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Abstract

Co-change candidates are the group of code fragments that require a change if
any of these fragments experience a modification in a commit operation during
software evolution. The cloned co-change candidates are a subset of the co-
change candidates, and the members in this subset are clones of one another.
The cloned co-change candidates are usually created by reusing existing code
fragments in a software system. Detecting cloned co-change candidates is essen-
tial for clone-tracking, and studies have shown that we can use clone detection
tools to find cloned co-change candidates. However, although several studies
evaluate clone detection tools for their accuracy in detecting cloned fragments,
we found no study that evaluates clone detection tools for detecting cloned
co-change candidates. In this study, we explore the dimension of code clone re-
search for detecting cloned co-change candidates. We compare the performance
of 12 different configurations of nine promising clone detection tools in iden-
tifying cloned co-change candidates from eight open-source C and Java-based
subject systems of various sizes and application domains. A ranked list and
analysis of the results provides valuable insights and guidelines into selecting
and configuring a clone detection tool for identifying co-change candidates and
leads to a new dimension of code clone research into change impact analysis.

Keywords: Clone Detection; Cloned Co-change Candidates; Commit
operation; Software Maintenance and Evolution

1. Introduction

Version control systems maintain a history of changes required to keep a
software system updated with the changing requirements in its life cycle [1, 2].
Software developers make changes to a software system by applying commit op-
erations through its version control system, and the commits may be related to
each other or maybe independent [3, 4]. Each of such commits may perform one
or more changes in the source code of the software system based on the available
change requests. A set of change requests may be for different purposes, such
as addressing evolving requirements or fixing bugs (e.g., problems or issues).
A single commit operation may contain both related and independent changes.
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Related changes are known as co-change candidates in the literature [5], which
represents a group of changes. Suppose any code fragment of a co-change group
is experiencing any update. In that case, all the other code fragments in that
group might need to be updated to ensure the consistent evolution of a soft-
ware system [6, 7]. When a code fragment that should co-change with its target
fragment is missed or not identified, it may induce bugs or inconsistencies in a
software system [8, 9].

We divide the source code fragments from a group of co-change candidates
into two categories. First, those fragments that are clones of one another make
a group named Cloned Co-change Candidates (CCC). Second, all the other code
fragments are dissimilar co-change candidates (DCC), which might be distinct
enough but still need to co-change because they are functionally dependent or
coupled. Therefore, both the cloned (CCC) and dissimilar (DCC) co-change
candidates are the subset of the group of co-change candidates. We identify
the Cloned Co-change Candidates (CCC) using different clone detection tools
(listed in Table 2) by utilizing clone groups or clone classes in the detected result
sets. In this study, we evaluate the performance of clone detection tools based
on detecting these Cloned Co-change Candidates (CCC).

Finding the co-change candidates (both CCC and DCC) of a target code
fragment is also known as change impact analysis [10] in the literature. Mondal
et al. [6] investigated whether a clone detection tool can enhance the perfor-
mance of an evolutionary coupling based tool in finding a change impact set
or co-change candidates. Their investigation used Nicad to detect both the
regular clones and micro-clones and they found that using clone information
significantly enhances the performance of Tarmaq [11], an association rule min-
ing based change impact analysis tool. Since they only used Nicad, we wanted
to compare some other promising clone detection tools to find out whether these
tools perform better for detecting cloned co-change candidates. As well, Nay-
rolles and Hamou-Lhadj [12] used the Nicad clone detection tool to recommend
qualitative fixes to developers on how to fix risky commits (commits that cre-
ate inconsistencies in the system) for 12 Ubisoft systems. They first identified
risky commits using a Random Forest Classifier [13] based detection model and
then used the Nicad clone detection tool to find similar commits with a fix al-
ready available in the history of the software system. Then they recommended
the best-selected fixes to the software developer for fixing the identified risky
commit. Their study showed that at least one Ubisoft software developer ac-
cepted 66.7% of their recommended fixes. Although their study focused on one
specific commercial software system and its developers, we believe clone detec-
tors could also contribute to finding similar buggy commits and their fixes in
other commercial and open-source software systems. These studies motivate us
to compare 12 clone detection techniques and the findings of our study sug-
gests important guidelines for selecting clone detectors for conducting change
impact analysis. Our study’s outcomes will help with the successful integration
of the best performing clone detection tools with change impact analysis tools
to identify risky commits and possible fixes during commit operations.

The comparative performance of different clone detection tools in identifying
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cloned co-change candidates has yet to be investigated. Detecting cloned co-
change candidates is useful during software maintenance to help ensure a system
is changed consistently. In addition to determining whether a clone detection
tool performs well in detecting clone fragments, it would be useful to know if it
performs well in detecting cloned co-change candidates.

Clone detectors combine similar code fragments that meet certain similarity
thresholds (e.g., 70% similarity) into clone groups. A clone group may contain
two or more similar code fragments known as clone pairs (if the group contains
exactly two similar code fragments) or clone classes (if the group contains two
or more similar code fragments). Since code fragments in a clone group are
similar, the clones also have similar functionality, which implies that if we want
to change any of the code fragments in a clone group, the other fragments in
that group may also require a similar change (co-change) to maintain consistent
behavior in the software system. This assumption leads us to the possibility that
all clone class members could be cloned co-change candidates of each other, and
whenever any one of those fragments are modified, the developer might make
a similar modification to all the other fragments of that class. We use clone
classes and pairs extracted from subject systems using different clone detection
tools to predict cloned co-change candidates.

We evaluated four different configurations of CloneWorks [14] and eight ad-
ditional clone detectors in our investigation. Each configuration of CloneWorks
implements a unique mechanism for processing software system source files to
detect clone fragments, and so we consider the four different configurations to
be different tools. Therefore, we evaluated 12 separate implementations of clone
detection tools. We apply these tools to thousands of commit operations from
the evolutionary histories of eight open-source software systems that vary in
source code size and are from different application domains. The clone detec-
tion tools and configurations we used in this study are shown in Table 2 and
the subject software systems are reported in Table 1.

Based on this study, we answered the following research questions:

RQ1: How can we compare different clone detection tools based on the perfor-
mance in detecting cloned co-change candidates?

RQ2: What are the deciding factors for the performance variance of different
clone detectors in detecting cloned co-change candidates?

RQ3: Do the source code processing techniques (Pattern/Token/Text-based
processing) of the clone detection tools have any impact on their performance
in detecting cloned co-change candidates?

RQ4: Do clone detection tools designed for detecting different types of clones
(Type 1, 2, 3) work differently in detecting cloned co-change candidates?

To the best of our knowledge, there is no other study comparing clone de-
tection tools considering a particular maintenance perspective (such as their
performance in detecting cloned co-change candidates during software evolu-
tion). One can assume that a clone detector, which is good in detecting cloned
fragments [15, 16, 17, 18], might also be good in detecting cloned co-change
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candidates. We wanted to verify this assumption in this exploratory study. We
selected 12 implementations of clone detectors detecting different types of clone
fragments to evaluate their performance in detecting cloned co-change candi-
dates. Our investigation and analysis found that the clone detectors that detect
Type-3 clones and perform pattern-based source code processing are signifi-
cantly better in detecting cloned co-change candidates. Our investigation also
shows that tools that provide more clone fragments in their clone detection re-
sult and cover more source code lines in the software codebase are more suitable
for detecting cloned co-change candidates.

We organized this paper in the following sections: we describe related work
in Section 2, our methodology is in Section 3, we describe the experimental
result in Section 4, the discussion of the research results is in Section 5, Section
6 explains some possible threats to validity, and we conclude our paper with
some future directions of this study in Section 7.

This paper is a significant extension of our previous work [19] on detecting
cloned co-change candidates using different clone detectors. Our previous work
answered two research questions by analyzing six clone detectors on six open-
source software systems. Our earlier study’s two research questions showed that
even though a tool that is good in detecting clone fragments from software sys-
tems may not be useful in detecting cloned co-change candidates. The tools
that detect a large number of clone fragments and cover more unique lines in
the source files are found suitable in predicting cloned co-change candidates. We
extend our previous work by answering two additional research questions (RQ3,
RQ4) to find more specific reasons for the variation of the performance by clone
detectors in detecting cloned co-change candidates. We have also increased the
previous study’s generalizability by adding two more software systems as subject
systems and three more clone detection tools with four different configurations
of CloneWorks (Type-1, Type-2 blind, Type-3 pattern, and Type-3 token), to-
taling eight subject systems and 12 clone detector executions. Therefore, our
implementation has been upgraded from 6X6 to 12X8 (Clone detector X Subject
Systems) in the study’s current version. In this study, we have shown that the
performance of clone detection tools in detecting cloned co-change fragments
depends on some specific factors of clone detectors such as (i) the number of
discovered clone fragments, (ii) the number of unique lines covered by those
clone fragments, (iii) source file processing techniques, and (iv) type of detected
clones. All the source code files, datasets, and processed results related to this
study are publicly available [20] for other researchers and practitioners to facil-
itate the continuation and reproducibility of this study.

2. Related Work

Several studies [15, 16, 17, 18] have focused on ranking different clones detec-
tion tools based on their performance and accuracy in detecting different types
of clone fragments. Burd and Bailey [21] has compared three clones and two
plagiarism detecting tools based on their performance in detecting cloned code
in a single file or across different files. Bellon et al. [17] made a framework for
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comparing the performance of different clone detection tools from eight large C
and Java programs having the size of source code almost 850 KLOC. One of
the authors of this study also manually validated the dataset used in this study.
Rysselberghe and Demeyer [22] compared three representative clone detection
techniques from a refactoring perspective. Their criteria for comparison were
the portability, kinds of clone reported, scalability, number of false positive,
and number of useless clone detection from the results of those clone detection
techniques. Svajlenko and Roy [16] reported ConQAT, iClones, NiCad, and
SimCAD as excellent tools for detecting clones of all the three types (Type-1,
Type-2, Type-3) based on their evaluation of eleven modern clone detection
tools using four benchmark frameworks. Roy et al. [15] did a qualitative com-
parison and evaluation of the latest clone detection approaches and tools, and
made a benchmark called BigCloneBench [23] BigCloneBench included eight
million manually verified clone pairs in a large inter-project source code dataset
where the number of projects is larger than 25,000 and lines of code are above
365 million. They classify, compare, and evaluate different clone detectors based
on the following point of view, (i) how the set of attributes in the different code
fragments are overlapped, and (ii) what are the scenarios of creating Type-1,
Type-2, Type-3, and Type-4 clones. They also explained the procedure of us-
ing the result of their study for selecting the appropriate clone detectors in the
context of particular application areas and restrictions.

Besides proposing new clone detection mechanisms, some studies also com-
pared their tools with a few existing tools. Koschke et al. [24] utilizes suffix trees
in abstract syntax trees to detect code clones and compared their technique with
other few techniques using the Bellon benchmark for clone detectors [25]. Two
other studies [25, 26] also measured the performance of their proposed clone
detectors (based on string comparison and intermediate source transformation)
utilizing Bellon’s framework.

Selim et al. [26] showed their tool provides improved recall (with a slight drop
in precision) compared to the source based clone detectors, and it also detects
Type-3 clones. They also utilized Bellon’s corpus in their study and compared
their technique with other standalone string and token-based clone detectors
where they found little higher precision. All the studies that compared different
clone detectors focused on the precision, recall, computational complexity, and
memory used or detecting a specific type of clone fragments such as Type-1,
Type-2, Type-3, or Type-4 during the detection approach of duplicated code in
a codebase.

Our study to compare clone detectors is entirely different from the previous
comparisons. We do not want to compare clone detection tools based on the
capability to detect clones. Our point of interest is to detect cloned co-change
candidates during the software commit operations. Mondal et al. [5] used the
detected clone results of Nicad to predict and rank both the cloned and dissim-
ilar co-change candidates (CCC and DCC) by analyzing evolutionary coupling
from previously made change history. However, no other clone detection tool
is included in their study to compare the performance of different clone detec-
tion tools in their prediction and ranking technique. We extended our previous
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study [19] to compare the performance of 12 implementations of nine different
clone detection tools based on the performance of detecting cloned co-change
candidates using eight software systems written in C and Java programming
languages. We found no other study which has performed a similar comparison
of clone detectors. We believe this investigation is the first to compare clone de-
tection tools’ in the perspective of specific software maintenance acclivity (doing
change impact analysis by detecting cloned co-change candidates).

3. Methodology

We have used eight open-source software systems, having varieties of size
and application domains as subject systems in this study. The list of sub-
ject systems are in Table 1. To detect cloned co-change candidates from those
subject systems, we executed 12 clone detection tools (Table 2) and analyzed
obtained results to evaluate the performance of those clone detection tools. Our
analysis evaluates these clone detection tools’ performance in successfully sug-
gesting cloned co-changed candidates (CCC) during the software evolution and
determines the ranking of these tools based on this performance evaluation. To
complete this study, we performed following set of operations.

Table 1: Subject Systems
Systems Language Domains Revisions

Brlcad C Computer Aided Design 2115
Camellia C Batch Job Server 301

Carol Java Game 1700
Ctags C Code Def. Generator 774

Freecol Java Game 1950
Jabref Java Reference Manager 1545
jEdit Java Text Editor 4000

Qmailadmin (QMA) C Mail System Manager 317

3.1. Selecting the Subject Systems:

To select the subject systems, we first consider the popularity of program-
ming languages and the availability of substantial revisions as essential factors.
For example, the TIOBE Programming Community index [27] (an indicator
of the popularity of programming languages) recorded C, Python, Java, and
C++ as the top-4 most popular programming languages in October 2021. We
also consider the availability of substantial revisions and diversity in size and
application domain as an essential factor for subject systems to produce a gener-
alizable investigation result for this study. Besides these, we also reviewed some
related studies [6, 3, 4, 5] and the programming language used in these subject
systems. Considering all of these factors, we have selected the subject systems
used in this study. Table 1 includes the list of our eight subject systems having
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diverse sizes and application domains. Four of them are written in the C pro-
gramming language, and the other four are in Java. As the C++ programming
language share similar source code architecture, we believe the results obtained
by subject systems in C also be applicable to the subject systems written in
C++. Although the popularity index of the Python programming language is
also very high, it does not share similar source code architecture (e.g., prior
declaration of variable types, ending statements with a semicolon, use of brace
to enclose statement block, etc.) with two other programming languages of this
study. Python is usually considered a scripting programming language. The pri-
mary purpose of using scripting languages (e.g., Python, Perl, Ruby, and PHP)
is to develop software processes and technologies for the speedy production and
coordination support for increasingly expanding web applications and web ser-
vices [28]. These scenarios motivate us to include subject systems written in
C and Java programming languages in this study as they share homogeneous
coding structure. However, we plan to extend this study, including a few more
subject systems written in scripting languages such as Python, Perl, Ruby, and
PHP in the future.

3.2. Selecting the Clone Detectors:

Considering some related studies about the ability of clone detection tools in
detecting clone fragments, we have selected some promising mechanisms for this
study, which can identify all the Type-1, Type-2, and Type-3 clones. We have
taken CloneWorks [14] as it is considered a fast and flexible clone detector for
large-scale near-miss clone detection experiments. CloneWorks tool provides
the ability to change its processing mechanism by changing its configuration
files. We applied four different configurations of CloneWorks to detect Type-3
Pattern, Type-3 Token, Type-2 Blind, and Type-1 clones for investigating the
impact of the types of clones in detecting cloned co-change candidates. We in-
cluded Duplo [29] as another Type-1 clone detector for comparing with Type-1
clones of CloneWorks in this investigation. ConQAT [30], iClones [31], NiCad
[32], and SimCAD [33] have been reported as very good tools for detecting all
types of clones in the study of Svajlenko and Roy [16]. Besides these, CCFinder
[34], Deckard [35], iClones and NiCad are often considered as common examples
of modern clone detectors that support Type-3 clone detection. CCFinder is
known as a multi-linguistic token-based code clone detection system for large
scale source code. The inclusion of CCFinder enriched the variation of detected
clone fragments in the extended study. To make more comparison of the per-
formance of Type-1 clones in detecting cloned co-change candidates, we added
Duplo in our study. We included Simian [36] in our analysis because of its abil-
ity to find cloned codes by line-by-line textual comparison supporting identifier
renaming with a fast detection speed on the large repository and widespread
use in several related studies [37, 38, 39, 40, 41]. NiCad, SimCAD, and Simian
extract cloned code fragments from a software system’s codebase using textual
similarity among different code pieces. Deckard makes vector representation of
different code fragments and then utilizes tree representation of those vectors to
calculate the similarity among code pieces. CCFinder, ConQAT, and iClones
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extract tokens from the source code and then use those tokens to find similar
fragments.

Table 2: Clone Detection Tools and Configurations
Tool Configuration

CCFinder min. size: 50 tokens, min. token types: 12
CloneWorks Type-1
(CLW-T1)

termsplit=token, termproc=Joiner

CloneWorks Type-2, Blind
Renaming (CLW-T2B)

cfproc=rename-blind, cfproc=abstract literal,
termsplit=token, termproc=Joiner

CloneWorks Type-3,
Pattern (CLW-T3P)

cfproc=rename-blind, cfproc=abstract literal,
termsplit=line

CloneWorks Type-3,
Token (CLW-T3T)

termsplit=token, termproc=FilterOperators,
termproc=FilterSeperators

ConQAT block clones, clone min-length=5, gap ratio=0.3

Deckard
min. size: 30 tokens, 5 token stride,
min. 85% similarity

Duplo min. size: 10 lines, min. characters/line:1

iClones
minimum block: 30, minimum clone: 50,
All Transformation

Nicad
block clones, blind renaming, max. threshold=0.3,
minimum lines=5, maximum lines=2500

SimCAD block clones, Source Transformation= generous
Simian min. size: 5 lines, normalize literals/identifiers

3.3. Selecting Identical Parameter Configurations of the Clone Detectors

Taking an identical configuration of different clone detectors while applying
them on different subject systems to identify cloned code fragments is essential.
We compared them with each other based on their capability to successfully
suggest cloned co-change candidates. Identified clones from each clone detec-
tors have a crucial impact on their performance in suggesting cloned co-change
candidates. Wang et al. [38] reported taking different configurations of clone
detectors may change the result of detected clones, and the result can be very
good or terrible depending on the taken configuration. This scenario is known
as a confounding configuration choice problem, and it should be handled very
carefully while determining the configuration to be taken to detect cloned frag-
ments using any clone detection tool. Our configuration of different tools is
shown in Table 2. As our goal is to compare different tools with each other,
configuring them similarly while clone detection will provide consistent results
for a fair comparison. We have also tried to have identical configuration values
to Svajlenko and Roy [16], which they conducted to compare different clone
detectors based on their efficiency in detecting cloned fragments. We provided
a 70% similarity threshold for all the clone detection tools (except Deckard),
which takes similarity dissimilarity value as a parameter. We have used 85% as
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the similarity threshold for Deckard because, in an initial manual inspection of
the detected results, we found a massive number of clone fragments in Deckard’s
results compared to the other clone detectors while using the similarity thresh-
old 70% like the others. We also identified many clone classes having the same
fragments (self duplicate fragments) as the clone fragments of that class. To
minimize those duplicated fragments, we tried other similarity threshold values
such as 75%, 80%, and 85%. We found that increasing the similarity threshold
reduces the self duplicated fragments, and we took the detected clone results
applying the 85% similarity threshold for Deckard in all the subject systems.
Svajlenko and Roy [16] also used 85% similarity while running Deckard for Mu-
tation Framework. We have also selected identical parameter values such as the
minimum number of tokens, the minimum number of lines for different clone
detection tools. As we wanted to compare different clone detectors based on
their capability of successfully suggesting cloned co-change candidates, it was
essential to configure them identically during detecting clones.

3.4. Identifying Cloned and Dissimilar Co-change Candidates

We prepared the cloned co-change candidates by processing all the revisions
of all the subject systems, which we mention in Table 1. We show the summary
of revisions processed from each of the subject systems in Table 3. Initially,
we downloaded all the source files of all the subject systems’ revisions from
their respective SVN repositories. We then applied the Unix diff operation
between all the files of each revision with the corresponding files in the next
revision to extract changes in these revisions. We prefer the Unix diff over
git-diff, as there are four different variants (e.g., Myers, Minimal, Patience,
and Histogram) of git-diff 1, and Nugroho et al. [42] show that different git-diff
variants can provide different source code lines as the results of git-diff using the
same set of input source files. Besides these, instead of working directly on the
mirrored GitHub repositories of the subject systems, we extracted all the source
code files of each revision from each subject system to apply the clone detection
tools to find the cloned fragments in these revisions. The clone fragments from
the results of clone detectors are compared with the results of Unix diff to
produce the ground truth of cloned co-change candidates for our investigation
and evaluate the performance of clone detectors for detecting cloned co-change
candidates. Therefore, we applied the Unix diff directly to each source code file
pair from which clone detectors detected the clone fragments. We use the Unix
diff command instead of any variant of four available git-diff commands to make
the source code fragments consistent in the line numbers in both the output of
clone detectors and the Unix diff.

We identify some specific change information such as (i) the name of the files
which are changed, (ii) the beginning line numbers of each of the changes, and
(iii) the ending line numbers of the corresponding changes. We repeat the change
extraction process for each revision (excluding the last one) in all the subject

1https://git-scm.com/docs/git-diff
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systems. Suppose we find n changed fragments in a software revision. Then, for
every single change fragment, we consider the remaining n-1 fragments as the
combination of cloned and dissimilar co-change candidates for that revision. In
the following step, we describe the method for excluding the dissimilar co-change
fragments to produce the ground truth of cloned co-change candidates.

Table 3: Revisions Processed from each of the Subject Systems
Revision Brlcad Camellia Carol Ctags Freecol Jabref jEdit QMA

Any change 2113 301 1700 774 1001 1540 215 317

≥ 1 change
to C or Java

660 163 454 447 836 860 145 35

> 1 change
to C or Java

553 155 430 330 833 755 145 25

3.5. Identifying Cloned Co-change Candidates (Ground Truth)

Even though the changes extracted from two adjacent revisions (e.g., revi-
sion n and n+1) are co-change candidates of each other, they might not be a
set of cloned co-change candidates. Thus, for example, a group of co-change
candidates might contain some dissimilar change candidates who changed inde-
pendently, and they might not be a clone of any other changes of that co-change
group. The inclusion of such non-cloned changes into our calculation can drop
the detection accuracy of clone detectors. Therefore, we utilize the results from
all the 12 clone detectors used in this study to produce the ground truth of
cloned co-change candidates before calculating the performance metrics (preci-
sion, recall, and f1 scores) for each clone detector. We first considered each code
fragment’s change as target change and tried to predict all the other changes in
the same revision (e.g., co-changes) utilizing each of the 12 clone detection tech-
niques. We find some change fragments where none of the 12 clone detection
techniques can detect any cloned co-change candidate. Therefore, we consider
those change fragments as non-cloned (dissimilar) co-change fragments for the
set of clone detectors used in this study. Thus, we exclude the identified non-
cloned co-change candidates to prepare the ground truth of cloned co-change
candidates for comparing the 12 clone detection techniques. Including only the
dependent (cloned) co-changes while calculating the performance metrics (pre-
cision, recall, and f1 scores) is necessary to make a fair comparison among the
clone detection tools. Finally, we compare all the tools based on their calculated
performance metrics in detecting cloned co-change candidates.

All the cloned fragments might not be cloned co-change candidates. For ex-
ample, a clone class might contain a large number of clone fragments. However,
whenever we attempt to change a code fragment, we can see that only a few
clone fragments could change together with that particular fragment, and in
such a case, those few other fragments are the actual cloned co-change candi-
dates. The remaining clone fragments are not the cloned co-change candidates
in such cases. Therefore, our ground truth does not directly depend on clone
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Figure 1: This diagram explains how we calculated the Recall and Precision in one revision.
We first identified all the cloned and dissimilar co-change candidates as ground truth using
the Unix diff operation, then we have used the results of each of the clone detection tools
to identify those cloned co-change candidates. True Positives (TP) are the co-changes that
we successfully identified using the clone detectors. Our process also provided some False
Positives (FP) in each revision. To separate the cloned co-change candidates from all the
previously identified co-change candidates, we took the union of all the TPs from all the clone
detection tools. The Recall is the ratio of TPs and the number of cloned co-change candidates
(TP+FN), and the Precision is the ratio of TPs and the number of total co-change suggestions
(TP+FP). We repeated the process for all the revisions of all the subject systems used in our
investigation.

detection tools result. We extracted the co-change history using the Unix diff
operation from the code repositories of the subject systems. We use this co-
change history to make our ground truth. For example, let us assume that five
code fragments changed together in a particular commit operation. Then, we
consider the remaining four as the true (combination of cloned and dissimilar)
co-change candidates for each of these five code fragments. Then we took the
union of detected cloned co-change candidates using all the 12 clone detectors
to produce the final ground truth for comparing the tools. As a gold data set of
co-change candidates currently does not exist, we believe our considered ground
truth is reasonable for our comparison scenario.

3.6. Demonstrating a Running Example

Figure 1 provides a demonstration of a running example in calculating each
of the clone detection tools’ performance metric values. Let us consider that
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21 changes, C1 to C21, occurred in the codebase during a particular commit
operation in a subject system. We extract these changes utilizing the UNIX diff
operation. If we consider an arbitrary change (e.g., C1) as the target change,
the other 20 changes (e.g., C2 to C21) will be considered the co-change candi-
dates (combination of both cloned and dissimilar co-change candidates) of C1.
We apply different clone detection tools to detect these co-change candidates
considering C1 as the target change. To do so, we first take the clone class from
the results of the clone detection tool and find if any code fragment from that
clone class intersects with C1. Here, the intersection of any two code fragments
means they share at least one common line. These code fragments could be fully
overlapped or partially overlapped to consider them as intersecting code frag-
ments. Therefore, both the fully and partially overlapped code fragments would
be considered as intersecting code fragments. We consider the intersecting code
fragment from the clone class as the equivalent code fragment of the target
change C1. Therefore, the other code fragments in that intersecting clone class
should be co-change with the target change C1. There code fragments from the
clone class are the predicted co-change candidates of C1.

Let us assume, analyzing the detected clone fragments of one of the clone
detection tools, Deckard [35], we find 14 code fragments as clone candidates of
C1, among those 14 fragments, five intersects with the five co-change candidates
of C1 (e.g., C2, C6, C8, C15, C21) from those 20 fragments. Thus, we will con-
sider those five fragments as true positives (TP) of cloned co-change candidates
(CCC), and 14 − 5 = 9 will be the number of false positive (FP) value. Simi-
larly, using the clone fragments of NiCad, if we detect 13 code fragments as clone
candidates of C1, and four of them intersects with four of co-change candidates
(e.g., C5, C10, C16, C18), then we find TP = 4, and FP = 13−4 = 9. We con-
tinued the same approach for all the clone detection tools to detect co-change
candidates of C1. If we take the union of all the true positives obtained from
the results of all the clone detectors, we get ten unique change fragments (C2,
C5, C8, C15, C21, C5, C8, C10, C15, C21). We will then consider those ten
unique change fragments as cloned co-change candidates and this will be used
as the number of TP+FN value while calculating the recall of clone detection
tools for detecting cloned co-change of C1. Using the number of TP and FP
values, we can also calculate the precision of clone detection tools for C1. We
finally calculated average recall, average precision in each of the subject systems
for all the clone detection tools. We compare the clone detection tools based on
the F1 Scores calculated by using the average recall and precision shown in the
equation 3.

3.7. Calculating the Evaluation Metrics

Let us assume, while examining a specific commit operation, we found the
number of fragments changed with this commit is n. In each step, we consider
one of those fragments as the target fragment and the remaining n − 1 frag-
ments as the co-changed candidates for that target fragment. Among the n− 1
fragments, there could be some non-cloned fragments that might have changed
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independently. We exclude such non-cloned fragments (demonstrated in Figure
1) by taking the union of detected cloned co-change candidates by all the clone
detection tools used in this study. After excluding non-cloned fragments, we get
the Cloned Co-changed Candidate (CCC) for each of the target fragments.
Now, we find the cloned fragment from the results of clone detectors intersect-
ing with the target fragment. The other fragments in the intersecting clone
fragment class are considered the Predicted Cloned Co-change (PCC) can-
didates. We now determine how many of these PCC intersect (shares common
line number) with the CCC to obtain the number of detected cloned co-change
candidates by the clone detector.

Recall =
|PCC ∩ CCC|
|CCC|

(1)

Precision =
|PCC ∩ CCC|
|PCC|

(2)

F1 Score =
2× Precision×Recall

Precision + Recall
(3)

These counts of predicted and actually co-changed candidates are considered
as the true positives to calculate Recall, Precision, and F1 Score. We calculate
these using the following equations (Eq. 1, 2, and 3).

We repeat the calculating process of Recall and Precision for all the changes
in each of the subject systems with the detected clone fragments generated
by all the clone detection tools. We then calculate the F1 Score of the clone
detectors for each of the subject systems by taking the average values of Recall
and Precision, which is reported in Table 4. We reported the ranking of the
tools considering individual ranks in each of the subject systems in Table 6.

3.8. Producing the Final Rank List:

We produce the final rank list based on the ranks of the clone detectors in
each of the subject systems. To produced the final rank list of 12 clone detection
techniques, we considered their performance in all the eight individual subject
systems. Our ranking approach is demonstrated in Table 6, which shows both
the final and individual ranks of clone detectors. The columns S1 to S8 indicates
individual ranks of clone detectors in each subject system. Individual ranks are
measured based on the F1 scores of each clone detector shown in Table 4. The
highest F1 Score in Table 4 got rank-1, and similarly the lowest one got rank-12
in the respective position of Table 6. Thus, every clone detection technique has
eight rank values (smaller value represents the better performance), obtained
in the eight software systems. The right-most column (Rank) shows the final
rank of the clone detectors considering all the individual ranks. As smaller rank
values indicate better performance of the clone detectors in detecting cloned
co-change candidates, a clone detector that performed well for more subject

systems, will obtain smaller
8∑

i=1

Si, and received a higher position in the final

rank table.
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4. Experimental Result

We investigate 12 clone detection techniques on the thousands of revisions
from eight C and Java programming language-based software systems to detect
cloned co-change candidates. In this section, we describe the obtained results
and answer the research questions based on this investigation. We produce the
final rank list of all the clone detection techniques in Table 6. Considering the
final rank list, we find: (i) the tools which are good in detecting all types (1/2/3)
of clones are also good in detecting cloned co-change candidates. (ii) the top
two tools in the final rank list are the Type-3 configurations of CloneWorks
(prior to detecting clone fragments one configuration first splits the source files
into lines while the other configuration splits source files into tokens), and the
next two clone detectors that perform well are Deckard and CCFinder. There-
fore, to detect cloned co-change candidates, those tools (all are pattern and
token-based) are the best choices compared to the other tools compared in this
study. (iii) From this ranking, we also find that text-based clone detectors (such
as Duplo or CloneWorks Type-1) are not suitable for detecting cloned co-change
candidates. (iv) Our comparison in Figure 4 also shows that the clone detectors
which detect a higher number of clone fragments and cover a higher number of
unique lines in the source files perform well when detecting cloned co-change
candidates. We performed the Wilcoxon Signed-Rank Test [43, 44] to verify
whether the F1 Scores in all of the eight subject systems of the tools which got
higher ranks in the final rank list (Table 6) are significantly better compared
to the other clone detection tools or not. The results of our significance test
are described in Section 4.5. A summary of our significance test results is in
Table 7, which shows that four out of the 12 clone detection techniques of this
study perform significantly better than the other techniques in detecting cloned
co-change candidates.

Table 4: F1 Score of Different Tools in Detecting Cloned Co-change
Tool Brlcad Camellia Carol Ctags Freecol Jabref jEdit QMA

CCFinder 0.30 0.23 0.20 0.16 0.09 0.15 0.07 0.16
CLW-T1 0.09 0.04 0.06 0.03 0.03 0.05 0.04 0.11
CLW-T2B 0.13 0.07 0.22 0.12 0.08 0.13 0.08 0.17
CLW-T3P 0.32 0.16 0.36 0.25 0.15 0.30 0.35 0.49
CLW-T3T 0.27 0.18 0.29 0.24 0.11 0.20 0.20 0.42
ConQAT 0.28 0.10 0.12 0.15 0.08 0.12 0.08 0.08
Deckard 0.19 0.57 0.21 0.15 0.30 0.14 0.18 0.41
Duplo 0.12 0.01 0.03 0.03 0.01 0.02 0.00 0.00
iClones 0.26 0.15 0.08 0.08 0.03 0.09 0.05 0.10
Nicad 0.12 0.06 0.16 0.21 0.04 0.10 0.12 0.03
SimCAD 0.17 0.07 0.15 0.04 0.05 0.10 0.06 0.10
Simian 0.25 0.16 0.06 0.11 0.03 0.07 0.03 0.06
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Table 5: Actual Target Changes (ATC) and Cloned Co-changed Candidates (CCC)

System # ATC # CCC % ATC % CCC

Brlcad 2,909 33,578 7.45 1.89
Camellia 8,052 346,140 20.61 19.46
Carol 4,582 254,311 11.73 14.29
Ctags 718 3,648 1.84 0.21
Freecol 6,865 265,213 17.57 14.91
Jabref 8,313 455,469 21.28 25.60
jEdit 5,122 323,277 13.11 18.17
QMA 2,508 97,396 6.42 5.47
Total 39,069 1,779,032 100 100

Table 6: Final Rank of Tools considering individual subject system rankings

Tool S1 S2 S3 S4 S5 S6 S7 S8
8∑

i=1

Si Rank

CLW-T3P 1 4 1 1 2 1 1 1 12 1
CLW-T3T 4 3 2 2 3 2 2 2 20 2
Deckard 7 1 4 6 1 4 3 3 29 3
CCFinder 2 2 5 4 4 3 7 5 32 4
CLW-T2B 9 8 3 7 5 5 5 4 46 5
ConQAT 3 7 8 5 6 6 6 9 50 6
iClones 11 10 6 3 8 7 4 11 60 7
Simian 5 6 9 9 10 9 9 7 64 8
Nicad 8 9 7 10 7 8 8 8 65 9
SimCAD 6 5 11 8 11 10 11 10 72 10
CLW-T1 12 11 10 11 9 11 10 6 80 11
Duplo 10 12 12 12 12 12 12 12 94 12
* S1-S8 represents sequence of eight subject systems used in this study.
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4.1. Answer to the RQ1

How can we compare different clone detection tools based on the
performance in detecting cloned co-change candidates?

The key experimental results are in Figure 2, Figure 3, Table 4, Table 5, and
Table 6, where Fig. 2 and 3 show the average Recall and average Precision of
each of the clone detection tools. Table 5 shows the summary of target changes
and detected cloned co-change candidates for those target changes in each of the
subject systems. We found the highest and lowest percentage of target change
and its cloned co-change candidates from Jabref and Ctags. Table 4 shows the
F1 Score of each of the clone detectors in each of the subject systems. The
F1 Score is calculated using Equation (3). Our experimental results concluded
in Table 6, which shows that CLW-T3P, CLW-T3T, and Deckard shows top
performance (Rank 1 or 2 based on F1 Score) in most of the subject systems
compared to all the other tools. The summary of the results in Table 6 also shows
that among the subject systems, CLW-T3P is the best in all the subject systems
except Camellia and Freecol, where Deckard is showing the best cloned co-
change detection performance. CLW-T3T shows the second-best performance
in most of the subject systems. An overall observation on individual rankings of
different clone detection techniques reveals that CLW-T3P, Deckard, CLW-T3T,
CCFinder show better performance in most of the subject systems compared to
the other clone detectors. On the other hand, Duplo, CLW-T1 shows the worst
performance in most subject systems. Other tools show average performance
considering individual ranking in different subject systems. CLW-T1 and Duplo
obtained the bottom position in the final rank list table.

As our analysis was based on the clone grouping into class or pair provided
by the clone detection tools, we found that clone detection tools’ efficiency in
suggesting cloned co-change candidates is mostly dependent on its effectiveness
in making clone class/ pair. The tool which groups functionally similar clone
fragments into a clone class/ pair effectively can perform well in successfully
suggesting cloned co-change candidate(s). Different values of different clone
detectors’ accuracy indicate the difference in their efficiency in this research
domain.

4.2. Answer to the RQ2

What are the deciding factors for the performance variance of
different clone detectors in detecting cloned co-change candidates?

From the answer of our RQ1, we found a difference in performance for
different clone detection tools in suggesting cloned co-change candidates. Al-
though we selected all the promising clone detection tools reported in several
studies, we found differences in their performance in detecting cloned co-change
candidates. Such a scenario motivates us to find out the reason to answer this
research question.

We investigated the number of clone fragments and the number of unique
lines covered by those clone fragments by all the 12 clone detectors from all
the subject systems’ revisions. Figure 4 shows the comparison scenario of the
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Figure 2: Average recall of different tools

Figure 3: Average precision of different tools
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number of clone fragments and lines covered by those clone fragments from
different clone detectors. For better comparison, we bring the values on a single
scale (between 0 and 1) where 0 and 1 represent the lowest and highest values,
respectively, compared to all the clone detectors under comparison. Considering
both, the number of clone fragments and the number of lines covered by those
clone fragments from all the revisions of all the subject systems, if we order
the clone detectors from the highest to the lowest, we find Deckard and CLW-
T3P in the top of the list. CLW-T3T and CCFinder fall in the respective next
position to provide the highest number of clone fragments and cover the highest
number of unique lines in the source files. This scenario shows that a good
clone detector can perform poorly in detecting cloned co-change candidates if it
does not detect enough clone fragments and does not cover enough unique lines
by those clone fragments in the source file. Though, earlier study [5] suggests
that NiCad is an excellent clone detector in both of these cases, it falls at the
bottom of the list. Even though NiCad performs very well in detecting clone
fragments, it provides a lower number of clone fragments and also the lower
number of line coverage by those clone fragments in the software systems. For
that reason, while detecting the cloned co-change candidates, NiCad is showing
lower F1 Score. The number of clone fragments and line coverage by those
fragments seems to be an underlying factor behind the obtained comparison
scenario of the clone detectors in predicting cloned co-change candidates. Some
other factors such as (i) How clone fragments are overlapped with each other in
a clone group? (ii) How is a clone detector determining the similarity among
different fragments? (iii) What similarity score is used; it may also have an
effect on the performance of predicting cloned co-change candidates. We plan
to explore these factors in future studies.

4.3. Answer to the RQ3

Do the source code processing techniques (Pattern/Token/Text-
based processing) of the clone detection tools have any impact on
their performance in detecting cloned co-change candidates?

We can answer this research question by analyzing our final ranking of the
clone detectors in Table 6. Top two clone detectors of the final rank list (Rank
1 and 2) work by extracting source code patterns from the codebase. CLW-
T3P processes the source code terms by splitting into lines and then extracts
code patterns. Deckard first generates vectors from the source file and then
extracts a tree-like source pattern to match similarity among different source
code fragments. The other five tools (Rank 3 to 7) in the rank list perform
token-based source code processing, and the remaining five tools perform text-
based source code processing for detecting clones from the source file. From this
result, we can say that text-based clone detection tools are not suitable to be
used in detecting cloned co-change candidates during software evolution. The
tools which can detect more generalized clone fragments, especially pattern-
based clone detectors, are perfect for detecting cloned co-change candidates.
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Figure 4: Comparing unique line coverage by clone fragments and number of clone fragments
from different clone detectors.

4.4. Answer to the RQ4

Do clone detection tools designed for detecting different types of
clones (Type 1, 2, 3) work differently in detecting cloned co-change
candidates?

From the final rank list of our clone detectors, we also find the relation of
detected clone types with its ability to detect cloned co-change candidates. The
rank list of clone detectors in Table 6 shows that clone detecting tools such as
CLW-T1, Duplo, which detects the only Type 1 clone, will not perform well in
detecting cloned co-change candidates. On the other hand, tools such as CLW-
T3P, CLW-T3T, Deckard, CCFinder perform very well in detecting cloned co-
change candidates. The significance test results in Table 7 also show that four
tools (two configurations of CloneWorks for Type-3, Deckard, and CCFinder)
which perform significantly better than the other tools are also known as the
clone detectors which detects Type-3 clones (Type-1 and Type-2 are also au-
tomatically included with Type-3 clones). Therefore, our findings suggest that
we should choose those clone detectors to be used in detecting cloned co-change
candidates that detect Type-3 clones with the other Type-1 and Type-2 clone
fragments.

4.5. The Wilcoxon Signed-Rank Test:

We performed The Wilcoxon Signed-Rank Test [43, 44] to verify the hypoth-
esis that the F1 Scores of a tool which has obtained a higher rank in Table 6
are significantly different (better) than the F1 Scores of the tools which have
got lower ranks. Here, F1 Scores of each tool contains eight values obtained in
all the eight subject systems. For instance, let us assume that we would like to
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Figure 5: Comparing Distribution of F1 Scores in Different Clone Detectors

Table 7: Wilcoxon Signed Rank Test (p<0.05)

Tools in
Investigation

Significantly Better than
Tools (p<0.05)

# of
Tools

CLW-T3P
CLW-T3T, CCFinder, CLW-T2B,
ConQAT, iClones, Simian, Nicad, SimCAD,
CLW-T1, Duplo

10

CLW-T3T
CLW-T2B, ConQAT, iClones, Simian,
Nicad, SimCAD, CLW-T1, Duplo

8

Deckard
CLW-T2B, iClones, Simian, Nicad,
SimCAD, CLW-T1, Duplo

7

CCFinder
ConQAT, iClones, Simian,
SimCAD, CLW-T1, Duplo

6

CLW-T2B CLW-T1, Duplo 2
ConQAT CLW-T1, Duplo 2
iClones CLW-T1, Duplo 2
Simian Duplo 1
Nicad Duplo 1
SimCAD CLW-T1, Duplo 2
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examine whether the F1 Scores obtained by CLW-T3P are significantly better
than the F1 Scores obtained by CLW-T3T. Thus, we take the sets of F1 Scores
(see Table 4) from both CLW-T3P and CLW-T3T, which will be then used to
perform Wilcoxon Signed-Rank Test utilizing the SciPy library [45] available
in Python programming language. We did a significance test for each of the
possible pairs from all the 12 clone detection tools in our investigation.

A summary of the significant results at p < 0.05 obtained from the signifi-
cance test is given in Table 7. The left-most column of this table contains the
tool whose significance is to be tested, and the next column contains the name of
the tools, each of them provides significantly different F1 Scores compared to the
tool in the investigation. The right-most column of Table 7 shows the number
of clone detectors whose F1 Scores are significantly different from the F1 Scores
of the tool under investigation. Therefore, CLW-T3P provides significantly
different F1 Scores than 10 other clone detectors (excluding Deckard). The
distribution of F1 Scores in Figure 5 also shows that majority of the F1 Score
values of CLW-T3P lie above all the other clone detectors’ F1 Score values (ex-
cept Deckard). Although some of the F1 Score values in CLW-T3P are above
Deckard’s values, those are not enough to make the result significantly different.
This scenario clearly shows that CLW-T3P is significantly better than all the
other clone detectors except Deckard. Similarly, from the following results of
our significance test in Table 7, we can see that F1 Scores of CLW-T3T are
significantly better than the other eight clone detectors, F1 Scores of Deckard
are significantly better than the other seven clone detectors, and F1 Scores of
CCFinder are significantly better than the other six clone detectors. The follow-
ing four tools (CLW-T2B, ConQAT, iClones, SimCAD) are significantly better
than CLW-T1 and Duplo. Simian and NiCad are significantly better than only
Duplo. The overall observation of the significance test result helps to conclude
that for detecting cloned co-change candidates, CloneWorks Type-3 clone de-
tection configuration can be an excellent choice, Deckard and CCFinder are also
good choices. However, the other tools are not significantly better choices to
detect cloned co-change candidates during software evolution.

The distribution of F1 Scores in Figure 5 also demonstrates the significance
in performance differences of clone detectors used in this study. The clone
detectors in this figure are sorted based on the final rank list shown in Table
6, where the ranks of the tools are presented from left to right (rank 1 to 12
in Table 6). This figure shows the clone detectors which got higher ranking in
Table 6 also have the higher values of F1 Scores compared to the tools which
are below in the rank list. In this diagram, we can see that the F1 Scores of
CloneWorks Type-3 Pattern have the most higher values, and Duplo has the
most lower values in their respective distributions. Any two tools’ performance
will be significantly different from each other if they share a fewer common range
of F1 Scores distribution. From the result of the significance test in Table 7, we
can see that Deckard is not significantly different from all the other three good
clone detectors i.e. CLW-T3P, CLW-T3T, and CCFinder as they share most
of the same range of values in the distribution. We can see a similar scenario
for Simian and Nicad, e.g., though Simian and Nicad are above four and three
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other clone detectors, their F1 Scores are significantly better than only Duplo.
Simian, Nicad, SimCad, CLW-T1 shares most of the same range of values in
the distribution of F1 Scores. Therefore, they do not provide a significantly
different result with each other.

5. Discussion

There are two primary perspectives of managing code clones: (1) clone track-
ing and (2) clone refactoring. Our research principally focuses on the clone
tracking perspective. A clone tracker’s main task is to suggest similar cloned
co-change candidates when a programmer attempts to change a code fragment.
For suggesting cloned co-change candidates, a clone tracker depends on a clone
detector. Our research compares 12 promising clone detectors based on their
capabilities in suggesting cloned co-change candidates.

According to our investigation, CloneWorks (Type-3 Pattern, and Type-3
Token), Deckard, and CCFinder are the most promising tools for suggesting such
cloned co-change candidates based on the ranking we obtained in Table 6 and
the result of our significance test in Table 7. Based on our overall observation, we
can say that the performance of CloneWorks (Type-3 Pattern/ Token), Deckard,
and CCFinder are much better compared to the other clone detection tools in
detecting cloned co-change candidates during software evolution. As the clone
classes/ pairs generated by different clone detectors played an essential role in
our analysis, we can say that the clone detectors which can group similar clone
fragments into a clone class/ pair efficiently will perform better in detecting
cloned co-change candidates during the commit operation. From our findings,
we can also say that the clone detectors which detect all the clone types such
as Type-1, Type-2, and Type-3 clones can also perform well in detecting cloned
co-change candidates.

When a particular code fragment is changed, we apply the clone detectors
to predict which other similar code fragments might need to be co-changed.
However, some different fragments might also be changed together with the
particular fragment. As we apply only clone detectors, we cannot consider those
dissimilar co-change candidates in our research. We only apply our analysis to
those change candidates whose co-changes are detected by at least one (out of
12) clone detection techniques in our investigation. We believe, removing the
change candidates whose co-change is not detected by any of the clone detectors
lead to a fair comparison among the clone detection tools.

Mondal et al. [6] show that combining Nicad as a clone detection tool with
an association rule mining-based change impact analysis tool (Tarmaq [11]) can
significantly enhance the overall performance of detecting change impact set
in software systems. As that study only included Nicad in their investigation,
our study opens an opportunity to perform a few similar study other clone
detectors which show better performance in our investigation. We find the
few clone detectors such as CloneWorks, Deckard, CCFinder perform better in
detecting cloned co-change candidates compared to Nicad. Therefore, including
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these tools in combination with Tarmaq might also serve better in change impact
analysis. However, a practical evaluation is required to validate this assumption.

In our research, we do not compare the clone detectors considering their
clone detection efficiency. We instead compare the clone detection tools based
on their ability to suggest cloned co-change candidates. Such a comparison
of clone detectors focusing on a particular maintenance perspective was not
made previously. However, suggesting both the cloned and dissimilar co-change
candidates for a target program entity is a vital impact analysis [10] task during
software evolution. Thus, through our research, we investigate which of the clone
detectors can be helpful in change impact analysis to what extent. Findings
from our study can identify which clone detector(s) can be promising for change
impact analysis by finding the cloned co-change candidates. Furthermore, this
study can also contribute to finding possible fixes of inconsistencies in software
systems by analyzing historical discrepancies (due to missing the change in
cloned co-change candidates) and their solutions (e.g., their fixing patterns).

6. Threats to Validity

We use eight subject systems of diverse size and application domains writ-
ten in C and Java programming languages and process thousands of revisions
to rank 12 clone detection techniques for detecting cloned co-change candidates.
The inclusion of more subject systems may increase the generalizability of the
findings. The decision to select subject systems is based on the variety, popular-
ity, used programming languages, and availability of a considerable number of
revisions. We believe our results are not biased by our choice of subject systems
and are distinguished from software maintenance perspectives. As the number
of software revisions in our subject systems is extensive, our results should be
generalizable to the other subject systems written in C or Java programming
languages. Our results should also be generalizable to the programming lan-
guages whose structure is similar to C and Java, such as C++ or C#. It might
be possible that our results are not generalizable to other programming lan-
guages such as different scripting languages (e.g., Python, R, or PHP). We are
detecting clone fragments using clone detectors and process that result to sug-
gest cloned co-change candidates. As the clone detectors used in this study are
established, and these are the most widely used tools for C and Java software
projects [46], their results might not be biased to any particular programming
language. These tools are expected to work equally to all the subject systems
written in C and Java programming languages. Therefore, we expect our re-
sults are generalizable to subject systems written in C and Java programming
languages. However, in the future, we plan to investigate the generalizability of
our technique to other programming languages by including a few more subject
systems written in C#, Go, Python, R, PHP, etc.

The parameters to detect clone fragments used in the 12 clone detectors may
impact the comparison scenario in this study. However, we considered taking
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equivalent configurations (such as similarity threshold, length of tokens, renam-
ing variables, splitting the source code lines, etc.) to minimize such impact.
Therefore, we believe comparing clone detectors based on their detected cloned
fragments and the cloned co-change candidate is made without influencing their
clone detection configurations.

We took both the fully and partially overlapped source code fragments as
the intersecting code fragments from the results of clone detection tools and
the cloned co-change candidates in our ground truth. Taking any other con-
sideration to determine the overlap between two source code fragments might
change the number of overall detected cloned co-change candidates. However,
the change in the overlapping constraints should affect the results of all the
clone detection tools and subject systems equally, and our overall comparison
scenario of clone detection tools should still remain the same. We plan to prac-
tically verify different overlapping constraints in our future studies.

Several code fragments might change together in a commit operation. While
some of these fragments can be similar to one another, and some might be
dissimilar. Similar code fragments co-change (e.g., change together) for ensuring
consistency of the codebase. However, dissimilar code fragments can co-change
because of their underlying dependencies, which could impact the generalization
of this research outcome. As we aim to compare the clone detection tools, we
wanted to discard the dissimilar co-change candidates from our consideration.
If a co-change candidate was not detected as a true positive by any of the
12 clone detectors used in this study, we discarded the candidate. Excluding
these changes, preparing the ground truth of cloned co-change candidates is
essential for a fair comparison of the performance of clone detectors in this
investigation. Using a different set of clone detectors might change the ground
truth of cloned co-change candidates. Still, the ground truth of cloned co-change
candidates in this investigation is accurate and complete for the set of 12 cloned
detectors of this study. We believe that such a consideration is reasonable in
our experiment aiming towards comparing clone detectors. Our findings may
inspire more similar research with a different set of clone detectors in the future.

We did not consider a sliding window protocol that views some consecutive
revisions in a single window to find cloned co-change candidates. There are some
advantages of using the sliding window protocol. The sliding window protocol
could provide a good result if some related cloned co-change candidates are
scattered in two or more consecutive commits. As in this research, we are
comparing 12 clone detectors. The effect of not including a sliding window
protocol will be the same for each of the clone detectors, and thus, it does not
have any impact on the final rank list of the clone detectors. However, we plan
to apply this technique in our future research.

7. Conclusion and Future Work

In this research, we compare different clone detection tools and investigate
their performances in predicting cloned co-change candidates during software
evolution. We selected eight open-source subject systems written in C and Java

24



for our analysis. Our final rank list in Table 6 and summary of significance
test results in Table 7 show that both the Pattern and Token configurations
of the CloneWorks clone detection tool for detecting Type-3 clones perform
significantly better compared to more than 72% of the other clone detectors
used in this study. Deckard and CCFinder are also better compared to more
than 55% of the other tools. CloneWorks (Type-2), ConQAT, iClones also
show better performance than the other remaining tools. Our source codes,
datasets, and other processed results are publicly available [20] for researchers
and practitioners to help continue and reproduce the results of this study.

Although we determined some reasons for the better performance of Deckard,
CloneWorks, and CCFinder in this extensive study, we plan to do some future
work analyzing the internal mechanism of clone detection tools. We also want to
find out how the change of these mechanisms affects the detection of cloned co-
change candidates. In our future work, we also want to investigate the impact of
different similarity scores of different clone detectors in finding cloned co-change
candidates. We also want to include other software systems written in different
programming languages (e.g., C#, Go, Python, R, PHP). We want to consider
a sliding window [47] protocol to consider more than one software revisions in a
group to find cloned co-change candidates in the future extension of this study.
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