SC, we request to scale the application to four pods. We

measure the availability metrics for the failed pod as well as the

scaling time and the HA state assignment time for the added

pods. We compare the availability metrics of this set of

experiments with those where no scaling event has happened

during failover. Moreover, we compare the scaling time and HA

state assignment time of this set of experiments with those

where no failure has happened during scaling the application.

In the scale-in scenario, we only consider the architecture

with the StatefulSet controller and we have two active-standby

pairs of pods (n=4). To simulate a failure we forcefully kill the

application container of the “oldest” active pod which streams a

video. To measure scaling time we also set the graceful

termination period of pods to zero. meaning that when a pod is

ordered to be terminated it is executed immediately. In this

scenario, we measure the availability metrics for the failed pod

as well as the scaling time for the deleted pod. We compare the

availability metrics of these experiments with those where no

scaling event had happened during failover. Again, we compare

the scaling time of this set of experiments with those where no

failure had happened during scaling the application.

TABLE I. THE IMPACT OF INTEGRATING THE SC WITH KUBERNETES ON THE

PROVIDED AVAILABILITY (RQ1).

Architecture

(unit = seconds)

Reaction

Time

Repair

Time

Recovery

Time

Outage

Time

StatefulSet controller
(Fig. 2, n=1)

0.679 1.029 1.480 2.159

StatefulSet controller

integrated with the SC
(Fig. 4, n=2)

0.719 1.083 0.793 1.512

Deployment controller

(Fig. 1, n=1)
0.554 1.021 1.534 2.088

Deployment controller
integrated with the SC

(Fig 5, n=2)

0.784 1.244 0.688 1.472

Results and Analysis

The results of this set of experiments are shown in TABLE

II. The results show that when a scaling event happens during

recovery, the outage time increases by 12% and 16%,

respectively, for the scale-out and scale-in scenarios. We also

evaluate the impact of scaling during failover on the scaling time

by comparing them with the experiments where the only event

is the scaling (without any simultaneous failure). The results of

the experiments for both scale-out and scale-in scenarios show

that when a failure happens during scaling, the scaling time

increases by 66% for the scale-out and by 12% for the scale-in

scenario. Moreover, for the scale-out scenario, the HA state

assignment time also increases by 56% on average. The reason

is that when scaling is triggered while a failover is in progress,

the SC is busy with the failover process and it assigns the HA

states with some delay.

It is important to note that TABLE II does not include results

for the scale-in scenario for an architecture where the SC is used

with a Deployment controller (as in Fig. 5). The reason is that in

this case the scale-in request may result in deleting the standby

pod of the failed active pod. Indeed, with this architecture, there

is no order associated with the pods that would apply at their

deletion, for example, when the application is scaled in.

Therefore, it is not possible to guarantee the simultaneous

execution of the service recovery and scale-in with this

architecture.

c) RQ3: What is the overhead of the SC at scaling?

In this research question, we are interested in evaluating the

impact of the SC on the time it takes for the application to be

scaled by Kubernetes. We conduct the experiments with the

architectures of Fig. 1, Fig. 2, Fig. 4, and Fig. 5.

Experiments

We conduct the experiments again for two scenarios: scale-

out and scale-in. We again set the graceful termination period of

the pods to zero. For the scale-out scenario, we consider all four

architectures where the number of pods initially deployed is two

(n=2). In each round of the experiments, we scale the application

from two pods to k pods where k gets one of the values in {4, 8,

16, 32, 64, and 128}. For this scenario, we measure the scaling

time and HA state assignment time.

For the scale-in scenario, we consider the same architectures.

However, in each round of the experiments, the number of pods

initially deployed (i.e., n) gets one of the values in {4, 8, 16, 32,

64, and 128}. In each round of the experiments, we scale in the

application to 2 pods. For this scenario, we only measure the

scaling time.

Results and Analysis

The measurements for the scale-out and scale-in scenarios

are shown in TABLE III and TABLE IV, respectively. For the

scale-out scenario (TABLE III), when the application is

deployed as a StatefulSet, integrating the SC has a scaling

overhead of 7.5% on average. Integrating the SC with a

Deployment controller also increases the scaling time by 10.5%

on average. The standard deviation for these measurements does

not go above 23% of the average. Moreover, as it is shown in

TABLE III and TABLE IV, the application deployed by a

Deployment controller have shorter scaling and HA state

assignment times compared to when it is deployed as a

StatefulSet. The reason is that the pods deployed by Deployment

controllers are created in parallel while with StatefulSet

controllers they are created in sequence which takes more time.

While fast start-up time can be considered as a benefit of

deploying the applications with Deployment controllers, one

should take into consideration that service protection is not

guaranteed with Deployment controllers in scale-in scenarios.

Indeed, Deployment controllers do not scale-in the application

in an ordered manner and the active-standby pairs of pods might

not be deleted together in the scale-in process. For the scale-in

scenario (TABLE IV), the scaling overhead of the SC with

StatefulSet controllers and with Deployment controllers is,

respectively, 31% and 27% on average. The standard deviation

for these measurements does not go above 28% of the average.

Similar to the scale-out scenario, we also notice that applications

deployed with Deployment controllers have a shorter scaling

time. The reason is the same, i.e., that the pods deployed with

Deployment controllers are deleted in parallel while with

StatefulSet controllers, they are deleted in a predefined order

which takes longer time.

TABLE II. EVALUATION OF THE PROVIDED AVAILABILITY WHEN SCALING HAPPENS DURING FAILOVER (RQ2).

Scenario Architecture Event
Reaction

Time

Repair

Time

Recovery

Time

Outage

Time

Scaling

Time

HA state

Assignment time

Scale-out

StatefulSet controller
integrated with the SC

(Fig. 4, n=2)

Active pod fails 0.719 1.083 0.793 1.512 NA NA

Application is
scaled out to 4

NA NA NA NA 4.234 5.653

Scaling and

failover overlap
0.689 1.161 1.012 1.701 7.049 7.293

Deployment controller
integrated with the SC

(Fig. 5, n=2)

Active pod fails 0.784 1.244 0.688 1.472 NA NA

Application is
scaled out to 4

NA NA NA NA 3.016 3.060

Scaling and

failover overlap
0.607 1.205 1.028 1.635 5.055 5.608

Scale-in

StatefulSet controller

integrated with the SC

(Fig. 4, n=4)

Active pod fails 0.719 1.083 0.793 1.512 NA NA

Application is

scaled in to 2
NA NA NA NA 0.712 NA

Scaling and

failover overlap
0.581 1.468 1.172 1.754 0797 NA

TABLE III. SCALING AND HA STATE ASSIGNMENT OVERHEAD FOR THE SCALE-OUT SCENARIO (RQ3).

Architecture

(n=2)

metric

(unit: seconds)
2 to 4 2 to 8 2 to 16 2 to 32 2 to 64 2 to 128

StatefulSet controller

(Fig. 2)
scaling time 4.099 15.056 47.722 119.674 297.470 753.045

StatefulSet controller integrated
with the SC (Fig. 4)

scaling time 4.234 16.692 49.937 131.726 312.037 842.068

HA state

assignment time
5.653 17.018 51.865 133.373 316.107 845.114

Deployment controller

(Fig. 1)
scaling time 2.979 4.459 7.956 15.237 31.574 80.694

Deployment controller

integrated with the SC (Fig. 5)

scaling time 3.016 4.914 8.856 17.428 35.248 92.240

HA state

assignment time
3.060 6.763 16.142 35.290 73.001 147.798

TABLE IV. SCALING OVERHEAD FOR THE SCALE-IN SCENARIO (RQ3).

Architecture

n={4, 8, 16, 32, 64, and 128}

metric

(unit : seconds)
4 to 2 8 to 2 16 to 2 32 to 2 64 to 2 128 to 2

StatefulSet controller (Fig. 2)

scaling time

0.555 1.353 2.613 5.459 11.440 26.062

StatefulSet controller integrated
with the SC (Fig. 4)

0.712 1.512 3.148 6.407 14.463 48.662

Deployment controller (Fig. 1) 0.566 0.827 1.370 1.944 3.375 7.007

Deployment controller

integrated with the SC (Fig. 5)
0.641 1.327 1.555 2.375 4.441 8.821

d) RQ4: What is the impact of simultaneous failures of

active pods on the outage time of each failed pod?

By this research question, we evaluate the SC performance

in terms of availability when multiple active pods fail at the same

time. Meaning that another failure happens while the SC is still

in the process of handling the failover for the previously failed

pod.

Experiments

We conduct a set of experiments with the architectures of

Fig. 4 and Fig. 5 where the SC is used, respectively, with a

StatefulSet controller and with a Deployment controller. For

each architecture, the number of deployed pods is equal to ten

(n=10). In each set of experiments, we simultaneously kill the

application container of k active pods where k takes values from

{1, 2, 3, 4, and 5}. In each round of the experiments, we measure

the availability metrics for each failed pod separately and

compare how simultaneous failures of multiple active pods

affects their availability metrics.

Results and Analysis

The measurements of the experiments for RQ4 are shown in

the diagrams of Fig. 7 and Fig. 8. These diagrams show that

when multiple pods fail simultaneously, the later the pod’s

failure is detected, the longer it takes for the SC to recover the

service for that pod. The reason is that the SC handles events in

a FIFO (first-in-first-out) manner, so when a pod’s failure is

detected, it is put as an event in a queue. The SC will recover its

service only after the recovery of other pods’ that were inserted

in the queue before this.

D. Threats to Validity

The following threats can affect the validity of our results.

First, we conducted our experiments in a relatively small

Kubernetes cluster. In larger clusters where the number of nodes

is high, Kubernetes may behave differently which might result

in different availability and scaling overhead measurements as

the Kubernetes’ performance can change in such clusters. Also,

for the scaling overhead measurements, the maximum number

of pods that could be deployed in a reasonable time was limited

to around 128 pods for a cluster with 8 worker nodes. With larger

clusters, it will be possible to measure the scaling time for a

larger number of pods and reach more accurate results.

Another threat to the validity of our results is related to the

tools and mechanisms used in our experiments for measuring the

time. We rely on the timestamps reported in Kubernetes and

Docker logs. However, one can instrument the containers in

order to achieve a more precise measurement. Finally, we only

considered the case of an on demand video streaming

application and other types of applications should be considered

before generalizing the results.

VI. RELATED WORK

 Researchers and practitioners have adopted the

microservices paradigm in several domains, such as the cloud

computing [20, 21, 22], service computing [23, 24], internet of

things [25], to take advantage of its benefits both in the

development and operational phases [20, 26, 27]. In this paper,

we are interested in the operational phase. Thus, in our review

of related work, we first discus the state of the art on

microservices and containers orchestration, before focusing on

works related to the availability of stateful microservice-based

applications. Table V summarizes this section by categrozing all

related work, including our paper, with respect to certain criteria

such as workload type and management objectives.

Kubernetes is the de-facto open-source container

orchestration platform. Several recent studies built on

Kubernetes to propose enhancement and more efficient

container scheduling and orchestration approaches. In [28]

Zhong et al. propose a task allocation strategy to make container

scheduling and scaling decisions in a cost-efficient manner

through resource utilization optimization and elastic resource

pricing. Three main features were considered, first the support

of heterogeneous job configurations to optimize the initial

placement of containers into existing resources by task packing.

Second, a cluster size adjustment to meet the changing workload

through autoscaling algorithms is proposed. Finally, the

rescheduling mechanism to shut down underutilized VM

instances for cost-saving and reallocate the relevant jobs without

losing task progress is considered. Pascinsk et al. [29] developed

a Kubernetes-based Global Cluster Manager specialized in

geographic orchestration of network-intensive workloads. It

supports autonomic task arrangement. This manager

automatically selects the best geographically available

2
.4
9
1

2
.8
5
5

2
.2
1
5

2
.4
7
5

2
.6
9
3

3
.3
2
8

2
.8
5
8

2
.7
9
0

2
.9
1
3

2
.9
8
1

3
.5
3
4

3
.4
9
14
.8
2
0

4
.0
8
6 5
.8
1
0

1 2 3 4 5

O
U

TA
G

E
TI

M
E

(S
EC

O
N

D
S)

NUMBER OF ACTIVE PODS FAILED AT THE SAME TIME

first failed pod second failed pod third failed pod

fourth failed pod fifth failed pod

Fig. 7. Service Outage of simultaneously failed pods – The SC integrated

with a StatefulSet controller (RQ4).

2
.6
3
4

2
.5
0
5

2
.1
9
7

2
.9
3
2

2
.5
9
1

3
.3
3
5

2
.9
3
0

2
.9
7
4

3
.1
5
5

3
.7
1
9

3
.3
6
3

4
.2
8
0

5
.0
3
4

4
.6
1
2 5
.8
6
5

1 2 3 4 5

O
U

TA
G

E
TI

M
E

(S
EC

O
N

D
S)

NUMBER OF ACTIVE PODS FAILED AT THE SAME TIME

first failed pod second failed pod third failed pod

fourth failed pod fifth failed pod

Fig. 8. Service Outage of simultaneously failed pods – The SC integrated

with a Deployment controller (RQ4).

computing resource within the defined data centres according to

a QoS model of the software components. Chung et al. [30]

proposed Stratus a container-based cluster scheduler designed

for batch job scheduling on public clouds. It exploits the cloud

properties and runtime estimates to reduce the cost of cluster

jobs execution by packing jobs that should complete around the

same time. Stratus aggressively packs tasks into machines, it

uses task migration to clear under-utilized instances. Stratus

actively avoids having leased machines that are not highly

utilized, trying to make allocated resources be either mostly full

or empty, so they can be released to reduce the cost. In [31], the

authors designed a customized scheduler on top of the

Kubernetes platform by extending the existing rescheduling

feature for better arrangements of task co-location. The

proposed solution integrates the use of schedulers, autoscalers,

and reschedulers as a mechanism to make container

orchestration systems cloud-aware. The scheduler optimizes the

initial placement of containers, the autoscaler enables the current

demand for resources to be met and underutilized or idle nodes

to be shut down, while the rescheduler allows for the initial

placement of containers to be revised at runtime for better

resource utilization. Similarly, to the previously mentioned

works, our solution builds on Kubernetes. However, in contrast

to the aforementioned works, we rely on the native scheduling

and orchestration mechanisms of Kubernetes. We provide an

availability management solution without altering the default

behavior of Kubernetes. This will ease the integration and the

adoption of the availability management solution.

Kang et al. in [17] propose a microservice based architecture

and use containers to operate and manage the cloud

infrastructure services. In their architecture, each container is

monitored by a sidekick container and in case of failure,

recovery actions are taken. In their experiments, the considered

stateful microservice is a MySQL database in the active-active

mode. For synchronizing data between microservice instances,

they suggest shared storage and application level data

replication. In the former, all MySQL microservice instances

access the same data while in the latter the database process

replicates the data across the cluster. However, one cannot

guarantee service recovery and continuity only by replicating the

state data between microservice instances. For recovery with

service continuity, a microservice instance needs to detect or be

notified about the failure to access the replicated data and

continue the service. Also, it should be clear where the state data

of each microservice instance is stored. In our solution, a state

replication mechanism is provided through which the active pod

can replicate its state data to the standby pod and a third party

(the HA State Controller) notifies the standby pod if its

corresponding active pod fails. Moreover, each pod stores its

data separately and is aware of the location of its data. From the

perspective of the adoption of the proposed solution in practical

scenarios, the authors in [17] opted for their own implementation

of a microservice architecture instead of building on top of the

existing ecosystem such as Kubernetes and Docker Swarm. Our

solution is based on Kubernetes’ principles and has been

integrated easily with Kubernetes, and thus it could easily be

adopted in practice. Our solution closes existing gaps in

Kubernetes with respect to stateful microservice-based

applications.

Netto et al. in [18] propose KRaft, an incorporation of the

Raft [19] consensus algorithm in Kubernetes for state machine

replication. With this incorporation, requests sent to the

Kubernetes managed application can be executed in the same

order by all containers which results in synchronizing the states

of all containers. In their work, containers include processes for

communicating with the Kubernetes API server. Through this

communication, each container periodically asks about the IP

addresses of other replicas. In the original Raft algorithm, it is

only the leader that can accept requests. However, in

Kubernetes, all replicas can receive requests. Therefore, in their

work, they made modifications to the containers so when a non-

leader replica receives a request, it redirects the request to the

leader and after the request is executed, the leader receives the

request and sends it back to the client. This way, if the leader

fails, other replicas can become the leader and continue the

service. Compared to our solution, the level of protection

provided by the KRaft algorithm is stronger. However, this

comes at the cost of increase in the resource usage. With the

KRaft algorithm, to handle one failure, for each container that

provides a service two extra containers need to be running. With

our solution, however, one extra container is enough for

recovering the service after a single failure. With respect to the

methodology, the solution in [18] was only evaluated from the

perspective of resource consumption (CPU, memory,

throughput, and latency). However, a key characteristics of

microservices and application managed with Kubernetes is their

flexibility of scaling. This has not been handled in [18] in

contrast to our solution and the experiments we conducted.

TABLE V. COMPARISON WITH RELATED WORK

Related

work

Supported

workload type

Container management objective

Stateful Stateless Elasticity Availability Scheduling

[17] X X

[18] X X

[28] X X X

[29] X X

[30] X X X

[31] X X

Our

work
X X X

VII. CONCLUSION

In this paper, we evaluated the availability provided by

Kubernetes’ repair actions for stateful applications and proposed

a solution to improve this availability. Our solution enables the

recovery of the service independently from the repair of the

failed pod. It proposes a SC which allows for failure handling at

the platform (i.e., Kubernetes) level by automatically redirectig

services to healthy pods through the management of secondary

labels. The SC is also capable of managing the availabilty of the

application when it is scaled, i.e. the number of pods changes,

by forming and maintaining pairs of active-standby pods.

In our evaluations of the SC it was shown that integrating

our solution improved service recovery by 50% on average.

However, we observed that when a scaling event happened

while the SC was carrying out a failover, the outage time

increased by 16% and the HA state assignment time also

increased by 48% for the scale-out scenario. Moreover, we

measured the scaling overhead of the SC integrated with

Kubernetes between 7.5% and 10.5%. We also observed that

both scaling and HA state assignment were done faster when the

application was deployed by a Deployment controller as

opposed to when it is deployed by a StatefulSet controller.

Indeed, unlike StatefulSet controllers, the Deployment

controllers do not add or delete pods in any particular order and

one by one. While the fast deployment and HA state assignment

of pods can be considered as a reason to deploy an application

by a Deployment controller, one should consider the potential

drawbacks of deploying stateful applications with Deployment

controllers as well. In particular, considering our SC with

Deployment controllers, service protection cannot be guaranteed

in and after scale-in, because Deployment controllers do not

scale-in the application pods in a guaranteed order and therefore

active-standby pairs of pods might not be deleted at scale-in

together. We also evaluated the availability provided by the SC

when multiple active pods failed simultaneously, and observed

that the later the failure of a pod was detected by the SC, the

longer its recovery took.

We identify high resource usage as a limitation of our

solution which is related to the 2N redundancy model where

each standby microservice protects only one active

microservice. As future work, this limitation can be addressed

by implementing other redundancy models to share a standby

microservice instance between a number of active microservice

instances. Another limitation of our solution is that service

protection is not guaranteed with Deployment controllers in

scale-in scenarios. Our solution can be modified to reassign

active and standby states to remaining pods after a scale-in so

we can ensure that no active (or standby) pod will lose its peer.

ACKNOWLEDGMENT

This work has been partially supported by Natural Sciences
and Engineering Research Council of Canada (NSERC) and
Ericsson.

REFERENCES

[1] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing,” National Institute of Standards and
Technology, September 2011, p. 7.

[2] N. Dragoni et al., “Microservices: Yesterday, Today, and
Tomorrow,” in Present and Ulterior Software
Engineering, M. Mazzara and B. Meyer, Eds. Cham:
Springer International Publishing, 2017, pp. 195–216.

[3] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1,
pp. 116–116, Jan. 2015.

[4] S. Newman, Building Microservices: Designing Fine-
Grained Systems. O’Reilly Media, Inc., 2015.

[5] “Microservices,” martinfowler.com. [Online]. Available:
https://martinfowler.com/articles/microservices.html.
[Accessed: 02-July-2020].

[6] M. Toeroe and F. Tam, Service Availability: Principles and
Practice. John Wiley & Sons, 2012.

[7] M. Nabi, M. Toeroe, and F. Khendek, “Availability in the
cloud: State of the art,” Journal of Network and Computer
Applications, vol. 60, pp. 54–67, Jan. 2016.

[8] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar,
and M. Steinder, “Performance Evaluation of
Microservices Architectures Using Containers,” in 2015
IEEE 14th International Symposium on Network
Computing and Applications, 2015, pp. 27–34.

[9] “Docker - Build, Ship, and Run Any App, Anywhere.”
[Online]. Available: https://www.docker.com/. [Accessed:
02-July-2020.

[10] “Kubernetes Documentation.” [Online]. Available:
https://kubernetes.io/docs/home/. [Accessed: 02-July
2020].

[11] A. Balalaie, A. Heydarnoori, P. Jamshidi, D. A. Tamburri,
and T. Lynn, “Microservices migration patterns,”
Software: Practice and Experience, vol. 48, no. 11, pp.
2019–2042, 2018.

[12] N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R.
Mustafin, and L. Safina, “Microservices: How To Make
Your Application Scale,” in Perspectives of System
Informatics, 2018, pp. 95–104.

[13] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek,
“Microservice Based Architecture: Towards High-
Availability for Stateful Applications with Kubernetes,” in
2019 IEEE 19th International Conference on Software
Quality, Reliability and Security (QRS), 2019, pp. 176–
185.

[14] “Creating Highly Available clusters with kubeadm.”
[Online]. Available:
https://kubernetes.io/docs/setup/production-
environment/tools/kubeadm/high-availability/. [Accessed:
02-Jul-2020].

[15] “ntp.org: Home of the Network Time Protocol.” [Online].
Available: http://www.ntp.org/. [Accessed: 02-July-2020].

[16] “VLC: Official site - Free multimedia solutions for all OS!
- VideoLAN.” [Online]. Available:
https://www.videolan.org/index.html. [Accessed: 02-July-
2020].

[17] H. Kang, M. Le, and S. Tao, “Container and Microservice
Driven Design for Cloud Infrastructure DevOps,” in 2016
IEEE International Conference on Cloud Engineering
(IC2E), 2016, pp. 202–211.

[18] H. Netto, C. P. Oliveira, L. de O. Rech, and E. Alchieri,
“Incorporating the Raft consensus protocol in containers
managed by Kubernetes: an evaluation,” International
Journal of Parallel, Emergent and Distributed Systems,
vol. 0, no. 0, pp. 1–21, Apr. 2019.

[19] D. Ongaro and J. Ousterhout, “In Search of an
Understandable Consensus Algorithm,” presented at the
2014 {USENIX} Annual Technical Conference
({USENIX} {ATC} 14), 2014, pp. 305–319.

[20] Christina Terese Joseph and K Chandrasekaran. 2019.
Straddling the crevasse: A review of microservice software
architecture foundations and recent advancements.
Software: Practice and Experience 49, 10 (2019), 1448–
1484.

[21] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek,
“Deploying Microservice Based Applications with
Kubernetes: Experiments and Lessons Learned,” in 2018
IEEE 11th International Conference on Cloud Computing
(CLOUD), 2018, pp. 970–973.

[22] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek,
“Kubernetes as an availability manager for microservice
applications,” arXiv preprint arXiv:1901.04946, 2019.

[23] N. Almarimi, A. Ouni, S. Bouktif, M. W. Mkaouer, R. G.
Kula, and M. A. Saied, “Web service api recommendation

for automated mashup creation using multi-objective
evolutionary search,” Applied Soft Computing, vol. 85, p.
105830, 2019.

[24] M. A. Saied, A. Ouni, H. Sahraoui, R. G. Kula, K. Inoue,
and D. Lo, “Improving reusability of software libraries
through usage pattern mining,” Journal of Systems and
Software, vol. 145, pp. 164–179, 2018.

[25] M. Taneja et al., “Smartherd Management: A
Microservices-Based Fog Computing-Assisted IoT
Platform Towards Data-Driven Smart Dairy Farming,”
Software: Practice and Experience, vol. 49, no. 7, 2019, pp.
1055–78, https://
onlinelibrary.wiley.com/doi/abs/10.1002/spe.2704.

[26] I. Saidani, A. Ouni, M. W. Mkaouer, and A. Saied,
“Towards automated microservices extraction using muti-
objective evolutionary search,” in International Conference
on Service-Oriented Computing. Springer, 2019, pp. 58–
63.

[27] A. Shatnawi, H. Shatnawi, M. A. Saied, Z. A. Shara, H.
Sahraoui, and A. Seriai, “Identifying software components
from object-oriented apis based on dynamic analysis,” in

Proceedings of the 26th Conference on Program
Comprehension, 2018, pp. 189–199.

[28]]Zhong, Zhiheng, and Rajkumar Buyya. “A Cost-Efficient
Container Orchestration Strategy in Kubernetes-Based
Cloud Computing Infrastructures with Heterogeneous
Resources.” ACM Transactions on Internet Technology,
vol. 20, no. 2, May 2020, pp. 1–24. DOI.org (Crossref),
doi:10.1145/3378447.

[29] U. Pascinsk, J. Trnkoczy, V. Stankovski, M. Cigale, and S.
Gec. 2018. QoS-aware orchestration of network intensive
software utilities within software defined data centres.
Journal of Grid Computing 16, 1 (2018), pp. 85–112.

[30] A. Chung, J. W. Park, and G. R. Ganger. Stratus: Cost-
aware container scheduling in the public cloud. In
Proceedings of the ACM Symposium on Cloud
Computing. pp. 121–134. 2018.

[31] M. A. Rodriguez and R. Buyya. 2018. Containers
orchestration with cost-efficient autoscaling in cloud
computing environments. arXiv:1812.00300.

