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Abstract

Software testing is often hindered where it is impossible or impractical to
determine the correctness of the behaviour or output of the software under test
(SUT), a situation known as the oracle problem. An example of an area facing
the oracle problem is automatic image classification, using machine learning
to classify an input image as one of a set of predefined classes. An approach
to software testing that alleviates the oracle problem is metamorphic testing
(MT). While traditional software testing examines the correctness of individual
test cases, MT instead examines the relations amongst multiple executions of
test cases and their outputs. These relations are called metamorphic relations
(MRs): if an MR is found to be violated, then a fault must exist in the SUT.
This paper examines the problem of classifying images containing visually hidden
markers called Artcodes, and applies MT to verify and enhance the trained
classifiers. This paper further examines two MRs, Separation and Occlusion, and
reports on their capability in verifying the image classification using one-way
analysis of variance (ANOVA) in conjunction with three other statistical analysis
methods: t-test (for unequal variances), Kruskal-Wallis test, and Dunnett’s test.
In addition to our previously-studied classifier, that used Random Forests, we
introduce a new classifier that uses a support vector machine, and present its MR-
augmented version. Experimental evaluations across a number of performance
metrics show that the augmented classifiers can achieve better performance
than non-augmented classifiers. This paper also analyses how the enhanced
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performance is obtained.
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1. Introduction

Over the past two decades, machine learning techniques have been widely
adopted by research communities (e.g., computer vision, bioinformatics, compu-
tational linguistics, and medical imaging) to solve a range of practical problems.
For researchers in the machine learning and software testing communities, the
ability to build accurate learning models and verify their quality is essential.
Due to the nature of machine learning programs, test oracles (mechanisms to
categorically determine if the software behaviour or output is correct) are gener-
ally very difficult to define. Hence, conventional software testing techniques may
not be effective for detecting defects. The issue of how to ensure the quality of
applications based on machine learning has become increasingly important (Xie
et al., 2011).

Metamorphic testing (MT) is a testing technique that can alleviate the oracle
problem (Chen et al., 1998, 2003), a major challenge in software testing. While
conventional testing methods focus on verifying individual outputs, MT examines
relations among the inputs and outputs of multiple executions of the software
under test (SUT). These relations are called metamorphic relations (MRs). Since
the first MT paper (Chen et al., 1998) was published in 1998, MT has been widely
used to test software in various fields, including: scientific computing (Ding
et al., 2016), numerical analysis (Chen et al., 2002), classification (Xie et al.,
2011, 2009), cybersecurity (Chen et al., 2016), image processing (Mayer and
Guderlei, 2006), compilers (Le et al., 2014; Donaldson et al., 2017), search engines
(Zhou et al., 2016), web security (Mai et al., 2020), and visualisation (McNutt
et al., 2020), among others. A body of literature also describes its integration
with other testing techniques to improve their applicability and effectiveness.
Comprehensive surveys about MT have also been recently published by Segura
et al. (2016) and Chen et al. (2018).

More recently, MT has been increasingly gaining interest in classic AI fields
for testing systems powered by machine learning, including: machine translation
(Zhou and Sun, 2018; He et al., 2019), autonomous driving (Zhang et al., 2018;
Zhou and Sun, 2019), and generic NLP (natural language processing) models
(Ma et al., 2020; Ribeiro et al., 2020). MT can have comparable bug-revealing
effectiveness to model-based testing, and hence is a useful alternative to test an
implementation, especially in situations where a model is expensive to construct
(Hughes, 2020).

MT techniques have been used to test machine learning programs (Xie et al.,
2011, 2009; Murphy et al., 2008). Machine learning techniques have also been
used to automatically identify MRs, although so far only with simple MRs
(Kanewala and Bieman, 2013). Xu et al. (2018) expanded the traditional role
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of MRs from software testing to a kind of post adjustor for a machine learning
program, building a more accurate learning model using an example of the
Artcode classification problem. Artcodes are visual codes whereby bespoke
designs can be scanned to trigger the digital information attached to them.
Artcodes may be disguised as normal images in the scene through their freeforms
and complex aesthetic patterns — and they may appear as any instances of
semantic objects. Therefore, it is not straightforward for people to build scan
affordance without the support of an alert system that can recognise the presence
of Artcodes in the context. The core part of such an alert system is Artcode
classification, which determines whether or not the Artcode-based augmented
reality applications can work effectively. We will present Artcode basics and
Artcode classification in more detail in Section 2.2. More information about
Artcode applications in augmented reality can be found in the literature, such
as Meese et al. (2013), Xu et al. (2017), Benford et al. (2018), and Koleva et al.
(2020).

Two MRs, Separation and Occlusion, identified based on the category of the
inputs, were introduced by Xu et al. (2018), who reported on their ability to
improve the performance of the original classifier. Initial experimental evaluations
showed that MRs could enhance the performance in this case of supervised
Artcode classification.

In this paper, we further explore the Separation and Occlusion MRs, present
more detailed experimental analyses, and generalise the ability of MRs in both
verification and enhancement. Experiments were conducted to show not only
the applicability of MT in verifying the correctness of the classifier, but also the
improved performance obtained by the MR-augmented framework regardless
of the chosen classification methods. The new contributions of this paper are
mainly threefold:

1) We report on the capability of the two MRs to verify the correctness of
the previously introduced classification model (Xu et al., 2017) using a set
of complementary statistical test methods.

2) We analyse and discuss how the improved performance of the MR-augmented
classifiers is achieved, explaining how the post adjustor rectifies incorrect
predictions.

3) We introduce the use of a Support Vector Machine (SVM) as the classifi-
cation algorithm in the original classifier and investigate its impact on the
performance of the MR-augmented framework, comparing its performance
with the MR-augmented classifier based on Random Forests (RF).

The rest of this paper is organised as follows. Section 2 gives a brief description
of metamorphic testing and Artcode classification. Section 3 presents the MR-
augmented classification framework. The experimental studies examining the
MRs’ verification and enhancement capability are given in Section 4. Section
5 analyses how the improved performance is obtained by MR augmentation.
Finally, Section 6 concludes the paper, highlighting some areas for future work.
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2. Preliminaries

2.1. Metamorphic testing
In software testing, a mechanism that can determine whether a test has

passed or failed is called an oracle. A situation where the oracle is not available,
or is too expensive to be used, is known as the oracle problem (Barr et al.,
2015). Metamorphic testing alleviates the oracle problem (Chen et al., 1998).
It has been widely adopted in both academia and industry (Chen et al., 2003;
Liu et al., 2014; Lindvall et al., 2015; Segura et al., 2016; Zhou et al., 2016;
Donaldson et al., 2017; Zhang et al., 2018; He et al., 2019; Mai et al., 2020). MT
has successfully detected defects in mature software, including in extensively
tested systems (Chen et al., 2015). A central part of MT is a set of MRs,
which are relations among several related inputs and their corresponding outputs.
While conventional testing approaches uncover software problems by examining
the outcome of an individual input, MT detects the presence of a fault by
cross-checking multiple related inputs and outputs with respect to MRs.

We next use a database management system (DBMS) example to illustrate
the idea of MT. Given two DBMS queries, such as the following:

Q1: select ∗ from student where condition_A and condition_B;

Q2: select ∗ from student where condition_B and condition_A;

the DBMS should return the same results — the outcome for a query with search
conditions “A” and “B” and the query that swaps their order should be the same
(which could represent an MR). Specifically, if the DBMS returns different results
for the queries Q1 and Q2, then a fault must exist in the DBMS implementation.

As with all software testing, MT can only be used to check for the presence
of bugs, not their absence (Dijkstra, 1972). For example, a faulty DBMS
implementation may somehow return the same results for queries Q1 and Q2:
thus, although violation of an MR means there must be some fault in the
implementation, satisfaction of MRs cannot be taken to mean that the software
is fault-free. A key step in MT is the identification of appropriate MRs, which
normally requires a good understanding of the problem domain.

2.2. Artcode basics and classification
Artcodes are human-designable topological visual markers that are both

machine readable and meaningful to humans (Meese et al., 2013). As illustrated
in Figure 1a, a valid Artcode includes two parts: a recognisable foreground; and
some background imagery. The recognisable foreground (the penguins annotated
by the red circle) is a closed boundary that is split into several regions (usually
five regions, annotated r1 to r5 in Figure 1a), with each region containing one or
more blobs — solid objects disconnected from the region edge. The numbers of
these blobs in each region are sorted and joined with a separator to form a string
of numbers, which can then be used to represent the Artcode. For example,
the code for Figure 1a is “1-1-2-3-5”, indicating that there are 1, 1, 2, 3, and 5
blobs found in the respective regions. Additionally, background imagery (B1 and
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(a) Artcode components illustration.
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Figure 1: Illustration of the components of an Artcode (code: “1-1-2-3-5”) and the region
adjacency tree of its recognisable foreground.

B2 in Figure 1a) can be added, surrounding the recognisable foreground of an
Artcode to enhance the aesthetics, but only if the background does not break
the Artcode’s topological structure (Costanza and Huang, 2009; Meese et al.,
2013). For example, the black solid blobs around the penguins were intentionally
added to enhance the beauty, but are unconnected to the actual code.

The actual code of an Artcode is represented by a region adjacency tree
(RAT) (Costanza and Robinson, 2003); the RATs of the recognisable part of
the penguin Artcode and the two background elements are shown in Figure
1b. According to the Artcode system, the components are the sets of pixels
that are connected to each other, and are known as connected components.
These connected components are referred to as: root boundary, region, blob, and
background imagery, depending on their use in the Artcode’s context. The root
boundary (R) contains several holes (regions) with each having a number of
connected components without holes. The number of components is determined
by the containment relationship rather than geometrical shapes, as shown in
Figure 1. The components can be any shapes, and this freeform property —
with little restriction on shapes — can be an opportunity for designers to create
aesthetic, interactive graphics. This property allows Artcode objects to look like
an instance of any semantic object classes — animals, flowers, and fish can be
recognised as Artcodes if they are designed according to Artcode drawing rules
(see Figure 6).

Redundancy is allowed in Artcode design — multiple Artcodes with the same
topology but different geometry can appear in an Artcode. Artcodes have been
explored in a wide range of contexts (Meese et al., 2013; Benford et al., 2015a,b;
Ng and Shaikh, 2016; Thorn et al., 2016; Benford et al., 2016; Preston et al., 2017;
Benford et al., 2018; Koleva et al., 2020) since Costanza and Huang (2009) first
proposed D-touch markers, whose drawing rules the Artcode system implements
and extends.

Artcode classification. Figure 2a shows Artcodes being used to augment a dining
context, in which the surfaces of objects (menu, plate, and mat) are decorated
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(a) Artcodes-decorated dining context (b) Artcode examples detected

Figure 2: Illustration of Artcode detection.

with Artcodes. In order to alert people to the presence of Artcodes before
triggering their further decoding, the first step is to determine whether or not
an input image or an image patch contains Artcodes (see Figure 2b). This step
involves classification which determines whether an input image is an Artcode
or not. This task of Artcode classification1 involves classifying an input image
as either containing an Artcode or not, labelled Artcode or non-Artcode. There
is, visually, no obvious difference in appearance or geometrical shape between
the two classes (see the examples in Figures 5 and 6). The geometrical freeform
property differentiates Artcodes from other well-known markers, such as bar-
codes (Woodland and Bernard, 1952), QR codes (International Organization for
Standardization, 2015), ARTags (Fiala, 2005), or RUNE-tags (Bergamasco et al.,
2011). Artcodes, as a type of augmented reality technique, have been adopted
in many situations (as described in Section 2.2) to augment the meanings of the
objects in aesthetic-centred contexts. The triggering of the digital information
depends on whether or not the presence of Artcodes in the scene is recognised;
therefore, Artcode classification is vital for the correct use of Artcode applica-
tions and can provide guidelines for other visual codes-based augmented reality
techniques. More information about Artcode basics and classification can be
found in work such as Costanza and Huang (2009) and Xu et al. (2017).

3. MR-augmented classification framework

Conventional classification typically involves two steps: first, create feature
vectors that distinctively represent each class; and, second, train classification
algorithms to predict the class of individual inputs. Xu et al. (2018) proposed
two MRs, Separation and Occlusion, through examination of the differences in
aggregated probability of image blocks being classified as Artcode between the

1Artcode classification and Artcode detection are used interchangeably in this paper.
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Separation - uniformly split 
input image into n blocks

Occlusion - split input image into
m blocks with overlapping

Image transformation Bs1

Bsn

Bo1

Bom

Input image

Classification algorithms: 
Random Forest, SVM

Original classifier

t = <p, w>

Rectified by thresholds t1 and t2

Output class:
Artcode or non-

Artcode

Follow-up generation Prediction

Rectification

Total probability calculation

Prediction vector p

SOH feature vector

Weight vector w

Figure 3: MR-augmented classification framework. The framework includes three stages:
Follow-up generation, Prediction, and Rectification.

(a) Separation masks (b) Occlusion masks

Figure 4: Separation and occlusion masks.

Artcode and non-Artcode class. The two MRs were then used to enhance the
classifier’s performance based on conventional classification methods by adding
a step before and after classification by this base classifier (referred to as the
original classifier), resulting in an MR-enhanced classifier.

We have refined the MR-augmented classifier previously proposed in Xu et al.
(2018) to present a new use of MRs in the verification of its correctness. As shown
in Figure 3, the MR-augmented classifier framework includes three stages: Follow-
up generation, Prediction, and Rectification. Follow-up generation involves
building inputs for the prediction stage using MR-defined image transformations.
The second stage makes predictions about these inputs using commonly-used
classification models. The third stage may adjust or rectify the results generated
in the prediction stage. These three stages are described in detail in Sections 3.1
to 3.3.
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3.1. Follow-up generation
The core activity of the follow-up generation stage is to identify MRs and to

construct the inputs based on the defined MRs. The identification of MRs in im-
age classification is often done by examining the different image transformations,
such as translation, rotation, and scaling. Based on the observation that the
image blocks of Artcode images are more likely to be classified as Artcode than
the blocks of non-Artcodes, two MRs, Separation and Occlusion, were proposed,
using straightforward image operations: uniform and non-uniform separation.
This stage accepts an entire image as input, and outputs image blocks generated
from the operations defined by the two MRs.

3.1.1. Separation MR
Separation involves splitting the input image uniformly into a number of

sections, or blocks. For example, Figure 4(a) shows separation masks to generate
four uniform blocks by intersecting them with input images. This MR is based
on the observation that the blocks of Artcode images would be predicted to
be Artcode with a higher likelihood than the blocks of non-Artcode images. If
the number of blocks is appropriately selected, this difference in the aggregated
likelihood (probability) of all blocks may provide clues for classification. The
Separation MR can be formulated as:

n∑
i=1

Pr(Bisa) ≥
n∑
i=1

Pr(Bisn) (1)

where n is the number of image blocks; Pr(·) is the probability for it to be
classified as an Artcode by the original classifier; and Bisa and Bisn denote the
ith block of the Artcode and non-Artcode images after separation, respectively.

3.1.2. Occlusion MR
Occlusion is similar to separation, except that the image blocks are not split

uniformly — overlapping among image blocks is permitted. As shown in Figure
4b, four occlusion masks are provided to intersect with the input image, so that
the image blocks outlined by the white regions will be generated. Occluded
Artcode images generally preserve the properties of the input Artcode images
— half of an Artcode image usually has a higher likelihood of being classified
as Artcode by the original classifier than a quarter of the image; this property
may not be preserved for non-Artcode images: occluded non-Artcode images
may have the equivalent likelihood as the entire non-Artcode images of being
predicted as non-Artcode. Based on this observation, MR Occlusion can be
formulated as:

m∑
i=1

Pr(Bioa) ≥
m∑
i=1

Pr(Bion) (2)

Pr(Bioa) ≥ Pr(Bisa) (3)

where m is the number of masks; Bioa = ∩(Ia,Mi) and Bion = ∩(In,Mi) outputs
the overlapping areas of Artcode and non-Artcode images, Ia and In, and the ith
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maskMi; and Bioa and Bion denote the ith block of the Artcode and non-Artcode
images generated after occlusion, respectively.

The Separation and Occlusion MRs are both processed by comparing the
aggregated likelihood of predicting the generated image blocks with the proba-
bility of predicting the entire input image. They are based on the observation
that the topological structure of an Artcode image, as a global property, may
be preserved, even after splitting. Uniform separation with (separation) and
without (occlusion) overlapping enable the generated image blocks to cover
the possible distribution of Artcodes in an image, especially considering their
freeform geometric shapes. In addition, the masks with varying sizes can adapt to
the Artcodes’ scales. Therefore, they complement each other, and are combined
together to obtain a better augmentation performance.

3.2. Prediction
In order to predict the class of an input image or block, a classification model

that includes feature vector and classification algorithms (using random forests or
support vector machines) needs to be built. The Artcode classification model is
built using the Shape of Orientation Histograms (SOH) feature vector (Xu et al.,
2017), which was specially designed for describing topological visual markers
such as Artcodes. An SOH is constructed based on the translational symmetry
and smoothness of the orientation histogram, which is a feature vector developed
by McConnell (1986) for pattern analysis in both static and dynamic modes,
and was adopted by Freeman and Adelson (1991) for recognising hand gestures.

Instead of describing the local geometry or structure, an SOH describes
Artcodes by representing their topological structure. As previously reported
(Xu et al., 2017), the orientation histogram of an Artcode displays horizontally
translational symmetry, and is relatively smoother than that of a non-Artcode.
The SOH is then constructed by quantifying these two aspects of the orientation
histogram of the input images using similarity measurements, such as Procrustes
distance (Moser, 1965) and χ2 distance (Greenacre, 2007). When all images
are represented by their respective SOH vectors, classification algorithms using
random forests or SVM are trained and used to predict the classes of the input
images. The output of the prediction stage is a vector of labels of the input
image blocks fed by the follow-up generation stage. This vector is referred to as
the prediction vector p.

3.3. Rectification
Unlike most deterministic software, classification is based on statistics, or

is learned from past experience. Given an input, the output of a classifier is
a probabilistic classification of belonging to a predefined class. In other words,
before execution of the classifier, only the likelihood of the input being classified
as a class or not is known beforehand. Therefore, in order to enable incorporation
of the MRs described above, an augmented classifier integrating the MRs was
designed based on probability, adding an adjustor (or rectifier) to the conventional
classification pipeline (Xu et al., 2018).
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Figure 5: Non-Artcode examples selected from the Artcode dataset.

Figure 6: Artcode examples selected from the Artcode dataset. Artcodes are visually “hidden”
or even “invisible” markers. Similar to barcodes and QR codes, they can be scanned to trigger
the digital information attached within. The code embedded in an Artcode is a string of
numbers of blobs in each “hollow” region. For example, the code of the 6th image is “1-1-1-1-2”.

As defined in Equations 1 to 3, the likelihood of image patches belonging to
the two classes, generated in the follow-up generation stage, may be different.
Therefore, a weight vector that contains different weight (i.e., likelihood) values
is assigned to them. This vector, which has same dimensionality as the prediction
vector p, is referred to as the weight vector w.

Given a prediction vector p = (ps1 , . . . , psn , po1 , . . . , pom), and a weight vector
w = (ws1 , . . . , wsn , wo1 , . . . , wom) — where pi is the predicted class of the ith
image patch by the original classifier; wi is the weight assigned to the ith image
patch (which is, in fact, the weight of the separation or occlusion mask); and n
and m are the numbers of image patches generated by the two MRs — the inner
product of p and w is the aggregated likelihood of belonging to the Artcode class
(ρ-value), which is defined as:

ρ = 〈p,w〉 =
( n∑
i=1

psi · wsi +
m∑
i=1

poi · woi
)

(4)

The aggregated likelihood is also known as the total probability (Xu et al., 2018;
Xu, 2019). The augmented classifier predicts the label of the input by comparing
the ρ-value with the given thresholds t1 and t2, using the following decision rules:
if ρ < t1, then it is a non-Artcode; if ρ ≥ t2, then it is an Artcode; otherwise,
the input retains the original classifier’s prediction result.

4. Experimental studies

This section presents the experimental study, including the evaluation dataset
and the set-up of the experiment. The experimental results of verifying and
enhancing the original classifier, and the performance comparison between the
RF-based and SVM-based classifiers, are also described in this section.
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4.1. Dataset
In order to study the Artcode classification problem, a dataset containing 47

Artcode and 116 non-Artcode images was used for experimental study. To the
best of our knowledge, this is the first dataset available for studying Artcode clas-
sification. The non-Artcode images (including logos, drawings, advertisements,
paintings, and graphics) were all created by humans, and were intentionally
selected such that they would appear very similar to actual Artcode images
(Xu et al., 2018). This means that the dataset is very challenging for Artcode
classification. As shown in Figures 5 and 6, Artcode examples look very simi-
lar to the non-Artcode images, which can make it very difficult to distinguish
between the two classes through visual inspection alone. Because Artcodes are
manually created by designers, the number of available Artcodes is currently
small and slightly imbalanced, but work is ongoing to extend the dataset2. How-
ever, it is not possible to create hundreds of Artcode samples within a short
time frame, much less increase the number to thousands or millions, like other
common image classification tasks. Rather than devoting the very large effort
necessary to expand the size of the dataset, we accepted this situation (of a
small, imbalanced dataset), and adopted measures to address it, and mediate its
impact: 1) We used classification methods that are effective on small datasets;
2) we adopted a group of carefully-considered performance evaluation metrics
that are capable of evaluating classifiers used on imbalanced datasets; 3) we
employed cross-validation techniques for experimental evaluation; and 4) we
applied appropriate statistical methods to verify whether or not the improved
performance was indeed attributable to the MR augmentation.

4.2. Cross-validation
Cross-validation is a commonly-used model validation technique for assessing

how a learning model will generalise to a dataset (Kohavi, 1995; Devijver and
Kittler, 1982; Seni and Elder, 2010). A major reason for using cross-validation,
rather than using the conventional validation method that partitions the dataset
into two sets (70% for training and 30% for testing), is that sufficient data may
not be available for training and testing the model without compromising its
generalisation and prediction capability.

Considering the limited number of samples in the Artcode dataset, a 5-fold
cross-validation was used to ensure sufficient training and testing set sizes for
performance evaluation. A k-fold cross-validation involves randomly partitioning
a dataset into k equally-sized subsets, keeping one subset as validation data for
testing the trained model, and using the remaining k − 1 subsets as training
data. The process is then repeated k times (the folds).

4.3. Study 1 – Verification
MT attempts to verify the software through examination of whether or not

the identified MRs are violated: as explained in Section 2.1, violation of the

2https://www.artcodes.co.uk/creations/
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Separation and/or Occlusion MR would indicate that the original classifier has
not been correctly implemented.

Due to the uncertainty of a prediction by the original classifier, we explored
its correctness by examining the weighted sum of probability of all image blocks
of an input image being classified as Artcode — the aggregated likelihood ρ —
seeing if Artcodes and non-Artcodes had significant differences in the aggregated
likelihood. Given input groups of N Artcode and M non-Artcode images, after
the follow-up generation and prediction stages (Figure 3), the two classes then
have two sets of ρ-values calculated based on Equation 4:

ρGa =
{
ρai | i = 1, . . . , N

}
, ρGn =

{
ρni | i = 1, . . . ,M

}
(5)

where ρGa and ρGn denote the sets of aggregated likelihood of image samples of
Artcode (Ga) and non-Artcode (Gn) category, respectively.

We then examined the implementation correctness by checking whether or
not the relationship that ρGa

and ρGn
are significantly different was violated.

Because of the probabilistic nature of the classifier, we used one-way analysis
of variance (ANOVA) to assess the possible violation. ANOVA is a form of
statistical hypothesis-testing that can be used to analyse whether or not there are
statistically significant differences among the means of independent groups. We
used ANOVA to examine if there was a statistically significant difference between
the two groups ρGa

and ρGn
— overall, the ρGa

may be significantly “greater”
than ρGn

from a statistical perspective — using separation and occlusion. If
not, the classifier may be incorrectly implemented. When employing one-way
ANOVA, it is assumed that the variances of different groups are equal and that
the ρ-values are normally distributed. However, although the two groups were
independently selected and members in groups Gni

were randomly selected, it
was not certain that the normality and equal variance assumptions were satisfied
in the experiment. Although one-way ANOVA is not very sensitive to deviations
from normality, according to simulation results by McDonald (2009, pp. 157–
164), we conducted further studies to consider situations of non-normality and
unequal variances. In contrast to examining if the two assumptions were satisfied,
we consolidated the experiment by introducing two more statistical test methods:
t-test (for unequal variances) — which can be used to determine if the means
of two groups ρGn

and ρGni
are significantly different when the variances are

unequal; and Kruskal-Wallis test (Kruskal and Wallis, 1952) (also called one-way
ANOVA on ranks, denoted ANOVA_ranks) — which is suitable for studying
the difference between the means of two groups under non-normality situations.
Hence, one-way ANOVA in conjunction with t-test and ANOVA_ranks can
effectively evaluate the difference between the mean ρ-values of the two groups
under the aforementioned situations. As the comparisons between ρGa

and
each ρGn

using these three methods were conducted separately, rather than
simultaneously, we also used Dunnett’s test (Dunnett, 1955) as a post hoc
test method. Dunnett’s test is a multiple comparison procedure that enables
one-to-many comparisons simultaneously to check if significant differences exist
between the Artcode group ρGa

and each of the non-Artcode groups ρGni
. The
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Figure 7: Boxplot of the aggregated likelihood (ρ) of Artcode group (Ga) and non-Artcode
groups (Gn1−20). The dashed line in each box denotes the mean aggregate likelihood of the
group, i.e., ρG. The grey arrowed box annotations show the mean, maximum, minimum,
median, first quartile (q1) and third quartile (q3) of the Artcode group.

following sections present this verification examination, including detailing the
experimental setting and results.

4.3.1. Experimental setting
In order to examine the correctness of the classifier, we checked for violation of

the MRs through examination of the variation of ρ-values between the two classes.
Considering the different sizes of Ga and Gn (N < M) — Gn is considerably
larger than Ga — N elements were randomly selected from Gn each time, with
this process run K times to generate K non-Artcode groups Gni , i = 1 . . . K.
One-way ANOVA, t-test (for unequal variances), one-way ANOVA on ranks, and
Dunnett’s test were conducted to examine if there was a significant difference
between ρGa

and each ρGni
. To reduce variance, we randomly selected K groups,

Gni , i = 1 . . . K, from the non-Artcode group Gn, in which each Gni had the
same size as the group Ga. We used the RF-based original classifier as the SUT
for study, and a 5-fold cross-validation to obtain the prediction results of the
image blocks generated by the follow-up generation stage. The weights of wsi
(i = 1 . . . n) and woj (j = 1 · · · m) were all assigned the same values, meaning
that all image blocks generated based on separation or occlusion had the same
weights — having the same likelihood to contain Artcodes. The weights between
the images blocks for separation may be different from those for occlusion.

4.3.2. Results
Figure 7 presents a boxplot of the aggregated likelihoods of the group Ga and

Gn1−20 ; and Table 1 shows the p-values for comparisons between ρGa and each
ρGni

, according to the four tests. The average aggregated likelihoods (dashed line
in Figure 7) of all images in Artcode and non-Artcode categories were calculated
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using the following formula:

ρG =
1

N

N∑
i=1

ρi (6)

where ρG is the mean aggregated likelihood of group G. The mean aggregated
likelihood of all randomly generated non-Artcode groups Gni

is defined as:

ρGn
=

1

K

K∑
i=1

ρGni
(7)

The mean aggregated likelihood of all groups is defined as:

ρGa
+ ρGn

=
1

K + 1

( K∑
i=1

ρGni
+ ρGa

)
(8)

where K is the number of groups randomly selected from Gn; and N and M are
the total number of Artcode and non-Artcode images in the Artcode dataset,
respectively. We set K to 20, which means that 20 groups were randomly selected
for study. Both n and m, the number of masks used in separation and occlusion,
were set to 4.

As shown in Figure 7, the ρ-value of the Artcode group is much less dispersed
than that of the non-Artcode groups, showing less distance between the median
and mean ρ-value. The mean aggregated likelihood data (ρG) (denoted by
dashed lines in the boxes) shows ρGa (0.136170) to be greater than all the
ρGni

, i = 1 . . . 20. This shows that, overall, the sum of probabilities of all
image blocks of an Artcode image is greater than that of a non-Artcode image —
indicating that the MRs have not been violated. Because of the uncertain nature
of supervised classification, the aggregated likelihood of an individual Artcode
image is not always greater than that of a non-Artcode image — the classifier
may not predict inputs with 100% accuracy. However, the statistical analysis of
variations between the groups Ga and Gn provides evidence for the difference
of the mean ρ-values between Artcode and non-Artcode groups, indicating no
violation of the MRs.

Table 1 presents the significance level (p-values) of the difference between ρGa

and ρGni
under ANOVA, t-test (for unequal variances), ANOVA_ranks, and

Dunnett’s test. Descriptive statistics — median, mean, minimum, maximum,
and standard deviation (std) — for the p-values are also included. For ease of
understanding, cells in the table are coloured to reflect the significance level:
p ≤ 0.05 are shown in dark gray; 0.05 < p ≤ 0.10 are in light gray; and p > 0.10
are in white. If the null hypothesis is defined as “an MR is violated”, then
small p-values (typically below 0.05) indicate strong evidence against the null
hypothesis — small p-value indicate that neither of the two MRs have been
violated. On the other hand, large p-values indicate weak evidence to reject the
null hypothesis: there is no significant difference between the mean ρ-values of
the ρGa

and ρGn
groups, under the chosen significance level, suggesting that one
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Table 1: Results of verification statistical analyses.

ρGn One-way ANOVA t-test (for
equal variances)

ANOVA_ranks
(Kruskal-Wallis test)

Dunnett’s
test

1 0.020599 0.020935 0.026708 0.137527
2 0.000929 0.001055 0.001055 0.006173
3 0.020941 0.021266 0.027382 0.005814
4 0.151530 0.151567 0.014303 0.022575
5 0.026392 0.026708 0.028257 0.016151
6 0.082988 0.082990 0.011025 0.025203
7 0.563244 0.563270 0.252606 0.011663
8 0.004583 0.004797 0.004104 0.023714
9 0.026213 0.026354 0.007432 0.024604
10 0.120316 0.120447 0.088321 0.004742
11 0.082720 0.083057 0.119343 0.198247
12 0.006003 0.006276 0.008328 0.013617
13 0.060633 0.060637 0.003846 0.040912
14 0.059978 0.060223 0.051375 0.029467
15 0.013469 0.013771 0.015104 0.034990
16 0.007758 0.008053 0.011156 0.089879
17 0.036771 0.037150 0.055180 0.005291
18 0.225829 0.226021 0.310495 0.042914
19 0.062216 0.062425 0.047335 0.018983
20 0.323313 0.323352 0.085770 0.029832
median 0.048375 0.048687 0.027045 0.024159
mean 0.094821 0.095018 0.058456 0.039115
min 0.000929 0.001055 0.001055 0.004742
max 0.563244 0.563270 0.310495 0.198247
std 0.137489 0.137422 0.083444 0.047734

or both of the MRs may have been violated and, thus, the RF-based original
classifier may have defects.

As shown in Table 1, the ANOVA p-values range from 0.000929 to 0.563244,
with a median of 0.048375. Half of the ρGn

groups show p-values that are
considerably less than 0.05, indicating that these groups (ρGni

, i = 1− 3, 5, 8−
9, 12, and 15 − 17) are significantly different from ρGa

, under the significance
level of 0.05 (α = 0.05). If we increase the alpha value to 0.1, then two thirds of
non-Artcode groups ρGni

have means that are significantly different from the
Artcode group ρGa . This result provides evidence that the difference between
the two groups is not due to sampling errors or by chance. The p-values of
the remaining pairs are greater than 0.05, ranging from 0.059978 to 0.563244,
indicating that there is no significant difference between the mean ρ-values of
the two groups under α = 0.05. This result can be explained by the diversity
of the non-Artcode images in the Artcode dataset — some appear very similar
to Artcode images, so-called “Artcode-like” images (Xu, 2019). Therefore, the
significance level of the difference between ρGa

and ρGn
may decrease if ρGn

includes many Artcode-like images. This will be discussed further in Section 5.
The mean ANOVA p-value is 0.094821, which is considerably larger than the

median value of 0.048375. This indicates the skewness of the p-values: most p-
values approach the minimal p-value, evidenced by the relatively higher standard
deviation (0.137489). Although the mean p-value is relatively high (greater than
the commonly-used significance level of 0.05), the low median p-value is evidence
against the null hypothesis, reflecting the observed differences between ρGa

and
most ρGni

.
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The one-way ANOVA results show that, even without assurance of equal
variances and normality, ρGa is, to some extent, significantly different from ρGni

.
Moreover, this significant difference was also observed under the assumptions
of unequal variances and non-normality. The t-test (for unequal variances) has
almost equivalent results to ANOVA (with only a negligible increase in p-values),
thus supporting the same conclusion as ANOVA.

Table 1 also reports the results of the Kruskal-Wallis tests (ANOVA_ranks),
which are suitable for non-normally distributed data. The ANOVA_ranks p-
values are generally lower than those of ANOVA, ranging from 0.001055 to
0.310495, with a median of 0.027045 (which is less than the commonly-used
α-value of 0.05). 13 groups (1-6, 8-9, 12-13, 15-16, and 19) have p-values below
0.05. Compared with the ANOVA and t-test (for unequal variances) results,
ANOVA_ranks has a considerably lower mean p-value (0.058456), which is only
slightly greater than the α-value of 0.05. The dispersion of p-values is also
lower, with a smaller standard deviation of 0.083444. The ANOVA_ranks results
confirm the significant differences between the means of ρGa

and ρGni
under

the assumption of non-normality. This phenomenon could be explained by the
ranked data type of the ρ-values: the ρ-values are not completely continuous, or
normally distributed, but somehow show “ranks” in the proposed MR-augmented
framework.

The p-values for one-way ANOVA, ANOVA_ranks, and t-test (for unequal
variances) were calculated in separate comparisons. To alleviate the influence
of this setting, and to consolidate the conclusion, we also conducted a multiple
comparison test, Dunnett’s test, to compare the Artcode group ρGa and the
20 non-Artcode groups ρGni

. Because the experiment studied the difference
between ρGa and ρGn , only the p-values for comparisons between ρGa and each
ρGni

are presented in Table 1. As can be seen from the table, Dunnett’s test
provides more evidence for significant differences between ρGa

and ρGn
, with

the p-values ranging from 0.004742 to 0.198247, and a median of 0.024159. 16
of the 20 groups were significantly different (α = 0.05) from the Artcode group.
In terms of mean and standard deviation, Dunnett’s test had the lowest mean
(0.039115) and standard deviation (0.047734) among all four tests. The results
of the Dunnett’s test thus confirm the significant difference between the Artcode
group and non-Artcode groups.

Although none of the four test methods produced 20 p-values below 0.05,
overall, the results in Table 1 show significant differences between the mean
aggregated likelihoods of the Artcode and non-Artcode groups. Considering
the uncertain nature of the predictor (the classifier) and the innate variance
of random forests, the experimental results indicate no reason to consider the
implementation faulty — the results indicate that neither MR has been violated.
The next section will present the second study to evaluate the performance of the
MR-augmented classifier, showing the enhanced performance of MR-augmented
classifiers over non-augmented classifiers.
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4.4. Study 2 – Enhancement
4.4.1. Experimental setting

According to the framework in Figure 3, we used Matlab to implement MR-
augmented versions of classifiers that use random forests and support vector
machines. The RF-based MR-augmented, SVM-based MR-augmented, RF-based
non-MR-augmented (original) and SVM-based non-MR-augmented classifiers
are denoted Aug-RF, Aug-SVM, Ori-RF and Ori-SVM, respectively. Cross-
validation techniques were used to evaluate and compare the performance of
these classifiers, with the Artcode dataset being used as the evaluation dataset.

Because random forests and SVM are used for the classification algorithms,
the performance naturally has a certain level of variation in each execution
— due to RF’s random variable selection from the feature vector, and SVM’s
sub-optimisation because of the limited number of computational iterations.
Multiple runs of cross-validation were therefore conducted to obtain the average
performance. Because the dataset was imbalanced, with more non-Artcode
than Artcode samples, we needed an appropriate group of measurements that
could effectively deal with evaluation using imbalanced datasets to provide an
informative view of the performance of the MR-augmented classifiers: Precision,
recall, accuracy, the TNR (true negative rate), the Fβ measure, and the MCC
(Matthews Correlation Coefficient) (Matthews, 1975) were all employed as
evaluation metrics.

Precision is a measure of the correctness of those classified as Artcodes,
whereas recall is a measure of completeness (how many of the true Artcodes
were correctly classified). These two measures focus on positive examples and
predictions, and their importance varies from one learning task to another.
With Artcode classification, recall is more important than precision because
recognising the presence of all Artcodes in the scene is a prerequisite to the
follow-up decoding that triggers the digital information.

TNR measures how many non-Artcode samples are correctly classified. Accu-
racy, Fβ , and MCC measure the overall performance of the classifier. Accuracy
is the overall proportion of correct predictions, for both the positives (Artcodes)
and negatives (non-Artcodes). However, accuracy is sensitive to size differences
among classes, and, in our study, may have been influenced by the imbalanced
class sizes. The F2 measure is a special instance of the Fβ measure with β = 2,
where β is a value allocating β times as much importance to recall as to precision.
F2 uses a weighted average of precision and recall to evaluate the classification
effectiveness, giving twice (β = 2) as much importance to recall as to precision.
In contrast to accuracy, the F2 measure and MCC provide more insight into the
performance of a classifier. However, compared with MCC, F2 can be sensitive
to data distribution. MCC is, in essence, a correlation coefficient between the
observed and predicted classifications, incorporating true and false positives and
negatives. It remains effective even if the dataset is imbalanced, and is generally
regarded as one of the best measures for classification performance evaluation
(Powers, 2011).

Two thresholds, t1 and t2, were studied in the experiment, as was their
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impact on the augmented classifiers. The given values in the weight vector w
affect the selection of the values of t1 and t2. According to Equation 3, the
weights of image blocks generated by occlusion are greater than those generated
by separation. In this experiment, four masks were used for both separation and
occlusion (n = m = 4), resulting in both the prediction vector p and the weight
vector w being 8-dimensional. Based on empirical examinations of assigning
different values to w, we assigned a value of 0.1 to both wsa and wsn , and a value
of 0.15 to both woa and won . In order to achieve quantisation and computational
convenience of the value of aggregated likelihood ρ, the numbers 1 and 0 were
used in the prediction vector p to represent the Artcode and non-Artcode classes,
respectively.

4.4.2. Results
All performance metric values reported are the average values calculated

from five executions of k-fold cross-validation. Two combinations of the two
thresholds t1 and t2, in conjunction with different numbers of decision trees,
were used to study the impact of the classifiers’ tuning parameters. Because
nTrees (the number of decision trees used in the RF-based classifiers) is not a
tuning parameter of the SVM classifiers, for the sake of comparison, the SVM
classifier values for each nTrees value are only the average of five runs of k-fold
cross-validation. Higher values in Figures 8 and 9 indicate better performance.
Figures 8 and 9 show a consistent performance across different values of nTrees
for all six evaluation metrics: This means that the Aug-RF classifier (unbroken
red) is not sensitive to changes in the value of nTrees, a characteristic inherited
from the original RF classifier (dashed red).

MR-augmented versus non-MR-augmented classifiers. We studied the perfor-
mance difference between the augmented (Aug-) and original (Ori-) classifiers,
and also compared the performance of the classifiers based on random forests
(-RF) with that of those based on support vector machines (-SVM).

Using various values of nTrees and fixed values of the thresholds t1 and
t2, the MR-augmented classifiers (Aug-RF and Aug-SVM) outperformed the
original classifiers (Ori-RF and Ori-SVM) in terms of precision, recall, accuracy,
F2, and MCC. They also outperformed the original classifiers in terms of recall,
precision, and F2 measure for threshold combinations of t1 = t2 = 0.2, and
t1 = 0.15, t2 = 0.3, showing improved predictive performance in classification of
the positive class (Artcodes). This improvement is important because Artcode
classification requires higher accuracy when predicting Artcodes.

When predicting the negative class (non-Artcodes), as measured by TNR,
the MR-augmented classifiers appear slightly influenced by different values of the
thresholds (t1 and t2), which can be seen in the slight difference in TNR values
for the original and augmented classifier in Figures 8d and 9d: for t1 = t2 = 0.2,
the augmented classifier TNR values are similar to those for the original; but
for t1 = 0.15, t2 = 0.3, they are less effective. This is different to the other
evaluation metrics, which all show that the augmented classifiers outperform
the original ones for both threshold combinations. A reason for this, partly as
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(a) Precision (b) Recall

(c) Accuracy (d) True negative rate (TNR)

(e) F2 measure (f) Matthews correlation coefficient (MCC)

Figure 8: Performance comparison between RF and SVM-based classifiers with different values
of nTrees and t1, t2 = 0.2.

described in Section 3.3, is that when t1 equals t2, the augmented classifier does
not directly use the prediction result of the original classifier. Another reason is
the careful selection of threshold t1: lower values of t1 mean that the augmented
classifier predicts the input image depending on the MRs only when they can
adjust prediction with a relatively high confidence — otherwise, the augmented
classifier uses the original prediction result. Thus, thresholds t1 and t2 can be
used as tuning parameters for the performance of the MR-augmented classifier
for both the positive and negative class.
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(a) Precision (b) Recall

(c) Accuracy (d) True negative rate (TNR)

(e) F2 measure (f) Matthews correlation coefficient (MCC)

Figure 9: Performance comparison between the RF- and SVM-based classifiers with different
nTrees values and t1 = 0.15, t2 = 0.3.

Accuracy and MCC assess the overall performance of the classifier. As shown
in Figures 8c and 9c, for both threshold combinations, the augmented classifiers
have slightly better Accuracy than the original classifier, with an average increase
of approximately 2-3%. Although the MR-augmented classifiers show improved
performance in the Artcode class, the small percentage of Artcodes in the
dataset does not contribute strongly to the overall accuracy in evaluation, which
is determined by both true positives and true negatives. In contrast, MCC is
a more informative measure of overall performance, even when the dataset is
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imbalanced. As shown in Figures 8f and 9f, the augmented classifiers obtain
about a 10-20% increase over the original classifiers. This improvement is much
more noticeable when comparing Aug-SVM with the Ori-SVM classifier, showing
an overall improved performance of the MR-augmented classifier. However, the
values of F2 and MCC for all classifiers are relatively low. This is due to the
imbalance of the dataset used in the evaluation, with a much greater number of
negative examples than positive ones.

Both the original and MR-augmented classifiers achieve high true negatives
(TN), approximately 0.82–0.85, as presented in Figures 8d and 9d. However,
they also have very low true positives (TP), approximately 0.3–0.4, which can
be observed from the low precision (Figures 8a and 9a) and recall (Figures 8b
and 9b) results. If TN = 0.85 and TP = 0.3, then FN = (1− TN) = 0.15 and
FP = (1− TP ) = 0.7, and MCC can be calculated as:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(9)

The MCC is a very low value, 0.1796. This illustrates how MCC is an effective
measurement for evaluating the performance of a classifier on an imbalanced
dataset.

As can be seen from Figures 8 and 9, the precision and recall values of all
classifiers are relatively low, and the TNR values are comparatively high. This
is due to the imbalance in the Artcode dataset, which includes many more
negatives. On the one hand, more weight is given to the non-Artcode class
by feeding more information to the classification model in the training stage,
resulting in a classifier with low recall evaluation (good non-Artcode classification,
but poorer Artcode classification). On the other hand, the small percentage of
Artcodes in the dataset results in the low precision evaluation of both classifiers.
Conversely, the large proportion of non-Artcode images in the dataset (and the
good non-Artcode prediction of the classifier) lead to relatively high TNR values,
as shown in Figures 8d and 9d.

RF-based versus SVM-based classifiers. The SVM-based classifiers (blue lines)
achieve better performance than the RF-based classifiers (red lines), as shown
in Figures 8 and 9, with an approximately 5-10% increase in terms of almost
all performance evaluation measurements (not for TNR). The tradeoff between
the precision and TNR of the SVM-based classifiers can be adjusted by the
misclassification matrix (Cortes and Vapnik, 1995) employed in SVM. Considering
the greater importance of recall than precision in this application, this experiment
assigned higher values to the cost of classifying an Artcode as a non-Artcode,
resulting in a classifier that enables better Artcode prediction.

The better performance of the SVM-based classifiers is also evidenced by the
higher values of the Aug-SVM classifier than the Aug-RF classifier. However,
when the classifiers use the same classification method (SVM or RF), the MR-
augmented version outperformed the original (non-augmented) version of the
corresponding classifier. This indicates that the introduction of MRs into
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supervised classification models actually improves the performance of the original
classifiers, regardless of whether SVM or RF is used.

Overall, the Aug-SVM classifier obtained the best performance, especially
when considering that SVM runs much faster than the random forests classifier.
The MR-augmented classifiers outperformed the original classifiers in terms
of all the evaluation measures. This improved performance is sensitive to the
values of the thresholds t1 and t2, but not to the value of nTrees, or the
choice of classification method. As discussed in Section 4.4.2, thresholds t1
and t2 influence the performance of the augmented classifier, with different
combinations determining the impact the MRs have on adjusting the original
classification. Careful selection of the values of the tuning parameters — the
thresholds t1 and t2 — is therefore vital to fine-tune the results of the original
classifier and obtain the enhanced performance.

5. Analysis and discussion

Table 2: Results of rectification analysis.

Aug-RF Rectifications Aug-SVM Rectifications
Class Amount Correct Incorrect Correct Incorrect
Artcode 47 13.3 (28.3%) 1.9 (4.04%) 13.8 (29.36%) 4 (8.51%)
non-Artcode 116 7.3 (6.3%) 15.6 (13.45%) 6.4 (5.52%) 9.2 (7.93%)

5.1. Analysis of the rectification stage
In order to reveal how the fine-tuning (rectification layer) stage operates,

and how the improved performance is achieved, we performed ten rounds of
cross-validation runs using both the RF-based and SVM-based MR-augmented
classifiers on all samples in the Artcode dataset. Table 2 shows the average
correct and incorrect rectifications by the MR-augmented classifiers over these
ten executions of 5-fold cross-validation. Figure 10 shows ρ-values of all Artcodes
(4) and non-Artcodes (◦) of one execution of cross-validation, where correct and
incorrect rectifications are highlighted in red and blue, respectively. As illustrated
in Figure 10 and Table 2, the two MR-augmented classifiers correctly rectified an
average of 28.3% and 29.36% of the Artcode predictions, but incorrectly adjusted
an average of 4.04% and 8.51% of the Artcodes to non-Artcodes. This higher
correct rectification percentage contributed to the higher true positive rate —
a key factor in the evaluation of a classifier in terms of recall and precision.
However, the classifiers performed slightly worse on the non-Artcode class: the
RF-based MR-augmented classifier had an average of 6.63% correct and 13.45%
incorrect rectifications, and the SVM-based MR-augmented classifier obtained
an average of 5.52% correct and 7.93% incorrect rectifications. This explains
why the MR-augmented classifiers have a relatively lower true negative rate
(TNR), as shown in Figures 8d and 9d, but higher precision (Figures 8a and
9a) and recall (Figures 8b and 9b). Overall, the average correct rectification
percentage is 1.91% ( 13.3−1.9+7.3−15.6

47+116 = 1.91%) for the Aug-RF classifier and
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Figure 10: Illustration of rectification distribution of the RF-based MR-augmented classifier.
The graph is generated from one round of cross-validation of the RF-based MR-augmented
classifier with nTrees = 30, and t1 = t2 = 0.2. This graph is split into left and right areas
separated by a green vertical line, where the left and right area are an illustration of the
aggregated likelihood (ρ-value) of Artcode (◦) and non-Artcode (4) images. The horizontal
green line is the predefined thresholds (t1 and t2): It separates the graph into upper and
lower zones. The samples in the upper zone (≥ t2 ) are rectified as Artcodes, whereas the
samples in the lower zone (≤ t1) are labelled as non-Artcodes in the rectification stage of
the MR-augmented classifier. Therefore, the two tuning parameters, thresholds t1 and t2, of
the MR-augmented classifier control whether or not to rectify more “Artcode-like” samples.
Correctly and incorrectly rectified predictions are highlighted in red and blue, respectively.

4.29% ( 13.8−8.51+6.4−9.2
47+116 = 4.29%) for the Aug-SVM classifier, indicating that

1.91% and 4.29% of incorrect predictions by the RF-based and SVM-based
original classifier were corrected by their respective MR-augmented classifiers.
This explains how the improved performance of the MR-augmented classifiers
was obtained: the rectification stage can rectify misclassifications (mainly false
negatives) made by the original classifiers, albeit at the expense of comparatively
fewer incorrect rectifications of true negatives.

The superior rectification performance of the MR-augmented classifiers on
the Artcode examples shows that Artcode blocks are more likely to preserve
the topological structure than non-Artcode blocks. Therefore, although the two
MRs may violate the properties of Artcode images, the aggregated predictions
of image blocks of Artcodes are more informative than the predictions of the
entire image. This property may not be preserved for non-Artcodes, which have
no predefined topological characteristics. The MR-augmented classifier adjusts
prediction results in the rectification stage only if the new evidence collected
is strong enough to accept, which is determined by comparing the aggregated
likelihood of the predictions of image blocks with the given thresholds t1 and t2.
Further discussion about how the MR-augmented classifier works is presented in
the next section.
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Figure 11: Image blocks generated according to separation and occulsion.

5.2. Discussion
As explained in Section 4.4.2, the MR-augmented classifiers obtained better

recall and precision results than the original classifiers (with approximately
10-15% improvement). Recall and precision focus on the positive class (Artcode),
with higher values indicating more confident and complete predictions of Artcodes,
while some Artcode misclassifications by the original classifier were corrected
by the MR-augmented classifier in the rectification stage. The decision as to
whether or not to rectify was based on the ρ-value, as given in Equation 4, a
measure of aggregated likelihood that an input image belongs to the Artcode
class (Section 3.3).

As described in Section 3.1, the Separation and Occlusion MRs are based
on the assumption that Artcode image blocks are more likely to be classified as
Artcode than non-Artcode. The effectiveness of the two MRs was investigated
by examining the prediction and rectification of image blocks for those images
adjusted by the MR-augmented classifier (the red and blue points in Figure
10). The non-Artcodes that were incorrectly adjusted were the images that
were very similar in topology to Artcodes (containing a number of connected
regions), and had repeated geometrical structures, such as the 2nd and 4th
images in Figure 5. Repeated structures enabled the separate image blocks to
inherit more topological structure from the original image, making their internal
structures similar to those of Artcodes. Occlusion and separation sometimes
strengthened their topological structure, because occlusion and separation may
remove auxiliary structures such as background imagery. Accordingly, the MR-
augmented classifiers are sensitive to this kind of Artcode-like images (such as the
4th image in Figure 5) — images that are topologically very similar to Artcodes
— which may result in incorrect rectifications.

Likewise, if separation and occlusion completely break the topological struc-
ture, Artcodes would be incorrectly rectified as non-Artcode by the MR-augmented
classifiers. Fortunately, Artcodes have a topological structure that includes a
number of connected regions, and often include several repeated structures with
the same topology (but different geometry). These two properties enable Artcode
image blocks to very likely retain the original topology, even after separation
and occlusion. An example is presented in Figure 11 for illustration: The image
(the 5th in Figure 6) is split into eight blocks by intersecting with the eight
separation and occlusion masks shown in Figure 4 — the left four image blocks
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in Figure 11 are from separation, and the right four are from occlusion. Almost
all of these blocks retain a complete topological structure: they remain relatively
complete Artcodes. Therefore, the MR-augmented classifier, based on the ag-
gregated probability (ρ-value) of image blocks belonging to the Artcode class,
can accumulate more information about this Artcode image than the original
classifier, thereby achieving better overall predictions.

The two MRs are based on fundamental image processing operations, with
the underlying rationale being whether or not the image blocks are able to
retain the original structure’s properties after transformations. Artcodes, as
topological markers enabling redundancy, naturally possess this property. The
conventional use of MRs in metamorphic testing draws on intrinsic properties
of the SUT. Likewise, the MRs used in Artcode classification also make use
of intrinsic characteristics of Artcodes and non-Artcodes. Because domain
characteristics may differ from task to task, and the repeated structures used in
our two identified MRs may not exist in some contexts, it is likely that these
MRs may not be directly applicable in some other image classification tasks.
Nevertheless, this study has shown that MRs do have the potential to be used
in image classification tasks (or even more general machine learning tasks),
especially for those tasks with distinctive structural properties among different
categories of learning data.

6. Conclusion

This paper has reported on an examination of two previously identified MRs
to enhance image classification, using them not only to improve performance,
but also to explore verification of the classifier. Considering the uncertainty of
classification algorithms, the verification exploration involved four statistical
tests: one-way ANOVA, t-test (for unequal variances), Kruskal-Wallis test, and
Dunnett’s test. An effective and efficient MR-augmented classifier that uses SVM
as the classification method, Aug-SVM, was introduced, and was compared with
the Aug-RF classifier. The paper also examined the MR-augmented classification
framework (Xu et al., 2018), and presented a method that could be applied to
related image classification problems for verification and enhancement.

Our experimental studies showed the applicability of ANOVA in conjunction
with t-test (for unequal variances), ANOVA_ranks, and Dunnett’s test to explore
verification of the classifier based on the two MRs. The improved performance
was not affected by the chosen classification method, demonstrating the potential
to apply MT theories and techniques to general machine learning applications.
Among the four classifiers in this paper (Ori-RF, Aug-RF, Ori-SVM, and Aug-
SVM), Aug-SVM obtained the best performance in terms of both the evaluation
metrics, and the computational efficiency. The experimental results also showed
the essential role of the two thresholds, t1 and t2, for tuning the MR-augmented
classifier performance. In addition, a theoretical analysis and discussion about
how the enhanced performance was achieved by the MR-augmented classifiers
was presented.
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Our future work will include further examination of other parameters, includ-
ing the number of masks (n andm) for the separation and occlusion, the values in
the weight vector w, and the values of thresholds t1 and t2. A potential approach
for choosing suitable values of t1 and t2 will be to examine the relationship
between the thresholds and the centroids of ρGa

and ρGn
. Because the work

presented here has only examined two straightforward image transformations for
the MRs, exploring other possible MRs that draw from other transformations
for general image classification tasks, will also form part of our future work.

Although the two MRs employed in this work were straightforward, the
results are promising, and clearly demonstrate the feasibility of MRs being used
to augment classifiers. In order to fully investigate this new research area, more
theoretical and practical work needs to be conducted, including exploration of
connections between MRs and data augmentation, and case studies to examine
the application of MRs to other well-studied image classification tasks (such
as face and object detection) and even more broad machine learning problems.
The concept of verifying machine learning software (the classifier in this paper)
using MRs is still in an early stage of development, and more effort is also
needed in the future. The proposed verification exploration based on ANOVA,
t-test (for unequal variances), ANOVA_ranks, and Dunnett’s test, attempts
to use statistical analyses to test probabilistic algorithms such as classification
models: Further work is necessary to extend this approach to verification, and
fully explore its applicability.
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