
SWFC-ART: A Cost-effective Approach for Fixed-Size-Candidate-Set Adaptive Random
Testing through Small World Graphs

Muhammad Ashfaqa, Rubing Huanga,b,∗, Dave Toweyc, Michael Omarid, Dmitry Yashunine, Patrick Kwaku Kudjof, Tao Zhangb

aSchool of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
bFaculty of Information Technology, Macau University of Science and Technology, Macau 999078, China

cSchool of Computer Science, University of Nottingham Ningbo, China
dDepartment of Computer Science, Takoradi Technical University, Takoradi, Western Region, Ghana

eHarman X, Nizhny Novgorod, 24 Salganskaya street, 603105, Russia
fUniversity of Professional Studies, Accra, Ghana

Abstract

Adaptive random testing (ART) improves the failure-detection effectiveness of random testing by leveraging properties of the
clustering of failure-causing inputs of most faulty programs: ART uses a sampling mechanism that evenly spreads test cases within
a software’s input domain. The widely-used Fixed-Sized-Candidate-Set ART (FSCS-ART) sampling strategy faces a quadratic
time cost, which worsens as the dimensionality of the software input domain increases. In this paper, we propose an approach
based on small world graphs that can enhance the computational efficiency of FSCS-ART: SWFC-ART. To efficiently perform
nearest neighbor queries for candidate test cases, SWFC-ART incrementally constructs a hierarchical navigable small world graph
for previously executed, non-failure-causing test cases. Moreover, SWFC-ART has shown consistency in programs with high
dimensional input domains. Our simulation and empirical studies show that SWFC-ART reduces the computational overhead of
FSCS-ART from quadratic to log-linear order while maintaining the failure-detection effectiveness of FSCS-ART, and remaining
consistent in high dimensional input domains. We recommend using SWFC-ART in practical software testing scenarios, where
real-life programs often have high dimensional input domains and low failure rates.

Keywords: Software Testing, Random Testing, Adaptive Random Testing, Efficiency, Hierarchical Navigable Small World Graphs

1. Introduction

Software testing [1] is a fundamental software quality assur-
ance activity. Random testing (RT) [2] is a popular black-box
software testing technique that randomly selects and executes
a subset of test cases from the software’s input domain. Ben-
efits of using RT include that it does not require explicit infor-
mation, other than the inputs it takes, about the software un-
der test [3], and that it can easily be automated [4]. RT has
been used to test many real-life software packages, including:
Windows NT applications [5]; embedded software systems [6];
database systems [7, 8]; Android applications [9]; Java Just-In-
Time Compilers [10]; .NET error detection [11]; security as-
sessment [12]; Mac OS robustness assessment [13]; graphical
user interfaces [14]; and UNIX utility programs [15, 16].

Although RT has been reported to be effective, a large body
of related research has highlighted continuing questions about
its actual effectiveness [1, 17]. For example, RT does not take

∗Corresponding author
Email addresses: 5102180325@stmail.ujs.edu.cn (Muhammad

Ashfaq), rbhuang@ujs.edu.cn, rbhuang@must.edu.mo (Rubing Huang),
dave.towey@nottingham.edu.cn (Dave Towey),
michael.omari@ttu.edu.gh (Michael Omari),
Dmitry.Yashunin@harman.com (Dmitry Yashunin),
kudjo@upsamail.edu.gh (Patrick Kwaku Kudjo), tazhang@must.edu.mo
(Tao Zhang)

advantage of non-failure-revealing test cases, which may still
have information about program behavior, and should not be
discarded without careful inspection [1]. Moreover, RT may
not achieve satisfactory failure-detection effectiveness and code
coverage [18], which may make it unsuitable when there are
constraints on the number of test cases that can be executed.

An important finding in software testing has been the fact
that inputs that cause programs to fail (failure-causing inputs),
more often than not, form contiguous regions within the in-
put domain of a program [19, 20, 21, 22, 23, 24, 25, 26]. A
family of testing techniques called Adaptive Random Testing
(ART) [27, 28, 29] is based on the idea that, if RT’s basic tech-
nique is slightly modified, such that test cases are more evenly
distributed, the chances of encountering failure-causing inputs
can be significantly increased. Three broad categories of pat-
terns of these failure-causing inputs have been identified [23],
as shown in Fig. 1: block, strip and point patterns.

An objective of ART is to minimize the number of test cases
executions needed before revealing program failure. Theoreti-
cal support for ART includes not repeating testing where fail-
ure is unlikely to occur, covering every aspect of the program
(coverage), and exploring as much variety (diversity) in inputs
as possible [30, 25]. ART has been shown to be more ef-
fective than RT in real-life software testing scenarios — such
as resource-constrained testing [31] and beta testing [32] —

ar
X

iv
:2

10
5.

05
49

0v
1

 [
cs

.S
E

]
 1

2
M

ay
 2

02
1

Figure 1: Block, strip and point failure patterns

achieving better code coverage [33, 34, 35], and using fewer
test cases to find failure [27]. ART can require up to 50% fewer
test cases to find the first failure than RT [36]. Recently, ART
has been gaining traction as a viable approach for testing real-
life programs and systems, such as: testing deep neural net-
works [37]; detection of cross-site-scripting (XSS) attacks [38];
exposing SQL database vulnerabilities [39]; and testing object-
oriented programs [40].

Several ART approaches exist, based on different strategies
and motivations [28, 29]. The Fixed-Size-Candidate-Set ver-
sion of ART (FSCS-ART) was the first proposed, and is the
most-widely-used ART strategy, best known for its simplicity
and failure-detection effectiveness [28]. FSCS-ART follows the
ART principle that if a test case does not reveal a failure, then
nearby inputs are also unlikely to do so. Subsequent test cases,
therefore, should be selected far away from the previously ex-
ecuted, non-failure-causing test cases. FSCS-ART achieves the
concept of far away through computing distances among test
cases.

Unfortunately, FSCS-ART incurs a quadratic time complex-
ity when generating test cases, due to the brute-force strategy
for determining the nearest neighbors of candidate test cases
(see Section 2.1) — the distance between each candidate test
case and all executed test cases must be calculated before the
nearest neighbor can be identified. Furthermore, this computa-
tional cost rises sharply as the number of program input param-
eters (dimensions of the input domain, D) increases. These
two issues can be collectively referred to as the double-tier
efficiency problem of FSCS-ART. Given that most real-world
programs have high dimensional input domains [41] and low
failure rates [20] — which means that many test case execu-
tions may be required before finding a failure — the FSCS-ART
double-tier efficiency problem needs to be addressed.

The work reported in this paper addresses the FSCS-ART
double-tier efficiency problem. By identifying FSCS-ART as
an instance of the nearest neighbor search (NNS) problem, we
hypothesize that a solution to the FSCS-ART efficiency prob-
lem may lie in addressing the NNS mechanism: If the NNS
mechanism can be scalable, and consistent with dataset size and
dimensions, it may alleviate the double-tier efficiency problem.
Furthermore, approximate NNS (ANNS) should be able to sig-
nificantly alleviate the computational overheads of distance cal-
culations, especially in high dimensional input domains [42]. In
software testing, NNS has been used to find the most similar test
cases in regression testing [43], test case prioritization (TCP)
[44], and model-based testing [45]. It has also been used to find

the most diverse (opposite to similar) test cases in ART [46] and
software product lines [47]. ANNS has also been successfully
applied to enhance the efficiency in other areas of software test-
ing, including TCP [44], test suite reduction [48] and prediction
of test flakiness [49].

In this paper, we introduce an approach based on Hierar-
chical Navigable Small World graphs (HNSWGs), a technol-
ogy that has outperformed tree, hashing, and other graph-based
NNS strategies on a wide variety of datasets [50, 51, 52]. HN-
SWGs represent an excellent potential solution for solving the
computational overheads and high dimensionality problem of
FSCS-ART. The proposed method, referred to as FSCS-ART
by Hierarchical Navigable Small World Graphs (abbreviated as
SWFC-ART), stores previously executed, non-failure-causing
test cases in an HNSWG data structure that is efficient for NNS
queries, especially for high-dimensional datasets. HNSWGs
are built on navigable small world graphs with a controllable
hierarchy for approximate k-nearest neighbor searches [53],
making them suitable for alleviating the exhaustive distance
computations burden of FSCS-ART. We evaluated SWFC-
ART in a series of simulations and empirical studies, exam-
ining its efficiency and failure-detection effectiveness. Our pro-
posed method reduces the computational overhead of FSCS-
ART from quadratic to log-linear order while maintaining the
failure-detection effectiveness of FSCS-ART, and remaining
consistent in high dimensional input domains.

The rest of the paper is organized as follows: Section 2 in-
troduces some background information for NNS, FSCS-ART,
the current state-of-the-art for FSCS-ART (KDFC-ART), and
HNSWGs. The proposed method is explained in Section 3.
Section 4 describes the experimental setup used to evaluate the
proposed method. Section 5 provides the experimental results
and discussion. Section 6 describes potential limitations and
threats to the validity of our work. Related work is described
in Section 7. The paper concludes with Section 8, which also
discusses some future work.

2. Background

2.1. Fixed-Size-Candidate-Set Adaptive Random Testing

The Fixed-Size-Candidate-Set implementation of ART
(FSCS-ART) uses two sets of test cases: the candidate set (C),
containing k elements; and the executed set (E) that contains the
previously executed, non-failure-causing test cases. Initially,
both E and C are empty. The first test case is randomly1 gen-
erated and executed. If a failure is not found, the executed test
case is added to E, and k new candidate test cases are randomly
generated and added to C. The nearest neighbor in set E for
each ci ∈ C (1 ≤ i ≤ k) is determined by calculating the dis-
tance between ci and all elements in E. Finally, the best candi-
date test case (cbest) is selected as the candidate whose nearest
neighbor is farthest away— following the min-max strategy of
FSCS-ART. This process can be described mathematically as

1Using a uniform probability distribution.

2

follows (where δ is a similarity measure for test cases):

∀c ∈ C,min
e∈E

δ(cbest, e) ≥ min
e∈E

δ(c, e) (1)

The Euclidean distance is typically used as δ for numeric pro-
grams [28, 27]: FSCS-ART chooses the test case from C that is
most distant from previously executed, non-failure-causing test
cases.

A core part of the FSCS-ART algorithm is finding the near-
est neighbors of candidate test cases. Once the nearest neighbor
of each candidate is found, cbest can be determined in constant
time. If a candidate test case (ci ∈ C) is considered a query
point, and the executed test case set (E) is the dataset, then
the whole process becomes an instance of the NNS problem.
The NNS problem has been extensively studied in computer
science, including in areas such as geographic information sys-
tems, artificial intelligence, pattern recognition, clustering, and
outlier detection [54].

Definition 1. The NNS problem can be formally defined as
follows: Given a d-dimensional input domain D (also called
vector space or input space), and a distance function δ : D ×
D→ R, for a finite set X = {x1, x2, x3, . . . , xn}, where X ⊂ D, an
effective probability search method is needed to find the xi ∈ X
which is closest to q ∈ D (according to δ). Each xi ∈ X and
q ∈ D are d-dimensional vectors.

NNS (q) = arg min
x∈X

δ(q, x) (2)

For FSCS-ART, X is a set of executed test cases (E), xi is one
executed test case (also called test input), and q is a candidate
test case. An effective probability search method is not guaran-
teed to identify the exact nearest neighbor for a given candidate.
Although the original FSCS-ART uses exact NNS, it has been
found that an ANNS can also be employed that maintains the
FSCS-ART failure-detection effectiveness [46].

FSCS-ART uses a brute-force NNS [55] for each element
c ∈ C, with the distances between c and each element of E
calculated to find its nearest neighbor. The complexity of the
brute-force NNS is O (d · n) [42], and because there are k el-
ements in C, one iteration of FSCS-ART has a complexity of
O (k ·d ·n). As the algorithm iterates n times, the total time com-
plexity becomes O (n ·k ·d ·n) = O (k ·d ·n2). This quadratic time
complexity can take a prohibitive amount of time when testing
programs with high dimensionality and low failure rates.

Due to its simplicity, failure-detection effectiveness and pop-
ularity for testing numeric, non-numeric and object-oriented
programs (especially after the various distance metrics pro-
posed in these domains by ART researchers), most studies of
the application of ART in testing real-life software packages
have used FSCS-ART. As noted by Huang et al. [28], of 15
studies employing ART to test software packages from differ-
ent application domains, 14 used FSCS-ART. In spite of this,
however, the extent of research into improving FSCS-ART is
less than that for partition-based ART strategies, which are less
often used in real-life testing scenarios [29].

2.2. State-of-the-art: KDFC-ART
A state-of-the-art FSCS-ART overhead reduction strategy

called KDFC-ART [46] stores previously executed, non-
failure-causing test cases in a tree-based data structure to per-
form efficient NNS. LimBal-KDFC — the most efficient of the
three KDFC-ART variants — incorporates limited backtracking
and a semi-balancing strategy to perform ANNS, and appears
to effectively address high-dimensionality computational chal-
lenges. Its worst-case time complexity is O (k · d2 · n log n) —
where k is the candidate set size; n is the number of generated
test cases; and d is the input domain’s dimensionality).

Previous studies that have shown that tree-based approaches
can perform NNS in low dimensional (d ≤ 5) input spaces with
O (log n) complexity. However, in worst-case situations, this
complexity can become O (d · n1−1/d) [56]. LimBal-KDFC, a
tree-based search method, is therefore expected also to suffer
from the impact of this phenomenon.
2.3. Hierarchical Navigable Small World Graphs

Graph-based approaches map vectors of a dataset into a
graph data structure, and perform greedy traversals to find the
nearest neighbor of a query point [53]. These approaches have
been shown to out-perform both tree-based and hashing-based
techniques [57, 55, 58, 59, 60, 61, 62, 63]. However, these tech-
niques face power-law scaling of the number of steps with the
size of the dataset, and may potentially get stuck in local min-
ima [64, 65].

To solve this problem, researchers have studied the construc-
tion of small world graphs (SWGs) instead of regular connected
graphs. The small world phenomenon is related to the Mil-
gram Experiment [66], which showed that most social entities
are linked through a small number of connections (average of
6). Watts & Strogatz [67] showed that, due to their high clus-
tering and small path lengths, some real-life networks, called
small world networks, can lie between regular and connected
networks. These networks use a few long-range links as well as
regular short-range links. Short-range links provide local con-
nectivity by joining nodes with their neighbors. Long-range
links are responsible for global connectivity, joining more dis-
tant nodes [68]. Kleinberg [69, 70] showed that if long-range
links are introduced with a probability r−α — where r is the
distance between two distant nodes, and α is a fixed clustering
coefficient — then the number of steps needed to reach the tar-
get node by a greedy search scales down to poly-logarithmic
order. The value of α can be set to the dimensionality of the
vector space. Based on this idea, many NNS and ANNS al-
gorithms have been developed [71, 72, 73, 74] that have re-
duced the greedy routing complexity from power-law to poly-
logarithmic scaling. Small world properties can be incorporated
into a graph during its construction [75] — this has been used
by NNS and ANNS, showing small world properties [76, 77].

Hierarchical Navigable Small World graphs (HNSWGs) [53]
aim to further reduce the complexity of SWGs. HNSWGs are
constructed by separating links into different layers based on
their length: This means that only a fixed number of the con-
nections for each element are evaluated (independently of the
graph size), which allows for logarithmic scaling. Each ele-
ment is assigned a layer level l, which denotes the highest layer

3

1

2

7
3

4

5

6

8

q

(a)

1

2

7
3

4

5

6

8

q

(b)

Figure 2: HNSWG Structure: (a) Basic NSWG; (b) Break-down of links

1

2

7
3

4

5

6

8

1

7

4

5

8

1

8

q

Figure 3: Layered Hierarchy Representation of Figure 2b

it can belong to. The NNS is initiated from the top layer (which
has the longest links), and continues until a local minimum is
reached at that layer. The search then goes to the next lower
layer, proceeding from the local minimum found in the upper
layer. This process continues until the bottom layer.

Because there is a fixed number of connections at each layer,
if the layer level l is set with exponentially decaying probability,
then the overall NNS complexity scales down to logarithmic
order. The HNSWG structure is similar to probabilistic skip-
lists [78], with proximity graphs replacing linked-lists.

2.3.1. Example
Fig. 2a presents a sample navigable small world graph

(NSWG) where each node is connected to its neighboring
nodes, and there are also some long-range links to more distant
nodes. For example, Node 1 has bidirectional short-range links
with its neighboring nodes (Nodes 2 & 3), and long-range links
with Nodes 4, 7, and 8. This NSWG is converted to an HN-
SWG by grouping links into three categories: Long-, medium-,
and short-range — which are represented in Fig. 2b by dotted,
dashed, and solid lines, respectively. The long- and medium-
range links — where a node is connected to nodes other than its
neighbors — are responsible for the small world properties in

the graph. The short-range links connect nodes to some of their
neighbors, making an approximate Delaunay graph [76, 77]. As
shown in Fig. 3, links in the HNSWG are separated into three
virtual layers (hierarchies) according to their length, with long-,
medium-, and short- links categorized into the top, middle, and
bottom layers, respectively.

2.3.2. NNS in HNSWG
An NNS for query point q (highlighted with a double circle

in Figs. 2 & 3) starts from the top layer by selecting the node
with the most links (the “maximum degree node”) as an entry
point (Node 1). The entry point is updated each time an ele-
ment is inserted into the graph. The nearest neighbor of q in
the top layer is determined (Node 8), and the search proceeds
to the middle layer, restarting from the local minimum found in
the top layer. The nearest neighbor is revised, with Node 5 now
identified as the best possible solution. Finally, the search pro-
ceeds to the final (bottom) layer and again attempts to refine the
nearest neighbors, resulting in Node 6 now being identified as
the final nearest neighbor for q. According to this process, the
nearest neighbor of q is found in three steps, compared with the
eight distance calculations that would have had to be performed
in a brute-force (exhaustive) search.

3. Method

This section introduces our proposed method, SWFC-ART (a
Small-World-graph-based approach for Fixed-size-Candidate-
set Adaptive Random Testing), which uses an HNSWG to store
E, and to efficiently find nearest neighbors for each ci ∈ C.

3.1. Framework

The SWFC-ART method can be divided into seven major
steps, as shown in Fig. 4. In the first step, an HNSWG G, which
will map all executed test cases to its nodes, is initialized. The
initialization phase requires a number of parameters (discussed
in Section 3.3), including: the graph size, the number of nearest
neighbors to be searched for in each layer, and the number of
nearest neighbors to be connected for each inserted node. Once
the graph is initialized, the first test case is randomly generated,
inserted into the G (Step 2), and used to test the software under
test (SUT). If the method has not terminated, Step 3 involves
randomly generating k candidate test cases. In Step 4, the mul-
tilayered G is traversed to find the nearest neighbor for each
candidate. Step 5 determines the best candidate (the one whose
nearest neighbor is most distant). In Step 6, the best candidate is
inserted into G, and used as the next test case for the SUT. This
process repeats until a termination criterion is reached. Possible
termination criteria include: finding a failure; executing a spe-
cific number of test cases; running the algorithm for a specific
time limit; or any other specified criterion. If a termination cri-
terion is satisfied, the algorithm terminates and returns G with
all executed test cases as its nodes (Step 7).

4

start

Initialize an HNSWG

“G”

Randomly generate a

test case and add it to G

Check termination

condition
return GYes

Generate candidate set of

k random test cases

No

Find nearest neighbor by

improved greedy search

Select Candidate test case that

has the most distant nearest

neighbor

Insert selected candidate test case

into G

end

For each candidate test case, find its

nearest neighbor in G (G contains

all executed test cases)

1

2

3

4

5

6

7

Figure 4: SWFC-ART Framework

3.2. SWFC-ART

SWFC-ART is a modified form of the FSCS-ART algo-
rithm [27], storing previously executed, non-failure-causing
test cases in an HNSWG [53], instead of the arrays and trees
used by FSCS-ART and LimBal-KDFC, respectively.

3.2.1. Algorithm
SWFC-ART takes eight inputs: 1) k (the size of the candi-

date test set); 2) D (the SUT’s input domain); 3) δ (the distance
function); 4) e f (the size of the dynamic list for the number of
nearest neighbors to be searched for in each layer); 5) M (the
number of connections for an inserted test case in each layer of
the HNSWG); 6) efConst (the size of the dynamic list for en-
hancing the accuracy of returned nearest neighbors — although
this parameter is the same as e f , a different value is used during
HNSW construction, and therefore we call it e fConst (efCon-
struction); 7) ml (a non-zero integer to control the number of
layers with exponentially decaying probability); and 8) b (the
initial base size of the graph, representing the number of nodes
that it can accommodate). The parameters are discussed further
in Section 3.3. The algorithm returns an HNSWG (G) whose
nodes are the executed test cases, the number of which corre-
sponds to the F-measure (Section 4.2).

The algorithm begins by calculating the dimensionality d of
the input domain D (line 1). The entry point ep (line 2) is stored
globally, and updated each time an element is inserted into G
— this differentiates HNSWGs from NSWGs, where the entry
point is randomly chosen on each search iteration. On line 3,
G has been initialized by specifying the parameter values. In

Algorithm 3.2.1 SWFC-ART

Input: 1. Size of candidate test case set: k
2. Program input domain: D
3. Distance function: δ
4. Nearest neighbors to be searched for at each layer: e f
5. Number of connections for each inserted element: M
6. Size of dynamic list for enhancing the accuracy of

nearest neighbor search: e fConst
7. Layers controller: ml

8. Base size of the graph: b
Output: HNSWG object hnswg consisting of executed test

cases as its nodes
1: d ← dimensionality of D
2: Globally-stored ep
3: Initialize G (d, δ, b, M, e fConst, e f)
4: tinit ← randomly generate a test case
5: Call procedure G.Insert (tinit, M, e fConst, ep, ml)
6: while termination condition is not satisfied do
7: C ← Randomly generate k test cases
8: for each c in C do
9: Call procedure G.NNS (c, e f , ep)

10: end for
11: Select cbest from C
12: Call procedure G.Insert (cbest, M, efConst, ep, ml)
13: if G.currentS ize() equals b then
14: b← 2 · b
15: re-calculate e fConst
16: Gtemp ← G.items()
17: Re-initialize G (d, δ, b, M, e fConst, e f)
18: Call procedure G.Insert (Gtemp, M, efConst, ep,

ml)
19: end if
20: end while
21: return G

the next phase, a randomly-generated test case from the SUT’s
input domain is executed, and inserted into G (line 4). If no
termination criterion has been satisfied, then k test cases are
randomly generated, and put into C (line 7). The nearest neigh-
bor of each candidate (c ∈ C) is determined by calling the NNS
procedure (Section 3.2.3), and the candidate with the maxi-
mum distance from its nearest neighbor (cbest) is selected as the
next test case (line 11). This selected test case is inserted into
G by calling the Insert procedure (Section 3.2.2). The if
block (Lines 13-19) maintains the dynamic size of G, which is
doubled if the number of stored test cases reaches the limit (b)
(causing e fConst to be re-calculated).

The NNS and Insert procedures called by SWFC-ART re-
quire the Searcher procedure to identify the nearest neighbors
on each layer of the HNSWG. Because these procedures have
been comprehensively explained by Malkov & Yashunin [53],
the following is only a general overview.

3.2.2. Insert procedure
The Insert procedure takes a test case t, entry point ep,

and three integer value parameters (e fConst, M and ml), and

5

Procedure 3.2.2 hnswg.Insert (t, M, e fConst, ep, ml)

1: l← b− ln (uni f (0...1)) · mlc

2: L← level of ep // entry point to top layer
3: W ← φ

Phase I
4: for lc ← L...l do
5: W ← procedure Searcher(t, ep, e f = 1, lc)
6: end for

Phase II
7: for lc ← l...2, 1, 0 do
8: W ← Call procedure Searcher(t, ep, e fConst, lc)
9: bidirectionally connect M (M0 if lc = 0) elements from

W to t
10: shrink connections if needed
11: end for
12: if l > maxLayer then
13: ep← t // update entry point
14: maxLayer ← l // update maximum layer level
15: end if
16: return updated G with inserted t

Procedure 3.2.3 hnswg.NNS (t, e f , ep)

1: L← level of ep // entry point to top layer
2: W ← φ // List of currently found nearest neighbors

Phase I
3: for lc ← L...1 do
4: W ← Call procedure Searcher(t, ep, e f = 1, lc)
5: end for

Phase II
6: W ← Call procedure Searcher(t, ep, e f , l0)
7: Sort W in ascending order
8: return first element of W as nearest neighbor of t

returns an updated G reflecting the insertion of t.
For each t, a maximum layer l is randomly selected with an

exponentially decaying probability distribution (normalized by
mL) (line 1). L represents the layer of entry point node ep,
which is the top layer of G. W, which is initially empty, stores
the nearest neighbors of t in each layer (line 3). The NNS for t
consists of two phases: In Phase I (lines 4-6), the search moves
from the top layer L, to t’s layer l, identifying exactly one near-
est neighbor in each layer. In Phase II (lines 7-11), each layer
below l is searched for e fConst nearest neighbors, with a goal
of increasing the accuracy of the greedy search at lower layers
(line 8). The best M nodes from W are linked to t. If the current
layer is the ground layer (l0), then t is linked to M0 neighboring
nodes (Section 3.3.5). The maximum number of connections
for an element is kept to within a fixed limit, thus maintaining
logarithmic complexity (line 10). The entry point and maxi-
mum layer level are updated (lines 12-15), and the updated G is
returned (line 16).

3.2.3. NNS procedure
The NNS procedure is similar to the Insert procedure,

with the exception that Phase I spans from the top layer to the

Procedure 3.2.4 Searcher (t, ep, e f , l)

1: dinit ← δ(t, ep) // initial distance from entry point to test
case

2: W ← ep
3: for each e ∈ neighborhood (ep) at layer l do
4: if δ(t, e) < dinit then
5: W ← W

⋃
e;

6: greedily search neighborhood of e recursively
7: end if
8: end for
9: sort W in ascending order

10: return first e f elements of W as closest neighbors of t at
layer l

second last layer. Similar to Insert, exactly one nearest neigh-
bor is identified for t in Phase I (line 3-5). In Phase II, only the
bottom layer (l0) is searched for e f nearest neighbors (line 6).
Finally, W is sorted according to δ(W[i], t) < δ (W[i+1], t), and
the first element is returned as the nearest neighbor of t (line 8).

3.2.4. Searcher procedure
Both NNS and Insert procedures call the Searcher

procedure (a type of greedy search) to search for e f nearest
neighbors in a given layer. Searcher searches for the nearest
neighbors of test case t in layer l, given entry point ep, and re-
turns e f nearest neighbors. Initially, the entry points are taken
as temporary nearest neighbors (line 1), and stored in W. Next,
the neighborhood of each entry point is recursively searched, in
a greedy manner, for other nearest neighbors (lines 3-8), with
any identified closer neighbors added to W. The first e f ele-
ments of W (that are at a minimum distance from t) are then
returned.

3.3. Parameter Optimization

SWFC-ART is controlled by a number of parameters: k, e f ,
e fConst, M, b and δ. If all the parameter values are set to the
minimum possible, then the HNSWG is not used, and the al-
gorithm’s effectiveness can become similar to that of RT. Using
the optimal parameter values, as explained in the following, is
therefore critical to the success of SWFC-ART.

3.3.1. Number of candidate test cases (k)
In most ART studies, the size of the candidate test set (the

number of test cases randomly generated in each iteration), k,
is usually set to 10 [27].

3.3.2. Graph size (b)
The size of the HNSWG needs to be given in advance, with

larger graphs incurring more construction time (lowering effi-
ciency). However, while this parameter has no apparent impact
on the failure-detection effectiveness, it can affect efficiency.
The actual number of nodes (executed test cases) in the final
graph corresponds to the F-measure (the number of test cases
executed before finding the first failure), which can depend on
the failure rate of the SUT (which is unknown in advance). In

6

ART, test cases are usually generated incrementally until a ter-
mination criterion is reached. One approach to deal with this
would be to assign the maximum available size (as supported
by the hardware and software platform) to the HNSWG, but this
can incur a very heavy construction cost, especially for software
with high failure rates. Because our analysis of varying b be-
tween 102 and 2 × 107 showed that the graph construction time
for 102 to 104 remained relatively stable, but then increased sig-
nificantly for larger sizes, we initially set b to 104, and double
this any time additional nodes are needed. In practice, testers
may set b according to their own specific needs.

3.3.3. Distance function (δ)
Because the Euclidean distance has been used in many

FSCS-ART studies [27, 28], especially for numeric programs,
we adopted it in our simulations and experiments.

3.3.4. Size of dynamic list (e f)
The size of the dynamic list (e f) controls the number of

a candidate’s closest neighbors that are searched for in lay-
ers higher than its own layer. Because SWFC-ART employs
ANNS, the identified nearest neighbor may not be the actual
nearest neighbor. There is a tension between the efficiency and
effectiveness for the e f value: Increasing e f incurs an addi-
tional time cost, but also increases the chances of finding actual
nearest neighbors. It should be at least equal to the number
of desired nearest neighbors for a candidate, and, since ART
seeks only one nearest neighbor for each candidate, the mini-
mum value of e f can be 1. With e f = 1, our analysis showed
NNS accuracy of 90% in all dimensions and failure rates un-
der study. Increasing e f to 2 incurred a little additional time
cost, but also raised the accuracy to 98%. Because the scope
of our study was to increase efficiency while keeping effective-
ness at a comparable level to the state-of-the-art, and e f = 2
shows effectiveness similar to that of FSCS-ART and LimBal-
KDFC (Section 5), we did not increase e f beyond 2. Testers
may choose to increase e f if they are interested in further en-
hancing the effectiveness.

3.3.5. Number of links (M)
This parameter controls the number of connections made to

an inserted element: More connections increase the failure-
detection effectiveness, but compromise the efficiency. Follow-
ing Malkov et al. [76], who recommended that a newly-inserted
element should be connected to at least its M = 3 · d clos-
est neighbors (where d is the dimensionality of dataset), we set
M = 3 · d. On the ground layer (l0), a separate parameter M0
has been used. Setting M0 = M reduces the NNS accuracy.
M0 = 2 · M is the recommended choice, because higher values
can lead to performance degradation and excessive memory us-
age [53].

3.3.6. Construction parameter (e fConst)
The construction parameter (e fConst) specifies the number

of nearest neighbor candidates used during graph construction.
As only M closest candidates are connected to the inserted ele-
ment, e fConst ≥ M. In the Insert procedure, a candidate has

to be searched for only one nearest neighbor in layers above
its own layer, but this is increased to e fConst for lower layers
to improve the NNS accuracy. The value of e fConst is loga-
rithmic to the size of the dataset and is very similar to the w
parameter described by Malkov et al. [77]: A · log(N) (where N
is the size of the dataset, and A can be any natural number).

3.4. Illustration

Fig. 5 demonstrates an example of inserting two new nodes
into an HNSWG. Without loss of generality, the parameter val-
ues in this example were set as follows: e f = 1; M = 3;
M0 = 2 · M = 6; and e fConst = 3. (The value of ml is not
important for demonstration purposes.) The initial HNSWG is
shown in Fig. 5a, with long-range links in the top layer (Layer
2), and short-range links in the ground layer (Layer 0). Node 4
is the entry point to the graph.

Fig 5b shows the process of inserting Node 7 into the HN-
SWG. Suppose that Node 7 is inserted into Layer 1, which
means that it will be inserted into this, and all lower layers. The
search starts from the top layer (Layer 2), with Node 4 as the en-
try point. (As a reminder: For layers above the insertion layer,
the search identifies the e f closest elements; and for the inser-
tion and lower layers, the search identifies the e fConst closest
elements.) In Layer 2, all neighbors of Node 4 are examined,
and the one (e f = 1) closest to the inserted node is identified
— in this case, Node 4. Node 4 is then used as the entry point
for Layer 1, where its neighbors (Nodes 2 and 5) are examined,
and then their neighbors are examined. This continues until all
the neighborhood has been examined. In this example, because
e fConst = 3, Nodes 2, 4, and 5, are identified as the closest el-
ements, and are connected directly to Node 7. They will then be
used as entry points to Layer 0. At this stage, because Node 4
now has four connections, which exceeds the limit (M = 3), its
closest M neighbors are identified and any remaining connec-
tions are discarded: The connection between Nodes 4 and 6 is
therefore removed (represented by the dotted blue line in Layer
1 of Fig. 5b). Finally, in Layer 0, the neighbors of the entry
points (Nodes 2, 4, and 5) are examined, and the e fConst = 3
closest elements are identified and connected to Node 7: Nodes
1, 2, and 4.

Fig. 5c shows the insertion of Node 8. Suppose that Layer 0
is the insertion layer for Node 8 The search again begins from
the top layer (Layer 2), from the entry point Node 4. In Layer
2, all neighbors of Node 4 are examined, and the one (e f = 1)
closest to the inserted node is identified — Node 6. Node 6 is
then used as the entry point for Layer 1, where examination of
the various connected neighbors results in Node 5 being identi-
fied as the one closest node to Node 8, and thus being used as
the entry point to Layer 0. In Layer 0, the neighbors of Node 5
are examined, and the three (e fConst = 3) closest elements are
identified and connected to Node 8: Nodes 3, 5, and 6.

Fig. 5d shows the updated HNSWG after insertion of both
Nodes 7 and 8. The NNS Procedure is similar to the Insert
Procedure, with the slight differences that e f = 1 nearest
neighbors are searched for in all layers except the ground layer
(l0), where e fConst = 3 nearest neighbors are identified (as ex-

7

Layer 0

Layer 1

Layer 2

2

4

6

5

1

7

3

2

4

6

5 7

4

6

Layer 0

Layer 1

Layer 2

2

4

6

5

1

3

2

4

6

5

4

6

Layer 0

Layer 1

Layer 2

2

4

6

5

1

7

3

2

4

6

5 7

4

6

7

Layer 0

Layer 1

Layer 2

8

8

6

8

2

4

6

5

1

7

3

2

4

6

5 7

4

6

8

6

(a) Initial HNSWG

Layer 0

Layer 1

Layer 2

2

4

6

5

1

7

3

2

4

6

5 7

4

6

Layer 0

Layer 1

Layer 2

2

4

6

5

1

3

2

4

6

5

4

6

Layer 0

Layer 1

Layer 2

2

4

6

5

1

7

3

2

4

6

5 7

4

6

7

Layer 0

Layer 1

Layer 2

8

8

6

8

2

4

6

5

1

7

3

2

4

6

5 7

4

6

8

6

(b) Insertion of Node 7

Layer 0

Layer 1

Layer 2

2

4

6

5

1

7

3

2

4

6

5 7

4

6

Layer 0

Layer 1

Layer 2

2

4

6

5

1

3

2

4

6

5

4

6

Layer 0

Layer 1

Layer 2

2

4

6

5

1

7

3

2

4

6

5 7

4

6

7

Layer 0

Layer 1

Layer 2

8

8

6

8

2

4

6

5

1

7

3

2

4

6

5 7

4

6

8

6

(c) Insertion of Node 8

Layer 0

Layer 1

Layer 2

2

4

6

5

1

7

3

2

4

6

5 7

4

6

Layer 0

Layer 1

Layer 2

2

4

6

5

1

3

2

4

6

5

4

6

Layer 0

Layer 1

Layer 2

2

4

6

5

1

7

3

2

4

6

5 7

4

6

7

Layer 0

Layer 1

Layer 2

8

8

6

8

2

4

6

5

1

7

3

2

4

6

5 7

4

6

8

6

(d) Updated HNSWG

Figure 5: Sample illustration of HNSWG node insertion

plained in Section 3.2.3); and that the node is not inserted into
the HNSWG (bidirectional connecting does not take place).

3.5. Complexity Analysis
The time complexity of SWFC-ART can be considered in

two parts: the NNS; and the HNSWG construction complexity.
For each candidate test case, the algorithm searches for e f or
e fConst nearest neighbors on each layer, of which there are a
maximum of ml in the graph). Because e f , e fConst, and ml

are constant values (and thus do not depend on the size of the
dataset), the overall NNS complexity scales down to O (log n)
for one candidate test case, and O (k · log n) for k candidates.
The HNSWG is constructed through sequential insertion of test
cases, for each of which M nearest neighbors are connected
in each layer. The complexity of inserting one test case into
the HNSWG therefore becomes equal to the search complexity
O (log n). The total graph construction complexity for the se-
quential insertion of n test cases scales to O (n·log n). For k can-
didates and a d-dimensional input domain the overall complex-
ity becomes log-linear (also called linearithmic or quasilinear):
O (k · d · n · log n). The storage complexity of SWFC-ART de-
pends on the number of links (both long- and short-range): For
four billion elements (nodes or test cases), four-byte unsigned
integers can be used to store the HNSWG connections. The
typical memory requirement for one HNSWG object is about
60-450 bytes, which has been confirmed by simulation analy-
sis [53].

4. Experimental Studies

Our study aimed at solving the double-tier efficiency problem
of FSCS-ART, an ART version known for its failure-detection
effectiveness and application in real-life programs. In addition
to FSCS-ART, LimBal-KDFC (Section 2.2) was also selected
as a baseline for comparison.

4.1. Research Questions
The double-tier efficiency problem conceptualizes two effi-

ciency issues of the FSCS-ART algorithm. The first issue re-
lates to the growing executed test set size when failure has not
yet been revealed: This is a scalability issue. The second issue

relates to the computational load associated with dimensional-
ity increases for any size of test set: This is a consistency is-
sue. In addition to examining the effect of these issues, we also
wanted to investigate the impact (similarities and differences)
of the ANNS strategies of LimBal-KDFC and SWFC-ART on
the failure-detection effectiveness of FSCS-ART. Therefore, the
following research questions were designed to guide our exper-
iments:
RQ1: Does SWFC-ART successfully solve the double-tier ef-

ficiency problem? (Efficiency)
RQ2: How effective is SWFC-ART at revealing failures? (Ef-

fectiveness)
RQ3: How evenly does SWFC-ART distribute test cases?

(Test case distribution)

4.2. Evaluation Metrics
4.2.1. Efficiency metrics

Because a goal of this study was to reduce the computational
cost associated with FSCS-ART generating test cases, the test
case generation time (TG) was adopted an efficiency metric.
The test case execution time (TE) was also recorded. TG in-
cludes the time taken to generate a fixed number of test cases,
with lower times indicating better efficiency; while TE is the to-
tal time taken by a program to execute the generated test cases.

4.2.2. Failure-detection effectiveness metrics
The F-measure is defined as the expected number of test case

executions required by a method to find the first failure [27],
with lower F-measure values (fewer test cases to find a failure)
corresponding to better effectiveness. The F-measure was used
as the failure-detection effectiveness metric in our study. If the
failure rate, θ, of an SUT is defined as the ratio of the failure-
causing inputs to the total size of the SUT input domain, then
the theoretical F-measure of (FRT) (with replacement) is 1/θ.
Because ART aims to improve on the failure-detection effec-
tiveness of RT, a measure of the extent of this improvement,
known as the F-ratio (FART /FRT), is also used in this paper.

4.2.3. Test case distribution metrics
Discrepancy refers to the differences of point densities in dif-

ferent sub-domains of the software input domain (D) — larger

8

sub-domains should have more test cases than smaller ones. In
an ideal situation, discrepancy values should be zero, indicat-
ing that the test cases (E) are evenly distributed. The input
domain can have an infinite number of sub-domains [79]; its
Monte Carlo approximation can be obtained by [80]:

Discrepancy = max
i=1···m

∣∣∣∣∣ |Ei|

|E|
−
|Di|

|D|

∣∣∣∣∣ (3)

where D1, D2, D3, · · · , Dm are hyper-rectangular sub-
domains of D whose size and location are randomly defined
with uniform probability [81]; E1, E2, E3, · · · , Em are the sub-
sets of E falling in each sub-domain, respectively; and m is the
number of randomly defined sub-domains. A value of m that
is too low causes unreliable approximation, but a value that is
too high incurs significant overheads for discrepancy calcula-
tion [82] (1000 is a commonly-used value [82, 83, 80]).

4.3. Simulations and Subject Programs
To answer RQ1, the TG values of FSCS-ART, LimBal-

KDFC, and SWFC-ART were recorded for test suites of sizes
500, 1000, 2000, 5000, 10,000, 15,000 and 20,000, in 2-, 3-, 4-,
5-, 10-, and 15-dimensional input domains. The TG and TE for
the real-life programs (discussed below) were also recorded.

The failure-detection effectiveness of ART methods depends
on several factors, including the shape of the failure region, the
failure rate (θ), and the dimensionality (d) of the input domain
(D) [32]. It is common practice in ART studies investigating
failure-finding effectiveness according to the F-measure (FART)
to use both simulations and empirical studies. We have fol-
lowed this tradition in our study to answer RQ2.

Generally speaking, the failure-causing inputs of a software
tend to cluster into block, strip or point failure patterns [23]. In
our simulations, the block patterns were created by randomly
generating a hyper-cube in D whose hyper-volume and length
of each side equalled θ and d√

θ, respectively. The strip pat-
terns were simulated by randomly selecting points on adjacent
borders of D, joining them, and expanding the strip magni-
tude until the hyper-volume became equal to θ. Strips gener-
ated in corners of the input domain were discarded due to their
unrealistic thickness. The point failure pattern was simulated
by randomly generating 25 small, non-overlapping, block fail-
ure patterns, with the total hyper-volume of all the blocks be-
ing appropriate for the given θ. Simulations were performed
for all three failure pattern types, with d = {2, 3, 4, 5, 10} and
θ = {0.01, 0.005, 0.002, 0.001, 0.0005, 0.0002, 0.0001}.

To answer RQ3, 100, 1000, and 10,000 test cases were gener-
ated in 2-, 3-, 4-, 5-, 10-, and 15-dimensional hyper-cube input
domains using FSCS-ART, LimBal-KDFC, and SWFC-ART.
Each dimension of the hyper-cubes was continuous, ranging
from −5000 to 5000.

We also used 28 programs, of different sizes and dimen-
sions, in our empirical studies. Faults were seeded into the
programs using the following mutation operators [84]: constant
replacement (CR); arithmetic operator replacement (AOR); re-
turn statement replacement (RSR); scalar variable replacement
(SVR); statement deletion (SDL); and relational operator re-
placement (ROR). Table 1 summarizes details about their d, D,

size (in terms of lines of code), fault2 types, number of seeded
faults, and θ. (The “NA” for θ in some cases represents situ-
ations where the failure rate was not calculated.) The first 12
subject programs have been commonly used in ART research,
and are from Numerical Recipes [86] and ACM Collected Al-
gorithms [87]. The programs calDay, complex and line are
from Ferrer et al. [88]. The programs pntLinePos, pntTriangle-
Pos, twoLinesPos and triangle were written as exercises from
the textbook Introduction to Java Programing and Data Struc-
tures [89]. The nearestDistance program takes five points in
2-dimensional space and returns the two points that are near-
est to each other [46]. The calGCD program takes 10 inte-
gers and returns their greatest common divisor. The select pro-
gram [90] returns the k-th largest element from an unordered
array. The tcas program is an aircraft collision avoidance sys-
tem, from Siemens [91]. The asinh, binomial, and period pro-
grams are from Walkinshaw & Fraser [92]. The program ma-
trixProcessor3 manipulates matrices according to specified ma-
trix operations, and was written as an exercise from JetBrains
Academy [93]. The java.util.Arrays [94, 95] is an array manip-
ulation library in the Java API that contains various array helper
functions (such as for sorting and searching).

4.4. Data Collection and Statistical Analysis

The simulations were conducted by continuously generating
test cases, using one of the testing strategies under study, un-
til a test case fell inside the failure region. In the experiments
with real programs, failure-revealing test inputs were identi-
fied when the output of the fault-seeded program differed from
the output of the original. The number of test cases generated
and executed before a failure was found (the F-measure) was
recorded.

All trials were run S times to ensure that mean values had
a 95% confidence level and 5% accuracy range, according to
the central limit theorem [96, 27]. In the simulations, S was
set to 10,000 for calculating the F-measure, and set to 1000 for
TG. In the empirical studies, S was also set to 10,000 trials.
The sample sizes were confirmed to be large enough to obtain
results with the desired confidence level and accuracy.

We used the unpaired two-tailed Wilcoxon rank-sum test [97]
(reciprocal of Mann-Whitney U test [98]) to analyze the signif-
icance of differences between the SWFC-ART and FSCS-ART
data, and between the SWFC-ART and LimBal-KDFC data.
For two random samples, the Wilcoxon rank-sum test returns
a z-statistic which is then converted into a p-value (probabil-
ity value). For a 95% confidence interval (or 5% significance
level), a z-static ≥ 1.96, or a p-value ≤ 0.01, means that there is
sufficient evidence to reject the null hypothesis (H0) [82]. The
H0 states that there is no significant difference between the ob-
served values of the two samples [97]. The effect size [99] is
used to calculate the impact of the results of the experiment on

2According to the IEEE [85], a fault (defect or bug) is an oversight of a
programmer. When fault is confronted during program execution, failure is
said to have occurred i.e. software behaves unexpectedly.

3https://github.com/ritish78/NumericMatrixProcessor

9

Table 1: Details of the subject programs

Program d
Input Domain (D) Size

(LOC) Fault Types Total
Faults θ

from to

bessj0 1 -300000 3000000 28 AOR,ROR,SVR,CR 5 0.001373
airy 1 -5000 5000 43 CR 1 0.000716

asinh 1 -10000 10000 360 AOR,ROR 2 0.0001001
erfcc 1 -30000 30000 14 AOR,ROR,SVR,CR 4 0.000574

probks 1 -50000 50000 22 AOR,ROR,SVR,CR 4 0.000387
tanh 1 -500 500 18 AOR,ROR,SVR,CR 4 0.001817
bessj 2 (2, -1000) (300, 15000) 99 AOR,ROR,CR 4 0.001298

gammq 2 (0, 0) (1700, 40) 106 ROR,CR 4 0.000830
sncndn 2 (-5000, -5000) (5000, 5000) 64 SVR,CR 5 0.001623

binomial 2 (0, 0) (128, 128) 501 CR 1 0.0001341
plgndr 3 (10, 0, 0) (500, 11, 1) 36 AOR,ROR,CR 5 0.000368
golden 3 (-100, -100, -100) (60, 60, 60) 80 ROR,SVR,CR 5 0.000550

cel 4
(0.001, 0.001,
0.001, 0.001)

(1, 300,
10000, 1000) 49 AOR,ROR,CR 3 0.000332

el2 4 (0, 0, 0, 0) (250, 250, 250, 250) 78 AOR,ROR,SVR,CR 9 0.000690

period 4
(-10000, -10000,
-10000, -10000)

(10000, 10000,
10000, 10000) 1128 CR 1 NA

calDay 5 (1, 1, 1, 1, 1800) (12, 31, 12, 31, 2020) 37 SDL 1 0.000632

complex 6
(-20, -20, -20,
-20, -20, -20)

(20, 20, 20,
20, 20, 20) 68 SVR 1 0.000901

pntLinePos 6
(-25, -25, -25,
-25, -25, -25)

(25, 25, 25,
25, 25, 25) 23 CR 1 0.000728

triangle 6
(-25, -25, -25,
-25, -25, -25)

(25, 25, 25,
25, 25, 25) 21 CR 1 0.000713

line 8
(-10, -10, -10, -10,
-10, -10, -10, -10)

(10, 10, 10, 10,
10, 10, 10, 10) 86 ROR 1 0.000303

pntTrianglePos 8
(-10, -10, -10, -10,
-10, -10, -10, -10)

(10, 10, 10, 10,
10, 10, 10, 10) 68 CR 1 0.000141

twoLinesPos 8
(-15, -15, -15, -15,
-15, -15, -15, -15)

(15, 15, 15, 15,
15, 15, 15, 15) 28 CR 1 0.000133

nearestDistance 10
(1, 1, 1, 1, 1,
1, 1, 1, 1, 1)

(15, 15, 15, 15, 15,
15, 15, 15, 15, 15) 26 CR 1 0.000256

calGCD 10
(1, 1, 1, 1, 1,
1, 1, 1, 1, 1)

(1000, 1000, 1000,
1000, 1000, 1000,

1000, 1000, 1000, 1000)
24 AOR 1 NA

select 11
(1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1)

(10, 100, 100,
100, 100, 100, 100,
100, 100, 100, 100)

117 RSR,CR 2 NA

tcas 12
(0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0)

(1000, 1, 1, 50000,
1000, 50000, 3,

1000, 1000, 2, 2, 1)
182 CR 1 NA

matrixProcessor 12

(−104, −104, −104,
−104, −104, −104,
−104, −104, −104,
−104, −104, −104)

(104, 104, 104,
104, 104, 104,
104, 104, 104,
104, 104, 104)

462 CR 1 NA

java.util.Arrays 15

(−104, −104, −104,
−104, −104, −104,
−104, −104, −104,
−104, −104, −104,
−104, −104, −104)

(104, 104, 104,
104, 104, 104,
104, 104, 104,
104, 104, 104,
104, 104, 104)

1357 CR 1 NA

10

an evaluation metric. The effect size for the Wilcoxon rank-sum
test was calculated as [100]:

r =
|z|

√
n1 + n2

(4)

where z is the z-statistic returned by the rank-sum test and n1
and n2 are the sample sizes. Cohen [101] identified effect sizes
as large for r = 0.5; medium for r = 0.3; and low for r = 0.1.

4.5. Experimental Environment

Java 1.8.0 221 was the programming language used to de-
velop and run the simulations and experiments4. Two machines
were used to conduct the study, both of which ran under the
Microsoft Windows 10 Pro 64-bit operating system.

• Machine 1: Acer Aspire V3-572G, Intel® Core™i5-
5200U CPU @ 2.2GHz, 2 Cores, 4 Logical Processors,
12GB RAM.

• Machine 2: Dell OptiPlex 7050, Intel® Core™i7-7700
CPU @ 3.60GHz, 4 Cores, 8 Logical Processors, 16GB
RAM.

The simulations and most of the studies with the subject pro-
grams were conducted on Machine 1. However, due to the
huge size and prohibitive time required, java.util.Arrays and
period were tested on Machine 2. The experimental parame-
ters were set as described in Section 3.3.

5. Experimental Results

5.1. Simulations

5.1.1. Computational Efficiency
Table 2 presents the efficiency results, with d and n denot-

ing the dimensionality of the SUT input domain and the num-
ber of test cases generated, respectively. All p-values are less
than 0.05, and all effect sizes are greater than 0.5, which means
that the SWFC-ART test case generation times are significantly
different from those of FSCS-ART and LimbBal-KDFC, with
large effect sizes. These results are next discussed from the per-
spective of the double-tier efficiency problem:

Efficiency Tier-1 (TG trends when changing “n” within a
fixed “d”): The overall trend for generating n test cases, as
shown in Fig. 6, is that the FSCS-ART time complexity grows
in quadratic order while the complexities of SWFC-ART and
LimBal-KDFC grow in log-linear order, O (n · log n).

For a 2-dimensional (2-d) input domain (Fig. 6a), FSCS-
ART outperforms SWFC-ART when only a few test cases are
generated — when n ≤ 500, for example, FSCS-ART per-
forms 7% faster than SWFC-ART. However, the advantage of
SWFC-ART starts becoming apparent when larger numbers of
tests are generated — when n = 20, 000, for example, SWFC-
ART shows a 93% improvement over FCSC-ART. Although

4We have released the SWFC-ART source code, and made it available on-
line: https://github.com/ashfaq92/swfc-art

both LimBal-KDFC and SWFC-ART have log-linear growth,
LimBal-KDFC has a flatter slope, making it the most efficient
method in 2-d input domains.

A similar trend to the 2-d observations continues until d = 5
(Fig. 6d), where, when n > 500, SWFC-ART is considerably
more efficient than FSCS-ART, and LimBal-KDFC remains
the most efficient method. A close look at Figs. 6a, 6b, 6c
and 6d, however, shows that the TG of LimBal-KDFC starts to
rise, and the gap between SWFC-ART and LimBal-KDFC de-
creases with the increasing dimensionality of the input domain
— when generating 20,000 test cases, for example, the per-
formance difference between SWFC-ART and LimBal-KDFC
decreases from 78% to 15%, from 2-d to 5-d input domains.
When d = 5, LimBal-KDFC and SWFC-ART appear to have
the same performance — when d > 5 (Figs. 6e and 6f), LimBal-
KDFC, which had the best efficiency in low dimensions, is now
outperformed by SWFC-ART.

Interestingly, when d = 10 and n ≤ 1000, FSCS-ART (with
quadratic complexity) performs better than LimBal-KDFC.
However, SWFC-ART maintains its scalability and efficiency,
and outperforms the other methods — at d = 10, for exam-
ple, when generating 20,000 test cases, SWFC-ART performs
92% and 67% faster than FSCS-ART and LimBal-KDFC, re-
spectively. When d = 15, the LimBal-KDFC performance is
worse than FSCS-ART until n = 5000, but the SWFC-ART
performance remains consistent — when generating 20,000 test
cases, SWFC-ART performs 91% and 80% faster than FSCS-
ART and LimBal-KDFC, respectively.

In summary, the performance improvement of SWFC-ART
over FSCS-ART is always consistent (greater than 90% for
n=20,000, irrespective of the input domain dimensionality).
LimBal-KDFC, however, shows inconsistency, including that
the rate of improvement of SWFC-ART over LimBal-KDFC
when d > 5 is greater than that of LimBal-KDFC over SWFC-
ART when d ≤ 5.

Efficiency Tier-2 (TG trends when changing “d” for fixed
“n”): Fig. 7 shows the time taken to generate n test cases in
2-, 3-, 4-, 5-, 10- and 15-dimensional input domains. SWFC-
ART is the worst performer when generating 500 test cases in
a 2-d input domain (Fig. 7a). As the dimensionality increases,
the LimBal-KDFC’s TG increases at a higher rate than the other
two methods. When generating 20,000 test cases (Fig. 7g), al-
though FSCS-ART has the highest TG, its rate of increase, as
the dimensionality increases, is lower than than that of LimBal-
KDFC. Overall, although SWFC-ART has poor relative perfor-
mance when generating a small number of test cases in low
dimensional input spaces, it gradually becomes faster and more
consistent when the number of test cases and input domain di-
mensionality increase.

In general, the time taken to generate n test cases while mov-
ing from d = 2 to d = 4, by FSCS-ART, LimBal-KDFC, and
SWFC-ART, increases 1.37, 2.5 and 1.32 times, respectively;
when moving from d = 5 to d = 10, they increase 1.68, 5.68
and 1.83 times, respectively. The time taken by LimBal-KDFC
to generate n test cases rises at the fastest rate of all three meth-
ods. Fig. 7h summarizes the TG trends for n = 20, 000 for the
three methods: When d ≤ 5, all methods show monotonous

11

Table 2: Wilcoxon Rank-Sum Tests and Effect Size Analyses of Test Case Generation Times for FSCS-ART, LimBal-KDFC and SWFC-ART

d n
Mean running time (ms)

FSCS-
ART vs

SWFC-
ART

LimBal-
KDFC vs

SWFC-
ART

FSCS-ART LimBal-KDFC SWFC-ART p-value effect size p-value effect size

2

500 21.86 6.38 28.81 0.0000 0.8573 0.0000 0.8658
1000 99.60 14.20 57.24 0.0000 0.8658 0.0000 0.8658
2000 406.98 33.88 127.23 0.0000 0.8658 0.0000 0.8658
5000 2347.86 92.00 367.43 0.0000 0.8658 0.0000 0.8658

10000 8466.74 202.73 818.66 0.0000 0.8658 0.0000 0.8658
15000 18367.03 328.03 1525.58 0.0000 0.8658 0.0000 0.8658
20000 32235.35 470.50 2145.45 0.0000 0.8658 0.0000 0.8658

3

500 26.15 9.87 30.37 0.0000 0.8535 0.0000 0.8658
1000 113.63 22.03 67.66 0.0000 0.8654 0.0000 0.8658
2000 484.51 50.80 150.57 0.0000 0.8658 0.0000 0.8658
5000 2776.46 146.15 434.76 0.0000 0.8658 0.0000 0.8658

10000 10190.99 332.34 990.50 0.0000 0.8658 0.0000 0.8658
15000 22372.77 546.68 1842.28 0.0000 0.8658 0.0000 0.8658
20000 39157.61 788.84 2550.49 0.0000 0.8658 0.0000 0.8658

4

500 30.82 15.15 33.90 0.0000 0.8220 0.0000 0.8658
1000 136.47 35.20 74.88 0.0000 0.8658 0.0000 0.8658
2000 568.14 84.39 173.33 0.0000 0.8658 0.0000 0.8658
5000 3209.42 255.38 504.40 0.0000 0.8658 0.0000 0.8658

10000 11958.25 603.19 1141.58 0.0000 0.8658 0.0000 0.8624
15000 26301.38 1028.92 2136.11 0.0000 0.8658 0.0000 0.8641
20000 46700.79 1537.45 2975.18 0.0000 0.8658 0.0000 0.8658

5

500 35.50 23.55 40.17 0.0000 0.8322 0.0000 0.8658
1000 156.48 56.48 87.91 0.0000 0.8658 0.0000 0.8657
2000 666.15 140.33 200.98 0.0000 0.8658 0.0000 0.8641
5000 3718.41 449.71 605.54 0.0000 0.8658 0.0000 0.8568

10000 13815.72 1096.25 1367.65 0.0000 0.8658 0.0000 0.8641
15000 30474.20 1904.76 2448.46 0.0000 0.8658 0.0000 0.8606
20000 54599.66 2879.91 3399.76 0.0000 0.8658 0.0000 0.8639

10

500 60.04 114.19 69.03 0.0000 0.8602 0.0000 0.8658
1000 263.29 366.03 165.59 0.0000 0.8658 0.0000 0.8658
2000 1063.11 982.16 380.31 0.0000 0.8658 0.0000 0.8658
5000 6116.69 3216.35 1129.49 0.0000 0.8658 0.0000 0.8658

10000 23420.62 8056.34 2654.56 0.0000 0.8658 0.0000 0.8658
15000 52877.05 14336.57 4923.99 0.0000 0.8658 0.0000 0.8658
20000 95485.52 21384.65 6948.82 0.0000 0.8658 0.0000 0.8658

15

500 81.78 146.45 97.22 0.0000 0.8658 0.0000 0.8645
1000 350.05 629.85 236.66 0.0000 0.8608 0.0000 0.8658
2000 1374.82 2266.66 583.09 0.0000 0.8658 0.0000 0.8658
5000 8049.52 8243.52 1796.36 0.0000 0.8658 0.0000 0.8658

10000 31545.61 21661.91 4229.87 0.0000 0.8658 0.0000 0.8658
15000 72274.64 38793.33 8074.45 0.0000 0.8658 0.0000 0.8658
20000 137040.00 58535.86 11391.41 0.0000 0.8658 0.0000 0.8658

growth, but when d > 5, they all appear to encounter the curse
of dimensionality [102, 103, 104], with TG values increasing
sharply for FSCS-ART and LimBal-KDFC, but SWFC-ART re-
maining consistent.

5.1.2. Failure-detection effectiveness

The simulation results for the block failure pattern are re-
ported in Table 3. For the 2-d input domain, all p-values are
much greater than 0.05 and all effect sizes are less than 0.1,
meaning that no significant difference exists between the F-
ratios of FSCS-ART, LimBal-KDFC, and SWFC-ART. A sim-
ilar trend can be seen for the 3- and 4-d input domains. The

12

0

5000

10000

15000

20000

25000

30000

35000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Ti
m

e(
m

s)

Number of Test Cases

FSCS

LimBal-KDFC

HNSWSWFC-ART

(a) 2-d input domain

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Ti
m

e(
m

s)

Number of Test Cases

FSCS

LimBal-KDFC

HNSWSWFC-ART

(b) 3-d input domain

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Ti
m

e(
m

s)

Number of Test Cases

FSCS

LimBal-KDFC

HNSWSWFC-ART

(c) 4-d input domain

0

10000

20000

30000

40000

50000

60000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Ti
m

e(
m

s)

Number of Test Cases

FSCS

LimBal-KDFC

HNSWSWFC-ART

(d) 5-d input domain

0

20000

40000

60000

80000

100000

120000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Ti
m

e(
m

s)

Number of Test Cases

FSCS

LimBal-KDFC

HNSWSWFC-ART

(e) 10-d input domain

0

20000

40000

60000

80000

100000

120000

140000

160000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Ti
m

e(
m

s)

Number of Test Cases

FSCS

LimBal-KDFC

HNSWSWFC-ART

(f) 15-d input domain

Figure 6: Test case generation times for FSCS-ART, LimBal-KDFC and SWFC-ART, for different input domain dimensions

trend is also present in the 5-d input domain, except when
θ = 0.002, for which the p-value for FSCS-ART and SWFC-
ART is 0.0038 — although the effect size is is still less than 0.5
(0.0205) — which means that there is insufficient evidence to
conclude whether or not the F-ratios are different. In the 10-
d input domain, the p-values are less than 0.05, meaning that
the F-ratios are significantly different, with SWFC-ART out-
performing FSCS-ART. However, the effect sizes are still far
less than 0.05, which means that even if the samples are dif-
ferent, there is still only a negligible effect on the F-ratios. In
summary, there was insufficient evidence to reject H0 and thus
we conclude that the F-ratio results for all three methods are
similar for the block failure pattern.

Table 4 shows the strip failure pattern simulation results. For
all dimensions, the p-values are greater than 0.05 and the effect
sizes are less than 0.1, which again means that there is insuffi-

cient evidence to reject the null hypothesis.
The point failure pattern simulation results, shown in Table

5, present similar trends to those seen in the block pattern re-
sults. In low dimensional input domains (d ≤ 5), the p-values
and effect sizes show that the F-ratios of all three methods are
similar. In the 10-d input domain, the p-values show a sig-
nificant difference, especially between SWFC-ART and FSCS-
ART. The mean SWFC-ART F-ratios are better than those of
FSCS-ART, and significantly better than LimBal-KDFC when
θ=0.01, 0.005 and 0.001; LimBal-KDFC outperforms SWFC-
ART when θ=0.0002 and 0.0001. However, the effect size
values are not large enough to allow strong conclusions to be
drawn.

In summary, we can conclude that the F-ratios of all three
methods are similar, for all the failure rates, failure patterns,
and input dimensions under study. Furthermore, the ANNS

13

0

20

40

60

80

100

120

140

160

2D 3D 4D 5D 10D 15D

Ti
m

e
(m

s)

Number of Dimensions

FSCS

LimBal-KDFC

HNSWSWFC-ART

(a) n = 500

0

100

200

300

400

500

600

700

2D 3D 4D 5D 10D 15D

Ti
m

e
(m

s)

Number of Dimensions

FSCS

LimBal-KDFC

HNSWSWFC-ART

(b) n = 1000

0

500

1000

1500

2000

2500

2D 3D 4D 5D 10D 15D

Ti
m

e
(m

s)

Number of Dimensions

FSCS

LimBal-KDFC

HNSWSWFC-ART

(c) n = 2000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2D 3D 4D 5D 10D 15D

Ti
m

e
(m

s)

Number of Dimensions

FSCS

LimBal-KDFC

HNSWSWFC-ART

(d) n = 5000

0

5000

10000

15000

20000

25000

30000

35000

2D 3D 4D 5D 10D 15D

Ti
m

e
(m

s)

Number of Dimensions

FSCS

LimBal-KDFC

HNSWSWFC-ART

(e) n = 10, 000

0

10000

20000

30000

40000

50000

60000

70000

80000

2D 3D 4D 5D 10D 15D

Ti
m

e
(m

s)

Number of Dimensions

FSCS

LimBal-KDFC

HNSWSWFC-ART

(f) n = 15, 000

0

20000

40000

60000

80000

100000

120000

140000

160000

2D 3D 4D 5D 10D 15D

Ti
m

e
(m

s)

Number of Dimensions

FSCS

LimBal-KDFC

HNSWSWFC-ART

(g) n = 20, 000

0

20000

40000

60000

80000

100000

120000

140000

160000

2D 3D 4D 5D 10D 15D

Ti
m

e
(m

s)

Number of Dimensions

FSCS

LimBal-KDFC

HNSW

Expon. (LimBal-KDFC)

Linear (HNSW)(SWFC-ART)

SWFC-ART

(h) Trend-lines for n = 20, 000

Figure 7: Time taken to generate a fixed number of test cases, in various dimensions

strategies (LimBal-KDFC and SWFC-ART) performed better
than the exact NNS of FSCS-ART in high dimensional input
spaces. The ANNS strategies employed by LimBal-KDFC and
SWFC-ART were also significantly different from each other in

high dimensions, while showing similar failure-detection effec-
tiveness.

14

Table 3: F-ratios, Wilcoxon Rank-Sum Tests, and Effect Size Analyses for FSCS-ART, LimBal-KDFC and SWFC-ART for Block Failure
Patterns

d θ
F-ratio (%)

FSCS-
ART vs

SWFC-
ART

LimBal-
KDFC vs

SWFC-
ART

FSCS-ART LimBal-KDFC SWFC-ART p-value effect size p-value effect size

2

0.0100 69.68 67.34 68.66 0.2724 0.0078 0.0236 0.0160
0.0050 66.08 66.15 66.86 0.3867 0.0061 0.5118 0.0046
0.0020 64.08 65.21 64.51 0.7632 0.0021 0.2016 0.0090
0.0010 63.80 63.85 64.29 0.5442 0.0043 0.4965 0.0048
0.0005 64.07 64.75 63.21 0.2354 0.0118 0.0444 0.0200
0.0002 64.16 62.79 63.10 0.1556 0.0141 0.8199 0.0022
0.0001 61.53 62.55 62.98 0.2057 0.0126 0.8351 0.0020

3

0.0100 85.75 83.65 85.54 0.6644 0.0031 0.0517 0.0138
0.0050 80.99 80.18 81.82 0.5225 0.0045 0.0816 0.0123
0.0020 76.97 77.65 77.49 0.7567 0.0022 0.3305 0.0069
0.0010 75.46 74.79 75.88 0.2838 0.0076 0.0858 0.0121
0.0005 73.73 73.53 73.88 0.4099 0.0058 0.8224 0.0016
0.0002 72.72 71.45 72.27 0.9138 0.0008 0.2490 0.0082
0.0001 71.36 73.24 71.88 0.8894 0.0014 0.2246 0.0121

4

0.0100 106.86 105.25 106.30 0.2040 0.0090 0.8604 0.0012
0.0050 100.79 98.86 100.37 0.7294 0.0024 0.2443 0.0082
0.0020 94.19 91.87 93.66 0.3998 0.0060 0.1958 0.0091
0.0010 90.99 88.82 90.13 0.8465 0.0014 0.1374 0.0105
0.0005 86.77 86.55 87.78 0.6803 0.0029 0.4614 0.0052
0.0002 84.01 82.83 84.11 0.1276 0.0196 0.6135 0.0051
0.0001 80.34 82.00 83.44 0.0482 0.0255 0.1773 0.0135

5

0.0100 133.93 127.96 129.21 0.0261 0.0157 0.8760 0.0011
0.0050 125.75 118.50 122.12 0.0550 0.0136 0.0916 0.0119
0.0020 116.38 109.38 111.52 0.0038 0.0205 0.0816 0.0123
0.0010 107.97 105.29 105.82 0.1404 0.0104 0.6252 0.0035
0.0005 105.38 98.58 102.45 0.0187 0.0166 0.0124 0.0177
0.0002 100.55 96.54 97.79 0.0146 0.0173 0.5037 0.0047
0.0001 96.49 92.39 94.21 0.0886 0.0120 0.2567 0.0080

10

0.0100 405.86 392.27 350.56 0.0000 0.0738 0.0000 0.0582
0.0050 365.57 339.91 305.96 0.0000 0.0841 0.0000 0.0659
0.0020 313.77 268.07 259.12 0.0000 0.0989 0.0011 0.0324
0.0010 290.71 236.69 227.99 0.0000 0.1105 0.0000 0.0430
0.0005 266.85 203.16 213.68 0.0000 0.0980 0.1833 0.0133
0.0002 242.48 180.95 195.57 0.0000 0.0933 0.0032 0.0295
0.0001 220.75 169.04 180.67 0.0030 0.1381 0.0064 0.0273

5.1.3. Test Case Distribution
Table 6 shows the discrepancy values for 100, 1000 and

10,000 test cases, for all three methods. Three important trends
can be observed:

1. When generating a specific number of test cases in a par-
ticular dimension, there is no significant difference in the
discrepancy values for all three methods. When there is a
difference, the ANNS methods (SWFC-ART and LimBal-
KDFC) are usually better than the exact NNS method
(FSCS-ART), with FSCS-ART only having better discrep-
ancy values three out of 63 times. Hence, it can be con-
cluded that the test case distribution of methods employing
ANNS is at least equal to the exact NNS methods.

2. All test case generation strategies appear to display degra-
dation in distribution with increasing dimensionality of the
input domain: The SWFC-ART discrepancy values, for
example, increase from 0.0562 to 0.2759 from 1-d to 15-
d, for 100 test cases. However, SWFC-ART appears least
affected by the curse of dimensionality [102, 103, 104].

To generate 100 test cases, SWFC-ART shows better dis-
crepancy values in 1, 4, 10, and 15 dimensions; for 1000
test cases, SWFC-ART has better discrepancy in 3, 4, 5,
and 10 dimensions; and for 10,000 test cases, SWFC-ART
has better discrepancy in 3, 4, 10, and 15 dimensions.

3. All methods showed better discrepancy values as the num-

15

Table 4: F-ratios, Wilcoxon Rank-Sum Tests, and Effect Size Analyses for FSCS-ART, LimBal-KDFC and SWFC-ART for Strip Failure
Patterns

d θ
F-ratio (%)

FSCS-
ART vs

SWFC-
ART

LimBal-
KDFC vs

SWFC-
ART

FSCS-ART LimBal-KDFC SWFC-ART p-value effect size p-value effect size

2

0.0100 93.29 91.90 91.59 0.1827 0.0094 0.6709 0.0030
0.0050 94.48 94.25 94.37 0.4042 0.0059 0.7006 0.0027
0.0020 97.85 96.14 97.76 0.6088 0.0036 0.0933 0.0119
0.0010 98.25 99.85 96.85 0.4100 0.0058 0.0296 0.0154
0.0005 98.86 98.34 95.36 0.1472 0.0144 0.5097 0.0065
0.0002 97.62 95.91 101.04 0.4311 0.0078 0.2896 0.0105
0.0001 100.38 101.53 98.21 0.4917 0.0068 0.1760 0.0135

3

0.0100 97.01 97.84 96.53 0.5924 0.0038 0.7784 0.0020
0.0050 98.09 98.65 98.96 0.6399 0.0033 0.7847 0.0019
0.0020 99.63 99.64 98.83 0.9175 0.0007 0.8003 0.0018
0.0010 99.94 98.92 99.45 0.5357 0.0044 0.5505 0.0042
0.0005 98.99 99.93 99.92 0.5154 0.0046 0.4547 0.0053
0.0002 99.23 100.86 98.82 0.6649 0.0031 0.0176 0.0168
0.0001 101.24 101.31 101.16 0.8457 0.0019 0.5195 0.0064

4

0.0100 99.74 98.96 101.09 0.1633 0.0099 0.0233 0.0160
0.0050 99.62 99.23 99.86 0.9521 0.0004 0.2178 0.0087
0.0020 98.52 100.58 100.78 0.0752 0.0126 0.3637 0.0064
0.0010 98.40 99.93 99.99 0.7849 0.0019 0.8062 0.0017
0.0005 99.87 100.22 99.91 0.4659 0.0052 0.6741 0.0030
0.0002 98.68 101.92 98.98 0.4159 0.0105 0.0936 0.0168
0.0001 101.15 99.39 97.10 0.1709 0.0176 0.0658 0.0184

5

0.0100 100.48 98.75 101.88 0.2224 0.0086 0.0512 0.0138
0.0050 99.68 99.87 99.77 0.8492 0.0013 0.4507 0.0053
0.0020 99.41 98.36 100.22 0.4515 0.0053 0.0414 0.0144
0.0010 98.66 100.89 100.55 0.3531 0.0066 0.9837 0.0001
0.0005 100.96 99.71 98.77 0.2659 0.0079 0.7164 0.0026
0.0002 100.02 99.17 99.01 0.3432 0.0067 0.9036 0.0009
0.0001 99.26 98.57 100.08 0.8683 0.0017 0.3254 0.0098

10

0.0100 99.26 101.28 103.13 0.2442 0.0116 0.0966 0.0166
0.0050 102.04 101.12 101.21 0.9038 0.0012 0.1216 0.0154
0.0020 99.38 97.64 100.69 0.6301 0.0048 0.3151 0.0100
0.0010 94.90 101.24 96.10 0.2681 0.0143 0.0621 0.0187
0.0005 100.31 101.25 100.19 0.7399 0.0033 0.3629 0.0090
0.0002 100.52 100.60 101.03 0.2239 0.0157 0.9277 0.0009
0.0001 101.70 99.68 99.24 0.6137 0.0331 0.6475 0.0046

ber of generated test cases increased.

5.2. Experiments with Real-life Programs

5.2.1. Computational Efficiency
The time taken to test a program is divided into two parts:

the test case generation time (TG) and the execution time (TE).
When testing the real-life programs, test cases were incremen-
tally generated and executed until a failure was revealed.

As can be seen in Table 7, the TE values for all the programs
under study were far less than the TG values, with the TE results
for all methods being comparable. TG is, therefore, the main
time cost for FSCS-ART, and any reduction in TG should have a

positive impact on FSCS-ART efficiency, especially when TE <
TG.

SWFC-ART has significantly lower TG results than FSCS-
ART for all the programs except tanh, with results for the pro-
grams airy, period, pntTrianglePos, and twoLinesPos being par-
ticularly dramatic (reductions of about 90%). SWFC-ART out-
performs FSCS-ART by 80-90% for the programs asinh, bino-
mial, matrixProcessor, java.util.Arrays, line, tcas, select, and
cel; and 70-80% for complex, triangle, CalDay, pntLinePos,
plgndr, and golden. Overall, SWFC-ART reduced the FSCS-
ART TG by more than 50% for all the programs under study
except bessj, bessj0 and tanh — where the performance im-
provement was 29%, 8% and -34%, respectively.

16

Table 5: F-ratios, Wilcoxon Rank-Sum Tests, and Effect Size Analyses for FSCS-ART, LimBal-KDFC and SWFC-ART for Point Failure
Patterns

d θ
F-ratio (%)

FSCS-
ART vs

SWFC-
ART

LimBal-
KDFC vs

SWFC-
ART

FSCS-ART LimBal-KDFC SWFC-ART p-value effect size p-value effect size

2

0.0100 99.18 99.62 103.04 0.0054 0.0197 0.0280 0.0155
0.0050 100.10 99.44 99.19 0.5853 0.0039 0.8042 0.0017
0.0020 96.31 98.37 97.68 0.3614 0.0065 0.8473 0.0013
0.0010 97.79 98.38 97.75 0.4763 0.0050 0.5360 0.0043
0.0005 98.31 96.50 96.46 0.6352 0.0047 0.7385 0.0033
0.0002 94.88 95.60 94.41 0.7026 0.0038 0.4861 0.0069
0.0001 95.67 97.01 96.10 0.9466 0.0006 0.4030 0.0083

3

0.0100 112.00 112.25 111.65 0.6711 0.0030 0.5859 0.0039
0.0050 106.91 107.81 108.71 0.4195 0.0057 0.9024 0.0009
0.0020 105.68 104.67 104.63 0.3997 0.0060 0.8001 0.0018
0.0010 102.32 102.37 102.19 0.6468 0.0032 0.8468 0.0014
0.0005 101.63 101.58 100.29 0.3700 0.0063 0.5001 0.0048
0.0002 99.26 101.21 99.65 0.6180 0.0035 0.4311 0.0056
0.0001 98.36 97.88 99.24 0.6133 0.0065 0.6882 0.0040

4

0.0100 129.63 127.25 128.92 0.5684 0.0040 0.1229 0.0109
0.0050 125.38 124.26 123.47 0.8625 0.0012 0.8929 0.0010
0.0020 117.24 116.33 116.41 0.5400 0.0043 0.9631 0.0003
0.0010 114.61 113.50 113.83 0.8201 0.0016 0.5857 0.0039
0.0005 107.00 108.62 110.34 0.4013 0.0108 0.6633 0.0044
0.0002 107.79 105.65 105.60 0.4562 0.0096 0.6999 0.0039
0.0001 105.59 106.37 106.20 0.6547 0.0057 0.7695 0.0029

5

0.0100 153.57 150.38 149.39 0.0383 0.0146 0.2678 0.0078
0.0050 145.70 141.07 140.73 0.0062 0.0193 0.8661 0.0012
0.0020 134.72 130.30 130.71 0.0444 0.0142 0.7011 0.0027
0.0010 129.35 126.02 125.73 0.1885 0.0093 0.5049 0.0047
0.0005 124.58 121.15 122.53 0.0752 0.0126 0.5975 0.0037
0.0002 119.99 114.77 119.38 0.2236 0.0086 0.0620 0.0132
0.0001 115.45 111.16 114.53 0.6723 0.0054 0.0952 0.0167

10

0.0100 252.49 247.17 237.79 0.7246 0.0045 0.3984 0.0084
0.0050 278.97 271.20 244.12 0.0000 0.0586 0.0000 0.0494
0.0020 292.82 265.93 240.21 0.0000 0.0852 0.0000 0.0641
0.0010 291.09 244.76 236.16 0.0000 0.0974 0.0038 0.0289
0.0005 272.80 233.53 227.46 0.0000 0.0840 0.0441 0.0201
0.0002 242.80 206.08 209.57 0.0000 0.1109 0.6922 0.0040
0.0001 236.35 191.35 192.74 0.0000 0.0194 0.5468 0.0060

Table 6: Discrepancy in Various Dimensions

Test Cases Method Discrepancy
1-d 2-d 3-d 4-d 5-d 10-d 15-d

100
FSCS-ART 0.0750 0.1393 0.2159 0.2697 0.3112 0.3135 0.3108

LimBal-KDFC 0.0628 0.1295 0.2250 0.2856 0.3138 0.3070 0.2886
SWFC-ART 0.0562 0.1359 0.2420 0.2652 0.3206 0.2942 0.2759

1000
FSCS-ART 0.0181 0.0381 0.1036 0.1620 0.1899 0.2228 0.2090

LimBal-KDFC 0.0163 0.0347 0.0961 0.1592 0.1884 0.2140 0.2055
SWFC-ART 0.0168 0.0355 0.0930 0.1515 0.1739 0.2010 0.2106

10,000
FSCS-ART 0.0084 0.0163 0.0574 0.1091 0.1534 0.1987 0.1889

LimBal-KDFC 0.0085 0.0133 0.0560 0.1098 0.1385 0.1883 0.1859
SWFC-ART 0.0089 0.0151 0.0525 0.1033 0.1388 0.1795 0.1623

17

Table 7: Test Case Generation Time and Execution Time for Detecting Failures in the 23 Subject Programs

Program
d

TG (ms) TE (ms)

FSCS-ART
LimBal-
KDFC

SWFC-
ART FSCS-ART

LimBal-
KDFC

SWFC-
ART

bessj0 1 22.14 4.16 20.33 1.47 1.36 1.45
airy 1 86.78 10.01 2.23 2.32 1.96 2.23
asinh 1 3.8e+9 9.5e+7 4.6e+8 3e+6 2e+6 2e+6
erfcc 1 129.65 12.08 57.40 4.69 3.99 4.43
probks 1 270.41 19.87 90.66 78.41 76.93 78.64
tanh 1 13.59 3.61 18.22 1.44 1.33 1.67
bessj 2 34.61 5.56 24.24 3.70 3.60 3.76
gammq 2 229.95 16.60 71.80 5.26 4.21 4.72
Sncndn 2 87.48 10.11 42.29 2.86 2.28 2.63
binomial 2 4.1e+9 1.3e+8 4.9e+8 1.4e+7 1.4e+7 1.4e+7
plgndr 3 651.81 31.86 136.44 21.34 18.11 19.14
golden 3 784.13 51.98 160.40 25.43 23.47 24.27
cel 4 702.66 39.14 139.56 9.63 7.41 8.09
el2 4 157.08 29.26 66.21 4.48 3.91 4.28
period 4 3.9e+9 1.3e+8 4.5e+8 1.0e+7 1.0e+7 1.0e+7
calDay 5 496.08 51.18 120.65 10.55 10.24 10.68
complex 6 597.86 150.12 155.63 0.75 0.61 0.62
pntLinePos 6 968.20 206.68 209.48 0.40 0.24 0.27
triangle 6 774.64 179.19 191.10 0.86 0.52 0.52
line 8 5097.56 1311.34 656.25 0.75 0.52 0.48
pntTrianglePos 8 15699.36 2449.96 1311.27 6.94 4.16 3.82
twoLinesPos 8 42078.38 4656.06 2403.85 8.24 4.31 4.08
nearestDistance 10 668.51 552.93 232.98 0.66 0.61 0.56
calGCD 10 522.59 440.67 179.26 3.29 3.33 3.31
select 11 4508.39 2333.18 744.19 6.25 5.75 5.01
tcas 12 2310.45 92.20 348.51 1.46 0.95 0.90
matrixProcessor 12 1.5e+10 7.0e+9 1.8e+9 8.0e+7 8.0e+7 7.0e+7
java.util.Arrays 15 1.9e+10 7.6e+9 2.4e+9 2.0e+8 2.0e+8 2.0e+8

SWFC-ART performs a little worse than LimBal-KDFC in
(programs with) low dimensions, with five or less input param-
eters, but has better performance in the high dimensional pro-
grams (d > 5) — matrixProcessor, java.util.Arrays, select, cal-
GCD, nearestDistance, line, twoLinesPos, and PntTrianglePos
where SWFC-ART outperforms LimBalKDFC by 73%, 68%,
68%, 59%, 57%, 49%, 48%, and 46%, respectively. SWFC-
ART can also sometimes outperform LimBal-KDFC in low di-
mensional programs (airy); and LimBal-KDFC can sometimes
perform better than SWFC-ART in some high dimensional pro-
grams (triangle, and tcas). For complex and pntLinePos, both
methods show similar TG.

In summary, the results of the experimental studies with real-
life programs are consistent with the simulations: Both LimBal-
KDFC and SWFC-ART outperform FSCS-ART in terms of
computational efficiency, and SWFC-ART remains consistent
in high dimensional programs.

5.2.2. Failure-detection effectiveness
Table 8 presents the F-measure effectiveness results, show-

ing that, for the 28 programs, FSCS-ART, LimBal-KDFC, and
SWFC-ART have the best results in 8, 12, and 8 programs, re-

spectively.
Comparing FSCS-ART and SWFC-ART: The Wilcoxon

rank-sum tests for the FSCS-ART and SWFC-ART F-measure
data have p-values greater than 0.05 for all subject programs,
except twoLinesPos, with extremely low effect sizes — al-
though the p-value for twoLinesPos is 0.0199, the effect size
is much less than 0.1. Moreover, for twoLinesPos, the mean F-
measure of SWFC-ART is 7613.96 while that for FSCS-ART is
8177.49. The F-measure results for sncndn are very similar for
both approaches; for 13 programs (airy, probks, gammq, bino-
mial, golden, el2, calDay, triangle, line, nearestDistance, tcas,
matrixProcessor, and java.util.Arrays), FSCS-ART has better
results than SWFC-ART; and for the remaining 15 programs
(bessj0, asinh, erfcc, tanh, bessj, plgndr, cel, period, complex,
pntLinePos, pntTrianglePos, twoLinesPos, calGCD and select),
SWFC-ART has the better performance. However, the p-value
and effect size analyses are such that it is not statistically clear
that either method does actually perform better than the other.

Comparing LimBal-KDFC and SWFC-ART: The p-values
for the comparisons of the LimBal-KDFC and SWFC-ART F-
measure results are all greater than 0.05 (except for twoLine-
sPos and java.util.Arrays), and all effect sizes are much less

18

Table 8: Wilcoxon Rank-Sum Test and Effect Size Analyses of F-measure of FSCS-ART, LimBal-KDFC, and SWFC-ART for Subject Programs

Program d
F-measure

FSCS-ART vs
SWFC-ART

LimBal-
KDFC vs

SWFC-
ART

FSCS-
ART

LimBal-
KDFC

SWFC-
ART p-value effect size p-value effect size

bessj0 1 444.46 448.53 440.48 0.5161 0.0065 0.2342 0.0119
airy 1 789.54 806.50 807.18 0.1045 0.0162 0.6903 0.0040
asinh 1 5689 5612 5583 0.0773 0.0177 0.5439 0.0061
erfcc 1 1037.81 1024.31 1032.24 0.3863 0.0087 0.8743 0.0016
probks 1 1453.62 1460.71 1456.30 0.9354 0.0008 0.7251 0.0035
tanh 1 313.05 311.31 310.70 0.5812 0.0055 0.7955 0.0026
bessj 2 454.54 440.02 442.08 0.1974 0.0129 0.3242 0.0099
gammq 2 1086.95 1045.17 1097.29 0.9064 0.0012 0.1866 0.0132
sncndn 2 631.45 631.47 631.23 0.4489 0.0076 0.8246 0.0022
binomial 2 5089 5243 5166 0.6713 0.0042 0.5927 0.0053
plgndr 3 1618.00 1606.05 1608.47 0.7092 0.0037 0.8469 0.0019
golden 3 1802.60 1808.43 1804.03 0.8994 0.0013 0.8369 0.0021
cel 4 1547.32 1571.71 1542.93 0.6888 0.0040 0.1664 0.0138
el2 4 721.55 724.94 728.06 0.8781 0.0015 0.3901 0.0086
period 4 29794 30307 29765 0.5266 0.0091 0.0321 0.0309
calDay 5 1259.38 1314.12 1280.12 0.8884 0.0014 0.0768 0.0177
complex 6 1223.95 1214.50 1195.77 0.2619 0.0112 0.2391 0.0118
pntLinePos 6 1503.62 1462.88 1477.83 0.9587 0.0005 0.3696 0.0090
triangle 6 1350.33 1389.29 1379.52 0.0783 0.0176 0.6655 0.0043
line 8 3370.27 3326.32 3385.39 0.3786 0.0088 0.3627 0.0091
pntTrianglePos 8 4713.73 4238.11 4657.62 0.4050 0.0107 0.0593 0.0242
twoLinesPos 8 8177.49 7009.96 7613.29 0.0199 0.0301 0.0298 0.0280
nearestDistance 10 1934.32 2015.68 2065.56 0.0716 0.0233 0.3113 0.0131
calGCD 10 1035.47 1023.50 1003.32 0.4538 0.0097 0.6892 0.0052
select 11 5583.22 5174.07 5432.77 0.7461 0.0042 0.0506 0.0252
tcas 12 1681.02 1642.95 1736.33 0.3609 0.0118 0.1526 0.0185
matrixProcessor 12 5003 4978 5152 0.2663 0.0111 0.4101 0.0082
java.util.Arrays 15 10108 9866 10313 0.0994 0.0164 0.0198 0.0233

than 0.1. This means that the failure-detection effectiveness of
both methods is similar. For twoLinesPos and java.util.Arrays,
although the p-value is significant, the effect size is not large
enough for any conclusion to be drawn.

In summary, the results from the studies with real-life pro-
grams again align with those of the simulations: There was in-
sufficient evidence to reject the null hypothesis, and thus we
conclude that there are no significant differences among the ob-
served F-measures of all the methods — the failure-finding ef-
fectiveness of all methods is similar.

5.3. Discussion

In this section, we summarize our results by giving answers
to the research questions. We also discuss the asymptotic com-
plexities of the methods.

5.3.1. RQ1
Efficiency Tier-1 (Scalability): Our studies have shown that,

as the the number of executed tests increases, FSCS-ART incurs
considerable time overheads, but LimBal-KDFC and SWFC-
ART perform significantly better. This can also be understood

through a theoretical analysis of the complexities of the algo-
rithms: The FSCS-ART time complexity is in quadratic relation
with n, but both LimBal-KDFC and SWFC-ART are in a log-
linear relation. Because real-life software can typically have
very low failure rates [20], it may be necessary to generate and
execute many test cases before finding a first failure — LimBal-
KDFC and SWFC-ART, therefore, would perform much faster
than FSCS-ART in such situations.

Efficiency Tier-2 (Consistency): Our studies have also shown
that all three methods take increasing amounts of time to gener-
ate a fixed number of test cases in increasing dimensional input
spaces. When there were more than five SUT input parame-
ters, the curse of dimensionality [102, 103, 104] started to im-
pact on the performance of LimBal-KDFC and FSCS-ART, but
SWFC-ART retained consistency (LimBal-KDFC was the least
consistent). Again, this can be understood from the theoreti-
cal complexity analysis, where LimBal-KDFC has quadratic,
while FSCS-ART and SWFC-ART have a linear dimensional
dependence on their time complexities. As real-life programs
typically have high-dimensional input domains (many program
input parameters) [41], SWFC-ART would perform much faster

19

than the other two methods in such situations.

Answer to RQ1: FSCS-ART has a quadratic time complexity
relation with the number of executed tests (n), and LimBal-
KDFC has a quadratic time complexity relation with the
dimensionality (d) of the SUT. Because real-life programs
may often have low failure rates and high dimensional in-
put spaces, neither FSCS-ART nor LimBal-KDFC solve the
double-tier efficiency problem. In contrast, SWFC-ART’s
consistency and scalability, regardless of n and d, make it
the preferred method.

5.3.2. RQ2
The results show that the failure-detection effectiveness of

SWFC-ART is similar to that of FSCS-ART and LimBal-
KDFC. No significant deterioration in the failure-detection ef-
fectiveness was observed — the null hypotensis (H0) could not
be rejected.

We also found that the introduction of ANNS strategies de-
livered similar failure-detection effectiveness to NNS, while
significantly reducing the computational overhead. Although
LimBal-KDFC implements the ANNS through a limited back-
tracking strategy and SWFC-ART maintains a Delaunay graph
at its bottom layer, both ANNS strategies have similar failure-
detection effectiveness.

Answer to RQ2: SWFC-ART employs a unique ANNS strat-
egy and its failure-detection effectiveness is comparable to
that of the state-of-the-art method, KDFC-ART.

5.3.3. RQ3
The discrepancy values for SWFC-ART in the experiments

were usually better than those for FSCS-ART and LimBal-
KDFC, with no observed significant deterioration in even-
spreading. We can therefore conclude that, although SWFC-
ART incorporates an ANNS, its test case distribution remains
comparable to that of the state-of-the-art method, KDFC-ART.

Answer to RQ3: SWFC-ART distributes test cases as evenly
as the state-of-the-art method, KDFC-ART, even though it
employs an ANNS strategy.

6. Threats to Validity

This section discusses some potential limitations and threats
to the validity of our work.

6.1. Construct Validity

Construct validity refers to how well the evaluation mea-
sures support the investigation of the research questions [105].
We used TG and TE to evaluate the efficiency of the methods
(RQ1). Although F-time (the sum of the generation, execution,
and evaluation times for a test case) [106] has also been used
in some ART studies, reporting the component times separately
appears to be the preferred option when evaluating FSCS-ART
computational overhead reduction strategies [107, 108, 46] —

this removes ambiguity in scenarios where a method may have
less TG but more TE .

We measured the failure-detection effectiveness (RQ2) us-
ing the F-measure (or F-ratio). Alternative metrics do exist,
including the P-measure (the probability of detecting at least
one failure) and E-measure (the expected number of failures de-
tected) [27, 109, 82]. However, both P-measure and E-measure
assume that the size of the test set is known in advance. The re-
search in this paper involves the incremental generation of test
cases by ART, and so the F-measure (or F-ratio) is the preferred
measure for such comparisons. Nevertheless, we look forward
to exploring alternative evaluation metrics in our future work.

In addition to discrepancy, the dispersion and edge-to-center
ratio [80, 110] have also been used to measure test case distribu-
tion (RQ3). However, the edge-to-center ratio metric is rarely
used, and low discrepancy corresponds to lower dispersion (and
vice versa). Given its simplicity and ease of implementation,
we are confident in our choice of discrepancy as the test case
distribution metric in our studies.

6.2. External Validity
External validity refers to how generalizable the experimen-

tal results are for other scenarios. We used FSCS-ART and
LimBal-KDFC as the baseline comparison methods — FSCS-
ART was selected due to its failure-detection effectiveness, and
LimBal-KDFC was selected as the state-of-the-art enhance-
ment of FSCS-ART for both low and high dimensional pro-
grams. Although other overhead reduction strategies exist for
FSCS-ART that claim to have “linear-order” time complexity,
most of them have dimension-related exponential time com-
plexity (as discussed in Section 7). Our efficiency comparisons
were performed in up to 15-dimensional input spaces, with up
to 20,000 test cases generated in each. We also used 28 real-
life programs of various sizes and dimensions, more than most
other comparable studies.

The study reported on in this paper only examined numeric
programs, and only used the Euclidean distance to measure the
similarity between test cases. SWFC-ART supports a wide va-
riety of distance metrics, and so we look forward to exploring
its performance with non-numeric programs and other distance
metrics in our future work. Furthermore, because the scope
of this study was to increase the efficiency of the FSCS-ART
method by employing a graph-based approach, the effective-
ness could be increased by integrating SWFC-ART with ex-
isting methods that aim to enhance the effectiveness of FSCS-
ART [111, 112, 113, 114, 115, 116, 117]. In particular, given
their demonstrated potential for increasing the failure-detection
effectiveness without impacting the efficiency, we look forward
to experimenting using the Manhattan distance [118] metric and
Inverted FSCS-ART [114] in our future work.

6.3. Internal Validity
Internal validity refers to confidence in the findings of the

study. We have double-checked and cross-validated the imple-
mented algorithms to ensure that there is no mistake in the ex-
perimental setup. The methods were rigorously evaluated un-
der different settings — dimensions, failure patterns, number of

20

generated test cases, real-life programs — and statistical tests
were performed on the results. The number of trials (sam-
ple sizes) in the simulations and experiments were significant
enough to achieve the desired confidence level. Overall, we
have confidence in the correctness of our evaluation setup

7. Related Work

This section highlights some related work in ART computa-
tional overhead reduction. Each method discussed is described
according to its approach, time complexity, failure-detection ef-
fectiveness, and the effect of dimensionality on the method’s
efficiency.

7.1. FSCS-ART overhead reduction methods

7.1.1. C.G. FSCS-ART
One of the earliest attempts to reduce FSCS-ART compu-

tational overheads involved a Center-of-Gravity (C.G.) con-
straint [119]. This method reduces FSCS-ART distance com-
putations by selecting a test case from the candidate set such
that the resulting C.G. is as close as possible to the input do-
main’s C.G. Although this method was reported to reduce time
overheads by 74% in a small experimental study with a real-life
program, it still faces quadratic time complexity. Moreover, the
method is unable to maintain the failure-finding effectiveness
of the original FSCS-ART, with drops of up to 11% reported in
its F-measure values.

7.1.2. D-FSCS-ART
Descending distance FSCS-ART (D-FSCS-ART) [120]

aimed to reduce the number of distance computations of FSCS-
ART by sorting the elements of E according to their x-
coordinates, and recording Lastmin (the last maximum value of
the shortest distance). For each new candidate test case, only
the x-distance (the difference in x-coordinates) is calculated.
To calculate the maximum value of the shortest distances, E
is split in half and the direction of distance calculation is deter-
mined by the x-distance. In this way, the number of distance
calculations is reduced — in 4-d when θ = 0.001, for example,
D-FSCS-ART achieved an 18% reduction in distance calcula-
tions. However, the efficiency improvement was not discussed
in terms of F-time or TG (Section 4.2), and it was not clear
whether or not the reduction in distance calculations would im-
pact the overall efficiency. Furthermore, it was also not clear
whether or not the reduction in distance calculations preserved
the failure-detection effectiveness of the original FSCS-ART.

7.1.3. FSCS-ART by Temporal Forgetting
FSCS-ART by temporal forgetting has three types: complete

restart, random forgetting, and consecutive retention [121].
Complete restart simply resets the algorithm after a certain
number of test case executions, determined by k, the “memory
parameter”. Random forgetting maintains a fixed-sized (k) exe-
cuted test case set by randomly filtering out n-k executed tests.
Consecutive retention limits distance computations to only the
k most-recently-executed test cases. While temporal forgetting

may have “linear-order” complexity regardless of the SUT di-
mensionality, it can suffer from severe degradation in failure-
detection effectiveness. As reported, larger values for the mem-
ory parameter provide better effectiveness, but lower efficiency.
Selection of an appropriate value for the memory parameter,
therefore, remains challenging.

7.1.4. FSCS-ART by Distance-aware Forgetting

The original forgetting strategy may not make much use of
information about forgotten test cases, which led to the devel-
opment of Distance-aware Forgetting FSCS-ART (DF-FSCS-
ART) [108], which uses executed test case spatial informa-
tion. DF-FSCS-ART uses grid partitioning, with test cases lo-
cated within the neighboring partition of a cell considered to be
“in-sight”, and those outside the partition considered “out-of-
sight”, and thus forgotten.

DF-FSCS-ART claims to preserve the FSCS-ART failure-
detection ability, but it has a complexity of O(τ · 3d · k · n) —
where τ, d, k, n are pre-set constants for the dynamic partition-
ing, the input domain dimensionality, the candidate set size, and
the executed set size, respectively. Although DF-FSCS-ART
can generate test cases in linear-order, it still has exponential
complexity in terms of dimensionality. As we saw in our exper-
imental studies (Section 4), even though LimBal-KDFC had a
quadratic complexity relation with the SUT dimension (in the
worst-case), the performance was severely impacted by the di-
mensionality. As most real-life software can have high dimen-
sionality, methods that have exponential complexity with re-
spect to the SUT dimensionality may not be practical.

7.1.5. KDFC-ART

There are three variants of the recently proposed KD-tree
approach to FSCS-ART [46]: Naive-KDFC; SemiBal-KDFC;
and LimBal-KDFC. LimBal-KDFC is an efficient ART algo-
rithm that attempts to resolve the dimensionality-related FSCS-
ART overhead problem while maintaining comparable failure-
detection effectiveness. Although LimBal-KDFC has a log-
linear time complexity with respect to the number of gener-
ated test cases — which is a little worse than linear-order al-
gorithms — it only has an O (d2) relation with the SUT dimen-
sionality in its worst-case, which is far better than the O (3d)
for DF-FSCS-ART (Section 7.1.4). LimBal-KDFC also sup-
ports incremental generation of test cases, an advantage over
RBCVT-Fast (Section 7.2.1). Both LimBal-KDFC and SWFC-
ART use sophisticated data structures to store the previously ex-
ecuted, non-failure-causing test cases, but the actual structures
are very different: While LimBal-KDFC uses a KD-tree, which
is efficient and straightforward, but delivers inconsistent perfor-
mance in high dimensional input spaces [56], SWFC-ART uses
a graph-based data structure that is explicitly designed for high
dimensional input domains. As discussed in Section 5, LimBal-
KDFC appeared to become inconsistent when the input domain
dimensionality went above five, but SWFC-ART continued to
perform consistently regardless of the number of dimensions.

21

7.2. Other efficient ART methods
7.2.1. RBCVT-Fast

RBCVT-Fast [122] combines a search-based algorithm with
Voronoi region centroids to reduce ART overheads. Although
the method has linear-order time complexity and comparable
failure-detection effectiveness, the size of the executed test set
(|E|) must be specified in advance, which is usually impossible
(because |E| depends on the SUT failure rate, which is unknown
before testing). Furthermore, RBCVT-Fast faces a potential
risk for high dimensional programs: Because it makes use of a
parameter (α) to control the probability of test cases generated
within the “random border” — an imaginary border outside the
real input domain borders — if an appropriate value for the pa-
rameter is not chosen, the effectiveness may suffer [46, 108].

7.2.2. ART by Partitioning
Although ART by Bisection and Random Partition [123] re-

port complexities of O (n) and O (n log n), respectively, they
fail to preserve the failure-detection effectiveness of the orig-
inal FSCS-ART [124]. Chow et al. [81] proposed a divide-and-
conquer approach by partitioning the input domain into sub-
domains and using FSCS-ART to generate a fixed number of
test cases in each sub-domain. When the number of test cases
in a partition reaches a certain threshold, then the algorithm
further partitions the sub-domains. However, determining the
threshold value is a potential limitation of the method.

ARTsum [125] is another linear-order algorithm, based on
category-choice partitioning [126]. However, ARTsum is
mainly used for non-numeric programs, whereas our work is
primarily focused on numeric programs.

7.2.3. MART
Mirror Adaptive Random Testing (MART) [127] is an ART

overhead reduction strategy that leverages the relative compu-
tational cheapness of mapping functions (compared to test case
generation). One SUT input domain partition is selected as
the source domain, where the ART method is implemented.
Test cases generated in the source domain are then systemat-
ically mapped into the remaining partitions (mirror domains).
Dynamic MART (D-MART) [107] incorporated a “divide-and-
conquer” approach, but suffered from mirroring deficiency be-
cause only one mirror test case was generated at a time. E-
MART [128] added flexibility to the mirror generation option
of D-MART using a smart mirror allocation scheme.

Although mirror-based ART techniques are efficient, their
complexities depend on the adopted ART algorithm (in the
source domain), which may be quadratic — MART combined
with FSCS-ART, for example, has a quadratic complexity of
O (n2/m2). Possibly because the “edge-effect” [129] in the
source domain will be inherited in all mirror domains, MART
failure-detection has been found to be inferior to FSCS-ART.
Furthermore, preparing the initial MART testing setup, includ-
ing selection of the partitioning scheme, remains an open issue.
Finally, even the most recent MART enhancements (E-MART
and D-MART, for example) still have an exponential time com-
plexity relationship with the dimensions of the SUT. SWFC-
ART differs from MART and other partition-based approaches:

Instead of partitioning the SUT input domain, it partitions the
executed test cases into a unique graph-based data structure for
efficient NNS queries.

8. Conclusion and Future Work

FSCS-ART is a well-known ART method that has been
widely researched and applied to test real-life programs of vary-
ing input types. Unfortunately, it faces severe computational
issues relating to the growth in number of executed test cases
and the dimensionality of the SUT’s input domain: These is-
sues have been referred to as the double-tier efficiency prob-
lem. Some existing FSCS-ART efficiency enhancement meth-
ods may only solve one-tier of the problem, by reducing time
complexity related to the number of test cases generated. How-
ever, these methods can have quadratic (Section 7.1.5) or expo-
nential (Section 7.1.4) time complexity with respect to the di-
mensions of the SUT. Although a method may perform well in
low dimensional input domains, it may experience severe per-
formance degradation in higher dimensions. Because real-life
programs often have both many dimensions, and very low fail-
ure rates, addressing only the complexity related to the number
of test cases can only solve one aspect of the efficiency problem.

Our method, SWFC-ART, comprehensively solves the
FSCS-ART efficiency problems by using a hierarchical navi-
gable small world graph (HNSWG) to store the executed, non-
failure-causing test cases, thus improving the nearest neighbor
search (NNS) efficiency. SWFC-ART reduces the FSCS-ART
complexity from O (n2) to O (n · log n), with a negligible com-
putational impact when increasing the dimensionality. SWFC-
ART preserves the original FSCS-ART failure-detection effec-
tiveness, and delivers efficient incremental test case generation.

As this work addresses the FSCS-ART double-tier efficiency
problem, there is great potential for many other interesting and
promising research directions.

The primary requirement for the application of any ART
method to non-numeric programs is the capability to support
a suitable similarity measure [28]. The underlying HNSWG
structure of SWFC-ART fully supports a wide variety of nu-
meric and non-numeric distance (similarity) metrics5, includ-
ing: BrayCurtis dissimilarity; Canberra distance; correlation
distance; cosine distance; Euclidean distance; inner product;
and Manhattan distance [130]. Non-numeric programs, includ-
ing object-oriented (OO) software, can also be tested: Our pro-
posed method can be combined with ART methods designed
explicitly for OO programs, such as ARTOO [40]. However,
further research will be necessary to enable correct formulat-
ing of the framework. Empirical studies will also be needed
to analyze the proposed method’s performance against other
non-numeric ART methods. Even for numeric programs, we
will examine employing alternatives to the Euclidean distance
in SWFC-ART: Such alternatives may result in better effective-
ness while maintaining similar efficiency [118].

5https://github.com/jelmerk/hnswlib

22

Although SWFC-ART shows similar failure-detection effec-
tiveness to FSCS-ART, it will be interesting to examine com-
bining it with other failure-detection enhancement methods for
FSCS-ART [111, 112, 113, 114, 115, 116, 117]. Similarly,
using SWFC-ART in source domains of MART [127] may fur-
ther boost its efficiency. The use of HNSWGs in ART strategies
other than FSCS-ART is also worth exploring, and will also
form part of our future work.

Finally, other ANNS approaches that have proven their effi-
ciency in similarity search applications, including vector quan-
tization [131, 132] and hashing techniques [42], will also be ex-
amined for applicability to ART. Furthermore, boosting ANNS
by exploiting the capabilities of modern hardware, such as us-
ing SIMD [133] and GPUs [134], will also be explored in our
future work.

Acknowledgements

This work is in part supported by the National Natural Sci-
ence Foundation of China, under Grant Nos. 61872167, and
61502205.

References

[1] G. J. Myers, The art of software testing, Wiley New York, 1979.
[2] J. W. Duran, S. Ntafos, A report on random testing, in: 5th International

Conference on Software Engineering, volume 81, IEEE, 1981, pp. 179–
183.

[3] V. D. Agrawal, When to use random testing, IEEE Transactions on
Computers 27 (1978) 1054–1055.

[4] R. Hamlet, J. Maciniak, Random testing. encyclopedia of software en-
gineering, Wiley: New York (1994) 970–978.

[5] J. E. Forrester, B. P. Miller, An empirical study of the robustness of
Windows NT applications using random testing, in: 4th Conference on
USENIX Windows Systems Symposium, volume 4, USENIX Associa-
tion, 2000, pp. 59–68.

[6] J. Regehr, Random testing of interrupt-driven software, in: 5th ACM
International Conference on Embedded Software, ACM, 2005, pp. 290–
298.

[7] H. Bati, L. Giakoumakis, S. Herbert, A. Surna, A genetic approach for
random testing of database systems, in: 33rd international conference
on Very Large Data Bases, VLDB Endowment, 2007, pp. 1243–1251.

[8] D. R. Slutz, Massive stochastic testing of SQL, in: 24th International
Conference on Very Large Data Bases, Morgan Kaufmann Publishers,
1998, pp. 618–622.

[9] W. Muangsiri, S. Takada, Random GUI testing of Android application
using behavioral model, International Journal of Software Engineering
and Knowledge Engineering 27 (2017) 1603–1612.

[10] T. Yoshikawa, K. Shimura, T. Ozawa, Random program generator for
Java JIT compiler test system, in: 3rd International Conference on Qual-
ity Software, IEEE, 2003, pp. 20–23.

[11] C. Pacheco, S. K. Lahiri, T. Ball, Finding errors in .NET with feedback-
directed random testing, in: 2008 international symposium on Software
testing and analysis, ACM, 2008, pp. 87–96.

[12] P. Godefroid, A. Kiezun, M. Y. Levin, Grammar-based whitebox
fuzzing, in: 29th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, ACM, 2008, pp. 206–215.

[13] B. P. Miller, G. Cooksey, F. Moore, An empirical study of the robust-
ness of MacOS applications using random testing, in: 1st international
workshop on Random testing, ACM, 2006, pp. 46–54.

[14] T. Daboczi, I. Kollar, G. Simon, T. Megyeri, Automatic testing of graph-
ical user interfaces, in: 20th IEEE Instrumentation Technology Confer-
ence, volume 1, IEEE, 2003, pp. 441–445.

[15] B. P. Miller, L. Fredriksen, B. So, An empirical study of the reliability
of UNIX utilities, Commun. ACM 33 (1990) 32–44.

[16] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natara-
jan, J. Steidl, Fuzz revisited: A re-examination of the reliability of
UNIX utilities and services, Technical Report, University of Wisconsin–
Madison Department of Computer Sciences, 1995.

[17] J. W. Duran, S. C. Ntafos, An evaluation of random testing, IEEE
Transactions on Software Engineering 10 (1984) 438–444.

[18] T. Y. Chen, F.-C. Kuo, H. Liu, W. E. Wong, Code coverage of adaptive
random testing, IEEE Transactions on Reliability 62 (2013) 226–237.

[19] C. Schneckenburger, J. Mayer, Towards the determination of typical
failure patterns, in: 4th international workshop on Software quality as-
surance: in conjunction with the 6th ESEC/FSE joint meeting, ACM,
2007, pp. 90–93.

[20] A. Arcuri, L. Briand, Adaptive random testing: An illusion of effective-
ness?, in: International Symposium on Software Testing and Analysis,
ACM, 2011, pp. 265–275.

[21] D. Hamlet, Continuity in software systems, SIGSOFT Softw. Eng.
Notes 27 (2002) 196–200.

[22] P. G. Bishop, The variation of software survival time for different opera-
tional input profiles, in: 23rd International Symposium on Fault-Tolerant
Computing, IEEE Computer Society, 1993, pp. 98–107.

[23] F. T. Chan, T. Y. Chen, I. K. Mak, Y. T. Yu, Proportional sampling
strategy: Guidelines for software testing practitioners, Information and
Software Technology 38 (1996) 775–782.

[24] G. B. Finelli, NASA software failure characterization experiments, Re-
liability Engineering & System Safety 32 (1991) 155–169.

[25] P. Ammann, J. Knight, Data diversity: an approach to software fault
tolerance, IEEE Transactions on Computers 37 (1988) 418–425.

[26] L. White, E. Cohen, A domain strategy for computer program testing,
IEEE Transactions on Software Engineering 6 (1980) 247–257.

[27] T. Y. Chen, H. Leung, I. K. Mak, Adaptive random testing, in: Advances
in Computer Science - ASIAN 2004. Higher-Level Decision Making,
Springer, 2005, pp. 320–329.

[28] R. Huang, W. Sun, Y. Xu, H. Chen, D. Towey, X. Xia, A survey on
adaptive random testing, IEEE Transactions on Software Engineering
(2019) 1–35.

[29] J. Chen, H. Ackah-Arthur, P. K. Kudjo, C. Mao, A taxonomic re-
view of adaptive random testing for numeric programs, arXiv preprint
arXiv:1909.10879 (2019).

[30] T. Y. Chen, F.-C. Kuo, R. G. Merkel, T. H. Tse, Adaptive random testing:
The ART of test case diversity, Journal of Systems and Software 83
(2010) 60–66.

[31] J. Mayer, C. Schneckenburger, Statistical analysis and enhancement
of random testing methods also under constrained resources, in: In-
ternational Conference on Software Engineering Research and Practice
& Conference on Programming Languages and Compilers, volume 1,
CSREA Press, 2006, pp. 16–23.

[32] T. Y. Chen, F.-C. Kuo, Z. Q. Zhou, On favourable conditions for adap-
tive random testing, International Journal of Software Engineering and
Knowledge Engineering 17 (2007) 805–825.

[33] T. Y. Chen, F.-C. Kuo, H. Liu, W. E. Wong, Code coverage of adaptive
random testing, IEEE Transactions on Reliability 62 (2013) 226–237.

[34] T. Y. Chen, F.-C. Kuo, H. Liu, W. E. Wong, Does adaptive random
testing deliver a higher confidence than random testing?, in: The 8th
International Conference on Quality Software, IEEE, 2008, pp. 145–
154.

[35] P. M. S. Bueno, M. Jino, W. E. Wong, Diversity oriented test data gen-
eration using metaheuristic search techniques, Inf. Sci. 259 (2014) 490–
509.

[36] T. Y. Chen, R. Merkel, An upper bound on software testing effectiveness,
ACM Trans. Softw. Eng. Methodol. 17 (2008) 16:1–16:27.

[37] M. Yan, L. Wang, A. Fei, ARTDL: Adaptive random testing for deep
learning systems, IEEE Access 8 (2020) 3055–064.

[38] C. Lv, L. Zhang, F. Zeng, J. Zhang, Adaptive random testing for XSS
vulnerability, in: The 26th Asia-Pacific Software Engineering Confer-
ence, IEEE, 2019, pp. 63–69.

[39] L. Zhang, D. Zhang, C. Wang, J. Zhao, Z. Zhang, ART4SQLi: The
ART of SQL injection vulnerability discovery, IEEE Transactions on
Reliability 68 (2019) 1470–1489.

[40] I. Ciupa, A. Leitner, M. Oriol, B. Meyer, ARTOO: adaptive random test-
ing for object-oriented software, in: The 30th international conference
on Software engineering, ACM, 2008, pp. 71–80.

23

[41] Y. Lin, X. Tang, Y. Chen, J. Zhao, A divergence-oriented approach to
adaptive random testing of Java programs, in: 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engineering, IEEE Computer
Society, 2009, pp. 221–232.

[42] P. Indyk, R. Motwani, Approximate nearest neighbors: Towards remov-
ing the curse of dimensionality, in: The 30th Annual ACM Symposium
on Theory of Computing, ACM, 1998, pp. 604–613.

[43] N. Bin Ali, E. Engström, M. Taromirad, M. R. Mousavi, N. M. Minhas,
D. Helgesson, S. Kunze, M. Varshosaz, On the search for industry-
relevant regression testing research, Empirical Software Engineering 24
(2019) 2020–2055.

[44] B. Miranda, E. Cruciani, R. Verdecchia, A. Bertolino, FAST ap-
proaches to scalable similarity-based test case prioritization, in: The
2018 IEEE/ACM 40th International Conference on Software Engineer-
ing, ACM, 2018, pp. 222–232.

[45] E. G. Cartaxo, P. D. Machado, F. O. Neto, On the use of a similarity
function for test case selection in the context of model-based testing,
Software Testing, Verification and Reliability 21 (2011) 75–100.

[46] C. Mao, X. Zhan, T. H. Tse, T. Y. Chen, KDFC-ART: a KD-tree ap-
proach to enhancing fixed-size-candidate-set adaptive random testing,
IEEE Transactions on Reliability 68 (2019) 1444–1469.

[47] X. Devroey, G. Perrouin, A. Legay, P.-Y. Schobbens, P. Heymans,
Search-based similarity-driven behavioural SPL testing, in: The 10th
International Workshop on Variability Modelling of Software-Intensive
Systems, ACM, 2016, pp. 89–96.

[48] E. Cruciani, B. Miranda, R. Verdecchia, A. Bertolino, Scalable ap-
proaches for test suite reduction, in: The IEEE/ACM 41st International
Conference on Software Engineering, IEEE, 2019, pp. 419–429.

[49] A. Bertolino, E. Cruciani, B. Miranda, R. Verdecchia, Know Your
Neighbor: Fast Static Prediction of Test Flakiness, Technical Report,
ISTI Technical Reports 2020/001, 2020.

[50] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, X. Lin, Approx-
imate nearest neighbor search on high dimensional data-experiments,
analyses, and improvement, IEEE Transactions on Knowledge and Data
Engineering 32 (2019) 1475–1488.

[51] M. Aumüller, E. Bernhardsson, A. J. Faithfull, Ann-benchmarks: A
benchmarking tool for approximate nearest neighbor algorithms, Inf.
Syst. 87 (2020) 34–49.

[52] A. Ponomarenko, N. Avrelin, B. Naidan, L. Boytsov, Comparative anal-
ysis of data structures for approximate nearest neighbor search, Data
Analytics (2014) 125–130.

[53] Y. A. Malkov, D. A. Yashunin, Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs, IEEE
Transactions on Pattern Analysis and Machine Intelligence 42 (2020)
824–836.

[54] D. J. O’Neil, Nearest neighbor problem, in: Encyclopedia of GIS,
Springer International Publishing, Cham, 2017, pp. 1421–1426.

[55] S. Arya, D. M. Mount, Approximate nearest neighbor queries in fixed
dimensions, in: The 4th Annual ACM-SIAM Symposium on Discrete
Algorithms, Society for Industrial and Applied Mathematics, 1993, pp.
271–280.

[56] D.-T. Lee, C. Wong, Worst-case analysis for region and partial re-
gion searches in multidimensional binary search trees and balanced quad
trees, Acta Informatica 9 (1977) 23–29.

[57] E. Chávez, E. S. Tellez, Navigating k-nearest neighbor graphs to solve
nearest neighbor searches, in: Mexican Conference on Pattern Recogni-
tion, Springer, 2010, pp. 270–280.

[58] J. Wang, J. Wang, G. Zeng, R. Gan, S. Li, B. Guo, Fast neighborhood
graph search using cartesian concatenation, in: Multimedia Data Mining
and Analytics - Disruptive Innovation, Springer, 2015, pp. 397–417.

[59] K. Aoyama, K. Saito, H. Sawada, N. Ueda, Fast approximate similarity
search based on degree-reduced neighborhood graphs, in: 17th ACM
International Conference on Knowledge Discovery and Data Mining,
ACM Press, 2011, pp. 1055–1063.

[60] R. Paredes, Graphs for metric space searching, Ph.D. thesis, University
of Chile, Chile, Dept. of Computer Science Tech Report TR/DCC-2008-
10, 2008.

[61] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, H. Zhang, Fast approximate
nearest-neighbor search with k-nearest neighbor graph, in: 22nd Inter-
national Joint Conference on Artificial Intelligence, volume 2, AAAI
Press, 2011, pp. 1312–1317.

[62] J. Wang, S. Li, Query-driven iterated neighborhood graph search for
large scale indexing, in: 20th ACM International Conference on Multi-
media, ACM Press, 2012, pp. 179–188.

[63] Z. Jiang, L. Xie, X. Deng, W. Xu, J. Wang, Fast nearest neighbor search
in the Hamming space, in: International Conference on Multimedia
Modeling, Springer, 2016, pp. 325–336.

[64] C. Caretta Cartozo, P. De Los Rios, Extended navigability of small world
networks: exact results and new insights, Physical Review Letters 102
(2009) 238703:1–238703:4.

[65] W. Dong, C. Moses, K. Li, Efficient k-nearest neighbor graph construc-
tion for generic similarity measures, in: 20th International Conference
on World Wide Web, ACM Press, 2011, pp. 577–586.

[66] S. Milgram, The small world problem, Psychology today 2 (1967) 60–
67.

[67] D. Watts, S. Strogatz, Collective dynamics of ‘small-world’ networks,
Nature 393 (1998) 440–442.

[68] H. Mehlhorn, F. Schreiber, Small-world property, Springer, 2013, pp.
1957–1959.

[69] J. M. Kleinberg, Navigation in a small world, Nature 406 (2000) 845.
[70] J. Kleinberg, The small-world phenomenon: An algorithmic perspec-

tive, in: 32nd Annual ACM Symposium on Theory of Computing,
ACM, 2000, pp. 163–170.

[71] Y. Lifshits, S. Zhang, Combinatorial algorithms for nearest neighbors,
near-duplicates and small-world design, in: 20th Annual ACM-SIAM
Symposium on Discrete Algorithms, Society for Industrial and Applied
Mathematics, 2009, pp. 318–326.

[72] A. Karbasi, S. Ioannidis, L. Massoulie, From small-world networks to
comparison-based search, IEEE Transactions on Information Theory 61
(2015) 3056–3074.

[73] O. Beaumont, A.-M. Kermarrec, L. Marchal, E. Riviere, VoroNet: A
scalable object network based on Voronoi tessellations, in: IEEE Inter-
national Parallel and Distributed Processing Symposium, IEEE, 2007,
pp. 1–10.

[74] O. Beaumont, A.-M. Kermarrec, É. Rivière, Peer to peer multidimen-
sional overlays: Approximating complex structures, in: Principles of
Distributed Systems, Springer, 2007, pp. 315–328.

[75] Y. Malkov, A. Ponomarenko, Growing homophilic networks are nat-
ural navigable small worlds, PloS One 11(6) (2016) e0158162:1–
e0158162:14).

[76] Y. Malkov, A. Ponomarenko, A. Logvinov, V. Krylov, Scalable dis-
tributed algorithm for approximate nearest neighbor search problem in
high dimensional general metric spaces, in: International Conference on
Similarity Search and Applications, Springer, 2012, pp. 132–147.

[77] Y. Malkov, A. Ponomarenko, A. Logvinov, V. Krylov, Approximate
nearest neighbor algorithm based on navigable small world graphs, In-
formation Systems 45 (2014) 61–68.

[78] W. Pugh, Skip lists: A probabilistic alternative to balanced trees, Com-
mun. ACM 33 (1990) 668–676.

[79] H. Liu, X. Xie, J. Yang, Y. Lu, T. Y. Chen, Adaptive random test-
ing through test profiles, Software: Practice and Experience 41 (2011)
1131–1154.

[80] T. Y. Chen, F.-C. Kuo, H. Liu, On test case distributions of adaptive
random testing, in: 19th International Conference on Software En-
gineering and Knowledge Engineering, Knowledge Systems Institute–
Graduate School, 2007, pp. 141–144.

[81] C. Chow, T. Y. Chen, T. H. Tse, The ART of divide and conquer: An
innovative approach to improving the efficiency of adaptive random test-
ing, in: 13th International Conference on Quality Software, IEEE, 2013,
pp. 268–275.

[82] H. Ackah-Arthur, J. Chen, D. Towey, M. Omari, J. Xi, R. Huang, One-
domain-one-input: Adaptive random testing by orthogonal recursive bi-
section with restriction, IEEE Transactions on Reliability 68 (2019)
1404–1428.

[83] H. Liu, X. Xie, J. Yang, Y. Lu, T. Y. Chen, Adaptive random testing
by exclusion through test profile, in: 10th International Conference on
Quality Software, IEEE, 2010, pp. 92–101.

[84] Y. Jia, M. Harman, An analysis and survey of the development of mu-
tation testing, IEEE Transactions on Software Engineering 37 (2010)
649–678.

[85] ISO/IEC/IEEE international standard - systems and software
engineering–vocabulary, ISO/IEC/IEEE 24765:2010(E) (2010)

24

1–418.
[86] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical

Recipes: The Art of Scientific Computing, 3 ed., Cambridge University
Press, USA, 2007.

[87] Collected Algorithms of the ACM, Accessed on: Jan 14, 2020. URL:
http://calgo.acm.org/.

[88] J. Ferrer, F. Chicano, E. Alba, Evolutionary algorithms for the multi-
objective test data generation problem, Software: Practice and Experi-
ence 42 (2012) 1331–1362.

[89] Liang, Yong Daniel, Introduction to Java programming and data struc-
tures, comprehensive version, Pearson Education, 2017.

[90] P. S. May, Test data generation: Two evolutionary approaches to mu-
tation testing, Ph.D. thesis, Computing Laboratory, The University of
Kent, 2007.

[91] H. Do, S. Elbaum, G. Rothermel, Supporting controlled experimenta-
tion with testing techniques: An infrastructure and its potential impact,
Empirical Software Engineering 10 (2005) 405–435.

[92] N. Walkinshaw, G. Fraser, Uncertainty-driven black-box test data gen-
eration, in: International Conference on Software Testing, Verification
and Validation, IEEE Computer Society, 2017, pp. 253–263.

[93] JetBrains Academy, Accessed on: Dec 12, 2020. URL: https://hype
rskill.org/projects/60?track=1.

[94] Java API Documentation, Accessed on: Dec 12, 2020. URL: https:
//docs.oracle.com/javase/8/docs/api/java/util/Arrays.h

tml.
[95] A. Giorgetti, C. Marché, E. Tushkanova, O. Kouchnarenko, Specifying

generic Java programs: Two case studies, in: 10th Workshop on Lan-
guage Descriptions, Tools and Applications, ACM, 2010, pp. 8:1–8:8.

[96] J. E. Freund, Modern elementary statistics, Prentice-Hall, Inc., 1988.
[97] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics

Bulletin 1 (1945) 80–83.
[98] H. B. Mann, D. R. Whitney, On a test of whether one of two random

variables is stochastically larger than the other, The Annals of Mathe-
matical Statistics (1947) 50–60.

[99] G. M. Sullivan, R. Feinn, Using effect size—or why the p value is not
enough, Journal of Graduate Medical Education 4 (2012) 279–282.

[100] J. Pallant, SPSS survival manual: A step by step guide to data analysis
using SPSS, Open University Press, 2016.

[101] J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 2 ed.,
Hillsdale, N.J. : L. Erlbaum Associates, 1988.

[102] P. Domingos, A few useful things to know about machine learning,
Commun. ACM 55 (2012) 78–87.

[103] R. Bellman, Dynamic Programming, 1 ed., Princeton University Press,
Princeton, NJ, USA, 1957.

[104] R. Bellman, The theory of dynamic programming, Bulletin of the Amer-
ican Mathematical Society 60 (1954) 503–515.

[105] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, Experimen-
tation in Software Engineering, Springer, 2012.

[106] T. Y. Chen, R. Merkel, Efficient and effective random testing using the
Voronoi diagram, in: 17th Australian Software Engineering Conference,
IEEE Computer Society, 2006, pp. 300–305.

[107] R. Huang, H. Liu, X. Xie, J. Chen, Enhancing mirror adaptive random
testing through dynamic partitioning, Information and Software Tech-
nology 67 (2015) 13–29.

[108] C. Mao, T. Y. Chen, F.-C. Kuo, Out of sight, out of mind: A distance-
aware forgetting strategy for adaptive random testing, Science China
Information Sciences 60 (2017) 1–21.

[109] T. Y. Chen, F.-C. Kuo, R. Merkel, On the statistical properties of testing
effectiveness measures, Journal of Systems and Software 79 (2006) 591–
601.

[110] M. S. Branicky, S. M. LaValle, K. Olson, Libo Yang, Quasi-randomized
path planning, in: IEEE International Conference on Robotics and Au-
tomation (Cat. No.01CH37164), volume 2, IEEE, 2001, pp. 1481–1487.

[111] Z. Li, Q. Li, R. Li, L. Wang, An enhanced ART in high dimensional in-
put domain, in: 10th International Conference on Software Engineering
and Service Science, IEEE, 2019, pp. 495–497.

[112] C. Schneckenburger, F. Schweiggert, Investigating the dimensionality
problem of adaptive random testing incorporating a local search tech-
nique, in: 1st International Conference on Software Testing Verification
and Validation Workshop, IEEE Computer Society, 2008, pp. 241–250.

[113] F.-C. Kuo, T. Y. Chen, H. Liu, W. K. Chan, Enhancing adaptive random

testing for programs with high dimensional input domains or failure-
unrelated parameters, Software Quality Journal 16 (2008) 303–327.

[114] F.-C. Kuo, T. Y. Chen, H. Liu, W. K. Chan, Enhancing adaptive random
testing in high dimensional input domains, in: ACM Symposium on
Applied Computing, ACM, 2007, pp. 1467–1472.

[115] T. Y. Chen, D. H. Huang, F.-C. Kuo, Adaptive random testing by balanc-
ing, in: 2nd international workshop on Random testing co-located with
the 22nd IEEE/ACM International Conference on Automated Software
Engineering, ACM Press, 2007, pp. 2–9.

[116] F.-C. Kuo, K. Y. Sim, C. Sun, S. Tang, Z. Zhou, Enhanced random
testing for programs with high dimensional input domains, in: Interna-
tional Conference on Software Engineering and Knowledge Engineer-
ing, Knowledge Systems Institute, 2007, pp. 135–140.

[117] J. Mayer, Towards effective adaptive random testing for higher-
dimensional input domains, in: 8th Annual Conference on Genetic and
Evolutionary Computation, ACM, 2006, pp. 1955–1956.

[118] R. Huang, C. Cui, W. Sun, D. Towey, Poster: Is Euclidean distance the
best distance measurement for adaptive random testing?, in: 13th In-
ternational Conference on Software Testing, Validation and Verification,
IEEE, 2020, pp. 406–409.

[119] F. T. Chan, K. P. Chan, T. Y. Chen, S. M. Yiu, Adaptive random testing
with CG constraint, in: 28th Annual International Computer Software
and Applications Conference, volume 2, IEEE Computer Society, 2004,
pp. 96–99.

[120] Jixin Geng, Jiongmin Zhang, A new method to solve the “Boundary
Effect” of adaptive random testing, in: 2010 International Conference
on Educational and Information Technology, volume 1, IEEE, 2010, pp.
298–302.

[121] K. P. Chan, T. Y. Chen, D. Towey, Forgetting test cases, in: 30th
Annual International Computer Software and Applications Conference,
volume 1, IEEE, 2006, pp. 485–494.

[122] A. Shahbazi, A. F. Tappenden, J. Miller, Centroidal Voronoi
tessellations–a new approach to random testing, IEEE Transactions on
Software Engineering 39 (2013) 163–183.

[123] T. Y. Chen, R. Merkel, P. Wong, G. Eddy, Adaptive random testing
through dynamic partitioning, in: 4th International Conference on Qual-
ity Software, IEEE Computer Society, 2004, pp. 79–86.

[124] J. Mayer, C. Schneckenburger, An empirical analysis and comparison
of random testing techniques, in: 2006 ACM/IEEE International Sym-
posium on Empirical Software Engineering, ACM, 2006, pp. 105–114.

[125] A. C. Barus, T. Y. Chen, F.-C. Kuo, H. Liu, R. Merkel, G. Rothermel,
A cost-effective random testing method for programs with non-numeric
inputs, IEEE Transactions on Computers 65 (2016) 3609–3623.

[126] T. J. Ostrand, M. J. Balcer, The category-partition method for specifying
and generating functional tests, Commun. ACM 31 (1988) 676–686.

[127] T. Y. Chen, F.-C. Kuo, R. G. Merkel, S. P. Ng, Mirror adaptive random
testing, Information and Software Technology 46 (2004) 1001–1010.

[128] M. Omari, J. Chen, H. Ackah-Arthur, P. K. Kudjo, Elimination by lin-
ear association: An effective and efficient static mirror adaptive random
testing, IEEE Access 7 (2019) 71038–71060.

[129] T. Y. Chen, F.-C. Kuo, H. Liu, Distributing test cases more evenly in
adaptive random testing, Journal of Systems and Software 81 (2008)
2146–2162.

[130] M. M. Deza, E. Deza, Encyclopedia of distances, Springer Berlin Hei-
delberg, 2009.

[131] R. M. Gray, D. L. Neuhoff, Quantization, IEEE Transactions on Infor-
mation Theory 44 (1998) 2325–2383.

[132] H. Jégou, M. Douze, C. Schmid, Product quantization for nearest neigh-
bor search, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 33 (2011) 117–128.

[133] M. Ashfaq, R. Huang, M. Omari, FSCS-SIMD: An efficient implemen-
tation of Fixed-Size-Candidate-Set adaptive random testing using SIMD
instructions, in: 31st International Symposium on Software Reliability
Engineering, IEEE, 2020, pp. 277–288.

[134] J. Johnson, M. Douze, H. Jégou, Billion-scale similarity search with
GPUs, IEEE Transactions on Big Data (2019) 1–14.

Muhammad Ashfaq received the Bachelor’s degree in Information Technology in 2017
from University of Gujrat, Pakistan. Currently he is pursuing Master’s degree in Com-
puter Science and Technology from the School of Computer Science and Communication

25

http://calgo.acm.org/
https://hyperskill.org/projects/60?track=1
https://hyperskill.org/projects/60?track=1
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html

Engineering, Jiangsu University, China. His current research interests include software
testing and software debugging. His work has been published in International Symposium
on Software Reliability Engineering (ISSRE 2020). One of his works has been accepted
to be presented in the proceedings of 12th Asia-Pacific Symposium on Internetware (Inter-
netware 2020).

Rubing Huang received the Ph.D. degree in computer science and technology from the
Huazhong University of Science and Technology, Wuhan, China, in 2013. From 2016 to
2018, he was a visiting scholar at Swinburne University of Technology and at Monash
University, Australia. He is an associate professor at the Faculty of Information and Tech-
nology, Macau University of Science and Technology (MUST). Before joining MUST, he
worked as an associate professor at Jiangsu University, China. His current research inter-
ests include software testing (including adaptive random testing, random testing, failure-
based testing, combinatorial testing, and regression testing), debugging, and maintenance.
He has more than 50 publications in journals and proceedings, including in IEEE Trans-
actions on Software Engineering, IEEE Transactions on Reliability, IEEE Transactions on
Emerging Topics in Computational Intelligence, Journal of Systems and Software, Infor-
mation and Software Technology, IET Software, The Computer Journal, International Jour-
nal of Software Engineering and Knowledge Engineering, Information Sciences, ICSE,
ISSRE, ICST, COMPSAC, QRS, SEKE, and SAC. He is a senior member of the IEEE and
the China Computer Federation, and a member of the ACM. More information about him
and his work is available online at https://huangrubing.github.io/.

Dave Towey received the B.A. and M.A. degrees in computer science, linguistics, and
languages from the University of Dublin, Trinity College, Ireland; the M.Ed. degree in ed-
ucation leadership from the University of Bristol, U.K.; and the Ph.D. degree in computer
science from The University of Hong Kong, China. He is an associate professor at Uni-
versity of Nottingham Ningbo China (UNNC), in Zhejiang, China, where he serves as the
deputy head of the School of Computer Science. He is also the deputy director of the Inter-
national Doctoral Innovation Centre. He is a member of the UNNC Artificial Intelligence
and Optimization research group. His current research interests include software testing
(especially adaptive random testing, for which he was amongst the earliest researchers
who established the field, and metamorphic testing), computer security, and technology-
enhanced education. He co-founded the ICSE International Workshop on Metamorphic
Testing in 2016. He is a fellow of the HEA, a senior member of the IEEE, and a member
of the ACM.

Michael Omari received the B.Sc. degree in computer science from the University of
Ghana, Legon, in 2007, and the Master’s degree in information technology from Coven-
try University, U.K., in 2014. He holds a Ph.D. degree in computer applied technology
from the School of Computer Science and Telecommunication Engineering, Jiangsu Uni-
versity, China. He is a lecturer at the Department of Computer Science, School of Applied
Science, Takoradi Technical University specializing in assembly language programming
and software engineering. His research interests include software testing and embedded
systems.

Dmitry Yashunin received a Master’s degree in physics from Nizhny Novgorod State Uni-
versity in 2009, and a PhD degree in laser physics from the Institute of Applied Physics
RAS in 2015. From 2008 to 2012 he was working at Mera Networks (currently Orion
Innovation) as a software engineer. From 2016 to 2019 he was working at Intelli-Vision
in the position of a leading research engineer. Dmitry currently works at Harman (a Sam-
sung company) as an associate director. He is author of more than 10 papers on physics
and computer science. His current research interests include scalable similarity search,
computer vision and deep learning.

Patrick Kwaku Kudjo is a Lecturer at the Department of Information Technology, Uni-
versity of Professional Studies, Ghana. He has a Ph.D. in Computer Application Technol-
ogy awarded by Jiangsu University, China. He holds a Master’s degree in Information
Technology from Sikkim Manipal University, India, and a Bachelor’s degree in Com-
puter Science and Management from Wisconsin International University College, Accra
Ghana. Patrick is an avid researcher and practitioner with more than twenty high-quality
research papers in reputable journals and conferences such as Journal of Systems and Soft-
ware, Software Quality Journal, Software: Practice and Experience, Applied Intelligence,
Service-Oriented Computing, and Applications ISSTA, QRS, ASE, SEKE, etc. His cur-
rent research interest includes Information Security, Machine Learning, and Blockchain
Analysis. He is a member of the Association for Computing Machinery (ACM), and the
Institute of Electrical and Electronics Engineers (IEEE).

Tao Zhang received the BS degree in automation, the MEng degree in software engineer-
ing from Northeastern University, China, and the PhD degree in computer science from the
University of Seoul, South Korea. After that, he spent one year with the Hong Kong Poly-
technic University as a postdoctoral research fellow. Currently, he is an associate professor
with the Faculty of Information Technology, Macau University of Science and Technol-
ogy (MUST). Before joining MUST, he was the faculty member of Harbin Engineering
University and Nanjing University of Posts and Telecommunications, China. He published
more than 50 high-quality papers at renowned software engineering and security journals
and conferences such as the IEEE Transactions on Software Engineering, IEEE Transac-
tions on Information Forensics and Security, IEEE Transactions on Dependable and Secure
Computing, IEEE Software, ICSE, etc. His current research interests include mining soft-
ware repositories and mobile software security. He is a senior member of ACM, IEEE, and
CCF.

26

	1 Introduction
	2 Background
	2.1 Fixed-Size-Candidate-Set Adaptive Random Testing
	2.2 State-of-the-art: KDFC-ART
	2.3 Hierarchical Navigable Small World Graphs
	2.3.1 Example
	2.3.2 NNS in HNSWG

	3 Method
	3.1 Framework
	3.2 SWFC-ART
	3.2.1 Algorithm
	3.2.2 Insert procedure
	3.2.3 NNS procedure
	3.2.4 Searcher procedure

	3.3 Parameter Optimization
	3.3.1 Number of candidate test cases (k)
	3.3.2 Graph size (b)
	3.3.3 Distance function ()
	3.3.4 Size of dynamic list (ef)
	3.3.5 Number of links (M)
	3.3.6 Construction parameter (efConst)

	3.4 Illustration
	3.5 Complexity Analysis

	4 Experimental Studies
	4.1 Research Questions
	4.2 Evaluation Metrics
	4.2.1 Efficiency metrics
	4.2.2 Failure-detection effectiveness metrics
	4.2.3 Test case distribution metrics

	4.3 Simulations and Subject Programs
	4.4 Data Collection and Statistical Analysis
	4.5 Experimental Environment

	5 Experimental Results
	5.1 Simulations
	5.1.1 Computational Efficiency
	5.1.2 Failure-detection effectiveness
	5.1.3 Test Case Distribution

	5.2 Experiments with Real-life Programs
	5.2.1 Computational Efficiency
	5.2.2 Failure-detection effectiveness

	5.3 Discussion
	5.3.1 RQ1
	5.3.2 RQ2
	5.3.3 RQ3

	6 Threats to Validity
	6.1 Construct Validity
	6.2 External Validity
	6.3 Internal Validity

	7 Related Work
	7.1 FSCS-ART overhead reduction methods
	7.1.1 C.G. FSCS-ART
	7.1.2 D-FSCS-ART
	7.1.3 FSCS-ART by Temporal Forgetting
	7.1.4 FSCS-ART by Distance-aware Forgetting
	7.1.5 KDFC-ART

	7.2 Other efficient ART methods
	7.2.1 RBCVT-Fast
	7.2.2 ART by Partitioning
	7.2.3 MART

	8 Conclusion and Future Work

