

1

BASBA: A Framework for Building Adaptable
Service-Based Applications

Kavan Sedighiani,1 Saeed Shokrollahi2 and Fereidoon Shams,3*

1,3 Department of Computer Science and Engineering, Shahid Beheshti University (SBU), Tehran, Iran
2 Cyberspace Research Institute, Shahid Beheshti University (SBU), Tehran, Iran

1 sedighiani@parsimap.com, 2 s_shokrollahi@sbu.ac.ir, 3 f_shams@sbu.ac.ir

Abstract

Due to the continuously changing environment of service-based applications (SBAs), the ability to

adapt to environmental and contextual changes has become a crucial characteristic of such

applications. Providing SBAs with this ability is a complex task, usually carried out in an

unsystematic way and interwoven with application logic. As a result, developing and maintaining

adaptive SBAs has become a costly and hardly repeatable process. The objective of this paper is to

present a model-based approach to developing adaptive SBAs which separates development of

adaptation concerns from development of SBAs behaviors. This approach aims to facilitate and

improve the development of adaptive behaviors. In this paper, the process of developing an adaptive

SBA is defined as specifying adaptive SBA models based on a metamodel and reusable adaptation

tactics. These models are then transformed into runtime model artifacts and running system units

performing runtime adaptive behaviors. The approach introduces a systematic method to derive

adaptation behaviors from adaptation models, which facilitates the development of adaptive

behaviors. The empirical evaluations in three studies show that our approach enhances the

development of adaptive behaviors in terms of identifying more proper adaptation plans, reducing

the development time, and increasing understandability, modifiability, and correctness of code.

Keywords: Service-based application, Self-adaptation, Models at runtime, Quality of service,

Variability, Reusability

1. Introduction

In today’s dynamic environment of enterprises, collaboration among information systems

has become essential to success. In this context, service-based applications (SBAs) offer

promising potentials by enabling enterprises to define their business processes based on

composition and coordination of software services [1-3], which may be owned by the

application developer or a third party [4].

SBAs are meant to operate in a distributed, non-deterministic, unpredictable,

heterogeneous, and highly dynamic environment [5]. At the same time, SBAs should be

dependable in the sense that they should meet the Quality of Service (QoS) requirements

[6]. These requirements highlight the need for adaptive SBAs to cope with changes and

dynamics in the environment in order to demonstrate a better tradeoff among required

quality attributes. However, current solutions for developing SBAs often lack proper

mechanisms for modeling adaptive behaviors [7], or do not realize adaptation mechanism

at implementation levels. Research on business process management (BPM) and service-

K. Sedighiani, S. Shokrollahi and F. Shams, BASBA: A framework for Building Adaptable Service-Based Applications. The Journal of
Systems & Software (2021) 110989, https://doi.org/10.1016/j.jss.2021.110989

https://doi.org/10.1016/j.jss.2021.110989

2

oriented architecture (SOA), for example, has mainly focused on the ability to select and

dynamically substitute services at runtime or at deployment time [6,8], paying less attention

to the problems of how adaptation behaviors should be performed at service-collaboration

level as a continuous process.

Developing and maintaining adaptive SBAs is a complex task that poses several

engineering challenges [9]. In this regard, SBAs have been investigated from a variety of

perspectives including introducing control flow mechanism [10], process family models

[11], product line engineering [12-14], defining a collection of related process variants [15],

and managing contextual properties dynamically [16-19]. However, there has been no

proper framework taking into account the adaptability aspects in developing SBAs [20].

The problem with these approaches is that they do not introduce a systematic way to

separate adaptation logic from adaptable system. Furthermore, they do not describe and

perform adaptation and reconfiguration in a generic and reusable way. In these approaches,

coordination models of services and adaptation behaviors are interwoven, increasing the

complexity and reducing the maintainability of such systems. These issues make the

development and maintenance of adaptive SBAs a challenging task. To overcome this

challenge, the activities related to adaptation behaviors logic should be managed as an

explicitly separate concern. For this aim, a proper model is needed to support the

implementation and execution of the adaptation logic.

In this paper, we introduce a new approach to developing adaptive SBAs relying on the

role of runtime models within feedback loops as the knowledge of adaptation. It should be

emphasized that the knowledge of adaptation should come from the domain knowledge,

where the SBA is developed and evolved. It should also be considered as the main logic of

the adaptation by representing the knowledge of adaptation as runtime models. Therefore,

we make a causal connection between runtime models, derived from design-time models,

and the SBA. To this end, we present a new way to model adaptation aspects of an SBA as

runtime models, aiming to provide the expressiveness for designing models required for

the runtime adaptation of SBAs. This approach enables service integrators to: i) describe

adaptation requirements of an SBA, and then ii) derive the right runtime adaptive

behaviors, without increasing the complexity of the service development.

More concretely, the objective of the proposed approach is defined to facilitate and improve

developing adaptive behaviors in SBAs in terms of development time and quality of

developed adaptive behaviors. Through applying BASBA framework to two case studies

and an academic environment study, we have confirmed the effectiveness of BASBA in

identifying more appropriate adaptation plans and implementing more understandable,

modifiable, and semantically correct adaptation behaviors in response to adaptation needs.

3

In addition, the results show that employing BASBA reduces the development time of

adaptive behaviors.

The rest of the paper is organized as follows. Section 2 gives an overview of the related

work. Section 3 shows a motivating example to illustrate the need for runtime adaptation.

Section 4 introduces a framework for building adaptive SBAs. Section 5 explains how an

adaptive SBA is designed and developed using BASBA. Section 6 describes elements of

the BASBA framework and runtime models. In Section 7, we apply the framework in

practice and discuss the results. Finally, Section 8 serves as the paper’s conclusion where

we present our future work directions.

2. Related work

Adaptation can be defined as a process of modifying an SBA in order to satisfy new

requirements and to fit new situations dictated by the environment on the basis of

adaptation strategies designed by the system integrator [3, 21]. Conventionally, dynamic

adaptation has been managed within the application logic at the code level. For example,

mechanisms such as exception handling or timeouts with some fixed hardcoded alternatives

are common approaches to detect faults or system anomalies and resolve them. Although

these mechanisms are usually supported by modern programming languages, their main

disadvantage is that it can be difficult to develop and maintain adaptive functionalities as

they would be interwoven with application logic.

Normally, service selection and binding are used as a key mechanism for adaptation in

adaptive service-based applications. In this approach, adaptability is defined as a way to

select the best set of services available at runtime for dynamically configuring and

executing abstract workflows, taking into consideration adaptation requirements such as

process constraints, user preferences and the execution context [22, 23]. Calinescu et al.

[24] try to adapt service-based systems by dynamically adjusting service selection, resource

allocation, and relevant parameters on the basis of quantitative verification and

probabilistic logic to decide on the best adaptation. In the mentioned approach, the problem

of adaptive service composition is stated as follows: creating and executing a workflow

that satisfies the functional and non-functional requirements of the service, while being

able to continually adapt to dynamic changes in the environment [25] given the

specifications of a new service. The main problem with the approach is that adaptation is

limited to service selection on the basis of defined abstract workflow models.

Workflow adaptation approach is another main trend in this area aiming to provide

adaptability of workflow instances at build-time or at runtime by introducing structural

changes of workflow elements to the atomic parts of the workflow [7]. Several systems

based on workflow adaptation approach, also called agile workflow systems, have been

4

implemented to facilitate structural changes of workflows at runtime. In this approach,

workflow instances can be created and tailored to a particular need, and can be adapted

according to the situation after they have been started. The two main elements of the

approach are: i) configurable workflows, allowing to define workflow elements that can be

switched on or off at runtime, and ii) exception handling, allowing to annotate workflows

with exception handling patterns. However, most of these approaches are based on single

basic changes and need an expert to guide the runtime adaptation process. In addition, they

often lack the necessary instructions to become adaptable to a given context. As a result,

they are inefficient in more dynamic environments in which changes have to be managed

more frequently and systematically. Changing patterns [26-27] is another similar approach

providing a way of modeling high-level change operations instead of specifying a set of

change primitives to realize the desired adaptation model. Examples of change patterns

include the insertion and deletion of process fragments, or embedding them in loops [28].

However, this approach usually provides the process designer with only those change

patterns that allow transforming a sound process model into another sound one, imposing

structural restrictions on process models [28]. Therefore, the approach is restricted to only

a limited set of designed patterns. Similarly, many different approaches have been proposed

in recent years to develop applications that can be customized at runtime using dynamic

software product lines [14, 29]. However, this approach usually results in restricting the

potential customizability of SBAs and is limited to a given set of changes.

Explicit management of knowledge in the adaptation cycle can remarkably enhance the

benefits of runtime adaptation. Therefore, some studies have employed runtime models as

the knowledge within feedback loops for adaptation [30]. Blair et al. in [31], define a

runtime model as “a causally connected self-representation of the associated system that

emphasizes the structure, behavior, or goals of the system from a problem space

perspective.” As a basis for self-adaptation, the use of architectural models has a number

of useful properties such as providing a global perspective on the system, preserving

integrity constraints, and helping to ensure the validity of any change [32].

In this regard, several approaches based on autonomic computing and self-adaptive systems

engineering have been proposed to address the challenge of separating adaptation logic and

adaptable systems [33,34]. Among these approaches, those in which system models,

particularly software architectural models, are maintained at runtime seem more promising.

A number of architectural approaches have been proposed to address the problem of

managing the design complexity of self-adaptive systems [9,35-38]. At the heart of many

of such adaptation techniques, there is a component capable of designing, at runtime, a

strategy for adapting to the changes in the environment, system, and requirements [38]. In

addition, several goal-driven approaches are introduced to model the variability and guide

5

the architectural design based on goal-oriented requirement engineering to provide a basis

for the engineering of self-adaptive systems [39-41]. Goal-driven adaptation puts the

emphasis on the requirements that need to be solved by the managing system for the

concrete realization of self-adaptive systems [42]. In this direction, model-driven

approaches that directly execute the feedback loop via model interpretation are introduced

to the development of adaptation engines [43-47]. The aim of these approaches is to support

the explicit specification and execution of feedback loops. However, the main issues for

developing adaptive SBAs, here, are as follows: what are the main elements of runtime

models, how they should be generated and updated, and how they should be used in the

development lifecycle of SBAs.

The development lifecycle of SBAs must enable the systems to be dynamic. Therefore,

considering the continuous adaptation and evolution aspects of the systems are important

or even essential for service-oriented development lifecycle models [4]. Various lifecycle

models have been introduced to develop SBAs [34, 48]. Among these lifecycle models, S-

Cube [49] is specifically intended to facilitate the adaptation of SBAs. S-Cube describes

developing SBAs as two interrelated cycles: the evolution cycle and the adaptation cycle,

and claims to not only SBAs go through the transition between the runtime operation and

the evolution phases in order to be continuously improved, but also that they should be

provided with mechanisms at runtime for the automatic detection of problems,

identification of possible adaptation strategies, and enacting these strategies. Although S-

Cube expands the standard development process of SBAs to consider the runtime aspect of

SBAs and adaptive behaviors, it neither introduces mechanisms for developing adaptive

behavior nor specifies the role of runtime models in the adaptation cycle. Considering the

above-mentioned problems, there is a need for a systematic approach to develop adaptive

behaviors based on specific engineering of adaptation engines and feedback loops.

To address the mentioned problems, we propose a framework to improve and facilitate

developing adaptation plans. It presents a systematic way to keep adaptation concerns and

behaviors at the design level separate from execution models. The proposed framework

makes it possible to automatically derive right runtime adaptive behaviors from adaptation

requirements, in conformity with a model-based approach. It provides mechanisms for

modeling and realizing adaptive behaviors at service-collaboration level. Developing

adaptive behaviors in this framework relies on reusable adaptation tactics. Therefore, it is

not limited to service selection or a limited set of designed patterns. Employing reusable

adaptation tactics results in performing adaptation in a generic and reusable way, reducing

the complexity and increasing the maintainability of the system.

6

3. Motivating Example

To illustrate the need for runtime adaptation, we introduce a sample composite service that

supports handling a simplified emergency case as an example. Fig. 1 shows this example

in business process management notation. The business process starts when an emergency

call is received by a call-taker. At first, the calling number and the location of the incident

should be identified. Next, the call-taker needs to input additional information about the

incident. After collecting of the essential information, the proper fire station(s) should be

selected and asked to assign and dispatch field personnel. During the mission, the position

of the personnel should be sent to management center, where they are monitored and their

location is displayed on a map.

Although the above example is an oversimplified scenario, there are quite a few possible

environmental and contextual changes and events. For example, the caller Id may not be

identified or the service finding geographical location based on caller Id may be unavailable

or response too late. All these events need to be handled at runtime if they occur. Otherwise,

the process may lead to unsatisfactory situations. Therefore, proper compensation

strategies should be provided and made available at runtime for any situation.

C
al

l s
ys

te
m

M
is

si
on

m

an
ag

er

Receive a
phone call

Identify calling
number

Assign and
dispatch field

personnel

Find caller
geographical

position

Input
information

about the call

Find nearest
station

Monitor and navigate field
personnel on map

Fig. 1 A simplified process model of an emergency call system

4. BASBA framework

In this section, we introduce a novel approach to facilitate building adaptive SBAs called

BASBA (Building Adaptable Service-Based Applications) framework, which offers

adaptive behaviors in composition and coordination of services. We emphasize that the

logic of adaptation behavior should be determined by design-time models that are then

transformed into runtime models. The BASBA framework facilitates designing and

developing adaptive behaviors. For this purpose, we extended the S-Cube lifecycle [49] to

consider runtime models (Fig. 2). Like S-Cube, the BASBA framework describes

developing SBAs as two interrelated cycles: the evolution cycle and the adaptation cycle.

In the evolution cycle shown on the right-hand side of the figure, the service integrator

7

concentrates on the development of the adaptive SBA and defining the required quality

attributes. However, the adaptation cycle considers providing mechanisms for adapting the

system at runtime through automatic detection of problems, identification of possible

adaptation strategies, and enacting these strategies.

As shown in Fig. 2, in the evolution cycle, through the “specifying and designing adaptive

SBA” phase, the service integrator develops a set of design models. These design models

describe the coordination of services, the required qualities, and adaptation behaviors. In

this phase, BASBA provides a BASBA notation and a set of reusable adaptation tactics.

The BASBA notation describes how an adaptive SBA should be specified. It includes

elements to model adaptation plans and QoS requirements. Adaptation tactics determine

how a process should be changed. The design models, in the “generating adaptive process

instances” phase, are transformed into runtime coordination services. The coordination

services are deployed on the process executor and aggregator engine to form the target

system. Through the “operation and management” phase, the service integrator gets

feedback to update the design models. The design models are also used to generate adaptive

runtime models to monitor and adapt the system in the adaptation cycle.

Fig. 2 The role of models in the lifecycle of an adaptive service-based application

To manage adaptive behaviors in BASBA, the source, the elements, and the role of runtime

adaptation models should be identified. To this end, we define an adaptive SBA in three

layers: the specification layer, the runtime adaptation layer, and the execution layer (Fig.

3). These layers are inspired by the three-layer architecture introduced by [35]. In BASBA,

the logic of each layer is determined by the higher layer.

The top layer includes process models, their possible variations, and the required QoS

objectives designed by a service integrator through the evolution cycle. These models are

known as the source of adaptation, which are transformed into runtime models. The runtime

models determine the adaptation logic of the system including the way the system is

monitored and adapted at runtime, which form the runtime adaptation layer. This layer

Process executor and aggregator engine

Monitoring checkpoints Adaptation
operations

Design-time models Runtime models Generate

R
eflect

D
ep

lo
y

Coordination
services

Service

integrator

Feedback

Adaptation cycle Evolution cycle

8

takes the control of the executing system at specified checkpoints and, based on the

adaptation needs, changes the behavior of the system using adaptation tactics.

The bottom layer is the execution layer, which consists of monitoring interceptors, change

actions (actuators), and runtime processes managed by process executor and aggregator.

The bottom layer consists of a set of runtime services connected by connectors that

accomplish the purpose of the system. At this layer, interceptors, which are placed on

connectors, facilitate reporting the measured data to higher layers.

Runtime models have a significant role in the BASBA adaptation cycle for runtime

adaptation. These models can significantly separate the concern of adaptation at design

level from the execution level, and facilitate the development of adaptive behaviors. At this

layer, the role and the elements of runtime adaptation models are determined. Following

the MAPE-K (Monitor, Analyze, Plan, Execute, and Knowledge) control loop [50], the

BASBA framework consists of a control loop which is periodically executed.

Monitoring models determine the location of checkpoints and the granularity of the

collected sample data. The collected data is used to update the service execution models

and manage SBA application through an adaptation cycle, or to start another evolution

cycle. Runtime models (service composition and coordination models) are analyzed on the

basis of evaluation models such as constraints, time, and failures to identify adaptation

needs.

Fig. 3 The three layers of adaptability in BASBA

When an adaptation need is identified, an adaptation pattern is fired in response to the

informed adaptation need. The Adaptation pattern is a realization of a variation model

defined as adaptation plan by the service integrator. It includes assumptions, a flow of

E
x

ecu
tio

n

m
o

d
els

Monitor

Generate runtime models

Process executor and aggregator
Interceptors Change actions

Specify

QoS models Process models Variation models

Execute

Analyze

Plan

S
en

se

E
n

act

ch
an

g
e

Identify

adaptation
need

Sync

Fire

adaptation

pattern

Update Service

execution

model

M
o
n
ito

rin
g

m
o

d
els

E

v
alu

atio
n

m
o

d
els

 A
d

ap
tatio

n

m
o

d
els

Service

composition&
coordination

model

Computation

logic

Model

 Running

unit

Time

Failures Adaptation

tactics
Constraints

Checkpoints

Granularity of

data gathering

Specification
layer

Runtime

adaptation

layer

Execution

layer

Adaptation

operations
Tactic transf.

rules

Assumptions

Service integrator

9

adaptation tactics, and the expected results. Finally, the adaptation plan is transformed into

the executing system to form a new variation of coordination services. The transformation

is done through adaptation operations and transformation rules that are both defined by

adaptation tactics.

For example, in developing adaptive behavior in the motivating example, the service

integrator may have concerns about network bandwidth, which may increase

communication delay between the management center and the field personnel. The service

integrator must define the required QoS objectives and the possible variations as the source

of adaptation. The QoS objective can be an acceptable response time between the

management center and the field personnel. The service integrator can define this objective

by fuzzy linguistic words such as “less than 1 second is acceptable, between 1 to 3 seconds

is tolerable, and more than 3 seconds is inacceptable”. In response to this objective, the

service integrator can design a plan (called an adaptation pattern at BASBA level) to reduce

the volume of data by using a tactic such as compressor and decompressor. This decision

is called a variation in BASBA.

In this case, two checkpoints can be located at the services that send and receive messages

between the management center and the field personnel. The data gathered in these

checkpoints forms a model which determines the average response time. The evaluation

model, in this case, can be defined as consisting of two rules:

i) if the average response time is inacceptable, then fire a hard adaptation need

to decrease volume of data.

ii) ii) if the average response time is tolerable, then fire a soft adaptation need to

decrease volume of data.

These rules are slightly different. Both rules fire a need for adaptation to decrease volume

of data, however, the first rule fires a hard need and the second one fires a soft need. An

adaptation need can fire an adaptation pattern. The adaptation pattern in this case can be

defined as follows:

i) if battery is high, and a soft adaptation need is fired to decrease the volume of

data, then execute the compressor/decompressor tactic between the services

that send and receive messages.

ii) ii) if battery is high or medium, and a hard adaptation need is fired to decrease

the volume of data, then execute the compressor/decompressor tactic between

the services that send and receive messages.

Both adaptation patters in this case have the same consequences, however, each one can be

fired in different conditions.

10

5. Designing adaptable SBAs using BASBA

In this section, we describe how adaptive behaviors for an SBA can be designed through

“specifying and designing an adaptive SBA”. In BASBA framework, an adaptive behavior

is defined by adaptive process models. An adaptive process model is an assembly of the

workflow logic of the process (process model), the QoS model of the SBA (quality

requirements), and the possible variations (adaptation plans), which can be converted to

BASBA components to form the runtime models and the running system.

In the following parts of this section, first, we explain the adaptive process model and the

related elements through the motivating example. Next, in Section 5.2, we introduce the

formal definition of the adaptive process model on the basis of process algebra and first-

order logic. We describe how quality requirements (QoS model) and adaptation plans

(variation models) should be defined for a process model to form an adaptive process

model. Then, in Section 5.3 and Section 5.4, we explain the QoS model and variation

models in more detail. In Section 5.4, we also introduce the BASBA notation and elements

to define the adaptive process including QoS components and adaptation tactics. The

BASBA notation facilitates defining the adaptive process model.

5.1. Explanation of the adaptive process model through the motivating
example

In order to define adaptive behaviors for the motivating example, the workflow logic and

the related quality requirements and variation models should be specified. The workflow

logic can be modeled in an abstract way, using Business Process Management Notation 2.0

(BPMN). For example, in Fig. 1, the BPMN notation is used to model the workflow logic

of a process in the emergency call system. Activities in the workflow represent abstract

services, which should be mapped to concrete services that satisfy them. For example, “find

caller geographical position” is an abstract service that can be satisfied by “find caller

geographical position by Id” or “find caller geographical position on map”.

When an abstract business process is defined, the service integrator defines the QoS model.

The QoS model plays a crucial role in triggering adaptation plans and analyzing the tradeoff

among quality attributes. BASBA can consider different measurable QoS attributes to

specify an SBA called quality requirements. Quality requirements can be defined on the

basis of some measurable properties such as time, data value, failure, or a mathematical

function. For example, the response time of “identify call number” service can be defined

as a quality requirement. For each quality requirement, the service integrator, defines a

fuzzy measure using triangular fuzzy linguistic words. For example, the fuzzy measure for

response time quality requirement in the “finding geographical location” process part can

be shown as (-, 10 seconds, 30 seconds, per instance), which means the response time for

execution of that part of the workflow is totally acceptable if it is less than 10 seconds, the

11

response time between 10 to 30 seconds is tolerable, and the response time over 30 seconds

is inacceptable and triggers an adaptation plan. Another example can be the availability of

the map service defined on the basis of failure rate, which is the ratio of failures to the total

number of the process calls. The fuzzy measure for this can be defined as (+, 0.96, 0.99,

monthly), which means if the availability of the service in one month is inacceptable to be

less than 0.96, the availability between 0.96 and 0.99 is tolerable, and the availability over

0.99 is totally acceptable. Each fuzzy measure can fire an adaptation trigger. For example,

when the response time for “identify call number” is not acceptable, the “automatic call

number detection failed” adaptation trigger should be fired.

When the QoS model is defined, the service integrator specifies the variability model of

the workflow. Table 1 shows some possible adaptation plans for the emergency call system

introduced in the motivating example. For the sake of simplicity, we have used the natural

language to define the adaptation plans and tactics. As shown in Table 1, an adaptation plan

is started when an adaptation trigger occurs. For example, the adaptation plan #1 is

triggered when an automatic call number detection fails. For each adaptation plan, some

specific adaptation tactics are defined on the basis of reusable adaptation tactics. Each

option is obtained by specifying a generic adaptation tactic. However, only the options

whose pre-assumption can be verified by the context can be applied. For example, in the

adaptation plan #2 replacing “find caller geographical position by Id” with “find caller

geographical position on map” can only be applied when the “map service is available”

pre-assumption could be verified by the context. Each adaptation plan should be specified

using the BASBA adaptation plan notation.

Table 1 Some possible adaptation plans for the emergency call system

Plan

Id

Adaptation

trigger

Reusable adaptation tactic Specific adaptation tactic Pre-

assumption

False

assumption

#1

Automatic call

number
detection

failed

Process variation – replace
activity

O1: Replace (automatic call

number detection, input call

number manually)

Human

operator is

available

Soft: Increase
response time

Process variation – skip

activity

O2: Skip (automatic call

number detection)
-

Hard: Id is

identified

#2
Falsify: Id is

identified

Process variation – replace
activity

O1: Replace (find caller

geographical position by Id,
find caller geographical

position on map)

Map service
is available

Soft: Increase
response time

Process variation – replace

activity

O1: Replace (find caller

geographical position by Id,
input caller text address)

Human

operator is
available

Hard: Caller

location is
identified

#3

Map is
unreliable

Activity variation - serial

execution

O1: Serial execution

(municipality map, google
map)

Google map

is available

Soft: Increase

response time

Activity variation – parallel

execution

O2: Parallel execution

(municipality map, google
map)

Google map

is available

Soft: Increase

resource

utilization in
google map

service

#4

Network is

unreliable

Communication variation-

add queue

Add queue (sending

message to vehicles)
-

Soft: Increase
memory

utilization on

client device

12

#5

Low
communicatio

n bandwidth

Communication variation-

compressor and
decompressor

Add compressor (send
vehicle data), add

decompressor (receive

vehicle data)

-

Soft: Increase

in battery
utilization

Each adaptation plan can cause false assumptions, resulting in another adaptation trigger.

There are two categories of false falsifications: hard falsifications and soft falsifications.

Hard falsifications can have a chain effect, causing an event to trigger another adaptation

plan. Soft falsifications may result in undesirable quality requirement requiring tradeoff

analysis. Therefore, before enacting an adaptation plan in response to a soft falsification, a

tradeoff should be made between enhancements that can be obtained from enacting the plan

and its negative effect on other quality attributes based on defined QoS models. In the case

of adaptation plan #1, there are two options: “replace automatic call number detection with

input call number manually” and “skip automatic call number detection”. The former plan

can be applied when the “human operator is available” pre-assumption can be verified by

the context. However, both plans may result in false assumptions. The first plan increases

response time, which is a soft falsification, and the second one will falsify “Id is identified”,

which is a hard falsification and necessitates executing another adaptation plan.

Fig. 4 shows an example of an adaptation plan for the motivating example. This plan means

that there should be an exception evaluation unit in “identifying the calling number” to

detect occurrence of a failure, which may raise the “Id is identified” false assumption,

resulting in executing the adaptation plan. In this plan, at first, the skip tactic is enacted to

remove the “find caller geographical position by Id” activity from the process. Then, there

are two alternatives. First, the “find caller geographical position on map” service can be

added, provided the assumption “map service is available” is held. Second, the “input

address in text format” service can be added, but this will lead to another false assumption

that might result in executing another adaptation plan.

Fig. 4 An example of an adaptation plan in BASBA notation

5.2. Adaptive process model

The specification layer defines an adaptation process model. An adaptative process model

is an assembly of activities connected by flow objects enriched with QoS requirements, a

set of assumption to be held and a set of adaptation plans. QoS requirements are defined

13

on the basis of measurable properties. An adaptation plan is a representation of an

adaptation pattern in BASBA adaptation plan notation introduced in the following section.

In BASBA, each adaptive process model, called APM, is an aggregation of W, 𝑄𝑅+ and

AP+ and takes the form:

𝐴𝑃𝑀 ∶: = (𝑊, 𝑄𝑅+, 𝐴𝑃+) (1)

Where 𝑊 is a workflow, 𝑄𝑅+ is a set of quality requirements that define the QoS model,

and 𝐴𝑃+ is a set of adaptation plans that define the variation model.

The workflow is defined using process algebra in which each process, called 𝑃, takes the

form:

𝑃 ∷= 𝑆𝑒𝑞(𝑃+) | 𝐿𝑜𝑜𝑝(𝑃) |𝑆𝑒𝑙(𝑃+) | 𝑎𝑛𝑑_𝑝𝑎𝑟(𝑃+) | 𝑂𝑝𝑡(𝑃) | 𝑆 (2)

Where 𝑆𝑒𝑞(𝑃+) is a sequence of processes, 𝐿𝑜𝑜𝑝(𝑃) is a loop on a process, 𝑆𝑒𝑙(𝑃+) is a

selection of processes, 𝑎𝑛𝑑_𝑝𝑎𝑟(𝑃+) is an and-parallel of processes, 𝑂𝑝𝑡(𝑃) is an optional

of a process, and 𝑆 is a service, defined by a service specification and can be delivered by

a set of service providers.

The QoS model is defined by a set of quality requirements (𝑄𝑅+). Each QR is defined on

a process P, and evaluated by measurable property MP and takes the form:

𝑄𝑅 ∷= (𝑃, 𝑀𝑃, 𝐹𝑀, 𝑇𝑅) (3)

Where P is the part of the process which is evaluated, MP is a measurable property that is

measured in P, FM is a fuzzy measure that is used to evaluate the MP, and TR is an

adaptation trigger, which will be triggered if the fuzzy measure shows a violation. The

measurable properties are explained in next section, which takes the form:

MP ∷= Time | Data | Failure | Count | Constraint | Derived | Aggregated

Each fuzzy measure is defined using a triangular fuzzy term which defines the satisfaction

level of MP, and takes the form:

FM ∷= (𝑂, 𝑋1, 𝑋2, 𝑇𝐼) (4)

where O can be ‘+’ or ‘-’, with ‘+’ indicating the greater value the better result, and ‘–’

indicating the lower value the better result, 𝑋1and 𝑋2 forms three triangular fuzzy terms,

and and TI indicates the time interval to calculate the MP in average. For example, if O is

‘-’, it means QR value less than 𝑋1 is totally acceptable, the value between 𝑋1and 𝑋2 is

tolerable, and QR greater than 𝑋2 is not acceptable.

The variation model is defined based on adaptation plans. Each adaptation plan, called AP,

is an aggregation of 𝑇𝑅, 𝐴𝑇+, 𝑃𝐴+, and 𝐹𝐴+ and takes the form:

 𝐴𝑃 ∷= (𝑇𝑅, 𝐴𝑇+, 𝑃𝐴+, 𝐹𝐴+) (5)

Where 𝑇𝑅 is an adaptation trigger that can be fired from a FM or can be the result of

executing an AP, 𝐴𝑇+is a set of adaptation tactics, 𝑃𝐴+ is a set of pre-assumptions that

should be satisfied to run the adaptation plan. 𝐹𝐴+ is a set of false assumptions that is the

14

consequences of running the adaptation plan. Each FA can trigger a TR result in firing

another adaptation plan. Adaptation tactics are introduced in Section 6.

5.3. The QoS model

In order to specify and design QoS models, a service integrator defines quality requirements

on the basis of some predefined measurable properties. The measurable properties in

BASBA are modeled on the basis of process performance indicators introduced in PPINOT

ontology [51]. These measurable properties can be a single-instance measure such as time,

failure, count, data, constraint or derived, or can be a multi-instance measure such as

derived or aggregated. To calculate a multi-instance measure, a set of process instances are

used. The availability of the map service in a period of time (described in Section 5.1) is

an example of multi-instance measure implemented by an aggregate function. The

description of measurable properties is explained in Table 2.

Table 2 The description of measurable properties used in BASBA

Measure type Description

Time It measures the duration of time between two time instants

Failure It is a Boolean value that indicates a failure

Count It measures the number of times something happens

Data It measures the value of a certain part of a data object

Constraint It is a Boolean value that measures the fulfilment of certain condition on

process instances

Derived It is defined as a mathematical function over one or more measure

definitions. There are two types of derived measures depending on whether

the measure definitions are single-instance or multi-instance measures

Aggregated It is defined by aggregating one of the previous measures in several process

instances using an aggregation function such as sum or average

In BASBA, a model is developed for each measurable property to define the way the data

should be collected and analyzed. For each model, some transformation rules have been

developed to generate required interceptors. Interceptors are units that gather data at

runtime to form the execution profile and update the execution model of the process. The

execution models are analyzed on the basis of evaluation models. An evaluation model is

defined as a function of measurable properties to identify an adaptation need called a false

assumption. In evaluation models, the acceptable range of each metric is defined using

triangular fuzzy linguistic words showed in Equation 4. For constraint and failure

measurable properties, the fuzzy measure is defined using count or derived functions on

these properties.

The service integrator should consider the structure of processes to calculate measure

properties. In this regard, the service integrator can implement its own derived and

aggregate functions, using delegate functions, to measure different quality requirements. In

BASBA, some derived measures that use the functions per structure of processes and QoS

15

attributes measures, introduced in [52], are implemented. Table 3 shows the implemented

derived measurable properties in the BASBA framework.

Table 3 Functions per structure of process and QoS attribute

Structure of

process

Sequence Loop Selection Parallel

Response

Time(T) ∑ 𝑇(𝑆𝑖)

𝑛

𝑖=1

𝑘 ∗ 𝑇(𝑆𝑖)

∑ 𝑃𝑖𝑇(𝑆𝑖)

𝑚

𝑖=1

max{𝑇(𝑆𝑖)𝑖∈{1..𝑝}}

Cost(C)
∑ 𝐶(𝑆𝑖)

𝑛

𝑖=1

𝑘 ∗ 𝐶(𝑆𝑖)

∑ 𝑃𝑖𝐶(𝑆𝑖)

𝑚

𝑖=1

 ∑ 𝐶(𝑆𝑖)

𝑝

𝑖=1

Availability (A)
∏ 𝐴(𝑆𝑖)

𝑛

𝑖=1

𝐴(𝑆𝑖)

𝑘
∑ 𝑃𝑖𝐴(𝑆𝑖)

𝑚

𝑖=1

 ∏ 𝐴(𝑆𝑖)

𝑝

𝑖=1

Reliability (R)
∏ 𝑅(𝑆𝑖)

𝑛

𝑖=1

𝑅(𝑆𝑖)

𝑘
∑ 𝑃𝑖𝑅(𝑆𝑖)

𝑚

𝑖=1

 ∏ 𝑅(𝑆𝑖)

𝑝

𝑖=1

𝑆𝑖 is a service component

𝑃𝑖 is the probability of selecting service component 𝑆𝑖

n is the number of sequential service components

k is the number of iterations on a service component

m is the number of service components associated with a logical condition

p is the number of service components executed concurrently

5.4. Variation models

Variation models are another main specification of an adaptive SBA defined as adaptation

plans. Each adaptation plan is a sequence of actions in response to a false assumption and

determines how the process instance should be modified. Adaptation plans are designed on

the basis of BASBA adaptation plan notation. Each adaptation plan starts with an

evaluation unit determining when an adaptation plan should be executed, a set of adaptation

tactics determining how the process should be changed, and a set of flow objects

determining the sequence of execution of adaptation tactics.

 In BASBA, a notation is introduced which enables the service integrator to design

adaptation plans. For each notation, a template class is developed, which defines the

behavior of the adaptation element at runtime and the corresponding transformation rules.

The notation consists of three types: evaluation units, flow objects, and adaptation tactics.

Fig. 5 shows evaluation unit and adaptation plan flow objects notations. An evaluation unit

is defined on a service or a part of a process to assess a quality requirement. For this

purpose, the service integrator defines a measurable property that should be evaluated on

the basis of a defined fuzzy measure. BASBA supports three types of flow objects:

Alternative flow, Adaptation trigger flow, and Simple flow. Flow objects determine the

order of execution of the adaptation plan.

BASBA also supports 10 types of adaptation tactics. Adaptation tactics are the main

elements of adaptation plan notation. An adaptation tactic is a design decision that affects

16

the system response to some stimuli. Service integrators can reuse adaptation tactics to

define adaptation plans. It should be mentioned that there is no consideration of tradeoff in

tactics, and the only focus of an adaptation tactic is on a single quality response. For

example, the focus of serial execution tactic is on reliability, and the focus of

compressor/decompressor tactic is on network performance quality. This property allows

adaptation tactics to be reusable elements in defining adaptation plans.

Fig. 5 The evaluation unit and adaptation plan flow objects notations in BASBA

In Fig. 6, we have classified BASBA adaptation tactics in three groups: those acting on the

structure of the workflow, those affecting the way an activity runs, and those changing the

communication protocols between services. To address the first group, a variation is

defined using skip, add, and replace activities in a workflow. The second category of

variations refers to possible variations inside an activity which do not affect the workflow.

These types of adaptation include parallel execution, serial execution, and re-execution of

an activity. The third category of adaptation tactics includes those that change the way

services communicate in an SBA. An example of these tactics is putting

compressor/decompressor between two services in order to reduce the volume of data

communication. In the motivating example, applying the compressor/decompressor tactic

on the “monitor and navigate field personnel on map” process block reduces the volume of

data transferred between services in the process block, results in reducing the latency of

data communication. However, it also results in higher battery usage on client devices.

Cache element, reducing size, and aggregating data are among other examples of

communication tactics. Adaptation tactics in BASBA can be extended. To this end, the

model transformation, the logic of the tactic, its effect on quality attributes, and required

connectors should be developed. Section 6.3 introduces the elements of the adaptation

tactics in more detail.

Type Title Graphical representation Description

E
v

al
u

at
io

n

u
n

it

Quality

requirement
 Service S Falsify: Assumption A

Evaluation function

Evaluate a measurable property in a

service or a part of a process on the

basis of the defined fuzzy measure. If

it fails, an adaptation trigger will be

fired, resulting in falsify an

assumption.

F
lo

w
 o

b
je

ct
s

Alternative flow

There are two variations. If the pre

assumptions of the first one does not

hold, then try the next variation.

Adaptation

trigger flow

An adaptation trigger that falsified an

assumption “Assumption A” has been

fired.

Simple flow

Run “B” after “A”

17

Categ

ory

Title Graphical representation Supporting connectors Description

P
ro

ce
ss

 v
ar

ia
ti

o
n

s

Skip activity

SimpleConnector Skip “Service R”

Add activity

SimpleConnector Add “Service S” after “Service E”

Replace activity

SimpleConnector Replace “Service R” with “Service

S”

A
ct

iv
it

y
 v

ar
ia

ti
o
n

s

Parallel

execution

ParallelOutConnector
ParallelInConnector

Add “Service S” and execute in

parallel with “Service E” and take

the first response and continue

Serial execution

SerialOutConnector

SerialInConnector

Add “Service S” and execute if

“Service E” failed, otherwise skip

“Service S”

Re-execution

ConditionConnector Re-execute “Service E” until a

condition “condition function” is

reached

C
o

m
m

u
n

ic
at

io
n

 v
ar

ia
ti

o
n

s

Compressor/

decompressor

CompressorOutConnector
CompressorInConnector

Compress output of “Service E1”

and decompress it before “Service

E2”

Aggregate data

DataModifierOutConnector

DataModifierInConnector

Aggregate output of “Service E1”

using “aggregate function” and

disaggregate it before “Service

E2”

Reduce size

DataModifierOutConnector

Reduce the size of output “Service

E” using “reduce function”

Cache element

CacheElementConnector Add local cache element to

“Service E” and cache the data

based on “filter function”

Fig. 6 Adaptation tactics currently supported in BASBA

6. BASBA Runtime models

When an adaptive process model is designed, then, the design elements are transformed

into runtime elements forming the runtime adaptation models. BASBA uses a metamodel

to support development of adaptive SBAs. The metamodel determines the elements and the

structure of the adaptive SBA at design-time and runtime. It also clarifies the relationship

and the transformation logic between design-time and runtime artifacts. In this section,

first, we introduce the BASBA metamodel, then we demonstrate how runtime artifacts are

generated from design-time artifacts.

18

6.1. The BASBA Metamodel

BASBA metamodel provides a set of concepts to model the monitoring and adaptation

requirements at the service coordination level, and transform the models into runtime

adaptation logic. To this end, the monitoring and adaptation elements and the way they are

assembled in a workflow are modeled. Moreover, architectural and quality-related

information for adaptive SBAs and the relationships among the provided concepts are

determined.

Fig. 7 outlines the metamodel and the relationships among the provided concepts in an

abstract way. The BASBA metamodel consists of three layers to support developing

adaptive SBAs: i) the specification layer, the top block, in which the structure and objective

of the SBA are represented; ii) the runtime adaptation layer, the middle block, in which the

system elements are linked to system objectives using adaptive elements; and iii) the

execution layer, the bottom block, in which the elements and the state of system are

reflected. Each block defines the concepts related to the corresponding layer introduced in

the previous section.

Fig. 7 The BASBA metamodel

The specification layer in the metamodel determines the structure and relationships of the

produced artifacts in design time. An adaptive process model is a workflow, enriched by

quality requirements and adaptation plans. Each workflow is modeled by a set of services

19

and processes, connected by flow objects. Quality requirements are defined on the basis of

measurable properties, fuzzy measures, and adaptation triggers. Each measurable property

is defined to measure a service or part of the workflow based on measurable property types.

Measurable properties also form system assumptions. Each assumption is some

information about the system, i. e., the estimated data based on measurable properties, or a

piece of information about services, process, or flow objects in the workflow.

An adaptation plan is a set of adaptation tactics that is defined in response to an adaptation

trigger. Each adaptation plan can be executed if the pre-assumptions of all corresponding

tactics hold in the system. Executing an adaptation tactic changes the structure of the

workflow, influences the measurable properties, results in changing the satisfaction level

of quality requirements. Each adaptation tactic is defined on a part of process based on

adaptation tactic types.

The runtime adaptation layer consists of models and components to control and adapt the

system at runtime. These elements are generated from specification artifacts. In this layer,

the structure of workflow is modeled by service components and connectors. A service

component is defined as a simple service, or a process block that is a set of service

components and connectors, with a start and an end. Service components can only connect

to each other through connectors. Connectors determine the flow of the process and the

order of execution of service components to form the process model. For this aim, each

connector model has a binding model, which shows its connection to the other services and

connectors.

Checkpoints are runtime units located in the runtime connector models to measure the

specified measurable properties. In fact, all measurements are done in the connectors

through some predefined mechanisms. The measured properties are evaluated in evaluation

unites. Each evaluation unit has a fuzzy measure property to detect adaptation needs and

inform the adaptation planning component.

The adaptation planning unit is a runtime component that tries to rectify the system by

executing adaptation patterns. Each adaptation pattern is a realization of an adaptation plan

that determines a set of adaptation tactics to be executed. An adaptation tactic is a rule-

based reconfiguration of connectors based on a set of change actions defined in adaptation

plan templates with predictable effects on the system context model, resulting in change in

the quality requirement satisfaction level. Each adaptation tactic can be executed if the

required preconditions hold in the context model. The role of the adaptation planning unit

is to find the adaptation pattern(s) with the best outcome according to the quality

requirements that can be executed in accordance with the current context model to change.

The runtime adaptation layer changes the behavior of the executing system through

changing the connectors in the execution layer. The execution layer is a set of components

20

connected by connectors. Connectors are the main elements in forming communication

between components and gathering data to analyze the system. This allows for handling

the adaptation logic separately and dynamically in the communication layer, since the

service components are not directly affected by changes.

In BASBA, a set of connectors and interceptors are implemented. Connectors can be added,

removed, or bound to service components by change actions dynamically. The change

actions provide the ability to change the connectors and the communication model at

runtime, and the ability to realize adaptation tactics. In addition, a set of connectors are

implemented to support simple communication and adaptation tactics (Fig. 6). For

example, the parallel execution tactic is supported by ParallelOutConnector and

ParallelInConnector connectors. On each connector, a set of interceptors can be

installed/uninstalled at runtime to return the value of properties to the checkpoints.

Moreover, a set of interceptors are implemented to support the basic measurable properties

introduced in Table 2.

Change actions in the execution layer are enacted by the configuration manager component.

The configuration manager is a runtime container for the deployment and modifying

connectors, which provides a procedural interface for the loading, unloading and modifying

connectors. The configuration manger is used by elements in the adaptation layer to realize

a checkpoint by placing an interceptor on a connector, or by executing change actions

determined by adaptation plans.

The BASBA framework supports SOAP and RESTful protocols for binding connectors to

service components. It also supports JSON, GeoJSON, and XML data contracts. Several

abstractions are defined in BASBA to implement new connectors and extend adaptation

tactics. Each connector should provide a reconfiguration interface with operations such as

bind and unbind. The configuration manager uses this interface to enact the change actions.

6.2. Generating runtime models

In this section, we describe how runtime models are transformed from specifications of

adaptive process models in BASBA framework. An adaptive process model, explained in

Section 5.2, includes three categories of specification models: i) workflow models, ii)

quality requirements, and iii) adaptation plans. As shown in the BASBA metamodel (Fig.

7), each element of the specification models will be refined to some elements in the runtime

adaptation layer and some elements in the execution layer.

A workflow in the specification layer is defined based on simple services, flow objects and

process elements, which are transformed into runtime artifacts. A simple service is

transformed into a service component model at the runtime adaptation layer, reflecting the

concrete service that realizes the corresponding service in the workflow model. For each

flow object, there is a direct transformation model that transforms the flow object into a

21

specific runtime connector model, and a specific runtime component at the execution layer.

For example, the flow object Seq (S1, S2) is transformed into a sequence connector model

at runtime (including SeqInCon and SeqOutCon elements), which shows that the output of

the service S1 is bound to SeqInCon, and the output of SeqOutCon is bound to service S2.

The sequence connector model also maintains information about the service components

(such as SC1 And SC2) that realize the S1 and S2 services. At the execution layer, the

sequence connector model is transformed into the runtime connector components that

connect the outbound of the service component SC1 to the inbound of the service

component SC2. Fig. 8 shows the flow objects model at runtime in BASBA. Each process

in the specification layer is transformed into a process block at the runtime adaptation layer,

which is defined by a start connector and an end connector. These connectors provide the

ability to detect when the process block is started and when it is finished.

Runtime model Flow object

Seq(S1,S2)

Loop (S)

Opt (S)

and_par(S1,S2)

Sel(S1,S2)

Fig. 8 The runtime models of process flow objects

A quality requirement in the specification layer is defined on a process with a measurable

property, a fuzzy measure, and an adaptation trigger. For each measurable property, a

transformation rule is developed that determines how it is transformed to runtime

components and how data should be collected in connectors. Table 4 shows the

transformation logic of measurable properties in an abstract way. A measurable property is

a basic property, or a function that is defined on the basis of basic properties. The function

can be a predefined function in BASBA (Table 3), or can be a delegate function. The

transformation of measurable properties into runtime elements is supported by the

22

embedded mechanisms designed in BASBA connectors allowing to install/uninstall

interceptor functions. The value of a measurable property is calculated by the checkpoints.

Checkpoints are runtime components that determine the placement of interceptors on the

connectors and the data that should be collected. The data gathered by the checkpoints is

evaluated in the requirement evaluation units that realize the logic of fuzzy measures. Each

evaluation unit is a runtime component that implements a fuzzy measure model on the

measurable property to detect violations and fire an adaptation trigger. For example,

specification of a quality requirement in the motivating example can be defined as follows.

𝑄𝑅 ∷= (“𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑔𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛” , 𝑅𝑇: 𝑇𝑖𝑚𝑒, (𝑃𝑒𝑟 𝐶𝑎𝑙𝑙, 2 𝑚𝑠, 10 𝑚𝑠), “𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑠 𝑆𝑙𝑜𝑤”)

Where RT is a time measurable property defined on the “finding geographical location”

process block. The measurable property is transformed into a checkpoint, which manages

the placement of an interceptor on the connector before, and an interceptor on a connector

after, the process block. The checkpoint implements functions to receive the data from

these interceptors and calculates the average response time. The quality requirement 𝑄𝑅 is

also transformed into an evaluation unit, which implements the (𝑃𝑒𝑟 𝐶𝑎𝑙𝑙, 2 𝑚𝑠, 10 𝑚𝑠)

fuzzy measure logic to fire the “𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑠 𝑆𝑙𝑜𝑤” trigger, based on the received data from

the corresponding checkpoint and the fuzzy measure function.

The data gathered at the checkpoints are also used to form the system context model. The

context model is the state of the system at runtime, known as assumption in design time. In

the context model, in addition to the measured data, the state of all service components,

connectors, and bindings are maintained.

Table 4 The transformation logic of measurable properties

Measure

type

Transformation rule

Time When a time measure property is defined on a process block, the property is transformed to

two interceptors on the connectors located before and after the process block, triggering time

events. The time measure property is also transformed to a checkpoint object in the

adaptation layer, receiving time events and calculating the execution time of the process

block and updates the context model.

Failure When a failure measure property is defined on a process block, the property is transformed

to two interceptors on the connectors located before and after the process block, and a

container to run the process block. The failure measure property is also transformed to a

checkpoint object in the adaptation layer, receiving the events of starting the process block,

completion of the process block, and a failure event by the container if a failure accrues

during the execution of the process block.

Count When a count measure property is defined on a process block, the property is transformed to

an interceptor on the connector located after the process block. The count measure property

is also transformed to a checkpoint object in the adaptation layer, receiving the number of

times the process block was executed.

Data When a data measure property is defined on a process block, the property is transformed to

an interceptor on the connector located after the process block. The interceptor measures the

value of data based on the process output and sends an event to the corresponding checkpoint.

Constraint A constraint measure property is defined on a process block with a delegate function defining

a condition. The constraint measure property is transformed to an interceptor on the

connector located after the process block. The interceptor evaluates the condition based on

the process output and sends an event to the corresponding checkpoint.

23

Derived A derived measure property is defined as a mathematical function based on basic measurable

properties. The mathematical function is transformed to a checkpoint component at runtime,

which calculates a value based on the basic measurable properties.

Aggregated An aggregate measure property is defined as an aggregation function based on basic

measurable properties. The property is transformed to a checkpoint component to aggregate

the value of basic measurable properties at runtime.

An Adaptation plan in the specification layer is defined based on the adaptation plan flow

objects (Fig. 5) and a set of adaptation tactics to manipulate a process at runtime. The

adaptation plan flow objects are transformed into an adaptation pattern in response to a

specified trigger, which handles the execution of runtime adaptation tactics according to a

set of assumptions. Each adaptation tactic is transformed into a runtime adaptation tactic

on the basis of an adaptation template class. A template class is defined by the supporting

connectors (Fig. 6), precondition, pre-state, change action, post-state, and the expected

effect that can instantiate a concrete adaptation tactic at runtime. A concrete adaptation

tactic is instantiated through a template based on the parameters defined by the adaptation

plan specification to manipulate the execution layer through connectors. The elements of

adaptation plans are not directly transformed into artifacts at the execution layer, but they

change connectors and bindings in the execution layer in accord with the defined change

actions. In the next section, adaptation patterns and adaptation tactic templates are

explained in more detail.

6.3. Adaptation at runtime

In BASBA, the logic of adaptation is defined according to the information held in the

context model. The information includes data about system components and connectors,

measured properties and requirement satisfaction levels. The data is maintained in simple

propositions shown in Table 5.

Table 5 Proposition syntax in context model

Proposition syntax Proposition description

𝑆𝐶: 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 SC is a service component

𝑆𝐶: 𝑆𝐶𝑇𝑦𝑝𝑒 Type of the service component SC is SCType

𝐶𝑜𝑛: 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 Con is a connector

𝐶𝑜𝑛: 𝐶𝑜𝑛𝑇𝑦𝑝𝑒 Type of connector Con is ConType

𝑏𝑖𝑛𝑑(𝑆𝐶, 𝐶𝑜𝑛) SC is bound to Con

𝑏𝑖𝑛𝑑(𝐶𝑜𝑛, 𝑆𝐶) Con is bound to SC

MP = X The value of the measurable property MP is X

QR= Y The value of the quality requirement QR is Y.
 Y can be acceptable, tolerable, or inacceptable.

InBindigs(SC) Returns a list of all connectors bound to SC

OutBindigs(SC) Returns a list of connectors that SC is bound to

them

The components and connectors in the context model are a reflection of the running system.

There is a causal connection between each component/connector and a model at runtime in

24

the context. The component and connector model can be changed through the adaptation

cycle. The changes only happen in the connectors and the bindings. Each change in the

model (change a connector or a binding) is enacted in the running system by the BASBA

container through predefined actions embedded in the connectors. BASBA container has

the responsibility to add or remove connectors, and each connector has methods to change

the bindings.

Measured properties and requirement satisfaction levels in the context model are updated

by checkpoints. In order to do this, the data is collected by interceptors, and evaluated in

the related checkpoints to calculate the value of measurable properties. If the value of a

measured property shows a change in quality satisfaction level, the related quality value

will also be updated in the context model. Inacceptable or tolerable quality satisfaction

levels can start the adaptation planning unit to rectify the situation. The planning unit tries

to detect a sequence of tactics with a desirable result, which can be executed in accordance

with the state of the context model. Analyzing the result and possibility of executing tactics

is done according to adaptation tactic templates.

Adaptation tactics are defined in first-order logic, providing the ability to apply changes.

Each adaptation tactic consists of six parts: supporting connectors, precondition, pre-state,

change action, post-state, and expected effect. The supporting connectors are units in

BASBA that support enacting the tactic to the running system. The precondition is declared

in first-order logic and determines whether the tactic can be executed on the basis of the

context. The pre-state shows the state of the component and the connector before applying

the tactic. The change action is a sequence of actions to apply the tactic. Actions might

include “adding a connector”, “removing a connector”, or “changing a binding”. Post-state

shows the state of the component and the connector after applying the tactic. The pre-state

and the post-state are simple propositions on components, connectors and bindings. The

expected effect formulates the effects of executing the tactic on the measurable properties.

For each measurable property affected by applying the tactic, a formula or a delegated

function should be defined to model the effects.

Fig. 9 shows the parallel execution tactic as an example. In this example, applying the

parallel execution tactic in component 𝑆𝐶 is introduced. This tactic is supported in BASBA

by ParallelOutConnector and ParallelInConnector connectors. ParallelOutConnector is a

unit that simultaneously executes the next unites. ParallelInConnector is a unit that waits

until it gets the first response, and then continues the process. The precondition shows that

the tactic can only be applied if there is a component SC′ which is the same type as SC. The

pre-state shows the components, connectors and the bindings before applying the tactic.

Change action determines that for applying the tactic, a sequence of changes should be

enacted. First, a connector of the type ParallelOutConnector and a connector of the type

25

ParallelInConnector are instantiated and added to the model. Next, these connectors are

bound to SC and SC′. Then, each binding from and to SC is modified to the new added

connectors. The post-state in the Fig. 9 shows the model of the system after applying the

tactics.

The expected effect shows the effects of the tactic on measurable properties. In this

example, we supposed a process block (pb) with three defined measurable properties:

availability, cost, and response time. Due to the insignificant impact of connectors on

measurable properties, the effects of connectors are ignored in the model.

Adaptation tactics in BASBA can be extended. For this purpose, a template class with the

introduced parts should be defined for each tactic. In addition, if there is a need for a new

connector that does not exist, the new connector should be implemented and added to

BASBA connectors.

Fig. 9 Parallel execution tactic at runtime

Adaptation tactic:

 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑆𝐶)

Supporting connector:

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑂𝑢𝑡𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟, 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝐼𝑛𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟

Precondition:

∃ 𝑆𝐶′: 𝑆𝐶′ ∈ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ∧ 𝑆𝐶𝑇𝑦𝑝𝑒(𝑆𝐶′) = 𝑆𝐶𝑇𝑦𝑝𝑒(𝑆𝐶)

Pre-state:

𝑆𝐶: 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, 𝑆𝐶′: 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, 𝐶𝑜𝑛𝑋: 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟, 𝐶𝑜𝑛𝑌: 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟, 𝑏𝑖𝑛𝑑(𝐶𝑜𝑛𝑋, 𝑆𝐶), 𝑏𝑖𝑛𝑑(𝑆𝐶, 𝐶𝑜𝑛𝑌)

Change action:

𝒂𝒅𝒅 (𝑃𝑎𝑟𝑂𝑢𝑡𝐶𝑜𝑛: 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑂𝑢𝑡𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟)

𝒂𝒅𝒅 (𝑃𝑎𝑟𝐼𝑛𝐶𝑜𝑛: 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝐼𝑛𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟)

𝒂𝒅𝒅(𝑏𝑖𝑛𝑑(𝑃𝑎𝑟𝑂𝑢𝑡𝐶𝑜𝑛, 𝑆𝐶)), 𝒂𝒅𝒅(𝑏𝑖𝑛𝑑(𝑃𝑎𝑟𝑂𝑢𝑡𝐶𝑜𝑛, 𝑆𝐶′)), 𝒂𝒅𝒅(𝑏𝑖𝑛𝑑(𝑆𝐶, 𝑃𝑎𝑟𝐼𝑛𝐶𝑜𝑛)), 𝒂𝒅𝒅(𝑏𝑖𝑛𝑑(𝑆𝐶′, 𝑃𝑎𝑟𝐼𝑛𝐶𝑜𝑛))
foreach(ConX: InBindigs(SC)) {remove(bind(ConX,SC)), add(bind(ConX, 𝑃𝑎𝑟𝑂𝑢𝑡𝐶𝑜𝑛))}

foreach(ConY: OutBindigs(SC)) {remove(bind(SC, ConY)), add(bind(ParInCon, 𝐶𝑜𝑛𝑌))}

Post state:

𝑆𝐶: 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, 𝑆𝐶′: 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, 𝐶𝑜𝑛𝑋: 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟, 𝐶𝑜𝑛𝑌: 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟, 𝑃𝑎𝑟𝑂𝑢𝑡𝐶𝑜𝑛: 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟,
𝑃𝑎𝑟𝐼𝑛𝐶𝑜𝑛: 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟, 𝑏𝑖𝑛𝑑(𝑃𝑎𝑟𝑂𝑢𝑡𝐶𝑜𝑛, 𝑆𝐶) ∧ 𝑏𝑖𝑛𝑑(𝑃𝑎𝑟𝑂𝑢𝑡𝐶𝑜𝑛, 𝑆𝐶′) ∧ 𝑏𝑖𝑛𝑑(𝑆𝐶, 𝑃𝑎𝑟𝐼𝑛𝐶𝑜𝑛) ∧ 𝑏𝑖𝑛𝑑(𝑆𝐶′, 𝑃𝑎𝑟𝐼𝑛𝐶𝑜𝑛)

∀ 𝐶𝑜𝑛𝑋: 𝑏𝑖𝑛𝑑(𝐶𝑜𝑛𝑋, 𝑆𝐶) → 𝑏𝑖𝑛𝑑(𝐶𝑜𝑛𝑋, 𝑃𝑎𝑟𝑂𝑢𝑡𝐶𝑜𝑛)
∀ 𝐶𝑜𝑛𝑌: 𝑏𝑖𝑛𝑑(𝑆𝐶, 𝐶𝑜𝑛𝑌) → 𝑏𝑖𝑛𝑑(𝑃𝑎𝑟𝐼𝑛𝐶𝑜𝑛, 𝐶𝑜𝑛𝑌)

Expected effect:

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑝𝑏) = 1 − ൫1 − 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑆𝐶)൯ ∗ (1 − 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑆𝐶′))

𝐶𝑜𝑠𝑡(𝑏𝑝) = 𝐶𝑜𝑠𝑡(𝑆𝐶) + 𝐶𝑜𝑠𝑡(𝑆𝐶′)
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒(𝑏𝑝) = 𝑀𝑖𝑛(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒(𝑆𝐶) + 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒(𝑆𝐶′))

26

7. Evaluation

The general objective of the experimental study was to evaluate the effectiveness of

BASBA framework to facilitate and improve developing adaptive behaviors in SBAs. We

defined the experimental design of our study using the Goal-Question-Metric method [53].

The goal, questions, and metrics of the study, following the GQM template, are presented

in Table 6.

Table 6 GQM template for BASBA framework evaluation

Goal Purpose Evaluation

Issue Effectiveness (impact on efficiency and quality of developed

adaptive behaviors)

Object (product) BASBA framework

Viewpoint Development team

Context Service-based applications

Question Q1 Does BASBA improve identification of adaptation plans in

the target system in comparison to conventional methods?

Metrics M1 The number of appropriate adaptation plans identified.

Question Q2 Does BASBA improve the efficiency of developing adaptive

behaviors?

Metrics M2 Development time

Question Q3 Does BASBA increase the code quality of developed

adaptive behaviors?

Metrics M3 The rate of faults/correctness of realized adaptation plans

M4 Understandability

M5 Modifiability

These questions are designed to test the hypothesis that development of adaptive SBAs

using BASBA is more efficient than traditional methods in terms of quality and

development time. However, in addition to these questions, there are two other independent

variables that could have a significant effect on the results: i) the professionality level of

developers, and ii) the complexity level of adaptation needs and business processes. In the

study, therefore, these parameters were also considered as independent variables and their

effects were analyzed.

Regarding these questions, in order to evaluate the proposed framework, two case studies

and an evaluation in academic environment were undertaken. In case study 1, we conducted

a semi-controlled experiment in an industrial environment with full-time developers for

two months. Case study 1 yielded interesting results; however, it was not enough for

drawing a reliable conclusion about BASBA. It was difficult to replicate a similar study

27

due to cost and resource limitations. To address the situation, we decided to analyze the

effects of BASBA in one of the projects that have employed the BASBA framework in

their development stack. Case study 2 was an exploratory research based on a flexible

research design. The results of case study 2 showed that BASBA is an effective tool.

However, because it was not a controlled experiment and the analysis was only based on a

developed program and estimations, it was difficult to analyze the effects of independent

variables on dependent variables. In order to have a complementary study, we conducted a

controlled experiment in an academic environment using some scenarios from case studies

1 and 2.

7.1. Case study 1: Emergency and dispatching system

For the experiments, an emergency and dispatching system has been selected as the first

case study. The motivation for choosing such a system is the problems encountered in

emergency and dispatching scenarios. The system is a real case and has been operational

for over one year. It is distributed throughout the entire country and receives over 40

thousand calls per day. It is operational in about 300 centers and runs on more than 5

thousand vehicle devices, which are connected through an unreliable private radio network.

Architecturally, the case is a hybrid client-server/peer-to-peer system, in which the

connection between clients and centers is based on client-server architecture, and the one

between clients is based on peer-to-peer architecture.

C
al

l s
ys

te
m

M
is

si
o

n
 M

an
ag

e
r

Fi
e

ld
 p

e
rs

o
n

e
l

Receive a
phone call

Identify calling
number

Assign and
dispatch field

personnel

Find caller
geographical

position

Input information
about the call

Find nearest
station

Monitor vehicle
 on map

Moving object position

Find best path to
destenition

Navigate field
personel

Mission informed
Display path on map

Send position

Reach destination

Reach destination

Reach destination

28

Fig. 10 The process model of the emergency system

Fig. 10 shows the overall model of one process of this case study. For the sake of simplicity,

many elements and other related workflows are left out of this paper. Using the system’s

log, over 80 scenarios of contextual and environmental changes were identified. These

scenarios were considered as a reference for determining adaptation needs, and were also

simulated to evaluate the developed adaptive behaviors through the experiments. It should

be mentioned that all of these scenarios were handled by the running emergency system,

which provides a proper reference for comparison. Nevertheless, they were all developed

using conventional methods, mostly with fixed hardcoded alternatives.

The usual concern of the case is to deal with different environmental contextual changes

such as unreliability of network or unavailability of services. The system should perform

self-adaptive behaviors in order to maintain three quality objectives: i) reliability, ii)

availability, and iii) response time.

A group of 11 full-time software engineers participated in this experiment for about two

months. All the participants were familiar with the case study and were members of the

company where the real case was developed. They included a project manager, an architect,

an analyst, and eight developers. The project manager, the architect and the analyst were

members of a team who had been responsible for developing and maintaining the real case.

In the study, they were experts who observed, controlled, and analyzed the results.

Regarding the effect of developers’ professionality, the developers were divided into two

groups. The first group consisted of four nonprofessional developers who had 2-4 years of

experience in programming without practical knowledge about how a system should be

adapted to contextual and environmental changes. The second group was made up of four

developers who had at least eight years of experience in programming with deep knowledge

about design patterns. They were also familiar with developing adaptive behaviors, and

each of them had at least the experience of developing one complex system requiring

adaptive behaviors. We divided each group into two subgroups: one was to develop

adaptive behaviors using BASBA and the other to do it without using BASBA, relying on

their personal expertise and experience. The reason for this subdivision was to specify the

contribution of BASBA to the development of adaptive behaviors in different groups with

different expertise.

Regarding Q1, we asked each group to identify adaptation plans to handle possible

environmental and contextual events. Furthermore, we asked the project manager, the

architect and the analyst to analyze and categorize all the defined scenarios and determine

all the adaptation needs. Regarding the effect of complexity variable, we asked them to

rank the complexity of the adaptation plan from adaptation and business perspectives from

A (the lowest degree of complexity) to C (the highest degree of complexity). We then asked

29

the experts to analyze the results of each group to determine the extent to which each group

was successful in identifying these adaptation needs.

Table 7 The role of BASBA in identifying proper runtime adaptation tactics for ten adaptation

plans in detail

Adaptation plan Com

plexit

y

Adaptati

on

category

Adaptation

tactics

reused

Nonprofe

ssionals

without

BASBA

Nonprofe

ssionals

using

BASBA

Professio

nals

without

BASBA

Professio

nals using

BASBA

Replace automatic call

detection with manual
AA process

replace to

manual
   

Skip automatic call

detection, Find caller

geographical position on
map

BB process
skip, add

activity
   

Skip automatic call

detection, Input caller text

address, Geocode text
address

BC process

skip, add

activity,

add
activity

   

Automatic call detection,

Input caller text address,

Manual station selection

CB process

skip, add

activity,
replace to

manual

   

Serial execution of map by

invoking from Municipality,
Google and Bing

BA activity
serial

execution
   

Re-execution of asking to

dispatch personnel
AB activity

re-

execution
   

Insert compressor and

decompressor between send
and receive vehicle data

CA
commun

ication

insert

compress

or and
decompre

ssor

   

Add queue before sending

message to vehicles
CB

commun

ication
add queue    

Add local cache for map BB
commun

ication

local

cache
   

Display vehicle place with

text address
BC

commun

ication

reduce

size
   

Transform points to

trajectory
CC

commun

ication

aggregate

data
   

The results of the experiment for metric M1 are described in Tables 7 and 8. In these tables,

adaptation and business complexity are shown with two characters, the first of which shows

adaptation complexity and the second one shows business complexity. Table 7 shows the

results of 10 adaptation plans in detail. For each adaptation plan the complexity, the

adaptation category, the adaptation tactic, and the groups that managed to identify the

required adaptation plan are determined. Table 8 summarizes the results for all the 24

adaptation plans. It shows the number of adaptation plans in each category. For each group,

the cell shows the number of adaptation plans identified by them. The identified plans are

separated by semicolons. The table also shows the comparison between “group 1, using

BASBA” and “group 2, without BASBA”. Each bold-faced item shows a plan identified

30

by a group and not identified by the other group. The purpose of the comparison was to

analyze the extent to which BASBA can enhance nonprofessional developers’ ability to

identify adaptive behaviors in comparison with professionals. As shown in the tables, there

is a tangible improvement in identifying adaptive plans (metric M1) where BASBA is

employed. While nonprofessional developers without BASBA managed to identify 6

appropriate adaptation plans, the number increased to 14 when the BASBA framework was

employed. For the professional users, the number was increased from 14 to 20. The results

show that plans with low adaptation complexity were identified by almost all the groups.

However, BASBA was very useful with plans with high adaptability complexity and low

or medium business complexity. Nevertheless, it was not very effective in dealing with

plans with high business complexity. The results show that there was a tangible

enhancement in identifying adaptation tactics in all three categories of adaptation tactics.

Particularly, there was a significant enhancement in identifying communication tactics.

Table 8 The summarized results of all 24 adaptation plans

Adaptation category Total

adaptation

plans

Nonprofessi

onals

without

BASBA

Nonprofessi

onals using

BASBA

Profession

als without

BASBA

Profession

als using

BASBA

Not

detected

plans

Process variation 10 AA; AB;

AB

AA; AB;

AB; BA;

BB; BB;
CB

AA; AB;

AB; BA;

BB; BB;
BC

AA; AB;

AB; BA;

BB; BB;
BC; CB;

CB

BC

Activity variation 6 AA; AB;
BA

AA; AB;
BA; BA

AA; AB;
BA; BA;

BB

AA; AB;
BA; BA;

BB; BB

-

Communication

variation

8 - BB; CA;

CB

BB; BC BB; CA;

BC; CB;
CB

BC; CC;

CC

Regarding Q2 and Q3, we asked each fully-dedicated (eight hours per day) group to

develop all the 24 defined adaptation plans, and then their performance was evaluated in

terms of development time and code quality. Regarding metric M2 in Q2, the development

time was measured by total working days. The results show that nonprofessional

developers (not using BASBA) managed to develop only 12 adaptation plans in 26 working

days, while the nonprofessional developers who used BASBA managed to develop 20

adaptation plans within almost the same span of time which included all the 12 adaptation

plans developed by the group without BASBA. The average development time was reduced

from 2.17 to 1.3 working days per adaptation plan, that is, about 40 percent saving in time.

The average development time for the same 12 adaptation plans developed by both groups

reduced from 2.17 to 1.25 working days per adaptation plan. The time records showed that

the same 12 adaptation plans were developed almost in 15 days by the second group. Both

teams in group 2 (professionals) managed to develop all the adaptation plans. However,

those who used BASBA did so in 15 working days, and those who did not use BASBA

managed to develop the adaptation plans in 21 working days. The average development

31

time for the professionals was reduced from 0.88 to 0.63 working days per adaptation plan,

that is, about 29 percent saving in time.

Regarding metric M3 in Q3, the correctness of code was measured by the number of faults

emerged through evaluation of the developed adaptation plans in test scenarios. The results

show that ordinary developers (not using BASBA) recorded 57 faults in 12 adaptation plans

(on average, 4.7 faults per adaptation plan), while ordinary developers who used BASBA

recorded only 52 faults in 20 adaptation plans (on average, 2.6 faults per adaptation plan),

which means the average number of faults per adaptation plan was decreased for about 45

percent. Regarding the 12 adaptation plans which were the same as the ones developed by

the ordinary developers (not using BASBA), the number of faults was 28 (on average, 2.3

faults per adaptation plan) meaning an over 50 percent improvement. The result for

professionals who had not used BASBA was 46 faults in 24 adaptation plans (1.9 faults per

adaptation plan on average), and for professionals who used BASBA it was 31 faults in 24

adaptation plans (1.3 faults per adaptation plan on average), which means an improvement

about 32 percent.

Regarding the role of BASBA in understandability (M4 in Q3) and modifiability (M5 in

Q3), the developed adaptation plans were analyzed by the experts in focus group sessions.

The group members (the project manager, the architect, the analyst, and the moderator)

agreed that the developed adaptation plans with BASBA were more understandable and

modifiable.

During the experiments, shadow observations were carried out by the experts, who

observed the behaviors of each group and noted their observations. The notes were coded

and categorized to quantify qualitative data. The high-frequency codes, related to question

2, were selected and analyzed. The results are summarized as follows (Italic expressions

are frequent codes):

BASBA facilitated the development of adaptive behaviors by reducing the complexity of

the problem through breaking it down into simpler sub-problems and separate adaptation

logics, resulting in a more understandable and maintainable code (metrics M4 and M5).

Furthermore, it helped to easily test the developed adaptive behaviors, and improved

control over the adaptive behavior by enhancing traceability and providing the ability to

check the overall outcome of the adaptation plans, which resulted in improving the

correctness of code (metric M3). Moreover, BASBA enabled developers to reuse

adaptation tactics and implement the adaptation logic by less lines of code that resulted in

reducing the development time (metric M2).

7.2. Case study 2: Regional power distribution management system

For the second case study, a regional power distribution management system (RPDMS)

was selected. The motivation for choosing this system was that the development managing

32

board of RPDMS had decided to use BASBA framework in the development process. The

system had been planned to be employed in operation, monitoring, and maintenance of the

power distribution infrastructure in a state. The infrastructure includes a few thousand

sensors and devices maintained by over 500 staffs in different teams. These teams, which

include management, monitoring, and operational teams, were equipped with portable

devices such as PDAs and car PCs to have real time communication. The system operates

over different areas with unpredictable environmental conditions, such as unreliable

network. However, the system should behave in dependable manner and perform self-

adaptive behaviors. For example, as a team member moves away from a WLAN coverage,

the PDA loses connection to the local location service. In this situation, several conditions

may happen. If the connection switches to GPRS by the software installed on the PDA, the

location service can be obtained from the GPRS provider with a low accuracy. However,

the team member may get into the car equipped with a navigation system based on GPS,

which provides a more accurate location service. To increase accuracy, the application can

reconfigure itself to use location services provided by car devices. To save battery life, the

display can also switch to the car display system.

In another example, in some areas there may not be any internet connection. In this

situation, it is very important to maintain interaction between team members. One option

is to maintain communication via SMS over GSM network. However, in this situation, only

important parts of messages without any additional data may be transferred and the full

messages should be queued until reaching an area with internet connection. Compressing

SMS messages will also be another option if there is enough battery life.

In order to develop the system, a team with 17 members were assigned to the project. The

development methodology was SCRUM. At the start of the project, the BASBA framework

was introduced and explained to the team members. Through the development process, the

team members had access to BASBA experts whenever they needed some help. The system

was developed in 8 months. At the end of the project, the effectiveness of BASBA was

analyzed. Overall, 34 considerable adaptation scenarios were implemented. All of these

adaptation scenarios were analyzed by the development team members and BASBA

owners.

Regarding the effect of developers’ professionality, we prepared a questionnaire for the

development team members. The questionnaire included two main categories: i) How

much programming expertise is needed to learn the BSABA framework, ii) How much

adaptation skill is needed to develop adaptation strategies using BASBA. Regarding the

former question, all the participants agreed that both senior and junior developers could

learn BASBA. As for the latter question, 88 percent of participants (15 out of 17) stated

33

that basic knowledge of developing adaptive behaviors is enough to develop adaptation

strategies using BASBA.

Regarding metric M1 in Q1, we analyzed the log activity of identifying adaptation

strategies, and asked the developers to determine the role of BASBA in the identification

process. Plans were considered as “identified by BASBA” when the majority of the

development team (over 70 percent) believed that BASBA had a significant role in the

identification process. The results show that 13 (out of 34) adaptation plans were identified

using BASBA framework (Table 9).

Regarding the complexity variable, in Table 9, each scenario is shown with two characters,

the first of which shows adaptation complexity and the second one shows business

complexity (from A to C). The results show that BASBA had a more considerable role in

identifying activity and communication plans (7 plans out of 12) with low or medium

business complexity. BASBA was not helpful in any plan with high business complexity.

Table 9 The summarized results of all 34 adaptation plans identified

 Number of

process

variations

Process

variations

Number of

activity

variations

Activity

variations

Number of

communicati

on variations

Communicatio

n variations

Identified using

BASBA

3 BA; BB; BB 3 BA; BB; CB 7 BA; BA; BB;

BB; CA; CA;
CA

Not identified using

BASBA

11 AA; AA; AA;

AB; AB; BB;

AC; AC; AC;

BC; BC

5 AA; BB; AB;

AB; BC

5 AC; BB; BC;

CC; CC

In the project, 32 adaptation plans were developed using BASBA framework. These plans

included 14 process variations, 8 activity variations, and 10 communication variations.

Two communication adaptation plans were too complicated and the architect of the system

decided not to implement them using the BASBA framework. For example, implementing

“skip communication with servers and switch to P2P communication” was implemented

without BASBA. Table 10 shows some adaptation plans implemented using BASBA.

Table 10 Some developed adaptation plans in RPDMS
Adaptation category Adaptation plan

Process • Skip monitoring team members

• Switch from map visualization to text display

• Replace push notification with pull notification

• Get location service from car

• Replace WLAN with GSM

Activity • Decrease/Increase monitoring interval

• Send data until receive acknowledge

• Re-execution asking to dispatch personnel

Communication • Skip encrypting and decrypting data

• Add queue before sending messages

• Send data in urgent mode

• Send only essential data

Regarding Q2 and Q3 (the role of BASBA in automating and facilitating the development

of adaptation plans), a questionnaire was prepared to evaluate development time and code

34

quality metrics, and the development team were asked to analyze the development log and

response to the questionnaire. Each plan was analyzed by at least two developers on the

basis of their previous experiences and developed projects log. The development team

estimated that the development time of implementing adaptation plans had decreased for

all of the developed plans by at least 35 percent on average (metric M2). In terms of code

quality, the analysis showed that the code of adaptation logic in almost all developed plans

had become more readable and more structured (metric M4) in comparison with previously

developed projects. The development team did not come to a clear conclusion about the

role of BASBA on metrics M3 and M5.

7.3. Evaluation in an academic-environment study

In order to have a deeper analysis about the role of BASBA framework in developing

adaptation plans, we conducted a supervised evaluation in an academic environment. For

this purpose, two groups took part in the experiment. The first group included 17

professional software engineers from Service-Oriented Enterprise Architecture

Laboratory1 (SOEAlab), and the second group consisted of 38 M. A. students of software

engineering, most of whom were junior software developers. The experimental material

was composed of 42 scenarios selected from case 1 and case 2. The scenarios were

categorized in three levels of complexity. In the first step of evaluation, we selected fifteen

scenarios including five random scenarios from each category for each subject. The

participants were divided into traditional and BASBA groups. The traditional group

included 18 students and 7 members of SOEAlab who were responsible for developing

adaptation plans by means of traditional solutions. The BASBA group included 20 students

and 10 SOEAlab members to whom BASBA framework was introduced. The subjects were

asked to identify a proper adaptation plan for the scenarios and write pseudo-codes to show

how they implement the plans in 150 minutes. The objective of these steps was to evaluate

the role of BASBA in identification and development of adaptation strategies. The results

of the experiments were analyzed by five experts including two developers from case study

2 and shown in Fig 10, 11 and 12. We used boxplot charts to summarize the results, and

two-tailed, paired t-tests to evaluate the statistical significance of the results.

Regarding Q1, the experts analyzed the results to measure if the subject identified a proper

adaptation plan for each given scenario. The experts gave a score between 0 to 10 to show

the quality (properness) of the identified and realized adaptation plans. The number and

quality of identified adaptation plans for each group are shown in Fig. 11 (a) and (b). The

results show that the number and quality of identified adaptation plans present a significant

statistical difference in comparison to traditional methods. The average number of

1 https://soea.sbu.ac.ir/en

35

identified plans increased from 6.3 to 10.3 for students, and from 11.4 to 13.6 for SOEAlab

members. Regarding the quality (appropriateness) of identified plans, the figures increased

from 3.5 to 5.8, and from 5.1 to 8.2 respectively. The results show that students who used

BASBA have identified more appropriate adaptation plans than those who have not used

BASBA (p-value <0.01). They performed the tasks in almost the same manner as the

experts without BASBA. The figures also show that BASBA had a tangible effect (p-value

<0.05) on identifying adaptation plans for the experts.

Regarding metrics M2 and M3, the experts analyzed the number and correctness of realized

adaptation plans. In this study, metric M2 (development time) was measure by the number

of realized adaptation plans in the specified time frame (150 minutes). The experts gave a

score between 0 to 10 to show the correctness of the realized adaptation plans. The number

and correctness score of realized adaptation plans for each group are shown in Fig. 12 (a)

and (b). The results show that the number and correctness of realized adaptation plans

present a significant statistical difference in comparison to traditional methods. The average

number of realized plans increased from 5.5 to 7.9 for students, and from 8.7 to 10.6 for

SOEAlab members. Regarding the correctness of realized plans, the figures increased from

2.3 to 5.5, and from 4.3 to 7.5 respectively. The results show that employing BASBA had

a significant effect on the number and correctness of realized adaptation plans for the

students, and on correctness of realized adaptation plans for the experts (p-value <0.01).

The statistical difference of correctness for the experts was also tangible (p-value <0.05).

Fig. 11 Boxplot graphs and t-test results for the number and quality of identified adaptation plans

https://www.powerthesaurus.org/specified_time/synonyms

36

Fig. 12 Boxplot graphs and t-test results for number and correctness of realized adaptation plans

Regarding metrics M4 and M5 (understandability and modifiability) in Q3, the codes of 12

adaptation scenarios with different structural complexities were selected. Each subject was

given all scenarios, but 6 random scenarios with traditional implementation and the

remaining scenarios with BASBA implementation. For each scenario, two questions were

asked: one of which was to answer the understandability about the logic of adaptation, and

the other containing a modification task about changing the adaptation logic and how the

change should be enacted in code. In the experiment, each subject answered all the 24

questions (two questions for each given scenario) in 150 minutes. The answers were

analyzed by the experts and received feedback on whether the subject had understood the

adaptation logic, and whether he/she was successful in enacting the changes. The average

scores of understandability and modifiability, given by the experts, were mapped to a

number between 0 to 10. The boxplot charts and t-test values of the results are represented

in Fig. 13 (a) and (b). As the results show, the understandability is increased in average

from 3.8 to 7.5 for students, and from 6.7 to 8.9 for SOEAlab members, indicating a

significant statistical difference for plans implemented with the BASBA framework.

Regarding modifiability, the figures increased from 3.1 to 4.2 for the students, showing a

significant difference; for the experts, however, the difference between means was not

statistically significant (p-value = 0.052> 0.05).

37

Fig. 13 Boxplot graphs and t-test results for understandability and modifiability

7.4. Threats to validity

Empirical evaluation is always subject to different threats that can influence the validity of

the results. It is not always possible to address all the threats in one study. To mitigate this,

we conducted three studies to evaluate BASBA, which can complement each other and

improve the validity of the study results. In case study 1, different aspects of BASBA were

investigated in a semi-controlled experiment. However, the limited number of subjects and

the difficulty to have a replicate study pose different threats to the validity of the results. In

case study 2, the effectiveness of BASBA in a real project was investigated. However, in

the experiment there was no proper control on independent variables. In addition, the

history of the company and estimations of measure parameters can threaten the validity of

results. In study 3, a meaningful number of subjects participated in the experiment.

However, different factors, such as the limitation on time, unfamiliarity of participants with

the study and learning effects during the training session can threaten the validity of results.

Here, we will discuss the threats to conclusion, construct, internal, and external validity in

more detail. Our goals are to help readers qualify the results and to highlight the aspects of

our experiments that may have been affected by these threats.

Conclusion validity: Conclusion validity concerns the relationship between the treatment

and the outcome. One threat, here, is about statistical validity of the experiments. The

number of developers in case study 1, and analyzing only one project in case study 2, could

affect the statistical validity of the results, which can cause limitation to drive the

conclusion. To mitigate this in study 3, a meaningful number of participants were involved.

Another threat is related to misinterpretation of the results, particularly when it comes to

some qualitative interpretations such as code quality. To mitigate the threat in case study

1, we tried to use quantitative measurements such as the number of faults and working

days. In addition, the results of all cases were interpreted by experts with enough

38

knowledge in the domain. Another threat is fishing for the result. To mitigate this in case

study 1, there was not any advantage in the results for the participants. In addition, the

developers regard the experiment as a part of their regular work, and they were not aware

about the measured parameters. However, the motivation to learn a new concept,

particularly for the nonprofessional developers, can be an intervene factor, which may have

been ignored. In studies 2 and 3, this issue is aggravated, as most of the experts were from

the company where BASBA was applied. To mitigate this, each result was evaluated by 3

to 5 experts. In addition, in study 3, some experts were not from the developers’ company.

Another issue is reliability of the measures. Measurement of different properties, such as

quality and time, in developing adaptive behaviors can be distorted by different variables

such as prior experience or environmental factors. To mitigate this, in case study 1, we tried

to maintain the same environmental factors for all the developers with almost the same

working hours. In addition, the activities of developers were precisely observed and

analyzed through shadow observation to verify the results and detect the uncontrolled

factors. These arrangements combined with the fact that there is no gain for a participant

in adjusting their measurements, the reliability of measures should be good in case study

1. Moreover, in case study 2, we analyzed the outcome of BASBA in a real project and in

study 3, an experiment with a meaningful number of subjects was conducted.

Internal validity: Internal validity is the extent to which a piece of evidence supports a

claim about cause and effect. One threat, here, is ignoring relevant factors. To mitigate this,

in case study 1, shadow observation was employed during the experiment to analyze and

resolve the impact of other independent variables. In study 3, we conducted the experiment

in a short period of time with specific questions. However, in case study 2, because the

analysis was done after developing the system, we were not able to analyze the effects of

other independent variables. Another issue is learning effect in studies 1 and 3. To mitigate

this, in case study 1, we used different groups to have the same learning effect. In study 3,

a random selection and order of scenarios was used to avoid learning effects. However, in

part 1 of this study, one group had a training session, which could have an undesirable side-

effect on the results and threaten the validity. Another issue is subject selection. Case

studies 1 and 2 were conducted in a single company that concentrates on developing

location-based systems. This limitation could threaten the validity of the results, because

the subjects were not heterogenous. In case study 1, we tried to have a slight mitigation by

involving different roles with different expertise. In addition, we conducted study 3 as a

complementary study with heterogeneous subjects from academic environment.

Construct validity: Construct validity refers to the belief that the dependent and

independent variables represent the theoretical concept of the phenomenon accurately. One

threat here is the definition of metrics for code quality. In the first experiment, the metric

39

for measuring correctness of realized adaptation plans was defined on the basis of the

number of faults in the code. In addition, understandability and modifiability were

analyzed by the experts. However, in case study 2, we only managed to measure

understandability of the code. Another threat is the measurement method and the details of

the measurement, which affect the study results. We know that the complexity of measuring

qualitative metrics could produce false estimations and threaten the validity of the results.

To mitigate this in case study 1, we tried to define quantitative metrics. However, in studies

2 and 3, we used estimations to analyze the results whose deviation in estimations can

threaten the validity of the results. Particularly, when it comes to measuring code quality

objective, the matter gets worse because of the lack of a proper mechanism to estimate the

role of BASBA in improving the objective. To mitigate this threat, several experts with

proper knowledge are involved to estimate the results. However, we think more studies like

case study 1 need to be done. Another threat is experimenter bias. Particularly, in studies 2

and 3 the metrics were measured by the experts based on their opinion. The threat posed

by using expert measurement mechanisms is that different experts may have different

attitudes toward the evaluation of dependent variables. For instance, some experts may be

reluctant to use some kind of adaptation mechanism or code style, or provide a solution

different from BASBA. To mitigate this, in case study 1, the experts controlled this by

shadow observation, and in study 3, three experts not involved in case study 2 were asked

to contribute.

External validity: External validity is the extent to which the study can be generalized to

other subject populations and settings. Regarding the external validity, threats originate

from how the study can be generalized to other subject populations and settings. To limit

this threat, external developers from the field are involved to increase the relevance of the

study to real applications. Furthermore, developer activities were analyzed through shadow

observation in case 1, and the log of activities were analyzed in case 2. This analysis shows

that the scenarios can be applicable in other similar cases. In addition, we conducted an

academic environment study to analyze the role of BASBA to facilitate developing

adaptation plans. However, we cannot claim that the same result can be obtained for any

system or any situation. Especially, since all the experiments were conducted by one

company and the scenarios were biased toward the domain of location-based services. In

fact, in all cases, most of the adaptation plans was related to location. However, applying

BASBA in location-based systems shows promising results, but there could be doubts on

the applicability of BASBA in other domains. We believe that BASBA should be evaluated

in other industrial environments, particularly those which are not location-based.

40

We are aware that these issues may pose threats to the reached conclusions, so the results

of these experiments were considered as preliminary findings. We are currently working

on some other projects that are implemented by BASBA to conduct replication studies.

7.5. Discussion

In this section, we reflect upon our experiences with applying the BASBA framework. Our

remarks are based on the authors’ experience of applying BASBA to the three experiments

explained previously, as well as discussions with several developers from the company

where the BASBA framework was developed and employed. We present a number of the

benefits of the BASBA framework, and also outline some limitations and research

challenges with regard to how/when to use the BASBA framework for the development of

adaptive behaviors in SBAs.

The BASBA framework provides us with a means to identify and develop some repetitive

adaptive behaviors based on reusing defined adaptation tactics. In this regard, BASBA

introduces a systematic approach to develop adaptive behaviors based on specific

engineering of adaptation engines and feedback loops, with the possibility to reuse

adaptation tactics. The results of the experiments show that employing the BASBA

framework can result in identifying more appropriate adaptation plans as well as enhancing

the development efficiency (development time) and quality (correctness, understandability,

and modifiability) of developed adaptive behaviors. It helps to keep adaptation concerns

and behaviors at the design level separate from execution models, reducing the complexity

and increasing the maintainability of the system.

While BASBA shows promise as a framework for developing adaptive behaviors in SBAs,

there are still several issues related to some aspects of applying BASBA. We have

identified adaptation tactics as a desirable capability for developing adaptive behaviors, but

the capability of BSABA is limited to the developed adaptation tactics. BASBA has

provided the ability to extend adaptation tactics. However, when an adaptation needs is

complex, particularly in terms of business process, or it is strongly domain specific (like

some scenarios in case study 2), the BASBA framework does not seem very effective.

BASBA was an effective tool for both professional and nonprofessional developers in all

the cases, however, the results show that professional developers did not enjoy its benefits

as much as nonprofessional developers. Particularly, for plans with business complexity,

the professional developers did not find BASBA a useful tool. The results show that

although BASBA was an effective means to identify plans with high adaptability

complexity and low or medium business complexity, it was not very effective in dealing

with plans with high business complexity. This issue was quite obvious in case study 1,

where there was not a significant enhancement in identifying adaptation plans with high

business complexity.

41

Another current limitation is that BASBA only addresses implementing adaptation

behaviors based on defining BASBA adaptive process models, whereas in some cases, it is

not efficient to define adaptive behaviors using the BASBA framework. The limitation was

observable in case study 2, where the developers avoided implementing two adaptation

plans based on BASBA adaptive process model. Besides, while the results show that

BASBA had a significant role in improving the identification of adaption plans, it cannot

be considered a comprehensive tool for identifying all adaptation plans. This issue became

evident in case study 2, where the developers stated that BASBA had a significant role in

identifying only 13 (out of 34) adaptation plans.

8. Conclusions

In this paper, we have presented a new approach to developing adaptive SBAs based on

runtime models that allows for the specification and execution of adaptive processes. The

core of this approach is a metamodel used to define adaptation behaviors in SBAs and a set

of reusable adaptation tactics. On the basis of this metamodel and reusable adaptation

tactics, a service integrator would be able to effectively identify and define adaptive

behaviors for an SBA. The defined adaptive behaviors can then be efficiently transformed

into runtime models to form adaptation logics. The proposed approach is automatically

supported by feedback loops and runtime models. It noticeably facilitates the development

of adaptive behaviors of an SBA by managing variations using runtime models, and

execution of the adaptation engine.

In order to evaluate the proposed approach, we have conducted two real case studies and

an academic-environment study. The results showed that using BASBA can effectively

enhance the development process of adaptive behaviors in terms of development time and

code quality, particularly for scenarios that are more complex in terms of adaptation rather

than business logic. The introduced approach provides service integrators with the ability

to deal with adaptation concerns in a more abstract way, relieving the service integrator of

low-level monitoring and adaptation mechanisms.

There are several directions for future work. First, the adaptation tactics supported by

BASBA framework need to be extended. Particularly, there should be tactics to support

decentralized adaptation of service coordination. In addition, the monitoring mechanism in

BASBA is limited to basic structures and events and a complex event processing can

enhance BASBA significantly. Furthermore, a reusable model for analyzing the tradeoff

among quality attributes based on different applicable adaptation plans can help improve

the runtime decision of whether or not an adaptation plan should be applied. Moreover, the

pattern-based analysis of adaptation plans can help reveal undesirable consequences

42

associated with such plans. Finally, lessons can be learned from the execution and

adaptation history to automatically improve the accuracy of the analysis.

Acknowledgment

The authors thankfully acknowledge the helpful support of “Knowledge City ICT

Development Compony” in implementing and evaluating the BASBA framework

under “Parsimap Intelligence” project (www.parsimap.ir).

References

[1] Di Nitto, Elisabetta, Carlo Ghezzi, Andreas Metzger, Mike Papazoglou, and Klaus Pohl. "A

journey to highly dynamic, self-adaptive service-based applications." Automated Software

Engineering 15, no. 3-4 (2008): 313-341.

 [2] Neto, Plácido A. Souza, Genoveva Vargas-Solar, Umberto Souza da Costa, and Martin A.

Musicante. "Designing service-based applications in the presence of non-functional

properties: A mapping study." Information and Software Technology 69 (2016): 84-105.

[3] Lane, Stephen, Antonio Bucchiarone, and Ita Richardson. "SOAdapt: A process reference

model for developing adaptable service-based applications." Information and Software

Technology 54, no. 3 (2012): 299-316.

[4] Lane, Stephen, Qing Gu, Patricia Lago, and Ita Richardson. "Towards a framework for the

development of adaptable service-based applications." Service Oriented Computing and

Applications 8, no. 3 (2014): 239-257.

[5] Lane, Stephen, Qing Gu, Patricia Lago, and Ita Richardson. "Adaptation of service based

applications: a maintenance process." Lero, the Irish Software Engineering Research

Centre, Limerick, Ireland, Tech. Rep. Lero-TR-2010-08 (2010).

[6] Alférez, Germán H., Vicente Pelechano, Raúl Mazo, Camille Salinesi, and Daniel Diaz.

"Dynamic adaptation of service compositions with variability models." Journal of Systems

and Software 91 (2014): 24-47.

[7] Minor, Mirjam, Ralph Bergmann, and Sebastian Görg. "Case-based adaptation of

workflows." Information Systems 40 (2014): 142-152.

[8] Gamez, Nadia, Joyce El Haddad, and Lidia Fuentes. "Managing the variability in the

transactional services selection." In Proceedings of the Ninth International Workshop on

Variability Modelling of Software-intensive Systems, p. 88. ACM, 2015.

[9] Haesevoets, Robrecht, Danny Weyns, and Tom Holvoet. "Architecture-centric support for

adaptive service collaborations." ACM Transactions on Software Engineering and

Methodology (TOSEM) 23, no. 1 (2014): 2.

[10] Bucchiarone, Antonio, Annapaola Marconi, Marco Pistore, and Heorhi Raik. "Dynamic

adaptation of fragment-based and context-aware business processes." In 2012 IEEE 19th

International Conference on Web Services, pp. 33-41. IEEE, 2012.

[11] Murguzur, Aitor, Rafael Capilla, Salvador Trujillo, Óscar Ortiz, and Roberto E. Lopez-

Herrejon. "Context variability modeling for runtime configuration of service-based dynamic

software product lines." In Proceedings of the 18th International Software Product Line

43

Conference: Companion Volume for Workshops, Demonstrations and Tools-Volume 2, pp.

2-9. ACM, 2014.

[12] Bashari, Mahdi, Ebrahim Bagheri, and Weichang Du. "Self-adaptation of service

compositions through product line reconfiguration." Journal of Systems and Software 144

(2018): 84-105.

[13] Schmid, Klaus, Holger Eichelberger, and Christian Kröher. "Domain-Oriented

Customization of Service Platforms: Combining Product Line Engineering and Service-

Oriented Computing." J. UCS 19, no. 2 (2013): 233-253.

[14] Capilla, Rafael, Jan Bosch, Pablo Trinidad, Antonio Ruiz-Cortés, and Mike Hinchey. "An

overview of Dynamic Software Product Line architectures and techniques: Observations

from research and industry." Journal of Systems and Software 91 (2014): 3-23.

[15] Kumar, Akhil, and Wen Yao. "Design and management of flexible process variants using

templates and rules." Computers in Industry 63, no. 2 (2012): 112-130.

[16] Tretola, Giancarlo, and Eugenio Zimeo. "Reactive behavioural adaptation of service

compositions." Journal of Software: Evolution and Process 31, no. 11 (2019): e2201.

[17] Gui, Ning, Vincenzo De Florio, Hong Sun, and Chris Blondia. "Toward architecture-based

context-aware deployment and adaptation." Journal of Systems and Software 84, no. 2

(2011): 185-197.

[18] Ayora, Clara, Victoria Torres, Barbara Weber, Manfred Reichert, and Vicente Pelechano.

"VIVACE: A framework for the systematic evaluation of variability support in process-

aware information systems." Information and Software Technology 57 (2015): 248-276.

[19] Lanz, Andreas, Barbara Weber, and Manfred Reichert. "Time patterns for process-aware

information systems." Requirements Engineering 19, no. 2 (2014): 113-141.

[20] Rosemann, Michael, and Jan vom Brocke. "The six core elements of business process

management." In Handbook on business process management 1, pp. 105-122. Springer,

Berlin, Heidelberg, 2015.

[21] Kazhamiakin, Raman, Salima Benbernou, Luciano Baresi, Pierluigi Plebani, Maike Uhlig,

and Olivier Barais. "Adaptation of service-based systems." In Service research challenges

and solutions for the future internet, pp. 117-156. Springer, Berlin, Heidelberg, 2010.

[22] Alirezaei, Ehsan, and Saeed Parsa. "Adaptable Cross-organizational Unstructured Business

Processes via Dynamic Rule-based Semantic Network." Information Systems Frontiers

(2018): 1-17.

[23] E. Fki, S. Tazi, and K. Drira, "Automated and flexible composition based on abstract services

for a better adaptation to user intentions," Future Generation Computer Systems 68 (2017):

376-390.

 [24] Radu Calinescu, Lars Grunske, Marta Z. Kwiatkowska, Raffaela Mirandola, Giordano

Tamburrelli: Dynamic QoS Management and Optimization in Service-Based Systems. IEEE

Trans. Software Eng. 37(3): 387-409 (2011).

[25] Chafle, Girish, Koustuv Dasgupta, Arun Kumar, Sumit Mittal, and Biplav Srivastava.

"Adaptation inweb service composition and execution." In 2006 IEEE International

Conference on Web Services (ICWS'06), pp. 549-557. IEEE, 2006.

[26] Zdun, Uwe, Carsten Hentrich, and Schahram Dustdar. "Modeling process-driven and

service-oriented architectures using patterns and pattern primitives." ACM Transactions on

the Web (TWEB) 1, no. 3 (2007): 14.

44

[27] C. Ayora, V. Torres, J. Luis de la Vara, and V. Pelechano, "Variability management in

process families through change patterns," Information and Software Technology 74 (2016):

86-104.

[28] Weber, Barbara, Jakob Pinggera, Victoria Torres, and Manfred Reichert. "Change patterns

in use: A critical evaluation." In Enterprise, Business-Process and Information Systems

Modeling, pp. 261-276. Springer, Berlin, Heidelberg, 2013.

[29] L. Pessoa, P. Fernandes, T. Castro, V. Alves, G. N. Rodrigues, and H. Carvalho, "Building

reliable and maintainable Dynamic Software Product Lines: An investigation in the Body

Sensor Network domain," Information and Software Technology 86 (2017): 54-70.

[30] Cheng, Betty HC, Kerstin I. Eder, Martin Gogolla, Lars Grunske, Marin Litoiu, Hausi A.

Müller, Patrizio Pelliccione et al. "Using models at runtime to address assurance for self-

adaptive systems." In Models@ run. time, pp. 101-136. Springer, Cham, 2014.

[31] Blair, Gordon, Nelly Bencomo, and Robert B. France. "Models@ run. time." Computer 42,

no. 10 (2009): 22-27.

[32] Bennaceur, Amel, Robert France, Giordano Tamburrelli, Thomas Vogel, Pieter J.

Mosterman, Walter Cazzola, Fabio M. Costa et al. "Mechanisms for leveraging models at

runtime in self-adaptive software." In Models@ run. time, pp. 19-46. Springer, Cham, 2014.

[33] Andersson, Jesper, Luciano Baresi, Nelly Bencomo, Rogério de Lemos, Alessandra Gorla,

Paola Inverardi, and Thomas Vogel. "Software engineering processes for self-adaptive

systems." In Software Engineering for Self-Adaptive Systems II, pp. 51-75. Springer, Berlin,

Heidelberg, 2013.

[34] Hölzl, Matthias, Nora Koch, Mariachiara Puviani, Martin Wirsing, and Franco Zambonelli.

"The ensemble development life cycle and best practices for collective autonomic systems."

In Software Engineering for Collective Autonomic Systems, pp. 325-354. Springer, Cham,

2015.

[35] Kramer, Jeff, and Jeff Magee. "Self-managed systems: an architectural challenge." In 2007

Future of Software Engineering, pp. 259-268. IEEE Computer Society, 2007.

[36] D. Garlan, S. Cheng, A. Huang, B. R. Schmerl, and P. Steenkiste. 2004a. Rainbow:

Architecture-Based SelfAdaptation with Reusable Infrastructure. IEEE Computer 37, 10

(2004), 46–54.

[37] V. A. Braberman, N. D’Ippolito, J. Kramer, D. Sykes, and S. Uchitel. 2015. MORPH: A

Reference Architecture for Configuration and Behaviour Self-Adaptation. In 1st

International Workshop on Control Theory for Software Engineering - CTSE 2015,

Bergamo, Italy, August 30 - September 4,, 2015

[38] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. 2002. Towards Architecture-based Self-

healing Systems. In Proceedings of the First Workshop on Self-healing Systems (WOSS

’02). ACM, New York, NY, USA,

[39] Rodrigues, Gabriel S., Felipe P. Guimarães, Genaína N. Rodrigues, Alessia Knauss, João

Paulo C. de Araújo, Hugo Andrade, and Raian Ali. "GoalD: A Goal-Driven deployment

framework for dynamic and heterogeneous computing environments." Information and

software technology 111 (2019): 159-176.

[40] A. Van Lamsweerde, From system goals to software architecture, in: Formal Methods for

Software Architectures, Springer, 2003, pp. 25–43.

[41] Y. Yu, A. Lapouchnian, S. Liaskos, J. Mylopoulos, J.C. Leite, From goals to high–

45

variability software design, in: Foundations of Intelligent Systems, Springer, 2008, pp. 1–

16.

[42] Weyns, Danny. "Software engineering of self-adaptive systems." In Handbook of Software

Engineering, pp. 399-443. Springer, Cham, 2019.

[43] Vogel, Thomas, and Holger Giese. "Model-driven engineering of self-adaptive software

with eurema." ACM Transactions on Autonomous and Adaptive Systems (TAAS) 8, no. 4

(2014): 18.

[44] Iftikhar, M. Usman, and Danny Weyns. "Activforms: Active formal models for self-

adaptation." In Proceedings of the 9th International Symposium on Software Engineering

for Adaptive and Self-Managing Systems, pp. 125-134. ACM, 2014.

[45] F. Křikava, P. Collet, and R. B. France, “ACTRESS,” in Proceedings of the 29th Annual

ACM Symposium on Applied Computing - SAC ’14, 2014, pp. 391–398.

[46] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. Lo Presti, and R. Mirandola,

“MOSES: A Framework for QoS Driven Runtime Adaptation of Service-Oriented

Systems,” IEEE Trans. Softw. Eng., vol. 38, no. 5, pp. 1138–1159, Sep. 2012.

[47] Cámara, Javier, Bradley Schmerl, Gabriel A. Moreno, and David Garlan. "MOSAICO:

offline synthesis of adaptation strategy repertoires with flexible trade-offs." Automated

Software Engineering 25, no. 3 (2018): 595-626.

[48] Abeywickrama, Dhaminda B., Nicola Bicocchi, and Franco Zambonelli. "SOTA: Towards

a general model for self-adaptive systems." In 2012 IEEE 21st International Workshop on

Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 48-53. IEEE,

2012.

[49] Andrikopoulos, Vasilios. "Separate Design Knowledge Models for Software Engineering &

Service-Based Computing." Contractual Deliverable CD-JRA-1.1 2 (2009).

[50] Computing, Autonomic. "An architectural blueprint for autonomic computing." IBM White

Paper 31, no. 2006 (2006): 1-6.

[51] Del-RíO-Ortega, Adela, Manuel Resinas, Cristina Cabanillas, and Antonio Ruiz-Cortés.

"On the definition and design-time analysis of process performance indicators." Information

Systems 38, no. 4 (2013): 470-490.

[52] Canfora, Gerardo, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Villani. "A

framework for QoS-aware binding and re-binding of composite web services." Journal of

Systems and Software 81, no. 10 (2008): 1754-1769.

[53] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. "The goal question metric

approach." Encyclopedia of software engineering (1994): 528-532.

