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Abstract 

Due to the continuously changing environment of service-based applications (SBAs), the ability to 

adapt to environmental and contextual changes has become a crucial characteristic of such 

applications. Providing SBAs with this ability is a complex task, usually carried out in an 

unsystematic way and interwoven with application logic. As a result, developing and maintaining 

adaptive SBAs has become a costly and hardly repeatable process. The objective of this paper is to 

present a model-based approach to developing adaptive SBAs which separates development of 

adaptation concerns from development of SBAs behaviors. This approach aims to facilitate and 

improve the development of adaptive behaviors. In this paper, the process of developing an adaptive 

SBA is defined as specifying adaptive SBA models based on a metamodel and reusable adaptation 

tactics. These models are then transformed into runtime model artifacts and running system units 

performing runtime adaptive behaviors. The approach introduces a systematic method to derive 

adaptation behaviors from adaptation models, which facilitates the development of adaptive 

behaviors. The empirical evaluations in three studies show that our approach enhances the 

development of adaptive behaviors in terms of identifying more proper adaptation plans, reducing 

the development time, and increasing understandability, modifiability, and correctness of code. 

Keywords: Service-based application, Self-adaptation, Models at runtime, Quality of service, 

Variability, Reusability  

 

1. Introduction  

In today’s dynamic environment of enterprises, collaboration among information systems 

has become essential to success. In this context, service-based applications (SBAs) offer 

promising potentials by enabling enterprises to define their business processes based on 

composition and coordination of software services [1-3], which may be owned by the 

application developer or a third party [4].  

SBAs are meant to operate in a distributed, non-deterministic, unpredictable, 

heterogeneous, and highly dynamic environment [5]. At the same time, SBAs should be 

dependable in the sense that they should meet the Quality of Service (QoS) requirements 

[6]. These requirements highlight the need for adaptive SBAs to cope with changes and 

dynamics in the environment in order to demonstrate a better tradeoff among required 

quality attributes. However, current solutions for developing SBAs often lack proper 

mechanisms for modeling adaptive behaviors [7], or do not realize adaptation mechanism 

at implementation levels. Research on business process management (BPM) and service-
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oriented architecture (SOA), for example, has mainly focused on the ability to select and 

dynamically substitute services at runtime or at deployment time [6,8], paying less attention 

to the problems of how adaptation behaviors should be performed at service-collaboration 

level as a continuous process.  

Developing and maintaining adaptive SBAs is a complex task that poses several 

engineering challenges [9]. In this regard, SBAs have been investigated from a variety of 

perspectives including introducing control flow mechanism [10], process family models 

[11], product line engineering [12-14], defining a collection of related process variants [15], 

and managing contextual properties dynamically [16-19]. However, there has been no 

proper framework taking into account the adaptability aspects in developing SBAs [20]. 

The problem with these approaches is that they do not introduce a systematic way to 

separate adaptation logic from adaptable system. Furthermore, they do not describe and 

perform adaptation and reconfiguration in a generic and reusable way. In these approaches, 

coordination models of services and adaptation behaviors are interwoven, increasing the 

complexity and reducing the maintainability of such systems. These issues make the 

development and maintenance of adaptive SBAs a challenging task. To overcome this 

challenge, the activities related to adaptation behaviors logic should be managed as an 

explicitly separate concern. For this aim, a proper model is needed to support the 

implementation and execution of the adaptation logic. 

In this paper, we introduce a new approach to developing adaptive SBAs relying on the 

role of runtime models within feedback loops as the knowledge of adaptation. It should be 

emphasized that the knowledge of adaptation should come from the domain knowledge, 

where the SBA is developed and evolved. It should also be considered as the main logic of 

the adaptation by representing the knowledge of adaptation as runtime models. Therefore, 

we make a causal connection between runtime models, derived from design-time models, 

and the SBA. To this end, we present a new way to model adaptation aspects of an SBA as 

runtime models, aiming to provide the expressiveness for designing models required for 

the runtime adaptation of SBAs. This approach enables service integrators to: i) describe 

adaptation requirements of an SBA, and then ii) derive the right runtime adaptive 

behaviors, without increasing the complexity of the service development. 

More concretely, the objective of the proposed approach is defined to facilitate and improve 

developing adaptive behaviors in SBAs in terms of development time and quality of 

developed adaptive behaviors. Through applying BASBA framework to two case studies 

and an academic environment study, we have confirmed the effectiveness of BASBA in 

identifying more appropriate adaptation plans and implementing more understandable, 

modifiable, and semantically correct adaptation behaviors in response to adaptation needs. 
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In addition, the results show that employing BASBA reduces the development time of 

adaptive behaviors.  

The rest of the paper is organized as follows. Section 2 gives an overview of the related 

work. Section 3 shows a motivating example to illustrate the need for runtime adaptation. 

Section 4 introduces a framework for building adaptive SBAs. Section 5 explains how an 

adaptive SBA is designed and developed using BASBA. Section 6 describes elements of 

the BASBA framework and runtime models. In Section 7, we apply the framework in 

practice and discuss the results. Finally, Section 8 serves as the paper’s conclusion where 

we present our future work directions. 

2. Related work  

Adaptation can be defined as a process of modifying an SBA in order to satisfy new 

requirements and to fit new situations dictated by the environment on the basis of 

adaptation strategies designed by the system integrator [3, 21]. Conventionally, dynamic 

adaptation has been managed within the application logic at the  code level. For example, 

mechanisms such as exception handling or timeouts with some fixed hardcoded alternatives 

are common approaches to detect faults or system anomalies and resolve them. Although 

these mechanisms are usually supported by modern programming languages, their main 

disadvantage is that it can be difficult to develop and maintain adaptive functionalities as 

they would be interwoven with application logic. 

Normally, service selection and binding are used as a key mechanism for adaptation in 

adaptive service-based applications. In this approach, adaptability is defined as a way to 

select the best set of services available at runtime for dynamically configuring and 

executing abstract workflows, taking into consideration adaptation requirements such as 

process constraints, user preferences and the execution context [22, 23]. Calinescu et al. 

[24] try to adapt service-based systems by dynamically adjusting service selection, resource 

allocation, and relevant parameters on the basis of quantitative verification and 

probabilistic logic to decide on the best adaptation. In the mentioned approach, the problem 

of adaptive service composition is stated as follows: creating and executing a workflow 

that satisfies the functional and non-functional requirements of the service, while being 

able to continually adapt to dynamic changes in the environment [25] given the 

specifications of a new service. The main problem with the approach is that adaptation is 

limited to service selection on the basis of defined abstract workflow models.  

Workflow adaptation approach is another main trend in this area aiming to provide 

adaptability of workflow instances at build-time or at runtime by introducing structural 

changes of workflow elements to the atomic parts of the workflow [7]. Several systems 

based on workflow adaptation approach, also called agile workflow systems, have been 
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implemented to facilitate structural changes of workflows at runtime. In this approach, 

workflow instances can be created and tailored to a particular need, and can be adapted 

according to the situation after they have been started. The two main elements of the 

approach are: i) configurable workflows, allowing to define workflow elements that can be 

switched on or off at runtime, and ii) exception handling, allowing to annotate workflows 

with exception handling patterns. However, most of these approaches are based on single 

basic changes and need an expert to guide the runtime adaptation process. In addition, they 

often lack the necessary instructions to become adaptable to a given context. As a result, 

they are inefficient in more dynamic environments in which changes have to be managed 

more frequently and systematically. Changing patterns [26-27] is another similar approach 

providing a way of modeling high-level change operations instead of specifying a set of 

change primitives to realize the desired adaptation model. Examples of change patterns 

include the insertion and deletion of process fragments, or embedding them in loops [28]. 

However, this approach usually provides the process designer with only those change 

patterns that allow transforming a sound process model into another sound one, imposing 

structural restrictions on process models [28]. Therefore, the approach is restricted to only 

a limited set of designed patterns. Similarly, many different approaches have been proposed 

in recent years to develop applications that can be customized at runtime using dynamic 

software product lines [14, 29]. However, this approach usually results in restricting the 

potential customizability of SBAs and is limited to a given set of changes.  

Explicit management of knowledge in the adaptation cycle can remarkably enhance the 

benefits of runtime adaptation. Therefore, some studies have employed runtime models as 

the knowledge within feedback loops for adaptation [30]. Blair et al. in [31], define a 

runtime model as “a causally connected self-representation of the associated system that 

emphasizes the structure, behavior, or goals of the system from a problem space 

perspective.” As a basis  for self-adaptation, the use of architectural models has a number 

of useful properties such as providing a global perspective on the system, preserving 

integrity constraints, and helping to ensure the validity of any change [32]. 

In this regard, several approaches based on autonomic computing and self-adaptive systems 

engineering have been proposed to address the challenge of separating adaptation logic and 

adaptable systems [33,34]. Among these approaches, those in which system models, 

particularly software architectural models, are maintained at  runtime seem more promising. 

A number of architectural approaches have been proposed to address the problem of 

managing the design complexity of self-adaptive systems [9,35-38]. At the heart of many 

of such adaptation techniques, there is a component capable of designing, at runtime, a 

strategy for adapting to the changes in the environment, system, and requirements [38]. In 

addition, several goal-driven approaches are introduced to model the variability and guide 
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the architectural design based on goal-oriented requirement engineering to provide a basis 

for the engineering of self-adaptive systems [39-41]. Goal-driven adaptation puts the 

emphasis on the requirements that need to be solved by the managing system for the 

concrete realization of self-adaptive systems [42]. In this direction, model-driven 

approaches that directly execute the feedback loop via model interpretation are introduced 

to the development of adaptation engines [43-47]. The aim of these approaches is to support 

the explicit specification and execution of feedback loops. However, the main issues for 

developing adaptive SBAs, here, are as follows: what are the main elements of runtime 

models, how they should be generated and updated, and how they should be used in the 

development lifecycle of SBAs.  

The development lifecycle of SBAs must enable the systems to be dynamic. Therefore, 

considering the continuous adaptation and evolution aspects of the systems are important 

or even essential for service-oriented development lifecycle models [4]. Various lifecycle 

models have been introduced to develop SBAs [34, 48]. Among these lifecycle models, S-

Cube [49] is specifically intended to facilitate the adaptation of SBAs. S-Cube describes 

developing SBAs as two interrelated cycles: the evolution cycle and the adaptation cycle, 

and claims to not only SBAs go through the transition between the runtime operation and 

the evolution phases in order to be continuously improved, but also that they should be 

provided with mechanisms at runtime for the automatic detection of problems, 

identification of possible adaptation strategies, and enacting these strategies. Although S-

Cube expands the standard development process of SBAs to consider the runtime aspect of 

SBAs and adaptive behaviors, it neither introduces mechanisms for developing adaptive 

behavior nor specifies the role of runtime models in the adaptation cycle. Considering the 

above-mentioned problems, there is a need for a systematic approach to develop adaptive 

behaviors based on specific engineering of adaptation engines and feedback loops.  

To address the mentioned problems, we propose a framework to improve and facilitate 

developing adaptation plans.  It presents a systematic way to keep adaptation concerns and 

behaviors at the design level separate from execution models. The proposed framework 

makes it possible to automatically derive right runtime adaptive behaviors from adaptation 

requirements, in conformity with a model-based approach. It provides mechanisms for 

modeling and realizing adaptive behaviors  at service-collaboration level. Developing 

adaptive behaviors in this framework relies on reusable adaptation tactics. Therefore, it is 

not limited to service selection or a limited set of designed patterns. Employing reusable 

adaptation tactics results in performing adaptation in a generic and reusable way, reducing 

the complexity and increasing the maintainability of the system.  



 

6 

3. Motivating Example 

To illustrate the need for runtime adaptation, we introduce a sample composite service that 

supports handling a simplified emergency case as an example. Fig. 1 shows this example 

in business process management notation. The business process starts when an emergency 

call is received by a call-taker. At first, the calling number and the location of the incident 

should be identified. Next, the call-taker needs to input additional information about the 

incident. After collecting of the essential information, the proper fire station(s) should be 

selected and asked to assign and dispatch field personnel. During the mission, the position 

of the personnel should be sent to management center, where they are monitored and their 

location is displayed on a map.  

Although the above example is an oversimplified scenario, there are quite a few possible 

environmental and contextual changes and events. For example, the caller Id may not be 

identified or the service finding geographical location based on caller Id may be unavailable 

or response too late. All these events need to be handled at runtime if they occur. Otherwise, 

the process may lead to unsatisfactory situations. Therefore, proper compensation 

strategies should be provided and made available at runtime for any situation.  
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Fig. 1 A simplified process model of an emergency call system  

 

4. BASBA framework 

In this section, we introduce a novel approach to facilitate building adaptive SBAs called 

BASBA (Building Adaptable Service-Based Applications) framework, which offers 

adaptive behaviors in composition and coordination of services. We emphasize that the 

logic of adaptation behavior should be determined by design-time models that are then 

transformed into runtime models. The BASBA framework facilitates designing and 

developing adaptive behaviors. For this purpose, we extended the S-Cube lifecycle [49] to 

consider runtime models (Fig. 2). Like S-Cube, the BASBA framework describes 

developing SBAs as two interrelated cycles: the evolution cycle and the adaptation cycle. 

In the evolution cycle shown on the right-hand side of the figure, the service integrator 
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concentrates on the development of the adaptive SBA and defining the required quality 

attributes. However, the adaptation cycle considers providing mechanisms for adapting the 

system at runtime through automatic detection of problems, identification of possible 

adaptation strategies, and enacting these strategies. 

As shown in Fig. 2, in the evolution cycle, through the “specifying and designing adaptive 

SBA” phase, the service integrator develops a set of design models. These design models 

describe the coordination of services, the required qualities, and adaptation behaviors. In 

this phase, BASBA provides a BASBA notation and a set of reusable adaptation tactics. 

The BASBA notation describes how an adaptive SBA should be specified. It includes 

elements to model adaptation plans and QoS requirements. Adaptation tactics determine 

how a process should be changed. The design models, in the “generating adaptive process 

instances” phase, are transformed into runtime coordination services. The coordination 

services are deployed on the process executor and aggregator engine to form the target 

system. Through the “operation and management” phase, the service integrator gets 

feedback to update the design models. The design models are also used to generate adaptive 

runtime models to monitor and adapt the system in the adaptation cycle. 

 

Fig. 2 The role of models in the lifecycle of an adaptive service-based application 

 

To manage adaptive behaviors in BASBA, the source, the elements, and the role of runtime 

adaptation models should be identified. To this end, we define an adaptive SBA in three 

layers: the specification layer, the runtime adaptation layer, and the execution layer (Fig. 

3). These layers are inspired by the three-layer architecture introduced by [35]. In BASBA, 

the logic of each layer is determined by the higher layer. 

The top layer includes process models, their possible variations, and the required QoS 

objectives designed by a service integrator through the evolution cycle. These models are 

known as the source of adaptation, which are transformed into runtime models. The runtime 

models determine the adaptation logic of the system including the way the system is 

monitored and adapted at runtime, which form the runtime adaptation layer. This layer 
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takes the control of the executing system at specified checkpoints and, based on the 

adaptation needs, changes the behavior of the system using adaptation tactics.  

The bottom layer is the execution layer, which consists of monitoring interceptors, change 

actions (actuators), and runtime processes managed by process executor and aggregator. 

The bottom layer consists of a set of runtime services connected by connectors that 

accomplish the purpose of the system. At this layer, interceptors, which are placed on 

connectors, facilitate reporting the measured data to higher layers.  

Runtime models have a significant role in the BASBA adaptation cycle for runtime 

adaptation. These models can significantly separate the concern of adaptation at design 

level from the execution level, and facilitate the development of adaptive behaviors. At this 

layer, the role and the elements of runtime adaptation models are determined. Following 

the MAPE-K (Monitor, Analyze, Plan, Execute, and Knowledge) control loop [50], the 

BASBA framework consists of a control loop which is periodically executed.  

Monitoring models determine the location of checkpoints and the granularity of the 

collected sample data. The collected data is used to update the service execution models 

and manage SBA application through an adaptation cycle, or to start another evolution 

cycle. Runtime models (service composition and coordination models) are analyzed on the 

basis of evaluation models such as constraints, time, and failures to identify adaptation 

needs. 

 

Fig. 3 The three layers of adaptability in BASBA 

 

When an adaptation need is identified, an adaptation pattern is fired in response to the 

informed adaptation need. The Adaptation pattern is a realization of a variation model 
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adaptation tactics, and the expected results. Finally, the adaptation plan is transformed into 

the executing system to form a new variation of coordination services. The transformation 

is done through adaptation operations and transformation rules that are both defined by 

adaptation tactics.  

For example, in developing adaptive behavior in the motivating example, the service 

integrator may have concerns about network bandwidth, which may increase 

communication delay between the management center and the field personnel. The service 

integrator must define the required QoS objectives and the possible variations as the source 

of adaptation. The QoS objective can be an acceptable response time between the 

management center and the field personnel. The service integrator can define this objective 

by fuzzy linguistic words such as “less than 1 second is acceptable, between 1 to 3 seconds 

is tolerable, and more than 3 seconds is inacceptable”. In response to this objective, the 

service integrator can design a plan (called an adaptation pattern at BASBA level) to reduce 

the volume of data by using a tactic such as compressor and decompressor. This decision 

is called a variation in BASBA.  

In this case, two checkpoints can be located at the services that send and receive messages 

between the management center and the field personnel. The data gathered in these 

checkpoints forms a model which determines the average response time. The evaluation 

model, in this case, can be defined as consisting of two rules:  

i) if the average response time is inacceptable, then fire a hard adaptation need 

to decrease volume of data. 

ii)  ii) if the average response time is tolerable, then fire a soft adaptation need to 

decrease volume of data.  

These rules are slightly different. Both rules fire a need for adaptation to decrease volume 

of data, however, the first rule fires a hard need and the second one fires a soft need. An 

adaptation need can fire an adaptation pattern. The adaptation pattern in this case can be 

defined as follows:  

i) if battery is high, and a soft adaptation need is fired to decrease the volume of 

data, then execute the compressor/decompressor tactic between the services 

that send and receive messages.   

ii) ii) if battery is high or medium, and a hard adaptation need is fired to decrease 

the volume of data, then execute the compressor/decompressor tactic between 

the services that send and receive messages. 

Both adaptation patters in this case have the same consequences, however, each one can be 

fired in different conditions. 
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5. Designing adaptable SBAs using BASBA 

In this section, we describe how adaptive behaviors for an SBA can be designed through 

“specifying and designing an adaptive SBA”. In BASBA framework, an adaptive behavior 

is defined by adaptive process models. An adaptive process model is an assembly of the 

workflow logic of the process (process model), the QoS model of the SBA (quality 

requirements), and the possible variations (adaptation plans), which can be converted to 

BASBA components to form the runtime models and the running system. 

In the following parts of this section, first, we explain the adaptive process model and the 

related elements through the motivating example. Next, in Section 5.2, we introduce the 

formal definition of the adaptive process model on the basis of process algebra and first-

order logic. We describe how quality requirements (QoS model) and adaptation plans 

(variation models) should be defined for a process model to form an adaptive process 

model. Then, in Section 5.3 and Section 5.4, we explain the QoS model and variation 

models in more detail. In Section 5.4, we also introduce the BASBA notation and elements 

to define the adaptive process including QoS components and adaptation tactics. The 

BASBA notation facilitates defining the adaptive process model. 

5.1. Explanation of the adaptive process model through the motivating 
example 

In order to define adaptive behaviors for the motivating example, the workflow logic and 

the related quality requirements and variation models should be specified. The workflow 

logic can be modeled in an abstract way, using Business Process Management Notation 2.0 

(BPMN). For example, in Fig. 1, the BPMN notation is used to model the workflow logic 

of a process in the emergency call system. Activities in the workflow represent abstract 

services, which should be mapped to concrete services that satisfy them. For example, “find 

caller geographical position” is an abstract service that can be satisfied by “find caller 

geographical position by Id” or “find caller geographical position on map”.  

When an abstract business process is defined, the service integrator defines the QoS model. 

The QoS model plays a crucial role in triggering adaptation plans and analyzing the tradeoff 

among quality attributes. BASBA can consider different measurable QoS attributes to 

specify an SBA called quality requirements. Quality requirements can be defined on the 

basis of some measurable properties such as time, data value, failure, or a mathematical 

function. For example, the response time of “identify call number” service can be defined 

as a quality requirement. For each quality requirement, the service integrator, defines a 

fuzzy measure using triangular fuzzy linguistic words. For example, the fuzzy measure for 

response time quality requirement in the “finding geographical location” process part can 

be shown as (-, 10 seconds, 30 seconds, per instance), which means the response time for 

execution of that part of the workflow is totally acceptable if it is less than 10 seconds, the 
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response time between 10 to 30 seconds is tolerable, and the response time over 30 seconds 

is inacceptable and triggers an adaptation plan. Another example can be the availability of 

the map service defined on the basis of failure rate, which is the ratio of failures to the total 

number of the process calls. The fuzzy measure for this can be defined as (+, 0.96, 0.99, 

monthly), which means if the availability of the service in one month is inacceptable to be 

less than 0.96, the availability between 0.96 and 0.99 is tolerable, and the availability over 

0.99 is totally acceptable. Each fuzzy measure can fire an adaptation trigger. For example, 

when the response time for “identify call number” is not acceptable, the “automatic call 

number detection failed” adaptation trigger should be fired. 

When the QoS model is defined, the service integrator specifies the variability model of 

the workflow. Table 1 shows some possible adaptation plans for the emergency call system 

introduced in the motivating example. For the sake of simplicity, we have used the natural 

language to define the adaptation plans and tactics. As shown in Table 1, an adaptation plan 

is started when an adaptation trigger occurs. For example, the adaptation plan #1 is 

triggered when an automatic call number detection fails. For each adaptation plan, some 

specific adaptation tactics are defined on the basis of reusable adaptation tactics. Each 

option is obtained by specifying a generic adaptation tactic. However, only the options 

whose pre-assumption can be verified by the context can be applied. For example, in the 

adaptation plan #2 replacing “find caller geographical position by Id” with “find caller 

geographical position on map” can only be applied when the “map service is available” 

pre-assumption could be verified by the context. Each adaptation plan should be specified 

using the BASBA adaptation plan notation.  

 

Table 1 Some possible adaptation plans for the emergency call system 
 

Plan 

Id 

Adaptation 

trigger 

Reusable adaptation tactic  Specific adaptation tactic Pre-

assumption 

False 

assumption 

#1 

Automatic call 

number 
detection 

failed 

Process variation – replace 
activity 

O1: Replace (automatic call 

number detection, input call 

number manually) 

Human 

operator is 

available 

Soft: Increase 
response time 

Process variation – skip 

activity 

O2: Skip (automatic call 

number detection) 
- 

Hard: Id is 

identified 

#2 
Falsify: Id is 

identified 

Process variation – replace 
activity 

O1: Replace (find caller 

geographical position by Id, 
find caller geographical 

position on map) 

Map service 
is available 

Soft: Increase 
response time 

Process variation – replace 

activity 

O1: Replace (find caller 

geographical position by Id, 
input caller text address) 

Human 

operator is 
available 

Hard: Caller 

location is 
identified 

#3 

Map is 
unreliable 

 

Activity variation - serial 

execution 

O1: Serial execution 

(municipality map, google 
map) 

Google map 

is available 

Soft: Increase 

response time 

Activity variation – parallel 

execution 

O2: Parallel execution 

(municipality map, google 
map) 

Google map 

is available 

Soft: Increase 

resource 

utilization in 
google map 

service 

#4 

Network is 

unreliable 
 

Communication variation- 

add queue 

Add queue (sending 

message to vehicles) 
- 

Soft: Increase 
memory 

utilization on 

client device 
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#5 

Low 
communicatio

n bandwidth 

 

Communication variation- 

compressor and 
decompressor 

Add compressor (send 
vehicle data), add 

decompressor (receive 

vehicle data) 

- 

Soft: Increase 

in battery 
utilization 

 

Each adaptation plan can cause false assumptions, resulting in another adaptation trigger. 

There are two categories of false falsifications: hard falsifications and soft falsifications. 

Hard falsifications can have a chain effect, causing an event to trigger another adaptation 

plan. Soft falsifications may result in undesirable quality requirement requiring tradeoff 

analysis. Therefore, before enacting an adaptation plan in response to a soft falsification, a 

tradeoff should be made between enhancements that can be obtained from enacting the plan 

and its negative effect on other quality attributes based on defined QoS models. In the case 

of adaptation plan #1, there are two options: “replace automatic call number detection with 

input call number manually” and “skip automatic call number detection”. The former plan 

can be applied when the “human operator is available” pre-assumption can be verified by 

the context. However, both plans may result in false assumptions. The first plan increases 

response time, which is a soft falsification, and the second one will falsify “Id is identified”, 

which is a hard falsification and necessitates executing another adaptation plan.  

Fig. 4 shows an example of an adaptation plan for the motivating example. This plan means 

that there should be an exception evaluation unit in “identifying the calling number” to 

detect occurrence of a failure, which may raise the “Id is identified” false assumption, 

resulting in executing the adaptation plan. In this plan, at first, the skip tactic is enacted to 

remove the “find caller geographical position by Id” activity from the process. Then, there 

are two alternatives. First, the “find caller geographical position on map” service can be 

added, provided the assumption “map service is available” is held. Second, the “input 

address in text format” service can be added, but this will lead to another false assumption 

that might result in executing another adaptation plan. 

 

 

Fig. 4 An example of an adaptation plan in BASBA notation 

5.2. Adaptive process model 

The specification layer defines an adaptation process model. An adaptative process model 

is an assembly of activities connected by flow objects enriched with QoS requirements, a 

set of assumption to be held and a set of adaptation plans. QoS requirements are defined 
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on the basis of measurable properties. An adaptation plan is a representation of an 

adaptation pattern in BASBA adaptation plan notation introduced in the following section.   

In BASBA, each adaptive process model, called APM, is an aggregation of W, 𝑄𝑅+ and 

AP+ and takes the form: 

𝐴𝑃𝑀 ∶: = (𝑊, 𝑄𝑅+, 𝐴𝑃+)    (1) 

Where 𝑊 is a workflow, 𝑄𝑅+ is a set of quality requirements that define the QoS model, 

and 𝐴𝑃+ is a set of adaptation plans that define the variation model.  

The workflow is defined using process algebra in which each process, called 𝑃, takes the 

form: 

𝑃 ∷= 𝑆𝑒𝑞(𝑃+) | 𝐿𝑜𝑜𝑝(𝑃) |𝑆𝑒𝑙(𝑃+) | 𝑎𝑛𝑑_𝑝𝑎𝑟(𝑃+) | 𝑂𝑝𝑡(𝑃) | 𝑆 (2) 

Where 𝑆𝑒𝑞(𝑃+) is a sequence of processes, 𝐿𝑜𝑜𝑝(𝑃) is a loop on a process, 𝑆𝑒𝑙(𝑃+) is a 

selection of processes, 𝑎𝑛𝑑_𝑝𝑎𝑟(𝑃+) is an and-parallel of processes, 𝑂𝑝𝑡(𝑃) is an optional 

of a process, and 𝑆 is a service, defined by a service specification and can be delivered by 

a set of service providers.        

The QoS model is defined by a set of quality requirements (𝑄𝑅+). Each QR is defined on 

a process P, and evaluated by measurable property MP and takes the form:  

𝑄𝑅 ∷= (𝑃, 𝑀𝑃, 𝐹𝑀, 𝑇𝑅)      (3) 

Where P is the part of the process which is evaluated, MP is a measurable property that is 

measured in P, FM is a fuzzy measure that is used to evaluate the MP, and TR is an 

adaptation trigger, which will be triggered if the fuzzy measure shows a violation. The 

measurable properties are explained in next section, which takes the form: 

MP ∷= Time | Data | Failure | Count | Constraint | Derived | Aggregated 

Each fuzzy measure is defined using a triangular fuzzy term which defines the satisfaction 

level of MP, and takes the form: 

FM ∷= (𝑂, 𝑋1, 𝑋2, 𝑇𝐼)       (4) 

where O can be ‘+’ or ‘-’, with ‘+’ indicating the greater value the better result, and ‘–’ 

indicating the lower value the better result, 𝑋1and 𝑋2 forms three triangular fuzzy terms, 

and and TI indicates the time interval to calculate the MP in average. For example, if O is 

‘-’, it means QR value less than 𝑋1 is totally acceptable, the value between 𝑋1and 𝑋2 is 

tolerable, and QR greater than 𝑋2 is not acceptable. 

The variation model is defined based on adaptation plans. Each adaptation plan, called AP, 

is an aggregation of 𝑇𝑅, 𝐴𝑇+, 𝑃𝐴+, and 𝐹𝐴+ and takes the form: 

 𝐴𝑃 ∷= (𝑇𝑅, 𝐴𝑇+, 𝑃𝐴+, 𝐹𝐴+)       (5) 

Where 𝑇𝑅 is an adaptation trigger that can be fired from a FM or can be the result of 

executing an AP, 𝐴𝑇+is a set of adaptation tactics, 𝑃𝐴+ is a set of pre-assumptions that 

should be satisfied to run the adaptation plan. 𝐹𝐴+ is a set of false assumptions that is the 
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consequences of running the adaptation plan. Each FA can trigger a TR result in firing 

another adaptation plan. Adaptation tactics are introduced in Section 6. 

5.3. The QoS model 

In order to specify and design QoS models, a service integrator defines quality requirements 

on the basis of some predefined measurable properties. The measurable properties in 

BASBA are modeled on the basis of process performance indicators introduced in PPINOT 

ontology [51]. These measurable properties can be a single-instance measure such as time, 

failure, count, data, constraint or derived, or can be a multi-instance measure such as 

derived or aggregated. To calculate a multi-instance measure, a set of process instances are 

used. The availability of the map service in a period of time (described in Section 5.1) is 

an example of multi-instance measure implemented by an aggregate function. The 

description of measurable properties is explained in Table 2. 

 

Table 2 The description of measurable properties used in BASBA 

Measure type  Description 

Time It measures the duration of time between two time instants 

Failure It is a Boolean value that indicates a failure 

Count It measures the number of times something happens 

Data It measures the value of a certain part of a data object 

Constraint It is a Boolean value that measures the fulfilment of certain condition on 

process instances 

Derived It is defined as a mathematical function over one or more measure 

definitions. There are two types of derived measures depending on whether 

the measure definitions are single-instance or multi-instance measures 

Aggregated It is defined by aggregating one of the previous measures in several process 

instances using an aggregation function such as sum or average 

 

In BASBA, a model is developed for each measurable property to define the way the data 

should be collected and analyzed. For each model, some transformation rules have been 

developed to generate required interceptors. Interceptors are units that gather data at 

runtime to form the execution profile and update the execution model of the process. The 

execution models are analyzed on the basis of evaluation models. An evaluation model is 

defined as a function of measurable properties to identify an adaptation need called a false 

assumption. In evaluation models, the acceptable range of each metric is defined using 

triangular fuzzy linguistic words showed in Equation 4. For constraint and failure 

measurable properties, the fuzzy measure is defined using count or derived functions on 

these properties. 

The service integrator should consider the structure of processes to calculate measure 

properties. In this regard, the service integrator can implement its own derived and 

aggregate functions, using delegate functions, to measure different quality requirements. In 

BASBA, some derived measures that use the functions per structure of processes and QoS 
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attributes measures, introduced in [52], are implemented. Table 3 shows the implemented 

derived measurable properties in the BASBA framework.  

  

 

Table 3 Functions per structure of process and QoS attribute 

Structure of 

process 

Sequence Loop Selection  Parallel 

Response 

Time(T) ∑ 𝑇(𝑆𝑖)

𝑛

𝑖=1

 
𝑘 ∗ 𝑇(𝑆𝑖) 

∑ 𝑃𝑖𝑇(𝑆𝑖)

𝑚

𝑖=1

 
max{𝑇(𝑆𝑖)𝑖∈{1..𝑝}} 

Cost(C) 
∑ 𝐶(𝑆𝑖)

𝑛

𝑖=1

 
𝑘 ∗ 𝐶(𝑆𝑖) 

∑ 𝑃𝑖𝐶(𝑆𝑖)

𝑚

𝑖=1

 ∑ 𝐶(𝑆𝑖)

𝑝

𝑖=1

 

Availability (A) 
∏ 𝐴(𝑆𝑖)

𝑛

𝑖=1

 
𝐴(𝑆𝑖)

𝑘 
∑ 𝑃𝑖𝐴(𝑆𝑖)

𝑚

𝑖=1

 ∏ 𝐴(𝑆𝑖)

𝑝

𝑖=1

 

Reliability (R) 
∏ 𝑅(𝑆𝑖)

𝑛

𝑖=1

 
𝑅(𝑆𝑖)

𝑘 
∑ 𝑃𝑖𝑅(𝑆𝑖)

𝑚

𝑖=1

 ∏ 𝑅(𝑆𝑖)

𝑝

𝑖=1

 

𝑆𝑖 is a service component  

𝑃𝑖  is the probability of selecting service component 𝑆𝑖 

n is the number of sequential service components 

k is the number of iterations on a service component 

m is the number of service components associated with a logical condition 

p is the number of service components executed concurrently 

5.4. Variation models 

Variation models are another main specification of an adaptive SBA defined as adaptation 

plans. Each adaptation plan is a sequence of actions in response to a false assumption and 

determines how the process instance should be modified. Adaptation plans are designed on 

the basis of BASBA adaptation plan notation. Each adaptation plan starts with an 

evaluation unit determining when an adaptation plan should be executed, a set of adaptation 

tactics determining how the process should be changed, and a set of flow objects 

determining the sequence of execution of adaptation tactics. 

 In BASBA, a notation is introduced which enables the service integrator to design 

adaptation plans. For each notation, a template class is developed, which defines the 

behavior of the adaptation element at runtime and the corresponding transformation rules. 

The notation consists of three types: evaluation units, flow objects, and adaptation tactics. 

Fig. 5 shows evaluation unit and adaptation plan flow objects notations.  An evaluation unit 

is defined on a service or a part of a process to assess a quality requirement. For this 

purpose, the service integrator defines a measurable property that should be evaluated on 

the basis of a defined fuzzy measure. BASBA supports three types of flow objects: 

Alternative flow, Adaptation trigger flow, and Simple flow. Flow objects determine the 

order of execution of the adaptation plan.  

BASBA also supports 10 types of adaptation tactics. Adaptation tactics are the main 

elements of adaptation plan notation.  An adaptation tactic is a design decision that affects 
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the system response to some stimuli. Service integrators can reuse adaptation tactics to 

define adaptation plans. It should be mentioned that there is no consideration of tradeoff in 

tactics, and the only focus of an adaptation tactic is on a single quality response. For 

example, the focus of serial execution tactic is on reliability, and the focus of 

compressor/decompressor tactic is on network performance quality. This property allows 

adaptation tactics to be reusable elements in defining adaptation plans. 

 

Fig. 5 The evaluation unit and adaptation plan flow objects notations in BASBA 

 

In Fig. 6, we have classified BASBA adaptation tactics in three groups: those acting on the 

structure of the workflow, those affecting the way an activity runs, and those changing the 

communication protocols between services. To address the first group, a variation is 

defined using skip, add, and replace activities in a workflow. The second category of 

variations refers to possible variations inside an activity which do not affect the workflow. 

These types of adaptation include parallel execution, serial execution, and re-execution of 

an activity. The third category of adaptation tactics includes those that change the way 

services communicate in an SBA. An example of these tactics is putting 

compressor/decompressor between two services in order to reduce the volume of data 

communication. In the motivating example, applying the compressor/decompressor tactic 

on the “monitor and navigate field personnel on map” process block reduces the volume of 

data transferred between services in the process block, results in reducing the latency of 

data communication. However, it also results in higher battery usage on client devices. 

Cache element, reducing size, and aggregating data are among other examples of 

communication tactics. Adaptation tactics in BASBA can be extended. To this end, the 

model transformation, the logic of the tactic, its effect on quality attributes, and required 

connectors should be developed. Section 6.3 introduces the elements of the adaptation 

tactics in more detail. 

 

Type Title Graphical representation Description 

E
v

al
u

at
io

n
 

u
n

it
 

Quality 

requirement 
 Service S Falsify:  Assumption A 

Evaluation function

 

Evaluate a measurable property in a 

service or a part of a process on the 

basis of the defined fuzzy measure. If 

it fails, an adaptation trigger will be 

fired, resulting in falsify an 

assumption. 

F
lo

w
 o

b
je

ct
s 

 

Alternative flow 
 

There are two variations. If the pre 

assumptions of the first one does not 

hold, then try the next variation. 

Adaptation 

trigger flow 

 

 

An adaptation trigger that falsified an 

assumption “Assumption A” has been 

fired. 

Simple flow 

 

 

Run “B” after “A” 
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Categ

ory 

Title Graphical representation Supporting connectors Description 

P
ro

ce
ss

 v
ar

ia
ti

o
n

s 

 

Skip activity 

 

SimpleConnector Skip “Service R” 

Add activity 

 

SimpleConnector Add “Service S” after “Service E” 

Replace activity  

 

SimpleConnector Replace “Service R” with “Service 

S”  

A
ct

iv
it

y
 v

ar
ia

ti
o
n

s 

Parallel 

execution  
 

ParallelOutConnector 
ParallelInConnector 

 

Add “Service S” and execute in 

parallel with “Service E” and take 

the first response and continue 

Serial execution 

 

SerialOutConnector 

SerialInConnector 

 

Add “Service S” and execute if 

“Service E” failed, otherwise skip 

“Service S” 

Re-execution 

 

ConditionConnector Re-execute “Service E” until a 

condition “condition function” is 

reached 

C
o

m
m

u
n

ic
at

io
n

 v
ar

ia
ti

o
n

s 

Compressor/ 

decompressor 

 

CompressorOutConnector 
CompressorInConnector 

 

Compress output of “Service E1” 

and decompress it before “Service 

E2” 

Aggregate data 

 

DataModifierOutConnector 

DataModifierInConnector 
 

Aggregate output of “Service E1” 

using “aggregate function” and 

disaggregate it before “Service 

E2” 

Reduce size  

 

DataModifierOutConnector 

 
Reduce the size of output “Service 

E” using “reduce function” 

Cache element 

 

CacheElementConnector Add local cache element to 

“Service E” and cache the data 

based on “filter function” 

Fig. 6 Adaptation tactics currently supported in BASBA  

 

6. BASBA Runtime models 

 

When an adaptive process model is designed, then, the design elements are transformed 

into runtime elements forming the runtime adaptation models. BASBA uses a metamodel 

to support development of adaptive SBAs. The metamodel determines the elements and the 

structure of the adaptive SBA at design-time and runtime. It also clarifies the relationship 

and the transformation logic between design-time and runtime artifacts. In this section, 

first, we introduce the BASBA metamodel, then we demonstrate how runtime artifacts are 

generated from design-time artifacts. 
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6.1. The BASBA Metamodel 

BASBA metamodel provides a set of concepts to model the monitoring and adaptation 

requirements at the service coordination level, and transform the models into runtime 

adaptation logic. To this end, the monitoring and adaptation elements and the way they are 

assembled in a workflow are modeled. Moreover, architectural and quality-related 

information for adaptive SBAs and the relationships among the provided concepts are 

determined.  

Fig. 7 outlines the metamodel and the relationships among the provided concepts in an 

abstract way. The BASBA metamodel consists of three layers to support developing 

adaptive SBAs: i) the specification layer, the top block, in which the structure and objective 

of the SBA are represented; ii) the runtime adaptation layer, the middle block, in which the 

system elements are linked to system objectives using adaptive elements; and iii) the 

execution layer, the bottom block, in which the elements and the state of system are 

reflected. Each block defines the concepts related to the corresponding layer introduced in 

the previous section.  

 

Fig. 7 The BASBA metamodel 

 

The specification layer in the metamodel determines the structure and relationships of the 

produced artifacts in design time. An adaptive process model is a workflow, enriched by 

quality requirements and adaptation plans. Each workflow is modeled by a set of services 
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and processes, connected by flow objects. Quality requirements are defined on the basis of 

measurable properties, fuzzy measures, and adaptation triggers. Each measurable property 

is defined to measure a service or part of the workflow based on measurable property types. 

Measurable properties also form system assumptions. Each assumption is some 

information about the system, i. e., the estimated data based on measurable properties, or a 

piece of information about services, process, or flow objects in the workflow. 

An adaptation plan is a set of adaptation tactics that is defined in response to an adaptation 

trigger. Each adaptation plan can be executed if the pre-assumptions of all corresponding 

tactics hold in the system. Executing an adaptation tactic changes the structure of the 

workflow, influences the measurable properties, results in changing the satisfaction level 

of quality requirements. Each adaptation tactic is defined on a part of process based on 

adaptation tactic types. 

The runtime adaptation layer consists of models and components to control and adapt the 

system at runtime. These elements are generated from specification artifacts. In this layer, 

the structure of workflow is modeled by service components and connectors. A service 

component is defined as a simple service, or a process block that is a set of service 

components and connectors, with a start and an end. Service components can only connect 

to each other through connectors. Connectors determine the flow of the process and the 

order of execution of service components to form the process model. For this aim, each 

connector model has a binding model, which shows its connection to the other services and 

connectors.  

Checkpoints are runtime units located in the runtime connector models to measure the 

specified measurable properties. In fact, all measurements are done in the connectors 

through some predefined mechanisms. The measured properties are evaluated in evaluation 

unites. Each evaluation unit has a fuzzy measure property to detect adaptation needs and 

inform the adaptation planning component. 

The adaptation planning unit is a runtime component that tries to rectify the system by 

executing adaptation patterns. Each adaptation pattern is a realization of an adaptation plan 

that determines a set of adaptation tactics to be executed. An adaptation tactic is a rule-

based reconfiguration of connectors based on a set of change actions defined in adaptation 

plan templates with predictable effects on the system context model, resulting in change in 

the quality requirement satisfaction level. Each adaptation tactic can be executed if the 

required preconditions hold in the context model. The role of the adaptation planning unit 

is to find the adaptation pattern(s) with the best outcome according to the quality 

requirements that can be executed in accordance with the current context model to change.  

The runtime adaptation layer changes the behavior of the executing system through 

changing the connectors in the execution layer. The execution layer is a set of components 
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connected by connectors. Connectors are the main elements in forming communication 

between components and gathering data to analyze the system. This allows for handling 

the adaptation logic separately and dynamically in the communication layer, since the 

service components are not directly affected by changes. 

In BASBA, a set of connectors and interceptors are implemented. Connectors can be added, 

removed, or bound to service components by change actions dynamically. The change 

actions provide the ability to change the connectors and the communication model at 

runtime, and the ability to realize adaptation tactics. In addition, a set of connectors are 

implemented to support simple communication and adaptation tactics (Fig. 6). For 

example, the parallel execution tactic is supported by ParallelOutConnector and 

ParallelInConnector connectors. On each connector, a set of interceptors can be 

installed/uninstalled at runtime to return the value of properties to the checkpoints. 

Moreover, a set of interceptors are implemented to support the basic measurable properties 

introduced in Table 2.  

Change actions in the execution layer are enacted by the configuration manager component. 

The configuration manager is a runtime container for the deployment and modifying 

connectors, which provides a procedural interface for the loading, unloading and modifying 

connectors. The configuration manger is used by elements in the adaptation layer to realize 

a checkpoint by placing an interceptor on a connector, or by executing change actions 

determined by adaptation plans.   

The BASBA framework supports SOAP and RESTful protocols for binding connectors to 

service components. It also supports JSON, GeoJSON, and XML data contracts. Several 

abstractions are defined in BASBA to implement new connectors and extend adaptation 

tactics. Each connector should provide a reconfiguration interface with operations such as 

bind and unbind. The configuration manager uses this interface to enact the change actions.  

6.2. Generating runtime models 

In this section, we describe how runtime models are transformed from specifications of 

adaptive process models in BASBA framework. An adaptive process model, explained in 

Section 5.2, includes three categories of specification models: i) workflow models, ii) 

quality requirements, and iii) adaptation plans. As shown in the BASBA metamodel (Fig. 

7), each element of the specification models will be refined to some elements in the runtime 

adaptation layer and some elements in the execution layer.  

A workflow in the specification layer is defined based on simple services, flow objects and 

process elements, which are transformed into runtime artifacts. A simple service is 

transformed into a service component model at the runtime adaptation layer, reflecting the 

concrete service that realizes the corresponding service in the workflow model. For each 

flow object, there is a direct transformation model that transforms the flow object into a 
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specific runtime connector model, and a specific runtime component at the execution layer. 

For example, the flow object Seq (S1, S2) is transformed into a sequence connector model 

at runtime (including SeqInCon and SeqOutCon elements), which shows that the output of 

the service S1 is bound to SeqInCon, and the output of SeqOutCon is bound to service S2. 

The sequence connector model also maintains information about the service components 

(such as SC1 And SC2) that realize the S1 and S2 services. At the execution layer, the 

sequence connector model is transformed into the runtime connector components that 

connect the outbound of the service component SC1 to the inbound of the service 

component SC2. Fig. 8 shows the flow objects model at runtime in BASBA. Each process 

in the specification layer is transformed into a process block at the runtime adaptation layer, 

which is defined by a start connector and an end connector. These connectors provide the 

ability to detect when the process block is started and when it is finished.  

 

Runtime model Flow object 

 
Seq(S1,S2) 

 

Loop (S) 

 

Opt (S) 

 

and_par(S1,S2) 

 

 

Sel(S1,S2) 

 

Fig. 8 The runtime models of process flow objects  

 

A quality requirement in the specification layer is defined on a process with a measurable 

property, a fuzzy measure, and an adaptation trigger. For each measurable property, a 

transformation rule is developed that determines how it is transformed to runtime 

components and how data should be collected in connectors. Table 4 shows the 

transformation logic of measurable properties in an abstract way. A measurable property is 

a basic property, or a function that is defined on the basis of basic properties. The function 

can be a predefined function in BASBA (Table 3), or can be a delegate function. The 

transformation of measurable properties into runtime elements is supported by the 
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embedded mechanisms designed in BASBA connectors allowing to install/uninstall 

interceptor functions. The value of a measurable property is calculated by the checkpoints. 

Checkpoints are runtime components that determine the placement of interceptors on the 

connectors and the data that should be collected. The data gathered by the checkpoints is 

evaluated in the requirement evaluation units that realize the logic of fuzzy measures. Each 

evaluation unit is a runtime component that implements a fuzzy measure model on the 

measurable property to detect violations and fire an adaptation trigger. For example, 

specification of a quality requirement in the motivating example can be defined as follows. 

𝑄𝑅 ∷= (“𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑔𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛” , 𝑅𝑇: 𝑇𝑖𝑚𝑒, (𝑃𝑒𝑟 𝐶𝑎𝑙𝑙, 2 𝑚𝑠, 10 𝑚𝑠), “𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑠 𝑆𝑙𝑜𝑤”) 
 

Where RT is a time measurable property defined on the “finding geographical location” 

process block. The measurable property is transformed into a checkpoint, which manages 

the placement of an interceptor on the connector before, and an interceptor on a connector 

after, the process block. The checkpoint implements functions to receive the data from 

these interceptors and calculates the average response time. The quality requirement 𝑄𝑅 is 

also transformed into an evaluation unit, which implements the (𝑃𝑒𝑟 𝐶𝑎𝑙𝑙, 2 𝑚𝑠, 10 𝑚𝑠) 

fuzzy measure logic to fire the “𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑠 𝑆𝑙𝑜𝑤” trigger, based on the received data from 

the corresponding checkpoint and the fuzzy measure function.  

The data gathered at the checkpoints are also used to form the system context model. The 

context model is the state of the system at runtime, known as assumption in design time. In 

the context model, in addition to the measured data, the state of all service components, 

connectors, and bindings are maintained. 

 

Table 4 The transformation logic of measurable properties 

Measure 

type  

Transformation rule 

Time When a time measure property is defined on a process block, the property is transformed to 

two interceptors on the connectors located before and after the process block, triggering time 

events. The time measure property is also transformed to a checkpoint object in the 

adaptation layer, receiving time events and calculating the execution time of the process 

block and updates the context model.  

Failure When a failure measure property is defined on a process block, the property is transformed 

to two interceptors on the connectors located before and after the process block, and a 

container to run the process block. The failure measure property is also transformed to a 

checkpoint object in the adaptation layer, receiving the events of starting the process block, 

completion of the process block, and a failure event by the container if a failure accrues 

during the execution of the process block. 

Count When a count measure property is defined on a process block, the property is transformed to 

an interceptor on the connector located after the process block. The count measure property 

is also transformed to a checkpoint object in the adaptation layer, receiving the number of 

times the process block was executed. 

Data When a data measure property is defined on a process block, the property is transformed to 

an interceptor on the connector located after the process block. The interceptor measures the 

value of data based on the process output and sends an event to the corresponding checkpoint.     

Constraint A constraint measure property is defined on a process block with a delegate function defining 

a condition. The constraint measure property is transformed to an interceptor on the 

connector located after the process block. The interceptor evaluates the condition based on 

the process output and sends an event to the corresponding checkpoint.  
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Derived A derived measure property is defined as a mathematical function based on basic measurable 

properties. The mathematical function is transformed to a checkpoint component at runtime, 

which calculates a value based on the basic measurable properties. 

Aggregated An aggregate measure property is defined as an aggregation function based on basic 

measurable properties. The property is transformed to a checkpoint component to aggregate 

the value of basic measurable properties at runtime. 

 

An Adaptation plan in the specification layer is defined based on the adaptation plan flow 

objects (Fig. 5) and a set of adaptation tactics to manipulate a process at runtime. The 

adaptation plan flow objects are transformed into an adaptation pattern in response to a 

specified trigger, which handles the execution of runtime adaptation tactics according to a 

set of assumptions. Each adaptation tactic is transformed into a runtime adaptation tactic 

on the basis of an adaptation template class. A template class is defined by the supporting 

connectors (Fig. 6), precondition, pre-state, change action, post-state, and the expected 

effect that can instantiate a concrete adaptation tactic at runtime. A concrete adaptation 

tactic is instantiated through a template based on the parameters defined by the adaptation 

plan specification to manipulate the execution layer through connectors.  The elements of 

adaptation plans are not directly transformed into artifacts at the execution layer, but they 

change connectors and bindings in the execution layer in accord with the defined change 

actions.  In the next section, adaptation patterns and adaptation tactic templates are 

explained in more detail. 

6.3. Adaptation at runtime 

In BASBA, the logic of adaptation is defined according to the information held in the 

context model. The information includes data about system components and connectors, 

measured properties and requirement satisfaction levels. The data is maintained in simple 

propositions shown in Table 5.  

Table 5 Proposition syntax in context model  

Proposition syntax Proposition description 

𝑆𝐶: 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 SC is a service component 

𝑆𝐶: 𝑆𝐶𝑇𝑦𝑝𝑒 Type of the service component SC is SCType 

𝐶𝑜𝑛: 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 Con is a connector 

𝐶𝑜𝑛: 𝐶𝑜𝑛𝑇𝑦𝑝𝑒   Type of connector Con is ConType 

𝑏𝑖𝑛𝑑(𝑆𝐶, 𝐶𝑜𝑛)  SC is bound to Con 

𝑏𝑖𝑛𝑑(𝐶𝑜𝑛, 𝑆𝐶)  Con is bound to SC 

MP = X The value of the measurable property MP is X 

QR= Y  The value of the quality requirement QR is Y. 
 Y can be acceptable, tolerable, or inacceptable. 

InBindigs(SC)  Returns a list of all connectors bound to SC 

OutBindigs(SC) Returns a list of connectors that SC is bound to 

them 

 

The components and connectors in the context model are a reflection of the running system. 

There is a causal connection between each component/connector and a model at runtime in 
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the context. The component and connector model can be changed through the adaptation 

cycle. The changes only happen in the connectors and the bindings. Each change in the 

model (change a connector or a binding) is enacted in the running system by the BASBA 

container through predefined actions embedded in the connectors. BASBA container has 

the responsibility to add or remove connectors, and each connector has methods to change 

the bindings.    

Measured properties and requirement satisfaction levels in the context model are updated 

by checkpoints. In order to do this, the data is collected by interceptors, and evaluated in 

the related checkpoints to calculate the value of measurable properties. If the value of a 

measured property shows a change in quality satisfaction level, the related quality value 

will also be updated in the context model. Inacceptable or tolerable quality satisfaction 

levels can start the adaptation planning unit to rectify the situation. The planning unit tries 

to detect a sequence of tactics with a desirable result, which can be executed in accordance 

with the state of the context model. Analyzing the result and possibility of executing tactics 

is done according to adaptation tactic templates. 

Adaptation tactics are defined in first-order logic, providing the ability to apply changes. 

Each adaptation tactic consists of six parts: supporting connectors, precondition, pre-state, 

change action, post-state, and expected effect. The supporting connectors are units in 

BASBA that support enacting the tactic to the running system. The precondition is declared 

in first-order logic and determines whether the tactic can be executed on the basis of the 

context. The pre-state shows the state of the component and the connector before applying 

the tactic. The change action is a sequence of actions to apply the tactic. Actions might 

include “adding a connector”, “removing a connector”, or “changing a binding”. Post-state 

shows the state of the component and the connector after applying the tactic. The pre-state 

and the post-state are simple propositions on components, connectors and bindings. The 

expected effect formulates the effects of executing the tactic on the measurable properties. 

For each measurable property affected by applying the tactic, a formula or a delegated 

function should be defined to model the effects.   

Fig. 9 shows the parallel execution tactic as an example. In this example, applying the 

parallel execution tactic in component 𝑆𝐶 is introduced. This tactic is supported in BASBA 

by ParallelOutConnector and ParallelInConnector connectors. ParallelOutConnector is a 

unit that simultaneously executes the next unites. ParallelInConnector is a unit that waits 

until it gets the first response, and then continues the process. The precondition shows that 

the tactic can only be applied if there is a component SC′ which is the same type as SC. The 

pre-state shows the components, connectors and the bindings before applying the tactic. 

Change action determines that for applying the tactic, a sequence of changes should be 

enacted. First, a connector of the type ParallelOutConnector and a connector of the type 
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ParallelInConnector are instantiated and added to the model. Next, these connectors are 

bound to SC and SC′. Then, each binding from and to SC is modified to the new added 

connectors. The post-state in the Fig. 9 shows the model of the system after applying the 

tactics. 

The expected effect shows the effects of the tactic on measurable properties. In this 

example, we supposed a process block (pb) with three defined measurable properties: 

availability, cost, and response time. Due to the insignificant impact of connectors on 

measurable properties, the effects of connectors are ignored in the model. 

Adaptation tactics in BASBA can be extended. For this purpose, a template class with the 

introduced parts should be defined for each tactic. In addition, if there is a need for a new 

connector that does not exist, the new connector should be implemented and added to 

BASBA connectors.  

 

Fig. 9 Parallel execution tactic at runtime 

Adaptation tactic:  

         𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑆𝐶)    
 

Supporting connector: 

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑂𝑢𝑡𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟, 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝐼𝑛𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 

 

Precondition: 

∃ 𝑆𝐶′: 𝑆𝐶′ ∈  𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  ∧  𝑆𝐶𝑇𝑦𝑝𝑒(𝑆𝐶′)  =   𝑆𝐶𝑇𝑦𝑝𝑒(𝑆𝐶)  

 

Pre-state: 

𝑆𝐶: 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, 𝑆𝐶′: 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, 𝐶𝑜𝑛𝑋: 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟, 𝐶𝑜𝑛𝑌: 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟, 𝑏𝑖𝑛𝑑(𝐶𝑜𝑛𝑋,  𝑆𝐶), 𝑏𝑖𝑛𝑑(𝑆𝐶, 𝐶𝑜𝑛𝑌) 

 

Change action: 

𝒂𝒅𝒅 (𝑃𝑎𝑟𝑂𝑢𝑡𝐶𝑜𝑛: 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑂𝑢𝑡𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟) 

𝒂𝒅𝒅 (𝑃𝑎𝑟𝐼𝑛𝐶𝑜𝑛: 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝐼𝑛𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟) 

𝒂𝒅𝒅(𝑏𝑖𝑛𝑑(𝑃𝑎𝑟𝑂𝑢𝑡𝐶𝑜𝑛,  𝑆𝐶)), 𝒂𝒅𝒅(𝑏𝑖𝑛𝑑(𝑃𝑎𝑟𝑂𝑢𝑡𝐶𝑜𝑛, 𝑆𝐶′)), 𝒂𝒅𝒅(𝑏𝑖𝑛𝑑(𝑆𝐶, 𝑃𝑎𝑟𝐼𝑛𝐶𝑜𝑛)), 𝒂𝒅𝒅(𝑏𝑖𝑛𝑑(𝑆𝐶′, 𝑃𝑎𝑟𝐼𝑛𝐶𝑜𝑛)) 
foreach(ConX: InBindigs(SC)) {remove(bind(ConX,SC)), add(bind(ConX, 𝑃𝑎𝑟𝑂𝑢𝑡𝐶𝑜𝑛))} 

foreach(ConY: OutBindigs(SC)) {remove(bind(SC, ConY)), add(bind(ParInCon, 𝐶𝑜𝑛𝑌))} 

 

Post state: 

𝑆𝐶: 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, 𝑆𝐶′: 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, 𝐶𝑜𝑛𝑋: 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟, 𝐶𝑜𝑛𝑌: 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟, 𝑃𝑎𝑟𝑂𝑢𝑡𝐶𝑜𝑛: 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟, 
𝑃𝑎𝑟𝐼𝑛𝐶𝑜𝑛: 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟, 𝑏𝑖𝑛𝑑(𝑃𝑎𝑟𝑂𝑢𝑡𝐶𝑜𝑛,  𝑆𝐶) ∧ 𝑏𝑖𝑛𝑑(𝑃𝑎𝑟𝑂𝑢𝑡𝐶𝑜𝑛, 𝑆𝐶′) ∧ 𝑏𝑖𝑛𝑑(𝑆𝐶, 𝑃𝑎𝑟𝐼𝑛𝐶𝑜𝑛) ∧ 𝑏𝑖𝑛𝑑(𝑆𝐶′, 𝑃𝑎𝑟𝐼𝑛𝐶𝑜𝑛) 

∀ 𝐶𝑜𝑛𝑋: 𝑏𝑖𝑛𝑑(𝐶𝑜𝑛𝑋,  𝑆𝐶) →   𝑏𝑖𝑛𝑑(𝐶𝑜𝑛𝑋, 𝑃𝑎𝑟𝑂𝑢𝑡𝐶𝑜𝑛) 
∀ 𝐶𝑜𝑛𝑌: 𝑏𝑖𝑛𝑑(𝑆𝐶, 𝐶𝑜𝑛𝑌)  →   𝑏𝑖𝑛𝑑(𝑃𝑎𝑟𝐼𝑛𝐶𝑜𝑛, 𝐶𝑜𝑛𝑌) 
 

Expected effect: 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑝𝑏) =  1 − ൫1 − 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑆𝐶)൯ ∗ (1 − 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑆𝐶′)) 

𝐶𝑜𝑠𝑡(𝑏𝑝) = 𝐶𝑜𝑠𝑡(𝑆𝐶) + 𝐶𝑜𝑠𝑡(𝑆𝐶′) 
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒(𝑏𝑝) = 𝑀𝑖𝑛(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒(𝑆𝐶) + 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒(𝑆𝐶′)) 
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7. Evaluation 

The general objective of the experimental study was to evaluate the effectiveness of 

BASBA framework to facilitate and improve developing adaptive behaviors in SBAs. We 

defined the experimental design of our study using the Goal-Question-Metric method [53].  

The goal, questions, and metrics of the study, following the GQM template, are presented 

in Table 6.   

Table 6 GQM template for BASBA framework evaluation 

Goal Purpose Evaluation 

Issue Effectiveness (impact on efficiency and quality of developed 

adaptive behaviors) 

Object (product) BASBA framework 

Viewpoint Development team 

Context Service-based applications 

Question Q1 Does BASBA improve identification of adaptation plans in 

the target system in comparison to conventional methods? 

Metrics M1 The number of appropriate adaptation plans identified. 

Question Q2 Does BASBA improve the efficiency of developing adaptive 

behaviors? 

Metrics M2 Development time 

Question Q3 Does BASBA increase the code quality of developed 

adaptive behaviors? 

Metrics M3 The rate of faults/correctness of realized adaptation plans 

M4 Understandability  

M5 Modifiability 

 

 

These questions are designed to test the hypothesis that development of adaptive SBAs 

using BASBA is more efficient than traditional methods in terms of quality and 

development time. However, in addition to these questions, there are two other independent 

variables that could have a significant effect on the results: i) the professionality level of 

developers, and ii) the complexity level of adaptation needs and business processes. In the 

study, therefore, these parameters were also considered as independent variables and their 

effects were analyzed. 

Regarding these questions, in order to evaluate the proposed framework, two case studies 

and an evaluation in academic environment were undertaken. In case study 1, we conducted 

a semi-controlled experiment in an industrial environment with full-time developers for 

two months. Case study 1 yielded interesting results; however, it was not enough for 

drawing a reliable conclusion about BASBA. It was difficult to replicate a similar study 
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due to cost and resource limitations. To address the situation, we decided to analyze the 

effects of BASBA in one of the projects that have employed the BASBA framework in 

their development stack. Case study 2 was an exploratory research based on a flexible 

research design. The results of case study 2 showed that BASBA is an effective tool. 

However, because it was not a controlled experiment and the analysis was only based on a 

developed program and estimations, it was difficult to analyze the effects of independent 

variables on dependent variables. In order to have a complementary study, we conducted a 

controlled experiment in an academic environment using some scenarios from case studies 

1 and 2.   

7.1. Case study 1: Emergency and dispatching system 

For the experiments, an emergency and dispatching system has been selected as the first 

case study. The motivation for choosing such a system is the problems encountered in 

emergency and dispatching scenarios. The system is a real case and has been operational 

for over one year. It is distributed throughout the entire country and receives over 40 

thousand calls per day. It is operational in about 300 centers and runs on more than 5 

thousand vehicle devices, which are connected through an unreliable private radio network. 

Architecturally, the case is a hybrid client-server/peer-to-peer system, in which the 

connection between clients and centers is based on client-server architecture, and the one 

between clients is based on peer-to-peer architecture.   
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Fig. 10 The process model of the emergency system 

 

Fig. 10 shows the overall model of one process of this case study. For the sake of simplicity, 

many elements and other related workflows are left out of this paper. Using the system’s 

log, over 80 scenarios of contextual and environmental changes were identified. These 

scenarios were considered as a reference for determining adaptation needs, and were also 

simulated to evaluate the developed adaptive behaviors through the experiments. It should 

be mentioned that all of these scenarios were handled by the running emergency system, 

which provides a proper reference for comparison. Nevertheless, they were all developed 

using conventional methods, mostly with fixed hardcoded alternatives. 

The usual concern of the case is to deal with different environmental contextual changes 

such as unreliability of network or unavailability of services. The system should perform 

self-adaptive behaviors in order to maintain three quality objectives: i) reliability, ii) 

availability, and iii) response time. 

A group of 11 full-time software engineers participated in this experiment for about two 

months. All the participants were familiar with the case study and were members of the 

company where the real case was developed. They included a project manager, an architect, 

an analyst, and eight developers. The project manager, the architect and the analyst were 

members of a team who had been responsible for developing and maintaining the real case. 

In the study, they were experts who observed, controlled, and analyzed the results.  

Regarding the effect of developers’ professionality, the developers were divided into two 

groups. The first group consisted of four nonprofessional developers who had 2-4 years of 

experience in programming without practical knowledge about how a system should be 

adapted to contextual and environmental changes. The second group was made up of four 

developers who had at least eight years of experience in programming with deep knowledge 

about design patterns. They were also familiar with developing adaptive behaviors, and 

each of them had at least the experience of developing one complex system requiring 

adaptive behaviors. We divided each group into two subgroups: one was to develop 

adaptive behaviors using BASBA and the other to do it without using BASBA, relying on 

their personal expertise and experience. The reason for this subdivision was to specify the 

contribution of BASBA to the development of adaptive behaviors in different groups with 

different expertise.  

Regarding Q1, we asked each group to identify adaptation plans to handle possible 

environmental and contextual events. Furthermore, we asked the project manager, the 

architect and the analyst to analyze and categorize all the defined scenarios and determine 

all the adaptation needs. Regarding the effect of complexity variable, we asked them to 

rank the complexity of the adaptation plan from adaptation and business perspectives from 

A (the lowest degree of complexity) to C (the highest degree of complexity). We then asked 
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the experts to analyze the results of each group to determine the extent to which each group 

was successful in identifying these adaptation needs. 

 

 

 

 

Table 7 The role of BASBA in identifying proper runtime adaptation tactics for ten adaptation 

plans in detail 

 
Adaptation plan Com

plexit

y 

Adaptati

on 

category 

Adaptation 

tactics 

reused 

Nonprofe

ssionals 

without 

BASBA 

Nonprofe

ssionals 

using 

BASBA 

Professio

nals 

without 

BASBA 

Professio

nals using 

BASBA 

Replace automatic call 

detection with manual 
AA process 

replace to 

manual 
    

Skip automatic call 

detection, Find caller 

geographical position on 
map 

BB process 
skip, add 

activity 
    

Skip automatic call 

detection, Input caller text 

address, Geocode text 
address 

BC process 

skip, add 

activity, 

add 
activity 

    

Automatic call detection, 

Input caller text address, 

Manual station selection 

CB process 

skip, add 

activity, 
replace to 

manual 

    

Serial execution of map by 

invoking from Municipality, 
Google and Bing 

BA activity 
serial 

execution 
    

Re-execution of asking to 

dispatch personnel 
AB activity 

re-

execution 
    

Insert compressor and 

decompressor between send 
and receive vehicle data 

CA 
commun

ication 

insert 

compress

or and 
decompre

ssor 

    

Add queue before sending 

message to vehicles 
CB 

commun

ication 
add queue     

Add local cache for map BB 
commun

ication 

local 

cache 
    

Display vehicle place with 

text address 
BC 

commun

ication 

reduce 

size 
    

Transform points to 

trajectory 
CC 

commun

ication 

aggregate 

data 
    

 

 

The results of the experiment for metric M1 are described in Tables 7 and 8. In these tables, 

adaptation and business complexity are shown with two characters, the first of which shows 

adaptation complexity and the second one shows business complexity. Table 7 shows the 

results of 10 adaptation plans in detail. For each adaptation plan the complexity, the 

adaptation category, the adaptation tactic, and the groups that managed to identify the 

required adaptation plan are determined. Table 8 summarizes the results for all the 24 

adaptation plans. It shows the number of adaptation plans in each category. For each group, 

the cell shows the number of adaptation plans identified by them. The identified plans are 

separated by semicolons. The table also shows the comparison between “group 1, using 

BASBA” and “group 2, without BASBA”. Each bold-faced item shows a plan identified 
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by a group and not identified by the other group. The purpose of the comparison was to 

analyze the extent to which BASBA can enhance nonprofessional developers’ ability to 

identify adaptive behaviors in comparison with professionals. As shown in the tables, there 

is a tangible improvement in identifying adaptive plans (metric M1) where BASBA is 

employed. While nonprofessional developers without BASBA managed to identify 6 

appropriate adaptation plans, the number increased to 14 when the BASBA framework was 

employed. For the professional users, the number was increased from 14 to 20.  The results 

show that plans with low adaptation complexity were identified by almost all the groups. 

However, BASBA was very useful with plans with high adaptability complexity and low 

or medium business complexity. Nevertheless, it was not very effective in dealing with 

plans with high business complexity. The results show that there was a tangible 

enhancement in identifying adaptation tactics in all three categories of adaptation tactics. 

Particularly, there was a significant enhancement in identifying communication tactics.  

Table 8 The summarized results of all 24 adaptation plans 

 
Adaptation category Total 

adaptation 

plans  

Nonprofessi

onals 

without 

BASBA 

Nonprofessi

onals using 

BASBA 

Profession

als without 

BASBA 

Profession

als using 

BASBA 

Not 

detected 

plans 

Process variation 10 AA; AB; 

AB 

AA; AB; 

AB; BA; 

BB; BB; 
CB 

AA; AB; 

AB; BA; 

BB; BB; 
BC 

AA; AB; 

AB; BA; 

BB; BB; 
BC; CB; 

CB 

BC 

Activity variation 6 AA; AB; 
BA 

AA; AB; 
BA;      BA  

AA; AB; 
BA; BA; 

BB 

AA; AB; 
BA; BA; 

BB;    BB 

- 

Communication 

variation 

8 - BB; CA; 

CB 

BB;     BC BB; CA; 

BC; CB; 
CB 

BC; CC; 

CC 

 

Regarding Q2 and Q3, we asked each fully-dedicated (eight hours per day) group to 

develop all the 24 defined adaptation plans, and then their performance was evaluated in 

terms of development time and code quality. Regarding metric M2 in Q2, the development 

time was measured by total working days. The results show that nonprofessional 

developers (not using BASBA) managed to develop only 12 adaptation plans in 26 working 

days, while the nonprofessional developers who used BASBA managed to develop 20 

adaptation plans within almost the same span of time which included all the 12 adaptation 

plans developed by the group without BASBA. The average development time was reduced 

from 2.17 to 1.3 working days per adaptation plan, that is, about 40 percent saving in time. 

The average development time for the same 12 adaptation plans developed by both groups 

reduced from 2.17 to 1.25 working days per adaptation plan. The time records showed that 

the same 12 adaptation plans were developed almost in 15 days by the second group. Both 

teams in group 2 (professionals) managed to develop all the adaptation plans. However, 

those who used BASBA did so in 15 working days, and those who did not use BASBA 

managed to develop the adaptation plans in 21 working days. The average development 
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time for the professionals was reduced from 0.88 to 0.63 working days per adaptation plan, 

that is, about 29 percent saving in time. 

Regarding metric M3 in Q3, the correctness of code was measured by the number of faults 

emerged through evaluation of the developed adaptation plans in test scenarios. The results 

show that ordinary developers (not using BASBA) recorded 57 faults in 12 adaptation plans 

(on average, 4.7 faults per adaptation plan), while ordinary developers who used BASBA 

recorded only 52 faults in 20 adaptation plans (on average, 2.6 faults per adaptation plan), 

which means the average number of faults per adaptation plan was decreased for about 45 

percent. Regarding the 12 adaptation plans which were the same as the ones developed by 

the ordinary developers (not using BASBA), the number of faults was 28 (on average, 2.3 

faults per adaptation plan) meaning an over 50 percent improvement. The result for 

professionals who had not used BASBA was 46 faults in 24 adaptation plans (1.9 faults per 

adaptation plan on average), and for professionals who used BASBA it was 31 faults in 24 

adaptation plans (1.3 faults per adaptation plan on average), which means an improvement 

about 32 percent. 

Regarding the role of BASBA in understandability (M4 in Q3) and modifiability (M5 in 

Q3), the developed adaptation plans were analyzed by the experts in focus group sessions. 

The group members (the project manager, the architect, the analyst, and the moderator) 

agreed that the developed adaptation plans with BASBA were more understandable and 

modifiable.  

During the experiments, shadow observations were carried out by the experts, who 

observed the behaviors of each group and noted their observations. The notes were coded 

and categorized to quantify qualitative data. The high-frequency codes, related to question 

2, were selected and analyzed. The results are summarized as follows (Italic expressions 

are frequent codes):  

BASBA facilitated the development of adaptive behaviors by reducing the complexity of 

the problem through breaking it down into simpler sub-problems and separate adaptation 

logics, resulting in a more understandable and maintainable code (metrics M4 and M5). 

Furthermore, it helped to easily test the developed adaptive behaviors, and improved 

control over the adaptive behavior by enhancing traceability and providing the ability to 

check the overall outcome of the adaptation plans, which resulted in improving the 

correctness of code (metric M3). Moreover, BASBA enabled developers to reuse 

adaptation tactics and implement the adaptation logic by less lines of code that resulted in 

reducing the development time (metric M2). 

7.2. Case study 2: Regional power distribution management system 

For the second case study, a regional power distribution management system (RPDMS) 

was selected. The motivation for choosing this system was that the development managing 
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board of RPDMS had decided to use BASBA framework in the development process. The 

system had been planned to be employed in operation, monitoring, and maintenance of the 

power distribution infrastructure in a state. The infrastructure includes a few thousand 

sensors and devices maintained by over 500 staffs in different teams. These teams, which 

include management, monitoring, and operational teams, were equipped with portable 

devices such as PDAs and car PCs to have real time communication. The system operates 

over different areas with unpredictable environmental conditions, such as unreliable 

network. However, the system should behave in dependable manner and perform self-

adaptive behaviors. For example, as a team member moves away from a WLAN coverage, 

the PDA loses connection to the local location service. In this situation, several conditions 

may happen. If the connection switches to GPRS by the software installed on the PDA, the 

location service can be obtained from the GPRS provider with a low accuracy. However, 

the team member may get into the car equipped with a navigation system based on GPS, 

which provides a more accurate location service. To increase accuracy, the application can 

reconfigure itself to use location services provided by car devices. To save battery life, the 

display can also switch to the car display system.  

In another example, in some areas there may not be any internet connection. In this 

situation, it is very important to maintain interaction between team members. One option 

is to maintain communication via SMS over GSM network. However, in this situation, only 

important parts of messages without any additional data may be transferred and the full 

messages should be queued until reaching an area with internet connection. Compressing 

SMS messages will also be another option if there is enough battery life. 

In order to develop the system, a team with 17 members were assigned to the project. The 

development methodology was SCRUM. At the start of the project, the BASBA framework 

was introduced and explained to the team members. Through the development process, the 

team members had access to BASBA experts whenever they needed some help. The system 

was developed in 8 months. At the end of the project, the effectiveness of BASBA was 

analyzed. Overall, 34 considerable adaptation scenarios were implemented. All of these 

adaptation scenarios were analyzed by the development team members and BASBA 

owners.  

Regarding the effect of developers’ professionality, we prepared a questionnaire for the 

development team members. The questionnaire included two main categories: i) How 

much programming expertise is needed to learn the BSABA framework, ii) How much 

adaptation skill is needed to develop adaptation strategies using BASBA. Regarding the 

former question, all the participants agreed that both senior and junior developers could 

learn BASBA. As for the latter question, 88 percent of participants (15 out of 17) stated 



 

33 

that basic knowledge of developing adaptive behaviors is enough to develop adaptation 

strategies using BASBA.   

Regarding metric M1 in Q1, we analyzed the log activity of identifying adaptation 

strategies, and asked the developers to determine the role of BASBA in the identification 

process. Plans were considered as “identified by BASBA” when the majority of the 

development team (over 70 percent) believed that BASBA had a significant role in the 

identification process. The results show that 13 (out of 34) adaptation plans were identified 

using BASBA framework (Table 9).  

Regarding the complexity variable, in Table 9, each scenario is shown with two characters, 

the first of which shows adaptation complexity and the second one shows business 

complexity (from A to C). The results show that BASBA had a more considerable role in 

identifying activity and communication plans (7 plans out of 12) with low or medium 

business complexity. BASBA was not helpful in any plan with high business complexity. 

Table 9 The summarized results of all 34 adaptation plans identified 
 

 Number of 

process 

variations 

Process 

variations 

Number of 

activity 

variations 

Activity 

variations 

Number of 

communicati

on variations 

Communicatio

n variations 

Identified using 

BASBA 

3 BA; BB; BB 3 BA; BB; CB 7 BA; BA; BB; 

BB; CA; CA; 
CA 

Not identified using 

BASBA 

11 AA; AA; AA; 

AB; AB; BB; 

AC; AC; AC; 

BC; BC 

5 AA; BB; AB; 

AB; BC 

5 AC; BB; BC; 

CC; CC 

 

In the project, 32 adaptation plans were developed using BASBA framework. These plans 

included 14 process variations, 8 activity variations, and 10 communication variations. 

Two communication adaptation plans were too complicated and the architect of the system 

decided not to implement them using the BASBA framework. For example, implementing 

“skip communication with servers and switch to P2P communication” was implemented 

without BASBA. Table 10 shows some adaptation plans implemented using BASBA. 

Table 10 Some developed adaptation plans in RPDMS  
Adaptation category Adaptation plan 

Process • Skip monitoring team members 

• Switch from map visualization to text display 

• Replace push notification with pull notification 

• Get location service from car 

• Replace WLAN with GSM  

Activity  • Decrease/Increase monitoring interval 

• Send data until receive acknowledge 

• Re-execution asking to dispatch personnel 

Communication • Skip encrypting and decrypting data 

• Add queue before sending messages 

• Send data in urgent mode 

• Send only essential data 

 

 

Regarding Q2 and Q3 (the role of BASBA in automating and facilitating the development 

of adaptation plans), a questionnaire was prepared to evaluate development time and code 
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quality metrics, and the development team were asked to analyze the development log and 

response to the questionnaire. Each plan was analyzed by at least two developers on the 

basis of their previous experiences and developed projects log. The development team 

estimated that the development time of implementing adaptation plans had decreased for 

all of the developed plans by at least 35 percent on average (metric M2). In terms of code 

quality, the analysis showed that the code of adaptation logic in almost all developed plans 

had become more readable and more structured (metric M4) in comparison with previously 

developed projects. The development team did not come to a clear conclusion about the 

role of BASBA on metrics M3 and M5. 

7.3. Evaluation in an academic-environment study 

In order to have a deeper analysis about the role of BASBA framework in developing 

adaptation plans, we conducted a supervised evaluation in an academic environment. For 

this purpose, two groups took part in the experiment. The first group included 17 

professional software engineers from Service-Oriented Enterprise Architecture 

Laboratory1 (SOEAlab), and the second group consisted of 38 M. A. students of software 

engineering, most of whom were junior software developers. The experimental material 

was composed of 42 scenarios selected from case 1 and case 2. The scenarios were 

categorized in three levels of complexity. In the first step of evaluation, we selected fifteen 

scenarios including five random scenarios from each category for each subject. The 

participants were divided into traditional and BASBA groups. The traditional group 

included 18 students and 7 members of SOEAlab who were responsible for developing 

adaptation plans by means of traditional solutions. The BASBA group included 20 students 

and 10 SOEAlab members to whom BASBA framework was introduced. The subjects were 

asked to identify a proper adaptation plan for the scenarios and write pseudo-codes to show 

how they implement the plans in 150 minutes.  The objective of these steps was to evaluate 

the role of BASBA in identification and development of adaptation strategies. The results 

of the experiments were analyzed by five experts including two developers from case study 

2 and shown in Fig 10, 11 and 12. We used boxplot charts to summarize the results, and 

two-tailed, paired t-tests to evaluate the statistical significance of the results.  

Regarding Q1, the experts analyzed the results to measure if the subject identified a proper 

adaptation plan for each given scenario. The experts gave a score between 0 to 10 to show 

the quality (properness) of the identified and realized adaptation plans.  The number and 

quality of identified adaptation plans for each group are shown in Fig. 11 (a) and (b). The 

results show that the number and quality of identified adaptation plans present a significant 

statistical difference in comparison to traditional methods. The average number of 

 
1 https://soea.sbu.ac.ir/en 
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identified plans increased from 6.3 to 10.3 for students, and from 11.4 to 13.6 for SOEAlab 

members. Regarding the quality (appropriateness) of identified plans, the figures increased 

from 3.5 to 5.8, and from 5.1 to 8.2 respectively. The results show that students who used 

BASBA have identified more appropriate adaptation plans than those who have not used 

BASBA (p-value <0.01). They performed the tasks in almost the same manner as the 

experts without BASBA. The figures also show that BASBA had a tangible effect (p-value 

<0.05) on identifying adaptation plans for the experts. 

Regarding metrics M2 and M3, the experts analyzed the number and correctness of realized 

adaptation plans. In this study, metric M2 (development time) was measure by the number 

of realized adaptation plans in the specified time frame (150 minutes). The experts gave a 

score between 0 to 10 to show the correctness of the realized adaptation plans.  The number 

and correctness score of realized adaptation plans for each group are shown in Fig. 12 (a) 

and (b). The results show that the number and correctness of realized adaptation plans 

present a significant statistical difference in comparison to traditional methods. The average 

number of realized plans increased from 5.5 to 7.9 for students, and from 8.7 to 10.6 for 

SOEAlab members. Regarding the correctness of realized plans, the figures increased from 

2.3 to 5.5, and from 4.3 to 7.5 respectively. The results show that employing BASBA had 

a significant effect on the number and correctness of realized adaptation plans for the 

students, and on correctness of realized adaptation plans for the experts (p-value <0.01). 

The statistical difference of correctness for the experts was also tangible (p-value <0.05). 

 

Fig. 11 Boxplot graphs and t-test results for the number and quality of identified adaptation plans 

 

https://www.powerthesaurus.org/specified_time/synonyms
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Fig. 12 Boxplot graphs and t-test results for number and correctness of realized adaptation plans 

 

Regarding metrics M4 and M5 (understandability and modifiability) in Q3, the codes of 12 

adaptation scenarios with different structural complexities were selected. Each subject was 

given all scenarios, but 6 random scenarios with traditional implementation and the 

remaining scenarios with BASBA implementation. For each scenario, two questions were 

asked: one of which was to answer the understandability about the logic of adaptation, and 

the other containing a modification task about changing the adaptation logic and how the 

change should be enacted in code. In the experiment, each subject answered all the 24 

questions (two questions for each given scenario) in 150 minutes. The answers were 

analyzed by the experts and received feedback on whether the subject had understood the 

adaptation logic, and whether he/she was successful in enacting the changes. The average 

scores of understandability and modifiability, given by the experts, were mapped to a 

number between 0 to 10. The boxplot charts and t-test values of the results are represented 

in Fig. 13 (a) and (b). As the results show, the understandability is increased in average 

from 3.8 to 7.5 for students, and from 6.7 to 8.9 for SOEAlab members, indicating a 

significant statistical difference for plans implemented with the BASBA framework. 

Regarding modifiability, the figures increased from 3.1 to 4.2 for the students, showing a 

significant difference; for the experts, however, the difference between means was not 

statistically significant (p-value = 0.052> 0.05).  
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Fig. 13 Boxplot graphs and t-test results for understandability and modifiability 

7.4. Threats to validity 

Empirical evaluation is always subject to different threats that can influence the validity of 

the results. It is not always possible to address all the threats in one study. To mitigate this, 

we conducted three studies to evaluate BASBA, which can complement each other and 

improve the validity of the study results. In case study 1, different aspects of BASBA were 

investigated in a semi-controlled experiment. However, the limited number of subjects and 

the difficulty to have a replicate study pose different threats to the validity of the results. In 

case study 2, the effectiveness of BASBA in a real project was investigated. However, in 

the experiment there was no proper control on independent variables. In addition, the 

history of the company and estimations of measure parameters can threaten the validity of 

results. In study 3, a meaningful number of subjects participated in the experiment. 

However, different factors, such as the limitation on time, unfamiliarity of participants with 

the study and learning effects during the training session can threaten the validity of results. 

Here, we will discuss the threats to conclusion, construct, internal, and external validity in 

more detail. Our goals are to help readers qualify the results and to highlight the aspects of 

our experiments that may have been affected by these threats. 

Conclusion validity: Conclusion validity concerns the relationship between the treatment 

and the outcome. One threat, here, is about statistical validity of the experiments. The 

number of developers in case study 1, and analyzing only one project in case study 2, could 

affect the statistical validity of the results, which can cause limitation to drive the 

conclusion. To mitigate this in study 3, a meaningful number of participants were involved. 

Another threat is related to misinterpretation of the results, particularly when it comes to 

some qualitative interpretations such as code quality. To mitigate the threat in case study 

1, we tried to use quantitative measurements such as the number of faults and working 

days. In addition, the results of all cases were interpreted by experts with enough 
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knowledge in the domain. Another threat is fishing for the result. To mitigate this in case 

study 1, there was not any advantage in the results for the participants. In addition, the 

developers regard the experiment as a part of their regular work, and they were not aware 

about the measured parameters. However, the motivation to learn a new concept, 

particularly for the nonprofessional developers, can be an intervene factor, which may have 

been ignored. In studies 2 and 3, this issue is aggravated, as most of the experts were from 

the company where BASBA was applied. To mitigate this, each result was evaluated by 3 

to 5 experts. In addition, in study 3, some experts were not from the developers’ company. 

Another issue is reliability of the measures. Measurement of different properties, such as 

quality and time, in developing adaptive behaviors can be distorted by different variables 

such as prior experience or environmental factors. To mitigate this, in case study 1, we tried 

to maintain the same environmental factors for all the developers with almost the same 

working hours. In addition, the activities of developers were precisely observed and 

analyzed through shadow observation to verify the results and detect the uncontrolled 

factors. These arrangements combined with the fact that there is no gain for a participant 

in adjusting their measurements, the reliability of measures should be good in case study 

1. Moreover, in case study 2, we analyzed the outcome of BASBA in a real project and in 

study 3, an experiment with a meaningful number of subjects was conducted.  

Internal validity:  Internal validity is the extent to which a piece of evidence supports a 

claim about cause and effect. One threat, here, is ignoring relevant factors. To mitigate this, 

in case study 1, shadow observation was employed during the experiment to analyze and 

resolve the impact of other independent variables. In study 3, we conducted the experiment 

in a short period of time with specific questions. However, in case study 2, because the 

analysis was done after developing the system, we were not able to analyze the effects of 

other independent variables. Another issue is learning effect in studies 1 and 3. To mitigate 

this, in case study 1, we used different groups to have the same learning effect. In study 3, 

a random selection and order of scenarios was used to avoid learning effects. However, in 

part 1 of this study, one group had a training session, which could have an undesirable side-

effect on the results and threaten the validity. Another issue is subject selection. Case 

studies 1 and 2 were conducted in a single company that concentrates on developing 

location-based systems. This limitation could threaten the validity of the results, because 

the subjects were not heterogenous. In case study 1, we tried to have a slight mitigation by 

involving different roles with different expertise. In addition, we conducted study 3 as a 

complementary study with heterogeneous subjects from academic environment.  

Construct validity: Construct validity refers to the belief that the dependent and 

independent variables represent the theoretical concept of the phenomenon accurately. One 

threat here is the definition of metrics for code quality. In the first experiment, the metric 
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for measuring correctness of realized adaptation plans was defined on the basis of the 

number of faults in the code.  In addition, understandability and modifiability were 

analyzed by the experts. However, in case study 2, we only managed to measure 

understandability of the code. Another threat is the measurement method and the details of 

the measurement, which affect the study results. We know that the complexity of measuring 

qualitative metrics could produce false estimations and threaten the validity of the results. 

To mitigate this in case study 1, we tried to define quantitative metrics. However, in studies 

2 and 3, we used estimations to analyze the results whose deviation in estimations can 

threaten the validity of the results. Particularly, when it comes to measuring code quality 

objective, the matter gets worse because of the lack of a proper mechanism to estimate the 

role of BASBA in improving the objective. To mitigate this threat, several experts with 

proper knowledge are involved to estimate the results. However, we think more studies like 

case study 1 need to be done. Another threat is experimenter bias. Particularly, in studies 2 

and 3 the metrics were measured by the experts based on their opinion. The threat posed 

by using expert measurement mechanisms is that different experts may have different 

attitudes toward the evaluation of dependent variables. For instance, some experts may be 

reluctant to use some kind of adaptation mechanism or code style, or provide a solution 

different from BASBA. To mitigate this, in case study 1, the experts controlled this by 

shadow observation, and in study 3, three experts not involved in case study 2 were asked 

to contribute.  

External validity: External validity is the extent to which the study can be generalized to 

other subject populations and settings. Regarding the external validity, threats originate 

from how the study can be generalized to other subject populations and settings. To limit 

this threat, external developers from the field are involved to increase the relevance of the 

study to real applications. Furthermore, developer activities were analyzed through shadow 

observation in case 1, and the log of activities were analyzed in case 2. This analysis shows 

that the scenarios can be applicable in other similar cases. In addition, we conducted an 

academic environment study to analyze the role of BASBA to facilitate developing 

adaptation plans. However, we cannot claim that the same result can be obtained for any 

system or any situation. Especially, since all the experiments were conducted by one 

company and the scenarios were biased toward the domain of location-based services. In 

fact, in all cases, most of the adaptation plans was related to location. However, applying 

BASBA in location-based systems shows promising results, but there could be doubts on 

the applicability of BASBA in other domains. We believe that BASBA should be evaluated 

in other industrial environments, particularly those which are not location-based. 
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We are aware that these issues may pose threats to the reached conclusions, so the results 

of these experiments were considered as preliminary findings. We are currently working 

on some other projects that are implemented by BASBA to conduct replication studies. 

7.5. Discussion  

In this section, we reflect upon our experiences with applying the BASBA framework. Our 

remarks are based on the authors’ experience of applying BASBA to the three experiments 

explained previously, as well as discussions with several developers from the company 

where the BASBA framework was developed and employed. We present a number of the 

benefits of the BASBA framework, and also outline some limitations and research 

challenges with regard to how/when to use the BASBA framework for the development of 

adaptive behaviors in SBAs. 

The BASBA framework provides us with a means to identify and develop some repetitive 

adaptive behaviors based on reusing defined adaptation tactics. In this regard, BASBA 

introduces a systematic approach to develop adaptive behaviors based on specific 

engineering of adaptation engines and feedback loops, with the possibility to reuse 

adaptation tactics. The results of the experiments show that employing the BASBA 

framework can result in identifying more appropriate adaptation plans as well as enhancing 

the development efficiency (development time) and quality (correctness, understandability, 

and modifiability) of developed adaptive behaviors. It helps to keep adaptation concerns 

and behaviors at the design level separate from execution models, reducing the complexity 

and increasing the maintainability of the system. 

While BASBA shows promise as a framework for developing adaptive behaviors in SBAs, 

there are still several issues related to some aspects of applying BASBA. We have 

identified adaptation tactics as a desirable capability for developing adaptive behaviors, but 

the capability of BSABA is limited to the developed adaptation tactics. BASBA has 

provided the ability to extend adaptation tactics. However, when an adaptation needs is 

complex, particularly in terms of business process, or it is strongly domain specific (like 

some scenarios in case study 2), the BASBA framework does not seem very effective.  

BASBA was an effective tool for both professional and nonprofessional developers in all 

the cases, however, the results show that professional developers did not enjoy its benefits 

as much as nonprofessional developers. Particularly, for plans with business complexity, 

the professional developers did not find BASBA a useful tool. The results show that 

although BASBA was an effective means to identify plans with high adaptability 

complexity and low or medium business complexity, it was not very effective in dealing 

with plans with high business complexity. This issue was quite obvious in case study 1, 

where there was not a significant enhancement in identifying adaptation plans with high 

business complexity. 
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Another current limitation is that BASBA only addresses implementing adaptation 

behaviors based on defining BASBA adaptive process models, whereas in some cases, it is 

not efficient to define adaptive behaviors using the BASBA framework. The limitation was 

observable in case study 2, where the developers avoided implementing two adaptation 

plans based on BASBA adaptive process model. Besides, while the results show that 

BASBA had a significant role in improving the identification of adaption plans, it cannot 

be considered a comprehensive tool for identifying all adaptation plans. This issue became 

evident in case study 2, where the developers stated that BASBA had a significant role in 

identifying only 13 (out of 34) adaptation plans. 

8. Conclusions 

In this paper, we have presented a new approach to developing adaptive SBAs based on 

runtime models that allows for the specification and execution of adaptive processes. The 

core of this approach is a metamodel used to define adaptation behaviors in SBAs and a set 

of reusable adaptation tactics. On the basis of this metamodel and reusable adaptation 

tactics, a service integrator would be able to effectively identify and define adaptive 

behaviors for an SBA. The defined adaptive behaviors can then be efficiently transformed 

into runtime models to form adaptation logics. The proposed approach is automatically 

supported by feedback loops and runtime models. It noticeably facilitates the development 

of adaptive behaviors of an SBA by managing variations using runtime models, and 

execution of the adaptation engine.  

In order to evaluate the proposed approach, we have conducted two real case studies and 

an academic-environment study. The results showed that using BASBA can effectively 

enhance the development process of adaptive behaviors in terms of development time and 

code quality, particularly for scenarios that are more complex in terms of adaptation rather 

than business logic. The introduced approach provides service integrators with the ability 

to deal with adaptation concerns in a more abstract way, relieving the service integrator of 

low-level monitoring and adaptation mechanisms.  

There are several directions for future work. First, the adaptation tactics supported by 

BASBA framework need to be extended. Particularly, there should be tactics to support 

decentralized adaptation of service coordination. In addition, the monitoring mechanism in 

BASBA is limited to basic structures and events and a complex event processing can 

enhance BASBA significantly. Furthermore, a reusable model for analyzing the tradeoff 

among quality attributes based on different applicable adaptation plans can help improve 

the runtime decision of whether or not an adaptation plan should be applied. Moreover, the 

pattern-based analysis of adaptation plans can help reveal undesirable consequences 
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associated with such plans. Finally, lessons can be learned from the execution and 

adaptation history to automatically improve the accuracy of the analysis. 
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