
 
1 

Full citation: Wimalasooriya, C., Licorish, S. A., da Costa, D. A., MacDonell, S. G. (2022) A 
systematic mapping study addressing the reliability of mobile applications: The need to move 
beyond testing reliability, Journal of Systems and Software 186(2022), pp. 111-166 
doi:10.1016/j.jss.2021.111166. 
 
 
A Systematic Mapping Study Addressing the Reliability of Mobile Applications: 

The Need to Move Beyond Testing Reliability    

Chathrie Wimalasooriya*, Sherlock A. Licorish, Daniel Alencar da Costa, Stephen G. 
MacDonell 

Department of Information Science, University of Otago, Dunedin, New Zealand 
emails: chathrie.wimalasooriya@postgrad.otago.ac.nz, 

{sherlock.licorish, danielcalencar, stephen.macdonell}@otago.ac.nz 
 

 
 

Abstract 
Intense competition in the mobile apps market means it is 
important to maintain high levels of app reliability to avoid 
losing users. Yet despite its importance, app reliability is 
underexplored in the research literature. To address this 
need, we identify, analyse, and classify the state-of-the-art 
in the field of mobile apps’ reliability through a systematic 
mapping study. From the results of such a study, 
researchers in the field can identify pressing research gaps, 
and developers can gain knowledge about existing 
solutions, to potentially leverage them in practice. We 
found 87 relevant papers which were then analysed and 
classified based on their research focus, research type, 
contribution, research method, study settings, data, quality 
attributes and metrics used. Results indicate that there is a 
lack of research on understanding reliability with regard to 
context-awareness, self-healing, ageing and rejuvenation, 
and runtime event handling. These aspects have rarely been 
studied, or if studied, there is limited evaluation. We also 
identified several other research gaps including the need to 
conduct more research in real-world industrial projects. 
Furthermore, little attention has been paid towards quality 
standards while conducting research. Outcomes here show 
numerous opportunities for greater research depth and 
breadth on mobile app reliability.  
 
Keywords: Mapping study, Software reliability, 
Mobile app reliability, Evidence-based software 
engineering 
 

1. INTRODUCTION 
New mobile applications are being developed and released 
continuously via app stores since the market for mobile 
devices is both growing and diversifying. Recent statistics 
show that the Google Play store is home to more than 3.14 
million1 apps and the Apple App store comprises more than 

 
1 https://www.statista.com/statistics/289418/number-of-available-apps-
in-the-google-play-store-quarter/. 
 

3.4 million apps,2 up from 2.1 million and 3.0 million just 
one year ago. The success of any mobile application 
depends on various quality attributes (QAs), as for any 
other software system. Careful and constant management 
of those quality attributes is not only a technical necessity, 
but also central to a company’s survival in the competitive 
app market [1–3]. In particular, reliability is generally 
accepted as a key quality attribute since it measures failures 
and ‘misbehaviours’ of a software application. Users 
depend on apps for a wide variety of purposes, from 
providing entertainment to enabling more serious activities 
such as m-health, m-commerce and m-government, where 
greater reliability, availability, responsiveness and 
performance is essential [4–6] and is expected. Failure of 
mobile applications in these contexts could make users 
frustrated, abandon apps and move to alternative apps [7]. 
This may affect operational revenues/costs and the 
reputation of the company [8]. As an example, Amazon’s 
app continued to crash on its annual prime day in 2018,3 
where the company recorded significant losses. According 
to Amazon, a one second delay in responsiveness could 
cost US$1.6 billion in sales each year [9]. Therefore, 
paying attention to the reliability of apps, especially when 
they are in operation after release, is vital to prevent such 
consequences. As Musa and Everett [10] noted, 
‘‘Reliability is probably the most important of the 
characteristics inherent in the concept Software Quality’’. 
Due to the fact that there is constant growth in the app 
market, and this domain is becoming more and more 
competitive [11–13], paying attention to reliability is 
becoming more important [14–16].  

In this work we refer to applications that are not supported 
to run on the current generation of mobile devices, such as 
smartphones and tablet PCs, as ‘traditional software’. Thus, 
web or desktop applications (e.g., Eclipse, Apache HTTP, 
Gitlab) are traditional software. Compared to traditional 
software, mobile applications are different as they must 
deal with particular constraints. For instance, mobile 

2 https://www.statista.com/statistics/268251/number-of-apps-in-the-
itunes- app-store-since-2008/. 
3 https://www.theatlantic.com/technology/archive/2018/07/prime-day- 
amazon-website/565412/. 



 
2 

applications must be able to run on limited power supply, 
which demands consideration when assessing the energy 
efficiency and the performance of mobile hardware [17]. 
Also, mobile platforms (e.g., Android OS, iOS4) are 
upgraded regularly in relatively short time periods, which 
increases compatibility issues, possibly leading to app 
crashes [18]. Due to the fact that mobile apps differ from 
traditional software, traditional approaches to development 
and deployment, such as the techniques used for exception 
handling, testing and automated program repair, cannot be 
applied without first verifying their utility in a mobile 
context [19,20]. Hence, over the past few years, much 
research has been published investigating the reliability of 
mobile app software (e.g., [1,18,20–22]).  

This body of research essentially addresses two different 
concepts of reliability. The first concept, operational 
reliability, is defined as the probability of no failure 
occurring during the operation of an app [23]. The second 
concept, testing reliability, is the probability of no failure 
occurring during the testing phase of the software 
development process [23]. A study published in 2016 by 
Zein et al. [20] analysed the literature to that date on mobile 
app testing approaches that focussed on testing reliability. 
To the best of our knowledge, no previous work has sought 
to survey evidence in the area of operational reliability of 
mobile applications. Hence, it is not clear to what extent the 
research community has achieved success in terms of 
operational reliability. This motivated us to conduct a study 
surveying and synthesizing existing literature. To further 
motivate this study, we conducted an informal tertiary 
review to search for systematic secondary studies published 
on operational reliability of mobile apps, where results 
showed no such studies were published (refer to Section 3). 
Such a systematic secondary study would help researchers 
and practitioners to focus their efforts in achieving better 
reliability in mobile apps.  

To fulfil this need, we conducted a systematic mapping 
study (SMS) in the field of operational reliability focusing 
on Android mobile applications. Our focus is on Android 
apps because Android holds 72.9% of the global market 
share5 and Android apps are particularly popular in the 
domain of mobile apps research, due to Android’s open-
source software (OSS) nature. Our goal of this study is to 
collect evidence of all the related literature, structure the 
evidence according to a classification scheme and identify 
gaps in the current research and practice landscape that may 
need further attention. To achieve our goal, we consider 
three main research questions (RQs). RQ1 explores 
publication trends (with authors and venues of publication) 
of the relevant studies, RQ2 explores the nature of the 
studies based on research types, contributions, quality 
attributes and metrics used, and RQ3 investigates empirical 
studies in more detail, considering their research method, 
study settings, datasets, and finally, the limitations and 
research gaps in the area.  

The contributions of our study are as follows:  

• We provide a comprehensive understanding of the 
state-of-the-art of research on a broad topic, i.e., 

 
4 https://developer.apple.com/documentation/ios-ipados-release-notes. 

operational reliability of Android apps. We classified 
existing work by adapting multiple classification 
schemes (e.g., classifications based on research focus, 
contribution and the like). Researchers could use, adapt, 
or further refine these classification schemes to 
categorize and describe new research in related 
domains.  

• We provide evidence of existing work in the field and 
quantify the frequency of these works based on several 
adapted classification schemes. Quantifying existing 
works provides an understanding of the extent to which 
a particular area of focus has been investigated.  

• We identify a list of research gaps (e.g., areas that lack 
evaluation or tool support) in order to outline current 
research opportunities and suggest areas for further 
research.  

• Practitioners may also use the results of this study to 
identify existing approaches to handling reliability-
related issues as well as to analyse the maturity level 
and potential risks of various approaches before 
applying them.  

The remaining sections of this paper are organized as 
follows. Section 2 summarizes the background and insights 
of previous related studies. Section 3 describes our informal 
tertiary review. Section 4 describes the methodology we 
followed, including our research questions and the 
classification schemes used for data extraction. Section 5 
presents the results and identifies gaps in the space, 
providing recommendations for future research. Section 6 
discusses the results and outlines their implications. Section 
7 evaluates threats to validity of our study. Finally, Section 
8 concludes the work.  
 

2. BACKGROUND AND RELATED 
STUDIES  
This section provides background information for 
understanding the concepts presented throughout this study 
(in Sections 2.1– 2.3). We then review related works in the 
area (in Section 2.4).  
 
 
 

5 https://www.statista.com/statistics/272698/global-market-share-held-
by-mobile-operating-systems-since-2009/. 

Table 1. SQuaRE reliability attributes definitions. 

 



 
3 

2.1. Software reliability  
Research on software reliability has its genesis in the early 
1970s [24]. Software reliability is defined as the probability 
of failure-free software operation for a specified period of 
time in a specified environment [25]. ISO/IEC SQuaRE 
[26] provides a broader definition; ‘‘the degree to which a 
system, product or component performs specified functions 
under specified conditions for a specified period of time’’. 
In the ISO/IEC SQuaRE context, reliability is considered a 
combination of four sub-attributes: availability, maturity, 
fault-tolerance and recoverability. Table 1 provides the 
standard definitions for these attributes.  

As mentioned in Section 1, reliability may be partitioned 
according to two concepts: testing reliability and 
operational reliability. During the testing phase, software is 
improved by removing identified faults, hence, reducing 
the potential for failures to reoccur. As in O’connor [27], 
we refer to failures as the unexpected departure from how 
software should behave during operation according to the 
requirements. A fault (a property of a program) is a defect 
in a program that causes failures (a property of the 
program’s execution) when the program is executed. In 
other words, failure is dynamic, and a program needs to be 
executed for a failure to occur. Not all faults are detectable 
by testing approaches. Faults that escape the testing phase 
(field faults) can cause failures during later operation of the 
software. Field faults may or may not trigger field failures, 
depending on the execution context of the production 
environment. During the operational phase, unlike in the 
testing phase, it is not the case of removing faults, but users 
can experience failures (known as field failures). Such 
failures make operational reliability much more important 
than testing reliability from users’ point of view [23].  

Overall, there are four types of techniques (Fault 
prevention, Fault removal, Fault tolerance and 
Fault/failures forecasting) that may be applied by software 
engineers to achieve reliability [25]. (1) Fault prevention: 
the first mechanism to defend against unreliability is to 
avoid faults and failures. In general, standard development 
methodologies, best development practices, programming 
principles and interacting with users early to verify/refine 
requirements are the approaches recommended to prevent 
faults. (2) Fault removal: fault prevention cannot guarantee 
avoiding all software faults [25]. Once faults are introduced 
in the software, removing them is the next defencive 
mechanism. Standard industry practices for removing 
faults are software inspection [28] and testing [20]. (3) 
Fault tolerance: faults can slip through all testing and 
inspection procedures and stay with the software when it is 
released. In such cases, the last defencive mechanism is 
fault tolerance, to prevent triggering faults as failures. 
Usual fault tolerance techniques are: adding exception 
handling mechanisms to stop further faults propagating, 
adding conditional checks (e.g., checks for inputs/outputs 
or illegal operations), and so on. (4) Fault/failure 
forecasting: finally, if failures occur in the field, it is 
important to estimate or predict them to understand and 
assess the quality of the system or when to stop testing. 
Various models (e.g., Software Reliability Growth models) 
have been proposed to estimate and predict reliability [29]. 

 
6 https://developer.android.com/guide/platform. 

Measuring software reliability is also important to plan 
maintenance activities. For instance, maintenance 
involving software rejuvenation techniques can be 
scheduled accordingly [25]. Rejuvenation of software 
involves stopping the running software occasionally, 
cleaning the internal state and its execution environment, 
and restarting it. Removing accumulated errors, freeing up 
operating system resources and reinitializing internal data 
structures are some actions involved in cleaning the internal 
state and execution environment of software. Software 
rejuvenation is a fault tolerant technique intended to 
prevent failures caused by degradation due to software 
ageing (a phenomenon of software performance 
degradation, leading to slow UI responses, failure-prone 
states or even app crashes) [30].  
 
2.2. Android  
Android OS: Android6 is an open-source, Linux-based 
software stack designed for various types of devices such 
as TVs, mobile phones, watches and cars. The Android 
platform is roughly divided into four layers according to its 
architecture: (1) Linux kernel is the bottom layer, which the 
entire Android platform is built on. (2) Hardware 
Abstraction Layer (HAL) is on top of the Linux kernel and 
has several libraries that implement interfaces exposing 
device capabilities to the higher-level Java API framework. 
When the API framework makes a call to access the 
hardware, the Android system loads libraries relevant to the 
requested hardware component (e.g., camera, bluetooth). 
(3) Android Runtime (ART) and native C/C++ libraries are 
available in the third layer from the bottom. ART also 
includes core runtime libraries that provide many of the 
functionalities of the Java programming language. Many 
Android components such as ART and HAL use native 
code that require native libraries written in C and C++. (4) 
Java API framework is a set of APIs written in the Java 
language that provide a set of higher-level services to 
applications/app developers in the form of java classes and 
methods. Through these classes and methods, app 
developers can access and make use of the features of the 
Android system. Therefore, research focusing on the Java 
language can be useful for supporting understandings of 
Android apps.  

Android apps: Apps are at the top layer on the Android 
platform. Apps consist of both system apps (core apps that 
come with Android for email, calendars, SMS messaging, 
contacts, internet browsing and more) and developer apps 
(third party apps). Mobile phone users can install these 
third-party apps to replace default system apps. 
Distribution and installation of apps: For distribution and 
installation of Android apps, Android uses the format of 
Android Application Package (APK) files (with the .apk 
file extension). The .apk file contains code, resources, 
certificates, assets and AndroidManifest.xml (global 
configuration file for the app) [31]. Manifestation: Every 
.apk file must have an Android-manifest.xml file which 
contains essential configuration details for each Android 
app. The manifest file must declare the unique application 
ID, permission details that an app needs to access protected 
system properties or other apps and hardware/software 



 
4 

details (e.g., version of Android devices on which apps can 
be installed) that the app requires [32]. Manifest files also 
include properties of four basic components of Android 
apps (Activities, Services, Broadcast Receivers and 
Content Providers) that are required to control execution 
behaviour of the components. An app developer can define 
how to launch the components through Intent which is a 
messaging object that facilitates communication between 
different components [32]. App programming model: 
Android apps are primarily built around the concept of 
activities. An activity represents a single screen/page with 
UI components and logic behind the screen. When users 
interact with an app, an activity goes through a sequence of 
states in the activity lifecycle, such as ‘created’, ‘started’, 
‘resumed’, ‘paused’, ‘stopped’ and ‘destroyed’. App 
developers can customize app transition through these 
lifecycle states by overriding the lifecycle callback methods 
provided by the Android system [33,34].  
 
2.3. Reliability of Android apps  
In addition to the traditional techniques (e.g., exception 
handling, rejuvenation, see Section 2.1), Android apps also 
require more Android-specific techniques to ensure app 
reliability [18, 20]. For example, there can be failures due 
to improper permission definitions in the manifest file. 
Developers may make mistakes while defining permissions 
to system resources, which may lead to app crashes while 
apps are running. Furthermore, app developers must 
configure the device parameters (e.g., minSdkVersion, 
maxSdkVersion) in the manifest file which indicates the 
supported API-level as recommended in Android 
documentation.7 This practice is not yet established in the 
app development community, however, not setting such 
parameters or setting wrong versions can lead to 
compatibility issues including crashes. Moreover, Android 
apps use event-driven programming where the flow of the 
program is determined by a user’s actions (mouse clicks, 
key presses). Modern GUI frameworks such as Android, 
SWT and Swing employ a single-thread-model to process 
user events [35]. When an application is launched, the 
model creates a UI thread, in which it will run the 
application. To maintain a responsive user interface, it is 
important not to block the UI thread. The common practice 
to do so is to offload intensive tasks to background threads. 
This means making asynchronous threads (i.e., background 
threads) to perform long-running tasks such as 
computationally or resource-intensive tasks (e.g., network 
access, database queries). Android Development 
Framework (ADF) provides several asynchronous 
programming constructs (e.g., AysncTask, Thread, 
IntentService) to achieve this goal. However, developers 
can still use inappropriate asynchronous programming 
constructs which may in turn cause operational errors [35].  
 
2.4. Related work  
We identified several surveys and systematic literature 
reviews (SLRs) related to software reliability [29,36–39]. 
However, these studies investigate traditional software, 
with none specifically reviewing the state-of-the-art of 
reliability in mobile applications. For instance, Singhal and 

 
7 https://developer.android.com/training/basics/supporting-
devices/platforms. 

Singhal [36] performed an SLR study that identified the 
state-of-the-art research in the field of software reliability, 
covering literature published up to 2011. This was a decade 
ago, when mobile applications were still becoming 
mainstream. The study classifies 141 papers according to 
research topic, research approach (e.g., survey, theory) and 
study context (e.g., academic, industry). Their findings 
suggested that more industrial research was required since 
existing evidence at the time was not sufficient to show 
industrial validity. With respect to methodology the authors 
highlighted the importance of manual search to find 
relevant literature in the field, due to a lack of a 
standardized use of terms pertaining to software reliability.  

Shahrokni and Feldt [37] conducted a literature review in 
the field of software robustness — which is defined as a 
reliability characteristic in some standards; for instance, 
IEEE-STD 610.12-1990-covering the period from 1990–
2010. The authors analysed and categorized 144 papers 
based on development phase (e.g., requirements, design 
and implementation), domain (e.g., web application, 
distributed application), research type (e.g., evaluation, 
experience report), contribution (e.g., tool, metrics), and 
evaluation type (e.g., academic, industrial). The main gap 
identified in the study was the lack of research on elicitation 
and specification of software robustness requirements. 
Another finding was that most of the studies considered 
only one aspect of robustness (invalid inputs), ignoring all 
other complex aspects such as unexpected events, timeout, 
interrupts and stressful execution environments.  

Febrero et al. [29] conducted a SMS of software reliability 
modelling and analysed 503 studies covering the period 
from 2003 to 2014. They grouped reliability models into 
five classes: Software Reliability Growth models, Bayesian 
methods, Test-based methods, Artificial Intelligence-based 
techniques, and Static and Architectural Reliability models. 
The study found a gap in research where many studies were 
not conducted following the established quality standards. 
To fill this gap, the same authors conducted an SLR [39] on 
software reliability assessment based on quality standard 
ISO/IEC −25000 SQuaRE, covering the period 1991–2014. 
That latter study showed that consideration of quality 
standards and reliability from different perspectives to meet 
different stakeholders’ needs received very little attention. 
They also mentioned that the main drawback of the extant 
reliability models was that they were too complex to apply 
in daily practice. Another challenge in developing effective 
models was the lack of consensus and a wide variety of 
views on what reliability means. For instance, the authors 
observed that the terms ‘reliability’ and ‘dependability’ 
were often used interchangeably and even as synonyms. 
While our work studies the state-of-the-art of reliability in 
mobile apps, their focus was on how reliability models 
applied reliability standards (e.g., ISO/IEC-25000 
SQuaRE). In addition, our study surveys more recent work 
in the field (six or more years later).  

A more recent SMS conducted by Alhazzaa and Andrews 
[38] focused on reliability growth models that consider the 
evolution of software systems. They summarized trends 



 
5 

with respect to year of publication, venues, and study 
context (academic, industry). Studies were classified 
according to solution extent (the type and quantity of 
change: single change-point, multiple change-points), 
proposed method (analytical and curve-fit) and research 
type (empirical or non-empirical). Further, they evaluated 
the quality of empirical studies according to the evaluation 
criteria proposed by Ali et al. [40]. They recommended that 
researchers should aim to provide better quality empirical 
studies with greater industrial involvement. Also, these 
authors suggested that future works should investigate the 
following questions: how long can these models predict 
into the future? And when do practitioners have to use a 
different model or update its parameters? All of these 
previous studies (including the study by Alhazzaa and 
Andrews [38]) have noted that solutions were evaluated 
mostly in academic environments without involving or 
collaborating with practitioners during their research, and 
thus, lack industrial level validation.  
 

3. INFORMAL TERTIARY REVIEW  
None of the studies mentioned in the previous section 
(Section 2.4) have been conducted with a focus on the 
reliability of mobile applications. Also, we found very little 
evidence related to reliability of mobile apps compared to 
other QA (Quality Attribute) reviews that were conducted 
on mobile apps. This leads us to explore how QAs have 
been considered in mobile apps-related research. We 
conducted an informal tertiary review to analyse what QA 
standards were considered in mobile app review studies. 
We considered it important to understand whether quality-
related research of mobile apps ignore QAs defined in 
quality standards, since standards play an important role in 
achieving real world goals [39]. We refer to QAs in this 
study as the attributes defined in standard quality models 
such as ISO/IEC 25010:2011 and ISO/IEC 9126. We also 
use just the term ‘‘attribute’’ to represent quality attribute.  

To conduct the tertiary review, we used several search 
terms to cover a wide scope. These search terms can be split 
into three sets, representing: domain (‘‘mobile’’, ‘‘app’’, 
‘‘Android’’, ‘‘iOS’’), the type of study (‘‘systematic 
literature review’’, ‘‘mapping study’’, ‘‘state-of-the-

research’’, ‘‘state-of-the-art’’, ‘‘state of the research’’, 
‘‘state of the art’’) and context (‘‘quality’’, ‘‘non-
functional requirement’’, ‘‘non functional requirement’’). 
To represent context, we also used the quality dimensions 
defined in standards ISO/IEC 25010:2011 or ISO/IEC 
9126: ‘‘functionality’’, ‘‘performance efficiency’’, 
‘‘usability’’, ‘‘reliability’’, ‘‘portability’’, 
‘‘maintainability’’, ‘‘performance’’, and ‘‘compatibility’’. 
We then further supplemented these terms with other 
quality-related terms: ‘‘bug’’, ‘‘defect’’, ‘‘crash’’, ‘‘test’’, 
‘‘anti-pattern’’, ‘‘smell’’, ‘‘vulnerability’’, ‘‘security’’, 
‘‘energy’’, ‘‘user experience’’ and ‘‘user satisfaction’’. 
Using these search terms, we performed an automated 
search on four databases: IEEE Xplore, Springer, Scopus 
and ACM DL for the ten years 2010–2020. From the 
automatic search results, we manually selected SMSs and 
SLRs related to mobile app quality based on paper titles and 
abstracts. Thereafter, we map the QAs that were the focus 
of the papers to QAs in the ISO/IEC 25010:2011 standards 
and classified them. Fig. 1 represents the results of our 
tertiary review, showing the number of review papers 
(SMSs and SLRs) found against each quality attribute.  

As Fig. 1 shows, our tertiary review discovered a research 
gap in that there are no previous systematic secondary 
studies related to the reliability of mobile apps. Therefore, 
we were interested to see how reliability has been 
investigated by researchers in a mobile context, what 
metrics are used, what reliability attributes (i.e., sub-QAs 
of reliability as defined in standards, such as ‘availability’ 
and ‘fault-tolerance’) are studied and what areas need 
further research. This knowledge is important to the 
research and practitioner community who deal with the 
reliability of mobile apps, given their pervasive use. This 
way, we may derive consensus on how reliability can be 
assessed and identify research gaps that will further the 
discipline. The quality standards provide limited 
information about how to deal with QAs. Hence, 
synthesized knowledge based on broad analyses covering 
state-of-the-art research is needed to understand and 
support the body of knowledge on reliability. This 
motivated us to conduct this mapping study to understand 
the state-of-the-art of research in this field.  
 

 
Figure 1. Number of SMSs and SLRs on QAs of mobile applications. 



 
6 

4. METHODOLOGY  
As noted by Kitchenham and Charters [41], a systematic 
mapping study (SMS) is also referred to as a ‘‘scoping 
study’’, which is a form of systematic literature review 
(SLR). An SLR is a ‘‘methodologically rigorous review of 
research results’’ [41]. Mapping studies aim to report a 
broader overview of published studies related to a 
particular field, and so they do not analyse primary articles 
in as much depth as in SLRs. Furthermore, mapping studies 
identify, cluster and report evidence in a domain at a 
higher-level of granularity to direct the focus of future 
SLRs and primary studies. Thus, given the lack of previous 
reviews on the topic of the reliability of mobile apps, an 
SMS was most appropriate for our investigation.  

This section presents the systematic mapping method and 
protocol that was applied to conduct this study. The 
protocol was designed and developed during several 
discussions among the authors by following the guidelines 
provided by Petersen et al. [42] and Kitchenham and 
Charters [41]. The protocol includes nine major steps: (1) 
defining research questions, (2) perform manual search to 
generate a test set, (3) pilot selection criteria and search 
terms, (4) construct automatic search, (5) formalize 
protocol, (6) conduct automatic search, (7) select studies to 
be included, (8) snowballing and (9) data extraction. We 
now detail how these steps were implemented in this study. 
All Appendices (A to E) and data related to our mapping 
study are available in our online repository [43]. We refer 
to each specific Appendix when we explain our 
methodology and results later in this study.  
 
4.1. Research questions  
To achieve the main goal of this study, which is to 
understand the state-of-the-art in the field of mobile apps 
reliability, we derived three main research questions. As 
mentioned in Section 1, by reliability, we mean 
‘‘operational reliability’’. Through the first research 
question (RQ1) we aim to analyse trends of research 
interest in terms of venues and authors over time. The next 
two RQs (RQ2 and RQ3) are aimed at building a 
classification scheme through the identification of related 
studies, structuring knowledge gained from these studies, 
and also to identify research gaps that could extend the 
current body of knowledge. We define the research 
questions as follows.  

RQ1: When and by whom has reliability of Android 
apps been studied?  

RQ1.1: Who are the most active authors and which 
venues publish work on this topic?  
RQ1.2: How has interest in the reliability of Android 
apps field changed over the years?  

Rationale: One of the conventions in presenting results of 
a mapping study is to summarize the authors, venues, and 
time (published year) of literature to analyse any trends in 
research interest [42,44]. Answering this RQ provides an 
indication for researchers about which venues and authors 
are likely to be involved in similar research, directing 
networking possibilities, future publication targets and 
meta-analyses. Also, analysing trends of publishing years 

illustrate how active the topic has been historically and its 
current interest.  

RQ2: How has the reliability of Android apps been 
studied?  
RQ2.1: What is the research focus? 
RQ2.2: What is the research type? 
RQ2.3: What are the research contributions? 
RQ2.4: What reliability attributes have been explored?  
Q2.5: What metrics/measures are used to assess 
reliability? 

Rationale: The investigations in this RQ help us to build a 
classification scheme (which we explain in Section 4.10) 
that enables us to divide and group existing evidence of 
related research and knowledge gained from the literature. 
Classifying literature is one of the goals of mapping studies, 
especially where such evidence has not been organized 
previously (see Section 2). Furthermore, considering the 
Quality Standard ISO-25010,8 we examine what 
reliability-related quality attributes (reliability attributes) 
are studied, since it is important to know to what extent 
standard quality models are considered by the research 
community (see Section 4.10.4). Finally, we look into what 
metrics and measures have been used to achieve the 
research objectives of these studies (see Section 5.2.5). 
These metrics help to realize how reliability can be assessed 
or quantified, potentially discerning gaps in the domain of 
measures or specific strengths that may be transferable to 
industry in their assessment of the reliability of mobile 
apps.  

RQ3: Which studies have investigated the reliability 
of Android apps empirically?  
RQ3.1: What research methods do these empirical 
studies use?  
RQ3.2: In what settings are these empirical studies 
conducted?  
RQ3.3: What sources of information/data are used to 
conduct the empirical investigations? 
RQ3.4: What limitations and gaps exist in the empirical 
studies that could inform future research?  

Rationale: This RQ is designed to provide an 
understanding of how reliability has been empirically 
investigated. Only empirical studies are analysed to answer 
this RQ, given the drive to gather the aforementioned 
evidence. The work here analyses what research methods, 
study environments (academic, industrial), and data have 
been used in these studies. Such evidence will also inform 
the last sub-question that explores limitations of current 
empirical research. We provide directions for further 
research, but also map out the previous landscape of 
methods, settings and data for reliability of Android apps 
research. This is especially novel for the space given the 
lack of previous similar work (refer to Section 2).  
 
4.2. Initial manual search  
We developed and piloted a study protocol to conduct our 
mapping study as suggested in the guidelines. We needed a 
test set as a reference point to verify our results during 
piloting the study protocol. To build a test set, we manually 
searched for relevant papers against a selected list of top 
ranked venues in the field of software engineering and 
software reliability for the last 6 years (2015–2021). The 



 
7 

selected venues (14 venues) for the manual search are ten 
conferences: ICSE, ICSME, ASE, MSR, ESEM, FSE, 
ISSRE, QRS, PRDC, RAMS; and four journals: Empirical 
Software Engineering, Journal of Systems and Software, 
IEEE Transactions on Reliability and IEEE Transactions on 
Software Engineering. We manually searched the dblp 
websites of these venues and filtered papers based on the 
titles in the first round. If we were unsure about any paper, 
we selected it in the first round, resulting in a set of 161 
papers. In the second round we went through the full text 
of the papers to see whether the papers were relevant and 
would be helpful for answering our RQs. This search was 
conducted by two authors independently and results were 
merged later. Inter-rater agreement was calculated using 
Cohen’s Kappa [45], which was found to be 0.65, 
indicating a good agreement between the two authors based 
on the categories provided by Landis and Koch [46]. We 
removed 122 irrelevant records in the second round (these 
records were marked to be excluded by both authors) and 
disagreements were left to the final round. The final test set 
included 39 studies that were selected after discussing and 
reaching consensus between the two authors. The test set is 
available in our online repository (Appendix A), included 
for replication purposes [43].  
 
4.3. Search string and search strategy  
To conduct the automatic search, we constructed the search 
string as follows using the steps suggested by Kitchenham 
and Charters [41].  

• Derive major search terms based on the studies from 
manual analysis (Section 4.2)  

• Derive synonyms and alternative terms that expand 
major search to cover a large area  

• Add synonyms and alternatives to each major term 
with Boolean OR  

• Construct the search string by connecting major terms 
together with Boolean AND  

The search string is based on two generic search terms we 
detected when perusing the 39 studies returned in Section 
4.2, ‘‘mobile application’’ and ‘‘reliability’’. These terms 
are used to produce relevant results to achieve our research 
goal. We then expanded the search terms by adding 
alternative terms and synonyms that we identified from the 
manual search and the test set. We went through the 
abstracts of the papers from the test set and noticed that 
‘‘crash’’ is a popular term when it comes to operational 
reliability. We thus expanded the term ‘‘reliability’’ by 
adding the term ‘‘crash’’ and its stemmed versions. The 
second major term ‘‘mobile application’’ was expanded by 
incorporating the terms ‘‘smartphone’’, ‘‘mobile 
software’’, ‘‘app’’ and ‘‘Android’’ (since our focus is on 
Android applications).  

We piloted the search strings against the known papers in 
the test set until the majority of relevant papers were 
returned. The final search string chosen is the one that 
returned most of the papers in the test set. Below is the final 
search string chosen which returned 34 out of 39 papers 
from the test set, i.e., 87% of our test set.  
title | abstract | keywords =  
(((‘‘Android’’) AND (‘‘mobile app’’ OR 
‘‘mobile apps’’ OR ‘‘smartphone app’’ OR 

‘‘smartphone apps’’ OR ‘‘mobile 
application’’ OR  
‘‘mobile applications’’ OR ‘‘smartphone 
application’’ OR ‘‘smartphone  
applications’’ OR ‘‘mobile software’’)) 
OR  
(‘‘Android application’’ OR ‘‘Android 
applications’’ OR ‘‘Android app’’ OR 
‘‘Android apps’’))  
AND (‘‘reliability’’ OR ‘‘crash*’’)  
Based on the test set, we noticed that although the terms 
‘‘availability’’, ‘‘maturity’’, ‘‘fault-tolerance’’ and 
‘‘recoverability’’ are sub-quality attributes of ‘‘reliability’’ 
(according to the standards ISO/IEC 25010 and ISO 9126), 
those terms were not used widely in reliability studies. Also 
those potential search terms contain several other meanings 
that cause thousands of irrelevant records to be returned by 
our searches. For example, the terms ‘‘availability’’, 
‘‘reliability’’ or their stemmed versions have a very wide 
scope and return papers containing ‘‘reliable framework’’, 
‘‘availability of tools’’, ‘‘reliable steps’’ or ‘‘reliable 
method’’. Such studies did not consider software reliability, 
or mobile app reliability. Therefore, we avoided these terms 
in our search strings, and instead, we manually searched for 
additional related studies through snowballing (see Section 
4.7).  

The search string was applied to the databases in Section 
4.4 in searches of the title, abstract and keywords of the 
papers. We restricted our search only to the ‘‘computer 
science’’ discipline depending on the filtering facilities 
provided by the databases (e.g., Springer Link, Scopus), 
since the term ‘‘mobile’’ is also used in other research 
disciplines such as mathematics, physics and medicine. 
Furthermore, the search mechanisms are not consistent 
across every database [44]. Therefore, we had to adapt the 
syntax of our searches, and also the search mechanism, 
depending on the features provided by the databases. For 
instance, ScienceDirect is not supported with complex 
search queries, so the search strings were applied in parts 
for several rounds of searches, and the results were merged 
subsequently. Another such instance is Springer Link, 
where filtering based on abstracts and keywords is not 
supported. Therefore, searches were conducted on the full 
text. According to Springer settings, searches must be 
applied either on the ‘full text’ or ‘titles’ of the papers. 
Since searches only on the ‘‘Title’’ may be shallow and 
ineffective (simple search queries can only be applied on 
filtering based on ‘‘Title’’ which returns thousands of 
irrelevant results) [44], we applied the searches against the 
full text. This returned 2803 records for the final search, 
given that if any of our terms was detected in the full text 
of the study, the paper was added to the results pool.  

Note that Springer searches are weighted depending on 
where the search terms appear in papers, which means that 
papers with search terms in the title will appear first, then 
the papers with search terms in the abstracts, then the 
papers with search terms in the full text (this information 
was provided by Springer library support team on 2nd May 
2020). In order to handle this situation with Springer, we 
followed strategies inspired by previous studies. For 
example, Maplesden et al. [44] considered only the first 
2000 results out of 26,677 results (7.5% of the returned 



 
8 

results) and Savolainen et al. [47] considered only the first 
500 results if a search returned more than 1500 results (33% 
of the returned results). Like these previous studies, we 
checked only the first 1400 records (50% of the returned 
2803 records) records after screening the results in the order 
of relevance provided by Springer. We believe this strategy 
is effective since we were unlikely to find a paper of 
relevance after about the first 703 records. This is because 
we found only one paper between the 632nd and 703rd 
record during the process of a manual check of selected 
1400 records based on their titles, abstracts and full texts 
(when necessary) during our study selection process (see 
Section 4.6). There were no relevant papers even for the 
rest of the 693 (1400-703) records until the 1400th record. 
Table 2 summarizes the results of our automatic search 
process with the number of results returned and exact 
search string applied on each database.  

4.4. Search scope  
• Search venues: We selected five databases that were 

used in similar work that focussed on systematic 
literature reviews and mapping studies in software 
engineering [29,39].  

1. IEEE Xplore 
2. ACM digital library (DL) 3. ScienceDirect 
3. Springer Link 
4. Scopus  

IEEE Xplore, ACM DL, ScienceDirect and Springer 
have been used in recent secondary studies in the area 
of mobile applications (e.g., [13,20,48]). We also 
included Scopus as recommended by Kitchenham 
[49], since Scopus is a very useful and powerful 
database in software engineering research for 
conducting reviews. Scopus also has a higher degree 
of overlap with other venues such as EI Compendex 
and Inspec [44]. There are other databases such as 
Kluwer Online (this has been merged with Springer 
Link), Wiley Online and ISI Web of Science. The latter 
two databases are not as popular as the other 
aforementioned databases for software engineering. 
Moreover, Scopus is likely to pick up relevant studies 
in these databases [50,51].  

• Time period: Most databases (except Springer) 
returned records only after 2009 or 2010 by default 
(without setting a time) for the final search string. In 
Springer also, the results before 2009 were irrelevant. 
This may be due to the fact that Android was popular 
only after its first official release in 2008.9 Therefore, 
we set the year 2008 to be the search start. Our searches 
cover the period from January 2008 to July 2021. 

  
4.5. Selection criteria  
The final search string (as defined in Section 4.3) produced 
2032 results including many irrelevant records. In order to 
focus and select only the relevant papers to answer our 
research questions, we defined the following Inclusion (I) 
and Exclusion (E) criteria. As suggested by Kitchenham 
and Charters [41], we used the test set to pilot, refine and 
enhance the criteria. These criteria were applied in our 
study selection process in Section 4.6.  

The inclusion criteria of our mapping study are as follows:  

• I1. The paper is written in English.  
• I2. The paper is published in a fully peer reviewed 

venue.  
• I3. The paper is fully accessible.10  
• I4. The paper focuses on operational reliability of 

Android mobile applications.  
• I5. The paper is in the domain of software engineering.  

We used following exclusion criteria to exclude a study:  

• E1. A summary of a conference/workshop, thesis, 
editorials, keynote.  

• E2. Papers that investigate applications that are 
intended for use on other embedded devices (e.g., 
smart TV, smart watch) rather than on mobile devices 
such as smartphones or tablets.  

• E3. Papers that investigate reliability focusing solely 
on lower levels of the Android operating system (OS) 
(e.g., [52]), processor architecture [53], or 
communication infrastructure (e.g., mobile cloud 
computing solutions [54]). Such investigations require 
specific focus on other specialized areas such as 
special hardware constraints (e.g., Linux kernel, 
memory drivers) and runtime virtual environments 
which are distinct from our research focus.  

• E4. Papers that study tools or practices that are only 
peripherally related to operational reliability. For 
example, papers that present strategies to enhance 
testing techniques to handle defects in general (e.g., 
[55,56]), without paying attention to specific failures 
such as crashes. In this regard, papers reporting testing 
approaches that do not focus on operational reliability 
or reliability attributes (e.g., availability, fault-
tolerance) are excluded. For example, we exclude 
studies that focus on functional testing [57], 
usability/GUI testing [58] or regression testing [59], 
but include papers with testing approaches that focus 
on reliability issues that can occur while apps are in 
operation (e.g., some context-aware testing approaches 
that focus on network disruption which may cause an 
app to become unresponsive).  
 

4.6. Selection process  
All selection criteria were discussed among the four authors 
while developing and refining them until no remaining 
disagreements were recorded. Furthermore, the authors had 
several consensus meetings (about 12 meetings) and agreed 
on a concrete selection process which was used to select the 
included set of papers in this mapping study. Below we 
describe this selection process and the steps are 
summarized in Fig. 2.  

As in Fig. 2, first, we conducted the automatic search 
(Section 4.3) on the five selected databases (Section 4.4) by 
applying the search terms on papers’ title, abstract and 
keywords. In each database, we restricted the search to the 
computer science field (where possible) and set the start 
year as 2008. After the automatic search, we manually 
analysed the results to remove duplicates. During the 
process of removing duplicates, if one paper was a journal 
version of a conference paper, we included the journal 
version and removed its conference version. In the next 



 
9 

phase, we filtered papers based on the selection criteria 
(Section 4.5). This filtering process has three main steps: in 
step 1, the full set of papers were filtered based on titles and 
abstracts while applying all selection criteria (I1 to I5 and 
E1 to E4). When it was difficult to decide whether the paper 
should be included or not, such papers went to step 2. In 
step 2, the papers remaining from the first step were filtered 
based on the introduction, methodology and conclusion by 
applying the criteria I4, I5, E2, E3 and E4. Papers that still 
created uncertainty regarding their inclusion were retained 
to go to step 3. Finally, in step 3, studies that remained after 
step 2 were filtered based on a complete reading of the full 
text while applying I3, I4, E2, E3 and E4. If difficulties or 
confusions arose while filtering papers, the authors together 
discussed and made a final decision to include or exclude a 
paper. 
 
4.7. Snowballing  
In order to complete the list of selected papers from the 
above process in Section 4.6, we further performed the 
snowballing process to identify missing papers that are 
relevant [42]. During snowballing, we checked the 
reference list (backward snowballing) and citation list of 
each selected paper (forward snowballing). In this process 
we followed the same three steps (based on title, abstract 
and full text) exactly in the same way as described in the 
selection process in Section 4.6. The papers selected from 
snowballing (17 papers) were finally combined with the 
papers from the database selection process.  

4.8. Search and selection results  
Fig. 2 shows the results of our search and selection process. 
The Appendix provides the full list of selected papers. In 
total, 2032 papers were returned from the automatic 
searches on the databases, where 1253 papers remained 
after removing duplicates and 65 papers remained after the 
selection process in which the selection criteria were 
applied. We added 5 papers [s75,s76,s77,s86,s87] that were 
found from our manual search (see Sections 4.2 and 4.3). 
These 5 papers were not found during the automatic search 
as their titles, abstracts and keywords did not include the 
terms ‘‘Android apps’’ (in [s77,s86,s87]), ‘‘crash’’ or 
‘‘reliability’’ (in [s75] and [s76]). Most of these papers 
were published in the last year (e.g., [s75,s86,s87]) which 
made it unlikely that they would be found through 
snowballing ([s77], which was published a couple of years 
ago, was found by snowballing). Snowballing was useful 
nonetheless, as we added 17 more papers through this 
process. Thus, in total, 87 (65+ 17+ 5) [43] papers were 
finally selected for analysis in this mapping study. See the 
‘‘List of selected studies’’ at the end of this paper for full 
details of the selected papers.  
 
4.9. Data extraction  
Each selected paper was reviewed and classified according 
to a classification scheme, enabling us to create a structure 
around the included papers and also to systematically 
extract relevant answers for our research questions. We  

Table 2. Search strings applied on each database and relevant studies returned. 

 



 
10 

extracted the data items listed in Table 3 from each selected 
study.  

To answer RQ1, we extracted data such as authors’ names, 
affiliations, publication year, publication type and venue. 
The extraction of this data was straightforward, and thus 
there was no need for a classification scheme. Data 
regarding research focus, research approaches, research 
methods, contribution types, study setting, quality 
attributes and metrics used were extracted to answer RQ2 
and RQ3. Many of these data required the use of 
classification schemes (refer to Section 4.10). During 
extraction, the data was stored in a spreadsheet structured 
to map to each research question. We answered the research 
questions based on frequencies of papers (frequencies for 
each category in the classification scheme when necessary). 
Additionally, the limitations and challenges reported in the 
papers were recorded and summarized. Furthermore, the 
overall classification scheme with resulting papers helped 
us to identify more research gaps and synthesize our 
findings.  
 
4.10. Classification schemes  
As inspired by Petersen et al. [42], the keywording process 
was applied on the selected papers to form our 
classification scheme. The keywording process has two 
phases. In the first phase, the main researcher reads the 
abstracts and keywords of each paper and identifies a set of 
keywords and concepts that reflect the investigated 
problem, focus and contributions of the studies. When the 
abstract is too short or not clear enough for keywords to be 
chosen, the researcher reads the introduction, methodology 
and conclusion sections as well. In the second phase, the 
identified keywords and concepts from different papers are 
combined (considering alternative keywords and merging  

similar concepts) to form higher-level concepts that should 
help readers to understand the context of the papers. These 
concepts assist the derivation of a set of topics and sub-
topics to form categories in the classification scheme 
representing the underlying research.  

In Table 3, we classified papers according to seven 
different dimensions: (1) research focus (related to RQ2.1), 
(2) research type (related to RQ2.2), (3) contribution type 
(RQ2.3), (4) quality attributes (RQ2.4), (5) research 
method (RQ3.1), (6) study setting (RQ3.2), and (7) details 
of data considered in investigations (RQ3.3). These 
categories are now described.  
 
4.10.1. Research focus  
The first classification structures the focus area of the 
selected papers and is used to answer RQ2.1. From the first 
phase of the keywording process, a large number of 
concepts were generated due to the diversity of the 
problems investigated in the papers. For example, crash re-
production, crash detection, test case generation, event 
handling, run-time change handling, modelling software 
failures and context-awareness are such concepts. In the 
second phase, the concepts were grouped together and 
seven main concept types were derived representing the 
research focus areas: failure/crash analysis, exception 
handling, ageing and rejuvenation, API-related issues, self-
healing, and runtime change handling. If a study did not fit 
into any of those categories, it was grouped under the 
‘‘other’’ category. The main focus of other category papers 
is not reliability but was partly related to reliability.  
 
4.10.2. Research type  
The second classification is based on the type of ‘‘research 
approach’’ employed and is used to answer RQ2.2. As 
inspired by Petersen et al. [60] and Wieringa et al. [61], 
each selected paper was classified as one of the following:  

• Solution proposal: papers that propose a novel 
solution or a significant improvement to an existing 

 
Figure 2. Selection process and total papers returned for 
synthesis. 

Table 3. Data items extracted from each study. 

 



 
11 

approach that supports maximizing or improving the 
reliability of mobile apps. These papers usually explain 
the components of a proposed solution, illustrate how 
components work using an example, and argue for its 
applicability without a full validation.  

• Validation research: papers that propose or 
investigate a solution (which may be a solution 
proposed by others) that has not yet been used in 
practice. Also, it should include a full-blown validation 
to prove applicability of the solution.  

• Evaluation research: papers that investigate existing 
approaches in practice. These papers usually evaluate 
existing methods (rather than proposing them) by 
applying them in different contexts, or in this case they 
might evaluate mobile apps’ reliability by using 
existing methods or tools in practice.  

• Philosophical research: papers that look at existing 
approaches in a new way by structuring the field as a 
new conceptual framework.  

• Experience report: papers that explain the personal 
experiences of the author(s). These papers usually 
contain a list of lessons learned from using a tool or 
technique in practice. The experience is reported 
without a discussion of research methods.  

• Opinion paper: papers explaining personal opinions 
of the author(s) on a particular technique, whether it is 
good or bad, how things could have been done or what 
should or should not be done. These studies do not rely 
on related work and research methodologies.  

• Secondary study: this category is added by us to cover 
secondary studies that review existing research.  

As discussed by Petersen et al. [60], we use solution 
proposals, philosophical research, and opinion papers to 
classify non-empirical research.  
 
4.10.3. Research contribution  
Our classification for contributions, which is used to 
answer RQ2.3, is inspired in part by Shahrokni and Feldt 
[37]. Those authors studied papers related to ‘‘robustness’’, 
which is similar to our topic of interest (i.e., reliability). 
Their work also helps us to distinguish between robustness 
and reliability. The categories used by Shahrokni and Feldt 
[37] are: framework, method, tool, metrics, model, 
evaluation and review. In addition to the contribution types 
used by Shahrokni and Feldt [37], we included two more 
types: (benchmark and taxonomy). Below we briefly 
explain each contribution type.  

• Framework: a conceptual structure that provides 
guidance for a detailed method that covers a wide area 
(e.g., answering several research questions). A 
framework may be partially automated.  

• Method: a process (or technique/method) that has a 
specific goal that covers a narrow area (e.g., answering 
a narrow research question).  

• Tool: refers to any kind of tool support such as 
research prototypes or an implementation of one or 

more methods that support software engineering 
practices.  

• Metrics: a type of contribution that provides 
guidelines or measures to assess different aspects of 
reliability.  

• Model: a representation of information, a problem, or 
a topic instead of a way of solving a problem.  

• Evaluation: has the same definition as mentioned in 
relation to research type (see Section 4.10.2). The 
contribution of evaluation research can be some sort of 
knowledge about evaluated techniques. If the main 
contribution of a study providing evaluation research 
is a tool, method or metric, such a study is classified 
under the specific category (as a tool, method or 
metric), but not as evaluation.  

• Review: refers to the contribution type of secondary 
studies.  

• Benchmark: refers to the studies that provide 
benchmarking datasets as their contribution.  

• Taxonomy: provides classifications of gathered 
knowledge.  

This category was added because some studies in our 
sample within the evaluation category also provided 
taxonomies as contributions.  
 
4.10.4. Quality attributes  
To address RQ2.4, we investigate how reliability was 
studied complying with the standard quality models in the 
context of mobile applications. For this purpose, we 
extracted (sub) quality attributes from each study and 
attempted to map the extracted QAs to QAs in the standard 
quality models ISO/IEC 25010:2011 and ISO/IEC 9126. 
Mapping to quality standards is important since standards 
play a key role in understanding whether proposed 
approaches are not only sound and efficient, but also likely 
to be economical and profitable for organizations. 
Demonstrations complying with standards show client 
organizations that their objectives and requirements are 
being achieved, with the potential for a better market 
position [39]. This way clients can assure that existing 
solutions can be applied effectively in daily industrial 
practice. We did not define the classification scheme prior 
for this RQ. Since the QAs are dependent on the context of 
the study, and terms used to refer to QAs are dependent on 
the author’s intention, it is difficult to define a classification 
beforehand. Hence, we developed the classification during 
the data extraction process. The classification evolved and 
became stable with extracted data from the studies. The 
categorization of QAs is presented in Section 5.2.4.  
 
4.10.5. Research method  
In empirical software engineering research, there exists no 
consensus on how to classify research methods, which 
leads to various forms of classification (e.g., [62–66]). 
Furthermore, there are a range of ways to categorize the 
case study research method (e.g., [67–70]). As indicated by 
Journals and Wiley Online Library [51], it remains evident 
that standards of empirical research in other disciplines, 
such as social and medical sciences, are more mature 



 
12 

compared to empirical research in software engineering, 
since such disciplines have a long history of empirical 
research [71]. Hence, we looked into a classification 
provided by Yin [72], who introduced five major research 
methods for social research: experiment, survey, archival 
analysis, history and case study. Yin further explained 
types of case studies based on the sources of evidence used 
to conduct research: documentation, archival records, 
interviews, direct observation, participant observation and 
physical artefacts.  

In our review, not all selected studies state the research 
method that was used in their research. Hence, we defined 
the following categories to consistently classify empirical 
research in our study, which answers RQ3.1. First, we 
derived the main categories primarily based on the 
classification provided by Yin [72], and then we adapted 
definitions as follows to fit with relevant software 
engineering literature.  

• Experiment: is a study in which an intervention is 
deliberately introduced to observe its effects [73]. 
These studies use an experimental method in a 
laboratory setting (i.e., not a natural setting, but 
manipulative setting) to empirically validate or 
evaluate their proposed solutions and approaches.  

• Survey: is conducted to collect knowledge, attitudes, 
and ideas from a particular group of people using 
questionnaires or interviews.  

• Case study: is conducted in a natural setting and is less 
controlled than an experimental setting. These studies 
can be a worked example or an investigation of real 
projects over a period to understand a certain 
phenomenon in-depth. These studies help to derive 
new hypotheses, theories, and test existing theories in 
different contexts. For example, case studies may 
involve tracking a particular attribute (e.g., number of 
bugs, amount of technical debt), establishing 
relationships between attributes, or building a model to 
predict bugs.  

- Archival research: We combined documentation 
and archival records from Yin [72] under this 
category, since the distinction of these two areas 
is not particularly relevant in software 
engineering research. Archival research is a type 
of case study that investigates historical data that 
are archived by companies which may require 
permission to access or are publicly available 
data such as from open-source repositories (e.g., 
GitHub, F-Droid for Android). Data can be 
collected from, e.g., meeting minutes, 
organizational documents such as policy 
documents, documents from different 
development phases such as design documents, 
requirement specifications, source code, test 
reports, organizational charts, financial records 
or previously recorded measurements such as 
effort and failure data [70,74].  

 

- Observational research: This indicates the same 
category, direct observation as in Yin [72]. A 
case study can be observational based on its data 

collection method. These types of studies 
typically use a qualitative data collection method 
where the researcher investigates (observes) 
software engineers while they perform their 
tasks in the work environment. With this 
method, non-verbal data such as participants’ 
emotions, how they communicate with the team, 
how they complete tasks, what issues they deal 
with and other daily activities can be observed. 
Observation can be known or unknown to 
participants. Some strategies used in these types 
of research are monitoring software engineers 
with a video recorder or observing meetings 
where participants communicate, which may 
generate information.  

 

- Action research: This category is adapted from 
participant observation as in Yin [72]. Unlike 
observational research, in action research, 
researchers actively participate as a part of the 
organization and interact with participants at a 
higher level (i.e., the researcher is not an 
independent observer, but a participant) during 
the investigation.  

• Simulation research: Simulation research helps with 
answering what-if questions (enabling observations by 
moving forward), while other methods permit 
answering the ‘‘What happened, and how, and why?’’ 
questions (i.e., looking backwards across history). 
Researchers use an executable model (i.e., transferred 
to executable source code from a 
mathematical/computational model) to represent a 
real-world entity. In software engineering, this entity 
may be a process, product, or person [62]. Researchers 
develop simulation models defining variables and their 
relationships and then run the model to analyse output 
variables and relationships among those variables for 
different input parameters. Simulations can avoid 
effort and set up costs for real-world experiments or 
may be convenient when resources are generally 
unavailable. Thus, they potentially help to reduce the 
problem of data unavailability in empirical research 
(e.g., when data is difficult or too costly to access), 
since simulation produces its own ‘‘virtual’’ data [74].  

• Review: Secondary studies that analyse previous 
literature are classified as reviews.  
 

4.10.6. Study settings  
In an applied discipline such as software engineering, 
industrial involvement in research is extremely important. 
For many years, the need for collaboration between 
industry and academia in software engineering research has 
been acknowledged [75]. To answer RQ3.2, we investigate 
the study setting in which empirical studies are performed. 
Our classes are academic, industrial or both academic and 
industrial (mixed).  

To classify studies based on setting, we examine to what 
extent industries have been involved in the selected studies. 
We found two types of study settings: studies from fully 
academic environments and studies that engage with 
industry, which, as noted above, we classify as a mixed 



 
13 

setting. To determine whether a study is industrial or 
mixed, we adapted two factors from a previous study [76]: 
involvement of practitioners, and use of datasets. 
Involvement of practitioners (who were actively employed 
in industry during the research) while performing the study 
can be through surveys or experiments. In addition, we also 
considered authors’ affiliations. Author affiliations help to 
identify whether authors are from academia (employed 
with a university or research institute), industry (employed 
with a company) or from both (joint authorship). As 
explained by Garousi et al. [75], we believe that the 
involvement of practitioners in writing research papers 
enables both perspectives of academia and industry to be 
incorporated. Regarding datasets, some researchers use 
datasets from private companies, perhaps in addition to 
open-source datasets, which also indicates a level of 
collaboration with industry; thus these works are classified 
as mixed settings.  
 
4.10.7. Data  
To answer RQ3.3 we analysed details of the data used in 
empirical studies and classified studies based on three 
features of the data sources: (1) whether datasets are 
publicly available, (2) whether the studies analyse open-
source systems or commercial systems, and (3) the type of 
artefacts used (e.g., bug reports, app source files) in the 
studies. Section 5.3.3 provides the classification of papers 
according to these categories.  
 

5. RESULTS AND ANALYSIS  
In this section, we present the results of the mapping study 
to answer our research questions. The Sections 5.1–5.3 are 
organized based on the research questions RQ1, RQ2 and 
RQ3 and their related sub-questions.  
 
5.1. RQ1: When and by whom has reliability of Android 
apps been studied?  
5.1.1. Most active authors and venues (RQ1.1)  
Most authors have published three or fewer papers. Table 4 
shows the most active authors in this field (i.e., 30 authors 
who published three or more papers) with their names and 
affiliations. The full list of papers including all the authors 
is provided in our online repository [43] (see Appendix B). 
Regarding publication venues, the selected 87 studies were 

published in 47 different venues (check Appendix C in 
Wimalasooriya et al. [43] for the full list of venues), 
including 57 conference papers, 24 journal articles and 6 
workshop papers. The top eleven venues in which two or 
more studies were published are listed in. The total number 
of studies in this list is 53 which means around 34 other 
selected studies are not published in these venues. This 
result indicates that considering only the top venues would 
result in the omission of a number of related studies in 
systematic mapping studies. The results in Table 5 indicate 
that the journal of Empirical Software Engineering and the 
International Conference on Software Engineering (ICSE) 
published more than any other venues. We have plotted 
these results in Fig. 3.  
 
5.1.2. Research interest over time (RQ1.2)  
We analysed publication trends in terms of distribution of 
publications over the period covered in this mapping study, 
which is from 2008 to July 2021. As Fig. 4 shows, interest 
in this topic has increased in general. Even though the 
period of this mapping study is from the year 2008, research 
interest in operational reliability started around 2012. This 
may be due to various reasons such as (1) the first research 
focussed on the app store was published in 2010 [77] 
(which was two years after the first release of Android) and 
the fact that (2) mobile apps became relatively popular with 
significant increases in sales of smartphones in 2012 after 
the revolution of the touchscreen smartphone in 2010.  

In Fig. 4, the first spike in research can be seen between 
2013 and 2014. After 2014, at least 7 studies were 
published in each year. In 2018, the interest reached a peak, 
with 18 studies. This trend indicates that mobile app 
reliability is currently an active topic. It should be noted 
that our searches for this study were performed in July 
2021, and thus, the figures for 2021 do not reflect studies 
published for the entire year.  

Summary outcomes for RQ1: RQ1 explored the most 
active authors researching reliability of Android apps, 
venues in the area of Android app reliability and how 
research interest has changed over the time. Regarding 
authors, around 30 authors published three to four papers, 
while a large number of other authors published fewer 
papers. Considering the venues, the ICSE conference and 
the Empirical Software Engineering journal published the  

 
Figure 3. Venues that published more than one study on reliability of Android apps. 



 
14 

most in the area of reliability of Android apps research. 
However, the majority of studies are published in a number 
of other venues, albeit in fewer numbers. This means that 
considering only a list of the most active authors or venues 
is not sufficient to gain a broad understanding of the 
relevant research landscape. Furthermore, research interest 
on reliability of Android apps has increased in general over 
the years.  
 
5.2. RQ2: How has the reliability of Android apps been 
studied?  
5.2.1. Research focus (RQ2.1)  
The selected studies were grouped into different categories 
according to the classification scheme described in Section 
4.10 and Table 6 lists the relevant studies for each category 
of focus areas. The main topic categories used to structure 
the selected studies based on focus are: failure/crash 
analysis (35 studies), exception handling (21 studies), self-
healing (8 studies), API-related issues (9 studies), ageing 
and rejuvenation (6 studies), context-awareness (4 studies), 
runtime change handling (4 studies) and other (6 studies). 
Below, we describe each category with the studies 
belonging to each group. If a study has more than one focus, 
the study is classified under multiple categories. For 
example, [s70] investigates runtime recovery via error 
handling and is grouped under both categories of runtime 
change- and exception-handling.  

Failure/crash analysis: As Table 6 shows, it is noticeable 
that most of the studies published on the subject of Android 
app reliability were related to the category of failure/crash 
analysis (35 out of 87). The intent of these studies is to 
assist in the handling of operational failures, such as app 
crashes. These failures can be crashes which may cause an 
app to shut down, hang, restart, or other types of failure 
such as Application Not Responding (ANR) errors, phone 
freezes and phone self-reboots. Much research effort has 
also been committed to assist with testing and debugging 
approaches to detect crashes. Approaches in these works 
can be grouped into four types: (1) investigating the 
effectiveness of traditional testing (e.g., Monkey testing) in 
a mobile context to reveal app failures: [s1,s2,s14,s49]; (2) 
proposing new approaches to detect crashes: [s3], 
[s34,s41,s55,s60,s76]; (3) reproducing crashes to support 
the debugging process: [s22,s29, s30,s43,s51,s53,s54,s79]; 
and (4) analysing characteristics or root causes of 
crashes/failures: [s32,s65,s68]. Furthermore, two recent 
studies pointed out that Android Vitals provided in the 
Google console [s31] and program slicing for Android 
[s40] can facilitate current research on app testing. In 

addition to detecting crashes, fixing them was studied in 
[s47], [s52], and [s64]. The remaining studies focussed on 
predicting crashing releases [s77], failures caused by 
permission requests [s21], third party library updates [s35] 
and configuration errors due to developer mistakes [s37]. 
Studies [s15,s36] analyse the relationship between post-
release faults (i.e., number of crashes) and app usage to 
derive a release quality measure (i.e., number of crashes per 
user), [s11] analyses modelling relationships between 
faults, failures and errors, [s5] surveys existing research on 
program analysis of Android apps, and [s83] investigates 
crash-inducing faults.  

Exception handling: Most of the programming languages 
employed in mobile app development for Android apps use 
exception handling mechanisms to report and handle 
runtime failures (crashes). Properly using this mechanism 
assists developers to improve apps’ ability to cope properly 
with runtime errors, thus, improving the fault-tolerance and 
robustness of apps. The second-most investigated area of 
the studies selected by this mapping study is exception 
handling (21 studies). Studies in this category investigated 
improving exception handling. For example, studies 
provided mechanisms to detect exception handling errors: 
focusing on null pointer exceptions [s48], Android system 
services [s71], or external resources [s69]. Another group 
of studies investigated relationships between uncaught 
exceptions and other factors such as: usage of Android 
abstractions [s38], evolution of exceptional and normal 
source code [s20], and extent of app usage (e.g., # of app 
users) [s15]. Studies Kechagia et al. [19],Kechagia and 
Spinellis [s59] examined how use of exceptions listed in 
Android API documentation can impact app quality. 
Furthermore, characterizing Android framework specific 
exceptions [s45]; exception fault localization [s45,s66]; 
proposing new mechanisms to handle exceptions [s39,s63]; 
and recommending correct exception handling code [s61] 
are among other investigations related to exception 
handling.  

Self-healing/recovery: We grouped 8 studies into the 
category of self-healing abilities. Mobile apps are subject 
to high frequencies of user activities and configuration 
changes, such as switching between two apps, rotating the 
screen, resizing the screen, receiving phone calls that 
interrupts app execution, and so on. In such situations, 
Android apps must be able to handle many stops or restarts 
of apps without losing users’ work or their interaction state. 
Hence, developers should implement the proper logic to 
save and restore the state of an app, as failing to do so may  

 
Figure 4. Publication trends by year for reliability of Android apps. 



 
15 

cause data loss, annoying usability issues, and even 
unexpected crashes.  

Researchers proposed several solutions to help developers 
to facilitate apps’ self-healing or recovery. Studies in this 
group focussed on detecting data loss errors, [s42,s62], 
providing benchmarks for data loss errors [s26], recovery 
mechanisms using different strategies, such as sealing off 
the crashing part of the app which allows the app to run 
with limited functionality rather than crashing in the wild 
[s58], or using exception handling mechanisms to recover  

from exception-related bugs [s70]. One study [s17] reveals 
that a common cause of runtime change issues is activity-
restarting, and the authors proposed a restarting-free 
mechanism. Two studies proposed a mechanism to handle 
data persistence, [s44] proposed a technique to save/restore 
states’ information which are stored in other variables 
beyond GUI elements (i.e., default implementation of apps 
events consider saving/restoring the states of GUI elements 
only), and [s75] aimed to assure constant access to remote 
data in case of network connectivity problems using a 
model-driven approach.  

API-related issues: Researchers’ next most addressed 
topic was API-related issues. These mainly address the 
deprecation and fault-proneness of APIs. Because of 
functionality evolution, as well as security and 
performance-related changes, APIs can become 
unnecessary and are no longer recommended for use 
(deprecated APIs). Thus, deprecated APIs need to be 
addressed, otherwise they may cause runtime crashes. We 
found 9 studies in which researchers were attempting to 
address these issues by characterizing deprecated Android 
APIs [s12], analysing causes for API failures [s33,s81], 
measuring the current practice of using the Android 
platform (taking inconsistencies between supported 
Android platform versions and API calls from a client app 
into account [s19,s72]), and also proposing approaches to 
automatically detect and correct API-related issues  

Table 4. No. of papers published by the most active authors and 
their affiliations. 

 

Table 5. Venues that published more than one study on the 
reliability of Android apps. 

 



 
16 

 [s16,s85,s46]. Furthermore, [s57] investigated the impact 
of change- and fault-proneness of APIs.  

Ageing and rejuvenation: Software rejuvenation (i.e., the 
manual or scheduled restart of an application) is a widely 
used approach to mitigate software ageing problems. 
Typical causes of software ageing are memory leaks, 
endless threads, storage fragmentation and unreleased 
locks [78]. Studies in this category describe how software 
ageing affects the reliability of Android apps and explore 
mechanisms to postpone software ageing-related failures 
using rejuvenation strategies. In [s74], the authors 
monitored available  

memory over time and found that ageing occurs in Android 
based on memory usage. The study also described that 
warm rejuvenation (application restart) has little effect on 
mitigating software ageing. Studies [s73,s27] introduced 
techniques to make optimal rejuvenation strategies: [s73] 
proposed starting rejuvenation when Android is in a critical 
state after estimating ageing point, and [s27] used 
modelling of both usage behaviour and the ageing process 
to study the impact of usage behaviour to rejuvenation. In 
[s28], predicting ageing indicators (system’s free physical 
memory and application’s heap memory) was investigated, 
and in [s4,s82], new rejuvenation strategies were proposed.  

Context-awareness: Mobile apps are dependent on 
various external contextual factors such as network 
connectivity, hardware interruption, types of users, and so 
on. Due to frequently changing contextual factors, apps 
may not perform as expected in all conditions, causing 
various responsiveness and robustness issues. For example, 
apps running on a poor network connection may slow, 
show incorrect results or even crash. This category includes 
four studies that aim to improve apps’ reliability by 
considering context-awareness [s1,s53,s54] by introducing 
techniques to reproduce context-sensitive testing, and [s6] 
discusses the state-of-the-art tools for automation testing of 
Android context-aware applications.  

Runtime change handling: There are four studies that aim 
to handle runtime errors by focusing on reliable event 
handling of Android apps. These studies aimed to support 
the handling of runtime errors caused by asynchronous 
programming errors. Study [s24] explains how wide use of 

asynchrony can cause race errors that lead to use-after-free 
violations and proposed a tool to detect such errors. A use-
after-free violation arises when a pointer is used when it is 
no longer pointed to any object (i.e., object is freed). When 
such errors are triggered, exceptions will occur. Improper 
handling of such exceptions may cause app crashes. Studies 
[s67,s80] also proposed new approaches to detect 
asynchronous errors, while [s17] proposed a new change-
handling mechanism based on customized Android activity 
lifecycle states.  

Other: As mentioned in the classification scheme, studies 
in this category do not have a specific focus on any of the 
more representative areas but are partially related to 
reliability. For example, [s7,s8] proposed quality models 
identifying the most important quality requirements for 
mobile apps. Study [s9] proposed a classification technique 
to extract non-functional requirements (including 
reliability-related issues) from user reviews, which gives 
insights about quality attributes of mobile apps from users’ 
perspective.  
 
5.2.2. Research type (RQ2.2)  
Table 7 shows the studies that were classified according to 
the research types as defined in the classification scheme in 
Section 4.10.2. Of the total 87 studies, just over half (47 
studies) were validation research, a further third (28 
studies) were evaluation research and around one in ten (8 
studies) were solution proposals. The experience report and 
opinion paper categories include one study for each type. 
Two secondary studies were classified as reviews, and we 
found no philosophical research. The vast majority (78 
studies) of the selected studies are empirical and are 
highlighted in grey in Table 7. A detailed analysis of these 
empirical studies, including the empirical research methods 
and data used, is presented in Section 0. Solution proposal, 
philosophical research and opinion papers are the research 
types of non-empirical studies (see the classification in 
Section 4.10.2).  

The bubble plot in Fig. 5 presents a visualization to provide 
further insights in answering this research question. The 
figure shows the distribution of the selected studies that 
were assessed in terms of their research focus, research type 
and contribution type. The size of the bubble indicates the 
relative number of studies belonging to that bubble. As seen 
in Fig. 5, handling crashes of mobile apps, which is the 
most focussed area, has been studied through different 
types of research, including evaluation (6 studies), 
validation (21), experience report (1), review study (1), and 
solution proposal (7). In the case of evaluation research, 
most of the evaluation was focused on improving reliability 
by handling crashes, exceptions and API-related issues. On 
the other hand, none of the approaches that concern 
context-awareness and runtime change (event handling) 
have been studied using evaluation research, and also only 
one evaluation research study for each of the self-healing 
and software rejuvenation topics is recorded. There are 4 
studies that focus on context-awareness (see Table 6) with 
contributions (see the bubble plot in Fig. 5) of 3 tools 
comprising no evaluation research. This implies that there 
is a need for more evaluation research that could assess the 
effectiveness of the tools proposed by existing research.  
 

Table 6. Research focus on reliability of Android apps and relevant 
studies. 

 



 
17 

5.2.3. Research contribution (RQ2.3)  
Fig. 6 depicts the number of studies against each type of 
research contribution. The bubble plot in Fig. 5 also shows 
the contribution types of the studies against the research 
focus. As Fig. 6 shows, we found 42 studies that have 
contributed to tools by proposing new tools or contributing 
to an existing tool. Most of these tools are related to 
crash/failure analysis and exception handling. More details 
on these tools, such as the tool name and download links, 
can be found in our online repository [43] (see Appendix 
D).  

The second-most common contribution type is evaluation, 
having the same definition as presented in Section 4.10.3. 
The reason why there is not the same number of evaluation 
studies in research type (see Table 7) and in contribution 
type (see Fig. 6) is that there are some studies where the 
major contribution is a tool, metric, method or taxonomy 
(although the studies include evaluation of an approach or 
technique) which were classified only under the respective 
category of its main contribution and not under the category 
of evaluation. If a study equally pays attention to two types 
of contribution, the IDs of such studies appear more than 

once in the bubble plot. There are 7 studies that provide 
frameworks, which are related to crash/failure analysis and 
exception handling. We observe that a relatively low 
number of studies offered metrics (4 studies). Taxonomy is 
usually a type of contribution resulting from evaluation 
research, so such studies also appear as evaluation type. 
Furthermore, if a study is concerned with representing 
information or providing an abstract classification, we 
classify them as models: [s7,s8] provide quality models for 
mobile apps. Review is the contribution type of the two 
secondary studies [s5,s6]. In the case of the provision of a 
benchmark, although there is other evaluation research that 
releases data to the public, we classify only [s26] as 
benchmark since the study’s only contribution is providing 
a benchmark dataset for data loss bugs. The study presents 
their methodology and results for creating a public 
repository, without evidence of evaluation or any 
approaches or techniques.  
 
5.2.4. Quality attributes (RQ2.4)  
To answer this RQ, as we described in Section 4.10.4, we 
extracted QAs from the studies and mapped these to QAs 
in standard quality models. We observed that these QAs 

Table 7. Type of research on reliability of Android apps.  

 

 
Figure 5. Research type, Research focus and Research contribution for reliability of Android apps. 



 
18 

were not consistent with a uniform quality model. Some 
QAs are adopted from the standard models such as ISO/IEC 
9126 and ISO/IEC 25010, or other standards (IEEE 
standard [79]). For example, robustness [79,80] is one such 
popular term used very often in the selected studies, even 
though it is not defined in the recent quality models.  

Table 8 presents the extracted QAs from the studies, 
showing where and how often each QA was found. When 
different terminologies other than those defined in the 
ISO/IEC 25010 were used, we left relevant studies labelled 
with the terms as stated in the study. For example, studies 
that used ‘‘Robustness’’ as a sub-QA are presented with 
this label (see the ‘‘Studies’’ column). Some studies appear 
multiple times in one row because they use both QAs (as in 
standards) and other terminologies (labelled) 
interchangeably. For example, [s39] appear two times 
because the study used both Fault tolerance and 
Robustness.  

As observed in Table 8, there are five types of studies in 
terms of QAs. First is the group of studies that target 
reliability and its sub-attributes. It is evident that papers 
explain their intention to improve reliability through 
specific sub-reliability attributes, so those papers appear 
against both reliability and its sub-attributes. Second and 
third, the attributes of responsiveness and user experience 
were very common terminologies used in the studies. These 
quality attributes can also be interrelated, though we 
distinguished the studies based on the authors’ main 
concern. Nevertheless, some studies target multiple 
attributes simultaneously. For example, [s53] states that 
they aim to improve the robustness and responsiveness of 
apps against environmental interference.  

The main concern of [s17] was to address poor 
responsiveness and recover user interaction state (i.e., 
recoverability) during runtime changes. Such studies 
appear against multiple QAs in Table 8. The fourth  

category refers to other QA. Papers in this category target 
reliability and discuss how reliability impacts other QAs or 
how other QAs cause reliability-related issues. For 
example, papers cover: how the evolution of APIs causes  

compatibility issues, which then result in the failed 
execution of apps [s12], or how security, backward 
compatibility and resource utilization are root causes of 
exceptions [s18]. Study [s23] showed that there are 
relationships between different types of bugs (reliability, 
security, maintainability) in mobile apps by analysing the 
correlations between them. The fifth category covers 
instances when researchers discuss all QAs in general, 
including reliability.  

According to Table 8, we observe that the most frequently 
addressed reliability-related QAs are user experience (16 
studies) and fault-tolerance/robustness (15 studies). Table 
8 excludes 23 papers as they did not refer to any QAs. 
These papers addressed apps’ runtime execution 
failures/crashes or exception handling without mentioning 
or linking these aspects to any particular quality attributes. 
Hence, we did not map such papers. On the other hand, 
some papers (e.g., [s6,s23,s25,s46]) only referred to the 
high-level attribute of reliability, ignoring detailed aspects 
and sub-attributes (e.g., availability, maturity).  
 
5.2.5. Metrics/measures (RQ2.5)  
Research addressing software metrics and measurements 
has been undertaken over several decades. As a result, 
several groups of metrics are available, across software 
processes, projects, and products [81]. However, previous  

 
Figure 6. Research outcome on reliability of Android apps. 

Table 8. Quality attributes of reliability of Android apps.  

 



 
19 

studies have shown that traditional metrics and methods 
established in software engineering should be extended 
and/or re-assessed before applying them in a new domain, 
such as in the domain of mobile apps or web applications 
[82]. In order to deliver against different measurement 
needs and to accommodate the complexity and differences 
of mobile applications, a variety of metrics have been 
proposed, studied or validated in the context of mobile apps 
reliability, which we now discuss. 

In Table 9, we present the metrics that refer to reliability 
attributes, the study/ies in which they were investigated, 
and the number of studies related to each metric. The 
metrics were used mainly to assess reliability-related 
attributes and to analyse relationships between reliability 
and other factors, such as software ageing, deprecated 
APIs, app usage, and so on. Based on the retrieved data, 
app failures/crashes (9 papers) or exception-related metrics 
(8 papers) are clearly the most studied metric categories.  

Table 9 contains only the metrics that are directly related to 
reliability. The complete list, including the metrics related 
to other factors, is provided online (see Appendix E) [43]  

Summary outcomes for RQ2: Most of the research on 
reliability of Android apps focused on handling crashes and 
exceptions. Other areas considered were API-related 
issues, self-healing, context-awareness, runtime change, 
ageing and rejuvenation. These research studies were 
mainly evaluation- or validation-type research, while only 
a few studies were in the form of solution proposals, 
experience reports, opinion papers and review studies. 
Contributions of these research works were mostly in the 
form of tools. In terms of quality attributes considered by 
researchers, reliability-related attributes such as 
availability, fault-tolerance, robustness and recoverability 
were considered. In addition to reliability attributes, there 
are other quality attributes such as responsiveness, user 
experience and compatibility that were also the focus of 
researchers to improve the reliability of Android apps. 
However, other studies (23 studies) did not refer to any 

types of quality attributes. Finally, on the metrics and 
measures used to study reliability of Android apps, the 
number of crashes and number of exceptions are the most 
common.  
 
5.3. RQ3: Which studies have investigated the 
reliability of Android apps empirically?  
As we mentioned in Section 5.2.2, we can divide the studies 
into either empirical or non-empirical research. When 
considering this split, 78 of the 87 studies represent 
empirical research, meaning just 9 are not empirical. We 
further analysed these empirical studies; thus, the rest of 
this section is focused on these 78 empirical studies. We 
investigated the research methods employed, the data used, 
and the environment (industrial/academic) in which these 
empirical investigations were performed. Thereafter, we 
explore the challenges and limitations of these studies. 
  
5.3.1. Research methods (RQ3.1)  
Table 10 reports the empirical studies from our sample of 
papers (78 studies) alongside the research methods used. 
These outcomes are also mapped to the research focus of 
the studies. Just 9 papers were not empirically based: 
[s1,s3,s8,s11,s29,s34, s44,s60,s65]; and these are excluded 
from the table.  

As discussed in our classification in Section 4.10.5, we 
consider 5 main types of empirical methods: experiment, 
case study, simulation research, survey and review. 
Furthermore, due to there being numerous forms of case 
study, we looked into the incidence of three different types: 
archival, observational and action research. Note that some 
empirical studies use a combination of research methods, 
so such studies appear more than once in the table and are 
highlighted in grey. For example, [s18] conducted a mining 
study of stack traces from open-source Android projects 
(case study) and an exploratory survey with app developers 
to obtain a thorough understanding of common exception 
handling bugs that they face. Again, studies with more than 
one research focus appear under multiple research focus 
areas in Table 10.  

‘Totals’ are the number of unique paper Ids for each 
empirical method type and each focus area. The majority of 
the empirical studies (54 of 78) used experiments, with the 
next most frequently used empirical method being archival 
based case studies (in 24 studies). Only one of the selected 
studies used an observational approach, with no study in 
our cohort of papers using action research. Six (6) studies 
were recorded for simulation research and two/three for 
each of the other methods: surveys and reviews. An 
important observation here is the relative lack of surveys, 
action or observational research, even though such research 
methods allow the community to investigate reliability in 
real-world contexts rather than in experimental settings.  

In addition, considering the research areas in focus in 
empirical studies, all such areas were studied through at 
least one empirical study. As Fig. 7 shows, reliability issues 
related to context awareness issues (3 studies), self-healing 
ability (4 studies), software ageing and rejuvenation (6 
studies) and runtime-change handling (7 studies) are the 
least empirically investigated areas among the selected 
studies.  

Table 9. Metrics and measures used to study reliability of Android 
apps. 

 



 
20 

5.3.2. Study settings (RQ3.2)  
Table 11 shows the results of the distribution of study 
settings. According to the classification scheme described 
in Section 4.10.6, we identified two types of studies among 
our selected studies: academic and mixed (both academic 
and industry).  

Based on our observation, most of the empirical studies (64 
out of 78) are from academic settings. Studies that were 
performed in an academic setting (refer to Section 4.10.6) 
without any industrial collaboration, or where the research 
environment was not described sufficiently (e.g., when 
studies do not mention where the data come from), were 
classified as academic. A relatively small proportion of 
studies, i.e., 14 studies, were from a mixed setting. These 
14 studies collaborated with industry using one or more of 
the techniques described in our classification scheme 
(Section 4.10.6), including joint authorship [s11,s24,s48, 
s50,s68], experiment/surveys with practitioners 
[s18,s31,s56,s57, s75,s78,s87], or the use of industrial 
data/databases [s31,s33,s48, s50].  
 
5.3.3. Study information/data (RQ3.3)  
In order to answer this RQ, we gathered information about 
the data that was used in the empirical studies. Some studies 
collect their own data from online repositories such as F-
Droid, GitHub and Google Play, while others use datasets 
from previously published literature. Table 12 reports the 
types of apps or projects (i.e., OSS, commercial) and the 
specific artefacts that were studied (e.g., source files, 
commits) and the availability of datasets.  

Not all studies release their data to the public as Table 12 
shows, which restricts other researchers from performing 
replication research. Most studies analysed OSS (only 28% 
of the studies analysed commercial software.) data across a 
range of artefact types. As shown in Table 12, these 
artefacts are crash and bug reports (e.g., bug reports 
automatically generated by testing tools, stack traces), apps 
source files (e.g., apps’ source code, Android-Manifest.xml 
files and comments), apps’ binaries (e.g., apk files), the 
Android framework/API, the Android OS, commits by 

developers, Android/API documentation, app reviews and 
developer forums or blogs (e.g., Stack Overflow, developer 
discussions in issue trackers). A few studies (15 studies in 
total) used other types of artefacts (see the last column of 
artefacts in Table 12) such as release notes [s10,s70], app 
usage data from the Google Analytics platform [s15,s36], 
memory usage data [s28,s74], and app store publishing 
policies [s7].  
 
5.3.4. Research gaps and limitations (RQ3.4)  
To answer RQ3.4, we extracted research gaps and 
limitations in two ways: (1) by extracting these from 
selected studies as noted by the respective authors and, (2) 
based on the frequencies returned from the classifications.  

Tool support: The lack of tool support for predicting app 
crashes or failures is highlighted in three studies [s15], 
[s61], [s77]. Study [s15] shows that app usage is highly 
important in terms of accurately predicting exceptions and 
the authors advised the community to incorporate usage 
data in prediction models. Furthermore, the authors in [s15] 
noted the necessity of tool support to detect API exceptions 
(e.g., documented unchecked exceptions). Five other 
studies also mentioned the need for tools to handle API-
related issues. As argued in [s12], tools are required to fix 
the use of deprecated APIs in the wild, and the study 
provided a large dataset of apps that could help the 
community to systematically learn patterns for fixing 
deprecated APIs. Study [s16] attempted to automatically 
detect API-related compatibility issues, although they 
acknowledged the need for enhancements to handle 
forward compatibility issues. Moreover, tools are required 
to detect crashes caused by incorrect resource handling and 
API permission handling [s32], to detect asynchronous 
program errors with complicated exceptions such as ‘file 
not found’ and database corruption [s67], and for localizing 
framework-specific exceptions, since existing tools support 
only limited types of exceptions [s45].  

In addition, the first program slicing approach for Android 
was introduced in [s40]. The study proposed a tool for 
slicing Android apps and shows how slicing can facilitate  

Table 10. Empirical research methods used for research focussed on reliability of Android apps.(Continued on next row) 

 

Table 10. (Continued). 

 



 
21 

fault localization, testing and debugging in the mobile 
domain. Since this is the only study that explores program 
slicing in a mobile context, more studies are required to 
validate the effectiveness of slicing 

Integrate user feedback into development: Recent studies 
have suggested that mining user reviews can help with 
improving approaches to user acceptance testing since 
reviews contains information related to problems faced by 
users, and research in this area is beginning to grow [83]. 
In [s41], the authors proposed an automated approach to 
link user reviews to stack traces. They also suggested future 
research directions towards summarizing reviews linked 
with stack traces, prioritizing bugs by taking user reviews 
into account, and generating test cases directly from user 
reviews. These could help developers when fixing bugs and 
could complement current testing approaches. These 
research directions have also been mentioned in other 
studies (e.g., [83,84]).  

Relationships between quality attributes: Another 
important challenge in maintaining the quality of software 
more generally is, that quality attributes can be interrelated, 
potentially impeding the clear identification of issues. 
Questions may arise about what quality issues are to be 
fixed first, if fixing one affects others. Hence, there is no 
single aspect of quality that is more important than others 
when software is complex, distributed and integrated. In 
accordance with the previously discussed findings in 
Section 5.2.4, we found just one study that investigated the 
relationships or trade-offs between reliability and other 
QAs (i.e., [s23]), where correlations between security, 
maintainability and reliability bugs were analysed. Future 
work aimed at providing tools support to analyse the 
relationships among multiple quality attributes while 
performing maintenance activities, and research addressing 
quality trade-offs, will be important to achieving the 
optimal balance between multiple quality attributes.  

Following standard quality models: As we described in 
Section 5.2.4, not all researchers refer to international 
quality standards in their work. Since reliability is defined 
as a quality attribute in standard quality models (e.g., 
ISO/IEC 9126, ISO/IEC 25010), following standards or 
taking details of sub-attributes (e.g., availability,  

recoverability) into account would have been more useful 
since standards provide a level of assurance of the 
effectiveness of any proposed approaches in the real world 
(refer to Section 4.10.4).  

App ecosystem-related issues: The continuous evolution of 
the app ecosystem is a major challenge to running apps 
reliably in the wild. Even though apps may well be released 
with good quality after proper testing, they may not 
function properly in different environments (different 
versions of OSs, different users). Many crashes and other 
runtime issues are related to the ecosystem itself. 
Therefore, researchers need to pay more attention to 
ecosystem issues. Previous studies have proposed solutions 
to dealing with new versions of the app store [s3], also 
noting the need for enhancements to handle practical 
limitations. Another recent study [s68] explained that more 
ecosystem research is needed to focus on issues such as 
inter-app and app-OS interactions, rather than testing that 
focuses on a single application at a time.  

Misunderstanding/limitations of Android documentation: 
There are a number of mechanisms related to API exception 
handling that are not understood properly by developers 
[1,18]. For example, Android documentation provides 
conditional checks, such as checks on API parameters, 
activity states (e.g., IllegalState) and SDK versions. Adding 
appropriate conditional checks can avoid exceptions from 
Parameter Error, Lifecycle Error, Resource Error and the 
like. In addition, APIs may evolve fast and developers can 
become confused in such situations, which may lead to the 
misuse of APIs [18]. To limit Android-specific exceptions, 
developers need to gain and sustain a full understanding of 
the Android system. Future research on a range of 
supporting tools that provide automatic rule violations and 
patch suggestions based on Android API documentation 
will be beneficial. Such tools could be used as plugins to 
assist developers during development.  

In addition, Android documentation has its own limitations, 
such as not clearly illustrating some error-handling 
strategies. For example, Android documentation does not 
provide a full list of system permissions [85]. Developers 
are more likely to avoid mistakes if there is proper 
documentation for Android [s37]. As argued in a recent 
review [s5], more research is required that systematically 
collects and characterizes such error-handling mechanisms, 
and they go on to provide recommendations to formalize 
Android documentation.  

Lack of evaluation research: Based on our analysis, the 
majority of mobile app reliability studies are validation  

 
Figure 7. Empirical studies for research focussed on reliability of Android apps. 

Table 11. Study settings for research focussed on reliability of 
Android apps. 

 



 
22 

 

 

Table 12. Data used in empirical investigation for research focussed on reliability of Android apps.  

 



 
23 

type research. In contrast, there were few or no evaluation 
studies found among those that proposed approaches to 
improve reliability in terms of context-awareness, runtime 
change (event) handling, self-healing and software 
rejuvenation (see Section 5.2.2). These areas are the least 
empirically investigated areas among the selected studies. 
Hence, future studies need to systematically evaluate these 
approaches in more complex and real-world projects to 
identify real challenges, advances and opportunities.  

Generalizability and industry adoption: We observed (see 
Section 5.3.1) that two-thirds of the empirical studies used 
experimental methods to conduct their research. Also, the 
majority of the proposed solutions were verified in an 
academic setting (see Section 5.3.2) using OSS projects, 
rather than in an industrial setting, which indicates that 
current approaches and empirical observations might not be 
generalizable to commercial software systems. As we also 
noted previously, research that uses empirical methods 
such as action research, observational research or surveys 
with practitioners allows the academic community to work 
closely with industry and provides opportunities to access 
company data repositories. More research of this nature 
would help with industrial-level validation and would 
inform our understanding of how to support methods’ 
adoption, in transferring proposed approaches developed in 
the laboratory to real life practice, and vice versa.  

Summary outcomes for RQ3: RQ3 further investigated a 
subset of the studies (78 out of 87) from RQ2, i.e., the 
empirical studies. The majority of these studies conducted 
experiments, while the next most used method is the case 
study. Almost all case studies are archival research. Only a 
few papers used other research methods, such as 
simulation, surveys, and reviews. In terms of study settings, 
82% of the studies were conducted in an academic 
environment without any form of collaboration with 
industry. This RQ also provides information about the data 
sources used in the studies. The majority of the studies used 
OSS, while only 28% of the studies analysed commercial 
software. The most commonly used artefacts are issue 
reports and apps (in source-code and binary forms). The 
major limitations of existing research are neglecting quality 
standards, lack of evaluation research with industry and 
lack of tool support to detect and handle field failures early.  
 

6. SUMMARY DISCUSSION AND 
IMPLICATIONS  
The intent of this systematic mapping study was to collect, 
analyse and interpret all existing evidence related to the 
operational reliability of Android mobile apps. To the best 
of our knowledge there is no previous systematic review or 
mapping study performed in this area. We built a set of 
classification schemes to classify existing literature, in turn 
enabling us to identify research gaps to inform future 
research directions. We organized this mapping study 
based on three main RQs.  

RQ1. When and by whom has reliability of Android apps 
been studied? In addressing RQ1, research trends in terms 
of time, venue, publication type and authors were analysed. 
Interest in this topic has increased in general since 2008 and 
the evidence suggests that the reliability of mobile apps is 

an active topic currently. Identification of the more 
frequently published authors and venues regarding this 
topic provides an indication to researchers as to where to 
look for similar research. However, the selected 
publications were drawn from a broad range of venues (47 
venues), and nearly half of the selected studies were not 
published in the top venues list such as the International 
Conference on Software Engineering (ICSE) and Empirical 
Software Engineering (see Table 5). Therefore, we would 
not recommend limiting reliability-related literature 
reviews to consider only the top venues since they could 
miss a notable number of related studies.  

RQ2. How has the reliability of Android apps been studied? 
Regarding RQ2, we analysed how reliability has been 
studied. We found seven different focus areas that 
researchers have tended to work on when seeking to 
improve reliability: failures/crashes, exception handling, 
self-healing ability/recoverability, API-related issues, 
ageing and rejuvenation, context awareness, runtime 
change/ event handling and others. Failures and exception 
handling are the most studied areas when considering the 
reliability of Android apps. Very little attention has been 
paid to reliability with respect to handling runtime changes 
(e.g., rotate screen, switch apps), context-awareness issues, 
and software rejuvenation. In terms of contribution types, 
most of the research reported to date has contributed to tool 
support. Most of these tools are developed to handle 
crashes/failures, exceptions or API-related issues (refer to 
Section 5.2.3). However, these tools still have several 
limitations as was explained in the previous section 
(Section 5.3.4). We also looked into the reliability of 
Android apps based on quality standards. It is important 
that researchers consider international standards since 
standards play a key role in achieving real-world goals [39]. 
We noticed that not all papers follow quality standards or 
pay attention to QAs as defined in standards such as 
ISO/IEC 9126 and ISO/IEC 25010 (refer to Section 5.2.4). 
In most cases, studies do not give explicit attention to any 
QAs in their research or they may refer to only the high-
level attribute, which is ‘reliability’ in our case. Little 
evidence exists for analysis that goes beyond the high-level 
or that considers the sub-attributes (i.e., availability, 
maturity, recoverability, and fault tolerance) of reliability. 
Following the standards could have enabled the studies to 
assess reliability without missing its more detailed aspects.  

In answering RQ2, we also analysed what metrics and 
measures have been used to investigate reliability. The 
most used metrics are based on failure data (e.g., # crashes 
per app, # uncaught exceptions per app, refer to Section 
5.2.5). Furthermore, we found that more than half of the 
selected studies are validation research. More evaluation 
research is required, especially in relation to context-
awareness, runtime change/event handling, software 
rejuvenation and self-healing, in order to validate existing 
tools, metrics and other approaches in real-world contexts 
to identify practical challenges and the effectiveness of 
these solutions.  

RQ3. Which studies have investigated the reliability of 
Android apps empirically? Regarding RQ3, our objective 
was to further analyse the empirical studies to understand 
the methods, study settings, information/data sources and 



 
24 

limitations and gaps of empirical research that had focussed 
on the reliability of Android apps. Of the 87 studies 
selected, 78 were empirical research. Among these studies, 
most employed experimental methods, followed by the 
archival-based case study method (used by close to one in 
three studies). Even though the case study approach enables 
researchers to conduct research in natural settings when 
compared to experimental methods, almost all of the case 
studies encountered in our sample focussed on archival-
based research. Thus, the findings of these research studies 
are based on historical data. Historical data on its own may 
not be sufficient to enable strong conclusions to be drawn 
[86]; instead, such data might uncover useful but 
potentially dated information and patterns such as 
correlations [86]. Therefore, such findings must be tested 
more fully in current real world contexts [86], in order to 
reveal contemporary industrial challenges, since realism 
often add extra concerns [70].  

Our results also showed that fewer than one in five 
empirical studies involved collaboration with industry in 
the conduct of the research. Thus, based on our results, we 
contend that there is a shortage of empirical research 
examining the actual use of reliability-related approaches – 
tools, methods – in relation to contemporary real-life 
problem scenarios and investigations. This could be 
remedied by researchers conducting more surveys (i.e., 
developers can report on the current situation and 
challenges when using proposed approaches), and also 
studies using action or observational research (i.e., 
researchers can report on what practitioners actually do as 
against what they say they do). In fact, the most realistic 
research setting is facilitated by action research [87]. Our 
results also provided information about the kinds of data 
and artefacts (e.g., source files, stack traces, APIs) used by 
previous researchers and if that data is made publicly 
available. This should be useful for researchers who are 
interested in continuing research in the area, and especially 
those performing replication studies. Practitioners may also 
gain knowledge about what approaches work well in 
particular work contexts.  

Furthermore, beyond the above research gaps, we found 
several other research gaps and limitations based on the 
findings of our selected studies, which we described in the 
previous section (Section 5.3.4). These are the limitations 
regarding tool support, integration of user feedback into the 
app development process, consideration of trade-
offs/relationships between reliability and other QAs, and 
addressing app ecosystem issues and limitations of Android 
documentation.  
 

7. THREATS TO VALIDITY  
According to Petersen et al. [42], descriptive validity, 
theoretical validity, interpretive validity, repeatability and 
generalizability should be addressed when evaluating 
mapping studies. We now consider the threats to validity 
that are relevant to this particular mapping study.  

Descriptive validity is concerned with researchers’ bias in 
the study selection and data extraction process [42]. To 
mitigate this risk, we developed a protocol which was 
reviewed by each author of this study, and we piloted the 

protocol against a test set. The test set included studies that 
we found by manually searching a carefully selected set of 
known relevant venues. The manual search was performed 
independently by two researchers and results were 
compared using inter-rater agreement, recording good 
agreement between the researchers. We resolved all 
disagreements through extensive discussions, while fine-
tuning the protocol, including the study selection criteria. 
Regarding data extraction, there is a possibility that results 
can be biased since data extraction was performed by a 
single researcher with reliability checks performed by a 
second author. To verify data extraction, another author 
randomly selected 15% of the selected studies and 
completed data extraction. We held discussions in meetings 
until consensus was reached among the authors when there 
were disagreements, and this informed or resulted in 
revised extraction processes. Thus, we are confident that 
we have limited the effect of this threat.  

Theoretical validity is related to the completeness of the set 
of selected studies [42], since there is a chance that we 
could have missed relevant studies. To minimize this threat, 
we tested several search strings against the test set and 
chose the one that returned the maximum number of studies 
in the test set. We also searched in a wide range of major 
software engineering databases (5 databases) to collect all 
relevant studies. Additionally, we collected more studies 
through backward and forward snowballing processes. 
Therefore, we were unlikely to have missed relevant 
studies, and so this is unlikely to affect our study findings 
and conclusion.  

Interpretive validity reflects conclusion validity [42]. 
Interpreting data and drawing conclusions from the results 
may have been affected by the structure of the classification 
schemes [20]. To mitigate this threat, we followed existing 
guidelines and other systematic secondary studies to 
identify the categories in our classification schemes (e.g., 
[37,60,61,72]). Second, each author independently 
reviewed the classification schemes before applying them. 
Furthermore, we believe that slight misclassification would 
not change the main conclusions drawn in our study. We 
should also note that our analyses used frequencies of 
studies, following the convention in mapping studies. Just 
looking at frequencies of studies may not provide a 
complete understanding of a topic or domain, since 
research that occurs regularly may not necessarily be more 
important or more mature than infrequent or emergent 
research.  

Repeatability of this study is achieved by the provision of a 
protocol which is extensively described in a way that can 
be easily replicated by other researchers. There is a 
possibility that another researcher may include a study that 
we excluded if it was published outside our search period. 
However, while this may change the actual numbers of 
publications, it is unlikely to change the overall results.  

Generalizability deals with external validity [41,42], which 
reflects the extent to which the conclusions are applicable 
outside this particular study. Since this study considered 
only Android apps’ reliability, our conclusions are only 
concerned with this specific context. Therefore, external 
validity threats may exist if the findings of the work are 
assessed against the wider body of evidence on reliability 



 
25 

or if the conclusions drawn are extrapolated beyond the 
Android app context.  
 

8. CONCLUSION  
Our study analyses a total of 87 studies published between 
2008 and 2021 in the area of Android app reliability. We 
provide classification schemes to structure the selected 
studies according to research focus, research type, research 
method, contributions, study settings and quality attributes, 
as considered in the studies. The metrics, datasets and 
artefacts used in the studies are also captured and 
summarized. We now present the conclusions of our study.  

The selected studies have been published across 47 
different venues. Therefore, looking only into the dominant 
venues or at the writings of most popular authors would not 
be sufficient to gain a full understanding of this topic. Most 
of the research (82%) has been conducted in academic 
environments and so there is a gap between the researched 
approaches and potential adaptation, in practice. Further 
research is required in which researchers should 
collaboratively work with practitioners. In doing so the 
researchers would do well to follow international standards 
(e.g., ISO/IEC 25010) to lend assurance of the effectiveness 
of the approaches being assessed.  

Our classification of the work to date showed that 
researchers are more interested in dealing with crashes and 
exceptions to improve reliability, while there has been less 
of a research focus on enhancing reliability via self-healing 
abilities, addressing of API-related issues, adequate context 
awareness techniques, handling asynchronous 
programming errors and software rejuvenation. Our study 
summarized several research gaps: lack of tool support (for 
detecting and avoiding specific types of crashes and 
framework-specific exceptions, and for handling 
deprecated APIs), lack of evaluation research, the need to 
better integrate user feedback into the development 
process, broader app ecosystem-related issues and 
challenges, and to improve Android documentation.  

Future research directions: There is room for future 
research to improve existing approaches. In terms of 
context-aware approaches, current techniques support only 
the apps that use low-level contexts (context data that are 
directly collected from sensors such as time, GPS, noise). 
Future research may work towards supporting high-level 
context data (e.g., apps that track movements deal with 
high-level contexts such as ‘‘moving’’ and ‘‘resting’’ 
which are combinations of lower-level contexts). With 
regard to software rejuvenation, existing rejuvenation 
approaches consider ageing based only on memory leaks. 
Future research considering the effects of other ageing-
related bugs (e.g., unreleased locks, unterminated threads) 
will be helpful to properly quantify ageing effects, which is 
required to properly schedule rejuvenation. Furthermore, 
the performance of existing tools in the area needs to be 
enhanced. For instance, studies that compared tools for 
detecting API-compatibility issues did not show a clear 
winner [88]. Each tool has its own benefits, and thus future 
research should focus on hybrid approaches combining 
existing tools to help mitigate limitations of individual tools 
and enhance the performance of such tools. Furthermore, 

more research is required to enable an understanding of 
how reliability impacts, or is impacted by, other factors 
such as other quality attributes or the sustainability of 
applications, which will be important to assess the overall 
quality and sustainability of apps over time.  
 

CRediT authorship contribution statement  
Chathrie Wimalasooriya: Literature review, 
Methodology, Data curation and results, Discussion, 
Writing – original draft. Sherlock A. Licorish: 
Supervision, Literature review, Methodology, Data 
curation and results, Discussion, Writing – review & 
editing. Daniel Alencar da Costa: Supervision, Literature 
review, Methodology, Data curation and results, 
Discussion, Writing – review & editing. Stephen G. 
MacDonell: Supervision, Methodology, Discussion, 
Writing – review & editing.  
 

Declaration of competing interest  
This research was funded by AHEAD Operation, a World 
Bank funded project to accelerate higher education 
expansion and development in Sri Lanka.  

 

REFERENCES 
[1]  S.H. Tan, Z. Dong, X. Gao, A. Roychoudhury, Repairing crashes in 

android apps, in: IEEE/ACM 40th International Conference on 
Software Engineering, 2018a, pp. 187–198.  

[2]  X. Xia, E. Shihab, Y. Kamei, D. Lo, X. Wang, Predicting crashing 
releases of mobile applications, in: 10th ACM/IEEE International 
Symposium on Empirical Software Engineering and Measurement, 

2016b, pp. 1–10.  
[3]  H. Khalid, E. Shihab, M. Nagappan, A.E. Hassan, What do mobile 

app users complain about? IEEE Softw. 32 (3) (2014) 70–77.  

[4]  S. Kumar, et al., Mobile health technology evaluation: the mHealth 
evidence workshop, Am. J. Prev. Med. 45 (2) (2013) 228–236.  

[5]  J.D. Garofalakis, A. Stefani, V. Stefanis, M.N. Xenos, Quality 

attributes of consumer-based m-commerce systems, in: International 
Conference on e-Business, 2007, pp. 130–136.  

[6]  G. Ghinea, M.C. Angelides, A user perspective of quality of service 

in m-commerce, Multimedia Tools Appl. 22 (2) (2004) 187–206.  
[7]  O. El Zarif, D.A. Da Costa, S. Hassan, Y. Zou, On the relationship 

between user churn and software issues, in: 17th International 

Conference on Mining Software Repositories, 2020, pp. 339–349.  
[8]  A. Maiga, A. Hamou-Lhadj, M. Nayrolles, K.K. Sabor, A. Larsson, 

An empirical study on the handling of crash reports in a large 

software company: An experience report, in: IEEE International 
Conference on Software Maintenance and Evolution, 2015, pp. 342–
351.  

[9]  P.A. Salz, Monitoring mobile app performance, J. Direct Data Digit. 
Mark. Pract. 15 (3) (2014) 219–221.  

[10]  J.D. Musa, W.W. Everett, Software-reliability engineering: 

technology for the 1990s, IEEE Softw. 7 (6) (1990) 36–43.  
[11]  H. Wang, et al., An explorative study of the mobile app ecosystem 

from app developers’ perspective, in: 26th International Conference 

on World Wide Web, 2017, pp. 163–172.  
[12]  T. Su, et al., Why my app crashes understanding and benchmarking 

framework-specific exceptions of android apps, IEEE Trans. Softw. 

Eng. (2020b).  
[13]  N. Genc-Nayebi, A. Abran, A systematic literature review: Opinion 

mining studies from mobile app store user reviews, J. Syst. Softw. 

125 (2017) 207–219.  
[14]  S. Meskini, A.B. Nassif, L.F. Capretz, Reliability models applied to 

mobile applications, in: 7th International Conference on Software 

Security and Reliability Companion, 2013, pp. 155–162.  
[15]  O. Barack, L. Huang, Assessment and prediction of software 

reliability in mobile applications, J. Softw. Eng. Appl. 13 (9) (2020) 

179–190.  
[16]  A. Anand, N. Bhatt, D. Aggrawal, L. Papic, Software reliability 

modeling with impact of beta testing on release decision, in: 



 
26 

Advances in Reliability and System Engineering, Springer, 2017, pp. 

121–138.  
[17]  A.I. Wasserman, Software engineering issues for mobile application 

development, in: Presented at the FSE/SDP Workshop on Future of 

Software Engineering Research, 2010.  
[18]  L. Fan, et al., Large-scale analysis of framework-specific exceptions 

in android apps, in: IEEE/ACM 40th International Conference on 

Software Engineering, 2018d, pp. 408–419.  
[19]  M. Kechagia, M. Fragkoulis, P. Louridas, D. Spinellis, The 

exception handling riddle: An empirical study on the Android API, J. 

Syst. Softw. 142 (2018) 248–270.  
[20]  S. Zein, N. Salleh, J. Grundy, A systematic mapping study of mobile 

application testing techniques, J. Syst. Softw. 117 (2016) 334–356.  

[21]  O. Riganelli, D. Micucci, L. Mariani, Healing data loss problems in 
android apps, in: IEEE International Symposium on Software 
Reliability Engineering Workshops, 2016a, pp. 146–152.  

[22]  G. Catolino, D. Di Nucci, F. Ferrucci, Cross-project just-in-time bug 
prediction for mobile apps: an empirical assessment, in: IEEE/ACM 
6th International Conference on Mobile Software Engineering and 

Systems, 2019, pp. 99–110.  
[23]  B. Yang, M. Xie, A study of operational and testing reliability in 

software reliability analysis, Reliab. Eng. Syst. Saf. 70 (3) (2000) 

323–329.  
[24]  B. Littlewood, Theories of software reliability: How good are they 

and how can they be improved? IEEE Trans. Softw. Eng. (5) (1980) 

489–500.  
[25]  M.R. Lyu, Software reliability engineering: A roadmap, in: Future 

of Software Engineering (FOSE’07), IEEE, 2007, pp. 153–170.  
[26]  ISO/IEC, ISO/IEC 25010:2011 Systems and Software Engineering 

— Systems and Software Quality Requirements and Evaluation 
(SQuaRE), 2011.  

[27]  P.D.T. O’connor, Software reliability: Measurement, prediction, 

application, J. D. Musa, A. Iannino and K. Okumoto, McGraw-Hill, 
Qual. Reliab. Eng. Int. 4 (3) (1988) 296.  

[28]  D.L. Parnas, M. Lawford, The role of inspection in software quality 

assurance, IEEE Trans. Softw. Eng. 29 (8) (2003) 674–676.  
[29]  F. Febrero, C. Calero, M.Á. Moraga, A systematic mapping study of 

software reliability modeling, Inf. Softw. Technol. 56 (8) (2014) 

839–849.  
[30]  K. Vaidyanathan, K.S. Trivedi, A comprehensive model for software 

rejuvenation, IEEE Trans. Dependable Secure Comput. 2 (2) (2005) 

124–137.  
[31]  Android App Bundles, About Android App Bundles, 2021, 

Available: https: //developer.android.com/guide/app-bundle.  

[32]  App Manifest Overview, App Manifest Overview, 2021, Available: 
https: //developer.android.com/guide/topics/manifest/manifest-intro.  

[33] Google, n.d. Android Developer Guide. 

https://developer.android.com/ guide/components/activities/activity-
lifecycle (accessed 28.09.2021).  

[34]  U. Farooq, Z. Zhao, 2018. Runtimedroid: Restarting-free runtime 

change handling for android apps. In: Proceedings of the 16th Annual 
International Conference on Mobile Systems, Applications, and 
Services. pp. 110–122.  

[35]  L. Fan, et al., 2018c. Efficiently manifesting asynchronous 
programming errors in android apps. In: Proceedings of the 33rd 
ACM/IEEE International Conference on Automated Software 

Engineering. pp. 486–497.  
[36]  A. Singhal, A. Singhal, A systematic review of software reliability 

studies, Softw. Eng.: Int. J. 1 (1) (2011) 96–114.  

[37]  A. Shahrokni, R. Feldt, A systematic review of software robustness, 
Inf. Softw. Technol. 55 (1) (2013) 1–17.  

[38]  L. Alhazzaa, A.A. Andrews, A systematic mapping study on 

software reliability growth models that consider evolution, in: 
International Conference on Software Engineering Research and 
Practice, 2019, pp. 83–90.  

[39]  F. Febrero, C. Calero, M.Á. Moraga, Software reliability modeling 
based on ISO/IEC SQuaRE, Inf. Softw. Technol. 70 (2016) 18–29.  

[40]  S. Ali, L.C. Briand, H. Hemmati, R.K. Panesar-Walawege, A 

systematic review of the application and empirical investigation of 
search-based test case generation, IEEE Trans. Softw. Eng. 36 (6) 
(2009) 742–762.  

[41]  B. Kitchenham, S. Charters, Guidelines for performing systematic 
literature reviews in software engineering, 2007.  

[42]  K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for conducting 

systematic mapping studies in software engineering: An update, Inf. 
Softw. Technol. 64 (2015) 1–18.  

[43]  Chathrie Wimalasooriya, Daniel Alencar Licorish, Stephen G. 

MacDonell, A systematic mapping study addressing the reliability of 
mobile applications, 2021, 

https://github.com/InfoResearch/Systematic-Mapping-

Study_Android-apps-reliability.  
[44]  D. Maplesden, E. Tempero, J. Hosking, J.C. Grundy, Performance 

analysis for object-oriented software: A systematic mapping, IEEE 

Trans. Softw. Eng. 41 (7) (2015) 691–710.  
[45]  J. Cohen, A coefficient of agreement for nominal scales, Educ. 

Psychol. Meas. 20 (1) (1960) 37–46.  

[46]  J.R. Landis, G.G. Koch, The measurement of observer agreement 
for categorical data, Biometrics 33 (1) (1977) 159–174.  

[47]  P. Savolainen, J.J. Ahonen, I. Richardson, Software development 

project success and failure from the supplier’s perspective: A 
systematic literature review, Int. J. Proj. Manage. 30 (4) (2012) 458–
469.  

[48]  M. Sahinoglu, K. Incki, M.S. Aktas, Mobile application verification: 
a systematic mapping study, in: International Conference on 
Computational Science and its Applications, 2015, pp. 147–163.  

[49]  B. Kitchenham, What’s up with software metrics?–A preliminary 
mapping study, J. Syst. Softw. 83 (1) (2010) 37–51.  

[50]  L.I. Meho, K. Yang, Impact of data sources on citation counts and 

rankings of LIS faculty: Web of Science versus Scopus and Google 
Scholar, J. Am. Soc. Inf. Sci. Technol. 58 (13) (2007) 2105–2125.  

[51]  Journals and Wiley Online Library, Journals and Wiley Online 

Library, How Wiley Promotes Your Research, 2021, Available: 
https://authorservices.wiley.com/author-resources/Journal-Authors/ 
Promotion/wiley-promotion.html.  

[52]  D. Cotroneo, A.K. Iannillo, R. Natella, S. Rosiello, Dependability 
assessment of the Android OS through fault injection, IEEE Trans. 
Reliab. (2019).  

[53]  C. Kumar, K. Naik, Smartphone processor architecture, operations, 

and functions: current state-of-the-art and future outlook: energy 
performance trade-off: Energy–performance trade-off for 
smartphone processors, J. Supercomput. (2020) 1–78.  

[54]  X. Chen, S. Chen, Y. Ma, B. Liu, Y. Zhang, G. Huang, An adaptive 
offloading framework for android applications in mobile edge 
computing, Sci. China Inf. Sci. 62 (8) (2019) 1–7.  

[55]  S. Liñán, L. Bello-Jiménez, M. Arévalo, M. Linares-Vásquez, 
Automated extraction of augmented models for Android apps, in: 
IEEE International Conference on Software Maintenance and 

Evolution, 2018, pp. 549–553.  
[56]  P. Wang, J. Yan, X. Deng, J. Yan, J. Zhang, Understanding 

ineffective events and reducing test sequences for android 

applications, in: International Symposium on Theoretical Aspects of 
Software Engineering, 2019, pp. 264–272.  

[57]  P. Tramontana, D. Amalfitano, N. Amatucci, A.R. Fasolino, 

Automated functional testing of mobile applications: a systematic 
mapping study, Softw. Qual. J. 27 (1) (2019) 149–201.  

[58]  D. Amalfitano, A.R. Fasolino, P. Tramontana, S. De Carmine, G. 

Imparato, A toolset for GUI testing of android applications, in: 2012 
28th IEEE International Conference on Software Maintenance 
(ICSM), IEEE, 2012, pp. 650–653.  

[59]  D. Amalfitano, A.R. Fasolino, P. Tramontana, A gui crawling-based 
technique for android mobile application testing, in: 2011 IEEE 
Fourth International Conference on Software Testing, Verification 

and Validation Workshops, IEEE, 2011, pp. 252–261.  
[60]  K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping 

studies in software engineering, in: 12th International Conference on 

Evaluation and Assessment in Software Engineering, 2008, pp. 1–10.  
[61]  R. Wieringa, N. Maiden, N. Mead, C. Rolland, Requirements 

engineering paper classification and evaluation criteria: a proposal 

and a discussion, Requir. Eng. 11 (1) (2006) 102–107.  
[62]  C. Wohlin, A. Aurum, Towards a decision-making structure for 

selecting a research design in empirical software engineering, Empir. 

Softw. Eng. 20 (6) (2015) 1427–1455.  
[63]  D.I. Sjoberg, T. Dyba, M. Jorgensen, The future of empirical 

methods in software engineering research, in: Future of Software 

Engineering, 2007, pp. 358–378.  
[64]  S. Easterbrook, J. Singer, M.-A. Storey, D. Damian, Selecting 

empirical methods for software engineering research, in: Guide to 

Advanced Empirical Software Engineering, Springer, 2008, pp. 285–
311.  

[65]  C. Wohlin, M. Höst, K. Henningsson, Empirical research methods 

in software engineering, in: Empirical Methods and Studies in 
Software Engineering, Springer, 2003, pp. 7–23.  

[66]  C. Robson, Real World Research: A Resource for Social Scientists 

and Practitioner-Researchers, Wiley-Blackwell, 2002.  
[67]  C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. 

Wesslén, Experimentation in Software Engineering, Springer 

Science & Business Media, 2012.  
[68]  T.C. Lethbridge, S.E. Sim, J. Singer, Studying software engineers: 



 
27 

Data collection techniques for software field studies, Empir. Softw. 

Eng. 10 (3) (2005) 311–341.  
[69]  M.V. Zelkowitz, D.R. Wallace, Experimental models for validating 

technology, Computer 31 (5) (1998) 23–31.  

[70]  P. Runeson, M. Höst, Guidelines for conducting and reporting case 
study research in software engineering, Empir. Softw. Eng. 14 (2) 
(2009) 131–164.  

[71]  B.A. Kitchenham, et al., Preliminary guidelines for empirical 
research in software engineering, IEEE Trans. Softw. Eng. 28 (8) 
(2002) 721–734.  

[72]  R.K. Yin, Case Study Research Design and Methods, third ed., in: 
Applied Social Research Methods Series, vol. 5, 2003.  

[73]  W.R. Shadish, T.D. Cook, D.T. Campbell, Experimental and Quasi-

Experimental Designs for Generalized Causal Inference, Houghton 
Mifflin, Boston, 2002.  

[74]  P. Runeson, M. Host, A. Rainer, B. Regnell, Case Study Research 

in Software Engineering: Guidelines and Examples, John Wiley & 
Sons, 2012.  

[75]  V. Garousi, K. Petersen, B. Ozkan, Challenges and best practices in 

industry-academia collaborations in software engineering: A 
systematic literature review, Inf. Softw. Technol. 79 (2016) 106–127.  

[76]  J. Al Dallal, A. Abdin, Empirical evaluation of the impact of object-

oriented code refactoring on quality attributes: A systematic literature 
review, IEEE Trans. Softw. Eng. 44 (1) (2017) 44–69.  

[77]  W. Martin, F. Sarro, Y. Jia, Y. Zhang, M. Harman, A survey of app 

store analysis for software engineering, IEEE Trans. Softw. Eng. 43 
(9) (2016) 817–847.  

[78]  C. Stringfellow, A.A. Andrews, An empirical method for selecting 
software reliability growth models, Empir. Softw. Eng. 7 (4) (2002) 

319–343.  
[79]  IEEE Standards Board, IEEE Standard Glossary of Software 

Engineering Terminology: IEEE Std 610.12-1990, 1990, 

https://ieeexplore.ieee.org/stamp/ stamp.jsp?arnumber=159342 
(accessed 28.09.2021).  

[80]  A. Avizienis, J.-C. Laprie, B. Randell, Fundamental Concepts of 

Dependability, University of Newcastle upon Tyne, Computing 
Science, 2001.  

[81]  M.J. Ordonez, H.M. Haddad, The state of metrics in software 

industry, in: 5th International Conference on Information 
Technology: New Generations (Itng 2008), 2008, pp. 453–458.  

[82]  C. Ryan, P. Rossi, Software, performance and resource utilisation 

metrics for context-aware mobile applications, in: 11th IEEE 
International Software Metrics Symposium (METRICS’05), 2005, 
pp. 10pp.–12.  

[83]  M. Linares-Vásquez, K. Moran, D. Poshyvanyk, Continuous, 
evolutionary and large-scale: A new perspective for automated 
mobile app testing, in: IEEE International Conference on Software 

Maintenance and Evolution (ICSME), 2017, pp. 399–410.  
[84]  L. Yu, J. Chen, H. Zhou, X. Luo, K. Liu, Localizing function errors 

in mobile apps with user reviews, in: 48th Annual IEEE/IFIP 

International Conference on Dependable Systems and Networks 
(DSN), 2018, pp. 418–429.  

[85]  A.K. Jha, S. Lee, W.J. Lee, Developer mistakes in writing android 

manifests: An empirical study of configuration errors, in: IEEE/ACM 
14th International Conference on Mining Software Repositories 
(MSR), 2017a, pp. 25–36.  

[86]  A.E. Hassan, The road ahead for mining software repositories, in: 
Frontiers of Software Maintenance, 2008, pp. 48–57.  

[87]  P.S.M. dos Santos, G.H. Travassos, Action research use in software 

engineering: An initial survey, in: 3rd International Symposium on 
Empirical Software Engineering and Measurement, 2009, pp. 414–
417.  

[88]  S. Scalabrino, G. Bavota, M. Linares-Vásquez, V. Piantadosi, M. 
Lanza, R. Oliveto, API compatibility issues in Android: Causes and 
effectiveness of data-driven detection techniques, Empir. Softw. Eng. 

25 (6) (2020a) 5006–5046.  
 

List of selected studies 
[s1]  A.S. Ami, M.M. Hasan, M.R. Rahman, K. Sakib, 2018. 

MobiCoMonkey: Context testing of Android apps. In: Proceedings 
of the 5th International Conference on Mobile Software Engineering 
and Systems. pp. 76–79.  

[s2]  S. Paydar, M. Houshmand, E. Hayeri, Experimental study on the 
importance and effectiveness of monkey testing for android 
applications, in: 2017 International Symposium on Computer Science 

and Software Engineering Conference (CSSE), IEEE, 2017, pp. 73–
79.  

[s3]  M. Gómez, B. Adams, W. Maalej, M. Monperrus, R. Rouvoy, App 

store 2.0: From crowdsourced information to actionable feedback in 

mobile ecosystems, IEEE Softw. 34 (2) (2017) 81–89.  
[s4]  Y. Qiao, Z. Zheng, Y. Fang, F. Qin, K.S. Trivedi, K.Y. Cai, Two-

level rejuvenation for android smartphones and its optimization, 

IEEE Trans. Reliab. 68 (2) (2018b) 633–652.  
[s5]  T. Wu, X. Deng, J. Yan, J. Zhang, Analyses for specific defects in 

android applications: a survey, Front. Comput. Sci. (2019) 1–18.  

[s6]  D.R. Almeida, P.D. Machado, W.L. Andrade, Testing tools for 
android context-aware applications: a systematic mapping, J. Braz. 
Comput. Soc. 25 (1) (2019) 1–22.  

[s7]  L. Corral, A. Sillitti, G. Succi, Defining relevant software quality 
characteristics from publishing policies of mobile app stores, in: 
International Conference on Mobile Web and Information Systems, 

Springer, Cham, 2014, pp. 205–217.  
[s8]  Z. Liu, Y. Hu, L. Cai, Software quality testing model for mobile 

application, in: International Conference on Mobile Web and 

Information Systems, Springer, Cham, 2014, pp. 192–204.  
[s9]  N. Jha, A. Mahmoud, Mining non-functional requirements from app 

store reviews, Empir. Softw. Eng. 24 (6) (2019) 3659–3695.  

[s10]  S. Hassan, W. Shang, A.E. Hassan, An empirical study of 
emergency updates for top android mobile apps, Empir. Softw. Eng. 
22 (1) (2017) 505–546.  

[s11]  Z. Zhu, X. Liu, A formal framework for software faults and 
permissions based on unified theory of programming, Cluster 
Comput. 22 (6) (2019) 14049–14059.  

[s12]  L. Li, J. Gao, T.F. Bissyandé, L. Ma, X. Xia, J. Klein, CDA: 
Characterising deprecated Android APIs, Empir. Softw. Eng. (2020a) 
1–41.  

[s13]  G. Canfora, A. Di Sorbo, F. Mercaldo, C.A. Visaggio, Exploring 

mobile user experience through code quality metrics, in: International 
Conference on Product-Focused Software Process Improvement, 
Springer, Cham, 2016, pp. 705–712.  

[s14]  S. Paydar, An empirical study on the effectiveness of monkey 
testing for Android applications, Iran. J. Sci. Technol. Trans. Electr. 
Eng. 44 (2) (2020) 1013–1029.  

[s15]  T. Dey, A. Mockus, 2018. Modeling relationship between post-
release faults and usage in mobile software. In: Proceedings of the 
14th International Conference on Predictive Models and Data 

Analytics in Software Engineering. pp. 56–65.  
[s16]  L. Li, T.F. Bissyandé, H. Wang, J. Klein, 2018. Cid: Automating 

the detection of api-related compatibility issues in android apps. In: 

Proceedings of the 27th ACM SIGSOFT International Symposium 
on Software Testing and Analysis. pp. 153–163.  

[s17]  U. Farooq, Z. Zhao, 2018. Runtimedroid: Restarting-free runtime 

change handling for android apps. In: Proceedings of the 16th Annual 
International Conference on Mobile Systems, Applications, and 
Services. pp. 110–122.  

[s18]  R. De Souza Coelho, L. Almeida, G. Gousios, A. van Deursen, C. 
Treude, Exception handling bug hazards in android: Results from a 
mining study and an exploratory survey, Empir. Softw. Eng. 22 (3) 

(2017).  
[s19]  D. Wu, X. Liu, J. Xu, D. Lo, D. Gao, Measuring the declared SDK 

versions and their consistency with API calls in Android apps, in: 

International Conference on Wireless Algorithms, Systems, and 
Applications, Springer, Cham, 2017b, pp. 678–690.  

[s20] J. Oliveira, N. Cacho, D. Borges, T. Silva, F. Castor, 2016. An 

exploratory study of exception handling behavior in evolving android 
and java applications. In: Proceedings of the 30th Brazilian 
Symposium on Software Engineering. pp. 23–32.  

[s21] M. Gomez, R. Rouvoy, M. Monperrus, L. Seinturier, A 
recommender system of buggy app checkers for app store 
moderators, in: 2015 2nd ACM International Conference on Mobile 

Software Engineering and Systems, IEEE, 2015, pp. 1–11.  
[s22] A.K. Jha, W.J. Lee, 2013. Capture and replay technique for 

reproducing crash in android applications. In: Proceedings of the 12th 

IASTED International Conference in Software Engineering. pp. 783–
790. 

[s23] S. Ghari, M. Hadian, M. Rasolroveicy, M. Fokaefs, 2019. A multi-

dimensional quality analysis of Android applications. In: Proceedings 
of the 29th Annual International Conference on Computer Science 
and Software Engineering. pp. 34–43. 

[s24] C.H. Hsiao, J. Yu, S. Narayanasamy, Z. Kong, C.L. Pereira, G.A. 
Pokam ..., J. Flinn, Race detection for event-driven mobile 
applications, ACM SIGPLAN Not. 49 (6) (2014) 326–336. 

[s25] I.T. Mercado, N. Munaiah, A. Meneely, 2016. The impact of cross-
platform development approaches for mobile applications from the 
user’s perspective. In: Proceedings of the International Workshop on 

App Market Analytics. pp. 43–49. 
[s26] O. Riganelli, M. Mobilio, D. Micucci, L. Mariani, A benchmark of 



 
28 

data loss bugs for android apps, in: 2019 IEEE/ACM 16th 

International Conference on Mining Software Repositories (MSR), 
IEEE, 2019, pp. 582–586. 

[s27] J. Xiang, C. Weng, D. Zhao, J. Tian, S. Xiong, L. Li, A. Andrzejakb, 

A new software rejuvenation model for android, in: 2018 IEEE 
International Symposium on Software Reliability Engineering 
Workshops (ISSREW), IEEE, 2018, pp. 293–299. 

[s28] Y. Qiao, Z. Zheng, Y. Fang, An empirical study on software aging 
indicators prediction in Android mobile, in: 2018 IEEE International 
Symposium on Software Reliability Engineering Workshops 

(ISSREW), IEEE, 2018a, pp. 271–277.  
[s29] J. Sun, K. Yan, X. Liu, M. Zhu, L. Xiao, Automatically capturing 

and reproducing Android application crashes, in: 2019 IEEE 19th 

International Conference on Software Quality, Reliability and 
Security Companion (QRS-C), IEEE, 2019, pp. 524–525.  

[s30] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, 

D. Poshyvanyk, Automatically discovering, reporting and 
reproducing android application crashes, in: 2016 IEEE International 
Conference on Software Testing, Verification and Validation (Icst), 

IEEE, 2016, pp. 33–44.  
[s31] J. Harty, M. Müller, 2019. Better android apps using android vitals. 

In: Proceedings of the 3rd ACM SIGSOFT International Workshop 

on App Market Analytics. pp. 26–32. 
[s32] A.K. Jha, S. Lee, W.J. Lee, Characterizing Android-specific crash 

bugs, in: 2019 IEEE/ACM 6th International Conference on Mobile 

Software Engineering and Systems (MOBILESoft), IEEE, 2019, pp. 
111–122. 

[s33] M. Kechagia, D. Mitropoulos, D. Spinellis, Charting the API 
minefield using software telemetry data, Empir. Softw. Eng. 20 (6) 

(2015) 1785–1830. 
[s34] A. Zhang, Y. He, Y. Jiang, Crashfuzzer: Detecting input processing 

related crash bugs in android applications, in: 2016 IEEE 35th 

International Performance Computing and Communications 
Conference (IPCCC), IEEE, 2016, pp. 1–8. 

[s35] J. Huang, N. Borges, S. Bugiel, M. Backes, Up-to-crash: Evaluating 

third-party library updatability on android, in: 2019 IEEE European 
Symposium on Security and Privacy (EuroS & P), IEEE, 2019, pp. 
15–30. 

[s36] T. Dey, A. Mockus, Deriving a usage-independent software quality 
metric, Empir. Softw. Eng. 25 (2) (2020) 1596–1641. 

[s37] A.K. Jha, S. Lee, W.J. Lee, Developer mistakes in writing android 

manifests: An empirical study of configuration errors, in: 2017 
IEEE/ACM 14th International Conference on Mining Software 
Repositories (MSR), IEEE, 2017b, pp. 25–36.  

[s38] J. Oliveira, D. Borges, T. Silva, N. Cacho, F. Castor, Do android 
developers neglect error handling? a maintenance-Centric study on 
the relationship between android abstractions and uncaught 

exceptions, J. Syst. Softw. 136 (2018a) 1–18.  
[s39] J. Oliveira, H. Macedo, N. Cacho, A. Romanovsky, Droideh: An 

exception handling mechanism for android applications, in: 2018 

IEEE 29th Inter- national Symposium on Software Reliability 
Engineering (ISSRE), IEEE, 2018b, pp. 200–211. 

[s40] T. Azim, A. Alavi, I. Neamtiu, R. Gupta, Dynamic slicing for 

android, in: 2019 IEEE/ACM 41st International Conference on 
Software Engineering (ICSE), IEEE, 2019, pp. 1154–1164. 

[s41] G. Grano, A. Ciurumelea, S. Panichella, F. Palomba, H.C. Gall, 

Exploring the integration of user feedback in automated testing of 
android applications, in: 2018 IEEE 25Th International Conference 
on Software Analysis, Evolution and Reengineering (SANER), 

IEEE, 2018, pp. 72–83. 
[s42] Z. Shan, T. Azim, I. Neamtiu, Finding resume and restart errors in 

android applications, ACM SIGPLAN Not. 51 (10) (2016) 864–880.  

[s43] M. White, M. Linares-Vásquez, P. Johnson, C. Bernal-Cárdenas, D. 
Poshyvanyk, Generating reproducible and replayable bug reports 
from android application crashes, in: 2015 IEEE 23rd International 

Conference on Program Comprehension, IEEE, 2015, pp. 48–59. 
[s44] O. Riganelli, D. Micucci, L. Mariani, Healing data loss problems in 

android apps, in: 2016 IEEE International Symposium on Software 

Reliability Engineering Workshops (ISSREW), IEEE, 2016b, pp. 
146–152. 

[s45] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu ., Z. Su, Large-scale 

analysis of framework-specific exceptions in android apps, in: 2018 
IEEE/ACM 40th International Conference on Software Engineering 
(ICSE), IEEE, 2018b, pp. 408–419. 

[s46] T. Luo, J. Wu, M. Yang, S. Zhao, Y. Wu, Y. Wang, MAD-API: 
Detection, correction and explanation of API misuses in distributed 
android applications, in: International Conference on AI and Mobile 

Services, Springer, Cham, 2018, pp. 123–140.  
[s47] P. Kong, L. Li, J. Gao, T.F. Bissyandé, J. Klein, 2019. Mining 

android crash fixes in the absence of issue-and change-tracking 

systems. In: Proceedings of the 28th ACM SIGSOFT International 
Symposium on Software Testing and Analysis. pp. 78–89.  

[s48] S. Banerjee, L. Clapp, M. Sridharan, 2019. Nullaway: Practical 

type-based null safety for java. In: Proceedings of the 2019 27th 
ACM Joint Meeting on European Software Engineering Conference 
and Symposium on the Foundations of Software Engineering. pp. 

740–750.  
[s49] P. Patel, G. Srinivasan, S. Rahaman, I. Neamtiu, 2018. On the 

effectiveness of random testing for Android: or how i learned to stop 

worrying and love the monkey. In: Proceedings of the 13th 
International Workshop on Automation of Software Test. pp. 34–37.  

[s50] V. Lenarduzzi, A.C. Stan, D. Taibi, G. Venters, M. Windegger, 

Prioritizing corrective maintenance activities for android 
applications: An industrial case study on android crash reports, in: 
International Conference on Software Quality, Springer, Cham, 

2018, pp. 133–143.  
[s51] Y. Zhao, T. Yu, T. Su, Y. Liu, W. Zheng, J. Zhang, W.G. Halfond, 

Recdroid: automatically reproducing android application crashes 

from bug reports, in: 2019 IEEE/ACM 41st International Conference 
on Software Engineering (ICSE), IEEE, 2019, pp. 128–139.  

[s52] S.H. Tan, Z. Dong, X. Gao, A. Roychoudhury, Repairing crashes in 

android apps, in: 2018 IEEE/ACM 40th International Conference on 
Software Engineering (ICSE), IEEE, 2018b, pp. 187–198. 

[s53] W. Xiong, S. Chen, Y. Zhang, M. Xia, Z. Qi, Reproducible 

interference-aware mobile testing, in: 2018 IEEE International 
Conference on Software Maintenance and Evolution (ICSME), 
IEEE, 2018, pp. 36–47. 

[s54] M. Gómez, R. Rouvoy, B. Adams, L. Seinturier, Reproducing 

context-sensitive crashes of mobile apps using crowdsourced 
monitoring, in: 2016 IEEE/ACM International Conference on Mobile 
Software Engineering and Systems (MOBILESoft), IEEE, 2016, pp. 

88–99.  
[s55] Y. Koroglu, A. Sen, TCM: test case mutation to improve crash 

detection in android, in: International Conference on Fundamental 

Approaches to Software Engineering, Springer, Cham, 2018, pp. 
264–280. 

[s56] M. Kechagia, M. Fragkoulis, P. Louridas, D. Spinellis, The 

exception handling riddle: An empirical study on the Android API, J. 
Syst. Software 142 (2018) 248-270.  

[s57] G. Bavota, M. Linares-Vasquez, C.E. Bernal-Cardenas, M. Di 

Penta, R. Oliveto, D. Poshyvanyk, The impact of api change-and 
fault-proneness on the user ratings of android apps, IEEE Trans. 
Softw. Eng. 41 (4) (2014) 384–407.  

[s58] M.T. Azim, I. Neamtiu, L.M. Marvel, 2014. Towards self-healing 
smartphone software via automated patching. In: Proceedings of the 
29th ACM/IEEE International Conference on Automated Software 

Engineering. pp. 623–628.  
[s59] M. Kechagia, D. Spinellis, 2014. Undocumented and unchecked: 

exceptions that spell trouble. In: Proceedings of the 11th Working 

Conference on Mining Software Repositories. pp. 312–315. 
[s60] R. Anbunathan, A. Basu, A recursive crawler algorithm to detect 

crash in android application, in: 2014 IEEE International Conference 

on Computational Intelligence and Computing Research, IEEE, 
2014, pp. 1–4. 

[s61] T.T. Nguyen, P.M. Vu, T.T. Nguyen, Recommendation of exception 

handling code in mobile app development, 2019, arXiv preprint 
arXiv:1908.06567. 

[s62] O. Riganelli, S.P. Mottadelli, C. Rota, D. Micucci, L. Mariani, 2020. 

Data loss detector: automatically revealing data loss bugs in Android 
apps. In: Proceedings of the 29th ACM SIGSOFT International 
Symposium on Software Testing and Analysis. pp. 141–152. 

[s63] K. Choi, B.M. Chang, A lightweight approach to component-level 
exception mechanism for robust android apps, Comput. Lang. Syst. 
Struct. 44 (2015) 283–298. 

[s64] Q. Gao, H. Zhang, J. Wang, Y. Xiong, L. Zhang, H. Mei, Fixing 
recurring crash bugs via analyzing q & a sites (T), in: 2015 30th 
IEEE/ACM International Conference on Automated Software 

Engineering (ASE), IEEE, 2015, pp. 307–318. 
[s65] M. Cinque, D. Cotroneo, A. Testa, 2012. A logging framework for 

the online failure analysis of android smart phones. In: Proceedings 

of the 1st European Workshop on AppRoaches to MObiquiTous 
Resilience. pp. 1–6.  

[s66] H. Mirzaei, A. Heydarnoori, Exception fault localization in Android 

applications, in: 2015 2nd ACM International Conference on Mobile 
Software Engineering and Systems, IEEE, 2015, pp. 156–157. 

[s67] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, 2018a. 

Efficiently manifesting asynchronous programming errors in android 
apps. In: Proceedings of the 33rd ACM/IEEE International 



 
29 

Conference on Automated Software Engineering. pp. 486–497. 

[s68] M. Li, H. Lin, C. Liu, Z. Li, F. Qian, Y. Liu ., T. Xu, 2020. 
Experience: aging or glitching? why does android stop responding 
and what can we do about it? In: Proceedings of the 26th Annual 

International Conference on Mobile Computing and Networking. pp. 
1–11.  

[s69] P. Zhang, S. Elbaum, Amplifying tests to validate exception 

handling code: An extended study in the mobile application domain, 
ACM Trans. Softw. Eng. Methodol. (TOSEM) 23 (4) (2014) 1–28. 

[s70] T. Gu, C. Sun, X. Ma, J. Lü, Z. Su, Automatic runtime recovery via 

error handler synthesis, in: 2016 31st IEEE/ACM International 
Conference on Automated Software Engineering (ASE), IEEE, 2016, 
pp. 684–695.  

[s71] J. Wu, S. Liu, S. Ji, M. Yang, T. Luo, Y. Wu, Y. Wang, Exception 
beyond exception: Crashing android system by trapping in uncaught 
exception, in: 2017 IEEE/ACM 39th International Conference on 

Software Engineering: Software Engineering in Practice Track 
(ICSE-SEIP), IEEE, 2017a, pp. 283–292.  

[s72] D. Wu, D. Gao, D. Lo, Scalable online vetting of android apps for 

measuring declared SDK versions and their consistency with API 
calls, Empir. Softw. Eng. 26 (1) (2021) 1–32. 

[s73] C. Weng, D. Zhao, L. Lu, J. Xiang, C. Yang, D. Li, A rejuvenation 

strategy in Android, in: 2017 IEEE International Symposium on 
Software Reliability Engineering Workshops (ISSREW), IEEE, 
2017, pp. 273–279. 

[s74] C. Weng, J. Xiang, S. Xiong, D. Zhao, C. Yang, Analysis of 
software aging in android, in: 2016 IEEE International Symposium 
on Software Reliability Engineering Workshops (ISSREW), IEEE, 
2016, pp. 78–83. 

[s75] M. Núñez, D. Bonhaure, M. González, L. Cernuzzi, A model-driven 
approach for the development of native mobile applications focusing 
on the data layer, J. Syst. Softw. 161 (2020) 110489. 

[s76] H.Q. Liu, Y.P. Wang, J.J. Bai, S.M. Hu, PF-Miner: A practical 
paired functions mining method for Android kernel in error paths, J. 
Syst. Softw. 121 (2016) 234–246. 

[s77] X. Xia, E. Shihab, Y. Kamei, D. Lo, X. Wang, 2016a. Predicting 
crashing releases of mobile applications. In: Proceedings of the 10th 
ACM/IEEE International Symposium on Empirical Software 

Engineering and Measurement. pp. 1–10.  
[s78] T. Su, L. Fan, S. Chen, Y. Liu, L. Xu, G. Pu, Z. Su, Why my app 

crashes understanding and benchmarking framework-specific 

exceptions of android apps, IEEE Trans. Softw. Eng. (2020a). 
[s79] S. Li, J. Guo, M. Fan, J.G. Lou, Q. Zheng, T. Liu, Automated bug 

reproduction from user reviews for Android applications, in: 2020 

IEEE/ACM 42nd International Conference on Software Engineering: 
Software Engineering in Practice (ICSE-SEIP), IEEE, 2020b, pp. 51–
60. 

[s80] L. Pan, B. Cui, H. Liu, J. Yan, S. Wang, J. Yan, J. Zhang, 2020. 
Static asynchronous component misuse detection for Android 
applications. In: Proceedings of the 28th ACM Joint Meeting on 

European Software Engineering Conference and Symposium on the 
Foundations of Software Engineering. pp. 952–963.  

[s81] S. Scalabrino, G. Bavota, M. Linares-Vásquez, V. Piantadosi, M. 

Lanza, R. Oliveto, API compatibility issues in Android: Causes and 
effectiveness of data-driven detection techniques, Empir. Softw. Eng. 
25 (6) (2020b) 5006–5046.  

[s82] J. Xiang, C. Weng, D. Zhao, A. Andrzejak, S. Xiong, L. Li, J. Tian, 
Software aging and rejuvenation in android: new models and metrics, 
Softw. Qual. J. 28 (1) (2020) 85–106. 

[s83] P. Kong, L. Li, J. Gao, T. Riom, Y. Zhao, T.F. Bissyandé, J. Klein, 
ANCHOR: locating android framework-specific crashing faults, 
Autom. Softw. Eng. 28 (2) (2021) 1–31. 

[s84] L. Xie, L. Lu, S. Ding, Y. Pei, M. Pan, T. Zhang, Automatically 
detecting exception handling defects in android applications, in: 12th 
Asia-Pacific Symposium on Internetware, 2020, pp. 61–70. 

[s85] D. He, L. Li, L. Wang, H. Zheng, G. Li, J. Xue, Understanding and 
detecting evolution-induced compatibility issues in Android apps, in: 
2018 33rd IEEE/ACM International Conference on Automated 

Software Engineering (ASE), IEEE, 2018, pp. 167–177. 
[s86] T. Nguyen, P. Vu, T. Nguyen, 2020. Code recommendation for 

exception handling. In: Proceedings of the 28th ACM Joint Meeting 

on European Software Engineering Conference and Symposium on 
the Foundations of Software Engineering. pp. 1027–1038.  

[s87] S. Mahajan, N. Abolhassani, M.R. Prasad, 2020. Recommending 

stack overflow posts for fixing runtime exceptions using failure 
scenario matching. In: Proceedings of the 28th ACM Joint Meeting 
on European Software Engineering Conference and Symposium on 

the Foundations of Software Engineering. pp. 1052–1064.  
 

Chathrie Wimalasooriya is currently pursuing a Ph.D. degree at 

University of Otago, New Zealand. She received a Masters in 
Software Engineering from University of Canterbury, New Zealand 
and Bachelors in Computing and In- formation Systems from 

Sabaragamuwa University, Sri Lanka. She has been a lecturer in the 
Department of Computing and Information Systems and 
Sabaragamuwa University since 2015. Prior to entering academia, 

she was in the software development industry as a software engineer 
from 2013 to 2015. Her research interests are repository mining, 
empirical software engineering, software maintenance and machine 

learning applications 
 
Sherlock A. Licorish is a Senior Lecturer in the Department of 

Information Science at University of Otago, New Zealand. He was 
awarded his Ph.D. by Auckland University of Technology (AUT), 
and joined University of Otago in 2014. His research portfolio covers 

agile methodologies, practices and processes, teams and human 
factors, human computer interaction, research methods and 
techniques, software code quality, static analysis tools, machine 

learning applications and software analytics. Sherlock occupies 
several service roles across the university, nationally and 
internationally.  

 
Daniel Alencar da Costa is a Lecturer (Assistant Professor) in the 

Department of Information Science at the University of Otago, New 

Zealand. Daniel obtained his Ph.D. in Computer Science at the 
Federal University of Rio Grande do Norte (UFRN) in 2017 followed 
by a Postdoctoral Fellowship at Queen’s University, Canada, from 
2017 to 2018. His research goal is to advance the body of knowledge 

of Software Engineering methods and practices through empirical 
studies, incorporating statistical and machine learning based 
approaches as well as consulting and documenting the experience of 

software developers.  
 
Stephen G. MacDonell is Professor of Software Engineering at Auckland 

Uni- versity of Technology and Professor in Information Science at 
the University of Otago, both in New Zealand. Stephen was awarded 
BCom(Hons) and MCom degrees from the University of Otago and 

a Ph.D. from the University of Cambridge. He is a Fellow of IT 
Professionals NZ, Senior Member of the IEEE and the IEEE 
Computer Society, and Member of the ACM, and he serves on the 

Editorial Board of Information and Software Technology. Stephen is 
also Theme Leader for Data Science & Digital Technologies in New 
Zealand’s National Science Challenge Science for Technological 

Innovation, Technical Advisor to the Office of the Federation of 
Ma ̄ori Authorities Pou Whakata ̄more Hangarau - Chief Advisor 
Innovation & Research, and Deputy Chair of Software Innovation 

New Zealand (SINˆZ).  
 


