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Abstract. The Internet of Things enables to connect the physical world to digital business processes 

(BP) and allows a BP to 1) consider real-world data to take more informed business decisions, 2) 

automate and/or improve BP tasks, and 3) adapt itself to the physical execution environment. We refer 

to these processes as IoT-enhanced BPs. Although numerous researchers have studied this subject, there 

are still some challenges to be faced. For instance, the need of a modelling solution that does not 

increase the notation complexity to facilitate further analysis and engineering decision making, or an 

execution approach that provides a high degree of independence between the process and the underlying 

IoT device technology. The objective of this work is defining an approach that (1) considers important 

intrinsic characteristics of IoT-enhanced BPs at modelling level without growing the complexity of the 

modelling language, and (2) facilitates the execution of the IoT-enhanced BPs represented in models 

independently from IoT devices’ technology. To do so, we present a modelling approach that uses 

standard BPMN concepts to model IoT-enhanced BPs without modifying its metamodel. It applies the 

Separation of Concern (SoC) design principle: BPMN is used to describe IoT-enhanced BPs while low-

level real-world data is captured in an ontology. Finally, a microservice architecture is proposed to 

execute BPMN models and facilitate its integration with the physical world. This architecture provides 

high flexibility to support multiples IoT device technologies as well as their evolution and maintenance. 

The evaluation done allows us to conclude that the application of the SoC principle using BPMN and 

ontologies facilitates the definition of intrinsic characteristics of IoT-enhanced BPs without increasing 

the complexity of the BPMN metamodel. Besides, the proposed microservice architecture provides a 

high degree of decoupling between the created models and the underlying IoT technology. 
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1 Introduction 

Nowadays, it is increasingly common to find physical computing devices supporting all kind of business 

activities (e.g., monitoring vital signs, tracking products' location, measuring temperature and humidity in 

a building or a field, or controlling production units at factories). These computing devices rely on the so-

called context, i.e., relevant data from the physical world (Abowd et al, 1999; Dey, 2001), to perform either 

a sensing or actuating task over it. While sensors are used to collect and transfer data about the physical 

world (e.g., temperature sensor, camera, hearth rate sensor, etc.), actuators are used to control the physical 

world (e.g., air conditioner or heating, watering systems, security systems, etc.).  

Business Processes (BPs) defining and implementing company’s goals can clearly benefit from the IoT 

domain (Zhang et al., 2011; Jalali & Wohlin, 2012; Janiesch et al. 2020; Beverungen et al., 2020). On the 

one hand, sensors can provide BPs with real-time data to take more informed decisions based on context 

(i.e., relevant data from the physical world) (Janiesch et al. 2020). For instance, the completion of manual 



activities can be detected automatically through sensors, preventing the need of humans to manually 

indicate when they have finished a task. On the other hand, actuators can be used as digitalized physical 

resources that participate processes as artificial actors to automate and improve the execution of some of 

their tasks (Beverungen et al., 2020). For instance, bridges on a port can be automatically opened upon 

arrival of a ship. In contrast to traditional BPs where context data are entered manually by humans, in the 

IoT domain there is a shift to automation, where services, machines, and things can take the role and 

responsibility of performing some of the process tasks. We refer to this type of BPs as IoT-enhanced BPs 

(Torres et al., 2020), which are processes that make use of IoT technology to carry out the process tasks in 

order to achieve a specific goal. 

However, these two domains (IoT and BPM) operate at a very different abstraction levels, what imposes 

some challenges to be solved (Janiesch et al., 2020). Next, we illustrate the intrinsic characteristics of IoT-

enhanced BPs in which we focus in this work by using a real-life example, specifically showing the 

problems that we face in this article.   

1.1 Motivating example  

Let us illustrate the IoT-enhanced BP concept with an example from the logistics domain, specifically to 

transport perishable products whose safety and quality highly depend on controlling temperature and 

humidity from origin (harvest fields) to consumption (Bowman et al., 2009). Note that this IoT-enhanced 

BP will be used as a running example in the rest of the paper to illustrate the use of our approach. 

Imagine a smart distribution centre, where received products from warehouses are distributed to 

supermarkets. Following the quality control proposal presented in (Valero & Ruiz-Altisent, 2000), 

perishable products are checked and stored prior to their distribution. Figure 1 presents, in a BPMN model, 

the flow of such process. The process starts when a container with a pallet of a same product arrives to the 

smart distribution centre. 

The first thing to do at the distribution centre is to check the quality of the products of the pallet (level 

of firmness, colour, and possible damages). This is done by a worker who is in charge of registering the 

results of the checking in the system. Next, information about the product received (e.g., product name, 

product variety, harvest date, etc.) is automatically identified by reading the pallet labels (e.g., a QR code), 

and the conditions in which the products have been transported, i.e., the container’s temperature and 

humidity, are also automatically sensed. Based on these conditions and the quality evaluation introduced 

by the worker, the products are considered in good quality or not for distribution. If not, the rejection of the 

pallet is registered and it is discarded by moving it to a garbage. On the contrary, if the quality of the 

products is good for consumption, the pallet is registered in the distribution centre and placed into a 

transportation line to be stored in a cooling chamber climatized accordingly to avoid product spoilage (e.g., 

oranges must be kept between 2 and 12 Celsius degrees and at 90% relative humidity).  

Besides this first product control, a second one is performed over a sample in the laboratory. This 

analysis will determine whether moulds, yeast, and certain bacteria have grown in the received products. If 

so, an alarm is activated, and the pallet is discarded by transporting it to the garbage. If no bacteria are 

detected, the shipment task of the received products can start. If the quality of the products is not excellent 

(e.g., they are good for distribution but firmness or colour are not the optimum), the price of the products 

is reduced and the pallet is prioritized to avoid their spoilage. Finally, all shipped pallets are registered in 

the system once a truck for transporting them is available. 



 

Figure 1. BPMN representation of the motivating example 

While the container arrival start event as well as the detection of available trucks would be considered as a 

push interactions, i.e., the physical world injects data into the process, all the tasks that require interaction 

with IoT devices by demand (e.g., sensing container conditions, control refrigerator configuration, request 

robots to move pallets, etc.) are classified as pull interactions, i.e., tasks that are triggered from the BP. 

This interaction can be performed either to get information about the context in specific moments, i.e., to 

sense the environment conditions (e.g., container temperature and humidity), or to perform actions that may 

change the context, i.e., to actuate over “things” to change the environment conditions (e.g., to adjust the 

refrigerator chamber temperature).  

Physical devices and context play an important role in the execution of IoT-enhanced BPs as Figure 1 

shows. However, the general-purpose nature of BPMN does not allow to specify explicitly these important 

aspects, putting the focus instead on the specification of the control flow. A similar thing happens if we use 

other well-known modelling languages such as BPEL, Petri Nets (PNs), EPC, etc. It is not clear how IoT-

specific aspects can be represented in a BP model since the semantics provided by the constructs of these 

languages were not conceived originally to address the specific necessities introduced by the IoT domain. 

In other words, BP modelling languages do not provide means to explicitly represent the IoT devices that 

execute each action, the context that needs to be sensed, or the events that are triggered from the physical 

world. 

Note also that the lack of this information limits the possibility of executing a BP model that needs to 

interact with the physical world, since there is not enough information to do so. Thus, models like the one 

shown in Figure 1 will be relegated to simple documentation purposes. Therefore, we need to investigate 

how IoT-specific aspects can be integrated into the description of a BP in order to facilitate both the 

modelling and proper execution of an IoT-enhanced BP. Among the different characteristics that are 

intrinsic to an IoT-enhanced BP, this paper focuses on supporting the ones illustrated with the motivating 

example, which can be generalized to any IoT-enhanced BP. In particular: 

 

1) As traditional BPs, the flow of coordinated tasks that are required to achieve the goal of the BP. 

2) The IoT devices that participate in the BP. 

3) The context data that need to be considered in order to maintain the BP well informed and to 

properly execute the flow of activities. 

4) The pull and push interactions that occur between the BP and the physical world to contribute to 

the achievement of the BP goal. 



Obviously, these characteristics can directly be moved to the execution level. Business process execution 

refers to the actual run of a process by a process engine, which is responsible for instantiating and 

controlling the execution of BPs (Weske, 2012).  Thus, BP engines must be able to consider the above 

introduced characteristics to properly execute IoT-enhanced BPs. On the one hand, tools to control the flow 

of the process are needed. On the other hand, mechanisms to execute actions on IoT devices (pull 

interactions) and inject context changes into the BP (push interactions) must be provided. 

A lot of efforts have been done to extend a well-known BP modelling language such as BPMN to 

integrate it with IoT requirements. However, as we conclude further in the analysis of the state of the art, 

most of the existing solutions present two main drawbacks: (1) extensions introduced in BPMN do not 

support all the intrinsic characteristics presented above or highly increase the complexity of the modelling 

language, which hinders the use of BPMN models as communication tools among stakeholders; (2) the 

proposed solutions to model IoT-enhanced BPs are not executable or the provided execution mechanisms 

are highly dependent on specific IoT technologies, making it difficult to evolve the system when 

technological changes are needed. 

1.2 Problem statement 

The problems that this work addresses can be stated by the following research questions: 

1. How can we consider all the intrinsic characteristics of IoT-enhanced BPs at modelling level 

without growing the complexity of the BP modelling language? 

2. How can we execute IoT-enhanced business processes that are represented in BP models 

independently from IoT devices’ technology? 

1.3 Main Contributions 

This work improves the state of the art by proposing a solution to model and execute IoT-enhanced BPs 

that addresses the two above stated problems. This solution is based on the two following decisions. On the 

one hand, we propose to use the Business Process Model and Notation (BPMN), a well-known and accepted 

standard by academia and industry, as the modelling language to represent such BPs. On the other hand, 

we propose to deploy BPs following a microservice architecture to execute these BPs, which provides a 

high degree of independence from IoT technology as well as flexibility to evolve and maintain the system. 

As such, the contributions of this paper are two-fold: 

(1) A modelling approach based on BPMN that reuses the concepts introduced by this language in 

order to model IoT-enhanced BPs. In order to not increase the complexity of the BP modelling 

task, we analyse the constructors provided by the BPMN metamodel and define a proposal to 

specify IoT devices and pull interactions without modifying its metamodel. In addition, we apply 

the SoC design principle in order to complement BPMN models with an ontology that is used to 

model context and push interactions. 

(2) A microservices architecture aimed at facilitating the integration of business processes with the 

physical world. This architecture provides a high degree of decoupling between the created models 

and the underlying IoT technologies. This facilitates the integration of IoT devices that are 

supported by different technologies. 

1.4 Structure of the paper 

The remainder of the paper is structured as follows. Section 2 presents some background. Sections 3 

introduces an analysis of the state of the art. Section 4 outlines the modelling solution to specify IoT-

enhanced BPs. Section 5 presents the microservice architecture designed to support the execution of such 

models. Section 6, 7 and 8 present the experiments done to evaluate our work. Afterwards, a discussion 

about the proposed solution is presented in Section 9. Finally, Section 10 concludes the paper and provides 

insights into directions for future work.  



2 Background 

This section provides some background on which the proposed work is based. This include Business 

Process Modeling, Context and Ontologies and Microservices. 

Business Process Modelling. It is the activity where business processes are explicitly represented using 

a graphical notation (e.g., BPMN). Specifically, according to Weske (2012), a business process is defined 

as “a set of activities performed in coordination in an organizational and technical environment". Analysing 

this definition, a business process defines what (activities) has to be performed, how they should be 

performed, and by whom (organizational and technical environment). Currently, there are many languages 

that can be used to build a BP model. The most used and well-known BP modeling languages include 

BPMN, BPEL, Petri Nets (PNs), EPC, and UML Activity Diagrams (AD). The level and the purpose of the 

BP model being created will determine the modeling language used in each case. For example, while the 

BPMN modeling language is more appropriate to represent high-level BPs, PNs work better for low-level 

BPs that in addition can be analyzed from a mathematical point of view. As commented above, in this work 

we use BPMN in order to represent IoT-Enhanced BPs at a high level of abstraction. 

Context and Ontologies. In a business process, context can be defined as the minimum set of variables 

that contains all the important information that impacts their design, implementation, and execution 

(Rosemann & Recker, 2006). Although an exhaustive recent comparison of techniques to model context 

can be found in Perera et al. (2013), ontologies are one of the best choices to do so (Baldauf et al., 2007; 

Chen et al., 2003; Ye et al., 2007). In the context of IoT-enhanced BPs, ontologies are also one of the most 

used solutions to extend BPs with context data (Gao et al., 2011; Suri et al., 2017). Several ontologies 

already exist to describe sensor devices and the data they capture. For instance, the Sensor Model Language 

(SensorML1) which focuses on describing physical and functional characteristics of physical processes 

focusing on the process of measurement and observation. The Semantic Sensor Network (SSN2) ontology 

which can describe sensors in terms of capabilities, measurement processes, observations and deployments. 

The IoT-Lite3 ontology, which is a lightweight instantiation of SSN to represent IoT resources, entities and 

services. The Sensor, Observation, Sample and Actuator (SOSA4) ontology, which is based on SSN, and 

describes sensor observations, sampling, actuations and procedures. Finally, the Stream Annotation 

Ontology (SAO5) that can be used to represent IoT data streams. 

Microservices. They are the key pillar of an architectural style where applications are decomposed into 

small independent building blocks (the microservices), each of them focused on a single business capability 

(Fowler & Lewis, 2014). Microservices communicate to each other with lightweight mechanisms, and they 

can be deployed and evolved independently, which leads to more agile developments and technological 

independence between them (Fowler, 2015). Apart from the microservices that implement the business 

capabilities of a system (hereafter business microservices), a microservice architecture usually includes 

other microservices that are focused on supporting infrastructure issues. Examples of this type of 

microservices are the Service Registry that gives support to service discovery, containing the network 

locations of microservice instances. In addition, some supporting tools are also provided to, for instance, 

monitor microservices’ status, log their executions, or manage asynchronous communication among 

microservices (e.g., message brokers). 

 
1 https://www.ogc.org/standards/sensorml 
2 https://www.w3.org/TR/vocab-ssn/ 
3 https://www.w3.org/Submission/2015/SUBM-iot-lite-20151126/ 
4 https://github.com/w3c/sdw/blob/gh-pages/ssn/integrated/sosa.ttl 
5 http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao 



3 State of the art 

This section presents the state of the art related to the integration of IoT capabilities at the BP modelling 

level (cf. Sections 0 and 3.2) and also reviews the works that apply the SoC design principle to their 

proposals (cf. Section 3.3). Finally, a summary of this analysis is presented (cf. Section 3.4).  

3.1 Extending the BPMN metamodel with new constructs 

There are some works that extend the original BPMN notation with new concepts to model requirements 

imposed by IoT systems. Appel et al. (2014) introduce a new concept called Event Stream Processing Units 

(SPUs) to integrate the amount of real-time data that is generated in Cyber-physical systems. Mandal et al. 

(2017) introduce new event annotations to specify the binding points between external events and the BP 

model. Chiu & Wang (2015) extend the event concept with new types of events. Dörndorfer & Seel (2018) 

extend the BPMN metamodel with four new elements in order to represent context data: Context 

Description Expression, Intermediate Context Event, Context Annotation, and Context Group. Schönig et 

al. (2018) extend BPMN with Data variables to enrich BP models with data obtained from physical objects 

and to specify how and where connected IoT devices influence the process. Cheng et al. (2019) introduce 

three new classes (Sensor Device, Sensor Service, and Handler) to explicitly represent sensor devices. Graja 

et al. (2016) propose to specialize BPMN service tasks as physical tasks and cyber tasks, which are tasks 

that are executed by a piece of software. Meyer et al. (2013) extend the BPMN metamodel with three new 

classes: PhysicalEntity, SensingTask and ActuatingTask. Petrasch & Hentschke (2016) propose to 

represent IoT devices as BPMN partitions in the BP model. Then, based on the task extension proposed by 

Meyer et al. (2013), the interaction with such devices is represented through Sensing Tasks and Actuating 

Tasks. Mottola et al. (2017) introduce the WSN task concept to represent generic actions to sense, actuate, 

and aggregate operations executed by a Wireless Sensor Network. Sperner et al. (2011) propose to extend 

the BPMN metamodel to represent physical entities and their interaction with devices with several new 

concepts: PhysicalObject, SensingTask, ActuatingTask, SensingAssociation and ActuatingAssociation. 

Suri et al. (2017) extend BPMN with the ResourceExtension to include IoT Devices and their quality 

attributes. Yousfi et al. (2019) propose to extend the event and task BPMN elements to represent IoT input 

technologies, and the data object element to represent physical objects. Finally, Gao at al. (2011) propose 

to extend the BPMN model by attaching an extended attribute to a task, tasks groups and sub-processes, 

and using this attribute to reference an external model. 

The main drawback of all these approaches is that extending the BPMN’s metamodel prevents current 

existing tools to be used to execute IoT-enhanced business processes. As commented above, to support the 

execution of these processes we need tools to control the flow of the process. Currently, there exists a 

myriad of BPMN engines that could be used to support this task. However, if modelling solutions modify 

BPMN’s metamodel they are no longer compatible with existing engines. In this sense, most of the above-

introduced approaches that use BPMN do not support the execution of their modelling solution. Some 

exceptions are Appel et al. (2014) and Cheng et al. (2019), which extend an existing process engine to 

support their new constructs; and Mottola et al. (2017), which generate code to execute the part of the BP 

model that cannot be executed in a process engine. We think that these solutions provide execution 

platforms that are extremely coupled with a specific technology and that are difficult to be maintained and 

evolved if technology requirements change. 

In addition, handling IoT concepts into BP modelling can introduce a higher cognitive complexity. In 

the BPM field, we find many works aimed at measuring this complexity associated to BP modelling 

(Melcher et al., 2019; Zugal et al., 2011; Zugal et al., 2011, October). These works put forward that more 

conceptual abstractions could make BP modelling more complicated and could create the need for 

additional validation mechanisms. Note also that one of the major purposes of a BP model is to serve as an 

efficient communication mechanism between different BP stakeholders (e.g., between business engineers 



and process designers). If BP models are extended or enriched with too much information, we run the risk 

of losing this powerful mechanism.   

3.2 Using BPMN models as-is 

In contrast to extending the BPMN metamodel, other studies propose to use the original BPMN constructs 

to model IoT-enhanced business processes. In this case, the BPMN notation is mainly used just for the 

construction of a non-executable modelling artefact that needs to be transformed into another 

language/technology to be executed. For example, Baresi et al. (2016) propose defining BPs in the BPMN 

standard and generating from them declarative extended Guard-Stage-Milestone (GSM) specifications in a 

semi-automatic way. Such GSM specifications are deployed and executed on smart objects and a specific 

infrastructure needs to be deployed in each of them. Caracaş & Kramp (2011) propose the use of standard 

BPMN tasks, flows and pools to capture the behavioural aspects of WSN applications. Then, Java and C# 

code is generated in order to be deployed on the Mote Runner WSN platform. Dar et al. (2015) propose 

integrating smart objects into the BP using jBPM, a BPMN compliant software suite where the application 

logic is expressed by composing local and remote service tasks using the BPMN based workflow model. 

In this case, a programming framework developed in Java behaves as intermediary between these smart 

objects and the BP definition, and generates all the artefacts that are necessary to achieve this integration. 

Domingos & Martins (2017) propose to use the BPMN Performer and Resource classes to represent IoT 

devices and integrate information about them into the model. Then, standard BPMN models are translated 

into Callas, an IoT neutral-platform programming code that can be executed in every IoT device for which 

there is a Callas virtual machine available. Friedow et al. (2018) propose to define BPs at the process layer 

using standard BPMN and achieve the integration between IoT devices and BPs at the technical level 

through the Bosch IoT Things service. Finally, Wehlitz et al. (2017) propose a work-in-progress 

architectonic solution that uses BPMN to deal with the modelling and execution of IoT-enhanced BPs for 

smart environments. In this case devices are represented as resources (swim lanes) in a BPMN model and 

use service tasks to manage them. 

The major benefits of these approaches are that 1) they do not increase the cognitive complexity of the 

modelling notation and 2) they can use existing BPMN engines to execute the BPs. However, most of the 

works following this approach use the BPMN notation just as a modelling artefact that needs to be 

transformed into another language/technology to be executed. Again, this solution is highly coupled with 

specific technologies, and a more flexible solution should be proposed. For instance, Baresi et al. (2016) 

require deploying a specific infrastructure in each IoT device making them totally dependent from this 

infrastructure. Domingos & Martins (2017) only support IoT devices for which a Callas virtual machine is 

available; Caracaş & Kramp (2011) generate Java and C# code to be deployed on the Mote Runner WSN 

platform; and Dar et al. (2015) depends on the jBPM toolkit in order to interact with a Java framework. An 

exception is the work proposed by Wehlitz et al. (2017) which uses the external task pattern to interact with 

functionality implemented in any technology. However, this work obviates the processing of low-level 

context data and delegate this problem to programming artefacts in contrast to our work that face it through 

high-level descriptions based on an ontology. In general, the description of context at modelling level is not 

considered by the above introduced approaches and they pay little attention to describe how the low-level 

data obtained from sensors (e.g., container’s temperature) can be processed to obtain high-level information 

data that may be more appropriate for the BP (e.g., damaged goods due to high temperatures).  

Our approach also proposes to specify IoT-enhanced BPs using the original primitives of the BPMN 

language. However, in our case, BPs models can be deployed and executed in any BPMN compliance 

engine, independently of the technology in which IoT devices work with. This technological flexibility is 

possible thanks to the microservice architecture in which our proposal relies on (cf. Section 5). In our 

proposal , microservices behave as intermediaries between the BP and the IoT devices participating in the 

BP. Even though microservices provide a standard way to interact with the corresponding IoT devices (i.e., 

by means of an API), these can be implemented in different languages and frameworks that may be more 



appropriate depending on the type of device being wrapped (e.g., Swift to handle iOS devices, Python for 

Raspberry). 

3.3 Application of the SoC principle 

Some of the works presented above apply the SoC design principle to design their modelling proposals. 

Dörndorfer & Seel (2018) propose the sensor model (SenSoMod) to specify sensors, context and how these 

relate to each other. This model is linked with the proposed BPMN extension (Context4BPMN). Gao et al. 

(2011) propose linking BPMN models with the Functional Model to import a sensor ontology and its 

instance data. Suri et al. (2017) propose providing a semantic description of the BPMN models by means 

of an ontology that integrates concepts from the BP and the IoT domains. Finally, Yousfi et al. (2019) 

combine their BPMN extended proposal (uBPMN) with a Decision Model where ubiquitous decisions 

based on an important amount of data (e.g., location, traffic status, gas level, etc.) are defined. 

Our approach applies the SoC principle by combining BPMN models with an ontology as most of the 

above analysed works do. However, in contrast to these works, the proposed ontology is only introduced 

to manage low-level context data. The IoT devices that participate in the BP and the high-level events that 

must be managed within the process are represented in the BPMN model by using the standard notation. 

Thus, the high-level requirements of an IoT-enhanced BP are all defined in one model, which provides a 

more intuitive and cohesive view to facilitate their analysis. Moreover, it is not clear how the above analysed 

works support the execution of the models they propose. We propose a microservices architecture to support 

the execution of IoT-enhanced BP models. 

3.4 Summary 

Table 1 shows a summary of the analysed works. The columns of this table are as follows: (1) BPMN: the 

modelling language is extended (+) or is used as is (=); (2) IoT: IoT devices and/or the interaction with 

them are considered at modelling level; (3) Context data: the management of context data at modelling 

level is supported; (4) Execution support: the execution of IoT-enhanced BPs is supported; (5) Technology 

independent: the execution of IoT-enhanced BP models is technology independent or need either a specific 

engine or a proprietary solution; and (6) SoC: the approach applies the SoC principle to avoid increasing 

the complexity of BPMN models. 

Table 1. Comparison of the analysed works 

Approach 
BPM

N  
IoT  

Context 

Data 

Execution 

Support 

Technology 

independent 
SoC  

Graja et al. (2016); Meyer et al. (2013); 

Petrasch & Hentschke (2016); Sperner et 

al. (2011)  

+ yes no no - no 

Mandal et al. (2017); Chiu & Wang 

(2015); Schönig et al. (2018); 

+ no yes no - no 

Suri et al. (2017); Gao (2011); Dörndorfer 

& Seel (2018); Yousfi et al. (2019) 

+ yes yes no - yes 

Appel et al. (2014) + no yes yes No. Ext. engine no 

Cheng et al. (2019) + yes no yes No. Ext. engine no 

Mottola et al. (2017) + yes no yes No. Prop. code no 

Baresi et al. (2016) = yes no yes No. Prop. Infrastr. no 

Caracaş & Kramp (2011) = yes no yes No. Mote Runner  no 

Dar et al. (2015) = yes no yes No. jBPM toolkit no 

Domingos & Martins (2017) = yes no yes No. Callas no 

Friedow et al. (2018) = yes no yes No. Bosch IoT  no 

Wehlitz et al. (2017) = yes no yes yes no 

 



Our approach provides the following key contributions to the state of the art: 

1. Our modelling approach provides an integrated and cohesive solution capable of representing: (1) the 

flow of coordinated activities; (2) the IoT devices that participate in the BP; (3) the context data that 

need to be considered at both low and high level, and (4) the pull and push interactions that may occur 

between the BP and the IoT devices. To do so, we based on a BPMN model and a context ontology. 
2. Our modelling approach does not increase the complexity of the BPMN metamodel and is compatible 

with existing BPMN process engines. To do so, we apply the SoC principle in order to integrate a 

BPMN model with a context ontology without extending the BPMN metamodel. 

3. The execution of IoT-enhanced BPs is supported in such a way that the created models are highly 

decoupled from the underlying IoT technology. To do so, we provide an execution architecture based 

on microservices. 

Next sections introduce the solution that we propose to model and execute IoT-enhanced BPs in detail. 

4 A modelling approach for IoT-enhanced BPs 

In this section, we present a modelling solution to describe IoT-enhanced BPs that pays special attention to 

support the intrinsic characteristics described in Section 1 without increasing the complexity of BPMN 

models. To do so, we apply the SoC design principle and propose a modelling solution based on two models, 

a BPMN model and an ontology-based context model. Thus, the modelling process that we propose is 

defined by two main steps:  

1 Business Process modelling. We create a standard BPMN model that describes the flow of coordinated 

activities among participants of different type (e.g., humans and IoT devices) considering both pull 

interaction with IoT devices and push interactions triggered from high-level context events. How low-

level context is sensed and processed to create high-level events is considered in the next step.  

2 Context Definition. An ontology-based context model is used to define the low-level data that must 

be sensed from the physical world, and how it must be processed to inject (push interaction) the high-

level events into the IoT-enhanced BP defined in the BPMN model. 

Note that the application of the SoC principle also allows us to support multidisciplinary working groups: 

experts on the capture of the low-level environmental data can focus on defining the context ontology, 

while process engineers can focus on defining the BPMN model. Next subsections explain each step in 

more detail. 

4.1 Business Process modelling 

IoT devices and the interaction with them should be represented in a BPMN model without extending its 

metamodel. To do so, existing BPMN concepts must be used. The main foundations of our modelling 

approach are as follows: 

Explicit representation of IoT devices. If we consider the approaches analysed in the state of the art, 

we can see that the most used solution to achieve this consists in using the pool or lane concepts in order 

to represent a device. See for instance, works such as Cheng et al. (2019), Petrasch & Hentschke (2016) or 

Wehlitz et al. (2017). We were inspired by these approaches when proposing our modelling solution. 

According to good practices in BPMN, pools should be used to represent organizations, and lanes to 

represent the actors of an organization that participate in a process. Thus: 

• Guideline 1. A pool is used to represent the whole IoT-enhance business process within an 

organization. 

• Guideline 2. Each IoT device or any other actor of an organization that participate in the process 

is represented by a lane of this pool. 

Representation of IoT Devices’ actions. In BPMN, the tasks that are contained within a lane define 

the actions of the actor represented by the lane. According to the standard BPMN (2011), service tasks are 



those carried out by software. Therefore, in the case of IoT devices, we think that such tasks are the best 

option to represent their actions. BPMN normally assumes that this software is developed as a web service, 

though it can be implemented differently. In our solution, IoT devices are going to be managed by 

microservices (further explained in Section 4). Therefore, a BPMN Service Task is a very suitable BPMN 

element to represent IoT devices’ actions since they are conceptually defined to be linked to an API 

provided by an external system. Thus: 

• Guideline 3. Each IoT devices’ action is defined as a Service Task. 

Supporting pull interaction. A push interaction occurs when the BP receives context data from the 

physical world, which triggers events and injects data into the BP upon their occurrence. This type of 

interaction can be considered as an event-driven communication where the BP is waiting for the occurrence 

of interesting events that occur in the physical word. 

• Guideline 4. The execution of the Service Tasks that represent actions of IoT devices supports pull 

interactions. 

Supporting push interaction. A push interaction is done when the BP receives context data that is 

waiting for from the physical world. In this case, the data is injected into the BP from the physical world. 

This type of interaction can be considered as an event-driven communication. The BP is interested in the 

events that occur in the physical word and it is waiting for the occurrence of these events. The physical 

world is the element that triggers events and informs the BP upon their occurrence. 

BPMN provides the message start event and the message intermediate catch event to define that a 

process must wait for the reception of an event to either be started or to continue its execution after pausing 

it, respectively. These elements can be used to represent that an IoT-enhanced BP must wait for the 

occurrence of an event in the physical world. 

In order to represent that these events are generated from the physical world, we need to represent the 

physical world as a new actor of the process. However, note that we do not control the physical world, we 

just know that we receive events from it. To represent this situation in BPMN, a collapsed pool is 

recommended. Thus:  

• Guideline 5. The physical world is represented by a collapsed pool. 

• Guideline 6. Push interactions are represented by flow sequences whose source is the collapsed 

pool that represent the physical world and whose target is a message start event or a message 

intermediate catch event defined in a lane. 

In Figure 2, we have used these six foundations to re-define the BPMN model used in the motivation 

example presented in Section 1.1. As we can see, there is a main pool that represents the “Smart Distribution 

Centre” and that it is divided in seven lanes that represent the seven actors that participate in the process: 

the Information System lane that represents the software that performs actions on the data storage of the 

company, the Worker and Analyst lanes that represent human actors and finally, the rest of lanes that 

represent four IoT devices that participate in the process: the Robot, Refrigerator Control System, the 

Alarm, and the Truck Container Sensor. Besides, the re-defined model includes an extra task to have an 

additional push interaction, i.e., the Decrease Refrigerator Temperature included at the end of the flow 

which allows to adjust the temperature of the refrigerator chamber if it is too warm. 

Note how IoT devices are represented in the same way as any other actor in the process. This aspect 

provides a high level of abstraction with respect to the physical world and provides a cohesive way of 

representing actors of any type (software systems, humans, IoT devices), which reduces the complexity of 

the model but maintains a high level of expressiveness. Note also that the physical world is explicitly 

represented, which allows easily identifying the events that are generated from it. These events are used to 

represent push interactions in the BPMN model and are defined at a high level of abstraction (e.g., container 

arrival, refrigerator too warm). How high-level events are obtained from low-level data sensed from the 

physical world is defined at the context ontology that we present in the next subsection.  

This modelling solution provides an intuitive way of defining IoT-enhanced BPs that facilitate further 

analysis to take engineering decisions. It allows business process engineers to easily understand the pull 

interactions that may occur with the IoT devices that participate in the process; in the same way, push 

interactions are quickly identified through the high-level events associated to the physical world. In 



addition, we describe the IoT-enhanced BP in an abstract way, highly independent from the underlying IoT 

technology. 

 

Figure 2. BPMN representation of an IoT-enhanced business process  



4.2 Context definition 

In this work, we use ontologies as a separated modelling artefact from BPs to model context in an IoT-

enhanced process. This solution provides two main benefits. On the one hand, it facilitates to apply the SoC 

design principle which helps to not increase the complexity of BP models. On the other hand, ontologies 

provide a valuable mechanism to describe and analyse context data in order to obtain (as we explain below) 

the high-level data that is needed in the business process to be executed from low-level data captured by 

sensors installed in the physical world.  

Considering IoT-Enhanced BPs, a context ontology should represent the digital and physical data 

impacting a business process. This includes the physical data itself but also the sensors that are used to 

capture such data, the characteristics of the data (e.g., time in which it was captured, format, and metric 

used), and other relevant digital data the company may have (e.g., data about products, customers, 

employees, and facilities). All these data are necessary since a business process may depend on data events 

that are not only derived from IoT data, e.g., 5 degrees is a too warm temperature for ice storage, but it is 

an appropriate temperature for preserving vegetables. For deriving these events, product information as 

well as temperature information in the storage room are needed. 

To support the motivating example, we could combine the SOSA ontology with the logistics ontology 

created by Knoll et al. (2019), which offers constructs to describe products, their packaging, and the 

logistics processes. As a representative example, Figure 3 shows part of the ontology used in the motivating 

example. We can see some classes imported from the SOSA ontology including the Observation class. 

Its subclass TemperatureObservation is instantiated to capture the temperature of a container. 

 

Figure 3. Snapshot of ontology used in the motivating example in Protégé 

Generating High-Level Events from Context Data. In our approach, low-level context data must be 

processed to inject high-level events into the BPMN process (push interactions). This task is highly related 

to the Complex Event Processing (CEP) area, which focuses on offering an abstraction layer that hides the 

complexity in detecting such events. In this way, the business-level application, the BPMN process in our 

case, can concentrate on realizing appropriate actions whenever a specific event occurs. Specifically, we 



followed the main ideas proposed by Taylor & Leidinger (2011) which demonstrated that ontologies are a 

valuable tool to represent context data in order to process complex events. 

Complex Event Processors are supported by query languages that allow domain experts to describe 

when a relevant event occurs. Ontologies offer mechanisms such as SWRL rules or SPARQL queries to 

derive such events. These mechanisms can be used to transform low-level data into the high-level events 

that will be consumed by the process. As a representative example, the following two SWRL rules identify 

when a container has arrived at the warehouse as well as when the temperature of the warehouse is too 

warm for the products that are stored in that warehouse. Note that these two SWRL use low-level data of 

the environment to generate new knowledge that can be used to create the high-level events defined in the 

BPMN model presented above, i.e., Container Arrival and Cooling Chamber Too Warm:  

 
Container(?container) ^ locatedIn(?container,ContainerReception)  

-> status(?container,\"arrivalInWarehouse\") 

 

TemperatureObservation(?o) ^ hasResult(?o, ?result) ^ value(?result, ?v) ^ 

Product (?p) ^ maximumTemperature (?p, ?t) ^ swrlb:greaterThan (?v, ?t)  

-> temperatureCondition (?p, \"TooWarm\") 

 

In the same way, SPARQL queries can be also used to generate high-level events from low-level context 

data. As representative example, the following query returns true when containers are not detected in a 

period of 5 minutes, which could be used, for instance, to generate a high-level event that puts the system 

in standby mode. 

 
PREFIX ofn:<http://www.ontotext.com/sparql/functions/> 

ASK { 

  ?container rdf:type Container . 

  arrivalTimeStamp ?timeStamp . 

  ofn:millisBetween(NOW()^^xsd:dateTime,  

                                    ?timeStamp^^xsd:dateTime) < 300000 . 

} 

 

As we can graphically see in Figure 4, the low-level context data produced by IoT devices are registered 

into the Context Ontology. Next, SWRL and SPARQL can be used to analyse this low-level data in order 

to generate the high-level events defined in the BPMN model. 

 

Figure 4. From low-level context data to high-level BPMN events 

The next section introduces a microservice architecture in which we can see how the low-level context data 

is asynchronously published by the microservices that manage IoT devices in an event bus, and how a 

Context Monitor microservice plays the role of Complex Event Processor in order to: analyse this context 

data, identify high-level events, and inject them into the business process. 

http://www.ontotext.com/sparql/functions/


5 Supporting microservice architecture 

The previous section has presented a modelling solution to abstractly define an IoT-enhanced BP that 

provides high independence from the technology used by IoT devices. In this section, we present a 

microservice architecture in order to support the execution of these IoT-enhanced BPs. This architecture 

provides a solution to nimbly manage the technological heterogeneity of IoT devices and provides high 

flexibility to support evolution and maintenance. In addition, it facilitates the possibility of using existing 

BPMN engines in order to control the flow of the process. This architecture is characterized as follows (see 

Figure 5): 

The business microservices are those in charge of managing the different actors of an IoT-enhanced 

BP. These microservices manage IoT devices. There is no restriction about how these microservices must 

be implemented. Any operating system or implementation technology can be used. Any type of IoT device 

can be managed by a microservice, independently of its supporting technology or manufacturer. There are 

only two requirements that a business microservice must satisfy in order to participate in the proposed 

architecture: 

• It must provide a mechanism that allows another microservice to request, in a decoupled way, the 

execution of the operations that can be performed by the IoT device. This mechanism can be for 

instance a synchronous REST API or be based on an asynchronous communication through an 

event-based bus.   

• It must publish any context change to consider within an IoT-enhanced BP into an event-based 

bus to check if this is later linked as a high-level event. 

To analyse the published context changes, we propose the Context Monitor microservice, which will 

inject the necessary high-level events into the BP (see more details below). Regarding the supporting tools, 

we propose the use of an asynchronous event-based bus to support the communication between business 

microservices and the Context Monitor microservice. 

The following infrastructure microservices is proposed: 

• Service Registry: this microservice is in charge of maintaining the list of business microservices 

that are in the system. For each microservice, this registry stores its invocation data.  

• BP Controller: this microservice is endowed with an existing BPMN engine that is in charge of 

controlling the activity flow of the process. Note that the modelling solution presented in the 

previous section is totally based on the standard so we can use any existing BPMN engine. This 

engine does not interact with business microservices directly. Instead, it sends execution requests 

to the Action Performer microservice presented below. To do so, the only restriction that we must 

consider is that the service tasks associated to the lanes that represent actors should be bind to the 

API provided by the Action Performer microservice. Note that BPMN engines provide their own 

mechanisms to associate an external API to a service task so we must use those provided by the 

selected engine.  

• Action Performer: this microservice plays the role of middleware among the BP Controller, the 

Service Registry, and the business microservices. It must publish an API to which BPMN service 

tasks must be bind in order to execute an action. When a service task is executed by the BPMN 

engine of the BP Controller, this engine sends an execution request to the Action Performer, which 

interact with the Service Registry in order to know the invocation data of the required business 

microservice. Then, it calls the corresponding operation either through a direct REST call to the 

business microservice or by publishing a message into the event bus. 

• Context Monitor: this microservice is registered in the event-based bus in order to access the 

context changes published by business microservices. When a context change happens, this 

microservice inserts it into the OWL context ontology and use SWRL rules and/or SPARQL 

queries such as the ones presented in Section 4.2 in order to generate high level events. These 

events are injected into the BPMN engine microservice. To do so, the mechanisms provided by 

the selected engine in order to interact with it from an external system must be used.  



Finally, note that an IoT-enhanced business process can include user tasks, which are activities within 

a process that are performed by end-users through an external application. In these cases, the BPController 

microservice must interact with these end-user applications in order to launch these user tasks. 

 

Figure 5. Microservice architecture to execute IoT-enhanced BPs 

In what follows we explain the interaction among the architecture elements in more detail. Let us consider 

the initial tasks of the re-defined BP model shown in Figure 2, which need both push and pull interactions. 

The process starts with a push interaction through which a high-level event is injected from the physical 

world.  This high-level event is generated by the Context Monitor microservice by analysing the context 

data published by IoT devices that may not participate in the process. In this case, a Container Detector 

IoT device is in charge of publishing the location of containers in the context ontology. Note that this IoT 

device does not participate directly in the business process and it is not aware of it. This device is just 

focused on publishing container’s location. The Context Monitor decides if this data should generate a high-

level event into a business process or not. Thus, note the high level of independence between the process 

and the IoT environment that our approach provides. Once the process is started, the user task Evaluate 

level of firmness, colour, damages is performed. Afterwards, the service task Read pallet labels is 

performed by the Truck Container Sensor microservice (pull interaction). The interaction among the 

participants in this part of the motivating example is as follows (see Figure 6): 



 

Figure 6. Example of interaction among architectural elements. 

1. The Container Detector microservice starts to publish the location of a Container into the Event-based 

bus once it has been detected. 

2. The Context Manager microservice is receiving these low-level context data updating the OWL 

ontology, and applying SWRL rules and SPARQL queries. When the location of the Container is the 

proper to consider the Container within the Warehouse, the Context Manager microservice injects the 

high-level event Container arrival into the BP Controller. 

3. The BP Controller microservice starts executing the part of the process associated to this high-level 

event. According to Figure 2, the user task “Evaluate firmness, colour and damages” must be executed. 

To do so, the BP Controller microservice must interact with an external end-user application. 

4. Once the external end-user application informs the BPMN Engine microservice about the completion 

of the user task, the service task “Read Pallet Labels” must be performed by the Truck Container 

Sensor microservice. To do so, the BP Controller delegates the execution this task to the Action 

Performer microservice. 

5. The Action Performer microservice receives the request of executing the “Read temperature and 

humidity values” operation of the Truck Container Sensor microservice. To do so, it inquiries the 

Service Registry in order to know the invocation data of an instance of this microservice. 

6. The Action Performer microservice uses the data obtained from the Service Registry in order to 

request the Truck Container Sensor microservice to execute the “Read temperature and humidity 

values” operation. In this example, we have considered that this microservice publishes a REST API, 

so the Action Performer microservice uses this API to directly interact with it. In case a microservice 

requires a publish/subscribe communication, the Service Registry provides the Action Performer the 

data required to communicate with the microservice through the event-base bus of the architecture. 

7. The Truck Container Sensor microservice executes the requested operation and informs the Action 

Performer about the result.  

8. The Action Performer informs the BP Controller about the execution of the operation. 

9. The BP Controller continues with the process considering the result of the executed Service Task. 



5.1 Tool Support  

To support developers in the implementation of the infrastructure microservices introduced above we 

developed distributable Java libraries by using the framework Spring Boot. This framework provides 

simple annotations and configuration files in order to develop and deploy the different components of an 

architecture. It uses reflection mechanisms to detect specific annotations and inject the corresponding 

functionality. 

Thus, we created two Java libraries6 that encapsulate the functionality of the Action Performer and the 

Context Monitor. Each of these libraries include an annotation (@ActionPerformer and 

@ContextMonitor) in order to easily create these elements. In this way, developers just need to: (1) create 

a Spring Boot project that includes our Java libraries, and (2) create a Java class with the corresponding 

annotation. As representative example, the following code creates an Action Performer microservice. As 

we can see, the implementation efforts are minimum. When executing the project, the annotation is detected 

and the functionality of the Action Performer microservice is injected. The @ContextMonitor annotation 

is used in an analogous way.  

@ActionPerformer  
public class ActionPerformer { 

   public static void main(String[] args) { 

    SpringApplication.run(ActionPerformer.class, args); 

   } 

}  

Next, we explain the functionality that each annotation injects in detail: 

• @ActionPerformer: This annotation creates a microservice that plays the role of Action Performer. 

It injects the following functionality: 

o A module that publishes an API REST to be used by the BPMN engine in order to ask for the 

execution of business microservice’s operations. 

o A module to inquiry the Service Registry and obtain the data required to interact with business 

microservices. Currently, we support Netflix’s Eureka7, which allows registering different 

instances of microservices. Eureka also provides a REST API in order to interact with it through 

the HTTP protocol, which allows the Action Performer to access microservice invocation data 

easily. In addition, this REST API can also be used to allow the registration of business 

microservices implemented in a myriad of technologies such as .Net, Java, Python, etc. 

o A module to execute REST invocations in order to interact with business microservices. 

• @ContextMonitor: This annotation creates a microservice that plays the role of Context Monitor. It 

injects the following functionality: 

o An adapter to subscribe the Context Monitor to an event bus in order to detect context changes 

published by business microservices. Currently, we support the RabbitMQ8 queue-based 

message broker, although others can easily be integrated. We use this broker because it provides 

a complete support to the MQTT protocol, which is one of the most used technologies in the IoT 

field. In addition, this broker provided client adapters to allow the integration of a myriad of 

technologies. 

o A module that transforms the context data published in the event bus (in a specific JSON 

structure) into a specification based on ontology concepts that are registered the OWL file that 

implemented the ontology. In addition, the SWRL API and Jena libraries are also included in 

order to apply SWRL and SPARQL rules respectively. 

 
6 The implementation of the provided tool support can be found in the following GitHub site: 

https://github.com/pvalderas/iot-enhanced-business-process-infrastructure 
7 https://github.com/Netflix/eureka 
8 https://www.rabbitmq.com/ 

https://github.com/pvalderas/iot-enhanced-business-process-infrastructure


o An adapter to interact with the BPMN engine. Initially, we supported the interaction with 

Camunda9, and after the evaluation experiment presented in Section 7, Bonita was also 

supported. We use the REST API provided by these engines to inject high-level events into the 

BP. Other engines can easily be supported as well through the implementation of a new adapter 

if they allow their management though a REST API.  

6 Prototype evaluation 

According to Völter (2016), a way of preliminarily evaluate the proposal of a new architecture is through 

the development of a prototype. In this section, we introduce a realization of the architectural solution 

presented above as a prototype involving mapping technology choices onto the solution concepts. In 

addition, we used this implementation to perform a preliminary evaluation in which the hypothesis that we 

want to validate were the following: 

H1: It is feasible to execute IoT-Enhanced BPs modelled with BPMN and ontologies with the proposed 

architectural solution. 

H2: The provided Java supporting tools automatically inject the functionality required by the 

architectural elements properly.   

H3: IoT devices supported by different technology can be integrated in the proposed architectural 

solution. 

6.1 Proof-of-concept implementation 

We performed a proof-of-concept implementation10 to support the running example presented in this paper. 

Figure 7 graphically illustrates the realization done of the proposed architecture.  Microservices were 

implemented in two different technologies: Java and .Net. Three business microservices were deployed in 

a RaspberryPi with the Raspbian operating system. The rest of microservices were deployed in dockerized 

machines with two different operating systems: Windows and Linux.  

Regarding the business microservices, note that this implementation includes both the business 

microservices required by the BPMM engine to support push interactions (i.e., Refrigerator Control System, 

Alarm, Information System, Truck Container Sensor, and Arm Robot), and the business microservices 

required to publish context changes in the event bus in order to allow the Context Monitor to inject high 

level events (push interactions) into the BPMN engine (i.e., Container Detector, Temperature Sensor, and 

Truck Detector). 

The Action Performer and the Context Monitor infrastructure microservices were developed by using 

the Java libraries presented above and the BP Controller was supported by the Camunda BPMN engine. 

We chose Camunda because it was initially supported by the library developed to create the Context 

Monitor. 

Regarding the Service Registry and the Event Bus, we used those solutions supported by the Java 

libraries presented above. In particular, Netflix’s Eureka was used as Service Registry and the RabbitMQ 
broker was used as Event Bus. 

6.2 Testing the prototype 

Once the prototype was implemented, we evaluated its correct performance through the execution of the 

running example. To do so, we deployed the BPMN model in Figure 2 into the Camunda engine. Also, the 

 
9 https://github.com/camunda 
10 The implementation of the running example can be found in the following GitHub site: 

https://github.com/pvalderas/iot-enhanced-business-process-example 

https://github.com/pvalderas/iot-enhanced-business-process-example


context ontology and the SWRL and SPARQL rules presented in Section 4.2 were deployed into the 

Context Monitor.  

 

Figure 7. Microservice architecture implemented as a proof of concept 

According to the BPMN model (see Figure 2), the business process must start when a Container is 

detected. In addition, a “Truck Available” event must be also injected into the BPMN engine to complete 

the execution. These high-level events must be injected by the Context Monitor after analysing the context 

data published in the Event Bus by the Container Detector and Truck Detector microservices. In a real 

scenario, these microservices must obtain the context data from specific sensors (e.g., Bluetooth Beacons) 

deployed into specific physical areas. In this testing experiment, we emulated these physical sensing actions 

by allowing the implemented microservices (i.e., Container Detector, Truck Detector, and Temperature 

Sensor) to publish context data that was manually introduced by us. Finally, note also that the BPMN model 

of the running example contains user tasks in which the engine pauses the execution until it is informed of 

the completion of the tasks. To do so, we used the REST API provided by Camunda. 

Thus, in order to start the process, we make the Container Detector to publish into the Event Bus the 

context data that describe the presence of a Container in the reception area. Then, the Context Monitor 

analyses it and inject the “Container Detected” high-level event into Camunda. Afterwards, Camunda 

executes the BPMN model by interacting with the Action Performer in order to execute the operations of 

IoT devices. As the BPMN model has conditional gateways, we prepared the environment in order to 

execute the process different times in such a way the engine must follow a different path in each execution. 

In order to analyse the correct execution of the process we made each business microservice to log the 

execution of each operation. After the execution of the running example was completed we analysed the 

generated logs in order to check that operations were executed as it was defined in the BPMN model. As a 

representative example, Figure 8 shows the logs obtained for one of the executions.  



 

Figure 8. Logs obtained in one execution of the running example 

According to the generated logs, we could conclude that the realization of the proposed architecture 

successfully executed the running example. This means that: (1) the Context Monitor correctly analysed 

the context data published in the Event Bus in order to inject high-level events into Camunda; (2) Camunda 

properly interacted with the Action Performer in order to ask for the execution of operations; and (3) the 

Action Performer properly interacted with the Service Registry and the business microservices in order to 

execute the operations asked by Camunda.  

6.3 Replicability 

The code of the running example implementation is available in a Github repository15. The reader can 

access it in order to replicate the presented experiment. 

6.4 Further tests 

In addition of the running example, we tested the proposed architecture and tool support with the 

execution of additional examples of IoT-Enhanced BPs. We proceeded in an analogous way to the 

experiment done with the running example. Note that all the infrastructure elements of the architecture (i.e., 

Service Registry, Event Bus, BP Controller, Context Monitor and Action Performer) could be reused from 

the previous implementation. Thus, in order to test new examples, we only had to: (1) define the BPMN 

model and deploy it into the BP Controller; (2) define the context ontology with the SWRL and SPARQL 

rules and deploy them into the Context Monitor; and (3) create the business microservices that manage the 

IoT Devices. 

In particular, we tested three additional examples11: (1) Smart Irrigation Management. This example is 

based on the one presented by Martins et al (2019) in order to automatically control an irrigation system. It 

was implemented by five business microservices. Two of them implemented in Java, other two in .Net, and 

the last one in PHP. (2) Ventilation System Controller. This example is based on the one presented by Casati 

et al. (2012) in order to control the ventilation of a smart home. It was implemented by four business 

microservices. Two of them were implemented in Java, and the other two in .Net and Python. (3)Health 
Care System. This example is based on the one presented by Serral et al. (2015) in order to help elderly 

people when they accidentally fall at home. It was implemented by five business microservices. Two of 

them were implemented in Java and the other three in .Net, Python and PHP respectively. 

In general, all the examples were executed successfully. Only some minor coding mistakes were 

detected and corrected. 

 
11 The implementation of these examples can be found in the following Github repository: 

https://github.com/pvalderas/iot-enhanced-business-process-additional-examples 

https://github.com/pvalderas/iot-enhanced-business-process-additional-examples


6.5 Conclusions 

According to the results obtained by the implementation and execution of different IoT-enhanced BPs, we 

could conclude that the feasibility of the proposed approach (hypothesis 1) is validated. The proposed 

architecture is able to execute IoT-enhanced BPs defined by the presented modelling approach based on 

BPMN models and context ontologies. 

Also, the tool support presented above allowed us to successfully develop the proposed architectural 

elements (Action Performer and Context Monitor) with little programming efforts. In this sense, the 

developed Java libraries automatically inject properly the required functionality (hypothesis 2). 

Finally, note that business microservices of the running example were implemented in two different 

technologies (Java and .Net). In the additional examples presented in Section 6.4, we implemented business 

microservices with other technologies such as PHP or Python. In this sense, we can conclude that the 

proposed architectural solution allows the integration of IoT Devices that are managed by different 

technologies (hypothesis 3). Business microservices only need to use the REST API of Eureka to register 

as available microservices, and provide their own REST API in order to allow the Action Performer execute 

their operations. If they need to publish context data, they only need to implement the code for interacting 

with the event bus (RabbitMQ in the above example). In addition, note also that the technological 

heterogeneity of business microservices was totally transparent for the BPMN engine (in this case, 

Camunda). The BPMN engine only needed to interact with the Action Performer, achieving a high level of 

technology independence between the BPMN engine and the IoT devices. Note that this contributes to 

achieve one of the improvements identified in the analysis of the state of the art (see Section 3.4): the 

solution proposed provides a high degree of decoupling between the created models and the underlying IoT 

technology. 

7 Case study evaluation 1. Creation and deployment of BPMN models 

In this section, we evaluate the proposed modelling approach from the perspective of BP modelling and 

deployment. In particular, the hypotheses that we want to validate are the following: 

H1: The proposed BPMN model and the supporting architecture are usable to support the following 

characteristics of an IoT-Enhanced BP: the flow of coordinated tasks, the IoT devices that participate 

in the BP, and the pull and push interactions that the process must have with IoT devices. 

H2: BPMN models can be defined and deployed with independence of the technology used to manage 

context data and implement business microservices. 

To do so, we arranged a usability experiment in which participants played the role of business process 

engineers, which were asked to define and deploy the BPMN model presented as running example. We set 

up the proposed architecture and created the ontology to allow the Context Monitor to generate high-level 

events from low-level context data. We applied a case study-based evaluation by following the research 

methodology practices provided by Runeson & Höst (2009). These practices describe how to conduct and 

report case studies and recommend how to design and plan the case studies before performing them. Next, 

we introduce the experiment by describing its participants, design, execution, analysis of the results, and 

threats of validity. 

7.1 Participants 

A total of 15 subjects between 24 and 45 years old participated in the experiment (six female and nine 

male). Four participants worked on external computer science companies; three of them belonged to the 

PROS research centre; and the remaining eight participants were doctoral students of the Universitat 

Politècnica de València. All participants had some experience in the modelling of BP with BPMN but only 



five of them had worked previously in an IoT project. Only three participants had expertise in 

microservices. 

7.2 Design 

In order to perform usability experiments, it is necessary to clarify how usability can be measured (affected 

variables). According to the standard ISO 9241-11 (1999), the main affected variables concerning usability 

requirements are: (1) effectiveness, (2) efficiency, and (3) user acceptance. To measure effectiveness and 

efficiency we based on Vogel-Heuser (2014). The effectiveness was measured as the grade of task 

completion that is obtained when comparing the result of a task with a predefined master result. The 

efficiency was measured as the time needed to complete a task. Inspired by Zou et al. (2007) this time was 

compared with the time obtained by an expert on the modelling approach when performing the same task. 

Regarding the user acceptance it was measured by means of a NASA-TLX questionnaire (Hart & Staveland, 

1988). Thus, the instruments that were used to carry out the experiment are as follows: 

• A demographic questionnaire: a set of questions to know the level of the users’ experience in process 

modelling, BPMN, IoT, and microservices. 

• Work description: the description of the two activities that the subjects should carry out: (1) using our 

modelling approach to define the IoT-enhanced process that support the scenario of perishable product 

storing; and (2) deploying and executing the created BPMN into the proposed architecture.  

• A NASA-TLX questionnaire: it was used to evaluate the perceived mental/physical/temporal demand, 

performance, effort and frustration on a 100-point scale with 5-point steps. This questionnaire was 

extended with an additional open question. 

• A time form: it was defined to capture the start and completion times of the proposed activities.  

7.3 Execution 

To perform the experiment, we organized a two-day workshop. In the first day, two sessions of three and 

four hours were arranged. In the first session, participants were asked to fill in a demographic questionnaire 

to capture their background and were trained in our modelling approach. Regarding the use of tools, all 

subjects had experience on using some BPMN editors such as Camunda, BPMN.io, or Bonita and we 

decided to allow them to use the BPMN editor they preferred. In the second session of the first day, 

participants were invited to create the BPMN model that support the scenario of perishable product storing. 

After this task, each participant had to fill in the NASA-TLX questionnaire. Throughout this session, we 

observed participants and took notes on their behaviour. Participants wrote down the starting and end times 

of the task. 

In the second day, we arranged also two sessions of three and four hours. In the first session of this 

second day, participants were trained in the proposed architecture to allow them to understand how 

microservices are used to manage IoT devices, how they can be called through the Action Performer, and 

how the Context Monitor should be configured to inject high-level events into a BPMN engine. In the 

second session, participants performed the activities required to configure the architecture and deploy the 

model created in the previous session into the proposed architectural solution. In particular, the tasks that 

participants had to do in this session were: (1) set up the BP Controller microservice in order to use the 

BPMN engine they chose; (2) deploy the BPMN model that describe the IoT-enhanced BP into the BPMN 

engine and update the model to connect to the Action Performer in order to call IoT device microservices; 

and (3) configure the Context Monitor in order to interact with their BP Controller microservice. Again, 

participants wrote down the starting and end times of this session and completed, at the end of the session, 

the NASA-TLX questionnaire. We also observed participants and took notes on their behaviour throughout 

the entire session.  

 

 



7.4 Analysis of the results 

Effectiveness. Regarding the first task, we measured the effectiveness as the grade of task completion in 

such a way a BPMN model was totally completed if it was logically and syntactically correct. To facilitate 

this evaluation a master model was used as a reference point. The models created for each participant were 

independently evaluated by two of us in order to reduce subjectivity. Next, both corrections were analysed 

together, and an agreed mark was decided for each model by the two evaluators. We obtained grades 

between 65% and 95%, obtaining an average mark of 82.2%. Thus, we can consider that our modelling 

approach is effective enough to support IoT-enhanced BPs. Note that all the participants had some 

experience using BPMN, so this task was quite familiar for them. Most of the detected problems were 

related to the use of pools or lanes since some participants defined IoT devices as independent pools when 

we proposed to define IoT devices as lanes of a unique pool. Another problem that we identified raised 

from the use of different BPMN editors and the definition of message flows between the pool that represent 

the physical world and the message start events defined in the lanes that represent IoT Devices (see the 

message flows Container Arrives and Too Warm in Figure 2). Although this type of connection is defined 

in the metamodel of BPMN 2.0, editors provide different support to represent it graphically. While 

Camunda and BPMN.io allow defining these connections, Bonita does not. In the case of Bonita, a message 

end event was needed in the pool that represent the physical world to connect it with the message start event 

of IoT devices. Although this solution allowed them to apply our modelling approach with Bonita, it 

overloads graphically the model and provides a slightly less clear description. As further work, we plan to 

do a further analysis to identify how different BPMN editors support this aspect in order to be considered 

in our approach. Another aspect to highlight from the evaluation we did of the models created by 

participants is the way some of them modelled push interactions. As commented above, we proposed the 

use of message start events to represent the reception by an IoT device of a high-level event triggered from 

the physical world. However, some participants used receive tasks instead. Although this solution is 

semantically equivalent to ours, we think that the use of message start events simplifies the model since 

receive tasks need to be combined with a start event when they initiate a process. 

Regarding the second task, we measured the effectiveness by comparing the log obtained when 

executing the solutions of participants with a master log obtained by a solution prepared by us. In this case, 

we graded participant’s solutions with marks between 75% and 100%. As far as the setting up of the BP 

Controller, few problems were detected since participants had experience in the deployment and 

configuration of the selected engine. We detected some mistakes in the definition of the invocation of the 

microservices that manage IoT devices thought the REST API of the Action Performer. This task was easier 

for those participants that use Bonita since this editor provided a graphical wizard that guides participants 

in the definition of calls to an external REST APIs. The participants that used Camunda needed to 

implement a Java class, which produced more syntax mistakes in the invocation of the Action Performer 

API. Some participants needed additional help to implement a REST call from Java. Other problems were 

detected in the configuration of the Context Monitor to connect it with the BP Controller since it must be 

done through YAML files that some participants had never used before. 

Efficiency. It was measured comparing the times obtained by participants in the performance of the two 

proposed tasks with the times obtained by expert users. Table 2 shows these times. We can see that the 

efficiency in the first task is better that the efficiency in the second task. This was an expected result. Note 

that Task 1 consisted in the creation of a BPMN model and participants had previous experience in this 

modelling language. On the contrary, Task 2 consisted in the deployment of this model into a microservice 

architecture that participants had never worked with before as well as the execution of the whole solution. 

Independently of this, we obtained an efficiency of 0.81 and 0.69 for Task 1 and Task 2 respectively, which 

are quite acceptable values. 

User Acceptance. The results of the NASA-TLX questionnaire are shown in Table 3. In this 

questionnaire, the highest scores represent the worst results. Thus, mental / physical / temporal demand, 

effort and frustration are rated between very low (value 0) and very high (value 100); and the performance 



is rated between very good (value 0) and very bad (value 100). Table 3 shows the average (Avg), the median 

(Med), the standard deviation (SD), the best result (Best), and the worst result (Worst).   

Table 2. Result of the efficiency study in experiment 1. Times in minutes 

Subjects Task 1 Task 2 

Experts 1 and 2 74, 67 109, 117 

Average (Experts) 70.5 113 

Participant 1-15 84, 92, 81, 79, 85, 98, 87, 86, 

75, 94, 74, 92, 96, 99, 82 

155, 157, 178, 152, 156, 165, 152, 164, 

175, 164, 149, 158, 176, 169, 172 

Average (Participants) 86.93 162.8 

Efficiency 0.81 0.69 

Table 3. NASA results in experiment 1 

Factors 
Task 1 Task 2 

Avg Med SD Best Worst Avg Med SD Best Worst 

Mental Load 19.67 15 10.43 10 45 29.67 30 13.95 15 60 

Physical Dem. 3.00 5 3.26 0 10 7.67 5 3.72 5 15 

Temporal Dem. 35.67 30 10.67 25 55 37.33 30 12.52 25 65 

Performance 30.67 30 8.63 15 50 35.33 35 11.87 15 60 

Effort 28.67 25 10.08 10 45 31.00 30 11.21 10 55 

Frustration 11.00 10 8.70 0 35 31.00 25 14.17 15 65 

From a general point of view, both tasks were ranked with acceptable values in the analysed factors. Task 

1 obtained slightly better results than Task 2, which, as happened with the efficiency, was an expected result 

due to the experience of participants in the use of BPMN. The obtained values lead us to consider that 

participants felt comfortable enough when creating an IoT-enhanced BP model and deploying it into the 

proposed architecture. Regarding Task 1, little mental demand and effort was required by participants, 

which allows us to conclude that our approach for modelling IoT-Enhanced BPs is easy enough for business 

process engineers with experience in the use of BPMN. The little frustration and good performance that 

was indicated by participants also reinforce this consideration. However, further research is needed to 

analyse how business process engineers without experience in BPMN would feel when using our approach.   

The values obtained in Task 2, although we think they are acceptable, lead us to think that additional 

support is required to facilitate business process engineers in the deployment of IoT-Enhanced BPs into a 

microservice architecture such as the proposed one. Note that the mental load and frustration factors were 

significantly higher in this task than in Task 1. By analysing the comments given by participants in the open 

question included in the NASA-TLX questionnaire we can conclude that the main reason was the need of 

managing an architecture that required the configuration of so many elements (microservices). Although 

we think the proposed microservices are the ones required to provide a proper level of decoupling and 

independence among BPs and IoT devices, we understand that additional research is required to facilitate 

the integration of the BP Controller with both the Context Monitor and the Action Performer, and to 

reinforce the separation of roles between business process engineers and experts in the IoT environment. 

7.5 Conclusions 

Based on the experiment results, we can conclude that the modelling approach based on BPMN is usable 

enough to face the description of the intrinsic characteristics of an IoT-enhanced BPs (Hypothesis 1): the 

flow of coordinated tasks, the IoT devices that participate in the BP, and the pull and push interactions that 

the process must have with devices. As we have deeply analysed in the above-introduced explanation, 

participants found our proposal intuitive to define these characteristics, which were defined by using the 

notions of the standard BPMN, without extending it with new concepts. Only some minor 

misunderstandings were detected in the definition of push interactions due to the several modelling options 

that BPMN provides to define event-based communications.  



Note that one of the improvements introduced by our approach (see Section 3.4) was the proposal of a 

modelling approach for IoT-enhanced BPs that does not increase the complexity of the BPMN metamodel 

and is compatible with existing BPMN process engines. If we consider that participants of the experiment 

deployed standard BPMN models into commercial engines such as Camunda or Bonita to execute the 

running example, we think that we achieved the proposed improvement. 

Regarding the deployment of the BPMN model into the proposed architecture, additional efforts are 

required to facilitate this task, since several configurations are required and participants found them a little 

frustrating. To improve this problem, we are working on a Java library similar to the ones that support the 

Context Monitor and the Action Performer in order to create a microservice that plays de role of BP 

Controller. This library will automatically inject a Camunda engine and configure part of the interaction of 

the BP Controller with the rest of architectural elements. 

Finally, the second hypothesis of this experiment was focused on analysing whether or not BPMN 

models can be defined and deployed independently of the technology used to manage context data and 

implement business microservices. As we have explained along the presentation of this experiment, 

participants only worked with BPMN models and the BPMN engine in which these models were deployed. 

All participants could complete the proposed tasks without knowing either how the business microservices 

that execute the BPMN tasks were implemented or how context published from the physical world were 

managed to inject high-level events into the BPMN engine. Both, business microservices and the context 

ontology, were developed and managed by us. Participants only needed to know the API REST required 

to interact with the different architectural elements. In this sense, we can conclude that Hypothesis 2 of 

this experiment is validated and our proposal provides a high level of independence between the BPMN 

model and the technologies used to manage context and implement business microservices. Note that this 

aspect contributes to achieve the third improvement identified in the analysis of the state of the art, i.e., the 

execution of IoT-enhanced BPs with a high degree of decoupling between the models and the underlying 

IoT technology. 

7.6 Threats to validity 

Conclusion validity. It was threatened by the random heterogeneity of subjects, which was minimized 

with: (1) the demographic questionnaire that allowed us to evaluate the knowledge and experience of each 

participant beforehand; and (2) the training sessions in which all subjects participated to have a similar 

background in the management of ontologies and SWRL/SPARQL as well as our proposed microservice 

architecture.  

Construct validity. The threat of the hypothesis guessing (people might try to figure out what the purpose 

and intended result of the experiment are) was minimized by hiding the goal of the experiment (i.e., which 

were the validation hypothesis). 

Internal validity. This experiment was also threatened by the reliability of measures taken (e.g., the 

activity completion time to evaluate efficiency was measured manually), which was reduced by observing 

the subjects while they were performing the different tasks to guarantee their exclusive dedication in the 

activities and supervise the times that they wrote down. Note also that we introduced some subjectivity 

when grading the proposed tasks by comparing the solutions made by participants with a master one. To 

reduce this problem each delivered model was evaluated twice. 

External validity. This type of validity concern is related to conditions that may limit our ability to 

generalize the results of the experiment to industrial practice. In order to make the experimental 

environment more realistic participants made use of one of the most used open-source tools for the 

management of ontologies and faced the development of an IoT-Enhanced BP based on a real scenario 

(Bowman et al., 2009). However, just one case study was used in the experiment, which can threaten the 

generalizability of this experiment. Although we have done a prototype evaluation with several examples 

(see Section 6), usability experiments with additional case studies are needed. Also, many of the 

participants in the experiments were PhD students, which could threaten the generalization to another 

population, so additional experiments are needed. 



8 Case study evaluation 2. Definition of high-level events from context data  

In this section, we present an evaluation to analyse the proposed modelling approach from the perspective 

of context management. In particular, the two hypothesis that we want to validate are as follows: 

H1: The proposed context ontology and the SWRL/SPARQL rules are usable to support the processing 

of context data in order to generate the high-level events that an IoT-Enhanced BP needs. 

H2: High-level events can be produced with independence of both the technology used to implement 

business microservices and the selected BPMN engine. 

To do so, we arranged an experiment in which participants populated the context ontology required to 

implement the running example and created the SWRL and/or SPARQL rules required to inject high-level 

events into the BP Controller. We set up the BP Controller with a Camunda engine and deployed the BPMN 

model of the running example. We also implemented the business microservices required to support the 

experiment. We applied a case study-based evaluation by following the same research methodology 

practices than in the previous experiment (Runeson & Höst, 2009). 

8.1 Participants 

A total of 11 subjects between 26 and 38 years old participated in this experiment (five female and six 

male). Six of the participants were doctoral students that belonged to the PROS research centre, which also 

participated in the previous experiment; and the remaining five participants were students of the Master's 

Degree in Information Management in the Universitat Politècnica de València. The doctoral students had 

all experience in UML conceptual modelling but had never worked with ontologies. The students of the 

Master's Degree had previously worked with ontologies in several subjects of the degree. None of the 

participants had worked with SWRL or SPARQL. All of them had experience in the Java programming 

language but none of them had worked with microservices. 

8.2 Design 

In order to perform this usability experiments, we evaluated the same variables as in the previous one: (1) 

effectiveness, (2) efficiency, and (3) user acceptance. We used the same instruments as in the previous 

experiment: a demographic questionnaire, a work description, a NASA-TLX questionnaire, and a time 

form. In this case, subjects had to carry out the following two activities in the experiment: (1) the population 

of the context ontology to define the IoT devices and the creation of the required SWRL or SPARQL rules 

to process low-level context data to generate high-level event; and (2) the creation of a Context Monitor 

microservice by using the developed Java library (see Section 5.1) and the deployment of the ontology with 

the SWRL or SPARQL rules. 

8.3 Execution 

To perform the experiment, we organized a two-day workshop. In the first day, two sessions of five and 

four hours were arranged. In the first session, participants were asked to fill in a demographic questionnaire 

to capture their background and were trained in the technologies they must use. In particular, we provided 

the subjects with a tutorial of both the management of OWL ontologies with Protégé and the SPARQL and 

SWRL languages. Note that we propose the use of Protégé12, which is an open-source tool that is a widely 

used in the management of ontologies. In the second session, participants were invited to: (1) populate the 

context ontology with the concepts required to describe the IoT devices that play the role of sensors 

 
12 https://protege.stanford.edu/ 



(Temperature Sensor, Object Detector) and the sensed context data (Degree, Container, Truck, etc); and (2) 

define the SWRL/SPARQL rules required to generate the high-level events that we included in the BPMN 

model. To do so, they used Protégé. After this task, each participant filled in the NASA-TLX questionnaire. 

Throughout this session, we observed participants and took notes on their behaviour. They wrote down the 

starting and end times of the task. 

In the second day, we arranged two sessions of two hours. In the first session, participants were trained 

in the proposed architecture to allow them to understand how microservices interact to each other, how a 

Context Monitor can be created by using the developed Java library, and how the context ontology and the 

SWRL/SPARQL rules must be deployed. In the second session, participants created a Context Monitor 

configured to interact with the BP Controller we had set up and deployed the context ontology and the 

SWRL/SPARQL rules created in the previous session. Participants wrote down the starting and end times 

of this session and, at the end, each participant completed again the NASA-TLX questionnaire. We also 

observed participants and took notes on their behaviour throughout the entire session. 

8.4 Analysis of the results 

Effectiveness. Regarding the first task, we considered the effectiveness of populating the context ontology 

and creating the SWRL/SPARQL rules. This effectiveness was measured as the grade of task completion 

in such a way the task was totally completed if it was logically and syntactically correct. As in the previous 

experiment, we used a master ontology and rules as a reference point. To reduce subjectivity, the tasks 

performed by participants were independently evaluated by two of us and an agreed mark was decided by 

the two evaluators. To grade these tasks, we analysed if the IoT devices of the running example that need 

to publish data context were correctly defined by using the concepts provided by the ontology. In addition, 

we also analysed whether the SWRL/SPARQL rules were properly defined to generate the high-level events 

required by the BPMN model of the running example. We obtained grades between 58% and 95%, 

obtaining an average mark of 72.8%. Considering that none of the participants had worked previously with 

SWRL and SPARQL and some of them had little experience in the use of OWL ontologies we think the 

obtained mark is acceptable to consider that our approach is effective enough in the management of the 

context required by an IoT-Enhanced BP. 

 The main problems that we found were as follows. First, those participants that had never worked with 

ontologies but had experience in conceptual modelling found a little confusing how the relationships 

between concepts must be defined. Note that in UML, for instance, a relationship is identified between the 

two specific concepts that it associates, while in an ontology, a relationship is defined by another concept 

(Object Property in OWL) that can be used to link a pair of concepts. Something similar happened with the 

OWL data properties, since they are not defined for a specific class (as happens with UML class attributes) 

but they can exist independently of a class, and can be associated to multiple classes. The second problem 

was detected in the creation of SWRL/SPARQL rules. Note that SWRL is a language that allows the 

creation of rules to infer new knowledge, and SPARQL is a language that allows querying an ontology to 

check if a specific condition is satisfied. In our approach, SWRL can be used to generate knowledge that 

helps to simplify SPARQL queries. However, its use is not always mandatory. We think that the possibility 

of using both languages provides developers with a high degree of versatility and expressiveness. However, 

this dichotomy in the specification of rules for generating high-level concepts was not well understood by 

participants, and some of them needed our help to decide on which of these two languages they needed to 

use. These two problems may be related to a lack of experience in using ontology-based technologies. We 

are currently working in a plugin for Protégé that helps developers to populate the proposed context 

ontology and to create the SWRL and SPARQL rules that are required to define high-level events. More 

details about this plugin are given in Section 8.5. 

Regarding the second task, i.e., creating a Context Monitor and deploying the context ontology and the 

SWRL/SPARQL rules, we evaluated it by running the example and analysing if high-level events were 

injected into the BP Controller properly. To do so, we compared the logs generated by the Camunda engine 

when executing the solutions created by participants and those obtained in a solution created by us. In this 



case, we graded participant’s solutions with marks between 85% and 100%. In general, minor problems 

were detected in this task and most of the participants could create and set up the Context Monitor properly. 

The most significant issue was related to names that participants gave to the high-level events generated 

with SWRL/SPARQL rules. These names must be exactly the same as the ones defined in the BPMN 

model. Although we provided these names to participants, some of them defined similar ones (but not 

exactly the same) or introduced some typo in the names, which produced that the high-level event that was 

injected to the BP Controller was not the required one. 

Efficiency. It was measured comparing the times obtained by participants in the performance of the two 

proposed tasks with the times obtained by expert users (cf. Table 4). We can see that the efficiency in the 

second task is better than the efficiency in the first task. This was an expected result since Task 2 consisted 

in the creation of a Context Monitor by using the Java library we provided participants with. Note that this 

library injects all the required functionality by using just a Java annotation and some minor configurations, 

and participants had previous experience in programming with Java. On the contrary, Task 1 consisted in 

the population of the context ontology and the creation of SWRL/SPARQL rules, which imply the use of 

technologies in which participants had little or no prior experience. Despite of this, we obtained an 

efficiency of 0.61 and 0.84 for Task 1 and Task 2 respectively, which we think are acceptable. 

Table 4. Result of the efficiency study in experiment 2. Times in minutes 

Subjects Task 1 Task 2 

Experts 1 and 2 58, 66 33, 38 

Average (Expert) 62 35.5 

Participants 1-11 94, 101, 110, 96, 98, 109, 

102, 107, 105, 95, 98 

38, 42, 39, 44, 41, 39, 

41, 43, 44, 45, 47 

Average (Participants) 101.36 42.09 

Efficiency 0.61 0.84 

 

User Acceptance. According to the NASA results (cf. Table 5), the two tasks were ranked with values that 

are consistent with the results obtained when analysing the effectiveness and efficiency. Although both 

tasks were ranked with acceptable values, participants found Task 1 more demanding in all the analysed 

parameters than Task 2. In fact, Task 2 of this experiment is the most well ranked task of the four tasks 

performed in the two usability experiments we have presented. Analysing the comments given by 

participants in the open question included in the NASA-TLX questionnaire we noticed that participants 

found easy the use of the Java library based on annotations to automatically inject functionality. On the 

contrary, some comments reinforce the conclusions presented above about the usage of SWRL and 

SPARQL to define high-level events, which resulted confusing. In addition, some participants suggested 

that having a wizard to create SWRL/SPARQL rules by selecting the context data generated by IoT devices 

would be a valuable tool to perform this task. Driven by this feedback and the proven difficulty of managing 

ontology-based technologies without previous experience, we decided to develop a Protégé plugin. 

Table 5. NASA results in experiment 2 

Factors 
Task 1 Task 2 

Avg Med SD Best Worst Avg Med SD Best Worst 

Mental Load 35,45 35,00 9,86 20 60 15,45 15,00 4,72 10 25 

Physical Dem. 5,45 5,00 4,72 0 15 3,18 5,00 2,52 0 5 

Temporal Dem. 40,00 40,00 11,40 25 60 23,64 25,00 9,51 10 35 

Performance 37,73 30,00 13,67 25 65 25,45 25,00 5,22 20 35 

Effort 28,18 25,00 11,24 15 50 23,18 25,00 8,15 10 35 

Frustration 24,55 20,00 8,20 15 40 10,45 10,00 4,16 5 15 



8.5 Conclusions 

The results obtained in this experiment allow us to conclude that we can consider our approach usable 

enough to process context data to generate high-level events (Hypothesis 1). However, it would be 

interesting to provide additional support to facilitate the adoption of our proposal. In particular, some tool 

should be provided to support the population of the context ontology and the creation of SWRL/SPARQL 

rules. As we commented above, we are currently working on a Protégé plugin13 that helps developers in 

these tasks. To do so, we have created a new Java library that provides annotations based on the SOSA 

ontology to facilitate the definition of semantic data in the creation of a business microservices. This 

semantic data can be stored in the Eureka server when business microservices are registered. Then, the 

Protégé plugin gets this data and provides a user interface that allows developers to select context data and 

to automatically define SPARQL rules (SWRL rules are still not supported). 

Regarding the Java library presented in Section 5.1, we can conclude that it facilitates the creation of 

infrastructure microservices such as the Context Monitor. The feedback provided by participants indicates 

that they found the definition of annotations useful and easy to use to automatically provide Java-based 

microservices with the functionality required by the infrastructure elements of our architecture.  

Finally, we can also accept Hypothesis 2, which focuses on the definition of high-level events with 

independence of both, the technology used to implement business microservices and the selected BPMN 

engine. In this experiment, participants focused only on working with the context ontology and the 

SWRL/SPRQL rules, while the BPMN model and the business microservices of the running example were 

independently developed by us. The only technological aspect participants needed to do to perform their 

tasks was the REST API provided by the BP Controller in order to configure the Context Monitor. However, 

they did not need to know which BPMN engine we were using, or the technology used to implement 

business microservices. Thus, Hypothesis 2 is validated. This contributes to achieve the third improvement 

identified in the analysis of the state of the art, which focused on providing a high degree of decoupling 

between the created models and the underlying IoT technology. 

8.6 Threats to validity 

This experiment shares the same validity threats explained in the experiment presented in Section 7. This 

explanation is omitted in order to not overload the paper. 

9 Discussion 

In this section, we discuss how the solution presented in this work faces the research questions stated in 

Section 1. The first question was related to considering important intrinsic characteristics of IoT-enhanced 

BPs at the modelling level without increasing the complexity of the BP modelling language. The main 

intrinsic characteristics of IoT-enhanced BPs that we focus on in this work were the representation of (1) 

the flow of coordinated activities; (2) the IoT devices that participate in the BP and the pull interactions 

with them; (3) the context data that need to be considered, at both low and high level, and (4) the push 

interactions required to inject them into the BP. 

In order to face this question, we have applied the SoC principle to propose a modelling solution based 

on BPMN and ontologies. BPMN is used to describe IoT-enhanced BPs at a high level of abstraction, 

without considering low-level data or technological issues. Low-level data is defined in an ontology and 

technological aspects to execute BPMN models are delegated to a microservice architecture. We have not 

extended the BPMN metamodel to introduce new concepts. Instead, we have reused existing BPMN 

 
13 The source code of the current version of this tool can be found in https://github.com/pvalderas/iot-enhancedBP-

protege-plugin 

https://github.com/pvalderas/iot-enhancedBP-protege-plugin
https://github.com/pvalderas/iot-enhancedBP-protege-plugin


constructors to properly describe the main semantics of IoT-enhanced BPs. In this sense, our proposal 

provides a solution based on BPMN’s metamodel to represent, at a high level of abstraction: the process 

control flow, the IoT devices involved in the process, and the interaction with the physical world through 

pull and push interactions. Typically, BPMN is used by business engineers, which are experts on the 

notation, to define business processes, but also by other process stakeholders such as end customers, 

marketing professionals, or finance employees that just need to analyse the processes (Nysetvold & 

Krogstie, 2006; Harmon & Wolf, 2011; Leopold et al., 2016). Our solution provides all these process 

engineers and stakeholders with the possibility of defining and analysing IoT-enhanced BPs without the 

need of learning a new notation or new concepts that are not included in the BPMN standard. In addition, 

this BPMN solution focuses on high level concepts of an IoT-enhanced BP and does not include complex 

definitions related to the capture and processing of low-level context data. This aspect was evaluated 

through an experiment based on a case study in which we played the role of experts on the physical 

environment and participants with little expertise on IoT could easily define an IoT-enhanced BP. 

The capture and processing of low-level context data is, however, a key pillar to properly execute an 

IoT-enhanced BP. Our solution considers this aspect at modelling level through an ontology. As commented 

above, ontologies are one the most used solutions to model context. As we have shown in the two 

experiments presented in Section 7 and 8, modelling context in a separated ontology allows us to provide 

a solution that facilitates de separation of development responsibilities. While experts on the context data 

produced by the physical environment can focus on defining how it must be processed to generate the high-

level events required by the business process, business engineers can focus on defining the BPMN model. 

In addition, this helps to face the challenge of not growing the complexity of BPMN. However, we have 

also checked that people with little experience in the use of ontology-based technologies may require 

additional tool support in order to adopt our approach. To improve this problem a Protégé plugin is under 

development. 

Regarding the second research question that we stated, it focused on how IoT-enhanced business 

processes that are represented in BP models can be executed independently from technology.  

On the one hand, since our solution does not extend BPMN’s metamodel, IoT-enhanced BPs can be 

executed using any existing BPMN engine. For instance, in the case-study evaluation presented in Section 

6, we implemented an IoT-enhanced BP by using two different BPMN engines: Camunda and Bonita. On 

the other hand, it is true that only a BPMN engine is not enough to properly execute an IoT-enhanced BP 

modelled with our approach. We need changes in the physical world to be injected into the process. And 

we also need to manage the interaction of the process with IoT devices from a technological point of view. 

In the related work section, we have analysed some solutions that either extend BPMN engines to achieve 

this goal or complement these engines or the IoT devices with software components that make these 

solutions technology dependent. In our solution, we propose a microservice architecture that provides a 

high degree of independence among architectural elements, which interact among them through light 

communication solutions such as HTTP REST connections or event-based messages. This can be checked 

in the prototype evaluation presented in Section 5, in which several IoT-enhanced BPs are supported 

through the implementation of business microservices developed in different technologies such as Java, 

.Net, PHP or Python. Thus, we can conclude that our solution satisfies the requirement of executing an IoT-

enhanced BP independently from technology. 

Finally, this architecture can facilitate further maintenance and evolution of any architectural element. 

Note that IoT devices are controlled by a dedicated microservice that can be implemented in any technology 

or operating system. If an IoT device needs to be changed, we just need to update the corresponding 

microservice maintaining its REST API and the interaction with the event bus. The rest of architectural 

elements are not affected. In the same way, if we need to change the BPMN engine deployed in the BP 

Controller we just need to configure the new engine to interact with the REST API of the Action Performer, 

and update the Context Monitor correspondingly to inject the high-level events. IoT devices and the other 

architectural elements are not affected by the change of the BPMN engine. However, the maintenance and 

evolution issues require a more precise evaluation that will be faced as further work. 



10 Conclusions and further work 

In this work, we have presented a solution that applies the SoC principle to model IoT-enhanced BPs. This 

solution proposes (1) a modelling approach that combines standard BPMN with ontologies, and (2) a 

microservice architecture to execute IoT-enhanced BPs defined by this approach.  

The contributions of our work are both theoretically and practical. From a theoretical point of view, we 

have identified some intrinsic characteristics of this type of processes through the study of the state of the 

art, and have proposed modelling guidelines based on the state of the art to use the standard elements of 

BPMN together with ontologies in order to represent these characteristics. In addition, we have designed a 

microservice architecture that supports the execution of this type of processes in such a way a great level 

of technology independence is achieved. We have defined the elements that constitute this architecture as 

well as the interaction that they must have. 

From a practical point of view, we have provided an implementation of such architecture and published 

it in a Github repository. We have also presented some insights through the implementation of several 

prototypes and two case study evaluations, which revealing that the proposed use of the BPMN notation 

together with context ontologies can be a valuable mechanism to define and understand an IoT-enhanced 

business process. We have also concluded that the SoC design principle proposed through the use of BPMN 

and ontologies can facilitate the collaboration of different professionals such as business engineers and 

experts on IoT technologies in the creation of an IoT-enhanced business process. 

As future work, further evaluation experiments should be considered. One the one hand, additional case 

studies must be used to evaluate our approach in order to validate its generalizability. On the other hand, a 

comparison with other approaches from a pragmatic way would also be desirable. The most appropriate 

approaches to be used in this comparison are those that support the modelling of IoT-Enhanced BPs and 

their execution (e.g., Wehlitz et al. 2017; Domingos & Martins, 2017). We would require to compare the 

usability and efficiency of these approaches to ours with respect to: (1) the modelling of the intrinsic 

characteristics of IoT-Enhanced BPs considered in this work; (2) the execution of IoT-Enhanced BPs 

through the use of existing BPMN engines; and (3) the execution support for IoT-Enhanced BPs decoupled 

from the underlying IoT technology. To do so, we can use the guidelines presented by Kitchenham et al. 

(1995) in a similar way as we did in previous works such as Valderas et al. (2020) in which we compared 

the efficiency of a new modelling approach concerning an ad-hoc solution. 

In addition, we plan to enrich our solution with goal-oriented capabilities. In this way, instead of 

specifying the tasks of IoT-enhanced BPs explicitly, business engineers would just need to state the goals 

that a process must satisfy. Then, business microservices can be semantically annotated in order to provide 

a mechanism to select those IoT devices that better can achieve the defined goals. Further enhancements 

could include risk management and risk mitigation approaches (Conforti et al., 2011), identifying risks in 

executing IoT-enhanced BPs and simulating them at design time. 
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