
How Are Framework Code Samples Maintained and
Used by Developers? The Case of Android and Spring

Boot

Gabriel Menezesa, Bruno Cafeoa, Andre Horab

aFaculty of Computing, UFMS, Brazil
bDepartment of Computer Science, UFMG, Brazil

Abstract

Modern software systems are commonly built on top of frameworks. To accel-
erate the learning process of features provided by frameworks, code samples are
made available to assist developers. However, we know little about how code
samples are developed and consumed. In this paper, we aim to fill this gap by
assessing characteristics of framework code samples. We provide insights into
how code samples are maintained and used by developers. We analyze over 230
code samples provided by Android and Spring, and assess aspects related to
their code, evolution, popularity, and usage. We find that most code samples
are small and simple, provide a working environment, and rely on automated
build tools. They frequently change, for example, to adapt to new framework
versions. We also detect that clients commonly fork the code samples, however,
they rarely modify them. To further understand the problems faced by develop-
ers, we analyze 614 Stack Overflow questions about the code samples and 269
issues from code sample repositories. We find that developers face problems
when trying to modify the code samples and the most common issue is related
to improvement. Finally, we propose implications to creators and code sample
clients to improve maintenance and usage activities.

Keywords: Code Samples, Android, Spring Boot, Mining Software
Repositories, Software Maintenance, Frameworks

1. Introduction

Modern software systems are commonly built with the support of frame-
works, which provide feature reuse, improve productivity, and decrease costs [25,
14, 30]. Frameworks support the development of mobile apps, web platforms,
responsive interfaces, cross-platform systems, among others. In the Java ecosys-
tem, for example, there are more than 270,000 packages available to be used by
client systems in the Maven repository.1 In the JavaScript ecosystem, the num-

1https://search.maven.org/stats

Preprint submitted to Elsevier December 2, 2021

https://search.maven.org/stats

bers are even higher: the npm repository has over 400,000 packages and reports
6 billion downloads in a single month.2

To facilitate and accelerate the learning process of features provided by
frameworks, code samples are commonly made available to assist development
efforts [40, 31]. Code samples are often provided by world-wide software projects
and organizations, such as Android,3 Spring,4 Google Maps,5 Twitter,6 Mi-
crosoft,7 to name a few. Framework code samples may introduce the usage of
basic features, as well as more advanced ones. For instance, a basic sample
provided by the Spring Boot framework helps newcomer developers on build-
ing RESTful web services.8 In contrast, a more advanced code sample made
available by the same framework help developers in securing web applications.9

Due to their practicality, client developers may copy and paste code samples
into their own codebase and may put them into production [40]. Thus, ideally,
code samples should follow some good development practices, such as be simple,
small, self-contained, easy to understand, secure, and efficient [40].

Although framework code samples are commonly available to help devel-
opers, we know little about how they are actually maintained and used by
developers. In this context, some questions are still opened, such as: what is
the common size of code samples? how do code samples evolve over time? what
makes a code sample more popular than others? how are the code samples used
by the developers? By answering these questions, we can assess common aspects
of code samples, better supporting their maintenance and usage activities.

In this paper, we aim to fill this gap by assessing the characteristics of frame-
work code samples. Specifically, we analyze over 230 code samples provided by
two widely popular frameworks: Android and Spring Boot. We answer four re-
search questions related to their maintenance and usage. We then assess aspects
related to their source code, evolution, popularity, and client usage:

• RQ1 (Source Code): What are the source code characteristics of frame-
work code samples in comparison to conventional projects? We find that
framework code samples are overall simpler and smaller than conventional
projects. We also detect that code samples rely on automated build tools
and provide working environments to facilitate the task of running them.

• RQ2 (Evolution): How do framework code samples evolve over time in
comparison to conventional projects? We detect that code samples are not
static, but they evolve like any software system. Updates are often made
to keep them up to date with new framework versions and, consequently,

2https://www.linux.com/news/event/Nodejs/2016/state-union-npm
3https://developer.android.com/samples
4https://spring.io/guides
5https://developers.google.com/maps/documentation/javascript/examples
6http://twitterdev.github.io
7https://code.msdn.microsoft.com
8https://spring.io/guides/gs/rest-service
9https://spring.io/guides/gs/securing-web

2

https://www.linux.com/news/event/Nodejs/2016/state-union-npm
https://developer.android.com/samples
https://spring.io/guides
https://developers.google.com/maps/documentation/javascript/examples
http://twitterdev.github.io
https://code.msdn.microsoft.com
https://spring.io/guides/gs/rest-service
https://spring.io/guides/gs/securing-web

relevant to the clients.

• RQ3 (Popularity): Which aspects differentiate popular framework samples
from ordinary ones? By comparing popular and unpopular code samples,
we find that the popular ones are more likely to have a higher amount of
source code files. They are also more likely to change over time than the
unpopular ones.

• RQ4 (Client Usage): How are the framework code samples used by devel-
opers in comparison to conventional projects? We rely on the fork metric
as a proxy of code sample usage. We find that the majority of the forked
code samples are inactive. However, a non-negligible ratio of the forked
code samples is updated.

In the previous research questions, we focus on better understating, from
a quantitative perspective, several aspects of the code samples, including their
source code, evolution, and usage. In the second part of the paper, we propose
a qualitative study to understand the most common problems and challenges
faced by developers when using the code samples. For this purpose, we manually
classify 614 Stack Overflow posts about code samples and 269 issues from code
sample repositories. We find that developers usually face problems when trying
to perform a code sample modification, for example, extending some functional-
ity or performing minor changes. Moreover, we find that developers commonly
suggest improvements to code samples via GitHub issues.

Paper extension: This study is an extension of our previous conference pa-
per [21]. We extend this study by proposing three novel analyses: (1) a com-
parative analysis between code samples and conventional projects to better un-
derstand and improve previous findings; (2) a qualitative analysis to better
understand why code samples end up in Stack Overflow; and (3) a qualitative
study exploring GitHub issues that cause changes on code sample repositories.

Contributions: This paper has three major contributions:

1. We provide an empirical study on the code samples made available by An-
droid and Spring Boot to understand their maintenance and usage prac-
tices.

2. We provide a qualitative analysis based on Stack Overflow posts and
GitHub issues to reveal the most common problems and needs faced by
developers that use code samples.

3. We provide a set of lessons learned and implications to code sample cre-
ators and clients.

Structure of the paper: Section 2 introduces code samples and their importance
to support development nowadays. Section 3 presents the study design, while
Section 4 reports the results of our research questions. Section 5 presents the
qualitative study. Section 6 discusses the implications, and Section 7 presents
the threats to validity. Finally, Section 8 discusses related work, and Section 9
concludes the paper.

3

2. Code Samples in a Nutshell

Framework code samples aim to facilitate and accelerate the learning process
of features provided by frameworks. In this context, Oracle states that “code
sample is provided for educational purposes or to assist your development or
administration efforts”.10 Spring reports that “code samples are designed to get
you productive as quickly as possible”.11

Popular frameworks make code samples available to assist their client de-
velopers. The Android Framework, for example, has more than one hundred
code samples on GitHub to help the creation of mobile apps. The Spring Boot
also has dozens of code samples to support the implementation of web apps.
In addition to those well-known frameworks, organizations often provide code
samples to facilitate the usage of their technologies, such as Google Maps APIs,
Twitter APIs, Microsoft platforms, and Apple platforms.

To create good code samples, some guidelines are available. For example, the
Code example guidelines provided by Mozilla [40] states general practices related
to size, understandability, simplicity, self-containment, security, and efficiency.
Guidelines also exist to set up the formatting of code samples, like the one
provided by Google.12 In addition, numerous blogs on programming practices
support the developers who are in charge of creating code samples.13

Figure 1 presents an official code sample example provided by the Spring
Boot framework.14 It supports new developers in building RESTful web ser-
vices. This code sample is composed by only three major classes and helps
the clients dealing with important Spring Boot features provided via the anno-
tations: @RestController, @RequestMapping, @RequestParam, and @Spring-

BootApplication. This sample is also composed of other files (e.g., xml, json,
shell) to help the client running it properly.

Although simple and small, the GitHub project15 hosting this sample has
over 950 stars and 1,8K forks, suggesting that it is indeed relevant and helpful
for developers. Interestingly, this sample is an active project: the 350 commits
show that it evolves over time. By checking its changes, we notice many of
them are made to update documentation and configuration files. Changes are
also performed to migrate the sample to new framework versions, keeping it
up to date and ready to be used with fresh releases of Spring Boot. However,
not all code samples receive the same attention from the developers: another
official sample provided by Spring Boot to access data with MySQL16 is much
less popular (80 stars), grab less attention from the community (150 forks), and
is less active (140 commits).

10https://www.oracle.com/technetwork/indexes/samplecode
11https://spring.io/guides
12https://developers.google.com/style/code-samples
13e.g., https://goo.gl/SzV5PL, https://goo.gl/QaA16L, https://goo.gl/ixGaqF
14https://spring.io/guides/gs/rest-service
15https://github.com/spring-guides/gs-rest-service
16https://github.com/spring-guides/gs-accessing-data-mysql

4

https://www.oracle.com/technetwork/indexes/samplecode
https://spring.io/guides
https://developers.google.com/style/code-samples
https://goo.gl/SzV5PL
https://goo.gl/QaA16L
https://goo.gl/ixGaqF
https://spring.io/guides/gs/rest-service
https://github.com/spring-guides/gs-rest-service
https://github.com/spring-guides/gs-accessing-data-mysql

public class Greeting {

 private final long id;
 private final String content;

 public Greeting(long id, String content) {
 this.id = id;
 this.content = content;
 }

 public long getId() {
 return id;
 }

 public String getContent() {
 return content;
 }
}

@RestController
public class GreetingController {

 private static final String template = "Hello, %s!";
 private final AtomicLong counter = new AtomicLong();

 @RequestMapping("/greeting")
 public Greeting greeting(@RequestParam(value="name",
defaultValue="World") String name) {
 return new Greeting(counter.incrementAndGet(),
 String.format(template, name));
 }
}

@SpringBootApplication
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

Figure 1: Example of code sample (Spring Boot framework).

Overall, we notice the relevance of code samples to support development,
as exposed by various software technologies that make them available. We
also verify the concerns to create good code samples, as pointed by the many
available guidelines. Finally, we notice that code samples can have distinctly
different popularity, activity, and community engagement levels.

Despite their importance, framework code samples are understudied. We are
not aware of the fundamental aspects of how they are maintained and used by
developers. Also, we are not yet aware of common problems and needs faced
by their users. By revealing these aspects, we aim to understand the code
samples and provide insights into their maintenance and usage practices.

5

3. Study Design

3.1. Selecting the Case Studies

This study assesses the code samples provided by two largely adopted frame-
works: Android and Spring Boot. The Android Framework17 allows the creation
of Android apps for several devices, such as smartphones, smartwatches, and
TVs. Android code samples are publicly available on GitHub18 and help devel-
opers dealing with Android features, such as permissions, pictures, and video
manipulation, background tasks, notifications, networks, multiple touch events,
among many others. The Spring Boot Framework19 mostly supports the de-
velopment of web applications. It also provides a set of code samples publicly
available on GitHub20 to help developers creating web apps, such as dealing
with RESTful web services, scheduling tasks, uploading files, validating form
inputs, caching data, securing apps, among others. In this study, we analyze
233 code samples: 176 Android and 57 Spring Boot.

We select these two frameworks due to several reasons. First, they are
relevant and worldwide adopted frameworks that have millions of users. Second,
they support the creation of two distinct and important niches of apps: mobile
and web. Third, their base of code samples are publicly available on GitHub.
Thus, in addition, to access their source code, we can also perform evolutionary
analysis. Fourth, they have a large base of developers, so we can better assess
their usage and common problems.

Figure 2 presents the distribution of the number of files, commits, and stars
for the 233 code samples. On the median, the Android code samples have 47
files, 24 commits, and 95 stars, while the Spring Boot ones have 27 files, 137
commits, and 45 stars.

47
27

10

100

1000

10000

Android Spring
Code Samples

N
um

be
r

of
 F

ile
s

(lo
g

sc
al

e)

Number of Files

24

137

1

10

100

1000

Android Spring
Code Samples

N
um

be
r

of
 C

om
m

its
 (

lo
g

sc
al

e)

Number of Commits

95

45

1

10

100

1000

10000

Android Spring
Code Samples

N
um

be
r

of
 S

ta
rs

 (
lo

g
sc

al
e)

Number of Stars

Figure 2: Basic metrics of the Android and Spring Boot code samples.

Our dataset is publicly available at: https://git.io/J825h.

17https://developer.android.com/guide/platform
18https://github.com/googlesamples
19https://spring.io
20https://github.com/spring-guides

6

https://git.io/J825h
https://developer.android.com/guide/platform
https://github.com/googlesamples
https://spring.io
https://github.com/spring-guides

3.2. Conventional Projects Comparison

It is important to highlight that, we assess conventional projects to compare
them with code samples in some results of the research questions. To do so,
we randomly select 233 out of the top 5,000 projects sorted by the number of
stars. We select 176 Android and 57 Spring Boot conventional projects to follow
the same proportion of code samples. More specifically, our goal is to define a
benchmark for comparing some characteristics of the code samples to conclude
source code size, evolution, and client usage. For that, we extract the same
metrics used in code samples for three out of four research questions (RQ1,
RQ2, and RQ4). We run a statistical significance test to compare the results
of the extracted metrics between conventional projects and code samples. We
apply the Mann-Whitney test at alpha value = 0.05, and compute Cliff’s Delta
to compute the effect size of the difference.

3.3. Source Code Analysis (RQ1)

In Research Question 1, we assess the last version of the source projects
(code samples and conventional projects) and extract three data: source code
metrics, file extensions, and configuration files, as summarized in Figure 3.

Last source
code version

Source code
metrics

File

extensions

Configuration

files

Code sample

repositories 1

2

3

Figure 3: Source code analysis (RQ1).

1. Source code metrics: We first assess the current state of the projects by
computing source code metrics with the support of the software analysis tool
Understand.21 We focus on four metrics: number of java files, lines of code,
cyclomatic complexity, and commented code lines. Rationale: Small code with
simple structures may improve code understanding and readability [18]. Code
samples are not different; ideally, they should be concise and simple [40]. This
means that code samples need to be simpler than conventional projects. In this
way, it is necessary to extract source code metrics for code samples and conven-
tional projects. Moreover, code comment is important to any piece of code [16].
However, it may be even more relevant to samples than to conventional projects,
as they provide inline comments to help the users.

2. File extensions: We extract the file extensions found in the projects to better
understand their content in addition to source code files. Rationale: In addition
to java files, we are not aware of the files that are present in the code samples.

21https://scitools.com

7

https://scitools.com

A similar presence of other files (e.g., xml, json, jars, etc.) in code samples may
indicate that a working environment is available to the clients to run the code
samples as in conventional ones. In contrast, if the files are mostly concentrated
on Java, this may suggest that additional work is still needed by the clients
to properly set up the environment. Besides that, we can observe which file
extensions are present under framework influence.

3. Configuration files: In addition to the file extensions, we also compute
the most common configuration files from the projects. Particularly, we ver-
ify whether the code samples adopt automation tools to build, integrate, and
manage dependency Rationale: With a similar result between code samples and
conventional projects, we could conclude that the framework code samples are
following good development practices when they rely on these automation tools,
which are commonly adopted on software projects to improve quality and pro-
ductivity and reduce risks [8, 22, 39].

3.4. Evolutionary Analysis (RQ2)

In this research question, we assess all the versions (i.e., commits) of the
projects and extract: evolutionary metrics, file extension changes, configuration
file changes, and migration delay, as presented in Figure 4.

Evolutionary
metrics

File extension
changes

Configuration

file changes

Code sample

repositories

1

2

3

 Source code

versions

Migration

delay 4

Figure 4: Evolutionary analysis (RQ2).

1. Evolutionary metrics: We compute metrics to assess the evolution of the
projects. Specifically, we extract two evolutionary metrics: frequency of com-
mits and lifetime. Lifetime is computed as the number of days between the first
and the last project commit. Rationale: To cope with updates and bug fixes,
ideally, the code samples should change over time as conventional projects also
do. Code samples with frequent changes may indicate efforts to keep them up
to date. In contrast, less active code samples may suggest they are abandoned.
In this way, results of conventional projects can be used as a threshold to guide
these results.

2. File extension changes: We analyze the file extension changes over time to
better understand how the code samples are actually maintained. Rationale:
To evolve the code samples, organizations should update source code and other
files. However, we are not aware of which files are most relevant to keep the

8

samples properly working. To better understand that, we need to know how
conventional projects of these frameworks are maintained.

3. Configuration file changes: We analyze the modifications in the configuration
files to assess whether the automation tools are being updated. Rationale: In
addition, to use automation tools to build, integrate, and manage dependencies,
it is important to keep them alive, otherwise, the advantages provided by these
tools are not achieved.

4. Migration delay: We compute the migration delay between projects and their
frameworks. In other words, we assess how long it takes for code samples to
migrate to new framework versions. Rationale: As client projects, code samples
are dependent on their frameworks. When these frameworks evolve and provide
new versions, the code samples (as any other framework client project) should
be updated. Otherwise, they will be frozen on past versions and become less
attractive to their users [12, 15, 19, 42]. In addition, it is important to find out
how long conventional projects take to keep up to date, and compare to code
samples.

3.5. Popularity Analysis (RQ3)

In Research Question 3, we analyze the popularity of the studied code sam-
ples to find differences between the most and least popular. Specifically, we sort
the code samples in descending order according to their popularity in the num-
ber of stars. We classify as popular code samples the top 50% with the highest
number of stars. Similarly, we classify as unpopular code samples the bottom
50% with the lowest number of stars. We then compare each group regarding
the source code and evolutionary metrics described in RQs 1 and 2 (e.g., lines
of code, complexity, lifetime, etc.), as summarized in Figure 5. We also analyze
the statistical significance of the difference between the groups by applying the
Mann-Whitney test at alpha value = 0.05. To show the effect size of the differ-
ence between them, we compute Cliff’s Delta (or d); we use the effsize package
in R22 to compute Cliff’s Delta. Following previous guidelines [32], we interpret
the effect size values as negligible for d < 0.147, small for d < 0.33, medium for
d < 0.474, and large otherwise.

Rationale: Several previous studies have used a similar approach to find differ-
ences between popular and unpopular software artifacts, for example, by assess-
ing the popularity of mobile apps [37], GitHub projects [2], and libraries [4].
Here, we adopt a similar approach to differentiate popular and unpopular code
samples, learning with the practices provided by popular ones.

3.6. Client Usage Analysis (RQ4)

In our last research question, we focus on the client-side, that is, the devel-
opers who are using the projects. Particularly, we analyze all GitHub projects

22https://cran.r-project.org/web/packages/effsize

9

https://cran.r-project.org/web/packages/effsize

Source code metrics
(popular samples)

Evolutionary metrics
(popular samples)

Code sample

repositories

 Source code
versions

Top 50%

Popularity

metric (stars)
Bottom 50%

Popular samples

Unpopular samples

Source code metrics
(unpopular samples)

Evolutionary metrics
(unpopular samples)

Figure 5: Popularity analysis (RQ3).

that forked the projects and compute: fork metrics and file extension changes,
as summarized in Figure 6.

Fork

metrics

File extension
changes

Forked code

sample repositories

1

2

 Source code

versions

Figure 6: Client usage analysis (RQ4).

1. Fork metrics: We compute three metrics to assess how the projects are
forked: number of forks, number of forks with commits, and number of commits
in forked projects. Rationale: Fork can be seen as a measure of popularity [2].
After forking, the client developer can update the code or simply do not per-
form any change. If the forked project is updated, this may indicate that the
client developer is somehow exploring the code sample, possibly, by running and
improving it.

2. File extension changes: We also analyze the file extension changes to un-
derstand better how the forked code samples are actually updated. Rationale:
To evolve the forked code samples, organizations should update source code
and other files. However, we are not aware of which files are most relevant to
be explored by the clients. Moreover, it is interesting to assess how clients of
conventional projects change their own forks and compare them to code samples.

3.7. Assessing Stack Overflow Questions

In this qualitative analysis, we assess Stack Overflow questions to better
understand common problems faced by clients of code samples. Rationale: Code
samples are created to support developers dealing with framework features.
In addition, the literature shows that code samples are important to support
learning [31]. Even more, a lack of code samples can be a barrier to understand
frameworks and APIs [45]. Nonetheless, some aspects could make difficult code
samples understand and use, such as an increase in complexity and size, and
a decrease in readability. Therefore, it is important to explore whether code

10

sample clients have problems when they refer to code samples. The details of
this process, results, and implications are presented in Section 5.

3.8. Assessing GitHub Issues

We also assess GitHub issues to explore common needs related to code sam-
ples. Rationale: In this analysis, we aim to explore how code samples main-
tainers react when they face developers’ issues. For example, do they change
the code samples? Are the changes coming from internal comments? More-
over, we aim to explore whether the developers’ questions (and other types of
interactions) are different from Stack Overflow ones.

4. Empirical Results

4.1. Source Code (RQ1)

Source code metrics: Figure 7 presents the distribution of the source code met-
rics in terms of java files, lines of code, cyclomatic complexity, and commented
code lines in the last version of the code samples. We notice that in terms of
java files, the projects are tiny: on the median, 9 files in the Android samples
and only 4 in the Spring Boot samples. The number of lines of code per Java
file is larger in Android (70.23) than in Spring Boot (25). However, the Android
samples have more comments (32%) per file than the Spring Boot samples (7%).
Finally, we see that the complexity is slightly higher in Android than in Spring
Boot samples (1.48 vs. 1). We also detect that the Android samples are larger
and slightly more complex than the Spring Boot ones.

When we compare code samples to conventional projects, the numbers con-
firm our initial impression that code samples are overall small and simple. Ta-
ble 1 presents the comparison between code samples and conventional projects.
They are statistically significantly different regarding the number of java files
in both Android (**: medium effect) and Spring Boot (***: large effect). In
other words, in both frameworks, code samples are smaller than conventional
projects in terms of the number of java files (direction: ↓). Another metric
in which both frameworks agree is cyclomatic complexity: code samples have
statistically significant less complexity (Android: * small effect, direction: ↓;
Spring Boot: *** large effect, direction: ↓) than conventional projects.

The other metrics (lines of code per file and relative comment lines) vary
according to the framework. For example, Android code samples have more
relative comment lines than conventional projects (***: large effect size, di-
rection: ↑), while Spring Boot samples have fewer relative comment lines than
conventional projects (***: large effect size, direction: ↓). There are fewer lines
of code per file in Spring Boot samples (***: large effect size, direction: ↓)
than conventional projects. However, when we analyze the Android framework,
there is no statistically significant difference between samples and conventional
projects.

File extensions: Table 2 presents the file extensions found in the analyzed sam-
ples. The Android samples are dominated by xml (15.73%), followed by java

11

9 4

1

10

100

Android Spring
Code Samples

N
um

be
r

of
 fi

le
s

(lo
g

sc
al

e)

Number of Java Files

70.23

25

10

30

100

300

Android Spring
Code Samples

Li
ne

s
of

 c
od

e
(lo

g
sc

al
e)

Lines of Code per Java File

32

7

1

3

10

30

Android Spring
Code Samples

P
er

ce
nt

 o
f l

in
es

 (
lo

g
sc

al
e)

Relative Comment Lines in
Java File

1.48

1

1.48

1
1

2

3

Android Spring
Code Samples

N
º

of
 D

ec
is

io
ns

 P
oi

nt
s

(lo
g

sc
al

e)

Cyclomatic Complexity per
Method in Java File

Figure 7: Source code metrics of code samples (RQ1).

(9.05%) and jar files (3.96%). The Spring Boot samples include mostly Java
(12.49%), properties (9.75%), and jar files (8.65%). Interestingly, in addition to
the java files, both samples provide a relevant proportion of xml and jar files,
indicating that a working environment is also available to the clients.

Table 2 also shows the file extensions found in the analyzed conventional
projects. Android conventional projects are dominated by Java files (40%),
followed by XML files (14%), and other extensions representing 41%. In Spring
Boot conventional projects, most cases are Java files (56%), followed by XML
files (10%), and other extensions (27%).

Comparing Android code samples with Android conventional projects, we
can notice that most files in code samples are related to XML files (15.73%).
In contrast, in conventional projects, the majority is related to source code
files (i.e., java extension) comprising 40.61%. This is an interesting behavior
since there are more XML files in Android code samples than source code files.
Our analysis points out to the following reasons: (i) Android often generates
a considerable amount of XML files, especially to define UI layouts, (ii) code
samples are complete projects providing a working environment to the users
besides the source code, and (iii) source code should be simple and small in
code samples.

12

Table 1: Comparing Code Sample and Conventional Projects. Statistically significant differ-
ence with small (*), medium (**) and large (***) effect. Not statistically significant different
(-). Direction of the difference (Dir)

Android Spring

Metrics Sample x Conventional Dir Sample x Conventional Dir

Java files ** ↓ *** ↓
Lines of code per file - - *** ↓
Relative comment lines *** ↑ *** ↓
Cyclomatic complexity * ↓ *** ↓

Table 2: File extensions of code samples and conventional projects (RQ1).
Android Spring

Extensions # % Extensions # %

Code Samples

xml 4,307 15.73 java 319 12.49
java 2,477 9.05 properties 249 9.75
jar 1,083 3,96 jar 221 8.65
md 572 2.09 xml 147 5.75
json 549 2,00 adoc 122 4.77
other 17,245 67,17 other 1,379 58.59

Conventional Projects

java 21,260 40.61 java 14,437 56.73
xml 7,608 14.53 xml 2,621 10.30
properties 687 1,31 properties 700 2.75
jar 427 1.01 md 430 1.69
kt 391 0.75 yml 264 1.04
other 21,983 41.97 other 6,996 27.49

When comparing Spring Boot code samples with Spring Boot conventional
projects, in both cases, the majority of files are related to source code files
(i.e., java extension). In Spring Boot code samples, we found 12.49% of files
related to the java extension, while in Spring Boot conventional projects over
56%. Unlike Android, Spring Boot does not generate the same amount of XML
configuration files; nonetheless, XML files present a considerable amount in
conventional projects. On the other side, it is important to highlight that,
despite java files be the majority in Spring Boot samples, the low percentage,
when compared to conventional projects, restate that (i) code samples provide
a complete working environment and (ii) code samples are simple and small.

Configuration files: Table 3 complements the previous analysis by showing spe-
cific configuration files. Both projects have build.gradle files, which automate
software build and delivery via the Gradle Build Tool. In addition, the Spring
Boot samples contain pom.xml files, which rely on Maven and provide features
equivalent to Gradle to automate the build process. The Android samples in-
clude the manifest.xml files, which are mandatory to Android apps and provide
information that a device needs to run the app. Finally, to provide continuous
integration via the Travis CI, Spring Boot samples include travis.yml files.

Overall, we notice that both samples include configuration files to support

13

their clients and adopt automation tools to improve overall quality [8, 22, 39].
This data also states that code samples provide a complete working environment
for their users.

Table 3: Configuration files of code samples and conventional projects (RQ1).
Android Spring

Files # % Files # %

Code Samples

build.gradle 604 2.21 pom.xml 144 5.64
manifest.xml 397 1.45 build.gradle 118 4.62
travis.yml 2 0.01 travis.yml 56 2.19

Conventional Projects

build.gradle 732 1.40 pom.xml 566 2.22
manifest.xml 573 1.09 build.gradle 91 0.37
pom.xml 26 0.05 travis.yml 31 0.13

Table 3 also presents the numbers of working environment files in conven-
tional Android and Spring Boot projects. In Android conventional projects, we
found the same pattern as the one observed in code samples: build.gradle files
on top (1.40%), followed by the mandatory manifest.xml (1.09%). When ana-
lyzing Spring Boot conventional projects, the top 3 files are the same as Spring
Boot code samples. The pom.xml is on top of the most found configuration files
(2.22%), followed by build.gradle (0.37%) and travis.yml (0.13%).

Lesson Learned 1: Framework code samples are overall simpler and smaller
than conventional projects. We also find that code samples rely on tools to
automate build and integration (e.g., Gradle, Maven, and Travis) and provide
a working environment to the users (i.e., including jar, xml, properties, and
other files in addition to code).

4.2. Evolution (RQ2)

Evolutionary metrics: Figure 8 presents the evolutionary metrics extracted from
our samples: lifetime and frequency of commits. Differently from the previous
analysis, i.e., RQ1, these metrics are computed considering the code sample
changes over time. We notice that both samples are relatively aged: on the
median, the Android samples have 1,474 days (4 years), while the Spring Boot
ones are even older, having 1,924 days (5.2 years). Regarding the frequency
of commits, the Android samples change once every 63 days, while the Spring
Boot once every 15 days, on the median.

When we compare the analyzed code samples with conventional projects
(Table 4), we did not find a statistically significant difference in the lifetime of
Android code samples compared to Android conventional projects. However,
the lifetime of code samples is slightly higher than the one found in conven-
tional projects. In Spring Boot, we found a statistically significant difference in

14

1474
1924

100

300

1000

Android Spring
Code Samples

D
ay

s
(lo

g
sc

al
e)

Lifetime

63

15
10

100

1000

Android Spring
Code Samples

F
re

qu
en

cy
 o

f c
om

m
its

 (
lo

g
sc

al
e)

Lifetime per Commit

Figure 8: Evolutionary metrics of code samples (RQ2).

lifetime compared to conventional projects (***: large effect size, direction: ↑).
In other words, our results show that code samples tend to be longer-lived than
conventional projects using the analyzed frameworks. Regarding the compari-
son of lifetime per commit, there is a statistically significant difference in both
Android (***: large effect, direction: ↑) and Spring Boot (**: medium effect,
direction: ↑). This means that, despite a considerable evolutionary activity,
code samples have a lower frequency of commits when compared to conven-
tional projects. Next, we analyze the types of changes that happen in these
commits. More specifically, we analyze changes per extension and changes in
configuration files.

Table 4: Comparing Code Sample and Conventional Projects in RQ2 metrics. Statistically
significant difference with small (*), medium (**) and large (***) effect. Not statistically
significant different (-). Direction of the difference (Dir)

Android Spring

Metrics Sample x Conventional Dir Sample x Conventional Dir

Lifetime - ↓ *** ↑
Lifetime per commit *** ↑ ** ↑
Delay to update *** ↓ *** ↓

File extension changes: Table 5 presents the changes per file extension both in
code samples and conventional projects. We clearly see that the code samples
are not static: several files are updated over the years. In both cases, xml files
are the most changed, followed by Java, properties, and jar files.

Regarding comparing code samples and conventional projects, it is interest-
ing to notice that Java files and XML files hold the first two places in conven-
tional projects (Table 5). However, the Java file extension is the most changed
type both in Android and Spring Boot conventional projects, differently from
their code samples where xml extension is the most changed type of file dur-
ing the evolution of the analyzed projects. In short, code samples tend to

15

Table 5: File extension changes in code samples and conventional projects (RQ2).
Android Spring

Extensions # % Extensions # %

Code Samples

xml 9,075 15.67 xml 7,735 28.75
java 7,034 12.14 java 1,437 5.34
properties 1,926 3.33 properties 961 3.57
jar 1,783 3.08 jar 770 2.86
json 1,111 1.92 bat 331 1.23
other 36,988 63.86 other 15,666 58.25

Conventional Projects

java 212,278 56.55 java 147,159 57.88
xml 52,366 13.95 xml 40,984 16.12
md 5,879 1.57 md 4490 1.77
jar 4,294 1.14 properties 3,675 1.45
properties 2,806 0.75 yml 2,007 0.79
other 97,782 26.04 other 55,948 21.99

change more configuration files than source code. This happens mainly because
changes in source code are not as frequent as in conventional projects. Most of
the changes in code samples only happen to update the source code to a more
recent framework version.

Table 6 shows another view of this data: the actions performed on files:
addition, modification, or removal. While in Android samples, most of the
actions are to add files (53.03%), in Spring Boot samples, the majority is to
modify existing ones (85.13%). In both cases, the removal of files is uncom-
mon. When we compare code samples to conventional projects, the behavior
is very similar. The majority of changes during the evolution of Spring Boot
conventional projects is to modify existing files (Android - 63.52% and Spring
Boot - 66.73%). Moreover, the removal of files in both Android and Spring
Boot is also uncommon. The only difference is that in conventional Android
projects, the action to modify files is more common than the addition of files
(63.54% vs. 25.20%). In Android code samples, adding a file is more common
than file modification (53.03% vs. 40.91%). This behavior is noticed in Android
code samples because, after every update to a more recent framework version,
files are automatically generated in the context of the code sample project. As
shown later, in conventional Android projects, there is a migration delay to a
new framework version, thus making file modifications more common.

Configuration file changes: Table 7 presents the most changed configuration
files. We notice that build.gradle files are the most changed in both frame-
works. In Android code samples, the manifest.xml are usually changed, while
in Spring Boot, the pom.xml are often updated. Therefore, as most of these
files are related to automation tools, we can confirm that these tools keep being
updated over time.

Most of the code sample behavior previously presented is also observed in
conventional projects in configuration file changes (Table 7). We highlight that

16

Table 6: Action type per file in code samples and conventional projects (RQ2).
Android Spring

File action type # % File action # %

Code Samples

Add 30,716 53.03 Modify 22,900 85.13
Modify 23,696 40.91 Add 3,020 11.23
Delete 3,505 6.05 Delete 980 3.64

Total 57,917 100.00 Total 26,900 100.00
Conventional Projects

Modify 238,546 63.54 Modify 169,665 66.73
Add 94,596 25.20 Add 54,479 21.43
Delete 42,263 11.26 Delete 30,119 11.85

Total 375,405 100.00 Total 254,263 100.00

Table 7: Configuration file changes in code samples and conventional projects (RQ2).
Android Spring

Files # % Files # %

Code Samples

build.gradle 5,281 9.12 build.gradle 7,565 28.12
manifest.xml 1,076 1.86 pom.xml 7,531 28.00
travis.yml 24 0.04 travis.yml 208 0.77

Conventional Projects

build.gradle 7,257 1.93 pom.xml 24,884 9.79
manifest.xml 3,462 0.92 build.gradle 1,457 0.57
pom.xml 2,561 0.68 travis.yml 280 0.11

pom.xml takes the first place from build.gradle in Spring Boot conventional
projects. The numbers of these files in Spring Boot code samples are very similar
in configuration file changes (28.12% vs. 28.00%). Another point to highlight is
that the percentage of configuration file changes in code samples is higher than
in conventional projects. This happens due to the higher number of total files
in conventional projects when compared to code samples.

Migration delay: Figure 9 presents the delay in the number of days the sample
takes to migrate to new Android and Spring Boot frameworks versions. Spring
Boot samples migrate much quicker than Android ones. While Spring Boot
samples update the same day the new version is available (median zero days),
the Android samples take 56 days to migrate on the median.

Figure 10 shows the versions that the code samples are adopting. We see
that the Android samples mostly rely on23 the API level 26 (i.e., Android 8.0,
Oreo), 27 (i.e., 8.1, Oreo), and 28 (i.e., 9.0, Pie). However, many samples also
rely on other API levels, which represent older versions of Android. Regarding
Spring Boot, most of the samples are based on version 2.0.5; in this case, we

23That is, they have the TargetSdk set to a certain version.

17

56

00.1

1.0

10.0

100.0

Android Spring
Code Samples

D
el

ay
 in

 d
ay

s
(lo

g
sc

al
e)

Delay to Update

Figure 9: Migration delay in code samples (RQ2)

found no sample relying on versions under 2.0, which represents older Spring
Boot versions.

0

50

100

150

19 21 22 23 24 25 26 27 28
Versions of Code Samples

N
um

be
r

of
 P

ro
je

ct
s

/ S
ub

pr
oj

ec
ts

MinSdk

TargetSdk

Android Versions

0

30

60

90

120

2.0.1 2.0.2 2.0.5
Versions of Code Samples

N
um

be
r

of
 P

ro
je

ct
s

/ S
ub

pr
oj

ec
ts

Spring Boot Versions

Figure 10: Code sample versions (RQ2).

To better understand why the Spring Boot code samples are migrated faster
than the Android ones, we investigated two scenarios. First, we hypothesize that
the Android code samples are more complex than the Spring Boot ones. Indeed,
we have seen in RQ1 that Android code samples are slightly more complex. In
addition, Figure 11 (left) presents another view of the complexity and shows
that the Android code samples rely more on Android APIs than the Spring
Boot ones. Thus, it is natural that migration takes longer in Android code
samples as they are more coupled to the framework. Our second hypothesis is
that the developers who maintain the Spring Boot code samples are the same
who maintain the Spring Boot framework itself. Figure 11 (right) shows the
ratio of developers working on both code samples and framework. We notice
that the ratio is quite large in Spring Boot: 75% of the developers who commit
code in the samples have also committed in the framework Spring Boot; in
Android, this ratio is zero. Therefore, having developers working on both code

18

samples and framework may support their maintenance by decreasing migration
delay.

3.7

1

0.1

1.0

10.0

Android Spring
Code Samples

Im
po

rt
s

Framework Imports by File

75

00

25

50

75

100

Android Spring
Code Samples

C
om

m
on

 C
on

tr
ib

ut
or

s

Relative Framework
Contributors Inside
Code Sample Project

Figure 11: Dependency to the framework in number of imports (left) and ratio of developers
in both code samples and framework (right).

Finally, to compare the migration delay to new framework versions, we an-
alyzed the delay to update also in conventional projects. In this analysis, we
found a statistically significant difference in the delay to update to new frame-
work versions when comparing code samples to conventional projects (***: large
effect, direction: ↓) in both Android and Spring Boot (Table 4). In other words,
we show that code samples update faster to new framework versions than con-
ventional projects. We believe this happens mainly because (i) code samples
have an educational purpose, and thus it is essential to be updated, and (ii) de-
velopers who maintain the framework itself may also maintain its code samples.

Lesson Learned 2: Code samples are not static, but they evolve over time.
Updates are made on both source code and configuration files, for example, to
keep them up to date with new framework versions. Overall, code samples are
migrated quickly when comparing with conventional projects and often rely
on recent framework versions. Moreover, having developers working on both
code samples and frameworks may decrease the migration delay.

4.3. Popularity (RQ3)

Table 8 summarizes the results for the popularity analysis. The popular and
unpopular Android code samples are statistically significant different regarding
the metrics java files, lines of code, and cyclomatic complexity, all with medium
effect. The metric frequency of commits is also distinct but with a small effect.
That is, popular Android samples have statistically significantly more changes
in shorter periods than the unpopular ones. In Spring Boot, we do not find
any difference between the popular and unpopular code samples concerning the
investigated metrics.

19

Table 8: Popularity analysis (RQ3). Comparison between popular and unpopular samples
(Pop x Unp). Statistically significant difference with small (*) or medium (**) effect. Not
statistically significant different (-). Direction of the difference (Dir)

Android Spring

Metrics Pop x Unp Dir Pop x Unp Dir

Java files ** ↑ - -
Lines of Code ** ↑ - -
Relative comment lines - - - -
Cyclomatic Complexity ** ↑ - -

Lifetime - - - -
Frequency of commits * ↓ - -

Lesson Learned 3: Popular Android code samples have more code files, are
bigger, more complex, and change more frequently over time.

4.4. Client Usage (RQ4)

Fork metrics: We adopt the fork metric as a proxy of client usage for the
code samples. We detected 25,106 forks of Android code samples and 7,025 of
Spring Boot ones. Despite a non-negligible number of forks in code samples, our
data presented in Table 9 shows a lower number of forks in code samples when
compared to conventional projects both in Android (*: small effect, direction:
↓) and Spring Boot (***: large effect, direction: ↓).

Table 9: Comparing Code Sample and General Projects in RQ4 metrics. Statistically signifi-
cant difference with small (*), medium (**) and large (***) effect. Not statistically significant
different (-). Direction of the difference (Dir)

Android Spring

Metrics Sample x Conventional Dir Sample x Conventional Dir

Number of forks * ↓ *** ↓
Relative ahead forks - - *** ↑

Figure 12 (left) presents the distribution of the number of forks per code
sample. We see that Android code samples have on the median 47 forks,
while the third quartile is 112. In Spring Boot code samples, the median is
71 forks, and the third quartile is 137.5. The most forked code sample in An-
droid is android-testing (2,409 forks), while in Spring Boot the most forked
is gs-rest-service (1,412 forks). The fact that there is a fork does not nec-
essarily mean that it changes over time. Indeed, in Android, only 3% (871 out
of 25,106) forked projects are ahead of the base project, i.e., they performed at
least one commit; in Spring Boot, this ratio is 15% (1,055 out of 7,025). Fig-
ure 12 (right) presents the distribution of forked code samples with commits.
On the median, only 2% of the forked Android code samples have commits;
in Spring Boot, this ratio is higher: 12%. Overall, we notice that most of the

20

forked code samples are inactive. When we compare code samples to conven-
tional projects, there is no statistically significant difference in the context of
Android. In contrast, there is a statistically significant difference in Spring
Boot (***: large effect, direction: ↑). This means that forks in Spring Boot
code samples tend to be more active than forks in Spring Boot conventional
projects.

47
71

10

100

1000

Android Spring
Code Samples

N
um

be
r

of
 fo

rk
s

(lo
g

sc
al

e)

Number of forks

2

12

0

10

20

30

40

Android Spring
Code Samples

P
er

ce
nt

 o
f A

he
ad

 F
or

ks

Relative Ahead Forks

Figure 12: Code sample forks (RQ4).

Figure 13 presents the frequency of commits per forked code sample; we only
show the forks with at least one commit. In this case, 7% and 9% of the forked
Android and Spring Boot code samples have 10 or more commits. Most of the
forked code samples have a single commit (46% and 47%). In Android, 29%
of the forked code samples have 2–3 commits, while 16% have 4–10. In Spring
Boot, the ratios are equivalent: 26% have 2–3 commits while 16% have 4–10.

46

29

16

7

47

26

16

9

0

10

20

30

40

> 10 1 2−3 4−10
Number of commits

P
er

ce
nt

 o
f p

ro
je

ct
s Android

Spring

Relative projects ahead by
commits

Figure 13: Commits in forked code samples (RQ4).

File extension changes in forked code samples: Table 10 shows the file extension
changes in the forked code samples. We notice that developers change mostly
xml, json, java, and jar files.

21

Table 10: File extension changes in forked code samples (RQ4).
Android Spring

Extensions # % Extensions # %

xml 24,022 17.39 java 4,525 34.56
json 8,530 6.17 xml 1,128 8.61
java 8,298 6.01 jar 983 7.51
jar 3,784 2.74 properties 709 5.41
txt 1,264 0.91 yml 398 3.04
other 92,253 66.78 other 5,352 40.87

Lastly, Table 11 shows the actions performed on files. While in Android
samples, most of the actions are to add files (56.97%), in Spring Boot, the
majority is to modify existing ones (43.59%).

Table 11: Action type per file in the forked code samples (RQ4).
Android Spring

File Action # % File Action # %

Add 78,706 56.97 Modify 5,708 43.59
Delete 42,971 31.10 Add 4,640 35.43
Modify 16,474 11.92 Delete 2,747 20.98

Total 138,151 100.00 Total 13,095 100.00

Lesson Learned 4: The majority of the forked code samples are inactive. How-
ever, a non-negligible percentage of the forked code samples are updated and
evolve over time. The changes are mostly concentrated in xml and java files.

5. Qualitative Study

In this second study, we assess Stack Overflow questions (Section 5.1) and
GitHub issues (Section 5.2) to better understand Android and Spring Boot
clients’ most common problems when using the code samples. This study pro-
vides a complementary view for the first quantitative analysis. To guide this
analysis, we propose the following research question: What are the most com-
mon questions and needs about the code samples?

5.1. Stack Overflow Questions

5.1.1. Analysis

Stack Overflow is the de facto question & answer platform for software de-
velopment: it hosts over 20M questions, helping millions of developers to learn
and share their knowledge.24 Questions on Stack Overflow can receive answers,

24https://stackoverflow.com/company

22

https://stackoverflow.com/company

and the community is responsible for evaluating the quality of the proposed
answers, giving positive or negative votes. Figure 14 presents an example of
a Stack Overflow question25 about the Android sample android-Constraint-

LayoutExample.26 In this case, the developer performs a simple modification
in the sample (i.e., replacing left & right constrains with start & end), and,
according to him, the sample is not working as expected. As we can notice, the
question has 5 positive votes and 4k views.

Figure 14: Example of Stack Overflow question about an Android code sample.

We use the dataset provided by Stack Exchange27 to mine Stack Overflow
questions about Android and Spring code samples. We first run a script to
select all questions with the URLs github.com/googlesamples/ or github.

com/spring-guides/ in their bodies, which are official Android and Spring
sample repositories on GitHub. From this data, we removed (i) questions with a
score less than or equal to zero and (ii) questions without answers. This process
resulted in 527 questions for Android and 87 questions for Spring, totaling
614. Figure 15 presents the distribution of the number of views of the selected
questions. On the median, the Android questions have 890 views, while the
Spring ones have 1,579. Notice that this is larger than general Android and
Spring questions, which have 746 and 935 views, respectively, on the median.

After collecting the posts on Stack Overflow, we perform a manual classi-
fication. The second and third authors of this paper analyzed the questions
using thematic analysis [7], a technique for identifying and recording themes
in textual documents. This technique includes the following steps: (1) initial
reading of the answers, (2) generating a first code for each answer, (3) searching
for themes among the proposed codes, (4) reviewing the themes to find oppor-
tunities for merging, and (5) defining and naming the final themes [3]. Steps

25https://stackoverflow.com/questions/49232559
26https://github.com/googlearchive/android-ConstraintLayoutExamples
27https://data.stackexchange.com/help

23

github.com/googlesamples/
github.com/spring-guides/
github.com/spring-guides/
https://stackoverflow.com/questions/49232559
https://github.com/googlearchive/android-ConstraintLayoutExamples
https://data.stackexchange.com/help

890
1,579

100

1,000

10,000

Android Spring
Code Samples

V
ie

w
s

(lo
g

sc
al

e)

Code Samples

746 935

100

10,000

1,000,000

Android Spring
General

V
ie

w
s

(lo
g

sc
al

e)

General

Figure 15: Distribution of the number of views of the selected Android and Spring questions.

1 to 4 were performed independently by two authors of this paper. We used
the Cohen Kappa test [6] to measure the agreement: the score was 0.50 for
Android (moderate agreement) and 0.34 for Spring (fair agreement). After this,
the second and third authors held a sequence of meetings to resolve conflicts
and assign the final themes (step 5).

5.1.2. Results

Our manual classification leads to four categories of questions:

• Importing : questions in which developers are trying to import the code
sample to use or modify it but could not due to configuration issues.

• Running : questions in which developers are trying to run the code sample
but could not due to runtime problems.

• Modification: questions in which developers are trying to modify or im-
prove the code sample and faced some trouble.

• Reference: questions that include references to the code samples to illus-
trate some particular programming scenario or general doubts.

Figure 16 presents the distribution of the categories. The most common is
the category modification, which represented 50.1% of Android and 44.8% of
Spring questions. The second most common is reference (32.3% and 26.4%),
which is followed by running (12% and 18.4%) and importing (5.7% and 10.3%)
questions. Interestingly, both Android and Spring present the same order of
questions, that is, (1) modification, (2) reference, (2) running, and (4) importing.

In the following lines, we detail each category and present concrete examples
of the challenges faced by developers.

Importing. This category includes questions in which developers are trying
to import the code sample to use or modify it but could not due to configu-
ration issues, e.g., external dependency is not properly imported, code is not

24

5.7%
12.0%32.3%

50.1%

Android Questions

Importing
Running
Reference
Modification

10.3%
18.4%

26.4%

44.8%

Spring Questions

Figure 16: Stack Overflow questions by category.

compiling, IDE is not configured, etc. For example, in the following question,
the developer cannot import and run the code sample in the Android Studio
IDE.28 The accepted answer simply presents step-by-step how the developer
should successfully import the code sample using that IDE.

“No matter what projects I import they never work - Android Studio is always
flagging this is not a Gradle build project [...] Can anybody tell me specifically
how to import and run the following git repo in Android studio for example?”

Developers also have problems building the code samples, as in the following
question, in which he is struggling with the gradle build.29 The developer later
discovers that the wrong Java version was being used (Java 1.8 instead of 1.7).

“I just cloned the project at GoogleSamples then cd to the native-activity dir.
I typed: gradle clean build. And I am getting this: [...] I have no idea what’s
going on here. I updated to latest gradle 2.5 which supports ’model’ in app script
per the project requires.”

As a final example in this category, we present a similar case in a Spring
code sample. In this case, the developer tries to use Maven for building the
code sample and faces an error message.30 The solution involves adding a new
dependency to the maven repository (in the pom.xml file) and upgrade maven
to 3.0.5 above:

“I am going through this guide: https://spring.io/guides/gs/rest-service/ I use
Maven for building, so I’ve fetched the pom.xml linked in the official Spring
guide [...] I get the following error when running mvn install [...]”

28https://stackoverflow.com/questions/31188849
29https://stackoverflow.com/questions/31506508
30https://stackoverflow.com/questions/22935840

25

https://stackoverflow.com/questions/31188849
https://stackoverflow.com/questions/31506508
https://stackoverflow.com/questions/22935840

Running. This category includes questions in which developers are trying to
run the code sample, but could not due to runtime problems. For instance, in
the following question, the developer can run an Android code sample, however,
it crashes in some specific cases.31 The accepted answer states that this issue
refers to a known bug, and there is no trivial solution to avoid it.

“I’m running the Barcode Reader example from Google Vision API, it works
very well reading some 2d - pdf417 codes, but in some cases it crashes with a
native exception attempting to use NewStringUTF like this: [...]”

Indeed, runtime problems may be diverse. The developers can run the code
sample in the following two questions, but they face specific issues. In the first
case, the Android developer32 cannot run the code sample in some Android de-
vices, whereas in the second case, the Spring developer33 cannot kill the session.
“I’m testing Nearby connection API with the sample application available here:
[...] It seems that this is not working for some devices. I successfully connected
Samsung Galaxy S3 with Nexus 7 in both directions (S3 as host, N7 as slave,
and vice versa). However, when I try to connect Samsung Galaxy S3 to Nexus
5, the connection ALWAYS fails, with status code 8005.’

“The problem that I am facing is, when I clicked the logout button this send
a post request to the /logout endpoint to kill to session, but when I clicked the
LogIn button again I expect to see the login Form Again.”

Modification. This category is the most frequent in our manual classification.
It includes questions in which developers are trying to modify or improve the
code sample, but faced some trouble, for instance, while adding new features,
using the sample in larger applications, performing migrations, etc. For exam-
ple, in the following questions, the developers perform minor changes in the
code sample, however, the modifications do not behave as expected. In the
first question, the Spring modification resulted in an exception,34 whereas in
the second question, the developer reports a deformed image in Android.35 In
both cases, the answers are trivial, and it seems that the developers do not have
enough experience.

“I’m having trouble with my first steps using Spring-Boot with JPA. I’ve started
with a pretty minimalistic example from Git using Gradle. Now simply mov-
ing Customer to another package, let’s say to hello2 results in an exception
Caused by: java.lang.IllegalArgumentException: Not an managed type: class
hello2.Customer.”

“I tested with the GoogeSamples project android-Camera2Basic. But when I
change the preview with a ratio of 1:1 image is deformed. Does anyone have an
idea on this?”

31https://stackoverflow.com/questions/43765499
32https://stackoverflow.com/questions/33763874
33https://stackoverflow.com/questions/37598036
34https://stackoverflow.com/questions/23366226
35https://stackoverflow.com/questions/34638651

26

https://stackoverflow.com/questions/43765499
https://stackoverflow.com/questions/33763874
https://stackoverflow.com/questions/37598036
https://stackoverflow.com/questions/23366226
https://stackoverflow.com/questions/34638651

Besides performing minor changes, developers may also create applications
based on the code samples. In the following examples, the developers are build-
ing custom cameras based on code samples provided by Android.3637

“I’m building a custom camera using the new camera2 API. My code is based
on the code sample provided by Google here. I can’t find a way to get the camera
preview in full screen. In the code sample, they use ratio optimization to adapt
to all screens but it’s only taking around 3/4 of the screen’s height.”

“I’m creating a custom camera capturing videos with the new camera2 API. My
code is strongly inspired from the code provided by Google here. My camera
preview has a button to switch from back to front camera and then from front to
back camera [...]. For some reason, when I click on the “switch/swap camera”
button for the first time, it brings be to the front camera as it should, BUT
everytime I click again, the switch/swap doesn’t work anymore.”

As a final example, we present a question in which the developer aims to
expand the code sample considerably, taking into account security issues.38

“I would like to be able to upload images to a server, handling errors and excep-
tions gracefully [...]. Using the example project gs-uploading-files I can upload
files to a server using Spring Boot and Thymeleaf. In application.properties I
set [...]. However several security and validation issues are unresolved when I
upload files larger than 1MB.”

Modification tags. To further explore the questions related to modification, we
assess their tags. In Stack Overflow, a tag is a word or phrase that describes
the topic of the question.39 For that analysis, we select all tags of the ana-
lyzed questions and remove noisy ones, such as the framework name, framework
versions, and others. Finally, we merge similar tags for the sake of clarity, for
example, the tags “android-camera2”, “android-camera”, “camera”, “camera2”,
“front-camera”, and “camera-api” become camera.

Table 12 summarizes the most common tags for each framework. Camera
is the most common tag in the Android framework (105 questions). It refers
to the Camera API,40 an Android library that provides camera features for
distinct devices. The second most common tag is vision (36). The Mobile
Vision API is part of the Machine Learning Kit41 and provides a framework
for finding objects in photos and video as face, barcode, and text detection.42

The next tag is setup (29), which is a merge of two other tags: ndk and studio.
The Android NDK43 is a toolset that allows apps to be implemented in native
code (using languages such as C and C++), while the Android Studio is the

36https://stackoverflow.com/questions/39044494
37https://stackoverflow.com/questions/39022845
38https://stackoverflow.com/questions/40355743
39https://stackoverflow.com/help/tagging
40https://developer.android.com/guide/topics/media/camera?hl=en_us
41https://developers.google.com/ml-kit
42https://developers.google.com/vision/introduction
43https://developer.android.com/ndk

27

https://stackoverflow.com/questions/39044494
https://stackoverflow.com/questions/39022845
https://stackoverflow.com/questions/40355743
https://stackoverflow.com/help/tagging
https://developer.android.com/guide/topics/media/camera?hl=en_us
https://developers.google.com/ml-kit
https://developers.google.com/vision/introduction
https://developer.android.com/ndk

official IDE for building Android apps.44 The next tag is dagger (31), which
is a dependency injection framework for Java, Kotlin, and Android.45 Lastly,
we find architecture components (24), which is a merge of architectural tags as
android-viewmodel, android-room, and android-livedata; they are all related to
the Android app architecture.46

Table 12: Most common tags of modification questions.
Android Spring

Tags # Tags #

camera 105 security 36
vision 36 data 14
setup 29 social 6
dagger 31 cloud 4
architecture components 24 maven 3

For Spring Boot, we note that the most common tag is security (36). Spring
Security is a framework that focuses on providing both authentication and au-
thorization to Java applications.47 The second tag is data (14): Spring Data’s
goal is to provide a familiar and consistent, Spring-based programming model
for data access.48 The third tag is social (6), which is a tool to connect Spring
application with Software-as-a-Service (SaaS) API providers such as Facebook,
Twitter, and LinkedIn.49 The next tag is cloud (4): Spring Cloud provides
tools for developers to build some of the common patterns in distributed sys-
tems quickly.50 Lastly, we have the tag maven (3). Apache Maven is a software
project management and comprehension tool that can manage a project’s build,
reporting, and documentation.51

Overall, these results suggest that developers have issues modifying distinct
types of code samples, as presented by the variation of detected tags. In both
frameworks, the doubts are not concentrated on a single tag, but spread over
several ones.

Reference. This final category contains questions with references to the code
samples to illustrate some particular programming scenario or general doubts.
For example, in the following question, the developer is simply illustrating his
problem with reference to an Android code sample.52

“My main requirement would be to have a service having its own process and trig-
ger its own geofencing event [...]. Then there is this code sample from Google

44https://developer.android.com/studio/intro
45https://dagger.dev
46https://developer.android.com/jetpack/guide#recommended-app-arch
47https://spring.io/projects/spring-security
48https://spring.io/projects/spring-data
49https://projects.spring.io/spring-social/
50https://spring.io/projects/spring-cloud
51https://maven.apache.org/
52https://stackoverflow.com/questions/28355353

28

https://developer.android.com/studio/intro
https://dagger.dev
https://developer.android.com/jetpack/guide#recommended-app-arch
https://spring.io/projects/spring-security
https://spring.io/projects/spring-data
https://projects.spring.io/spring-social/
https://spring.io/projects/spring-cloud
https://maven.apache.org/
https://stackoverflow.com/questions/28355353

showing how to use geofencing with google play services: Google samples ge-
ofencing. What I found so far is that we have to use an IntentService to trigger
geofencing events, and from the docs, I’ve read it states that an IntentService
terminates itself when its work is done”

In the next example, the developer is curious about the design of the code
sample and looks for explanations about it.53

“Does anybody know why the Spring Boot Guide includes two different types of
integration tests? [...]”

Finally, in the following question, the developer references the code sample
to illustrate his doubt with a concrete example better.54

“Does the Google Mobile Vision API work offline? Or does it need Internet
connectivity? The sample app does not require any Internet permission. Which
means the API works entirely offline. I am looking for a positive confirmation
of this. [...]”

Lesson Learned 5: Developers typically face problems when trying to modify
the code samples, for example, when adding new features or performing minor
changes to explore them. This category corresponds to 50% of the cases in
Android questions and 45% in Spring Boot.

5.2. GitHub Issues

5.2.1. Analysis

To further explore developers’ problems about code samples, we assess GitHub
issues of the code samples. Here, we are interested in issues that cause changes
in code samples. For this purpose, first, we selected all issues for studied code
samples. Next, we removed all open issues as they do not cause code sample
modification. When an issue causes modification in a repository, it is common to
reference the commit or pull request with the modifications. We then removed
issues without reference to commits or pull requests, only keeping the ones
that cause modification. Lastly, we manually removed false positive references.
Based on that, we found 269 GitHub issues from code sample repositories.

Based on the title, body, and comments of the issues, we classify them in
the following categories: (i) importing, when developers try to import the code
sample to use or modify it but could not due to configuration issues; (ii) running,
when developers try to run the code sample but could not due to run-time
problems; (iii) modification, when developers try to modify the code sample, and
faced some trouble; (iv) improvement, when developers suggest an improvement
into the code sample or their comments led code sample’ maintainers to improve
them; and (v) question, when developers are simply asking about code sample
usage or better patterns.55

53https://stackoverflow.com/questions/46732371
54https://stackoverflow.com/questions/40832882
55The first three categories come from our prior analysis on Stack Overflow.

29

https://stackoverflow.com/questions/46732371
https://stackoverflow.com/questions/40832882

Furthermore, we look at the changed files in the commits related to the is-
sue. We classify the changes as follows: (i) documentation changes, when main-
tainers edit documentation files as readme.md ; (ii) source code changes, when
maintainers edit Java files; and (iii) configuration changes, when maintainers
edit configuration files, such as manifest.xml, pom.xml, or build.gradle.

The manual classification was performed as in the Stack Overflow study,
that is, based on thematic analysis [7].

5.2.2. Results

Figure 17 presents the distribution of the categories after the manual anal-
ysis. The most common category is improvement, with 40.9% in Android and
65.5% in Spring Boot code samples. This may suggest that developers who use
code samples want to improve them, and, at the same time, maintainers care
about improvements and developers’ requests. In both frameworks, the second
most common is importing, with 30.3% in Android and 13.8% in Spring Boot
code samples. Running has 16.7% in Android code samples and 11.8% in Spring
Boot ones. The fourth category is question (7.6%) in Android but modification
(4.9%) in Spring Boot. Finally, modification has 4.5% in Android code samples,
and the question category has 3.9% in Spring Boot ones.

30.3%

40.9%

4.5%7.6%

16.7%

Android Issues

Importing
Improvement
Modification
Question
Running

13.8%
65.5%

4.9%
3.9%

11.8%

Spring Issues

Figure 17: Distribution of issues’ categories.

Figure 18 presents the distribution of changes type led by issues. In Android,
we notice that source code changes are the most common type of change with
51.9%. Followed by configuration with 41.3% and documentation with 6.7%. In
contrast, in Spring Boot, we observe that documentation is the most common
type of change with 43%, while configuration and source code have 34.7% and
22.3%, respectively.

30

41.3%

6.7%

51.9%

Android Issues

Configuration File
Documentation
Source Code

34.7%

43.0%
22.3%

Spring Issues

Figure 18: Distribution of modification types.

Lesson Learned 6: Developers create issues mainly suggesting improvements
to code samples. Since we only assessed issues that changed the code samples,
this shows that those issues are well accepted by code samples maintainers.

6. Implications

Based on our findings, we provide a set of implications to framework code
sample creators and clients to support their maintenance and usage practices:

Code samples should be simple and small to facilitate their reuse, as stated
by good development practices [40]. Indeed, the majority of the code samples
provided by Android and Spring Boot follow this rule. However, this is not
strict: we find that the code samples with more Java files are more likely to be
popular than those with fewer Java files.

Code samples should provide working environments to ease their usage. Most
Android and Spring Boot code samples are formed by source code and many
other configuration files necessary to run them properly. Automated build and
integration tools may also support both the creators and clients, improving their
quality and reducing risks [8, 22, 39].

Code samples are not frozen projects, but they should be updated over time.
Changes are commonly performed to follow recent framework versions, other-
wise, the code samples become outdated and less attractive to the clients [12,
15, 19, 42]. Indeed, this practice is often performed by Android and Spring Boot
code samples, but much faster in the latter. We also find that the code samples
that are changed frequently are more likely to be popular. Our qualitative anal-
ysis on Stack Overflow and GitHub issues also suggests that the code samples
are likely to change over time due developers’ needs.

31

Code samples may benefit from scenarios where their developers also contribute
to the framework itself. The migration delay may decrease when the overlap
of developers is higher between code samples and framework. We recognize,
however, that we should further explore this phenomenon in future research.

Code samples should encourage fork-change-learn approach. We recall that code
samples facilitate and accelerate the learning process of features provided by
frameworks [31, 40]. Despite the majority of the forked code samples are inac-
tive, we find that the a non-negligible percentage is updated by their clients as
a way to explore and learn them. Also, our findings in the qualitative analysis
shows that developers are likely to change the code samples, which reinforces
the importance of the learning perspective of the code samples. Thus, we rec-
ommend the cycle fork-change-learn to the clients kick start in a code sample.

Code sample creators can provide extensions guides to aid developers. We found
that developers frequently try to modify or improve the code samples, but face
some problems, for instance, expanding the sample with novel new features. We
also detect that developers may even suggest the improvement of code samples
via GitHub issues. For example, we find that many questions are created when
developers try to use camera API on Android and security features on Spring
Boot. Maybe developers would not create these questions if organizations made
available extra content explaining how to evolve code samples, including the use
of different related features (e.g., more complex use of common features). For
instance, the basic code sample explains how to use a camera to take a picture,
but the extra content could explain how to switch between the front and back
camera, turn on the flashlight, or take a picture within canvas drawing. This
could help to spread the technology and also to support developers.

7. Threats to Validity

This section discusses the study limitations based on the four categories of
validity threats described by Wohlin et al. [41]. Each category has a set of
possible threats to the validity of an experiment. We identified these possible
threats to our study within each category, which are discussed in the following
with the measures we took to reduce each risk.

Conclusion validity: It concerns the relationship between the treatment and
the outcome. In this work, potential threats arise from violated assumptions of
statistical tests: the statistical tests used to support our conclusions may have
been inappropriately chosen. To mitigate this threat wherever possible, we used
statistical tests obeying the characteristics of our data. More specifically, we
used non-parametric tests, which do not make any assumption on the underlying
data distribution regarding variances and types.

Internal validity: It is the degree to which conclusions can be drawn about the
causal effect of independent variables on the dependent variables. One impor-
tant threat to internal validity is related to the ambiguity about the direction
of causal influence. Specifically, in RQ3, aspects from code samples may be a
key to their popularity. On the other hand, the popularity of a code sample

32

may influence code sample aspects measured in our study as code comments
and cyclomatic complexity. To ameliorate this threat, we analyze the history of
the code samples to avoid considering aspects that arisen due to the increase in
popularity over time.

Construct validity: It refers to the degree to which inferences can legitimately
be made from the operationalizations in your study to the theoretical constructs
on which those operationalizations were based. We detected a possible threat
related to the restricted generalizability across constructs: Java might present
specific source code characteristics than other programming languages and affect
RQ1. This risk cannot be avoided since we analyzed only source code imple-
mented in Java. However, we argue that Java is an important programming
language and comprises many code samples in the GitHub repository.

External validity: Threats associated with external validity concern the degree
to which the findings can be generalized to the wider classes of subjects from
which the experimental work has drawn a sample. We identified a risk related
to the interaction between selection and treatment : the use of code samples
provided by two frameworks might present specific aspects compared to other
frameworks. This risk cannot be avoided because our focus is on the two frame-
works presented in Section 3. However, we argue that they are relevant and
worldwide adopted frameworks that have millions of end-users. Therefore, we
believe the results extracted can be the first step towards the generalization of
the results.

8. Related Work

Frameworks are used to support development, provide source code reuse,
improve productivity, and decrease costs [14, 25, 30]. Often there is a steep
learning curve involved when developers adopt frameworks. Development based
on code samples provides the benefits of code reuse, efficient development, and
code quality [36]. Moreover, with the popularity and relevance of the Question
and Answer (Q&A) sites as Stack Overflow, some studies propose approaches
and tools to search and/or retrieve source code samples and explore properties
of those samples.

Context-based code samples. Software engineering tools bring sophisticated
search power into the development environment by extending the browsing
and searching capabilities [11, 17, 29, 34, 36]. For instance, Holmes and Mur-
phy [11] proposed a technique that recommends source code examples from a
repository by matching structures of given code. FuzzyCatch [27] provides a
code recommendation tool, based on fuzzy logic, for handling exceptions. XS-
nippet [34] provides a context-sensitive code assistant framework that provides
sample source code snippets for developers. In general, these tools help locate
samples of code, demonstrate the use of frameworks, and fasten development
by exploring the syntactic context provided mainly by the IDE to recommend
code samples more relevant to developers (as in Strathcona [11]). However, the

33

samples provided by these systems are highly dependent on a particular devel-
opment context. In contrast, code samples typically are complete projects that
organizations made to facilitate and accelerate the learning process of features
provided by frameworks. Therefore, it is expected that the types of code sam-
ples explored in this paper present different characteristics compared to samples
automatically generated by tools.

Mining API usage examples. Complementing the aforementioned tools, many
studies confirmed the significance of API usage examples, mainly in the context
of framework APIs, and proposed approaches to mine API usage examples from
open code repositories and search engines [5, 13, 23, 24, 28, 46, 1, 38, 26]. Most of
these work retrieve the so-called code snippets to support API learning, whereas
our work focuses on complete projects of framework code samples. In addition,
our work is not focused on proposing an approach to mine code samples, but
analyze the characteristics of these code samples.

Assessing Q&A code snippets. Nasehi et al. [35] focused on finding the charac-
teristics of a good example on Stack Overflow. They adopted an approach based
on high/low voted answers, the number of code blocks used, the conciseness of
the code, the presence of links to other resources, the presence of alternate
solutions, and code comments. Yang et al. [43] assessed the usability of code
snippets across four languages: C#, Java, JavaScript, and Python. The analysis
was based on the standard steps of parsing, compiling, and running the source
code, which indicates the effort that would be required for developers to use
the snippet as-is. A similar work was done by Uddin et al. [9] that assesses the
prevalence and vulnerabilities of share code examples using C# unsafe keyword
in Stack Overflow. They assess using regular expressions and manual checks.
Meldrum et al. [20] evaluate the quality of code snippets on Stack Overflow,
exploring aspects as reliability and conformance to programming rules, read-
ability, performance, and security. Finally, studies are analyzing the adoption
of code snippets [10, 33, 44]. For instance, Roy and Cordy [33] analyzed code
snippet clones in open source systems. They found that, on average, 15% of
the files in the C systems, 46% of the files in the Java systems, and 29% of files
in the C# systems are associated with exact (block-level) clones. Similar to
our work, these studies focus on analyzing the properties of code snippets and
their adoption on real projects. However, our work targets entire code sample
projects instead of code snippets.

9. Conclusion

We proposed a large-scale empirical study to understand better how these
code samples are maintained and used by developers. By assessing 233 code
samples about Android and Spring Boot, 233 conventional projects related with
these frameworks 614 Stack Overflow questions and 269 GitHub issues, we inves-
tigated aspects related to their source code, evolution, popularity, client usage,
and developers’ problems. We found that most code samples are small and sim-
ple, provide a working environment for the clients, and rely on automated build

34

tools. They frequently change, for example, to adapt to new framework ver-
sions. We also detected that clients commonly fork the code samples, however,
they rarely modify them. We also found that the most common problem hap-
pens when developers try to modify the code samples. Finally, we found that
the most common type of GitHub issue on code sample repositories is related
to improvements.

We reiterate the most interesting implications to support the maintenance
and usage of code samples:

• Code samples should be simple and small to facilitate their reuse, as stated
by guidelines and followed by most of the code samples of Android and
Spring Boot.

• Code samples should provide working environments to ease their usage
and rely on automated build and integration tools to improve quality.

• Code samples are not static and should evolve over time. Updates are
commonly performed to follow recent framework versions, otherwise, the
code samples become outdated and less relevant to the clients.

• Code samples may benefit from scenarios where their developers also con-
tribute to the framework itself. In this case, migration delay may be
decreased.

• Clients of code samples may explore them via the cycle fork-change-learn.
Indeed, a strong minority of the client developers do rely on this cycle
when using code samples.

• Code sample creators can provide extensions guides to aid developers.
As developers frequently try to modify the code sample, this could help
spread the technology and train them.

As future work, we plan to extend this research by assessing the code samples
provided by other frameworks and written in other programming languages
(e.g., Google Maps and Twitter APIs). We also plan to analyze other metrics
relevant to the samples, such as performance and security. Finally, we plan to
perform a survey with the creators and clients of the code samples to understand
better major limitations and benefits from their point of view.

10. Acknowledgment

This research is supported by CNPq (438017/2018-8 and 133898/2020-2).

References

[1] Barnaby, C., Sen, K., Zhang, T., Glassman, E., Chandra, S., 2020. Exempla
gratis (eg): code examples for free, in: Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pp. 1353–1364.

35

[2] Borges, H., Hora, A., Valente, M.T., 2016. Understanding the factors that
impact the popularity of GitHub repositories, in: International Conference
on Software Maintenance and Evolution, pp. 334–344.

[3] Brito, A., Valente, M.T., Xavier, L., Hora, A., 2020. You broke my code:
Understanding the motivations for breaking changes in APIs. Empirical
Software Engineering 25, 14581492.

[4] Brito, G., Hora, A., Valente, M.T., Robbes, R., 2018. On the use of re-
placement messages in API deprecation: An empirical study. Journal of
Systems and Software 137, 306–321.

[5] Buse, R.P.L., Weimer, W., 2012. Synthesizing api usage examples, in:
International Conference on Software Engineering, pp. 782–792.

[6] Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational
and psychological measurement 20, 37–46.

[7] Cruzes, D.S., Dyba, T., 2011. Recommended steps for thematic synthesis in
software engineering, in: International Symposium on Empirical Software
Engineering and Measurement (ESEM), pp. 275–284.

[8] Duvall, P., Matyas, S.M., Glover, A., 2007. Continuous Integration: Im-
proving Software Quality and Reducing Risk. Addison-Wesley Signature
Series, Addison-Wesley.

[9] Firouzi, E., Sami, A., Khomh, F., Uddin, G., 2020. On the use of c#
unsafe code context: An empirical study of stack overflow, in: Proceedings
of the 14th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), pp. 1–6.

[10] Heinemann, L., Deissenboeck, F., Gleirscher, M., Hummel, B., Irlbeck,
M., 2011. On the Extent and Nature of Software Reuse in Open Source
Java Projects, in: International Conference on Top Productivity Through
Software Reuse, pp. 207–222.

[11] Holmes, R., Murphy, G.C., 2005. Using structural context to recommend
source code examples, in: International Conference on Software Engineer-
ing, pp. 117–125.

[12] Hora, A., Robbes, R., Valente, M.T., Anquetil, N., Etien, A., Ducasse, S.,
2018. How do developers react to API evolution? a large-scale empirical
study. Software Quality Journal 26, 161–191.

[13] Keivanloo, I., Rilling, J., Zou, Y., 2014. Spotting working code examples,
in: International Conference on Software Engineering, pp. 664–675.

[14] Konstantopoulos, D., Marien, J., Pinkerton, M., Braude, E., 2009. Best
principles in the design of shared software, in: International Computer
Software and Applications Conference, pp. 287–292.

36

[15] Kula, R.G., German, D.M., Ouni, A., Ishio, T., Inoue, K., 2018. Do devel-
opers update their library dependencies? Empirical Software Engineering
23, 384–417.

[16] Lethbridge, T.C., Singer, J., Forward, A., 2003. How software engineers
use documentation: The state of the practice. IEEE Software , 35–39.

[17] Mandelin, D., Xu, L., Bod́ık, R., Kimelman, D., 2005. Jungloid mining:
Helping to navigate the api jungle, in: Conference on Programming Lan-
guage Design and Implementation, pp. 48–61.

[18] Martin, R.C., 2009. Clean code: a handbook of agile software craftsman-
ship. Pearson Education.

[19] McDonnell, T., Ray, B., Kim, M., 2013. An empirical study of API stability
and adoption in the Android ecosystem, in: International Conference on
Software Maintenance, pp. 70–79.

[20] Meldrum, S., Licorish, S.A., Owen, C.A., Savarimuthu, B.T.R., 2020. Un-
derstanding stack overflow code quality: A recommendation of caution.
Science of Computer Programming 199, 102516.

[21] Menezes, G., Cafeo, B., Hora, A., 2019. Framework code samples: How
are they maintained and used by developers?, in: 13th International Sym-
posium on Empirical Software Engineering and Measurement(ESEM), pp.
1–11.

[22] Meyer, M., 2014. Continuous integration and its tools. IEEE Software 31,
14–16.

[23] Montandon, J.E., Borges, H., Felix, D., Valente, M.T., 2013. Document-
ing apis with examples: Lessons learned with the apiminer platform, in:
Working Conference on Reverse Engineering, pp. 401–408.

[24] Moreno, L., Bavota, G., Di Penta, M., Oliveto, R., Marcus, A., 2015.
How Can I Use this Method?, in: International Conference on Software
Engineering, pp. 880–890.

[25] Moser, S., Nierstrasz, O., 1996. The effect of object-oriented frameworks
on developer productivity. Computer 29.

[26] Nguyen, P.T., Di Rocco, J., Di Ruscio, D., Ochoa, L., Degueule, T.,
Di Penta, M., 2019. Focus: A recommender system for mining api function
calls and usage patterns, in: 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering (ICSE), IEEE. pp. 1050–1060.

[27] Nguyen, T., Vu, P., Nguyen, T., 2020. Code recommendation for exception
handling, in: Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pp. 1027–1038.

37

[28] Niu, H., Keivanloo, I., Zou, Y., 2017. Learning to rank code examples for
code search engines. Empirical Software Engineering 22, 259–291.

[29] Poshyvanyk, D., and, A.M., 2006. Jiriss - an eclipse plug-in for source code
exploration, in: International Conference on Program Comprehension, pp.
252–255.

[30] Raemaekers, S., van Deursen, A., Visser, J., 2012. Measuring software
library stability through historical version analysis, in: International Con-
ference on Software Maintenance, pp. 378–387.

[31] Robillard, M.P., DeLine, R., 2011. A field study of API learning obstacles.
Empirical Software Engineering 16, 703–732.

[32] Romano, J., Kromrey, J.D., Coraggio, J., Skowronek, J., 2006. Appropriate
statistics for ordinal level data: Should we really be using t-test and cohensd
for evaluating group differences on the nsse and other surveys, in: Florida
Association of Institutional Research, pp. 1–33.

[33] Roy, C.K., Cordy, J.R., 2010. Near-miss function clones in open source
software: An empirical study. Journal of Software: Evolution and Process
22, 165–189.

[34] Sahavechaphan, N., Claypool, K., 2006. Xsnippet: Mining for sample code,
in: Conference on Object-oriented Programming Systems, Languages, and
Applications, pp. 413–430.

[35] Sillito, J., Maurer, F., Nasehi, S.M., Burns, C., 2012. What Makes a Good
Code Example?: A Study of Programming Q&A in StackOverflow, in:
International Conference on Software Maintenance, pp. 25–34.

[36] Sindhgatta, R., 2006. Using an information retrieval system to retrieve
source code samples, in: International Conference on Software Engineering,
pp. 905–908.

[37] Tian, Y., Nagappan, M., Lo, D., Hassan, A.E., 2014. What are the char-
acteristics of high-rated apps? a case study on free Android applications,
in: International Conference on Software Maintenance and Evolution, pp.
301–310.

[38] Uddin, G., Khomh, F., Roy, C.K., 2020. Mining api usage scenarios from
stack overflow. Information and Software Technology 122, 106277.

[39] Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., Filkov, V., 2015. Quality
and Productivity Outcomes Relating to Continuous Integration in GitHub,
in: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pp. 805–816.

[40] Vincent, D., 2018. Code example guidelines.
https://developer.mozilla.org/en-US/docs/MDN/Contribute/Guidelines/
Code guidelines.

38

[41] Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B., Wessln,
A., 2012. Experimentation in Software Engineering. Springer Publishing
Company, Incorporated.

[42] Xavier, L., Brito, A., Hora, A., Valente, M.T., 2017. Historical and impact
analysis of API breaking changes: A large scale study, in: International
Conference on Software Analysis, Evolution and Reengineering, pp. 138–
147.

[43] Yang, D., Hussain, A., Lopes, C.V., 2016. From Query to Usable Code: An
Analysis of Stack Overflow Code Snippets, in: International Conference on
Mining Software Repositories, pp. 391–402.

[44] Yang, D., Martins, P., Saini, V., Lopes, C., 2017. Stack Overflow in Github:
Any Snippets There?, in: International Conference on Mining Software
Repositories, pp. 280–290.

[45] Zhang, J., He, J., Ren, Z., Zhang, T., Huang, Z., 2019. Enriching api doc-
umentation with code samples and usage scenarios from crowd knowledge.
IEEE Transactions on Software Engineering PP, 1–1. doi:10.1109/TSE.
2019.2919304.

[46] Zhu, Z., Zou, Y., Xie, B., Jin, Y., Lin, Z., Zhang, L., 2014. Mining api
usage examples from test code, in: International Conference on Software
Maintenance and Evolution, pp. 301–310.

39

http://dx.doi.org/10.1109/TSE.2019.2919304
http://dx.doi.org/10.1109/TSE.2019.2919304

