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ABSTRACT 
Computational Thinking (CT) has been investigated from different perspectives. This research aims to investigate how 
secondary school girls perceive CT practices -- the problem-solving practices that students apply while they are engaged in 
programming -- when using the micro:bit device in a collaborative setting. This study also explores the collaborative 
programming process of secondary school girls with the micro:bit device. We conducted mixed-methods research with 203 
secondary school girls (in the state of Victoria, Australia) and 31 mentors attending a girls-only CT program (OzGirlsCT 
program). The girls were grouped into 52 teams and collaboratively developed computational solutions around realistic, 
important problems to them and their communities. We distributed two surveys (with 193 responses each) to the girls. 
Further, we surveyed the mentors (with 31 responses) who monitored the girls, and collected their observation reports on 
their teams. Our study indicates that the girls found “debugging” the most difficult type of CT practice to apply, while 
collaborative practices of CT were the easiest. We found that prior coding experience significantly reduced the difficulty 
level of only one CT practice - “debugging”. Our study also identified six challenges the girls faced and six best practices 
they adopted when working on their computational solutions. 

Keywords: Computational thinking practices, girls, education, K-12 

1 Introduction 
Computational Thinking (CT) has been widely researched due to its benefits for public services (e.g., education and 
healthcare), business sectors (e.g., financial markets), and society generally [4, 5]. The current research on CT has mostly 
focused on integrating CT into academic disciplines (e.g., biology [6] and mathematics [7]), the K-12 curriculum (e.g., [6, 
8]), and developing programming environments and tools to promote CT skills (e.g., [9, 10]). Some research also examines 
and measures the learning outcomes of learners in three dimensions of CT: computational concepts, computational 
practices, and computational perspectives [10-12]. Others investigated the (frequency of) learning barriers (e.g., 
programming syntax, debugging) that students encounter in programming courses in academic settings and coding clubs 
(e.g., [13, 14]). According to Lye and Koh [10], most of the reported research in this area has focused on assessing the 
learning outcomes in terms of computational concepts such as the works done by [15, 16], but there are very few studies 
examining and assessing the learners’ ability to develop and apply computational practices [17], and computational 
perspectives [18]. Reviews [3, 10, 11] have emphasised that there is a need for more empirical research to examine 
computational practices and perspectives in K-12 settings. This can be mainly justified by the fact that computational 
practices and perspectives are bigger contributors than computational concepts in achieving the main goal of introducing 
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CT through programming in K-12 settings, providing students with a set of skills (e.g., problem-solving skill) that they can 
leverage in their daily lives [10, 19, 20]. Furthermore, the existence of different definitions of CT in the literature implies 
that little consensus exists regarding the nature and the relative importance of particular CT practices [21, 22]. For example, 
young learners may individually develop one CT practice (e.g., debugging) within a particular period of time [23], whilst 
other CT practices such as collaborative problem-solving require mutual engagement and develop gradually over time, 
which might also be influenced by broader sociocultural factors [24]. This also indicates that learners experience different 
levels of difficulty when developing and applying particular CT practices [23, 25]. Despite the ongoing call to research CT 
practices, there have been few rigorous empirical investigations into CT practices and even less (if any) into the difficulty 
level of CT practices from the learners’ perspective in K-12 settings [11], especially from the viewpoint of girls. 

The importance of CT practices in daily life and a wide range of disciplines and professions has motivated educational 
researchers, governments, and practitioners to attempt to achieve “CT for all” goal [26, 27]. A growing number of 
interventions in the forms of CT programs, coding clubs, or computer science classes have been designed and delivered to 
move toward full participation in a computational world. Although such interventions target both men and women, lower 
representation by women continues to be an issue in the educational and professional worlds of computing and STEM fields 
[9, 28, 29]. While an important body of literature (e.g., [25, 30, 31]) shows that there is overwhelmingly more similarity than 
difference between girls and boys in terms of skills, competence, and achievement in computing, several factors deter girls 
from pursuing, choosing, and persisting in computing education and career paths [32]. These factors are varied but can be 
generally categorised into psychological factors (e.g., gender stereotypes such as “girls lack computing skills” or “people in 
the computing arena are geeky”), social factors (e.g., the influence of parents and peers and a lack of female role models), 
and structural factors (e.g., exposing girls to computing environments and curriculums and learning pedagogies that are 
uncomfortable for them) [32-35]. The above factors can significantly affect girls' perceptions, confidence, and interests in 
computing [32, 34]. A promising approach to attempt to address this challenge is girls-only after school interventions [26, 
32, 36-38]. In contrast to mixed-gender computing education programs, girls-only education programs provide safer and 
more comfortable environments for girls to develop intention and a positive view towards computing and boost their 
confidence in computing [32, 33, 35, 39]. The question of when and how to present computational opportunities to women 
to increase participation is of interest. Research [28, 40, 41] suggests that the optimal time for cultivating girls' interest in 
STEM and computing is during late childhood and early adolescence, as they have more authority to take the opportunities 
they are interested in [42]. Furthermore, it is argued that exposure of women to developing computational ideas and 
solutions to realistic problems in social and collaborative contexts can be crucial motivating factors for them to pursue a 
STEM and/or computing education or career in the future [32, 37, 43, 44]. 

This work aims to understand how CT practices are perceived by secondary school girls (14-16 years old) when developing 
and implementing computational ideas and solutions with the micro:bit device1, in a problem-based learning context in a 
collaborative setting [45]. More specifically, our research (a) investigates how secondary school girls perceive the difficulty 
level of CT practices including planning, decomposition, abstraction, generalization, algorithm, testing and debugging, and 
collaboration, which are more likely to emerge and be evaluated while students engage in programming activities; (b) 
investigates the impact of secondary school girls’ prior coding experience on the perceived difficulty level of CT practices; 
(c) describes the challenges and barriers that secondary school girls experience when developing and implementing 
computational ideas and solutions; and (d) identifies the practices and techniques that secondary school girls learn, develop, 
and apply to overcome these challenges and barriers.  

To that end, we propose the following research questions: 

RQ1. What are the perceptions of secondary school girls on the difficulty level of CT practices when doing collaborative 
programming with the micro:bit? 
RQ2. Is there a relationship between secondary school girls’ prior coding experience and their perceptions of the difficulty 
of CT practices? 

RQ3. What challenges do secondary school girls face when collaboratively implementing computational ideas with the 
micro:bit? 
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RQ4. What practices do secondary school girls employ to overcome these challenges? 

We performed mixed-methods research, which collected data from the participants of a girls-only CT program (i.e., it is 
referred to as the OzGirlsCT program in this paper) to answer our research questions. a) We distributed two surveys (with 
193 valid responses each) to 203 secondary school girls who participated in the OzGirlsCT program. b) We conducted 
another survey with 31 valid responses from 31 mentors who guided and closely monitored the girls during the OzGirlsCT 
program. 3) We asked the mentors to provide their observations (i.e., in total, 52 observation reports) on the work habits, 
behaviours, and experiences of the girls in their teams during the OzGirlsCT program. 

The main findings of this study are: (1) our participants (i.e., secondary school girls and mentors) quantitatively indicate 
that “debugging” is the most difficult type of CT practice to apply, followed by “abstraction”. (2) Collaborative practices of 
CT are the easiest practices to apply. (3) Prior knowledge and experience of coding can significantly reduce the difficulty 
level of “debugging”; (4) The challenges that the secondary school girls face when developing and implementing 
computational solutions with the micro:bit can be attributed to “incorporating idea into the micro:bit”, “code debugging”, 
“code complexity”, “the micro:bit limitations”, “personality traits”, and “coding experience”; and (5) the main practices 
employed by the girls to overcome the challenges are “feedback-driven development”, “establishing a collaborative and 
supportive culture within the team”, “simple design, better code”, “predictive thinking”, “prioritising quantity over quality”, and 
“leveraging external resources”. 

The key contributions of this study are summarised as follows: 

§ A relatively large-scale study that employs both quantitative and qualitative analyses to understand how secondary 
school girls perceive CT practices through collaborative programming with the micro:bit; 

§ A better understanding of the difficulty level of CT practices; 
§ An empirical investigation into the collaborative programming process of secondary school girls in their early 

efforts in programming; 
§ Concrete and actionable implications for educational researchers, practitioners, and policymakers. 

This paper is organised as follows: In Section 2, we describe the background and related work. Section 3 details our research 
method, and our findings are reported in Section 4. Our discussion and reflection on the findings are presented in Section 
5. Finally, Section 6 summarises our study. 

2 Background and Related Work 
This section reports some background for the research presented in this study, along with a brief discussion of the related 
studies. 

2.1 Computational Thinking Definition and Scope 
Computational Thinking (CT) is increasingly acknowledged as a set of fundamental skills to nurture, equip, and inspire the 
next generation for the workforce of the digital era [46-48]. The idea behind CT was introduced by Seymour Papert [49] and 
then popularized by Jeannette Wing [20]. Despite being researched for almost two decades, there is no single, overarching 
definition of CT, and little consensus exists as to what skills and competencies constitute CT [3, 12, 50]. Whilst Aho [51] 
conceptualises CT as “the thought processes involved in formulating problems so their solution can be represented as 
computational steps and algorithms”, CT is viewed by Cuny et al. [50] as a skill set which everyone should develop to 
formulate and solve problems like a computer scientist. The promising benefits of CT have stimulated widespread interest 
among educational researchers, practitioners, and policymakers to integrate and implement CT into STEM (Science, 
Technology, Engineering, and Mathematics) curricula and K-12 education [10, 52, 53]. CT is referenced as a core component 
of STEM disciplines, in particular, the Computer Science (CS) discipline [9, 26]. In addition to the efforts to define CT, 
Brennan and Resnick [12] developed a framework for operationalising CT in K-12 education. The framework has three 
dimensions: computational concepts (i.e., the concepts such as sequences and conditional statements that learners use in their 
program), computational practices (i.e., the problem-solving practices such as decomposition and debugging that learners 
develop and apply while they are engaged in programming), and computational perspectives (i.e., this dimension includes 
the perspectives that are formed by learners about themselves and the world around them). 
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2.2 Computational Thinking Practices and Computing Teaching 
As noted in Section 2.1, there is no agreement on what practices matter in CT. Some researchers use different terminology, 
such as CT skills or CT competencies, to refer to CT practices. Brennan and Resnick [12] suggest that the four core practices 
in CT are “abstracting and modularizing”, “reusing and remixing”, “testing and debugging”, and “being incremental and 
iterative”. Grover and Pea [9] refer to a broader list of skills than of Brennan and Resnick [12] as CT skills: “abstractions 
and pattern generalizations”, “systematic processing of information”, “symbol systems and representations”, “algorithmic 
notions of flow of control”, “structured problem decomposition (modularizing)”, “iterative, recursive, and parallel thinking”, 
“conditional logic”, “efficiency and performance constraints”, and “debugging and systematic error detection”. On the other 
hand, Korkmaz et al. [54] consider creativity, critical thinking, and cooperativity as CT practices. Still, others refer to 
communication and working effectively in teams as key practices in CT [16, 55, 56].  

Researchers have investigated the process of developing and acquiring CT skills from different perspectives such as age, 
gender, and pedagogical strategies. Atmatzidou and Demetriadis [25] explored how generalization, algorithms, abstraction, 
decomposition, and modularity skills are developed in the context of robotics among students grouped based on age and 
gender. Whilst the study found that age and gender did not impact the development level of CT skills, it has shown that 
girls needed more time and effort to achieve the same skill level. Similarly, Durak and Saritepeci [30] indicated that the 
gender of students did not affect their CT skill levels. Doleck et al. [57] empirically showed that there was no significant 
association between academic performance and four CT skills, including creativity, critical thinking, algorithmic thinking, 
and problem-solving, but their study only found that cooperativity as a CT skill had a negative relationship with academic 
performance. In another study [30], it was found that these four CT skills could be highly predicted by academic success in 
mathematics classes. From the teacher’s perspective, Günbatar [58] evaluated the same set of CT skills and found that in-
service teachers were significantly better in the development of this set of CT skills compared to pre-service teachers, except 
for problem-solving. Lewis [59] conducted a case study to understand the behaviour of sixth-grade students in the 
debugging process. He observed that a key competence in debugging is identifying and paying attention to the important 
elements of code state. He also found that having domain knowledge and such competence mediates the debugging process.  

Aivaloglou and Hermans [14] studied teachers' perspectives about code clubs and revealed that debugging and abstract 
thinking were the most frequent programming learning barriers for students attending code clubs. The study [14] also found 
that girls were better than boys in collaboration and communication skills. In another study [13], Dorn et al. collected data 
about learning barriers in programming from teachers and computer science first-year students before the first lecture 
started. It was found that “way of thinking” (e.g., abstract thinking, complex thinking, logical thinking) was the most 
common barrier perceived by the students. At the same time, the teachers believed that “programming language/syntax” 
and “diligence/commitment/stubbornness” were the most common challenges. However, both groups indicated that 
debugging was difficult but less frequently mentioned by both groups. 

Some studies (e.g., [60-62]) indicated the positive impact of prior coding/computing experience on students' performance in 
computer science courses. Alvarado et al. [60] observed this positive impact on student grades in introductory and advanced 
courses in computer science, revealing students with pre-college computing experience performed significantly better than 
their peers with less or without experience in these courses. Wilcox and Lionelle [61] achieved the same findings for the 
introductory computer science course but found that the impact of computing experience in advanced courses was gradually 
diminished. On the other hand, Durak and Saritepeci [30] found that the experience of secondary and high school students 
using ICT did not impact their CT skill levels. 

Although CT skills are usually introduced and evaluated through computer programming activities in schools, several 
studies have claimed that the unplugged approach (i.e., when digital devices are not used) is an effective approach for this 
purpose [17, 63, 64]. By investigating pattern recognition, algorithmic design, decomposition, and abstraction, Brackmann 
et al. [63] showed that learners who participated in the unplugged activities developed this set of CT practices significantly 
more than those who were not engaged with these unplugged activities.  

Our work is different from the existing studies: (1) our findings come from surveying 193 secondary school girls and a survey 
and an observation report completed by 31 mentors rather than only school students [59], teachers [14], or university students 
[13, 60, 61]. This study [13] collected data from both students and teachers; however, it targeted first-year university 
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students, not secondary school students. (2) The studies [13, 14, 59] either focused on one CT practice or a few particular CT 
practices (e.g., debugging, abstract thinking) and indicated that how frequent they are reported as a learning barrier in 
programming among many other types of learning barriers (e.g., programming syntax). Our study, however, examines the 
difficulty level of 12 CT practices (RQ1). (3) The studies [60, 61] focused on the impact of prior coding/computing experience 
on student grades in computer science courses. In contrast, our work assesses the impact of coding experience on the 
difficulty level of 12 CT practices (RQ2). (4) Finally, our study provides a rigorous exploration and analysis of the 
programming process of secondary school girls with the micro:bit device from the perspective of the challenges that they 
may face in their early programming efforts and the best practices that they develop and apply to overcome these challenges 
(RQ3 and RQ3). 

For the sake of consistency and readability, we adopted the term CT practice, as suggested by Brennan and Resnick [12], 
instead of CT skill or CT competence in this study. 

2.3 Problem-based Learning 
Recently, researchers and practitioners have shown more interest in designing learning environments that provide young 
learners an opportunity to learn and develop CT concepts and practices through working on problems that are authentic 
and relevant to their lives and their interests [10, 43]. This consideration is also stressed by researchers from other disciplines 
[65, 66]. Tissenbaum et al. [43] referred to this trend as computational action, which can lead to more intellectual engagement 
of the learner in problem-solving activities [67]. Whilst Hsu et al. [68] revealed that CT can fit into many learning strategies 
such as “problem-based learning”, “project-based learning”, and “game-based learning”, we found a strong synergy between 
problem-based learning (PBL) and this new trend in CT, as PBL deals with ill-structured, realistic problems that have a 
significant impact on learners’ lives, and chose to use this learning strategy for the OzGirlsCT program. 

PBL is a type of experiential learning in which the learning process of students is facilitated by teachers [45]. Given the 
increasing importance of the ability to both identify problems and provide solutions to solve the problems in the 21st century, 
PBL as an instructional approach situates learning in real-world problems and offers the potential to help learners identify 
real-life, ill-structured problems, develop solutions, and construct knowledge [69]. Learners work in collaborative groups 
and take responsibility for their learning in the PBL approach. During the learning process, learners are responsible for 
identifying the learning issues (i.e., their insufficiencies and strengths in resolving a realistic, ill-structured problem). They 
have to discover what new knowledge they need to acquire to fix the problem (i.e., known as “self-directed learning”). This 
necessitates an extensive reflection on the knowledge being constructed and the effectiveness of the solutions proposed and 
employed [70]. In PBL, teachers (also known as tutors) only facilitate and activate the collaborative learning process and do 
not provide the information related to the problem [45, 69]. Hmelo-Silver [45] asserts that PBL can promote the construction 
of flexible knowledge and the development of skills such as problem-solving, collaboration, critical thinking, and self-
directed. 

2.4 Micro:bit 
Programming environments and languages for education undergo tremendous change, and every year new environments 
and tools emerge. This compels educational researchers to investigate if and how the emerging learning environments and 
tools affect the learning outcomes of learners and the difficulties that they may experience when developing certain CT 
skills [3, 71]. The micro:bit is a “RAM-based programmable Internet of Things (IoT) device” created by the BBC to train 
children about programming and preliminary computing principles [72, 73]. The micro:bit was released formally in 2016 and 
has been used by more than 20 million children in 60 countries [74]. It is a low-cost, pocket-size device (4×5 cm) with an 
ARM Cortex-M0 Processor to execute the programs. The micro:bit device includes various features such as a 256KB flash 
memory, an accelerometer, 16KB RAM, two programable buttons, one reset button, and 25 programmable LEDs organised 
in a 5x5 grid (See Figure 1) [74]. There are three options to write a program with the micro:bit: Blocks, JavaScript, and 
Python. Users can create programs using a block-based programming language, dragging and dropping blocks in a logical 
order. Microsoft MakeCode2 and MicroPython3 are two official text-based code editors of the micro:bit. The former provides 
users with JavaScript programming experience, and the latter supports Python. These features characterise the micro:bit as 
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a hybrid block/text programming environment [71], in which users can switch back-and-forth between the block-based and 
text-based editors. A wide range of educational projects can be implemented using the micro:bit device, ranging from 
developing classical and interactive games (e.g., rock, paper, scissors game), to building prototypes to track, monitor, and 
simulate objects in environments (e.g., a prototype to monitor how climate change affects animals), to helping people with 
special needs (e.g., a prototype tool to support autistic people in communicating with others) [74, 75]. 

 
Figure 1. The front and back of the micro:bit device (taken from [74]) 

Most of the previous investigations of the micro:bit device are focused on fostering learners’ enthusiasm and interest in 
computing and programming [73, 76], but no research has explored how learners develop and apply CT practices with the 
micro:bit as a hybrid block/text programming environment. In this study, we leveraged the micro:bit device and Microsoft 
MakeCode as our introductory programming environment for two reasons: 1) Whilst the micro:bit provides learners with 
hands-on experience of coding similar to dominating programming environments around CT (e.g., Scratch4), it also engages 
novice users with ubiquitous computing through providing insights into embedded systems and enabling them to 
understand how hardware and sensor-based devices work [77]. 2) In contrast to the existing devices such as Arduino5 and 
Raspberry Pi6, the micro:bit is specifically created for educational purposes. The micro:bit is intentionally designed to have 
fewer difficulties for novice programmers to learn and construct embedded systems (e.g., programmers do not require to 
run a full operating system) [77].   

3 Methodology 
The OzGirlsCT program was the first step of the “Women in STEM and Entrepreneurship” (WISE) program. The WISE 
program was a three-step education program with the following objectives: (1) understanding how girls develop and perceive 
CT; (2) developing a technology-focused entrepreneurial intention amongst girls [78]; and (3) increasing awareness of girls 
in STEM. The WISE program participants were Year 10 secondary school girls in the state of Victoria in Australia in 2019. 
Their ages ranged from 14 to 16. We refer to them as “girls” or “students” in this paper. This study only focuses on the 
OzGirlsCT program. In Australia, secondary schools last six years, and students should attend until age 17. Year 10 is the 
beginning of senior secondary school. 

3.1 OzGirlsCT Program  
The OzGirlsCT program involved three one-day workshops. We organised these workshops in three days in 2019. In total, 
203 girls from 44 secondary schools, grouped into 52 teams of 3-4 students, participated in three workshops (i.e., each team 
attended only one workshop). Each team was mentored by a “big sister” university mentor (hereafter “mentor”). 

3.1.1 OzGirlsCT Program recruitment 

3.1.1.1 Secondary School Girls 
Information about the free OzGirlsCT program was sent to Victorian schools, and the schools advertised the OzGirlsCT 
program to their students through their internal communication channels. The schools used a range of methods to recruit 
participants within their schools. In some schools, teachers nominated students, while in others, students were able to self-
                                                             
4https://scratch.mit.edu 
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nominate to the OzGirlsCT program. The students in each team were from the same school, and the formation of the teams 
was finalised by the schools. The friendship level of the students in the teams varied considerably, from those who did not 
know each other at all, to some of the team members in a team having close friendships. Initially, each school was able to 
send just one team; however, as we had additional capacity after the initial recruitment, schools that had requested 
participation from more than one team were able to send a second team. 

3.1.1.2 Mentors 
Specifically, we sought women students at Monash University to recruit mentors for the OzGirlsCT program. We first 
designed an online Expression of Interest (EOI) form and advertised the EOI form through Monash University’s newsletter, 
as well as sent it to the mailing list of IT women students at Monash University. In the EOI preamble, we described the 
purpose of our study and the characteristics we were looking for in potential mentors. Specifically, we sought women 
students who obtained or were doing a STEM-related degree at Monash University. They also had to have a basic level of 
programming skills. 66 women students completed the EOI. The next step involved interviewing the 66 candidates. 14 out 
of the 66 candidates did not attend the interviews. During the interviews, we asked the interviewees to describe the qualities 
and characteristics that make a good mentor for young girls. Then, we sought demographic information about the 
interviewees, including programming experience and mentoring, tutoring, or volunteering experience. We selected 31 
women students as mentors. The main criteria used to select the 31 mentors were communication skills, personal 
characteristics (e.g., friendly and confident), tutoring and volunteering experience, and programming experience.  
Subsequently, we arranged a one-day training workshop to introduce the mentors to their responsibilities during the 
OzGirlsCT program and describe the OzGirlsCT program's objectives. Furthermore, mentors were trained on how to work 
and program with the micro:bit. Each mentor guided only one team per OzGirlsCT workshop. However, a few mentors 
guided teams across multiple workshops.  

3.1.2 Pre-OzGirlsCT Program Activities 
The only pre-requisite for entry into the OzGirlsCT program was the student’s year level at school. We did not expect the 
students to have prior programming experience. A month before OzGirlsCT program workshops started, we provided 
introductory pre-work for the micro:bit to attempt to bring all students to the same level. More specifically, each student 
was given a micro:bit and encouraged to read the eBook created by our research team and do the exercises in the eBook. 
They were given resource links so that they could explore the micro:bit website [74] and a range of other tutorials and 
websites to learn about the micro:bit device features and how to code with the micro:bit. The eBook included several sample 
projects, tutorial videos, and exercises. Further, the student teams were also introduced to their mentors at this time and 
were encouraged to communicate with their mentors and ask any questions (e.g., debugging) regarding programming with 
the micro:bit, as they completed the pre-work. While we did not formally check that the activities were completed, students 
were told that they must complete all the required activities before their workshop, and were supported by their mentors 
to do so. 

3.1.3 OzGirlsCT Program Activities 
As described in Section 3.1.2, each student was given a micro:bit before the OzGirlsCT program started, and each student 
brought their micro:bit to the workshop. Students were also requested to bring their own laptops. Each workshop started 
with familiarizing students with the concepts of IoT. Next, students were asked to brainstorm the problems that they had 
in and/or observed around their everyday life. Following the suggestion proposed by Tissenbaum et al. [43], students were 
not given a predefined problem or task (e.g., design a game based on predefined specifications), but were encouraged to 
develop computational ideas and solutions around realistic problems that were important to them and their communities. 
The members of each team then worked together to decide on which problem to focus on. While we encouraged team 
members to collaborate with each other, teams were responsible for choosing their working style and collaboration strategy 
as we followed problem-based learning. The difficulty levels of the problems chosen by the girls widely varied. For example, 
one team decided to improve the safety of cyclists at night, and another team was concerned about distracted students in 
class. The next step included completing the following problem statement for the identified problem: “We believe that [the 
identified problem] … is a problem for [who] … because [reason] …”. Then, teams had to propose feasible solutions to solve 
their identified problem. The proposed solutions needed to have an IoT component. After choosing a solution to the 
identified problem, teams were requested to complete the statement: “We could solve this problem by [solution idea] … and 
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could demonstrate this on the micro:bit by [prototype idea] …”. In the next step, teams utilised the micro:bit device to 
prototype the proposed ideas. We encouraged the girls to verify their ideas, statements, and solutions in all steps by seeking 
feedback from other teams. Finally, each team had to present a business pitch discussing their products. 

3.2 Data Collection 
To answer the research questions introduced in the Introduction section, we conducted a mixed-methods empirical study 
with a concurrent triangulation strategy, characterised by employing different data collection methods concurrently to 
confirm, cross-validate, and augment findings [79]. We collected data from the participants of the OzGirlsCT program using 
three surveys and observations. Figure 2 shows an overview of our research method. In the first step, a survey protocol was 
developed from the literature, grey literature, and the practical programming experience of the research team to collect data 
from students. Unlike formal literature, such as journal articles, grey literature refers to a body of materials such as 
government reports that have not been published and/or controlled by commercial publishers [80]. In addition, a survey 
protocol and an observation protocol were developed to collect data from mentors. In the next step, we ran two surveys to 
collect the students’ perspectives on CT from different perspectives. Mentors were also asked to complete a survey and 
submit their observation reports. 

 

Figure 2. Research Method Overview. 

3.2.1 Pre- and Post-workshop Student Surveys 
Protocol: We designed two surveys to collect data around the background, challenges, behavioural patterns, practices, and 
experiences of girls during the OzGirlsCT program. We carried out the first survey (i.e., pre-workshop survey) at the 
beginning of the OzGirlsCT workshops. In total, the pre-workshop survey consisted of 33 questions. In this paper, we only 
used three questions of the pre-workshop survey, which are demographic questions around prior coding experience, type 
of school, and class performance (e.g., “Do you have any prior computer coding-related experience? If so, how long?”). The rest 
of the pre-workshop survey questions sought the students’ skills and interest in entrepreneurship and STEM. At the end of 
each OzGirlsCT workshop, students were asked to fill out a post-workshop survey with 40 questions. All questions, except 
one, were mandatory. Following the high-level objectives of the WISE program, these 40 questions focused on 
entrepreneurship (e.g., entrepreneurial inspiration), STEM, and CT. The following list details the questions of the post-
workshop survey which were used in this study: 

• CT practices. This study focused on a set of CT practices, including planning, decomposition, abstraction, 
generalization, algorithm, testing and debugging, and collaboration. These practices are more likely to emerge and be 
evaluated when CT is introduced through programming activities [18, 22, 81]. We designed 12 items to collect 
students’ views on these CT practices, using age-appropriate terminology to indirectly measure these practices. 

Pre-workshop survey 
distributed to 203 students 

Post-workshop survey 
distribution to 203 students 

Mentor survey distribution 
to 31 mentors 

Observation protocol 
distribution to 31 mentors 

31 valid 
responses 

52 observation 
reports 

193 valid 
responses 

Mentor Data 

Literature review 

Multi-vocal literature 
review 

Student survey 
instrument 

Mentor survey 
instrument 

Observational 
guide 

Pre-study Data Collection 

Qualitative Data 
(RQ3 and RQ4) 

Findings 

Data Analysis 

Quantitative Data 
(RQ1 and RQ2) 

Students Data 

197 students 
participated 

193 valid 
responses 

197 students 
participated 

31 mentors 
participated 

31 mentors 
observed 52 

teams 
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Table 1 presents these CT practices, their respective items, and sources. We asked students to rate the difficulty of 
the 12 items for them (i.e., from very difficult to very easy).  

• Challenges and practices. Through two mandatory open-ended questions, we asked students to share any 
challenges that they faced when implementing their ideas with the micro:bit and the practices or techniques that 
they used to overcome these challenges.  

• General comments. Through an optional open-ended question, we let students share any general comments 
about the OzGirlsCT program. 

Participants: The participants in the pre- and post-workshop surveys were the same Year 10 girls who attended the 
OzGirlsCT program workshops. Overall, 203 students participated in the workshops. Students came from different types of 
schools - public, private and Catholic, and most had good academic records as judged by their self-reporting. Whilst 
completing the surveys was voluntary, 197 out of 203 students completed each survey. We removed 4 responses from each 
survey because of the invalid nature of the responses (e.g., when we were not able to match a student’s responses in the 
post-workshop survey to the pre-workshop survey due to Survey ID entry errors) [82]. In the end, we received 193 valid 
responses for each survey (See Figure 2). 

Table 1. CT practices, their respective items (statements), and sources 
CT Practices Item(s) Sources 
Planning CTP1. Planning an idea before implementing it with the micro:bit [11, 83] 

Decomposition CTP2. Breaking down an initial idea into smaller, more manageable steps/parts [25] 

Abstraction CTP3. Leaving out the irrelevant detail/information in the description of an idea [25] 

Generalization CTP4. Developing a general solution that can be applied to other problems in the future [25] 

Algorithm CTP5. Creating a series of ordered steps to implement an idea with the micro:bit [25] 

CTP6. Exploring diverse solutions to an idea, until the ideal solution is achieved 
 

Testing and 
Debugging 

CTP7. Testing code frequently to check if it works [10, 11] 

CTP8. Identifying errors in code 
 

CTP9. Finding a solution to fix the identified errors in code 
 

Collaboration CTP10. Giving feedback to teammates and making suggestions to improve idea/code [16, 55, 56] 

CTP11. Working collaboratively with team members 
 

CTP12. Reaching a consensus in group decisions   

3.2.2 Mentor Survey 
Protocol: The data collected from the post-workshop survey is based on students’ self-reporting and self-assessment, which 
might be unreliable [84]. To alleviate this limitation, we deployed an online survey with a similar goal of that of the post-
workshop student survey to collect mentors’ perspectives on the challenges, practices, and experiences of students during 
the OzGirlsCT program. For this study, mentors were asked to indicate the difficulty level of 12 CT practices for the team(s) 
that they mentored. These 12 CT practices were exactly the ones that were asked in the post-workshop student survey (See 
Table 1). Next, mentors shared the challenges that students faced when developing and implementing their ideas with the 
micro:bit and the practices used by students to address those challenges. We closed the mentor survey by asking mentors 
to share any comments and feedback they may have about the activities conducted during the OzGirlsCT workshops. 

Participants: The participants in the mentor survey were the mentors recruited for the OzGirlsCT program (See Section 
3.1.1.2). Mentors were asked to respond to the mentor survey at the end of the final OzGirlsCT workshop they participated 
in, as they may have participated in multiple workshops. We received 31 valid responses from the mentors.  

3.2.3 Mentor Observations 
Protocol: Although a great deal of data can be gathered through surveys, the data gathered from surveys may be subjective 
and include potential biases such as social desirability [85]. Hence, we used observation to collect actual and firsthand 
accounts about the work habits, behaviours, and interactions of students when developing and implementing their ideas 
with the micro:bit. Moreover, we wanted to identify the challenges and practices which students were unaware of or unable 
to communicate through the pre- and post-workshop surveys [85]. Considering the numbers - 203 students grouped into 52 
teams, it was not possible for us, as the authors of this paper (the researchers), to conduct a participant-observation study 
[86]. Therefore, we asked mentors to act as observers as well. During the one-day training workshop for mentors (discussed 
in Section 3.1.1.2), we instructed mentors about observation techniques. From the data collection perspective, it was a semi-
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structured observation [85]. Whilst we provided an observation protocol to guide mentors on what to observe and collect, 
they were free to collect any data that they perceived as important. It is worth noting that mentors were not directly involved 
in their team’s problem-solving process - their role was to guide and facilitate. The observation was accomplished with the 
think-aloud technique as students were asked to think out loud (i.e., verbalize their thought process) while working on their 
ideas [79]. Since students may have sometimes forgotten to verbalize, mentors, as the observers, reminded them occasionally 
(e.g., every 15 minutes) to continue thinking out loud. The observation happened at the team level. Mentors submitted their 
team observation at the end of each OzGirlsCT workshop. It should be noted that as some mentors guided more than one 
team (each team attending a different OzGirlsCT workshop), the number of observation reports correlated to the number 
of teams. In the end, we collected 52 observation reports from mentors. The following questions were central to the 
observation protocol: 

• Describe your observations on the team’s motivations, thoughts, and assumptions. 

• Describe your observations on how the members of the team interacted, communicated, and collaborated. 

• Describe your observations on the team’s work habits. 

• Describe your observations on the issues that the team faced. 

• Describe your observations on how the team fixed the issues.  
Besides the above questions, the observation protocol included three single-choice questions. We asked mentors to indicate 
which of the following statements best applied to the workstyle of the team they mentored:  

• All students were contributing evenly. 
• A dominant student was guiding work, other students contributing. 
• A dominant student was influencing work contributions, other students contributing unevenly. 
• A dominant student was determining team effort, but some contribution from other students. 
• Low student contribution, relying on one ‘leader’ to carry work. 

The mentors were also asked to select one of the statements below to show the communication patterns within their 
mentored teams in two timeslots. The first timeslot was ideation time when students worked on developing their ideas. The 
second timeslot included coding time, in which students implemented their ideas with the micro:bit. 

• All students were communicating freely: critical evaluations, objections, critiques, and opinions were freely 
exchanged within the team. 

• All students were communicating well: some critical evaluations, objections, critiques, and opinions were 
exchanged within the team. 

• All students were communicating intermittently: critical evaluations, objections, critiques, and opinions were 
exchanged but only sporadically. 

• All students were communicating inadequately: critical evaluations, objections, critiques, and opinions were voiced 
but only with prompting from the mentor. 

• Little to no communication, ideas, and critiques were rationed by a dominant student. 

3.3 Data Analysis 
3.3.1 Quantitative analysis for RQ1 and RQ2 
The close-ended questions, including the Likert scale and single-choice questions, were analysed using IBM SPSS Statistics 
26 software to answer RQ1 and RQ2. More specifically, we used the following statistical techniques: (i) We identified the 
most difficult CT practices for students (RQ1) by using the Scott-Knott Effect Size Difference (ESD) test proposed by 
Tantithamthavorn et al. [87]. We applied the Scott-Knott ESD test on the Likert scores of 12 CT practices from students’ 
and mentors’ perspectives. The main advantage of the Scott-Knott ESD test over the Scott-Knott test [88] is that it does not 
need normally distributed data. (ii) We applied the Mann-Whitney U test [89] to compare perceiving CT practices between 
students and mentors (RQ1). The Mann-Whitney U test was used because none of CT practices’ scores was normally 
distributed (i.e., the Shapiro-Wilk test’s p-values were less than 0.05 for all CT practices [90]). Also, the variables (i.e., CT 
practices) were measured at the ordinal level. Finally, a non-parametric Levene’s test confirmed the equality of variances in 
both samples (i.e., p-values > 0.05 for all CT practices) [91, 92]. (iii) We conducted the Kruskal-Wallis one-way ANOVA tests 
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[89] to understand the relationship between the difficulty level of CT practices and students’ coding experience (RQ2). The 
homogeneity of variances in the studied samples was verified by the non-parametric Levene’s test (i.e., p-values > 0.05 for 
all CT practices) [91, 92]. Furthermore, the pairwise post hoc tests (i.e., pairwise comparisons) [89, 93] were carried out on 
each pair of groups. 

3.3.2 Qualitative Analysis for RQ 3 and RQ4 
We analysed the answers to the open-ended questions using open coding and constant comparison as the two main 
qualitative data analysis techniques of Grounded Theory (GT). The collected qualitative data was used to answer RQ3 and 
RQ4. The qualitative analysis was supported by the NVivo software7 [94, 95]. GT enables the researcher to identify the main 
concerns of the participants and understand how they address the concerns. This is achieved by constantly comparing data 
while the levels of abstraction are increasing [94, 95].  

We first created three top-level nodes in NVivo according to our data sources (See Figure 3): (1) student survey data, (2) 
mentor survey data, and (3) observation data. Since RQ3 was about challenges and RQ4 focused on practices, each high-
level node (e.g., mentor survey data) was further decomposed into two sub-nodes: challenge node and practice node. 
Subsequently, the first author extracted the statements (e.g., Statement_2 in Figure 3) about the challenges that students 
faced and the statements (e.g., Statement_1 and Statement_3 in Figure 3) about the best practices and techniques adopted 
by students in each of the data sources. Note that some statements (e.g., Statement_1) included both challenge(s) and the 
practice(s) used to address the challenge(s). Hence, we placed such statements in the challenge node and practice node to 
maintain the relationship between challenges and practices.  In the next step, he performed open coding over multiple 
iterations to thoroughly analyse the data gathered from each data source. This step resulted in capturing key points in our 
data sources and assigning a label (i.e., code) to each key point. Figure 3 shows the process of applying open coding on 
Statement_1 and Statement_3 identified two codes for the practice node. The analysis of Statement_1 and Statement_2 
led to adding two codes to the challenge node (See Figure 3). 

Statement_1 from Student Survey 
 

Statement_2 from Mentor Survey 
 

Statement_3 from Mentor Observation 
 
Raw data: “It was originally very hard to incorporate the usage 
of the micro: bit in our original design, however, after we changed 
our design a few times and came up with different ideas, we were 
able to use the micro: bit effectively”. 
 
Key point: “Hard to the original design into our original design”, 
“Changing the original design to the new ones and select the 
feasible one for micro:bit” 
 
Code: Incorporating idea into the micro:bit, Generating as 
many as possible ideas/solutions  

 

 
Raw data: “Too scared to explore 
functions and do things on their own”. 
 
Key point: “Being scared” 
 
Code: Fear   

 
Raw data: “They tried to limit scope creep by 
forcing themselves to focus on the most 
important functionalities and then listed the 
extra functionalities for next steps….”. 
 
Key point: “Focusing on the most important 
functionalities”, “Extra functionalities for next 
steps” 
 
Code: Incremental approach  

Figure 3.  Examples of constructing codes 

The next step included performing the constant comparison technique to compare all codes identified in a data source 
against each other as well as to compare them with the codes from other data sources [96]. The identified codes from the 
previous step were iteratively grouped to generate concepts, and then the generated concepts were used to create categories 
[95]. In the next step, the identified codes, concepts, and categories were shared with the second author for review. Then, the 
first author and the second author held several face-to-face meetings to discuss the codes, concepts, and categories and solve 
any disagreements and inconsistencies and reach a consensus on the final list of codes, concepts, and categories. Figure 4 
shows how performing the constant comparison technique on four concepts produced the category, “Establishing a 
collaborative and supportive culture within the team”. 

                                                             
7http://www.qsrinternational.com  
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Figure 4. Building a category by applying constant comparison 

4 Results 
This section presents the findings of the RQs. It should be noted that when we refer to data from the student survey, we 
use SSXY notation. In our notation, X (1…52) shows the team number of a student, and Y (1…4) refers to the student number 
in a team. For instance, SS153 refers to student 3 within team 15 from the student survey. The participants (mentors) in the 
mentor survey and observation reports are presented as MSX and MOY, respectively, in which X (1…31) is the participant 
number and Y (1…52) indicates the team number. For instance, an excerpt from the observation report of team 37 is marked 
as MO37. 

4.1 Secondary School Girls Demographic Data 
Figure 5 shows an overview of students’ demographics. 97 out of 193 (50.2%) students had at least one month of coding 
experience, 32 students (16.5%) had less than 1-month of coding experience, while 69 students (35.7%) had no coding 
experience before the OzGirlsCT program. 84 (43.5%) students came from Government schools. The rest from Catholic 
schools (54 girls, 27.9%) and Independent schools (55 girls, 28.4%). Almost 97% of the girls designated that their academic 
performance in the class ranged from 70%-79.99% to 90%-100%. 

 
Figure 5. Secondary School Girls’ demographic data 

4.2 What are the perceptions of secondary school girls on the difficulty level of CT 
practices when doing collaborative programming with the micro:bit? (RQ1) 

To understand our participants’ perspectives on CT practices, we provided 12 statements (See Table 1) for which students 
could indicate the difficulty level of CT practices and mentors could indicate the difficulty level of CT practices for the 
team(s) that they mentored. Another goal of these statements is to understand whether the perceptions of CT practices 
differ based on the participant role (students vs. mentors). To identify the most difficult CT practices for students, we 
performed the Scott-Knott Effect Size Difference (ESD) test [87] on the Likert scores of 12 CT practices from students’ and 
mentors’ perspectives. Table 2 shows that CT practices are classified into 6 statistically different groups in terms of difficulty 
for all respondents. In Table 2, a group with a smaller number has more difficult CT practices. We observe that CTP9, CTP8, 
and CTP3 are among the most difficult practices (Group 1) for students to apply. Interestingly, 2 of these CT practices (CTP9 
and CTP8) are related to testing and debugging. Table 3 presents the mean and median Likert scores of 12 CT practices. As 
shown in Table 3, students’ average Likert scores of CTP8 (“identifying errors in code”) and CTP9 (“finding a solution to fix 
the identified errors in code”) are 3.18 and 3.15 respectively, while mentors scored CTP8 (average Likert score: 2.77) and CTP9 
(average Likert score: 2.87) lower. We also find that CTP11 (“working collaboratively with team members”), CTP12 (“reaching 
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a consensus in group decisions”), and CTP10 (“giving feedback to teammates and making suggestions to improve idea/code”) are 
among the top 3 easiest CT practices to apply. 

Table 2. CT practices are grouped into six statistically distinct groups in terms of difficulty (Scott-Knott Effect Size Difference test applied to all 
respondents) – the smaller the group number, the more difficulty the CT practices 

Group CT Practices 
1 CTP9: Finding a solution to fix the identified errors in code 

CTP8: Identifying errors in code 

CTP3: Leaving out the irrelevant detail/information in the description of an idea 
2 CTP5: Creating a series of ordered steps to implement an idea with the micro:bit 

CTP6: Exploring diverse solutions to an idea, until the ideal solution is achieved 

CTP4: Developing a general solution that can be applied to other problems in the future 

CTP1: Planning an idea before implementing it with the micro:bit 

CTP2: Breaking down an initial idea into smaller, more manageable steps/parts 

3 CTP7: Testing code frequently to check if it works 
4 CTP10: Giving feedback to teammates and making suggestions to improve idea/code 
5 CTP12: Reaching a consensus in group decisions 
6 CTP11: Working collaboratively with team members 

Figure 6 shows how students and mentors rated the difficulty level of each of the CT practices. As a student, the majority 
of the respondents claimed that “working collaboratively with team members” (i.e., 87% rated CTP11 as easy or very easy) and 
“reaching a consensus in group decisions” (i.e., 80% rated CTP12 as easy or very easy) are the easiest CT practices to apply. 
Mentors had the same feeling, as at least 87% of mentors believed that applying CTP11 and CTP12 is an easy or very easy 
task for students. On the other hand, the following were rated by students as the most difficult CT practices to apply: (1) 
finding a solution to fix the identified errors in code (CTP9: 29% difficult or very difficult, 34% neutral, 37% easy or very easy); 
(2) identifying errors in code (CTP8: 28% difficult or very difficult, 34% neutral, 38% easy or very easy); and (3) leaving out the 
irrelevant detail/information in the description of an idea (CTP3: 24% difficult or very difficult, 38% neutral, 37% easy or very 
easy). Mentors had slightly different observations on the most challenging CT practices for students. They ranked CTP8 
(42% difficult or very difficult, 23% neutral) as the most difficult CT practice for students to implement, followed by CTP1 
(35% difficult or very difficult, 19% neutral) and CTP9 (32% difficult or very difficult, 26% neutral). In contrast to mentors, it is 
a commonly held belief among students that “planning an idea before implementing it with the micro:bit” (CTP1) is a relatively 
easy task, as only 16% of them rated this CT practice as difficult or very difficult. In addition, CPT6, CTP7, CPT10, CTP11, 
and CTP12 are the only CT practices that over 50% of students and mentors mutually believed are (very) easy practices to 
apply. Interestingly, these CT practices, except one (CTP7), can be classified as soft skills [97]. 

Not all practices were ranked as very difficult. Regarding which practices the respondents did not perceive as very difficult 
during ideation and coding, we have “breaking down an initial idea into smaller, more manageable steps/parts” (14% of students 
and 26% of mentors rated CPT2 as difficult) and “reaching a consensus in group decisions” (6% of students and 3% of mentors 
rated CPT12 as difficult). Furthermore, CPT10 (“giving feedback to teammates and making suggestions to improve idea/code”) 
and CTP5 (“creating a series of ordered steps to implement an idea with the micro:bit”) were never ranked as very difficult by 
students and mentors respectively. 

The fifth column in Table 3 presents the mean difference in the average Likert scores of students and mentors. We were 
interested in understanding whether there is a significant difference in perceiving CT practices between students and 
mentors. Table 3 shows the results of the Mann-Whitney U test. We observe that there is a significant difference only for 
CTP2 (U=2227.0, N1=193, N2=31, p-value=0.014, r=0.164) [98], indicating that the difficulty level of “breaking down an initial 
idea into smaller, more manageable steps/parts” was perceived differently by mentors (median=3, mean rank=93.73) than by 
students (median=4, mean rank=115.52), with mentors seeing it as being significantly more difficult.   
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Table 3. CT practices and the mean and median Likert scores (very difficult= 1, difficult = 2, neutral = 3, easy =4, very easy = 5). 

ID Computational Thinking Practices Student (n=193) 
Mean (Median) 

Mentor (n=31) 
Mean (Median) 

Mean 
Difference p-value 

CTP1 Planning an idea before implementing it with the micro:bit 3.54 (4) 3.16 (3) 0.38 0.068 

CTP2 Breaking down an initial idea into smaller, more manageable steps/parts 3.57 (4) 3.16 (3) 0.41 0.014* 

CTP3 Leaving out the irrelevant detail/information in the description of an idea 3.19 (3) 3.10 (3) 0.09 0.624 

CTP4 Developing a general solution that can be applied to other problems in the future 3.53 (4) 3.26 (4) 0.27 0.234 

CTP5 Creating a series of ordered steps to implement an idea with the micro:bit 3.46 (3) 3.10 (3) 0.36 0.055 

CTP6 Exploring diverse solutions to an idea, until the ideal solution is achieved 3.40 (4) 3.45 (4) 0.05 0.707 

CTP7 Testing code frequently to check if it works 3.64 (4) 3.68 (4) 0.4 0.640 

CTP8 Identifying errors in code 3.18 (3) 2.77 (3) 0.41 0.115 

CTP9 Finding a solution to fix the identified errors in code 3.15 (3) 2.87 (3) 0.28 0.208 

CTP10 Giving feedback to teammates and making suggestions to improve idea/code 3.80 (4) 3.90 (4) 0.1 0.236 

CTP11 Working collaboratively with team members 4.34 (5) 4.48 (5) 0.14 0.144 

CTP12 Reaching a consensus in group decisions 4.16 (4) 4.35 (4) 0.19 0.284 
* Significant at p < 0.05 (Mann-Whitney U statistical test) 
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Figure 6. Secondary school girls’ (n=193) and mentors’ (n=31) perceptions of CT practices (M=Mentor and S= Student) 

 

4.3 Is there a relationship between secondary school girls’ prior coding experience and 
their perceptions of the difficulty of CT practices? (RQ2) 

As previously noted, we collected the level of students’ coding experience in the pre-workshop survey. To understand the 
effect of students’ coding experience in their perceptions of CT practices, we first divided students’ data into three 
independent groups. The first group included 69 students who had no coding experience before the OzGirlsCT workshops 
(See Table 4). The second group consisted of 96 students who had less than 6-month coding experience (i.e., relatively low 
experienced group). The third one included the students who had relatively moderate experience in coding, indicating more 
than 6-month experience (i.e., 28 students). Then, the Kruskal-Wallis one-way ANOVA tests [89] were conducted on 3 
independent variables (no experience group, relatively low experience group, and relatively moderate experience group) and 
12 dependent variables (CTP1…CTP12). The results of the Kruskal-Wallis one-way ANOVA tests are summarized in Table 
4. 

We observe that the level of coding experience significantly affects how students perceived CTP8 and CTP9. The students 
who indicated higher coding experience had lower difficulty in “identifying errors in code” (CTP8, c2(2) =9.987, p-value=0.007) 
and “finding a solution to fix the identified errors in code” (CTP9, c2(2) =7.790, p-value=0.020). The results of the pairwise post 
hoc tests (i.e., pairwise comparisons) are shown in Table 5 and Table 6, in which each row tests the null hypothesis that the 
distributions of each pair group are equal. Concerning the perception of CTP8, we observe that a statistically significant 
difference exists between the group who had no experience in coding and those who had moderate coding experience 
(adjusted p-value= 0.0012, adjusted using the Bonferroni correction). As shown in Table 5, there are no differences between 
the no experience group and relatively low experience one (adjusted p-value=0.055) or relatively low experience group and 
relatively moderate experience one (adjusted p-value=0.603). We observe the same pattern for CTP9 (See Table 6). The 
perception of CTP9 differs significantly from the students without any coding experience to the moderately experienced 
students in coding (adjusted p-value=0.041).  

Table 4. Testing the effect of girls’ coding experience in their perceptions of CT practices. 
 Level of Coding Experience   

Variables Mean (Median) 
p-value  No (n=69) Low (n=96) Moderate (n=28) 

CTP1: Planning an idea before implementing it with the micro:bit 3.55 (4) 3.52 (4) 3.61 (4) 0.931 

CTP2: Breaking down an initial idea into smaller, more manageable steps/parts 3.51 (4) 3.60 (4) 3.61 (4) 0.680 

CTP3: Leaving out the irrelevant detail/information in the description of an idea 3.14 (3) 3.27 (3) 3.04 (3) 0.486 

CTP4: Developing a general solution that can be applied to other problems in the future 3.45 (4) 3.65 (4) 3.32 (3.5) 0.198 

CTP5: Creating a series of ordered steps to implement an idea with the micro:bit 3.33 (3) 3.46 (3) 3.75 (4) 0.206 

CTP6: Exploring diverse solutions to an idea, until the ideal solution is achieved 3.29 (3) 3.53 (4) 3.25 (3.5) 0.228 

CTP7: Testing code frequently to check if it works 3.48 (4) 3.68 (4) 3.93 (4) 0.083 

CTP8: Identifying errors in code 2.88 (3) 3.27 (3) 3.57 (3) 0.007* 
CTP9: Finding a solution to fix the identified errors in code 2.86 (3) 3.25 (3) 3.50 (3) 0.020* 
CTP10: Giving feedback to teammates and making suggestions to improve idea/code 3.67 (4) 3.86 (4) 3.93 (4) 0.125 

CTP11: Working collaboratively with team members 4.26 (4) 4.36 (5) 4.43 (5) 0.341 

Finding 1. Students and mentors do not differ significantly in perceiving the difficulty level of applying computational thinking 
practices. 

Finding 2. The aggregated students’ and mentors’ opinions indicate that “debugging” (i.e., measured by the statements “finding a 
solution to fix the identified errors in code” and “identifying errors in code”) is the most difficult computational thinking practice to 
apply, followed by “abstraction” (i.e., measured by the statement “leaving out the irrelevant detail/information in the description of an 
idea”). 

Finding 3. From the participants’ perspective, collaborative practices of computational thinking, including “reaching a consensus in 
group decisions”, “working collaboratively with team members”, and “giving feedback to teammates and making suggestions to improve 
idea/code” are the easiest practices to apply. 
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CTP12: Reaching a consensus in group decisions 4.00 (4)  4.25 (4) 4.25 (4) 0.103 
* Significant at p < 0.05 (Kruskal-Wallis one-way ANOVA) 

Table 5. Pairwise Comparisons for CTP8 (grouped based on the level of coding experience) 

 Test Statistic Standard Error Standardized Test Statistic p-value Adjusted p-value 

No Exp. vs. Low Exp. 20.01 8.49 2.357 0.018 0.055 
No Exp. vs. Moderate Exp. 34.786 12.053 2.886 0.004 0.012* 
Low Exp. vs. Moderate Exp. -14.775 11.553 -1.279 0.201 0.603 

* Significant at p < 0.05 

Table 6. Pairwise Comparisons for CTP9 (grouped based on the level of coding experience) 

 Test Statistic Standard Error Standardized Test Statistic p-value Adjusted p-value 

No Exp. vs. Low Exp. 18.747 8.499 2.206 0.027 0.082 
No Exp. vs. Moderate Exp. 29.727 12.065 2.464 0.014 0.041* 
Low Exp. vs. Moderate Exp. -10.98 11.565 -0.949 0.342 1 

* Significant at p < 0.05 
 

 

4.4 What challenges do secondary school girls face when collaboratively 
implementing computational ideas with the micro:bit? (RQ3) 

To understand the challenges and barriers that students experienced while developing and implementing computational 
ideas with the micro:bit, we asked students the following question: “What issues and challenges did you face when 
implementing your ideas with the micro:bit?” We also solicited mentors’ perspectives and observations in this regard. We 
identified six categories of challenges. Figure 7 visualises the identified challenges. This visualisation enables a reader (i.e., 
researcher or practitioner) to quickly get an overview of the challenges faced by girls when developing and implementing a 
computational idea with the micro:bit. In this figure, the outer layer influences all inner layers. For example, as described 
later in this section, some of the challenges related to “Incorporating idea into the micro:bit” or “Code debugging” can be 
attributed to the limitations of the micro:bit device. Furthermore, Figure 7 shows that there might be dependencies among 
the challenges (e.g., increase) in a layer. For example, the complexity of code can increase the challenges related to code 
debugging. Below, we describe each of these six challenges. For brevity, we only include a few quotations from our 
participants. Table 7 sorts these challenges based on the frequency of their appearance in the data and shows three 
illustrative quotations corresponding to each of these six challenges. Table 7 also indicates the frequency of sub-challenges 
(also presented in Figure 7) that appeared in each identified challenge. Note that the summation of the frequency of sub-
challenges in a challenge is sometimes less than the total number of that challenge. For example, while the “incorporating 
idea in the micro:bit” challenge appeared in total 76 times in our data, we only found three reasons (sub-challenges) behind 
this challenge: “breaking down or narrowing an idea” (n=18), “creating a series of ordered steps to implement an idea” 
(n=17), and “leaving out irrelevant/unimportant stuff from an idea” (n=8). For the rest of the references (N=33) referring to 
this challenge, while the participants mentioned this challenge, they did not provide any reasons behind it. 

Finding 4. Having prior experience in coding significantly reduces the difficulty level of “identifying errors in code” and “finding a 
solution to fix the identified errors in code”.  

Finding 5. We have no evidence to suggest that the level of coding experience affects the perceived difficulty level of any other 
computational thinking practices. 
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Figure 7. An overview of challenges that that secondary school girls faced when working on computational solutions and the relationship 

among them. 

Table 7. Illustrative quotes for the challenges that secondary school girls faced when working on computational solutions (N shows the 
frequency of each challenge that appeared in total in the data) 

Theme (challenge) N Illustrative Quotes 

Incorporating idea into the 
micro:bit 

Breaking down or narrowing an idea 
(18) 
Creating a series of ordered steps to 
implement an idea (17) 
Leaving out irrelevant/unimportant stuff 
from an idea (8) 

76 “Certain ideas we had could not be properly interpreted on the micro:bit.” SS63 
 “As many of them [students] had a little coding experience, they often had no idea how to translate their 
ideas and concepts into smaller, manageable steps to be implemented into the code.” MS12 
 “Choosing what specific aspects [of the idea] to display on the micro:bit [was a challenge].” SS12 

Code debugging  41 “The code had a few confusing errors that I didn't know how to fix.” SS82 
“They struggled with a small piece of code that seemed to malfunction. Being able to test what part of 
the code was going wrong was a barrier, but that could be rectified with some more practice in debugging 
code.” MS14 
“They often stuck on the errors and got so frustrated when they believe they cannot solve the problem.” 
MS29 

Personality traits 

Lack of confidence (7) 
Distraction (6) 
Fear (5) 
Not being self-motivated (3) 
Not taking the initiative (2) 
Perfectionism (2) 

25  “The girls often got side-tracked and overexcited.” MO14 
“At the end when the 2 of them were getting easily distracted, 1 of the other girls (the writer) would ask 
the girls to focus and pull their attention back”. MO7 
“[Students] waited for me to do something, sat there, [and they were] quiet until I did something.” MO2 

Code complexity 

Difficulty in understanding the code (9) 
Difficulty in understanding the potential 
impact of changes in the code (4) 

22 “[The team members were] not testing small parts and then realising after a big piece of code was written 
that it didn’t work as expected and getting frustrated.” MS15 
“Even if I wanted to change things in the code (which required changing in the JavaScript form), it was 
difficult for me.” SS511 
“We faced some problems with getting all of the code to work.” SS291 

Legend 
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Micro:bit limitations 

 
Limited capabilities (14) 
Limited computing power (5) 
Small screen (3) 
 

22 “It [micro:bit] doesn't have everything that would actually make what we wanted, however, we managed 
to make something similar to what we wanted to address the issues and challenges, the group consulted 
with each other and asked our mentors for help when we reached a stump in our thinking.” SS201 
“We also had some issues with the micro bit as it was not as flexible as we would like it to be in terms of 
functionality.” SS224 
“This was hard to implement on the micro:bit device as the device has a limited computing power.” MO9 

Coding experience 21 “I think it was simply the lack of experience I had with coding (besides the pre-work and basic coding in 
Year 7) and my unfamiliarity with the functions of the coding blocks that made it quite difficult to 
implement the ideas with the micro:bit.” SS161 
“There were still a few variables that I was not known of.” SS503 
“They have limited education about programming; thus, they only could make the prototype of their 
product.” MS26 

 

Incorporating idea into the micro:bit. The most frequently reported challenge was transferring the planned idea to the 
micro:bit (e.g., “It was a bit difficult to convert my worded problem into one which the code could follow.” SS11). Our analysis shows 
that this challenge mainly stems from the fine-grained challenges expressed in the open-ended questions, including the 
difficulty in “breaking down or narrowing an idea”, “leaving out irrelevant/unimportant stuff from an idea”, and “creating 
a series of ordered steps to implement an idea”. In Section 4.2, the participants rated that it was moderately difficult to apply 
CTP2, CTP3, and CTP5, which are linked to these fine-grained challenges, respectively. We found frequent references in our 
data sources that students struggled to break down their ideas in a way that could be implemented with the micro:bit. 
Students also frequently complained about how and where to start coding (e.g., “I didn’t have enough coding knowledge to know 
where to start, so I struggled with such a challenge.” SS22). These challenges seem to be magnified by a lack of coding experience. 
The simplicity of the micro:bit meant that students had to essentially leave out the unnecessary details and features from 
their ideas and solutions. MO20 pointed out: 

“The team initially wanted to jam-pack their idea with many features. However, I had to bring it down for them to decide which 
features they thought were the most important and to focus on a few key features that would really sell the idea.” MO20 

Code debugging. As we discussed in Section 4.2, our respondents rated the testing- and debugging-related practices (i.e., 
CTP7, CTP8, and CTP9) as the most difficult CT practices to apply. Through the open-ended questions in the surveys and 
observation study, many respondents attempted to provide clarifications and reasons for their answers to CTP7, CTP8, and 
CTP9 (e.g., “It was hard to fix the errors since we didn't actually know what the error in the code was” SS124). One mentor, MS14, 
pointed out these challenges could be mitigated by gaining more experience in code debugging. According to MS8, MS15, 
and M15, the inability to quickly resolve the issues with the code seems to generate frustration and demotivate the students. 
The students tried not to make even simple mistakes in the code because they felt they could not solve the issues in the 
code. One student elaborated on: 

“When we found flaws in our product we were creating, particularly ones that we took a long time (or didn't manage at all) to find 
solutions for, it kind of demotivated me for a little while.” SS163 

Personality traits. Besides the technical problems, the respondents reported a group of personality traits as challenges. 
This confirms the findings of [1, 2] that the learning outcomes of a learner in CT are related to the learner’s characteristics 
(i.e., non-cognitive side of CT). Mentors observed that some students did not have complete confidence in themselves. This 
resulted in students who could not or did not want to explore the problem (i.e., ideation) and solution (i.e., coding) spaces 
properly. One mentor explained how a lack of confidence led to self-filtering in the ideation phase within a team: 

“Students were quite unsure of themselves and tended to dismiss their ideas. While no idea was initially written down then discarded, 
I suspect that their ideation phase had a lot of self-filtering going on as students tended to stare intently at their post-it notes. There 
was also quite a lot of self-doubt, especially when working on their prototype coding.” MO13 

This lack of confidence can be exaggerated by fear of suggesting something wrong or being wrong (e.g., “[My students were] 
too scared to explore functions and do things on their own” MS2). Distraction was another issue related to the personality traits, as 
some mentors described that it was challenging for students to remain focused. Fewer mentors also specified that students 
were not self-motivated and did not show initiative or they were exceptionally perfectionist (e.g., “Some of the members were 
perfectionists, and I had to stop them from completely erasing their idea when they were struggling to find a solution” MO22).   
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Code complexity. The respondents frequently shared experiencing issues due to the complexity of code on understanding 
the code, as mentioned by SS131: “We found it hard to make our solution [code] clear and uncomplicated”. SS311 shared that it was 
challenging to “learn and remember what codes did what and in what order they had to go in”. Other students struggled to figure out 
the potential impact of changes in the code, as mentioned by SS51: “[It was difficult to] learn what code did what and learning if 
we added a code it affected everything”. 

Micro:bit limitations. The participants reported challenges regarding the micro:bit device frequently. Among these, the 
limited capabilities of the micro:bit was the prominent one, especially from the students’ perspective. Here is one of the 
examples indicating students believed that the limited capabilities of the micro:bit did not allow them to completely 
implement their ideas: 

“When implementing our ideas with the micro:bit, we struggled with its capabilities and spent a bit of time researching how to solve 
these limits. In the end, we made a very simplified version [of our idea], accepting that the micro:bit could not handle the final 
product.” SS301 

Some respondents described the computing challenges related to the micro:bit and reported that the micro:bit device had 
limited computing power to execute the complex code (e.g., “The micro:bit does not have the capability to execute code with the level 
of complexity that my code possessed” SS302). Having a small screen and a limited number of functions were also reported as 
issues related to the micro:bit. 

Coding experience. In some cases, the (technical) challenges that emerged from our data related to the students’ 
experience and expertise in coding. Having adopted the experiential learning approach, some respondents reported that it 
was challenging to implement the ideas with the micro:bit and ensure the code worked properly with the limited coding 
experience and knowledge that students had. This can be vividly exemplified by the following quote: 

“I think it was simply the lack of experience I had with coding (besides the pre-work and basic coding in Year 7) and my unfamiliarity 
with the functions of the coding blocks that made it quite difficult to implement the ideas with the micro:bit.” SS161 

 

 

4.5 What practices do secondary school girls employ to overcome these challenges? 
(RQ4) 

The practices and techniques that students employed to overcome the challenges experienced during the ideation and 
coding were collected through a compulsory open-ended question in each of our data sources: the student survey, the 
mentor survey, and the observation protocol. Our qualitative analysis described in Section 3.3.2 revealed that students used 
six main practices during the ideation and coding using the micro:bit device. Figure 8 shows these six practices and indicates 
which challenges presented in Section 4.4 are (partially) addressed by these practices. We further visualise the relationship 
among these practices in Figure 9. In Figure 9, the outer layer influences all inner layers. This section defines, elaborates, 
and provides examples of each practice. We describe the six identified practices with a few quotations from our participants. 
For brevity, we only include a few quotations from our participants. Table 8 sorts these practices based on the frequency of 
their appearance in the data and shows three illustrative quotations corresponding to each of these six practices.  

Finding 6. According to our participants, incorporating an idea into the micro:bit device as a hybrid block/text programming environment 
is the most challenging task while developing and implementing a computational idea.  

Finding 7. Participants provide evidence that the challenges and barriers faced when developing and implementing computational ideas 
can also be attributed to personality traits. This qualitative result is consistent with the existing literature [1, 2], which quantitively reveals 
the existence of a non-cognitive side of computational thinking. 
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Figure 8. The relationship between the identified challenges and practices 

 
Figure 9. An overview of practices employed by secondary school girls and the relationship among them. 

Table 8. Illustrative quotes for the practices employed by secondary school girls (N shows the frequency of each practice that appeared in total 
in the data) 

Theme (practice) N Illustrative Quotes 

Feedback-driven development 72  “We asked [our mentor] to help us figure out what was not working in the code and she really 
helped us link everything together.” SS321 
“We discussed in a team the possible ways we could overcome the issues so that we all had different 
ideas. We also talked to our tribe about these issues to get other people’s opinions.” SS212 
“The team talked with one another and provided comments on each other's ideas.” MO23 

Code complexity 

Personality traits 

Code debugging 

Incorporating idea into the  
micro:bit 

Micro:bit limitations 

Coding experience  

Feedback-driven development Establishing a collaborative 
and supportive culture 
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Simple design, better code 
Leveraging external 

resources 

Prioritising quantity over 
quality 

Predictive thinking 
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Being incremental and 
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Group decision making 

Rationalising each decision 

Voting for hard decisions 
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Feedback-driven development 

Reusing existing codes 

complement 
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by 
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Establishing a collaborative and 
supportive culture within the team 

Highly collaborative team (45) 
Group decision making (8) 
Voting for hard decisions (5) 
Rationalising each decision (5) 

63 “With the obstacles [that] we had to overcome along the way, we're a strong team with a great work 
ethic and I could see this project going beyond a prototype.” SS81 
“The team fixes issues in a collaborative manner whereby each member provides constant input on 
possible solutions, which is then explored by the entire team.” MO8 
 “They thought critically for some justifications for their cost problem and were able to find a way 
for their justification. Each decision they made was always discussed among each other.” MO28 

Simple design, better code 

Simplifying the initial design/prototype (25)   
Being incremental and iterative (11) 
Engaging all team members in coding (4) 
Reviewing each other’s code (3) 

43  “After solving the problems, they sought to further improve the product and patch up any 
inconsistencies. There was a lot of trial-and-error with the coding. There was evidence of iterative 
approaches to the problems.” MO17 
“[Our solution was to] work together and checking each other’s' code.” SS522 
“They tended to keep it pretty simple and only showed a part of the end idea (app).” MS11 

Predictive thinking 30  “They [team] brainstormed on what they all thought should be included [in the final design] on the 
whiteboard, so they could visualise and discuss much clearer. Based on this, they were able to draw 
up what they thought they wanted the final design to look like.” MO5 
“[They] kept brainstorming and spending time developing the ideas and making sure that it was as 
strong as it could be.” MO46 
“We did not find many challenges as we chose an idea that would work with the micro:bit.” SS524 

Leveraging external resources 

Utilising online learning resources (22) 
Reusing existing codes (6) 
 

 

28 “I also decided to research some tutorials or general coding techniques to use and asked our mentor 
for some advice when needed.” SS161 
“[We were] using the website / pre-workshop guidelines to find connections.” SS264 
“[They] looked up online articles and copied code to see if it worked.” MO27 
 

Prioritising quantity over quality 17  “To solve a problem, we talked as a group and tried our best to give as much as ideas and pick the 
most suitable one for the issue.” SS151 
“We asked questions and also tried different codes over and over again.” SS124  
“[The team was] thinking of possible ways to make it as realistic as possible.” MS16 

 

Feedback-driven development. Our analysis shows that the most common practice used by students was the feedback-
driven development practice (i.e., seeking help and feedback) [99], in which students constantly received feedback by 
consulting with their team members and mentors. Students mainly used the feedback-driven development practice to 
enhance the quality of their code and ideas. SS201 commented on the importance of the received feedback during the 
ideation phase, as shown by the following: 

“To address the issues and challenges, the group consulted with each other and asked our mentors for help when we reached a stump 
in our thinking.” SS201 

Whilst students mainly provided feedback to and received feedback from their teammates and mentors, some students 
attempted to obtain authentic and diverse feedback from the members of other teams as well. Our observation shows that 
as the workshop day progressed, students were more willing to seek feedback and ask more questions. According to MO31, 
this was an effective practice as students became conscious of seeking help instead of backing out. 

Establishing a collaborative and supportive culture within the team. Several participants discussed the effects of 
working as a team to address the challenges and issues. We found that a collaborative and supportive team implies that the 
team explores the issues collaboratively through scenarios and subsequently resolves the issues in that context whereby 
each team member evenly provides inputs on possible ideas and solutions. A mentor described the characteristics of the 
collaborative and supportive team as follows: 

“The issue that they encountered were discussed evenly across the members with each providing their own take on the issue that 
was considered equally by each member.” MO10 

The quantitative analysis of three single-choice questions from the observation reports confirms that the majority of the 
teams were successful in establishing a collaborative and supportive culture. As shown in Figure 10, mentors observed that 
the students of 39 teams out 52 teams evenly contributed in their respective teams, whilst other teams either were relying 
on one “leader” to carry out all the tasks (1 team) or had a dominant member who guided the work process and other 
students contributed unevenly (12 teams). Figure 11 shows the communication style within the teams in two time-slots (i.e., 
ideation time and coding time). It shows that the level of the communication within the teams was reasonably high, as over 
78.8% of the teams adopted the style where all the students communicated freely or well, in which critical evaluations, 
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objections, critiques, and opinions were freely exchanged within the teams. According to Figure 11, the level of 
communication increased between the ideation time and the coding time. 

We found a number of statements from students and mentors about the effects of group decision-making in addressing the 
encountered issues. Voting was deemed by a few participants as an effective practice to deal with hard decisions (e.g., “[The 
team] narrowed ideas down via voting” MO1). Some teams tried to rationalise each decision and incorporate all team 
members’ opinions in the decisions made. 

 
Figure 10. Teams’ working style 

 
Figure 11. Teams’ communication styles 

Simple design, better code. Throughout the workshop day, students learned that most of the difficulties that they faced 
with “incorporating ideas into the micro:bit” and “testing and debugging the code” (See Figure 8) could be addressed by 
simplifying the initial design and incrementally adding new functionality into the code. Our participants reported that it 
was originally challenging to incorporate the micro:bit in the original design (prototype); however, after simplifying the 
design, students were able to use the micro:bit effectively. One student put it as: 

“We asked ourselves if certain things were necessary for the prototype or if we should just take it to the basics to show our idea and 
then in further development, we can add more detail.” SS91 

Having a simple design and being incremental and iterative enabled students to write code that was more manageable and 
testable (e.g., “Instead of trying to replicate the whole app on the micro:bit, [the team] showing just a few functionalities on the micro:bit, 
[which] made the code a lot more manageable” MO24). According to MO17, this method of problem-solving was employed by her 
team to track down the root cause of errors. The team was able to resolve the logical errors in their code by breaking the 
code down into smaller components and testing each of them individually. We found that a few teams could fix errors in 
the code by engaging all team members in coding and reviewing each other’s code. This can be exemplified by the following 
quote: 

“We made sure that everyone in our team got to code so that we could each figure out a way to fix.” SS473 

Predictive thinking. The challenges faced by students when incorporating their ideas (prototypes) into the micro:bit device 
taught them that they need to spend more time reflecting on their ideas and predicting the potential outcomes of their 
ideas before actually implementing the ideas with the micro:bit [100] (e.g., “It [our technique] was experimenting with the different 
blocks and predicting which ones would be applicable to the design that we had envisioned” SS161). For example, SS251, SS372, and 
SS524 shared that their respective teams did not face any significant challenges during implementation and the reason 
behind was that they first planned all different ideas concretely and then chose an idea that could be implemented with the 
micro:bit.  
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Leveraging external resources. Another notable technique used by students was to browse and leverage external 
resources when they were unable to solve code-related issues. This practice can also be related to a broader practice in CT 
called “remixing and reusing” [12]. The most commonly used resources were micro:bit-related tutorials and websites. For 
example, MS20 described that a YouTube tutorial found by her team helped them create an object sensor with the micro:bit. 
Fewer students leveraged the existing code to add new functionality to their computational solutions. As an example, we 
have: 

“Another team member was trying to code by copying the sample code but did not understand how the code works. Once she 
understood how the code works, she got the code done very quickly.” MO3 

Prioritising quantity over quality. We discussed that developing a robust, concrete idea before implementing it with the 
micro:bit was perceived helpful by some students and mentors to reduce the challenges experienced when transferring ideas 
to the micro:bit. However, this could lead students to fixate on a few ideas or solutions [101, 102]. As a complement practice 
to “predictive thinking”, we observed that students tried to explore the design space of their defined open-ended problems 
as much as possible and to iteratively diverge and converge the computational ideas and solutions around the problems 
without deeply thinking about quality, eventually selecting a best-fit one. Indeed, this is often referred by both students 
and mentors as an effective practice to mainly meet the ideation phase’s challenges. One mentor pointed out: 

“The ideation issues were solved by the other team members and myself encouraging the students to list down problems or solutions 
regardless of being solvable or easy to implement.” MO3 

 

5 Discussion 
CT educational programs are increasingly being designed to increase women’s interest, engagement, and participation in 
computing and technology fields. Challenging stereotypes and structural and cultural factors that negatively shape 
women’s enthusiasm and abilities around computing is an important step in dealing with the representation issues in STEM 
[35, 103]. With this in mind, we designed and conducted a girls-only CT program (i.e., the OzGirlsCT program) with one of 
the aims being to explore the effect of the OzGirlsCT program on the secondary school girls’ CT practices when they do 
collaborative programming with the micro:bit. The feedback received from the participating girls shows that the OzGirlsCT 
program was an inspiring, engaging, and impactful education program. For example, one student said, “I was surprised by 
how much I positively benefited from this experience and have learned a lot more than I anticipated. I feel inspired”. Another 
student pointed out, “The program has really kick-started my interest in design tech. I have always found it fascinating, but now 
I know coding and technology can really be a possible career in my future”. The literature shows that girls-only programs can 
be beneficial to girls- increasing their performance and boosting their self-efficacy and confidence when compared to co-
educational programs [32, 33]. Focusing on girls-only computing programs can lead to improved diversity outcomes in the 
workforce, make labour markets more competitive, and ensure girls have access to the opportunities available in STEM and 
Entrepreneurship [33, 104, 105]. In the following sections, we first draw some important implications of the findings of this 
study and the design of the OzGirlsCT program in the context of the literature on women in computing for research and 
practice. Then, we discuss the limitations of our study. 

5.1 Implications 
Our study confirmed that debugging is a complex and difficult CT practice. We quantitively explored the difficulty 
level of a set of CT practices by gathering the perceptions of 193 secondary school girls and 31 mentors. Our data shows 
that code debugging measured with the statements “identifying errors in code” and “finding a solution to fix the identified 

Finding 8. We discovered six main practices and techniques that novice girl programmers found to be the most effective practices to 
deal with the challenges in collaborative ideation and coding. Whilst, we confirm that some of these practices (i.e., “predictive thinking” 
and “leveraging external resources”) are already revealed/discussed by the literature [3] as a computational thinking practice, four of 
these practices including “feedback-driven development”, “establishing a collaborative and supportive culture within the team”, “simple 
design, better code”, and “prioritising quantity over quality” have not been frequently and rigorously examined in the computational 
thinking literature. 
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errors in code” was the most difficult CT practice for the secondary school girls to apply (Finding 2). The following reasons 
can be attributed to why debugging was the most difficult CT practice for the secondary school girls: 

(1) Learning and applying debugging need an adequate amount of time. Many researchers have investigated the role of gender 
in developing and acquiring CT skills, and the findings in this regard are mixed. Several studies (e.g., [30, 106]) found no 
significant relationship between CT skills (including debugging) and gender. Regardless of gender and age, it appears that 
debugging is a complicated CT practice for learners (e.g., [13, 14]), needing a systematic approach and a substantial amount 
of time to understand the process and develop the necessary skills [3, 23, 100]. Even for experienced software practitioners, 
debugging is a complex and time-consuming task [107, 108]. This is supported by the outcome of RQ2 (Finding 4), which 
has statistically found that, among all CT practices, having prior knowledge and experience in coding can significantly 
reduce the difficulty level of debugging. Similarly, Wilcox and Lionelle [61] found that girls gained more benefits than boys 
from prior coding/computing experience in the introductory computer science course. While the literature findings are 
mixed about the difficulty level of CT practices for boys and girls, there is stronger support for the significant amount of 
training time needed to adequately develop and apply some CT skills [25, 109].  

(2) Education programs should be supportive of debugging. The organisation and activities of the OzGirlsCT program as an 
education program may have led to the girls experienced more difficulty in debugging. First, as we followed the problem-
based learning approach in the OzGirlsCT program, we did not provide the girls with formal debugging training (See Section 
3.1.2). Further to this, the OzGirlsCT program was a one-day program and covered several topics and activities (e.g., 
brainstorming problems, presenting business pitches). Hence, the girls had limited time to work on their prototypes, identify 
possible errors in their prototypes (CTP8), and find a solution to fix the identified errors (CTP9). Finally, as the girls had 
the freedom to choose and work on their projects, many initially chose projects which were complex. Hence, the complexity 
of the projects may also have increased the difficulty level of debugging for the girls. Given the nature of the OzGirlsCT 
program and the minimal level of the students’ coding experience, the satisfactory development of a complex CT practice 
like debugging was going to be a challenge. 

(3) Programming learning tools need to provide active help during the debugging process. If we accept that debugging is a 
complex CT practice, programming learning tools and environments are expected to provide scaffolding and mechanisms 
to guide learners through this complexity [110, 111]. However, it seems that most environments (including the micro:bit 
device which our program used) do not provide guidance, visual clues, and features by which (young) learners can 
understand the nature of an error, the reason behind it, and the path to resolution [112]. As described in Section 4.4, the 
girls' challenges when working on their prototypes can also be attributed to the micro:bit limitations. The girls frequently 
indicated that the micro:bit device did not have some of the capabilities and features to support them in incorporating, 
implementing, and debugging their ideas. In [14], a survey of 98 teachers who taught programming in code clubs with 
different languages, such as Scratch, Python, micro:bit, Java, found that debugging was the most commonly reported 
learning barrier for boys and girls. The study by Wohl et al. [23] observed that girls and boys could better understand the 
concept of debugging with unplugged and Cubelets sessions than when they used Scratch (a similar learning environment 
to the micro:bit device). It is because the physicality of unplugged and Cubelets sessions helped students understand why 
an error happened, while the errors produced in Scratch only showed that the program did not work. 

All this indicates that debugging is an especially difficult CT practice and may require specialized and customised 
educational materials and tools for girls [108, 113]. We propose that learning tools and environments and education 
programs need to empower girls in facing debugging challenges and guide them through the debugging process. According 
to Zeller [107], the debugging process consists of seven steps: (1) “track the problem”; (2) “reproduce the problem”; (3) 
“automate and simplify the test case”; (5) “find possible infection origins”; (6) “focus on the most likely origins”; (6) “isolate 
the infection chain”; and (7) “correct the defect”. In this study, we only focused on two steps of debugging (i.e., locating and 
correcting faults). Hence, there is a need for a deep investigation to understand how girls perceive each step of the debugging 
process [113] and how learning tools and environments can support girls through each step. We assert that educational 
researchers and practitioners should focus on designing CT learning tools and programs that are an ongoing element of the 
curriculum, much like mathematics, and are introduced early in the education system, as our findings show that experience 
helps girls deal with complex CT practices such as debugging. 
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Our study highlighted the ease with which secondary school girls applied the collaborative aspects of CT. 
Collaboration is a key competence in the 21st century [114]. We measured quantitively the secondary school girls’ attitude 
toward collaborative problem-solving with three statements: “giving feedback to teammates and making suggestions to 
improve idea/code”, “working collaboratively with team members”, and “reaching a consensus in group decisions”. We have 
learned that the collaborative practices of CT were the easiest practices for the secondary school girls to apply (Finding 3). 
Studies show that gender may influence the attitude toward and the outcome of collaborative problem-solving [115, 116]. 
Ardito  et al. [31] found that sixth-grade girls concentrate more on group dynamics and metacognitive process when 
developing and applying CT skills, while boys are more engaged with the operational aspects of building and coding. They 
observed that girls in sixth grade scored highest in “teamwork/leadership/effective communication” (analogue to 
collaboration). Our qualitative analysis also confirms Finding 3 and the observation of [31]. We found having a collaborative 
and supportive team and seeking feedback from peers and mentors were deemed by the secondary school girls as effective 
practices in addressing some technical challenges. These two practices also positively impacted other practices employed 
by the girls in dealing with technical challenges (See Figure 8 and Figure 9). Jun and colleagues in [117] did not take into 
account gender in CT skills development. They found that among four steps (i.e., design, personalisation, collaboration, and 
reflection) of design-based learning (DBL), reflection was the most difficult step for elementary school students, followed 
by collaboration. It was also revealed that in the traditional, direct method, collaboration was the most difficult step. 
Interestingly, Jun et al. [117] revealed that collaboration was the most popular step among elementary school students in 
DBL methodology.   

Our findings are aligned with the studies (e.g., [32, 118-120]) showing the benefits of incorporating collaboration in CT 
learning environments, which can help girls deal with complex CT practices and advanced programming tasks. McDowell 
et al. [120] showed that collaboration could increase girls' persistence in the debugging process. In another study, Buffum 
et al. [119] and Liebenberg et al. [118] indicated that collaborative learning helped increase girls' enjoyment in CT. The 
study of Buffum et al. also showed that when girls were paired with a more experienced boy, they were able to solve 
challenging programming problems as much as the boys. Given the positive influences of collaboration on girls in developing 
and applying CT skills and our findings regarding the secondary school girls’ attitudes toward collaborative problem-solving, 
we assert that future CT and computer science learning programs for girls should emphasise and encourage collaboration 
in the program design. 

The friendship level of the girls in the teams may have also contributed to the results obtained for the collaborative practices 
of CT. As discussed in Section 3.1.1.1, while the friendship level of the team members in the teams varied widely, some 
teams had members who were close friends. Hence, it was not difficult for such teams to work collaboratively on their 
computational solutions and reach a common goal under pressure conditions. We suggest that the results of the 
collaborative practices of CT may have been different if the students did not know each other. This necessitates a replication 
study to investigate how girls who do not know each other perceive the collaborative practices of CT. Finally, further 
research should focus on possible differences in girl-only, boy-only, and mixed-gender teams in collaborative ideation and 
programming and in perceiving the difficulty level of the collaborative practices of CT.   

Our study found that focusing on collaborative, creative problem-solving for real-world problems was a strong 
motivator for our student teams. Many introductory CT programs focus on programming for pre-defined problems or 
canned exercises, which may prevent young girls from understanding how computing and technology can help address 
realistic problems in society [35]. We designed our program with the view of providing opportunities that allowed secondary 
school girls to collaboratively identify and work on complex problems that are important for them and their society (i.e., 
real word problems). Working collaboratively on computational projects in personal and social contexts is considered a 
powerful approach to engage underrepresented populations (e.g., young girls) in computing fields [37, 42, 43, 121]. In the 
context of CT, this trend is sometimes called “computational action” [43]. Given this opportunity in our program, the 
secondary school girls developed creative computational solutions to a wide range of personally and socially relevant, 
realistic problems such as “how to improve the safety of cyclists”, “how to reduce food wastage”, “how to help beginners grow 
sustainable produce in their own home or garden”, and “how to help pet owners to take care of pets while they are away”. This 
process included creative thinking, risk-taking, collaborative problem-solving, and hands-on experiences. The teams 
collaboratively developed their computational ideas and collected requirements to formulate, implement, and evaluate ideas 
with the micro:bit. This type of activity positively influences girls’ interests in pursuing computing [32]. 
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Observations of our program indicate that exposing the secondary school girls to complex and realistic problems initially 
puts them in a relatively difficult situation, and appropriate, relevant instruction is required. Their level of coding experience, 
together with the limitations of the micro:bit device, made it difficult for the girls to implement and debug their sometimes 
complex ideas with the micro:bit. That is why we found many references in our qualitative data relating to the difficulty of 
incorporating their idea into the micro:bit device (Finding 6). In Section 4.4, we argued that this challenge mainly stems 
from the difficulty in applying three CT practices: decomposition (“breaking down or narrowing an idea”), abstraction 
(“leaving out irrelevant/unimportant stuff from an idea”), and algorithm (“creating a series of ordered steps to implement 
an idea”), in which the difficulty level of abstraction was the second highest amongst our participants (Finding 2). Similarly, 
other studies [110, 122] observed that middle school girls faced barriers in understanding and applying abstraction. 
Interestingly, the difficulty of incorporating the team’s idea into the micro:bit device gradually taught our participating girls 
that they need to simplify their design, leave out unrelated materials in their initial ideas, and only prototype their solutions 
with the micro:bit. We referred to this practice in Section 4.5 as “simple design, better code”, which was deemed an effective 
practice to address the challenges related to “incorporating ideas into the micro:bit”, “code debugging”, and “code 
complexity” faced by the secondary school girls (See Figure 8). We suggest while developing and working on computational 
ideas for real-world problems is an excellent motivator and should be considered a strength of CT programs, care should be 
taken to ensure that young girls understand that they need to ‘walk before they can run’. They need to prototype their 
computational ideas before attempting full implementation, as facing complex programming challenges (e.g., debugging a 
complex computational solution) early on in the process can be demotivating, and significantly hinder progress, stymieing 
positive thoughts about courses and careers in computing. 

5.2 Limitations 
Our findings in this study could be influenced by our sampling method. This study focused only on girls from 44 secondary 
schools in the state of Victoria in Australia. Further, most of our participating students were self-reported high-performers 
with good academic records. Almost half of them also had at least one month of coding experience before the OzGirlsCT 
program (i.e., See Figure 5). While an important body of literature (e.g., [14, 25, 30, 31]) shows significant similarities between 
boys and girls in terms of developing and applying CT practices in different programming languages, our findings are 
exclusive to secondary school girls with good academic records and prior coding experience. Hence, our study cannot claim 
that the findings and recommendations be easily transferred or applicable to primary school girls, a broader class of 
secondary school girls, or students of any gender. Recruiting the participants likely had self-selection bias [123], as the girls 
and mentors who chose to participate were more likely interested in the study topic. Our findings may be different if this 
study is replicated in different contexts (e.g., replicating the study with the secondary school girls who do not know each 
other or are forced to participate in the study regardless of interest). Despite these limitations, we strongly believe that the 
design of our study and the OzGirlsCT program is not restricted to a particular context, which will facilitate the replication 
and validation of this study and the OzGirlsCT program in different contexts such as male students or students in different 
countries.  

Another possible limitation emerges from the structure and formulation of the questions used in the surveys and observation 
study [124, 125]. We formulated the questions used in this study based on a review of formal and grey literature and our 
prior experience in software engineering research. Furthermore, the questions were fine-tuned and validated through several 
internal discussions among authors and other colleagues. While we are confident that our questions covered important CT 
practices that can be introduced and evaluated through programming in K-12 settings, we confirm that some CT practices 
such as modularity and creativity have not been covered.  

The analysis and classification of the qualitative data (i.e., the answers to the open-ended questions) were mainly performed 
by the first author. Whilst Tómasdóttir et al. [126] argue that this type of analysis process can help increase consistency in 
the findings, this can be another source of threat to the findings of this study. Our approach to moderate this threat was 
discussing and cross-validating the categories and their respective quotes with other researchers involved in this study, 
particularly with the second author. We also minimized the subjective judgement in the findings by reporting those findings 
that have appeared in more than one data source and reported by multiple participants. Despite these efforts, we cannot 
claim that we could completely exclude the possibility of interpretation and classification errors. 
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In this study, the mentors played two roles: facilitator and observer. One potential threat here is that the mentors may have 
become biased by taking on the role as a member of their teams and becoming involved in the problem-solving process of 
their teams. Our strategy to deal with this threat was to organise a training workshop for the mentors to clearly define their 
roles and responsibilities during the OzGirlsCT workshops (See Section 3.1.1.2). Furthermore, during the OzGirlsCT 
workshops, we occasionally reminded the mentors that they should not be directly involved in the problem-solving process 
of their teams. Despite these mitigating strategies, it is possible that being an observer may have interfered with their 
mentoring activities and contributed to the team's frustration, as described in Section 4.4, as they were not as readily 
available to help. 

Social desirability bias [127] (i.e., a participant tends to provide socially acceptable answers) may have influenced the 
students’ and mentors’ responses. The potential social desirability bias in the students’ responses was mitigated to some 
extent by asking the mentors the same questions as those of the students. To further reduce this bias, we assured the 
participants that their personal information and answers would not be identified in any potential reports in the future. 

6 Summary 
This study empirically explored how secondary school girls perceive Computational Thinking (CT) practices by conducting 
a mixed-methods approach consisting of two surveys with secondary school girls (with 193 valid responses each), a survey 
with 31 valid responses collected from 31 mentors, and 52 mentor observation reports. Our goal was to understand how 
secondary school girls perceive the difficulty level of 12 CT practices when developing and implementing computational 
solutions to socially relevant problems with the micro:bit device in a collaborative setting. We were also interested in 
understanding the challenges they faced in programming with the micro:bit device in this setting and the best practices 
they developed and applied to address these challenges. 

(1) The quantitative analysis shows that “identifying errors in code” (28% of the girls and 42% of the mentors rated it difficult 
or very difficult) and “finding a solution to fix the identified errors in code” (29% of the girls and 32% of the mentors rated 
it difficult or very difficult) are the most difficult CT practices to apply. In contrast, the collaborative practices of CT 
represented by “reaching a consensus in group decisions”, “working collaboratively with team members”, and “giving 
feedback to teammates and making suggestions to improve idea/code” are the easiest practices to apply, as in each case, 
at least 67% of the participants believe that they are (very) easy practices to apply. 

(2) The challenges that the girls faced when developing and implementing their computational solutions with the micro:bit 
device are not only technical (i.e., challenges related to “incorporating idea into the micro:bit”, “code debugging”, and 
“code complexity”), but also are rooted in “the micro:bit limitations”, “personality traits”, and “coding experience”.  

(3) Whilst having prior experience in coding to some extent influences the difficulty level of CT practices perceived by the 
girls, its most significant effect is on “debugging”. 

(4) The main practices employed by the girls to overcome the challenges faced are “feedback-driven development”, 
“establishing a collaborative and supportive culture within the team”, “simple design, better code”, “predictive 
thinking”, “prioritising quantity over quality”, and “leveraging external resources”. 
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