
Architectural Patterns for the Design of Federated Learning Systems
Sin Kit Loa,b,∗, Qinghua Lua,b, Liming Zhua,b, Hye-Young Paikb, Xiwei Xua,b and Chen Wanga
aData61, CSIRO, Australia
bUniversity of New South Wales, Australia

ART ICLE INFO

Keywords:
Federated Learning
Pattern
Software Architecture
Machine Learning
Artificial Intelligence

ABSTRACT
Federated learning has received fast-growing interests from academia and industry to tackle the chal-
lenges of data hungriness and privacy in machine learning. A federated learning system can be viewed
as a large-scale distributed system with different components and stakeholders as numerous client de-
vices participate in federated learning. Designing a federated learning system requires software system
design thinking apart from the machine learning knowledge. Although much effort has been put into
federated learning from the machine learning technique aspects, the software architecture design con-
cerns in building federated learning systems have been largely ignored. Therefore, in this paper, we
present a collection of architectural patterns to deal with the design challenges of federated learning
systems. Architectural patterns present reusable solutions to a commonly occurring problem within a
given context during software architecture design. The presented patterns are based on the results of
a systematic literature review and include three client management patterns, four model management
patterns, three model training patterns, and four model aggregation patterns. The patterns are asso-
ciated to the particular state transitions in a federated learning model lifecycle, serving as a guidance
for effective use of the patterns in the design of federated learning systems.

1. Introduction
Federated Learning Overview
The ever-growing use of big data systems, industrial-scale
IoT platforms, and smart devices contribute to the exponen-
tial growth in data dimensions [30]. This exponential growth
of data has accelerated the adoption of machine learning in
many areas, such as natural language processing and com-
puter vision. However, many machine learning systems suf-
fer from insufficient training data. The reason is mainly due
to the increasing concerns on data privacy, e.g., restrictions
on data sharing with external systems for machine learning
purposes. For instance, the General Data Protection Regu-
lation (GDPR) [1] stipulate a range of data protection mea-
sures, and data privacy is now one of the most important eth-
ical principles expected of machine learning systems [22].
Furthermore, raw data collected are unable to be used di-
rectly for model training for most circumstances. The raw
data needs to be studied and pre-processed before being used
for model training and data sharing restrictions increase the
difficulty to obtain training data. Moreover, concept drift [27]
also occurs when new data is constantly collected, replacing
the outdated data. This makes the model trained on previous
data degrades at a much faster rate. Hence, a new technique
that can swiftly produce models that adapt to the concept
drift when different data is discovered in clients is essen-
tial.
To effectively address the lack of training data limitations,
concept drift, and the data-sharing restriction while still en-

Kit.Lo@data61.csiro.au (S.K. Lo); Qinghua.Lu@data61.csiro.au
(Q. Lu); liming.zhu@data61.csiro.au (L. Zhu); h.paik@unsw.edu.au (H.
Paik); Xiwei.Xu@data61.csiro.au (X. Xu); Chen.Wang@data61.csiro.au (C.
Wang)

ORCID(s): 0000-0002-9156-3225 (S.K. Lo); 0000-0002-7783-5183 (Q.
Lu); 0000-0003-4425-7388 (H. Paik); 0000-0002-2273-1862 (X. Xu);
0000-0002-3119-4763 (C. Wang)

Local
model

training

Model
aggregation

Local
model

training

Local
model

training

Task script Local
model

Global
model Client System

owner

Client
device

Client
device

Client
device

Central
Server

Figure 1: Federated Learning Overview.

abling effective data inferences by the data-hungry machine
learning models, Google introduced the concept of feder-
ated learning [33] in 2016. Fig. 1 illustrates the overview
of federated learning. There are three stakeholders in a fed-
erated learning system: (1) learning coordinator (i.e., sys-
tem owner), (2) contributor client - data contributor & local
model trainer, and (3) user client - model user. Note that a
contributor client can also be a user client. There are two
types of system nodes (i.e., hardware components): (1) cen-
tral server, (2) client device.
A Motivation Example
Imagine we use federated learning to train the next-word pre-
diction model in a mobile phone keyboard application. The
learning coordinator is the provider of the keyboard appli-
cation, while contributor clients are the mobile phone users.
The user clients will be the new or existing mobile phone
users of the keyboard application. The differences in own-
ership, geolocation, and usage pattern cause the local data

SK Lo et al.: Preprint submitted to Elsevier Page 1 of 19

ar
X

iv
:2

10
1.

02
37

3v
3 

 [
cs

.L
G

] 
 1

8 
Ju

n 
20

21



Architectural Patterns for the Design of Federated Learning Systems

to possess non-IID1 characteristics, which is a design chal-
lenge of federated learning systems. The federated learning
process starts when a training task is created by the learning
coordinator. For instance, the keyboard application provider
produces and embeds an initial global model into the key-
board applications. The initial global model (includes task
scripts & training hyperparameters) is broadcast to the par-
ticipating client devices. After receiving the initial model,
the model training is performed locally across the client de-
vices, without the centralised collection of raw client data.
Here, the smartphones that have the keyboard application
installed receive the model to be trained. The client devices
typically run on different operating systems and have diverse
communication and computation resources, which is defined
as the system heterogeneity challenges.
Each training round takes one step of gradient descent on
the current model using each client’s local data. In this case,
the smartphones optimise the model using the keyboard typ-
ing data. After each round, the model update is submit-
ted by each participating client device to the central server.
The central server collects all the model updates and per-
forms model aggregation to form a new version of the global
model. The new global model is re-distributed to the client
devices for the next training round. This entire process iter-
ates until the global model converges. As a result, communi-
cation and computation efficiency are crucial as many local
computation and communication rounds are required for the
global model to converge. Moreover, due to the limited re-
sources available on each device, the device owners might
be reluctant to participate in the federated learning process.
Therefore, client motivatability becomes a design challenge.
Furthermore, the central server communicates with multiple
devices for the model exchange which makes it vulnerable to
the single-point-of-failure. The trustworthiness of the cen-
tral server and the possibility of adversarial nodes partici-
pating in the training process also creates system reliability
and security challenges. After the completion of training,
the learning coordinator stores the converged model and de-
ploys it to the user clients. For instance, the keyboard ap-
plication provider stores the converged model and embeds
it to the latest version of the application for existing or new
application users. Here, the different versions of the local
models associated with the global model created need to be
maintained.
Design Challenges
Compared to centralised machine learning, federated learn-
ing is more advantageous from the data privacy perspec-
tive and dealing with the lack of training data. However,
a federated learning system, as a large-scale distributed sys-
tem, presents more architectural design challenges [31], es-
pecially when dealing with the interactions between the cen-
tral server and client devices andmanaging trade-offs of soft-
ware quality attributes. Themain design challenges are sum-

1Non-Identically and Independently Distribution: Highly-skewed and
personalised data distribution that vary heavily between different clients and
affects the model performance and generalisation [37].

marised as follows.
• Global models might have low accuracy, and lack gener-

ality when client devices generate non-IID data. Central-
ising and randomising the data is the approach adopted
by conventional machine learning to deal with data het-
erogeneity but the inherent privacy-preserving nature of
federated learning render such techniques inappropriate.

• To generate high-quality global models that are adaptive
to concept drift, multiple rounds of communication are
required to exchange local model updates, which could
incur high communication costs.

• Client devices have limited resources to perform the mul-
tiple rounds of model training and communications re-
quired by the system, which may affect the model quality.

• As numerous client devices participate in federated learn-
ing, it is challenging to coordinate the learning process
and ensure model provenance, system reliability and se-
curity.

How to select appropriate designs to fulfill different software
quality requirements and design constraints is non-trivial for
such a complex distributed system. Although much effort
has been put into federated learning from the machine learn-
ing techniques side, there is still a gap on the architectural de-
sign considerations of the federated learning systems. A sys-
tematic guidance on architecture design of federated learn-
ing systems is required to better leverage the existing so-
lutions and promote federated learning to enterprise-level
adoption.
Research Contribution
In this paper, we present a collection of patterns for the de-
sign of federated learning systems. In software engineering,
an architectural pattern is a reusable solution to a problem
that occurs commonly within a given context in software de-
sign [6]. Our pattern collection includes three client man-
agement patterns, four model management patterns, three
model training patterns, and fourmodel aggregation patterns.
We define the lifecycle of a model in a federated learning
system and associate each identified pattern to a particular
state transition in the lifecycle.
The main contribution of this paper includes:
• The collection of architectural patterns provides a design

solution pool for practitioners to select from for real-world
federated learning system development.

• The federated learning model lifecycle with architectural
pattern annotations, which serves as a systematic guide
for practitioners during the design and development of a
federated learning system.

Paper Structure
The remainder of the study is organised as follows. Section 2
introduces the research methodology. Section 3 provides an
overview of the patterns in the federated learning lifecycle,

SK Lo et al.: Preprint submitted to Elsevier Page 2 of 19



Architectural Patterns for the Design of Federated Learning Systems

Initial search

Paper
screening

Paper
screening

Snowballing
process

Quality
assessment

Data
extraction/
synthesis

Reporting

Pattern
definition

Extra literature
review

Real-world
application

review

SLR Process

Reporting

Figure 2: Pattern Collection Process.

Table 1

Sources of Patterns.

Category Pattern SLR papers ML/FL papers Real-world applications

Client
management
patterns

Pattern 1: Client registry 0 2 3
Pattern 2: Client selector 4 2 1
Pattern 3: Client cluster 2 2 2

Model
management
patterns

Pattern 4: Message compressor 8 6 0
Pattern 5: Model co-versioning registry 0 0 4
Pattern 6: Model replacement trigger 0 1 3
Pattern 7: Deployment selector 0 0 3

Model training
patterns

Pattern 8: Multi-task model trainer 2 1 3
Pattern 9: Heterogeneous data handler 1 2 0
Pattern 10: Incentive registry 18 1 0

Model
aggregation
patterns

Pattern 11: Asynchronous aggregator 4 1 0
Pattern 12: Decentralised aggregator 5 2 0
Pattern 13: Hierarchical aggregator 4 2 0
Pattern 14: Secure aggregator 31 0 3

followed by the detailed discussions on each pattern. Sec-
tion 4 summarises and discusses some repeating challenges
of federated learning systems and Section 5 presents the re-
lated work. Finally, Section 6 concludes the paper.

2. Methodology
Fig. 2 illustrates the federated learning pattern extraction and
collection process. Firstly, the patterns are collected based
on the results of our previous systematic literature review
(SLR) on federated learning [31]. SLR and situationalmethod
engineering (SME) [9] are some of the renowned systematic
methodologies for derivation of pattern languages. For in-
stance, several pattern derivations on cloud migration and
software architecture have used SLR (e.g., Zdun et al. [48],
Aakash Ahmad et al. [2], and Jamshidi et al. [18]). More-
over, Balalaie et al. [4] have derived the pattern languages
in the context of cloud-native and microservices using situ-
ational method engineering.
For this work, we have adopted the SLR method as the cur-
rently available materials and research works on federated
learning are still highly academic-based. Secondly, we in-
tend to propose design patterns for software architectural de-
sign aspects of building federated learning systems rather
than for their development/engineering processes. This is
because, during the SLR work, we have identified many ar-

chitectural design challenges and lack of systematic design
approaches to federated learning. Furthermore, while SME
has the benefit of offering a systematic methodology for se-
lecting appropriate method components from a repository of
reusable method components, it is more suitable for pattern
extraction of an information system development (ISD) pro-
cess [35].
The SLR was performed according to Kitchenham’s SLR
guideline [23], and the number of final studied papers is
231. During the SLR, we developed a comprehensive map-
ping between federated learning challenges and approaches.
Additionally, we reviewed 22 machine learning and feder-
ated learning papers published after the SLR search cut-off
date (31st Jan 2020) and 22 real-world applications. The
additional literature review on machine learning and feder-
ated learning, and the review of the real-world applications
are conducted based on our past real-world project imple-
mentation experience. Table 1 shows a mapping between
each pattern with its respective number of source papers and
real-world applications. Twelve patterns were initially col-
lected from SLR or additional literature review, whereas the
remaining two patterns were identified through real-world
applications.
We discussed the proposed patterns according to the pattern
form presented in [34]. The form comprehensively describes

SK Lo et al.: Preprint submitted to Elsevier Page 3 of 19



Architectural Patterns for the Design of Federated Learning Systems

Converged

Not
converged

Client
device

State
transition PatternCentral

server

Transmitted

Performance
degrades

Pattern 9:
Heterogeneous

data handler

Pattern 8:
Multi-task

model trainer

Pattern 6: Model
replacement

trigger

Pattern 5:
Model co-versioning

registry

Pattern 10:
Inventive
registry

Pattern 7:
Deployment

selector

Pattern 1:
Client registry

Pattern 2:
Client selector

Pattern 3: 
Client cluster

AggregatedEvaluated

TrainedBroadcastInitiated

DeployedMonitored

Pattern 14:
Secure

aggregator

Pattern 13:
Hierarchical
aggregator

Pattern 12:
Decentralised

aggregator

Pattern 11:
Asynchronous

aggregator

Pattern 4:
Message

compressor

Abandoned

Pattern
enabler

Figure 3: A Model’s Lifecycle in Federated Learning.

the patterns by discussing the Context, Problem, Forces,
Solution, Consequences, Related patterns, and Known-
uses of the pattern.
The Context is the description of the situation where a prob-
lem occurs, in which the solution proposed is applicable, or
the problem is solvable by the pattern. Problem comprehen-
sively elicits the challenges and limitations that occur under
the defined context. Forces describe the reasons and causes
for a specific design or pattern decision to be made to re-
solve the problem. Solution describes how the problem and
the conflict of forces can be resolved by a specific pattern.
Consequences reason about the impact of applying a solu-
tion, specifically on the contradictions among the benefits,
costs, drawbacks, tradeoffs, and liabilities of the solution.
Related patterns record the other patterns from this paper
that are related to the current pattern. Known-uses refer to
empirical evidence that the solution has been used in the real
world.

3. Federated Learning Patterns
Fig. 3 illustrates the lifecycle of a model in a federated learn-
ing system. The lifecycle covers the deployment of the com-
pletely trained global model to the client devices (i.e., model
users) for data inference. The deployment process involves
the communication between the central server and the client
devices. We categorise the federated learning patterns as
shown in Table 2 to provide an overview. There are four
main groups: (1) clientmanagement patterns, (2)modelman-
agement patterns, (3) model training patterns, and (4) model
aggregation patterns.
3.1. Client Management Patterns
Client management patterns describe the patterns that man-
age the client devices’ information and their interaction with

the central server. A client registrymanages the information
of all the participating client devices. Client selector selects
client devices for a specific training task, while client clus-
ter increases the model performance and training efficiency
through grouping client devices based on the similarity of
certain characteristics (e.g., available resources, data distri-
bution).
3.1.1. Pattern 1: Client Registry

Client
registry

Central
Server

Client
device

information

Client
device

Client
device

Client
device

Figure 4: Client Registry.

Summary: A client registry maintains the information of
all the participating client devices for client management.
According to Fig. 4, the client registry is maintained in the
central server. The central server sends the request for in-
formation to the client devices. The client devices then send
the requested information together with the first local model
updates.
Context: Client management is centralised, and global and
local models are exchanged between the central server the

SK Lo et al.: Preprint submitted to Elsevier Page 4 of 19



Architectural Patterns for the Design of Federated Learning Systems

Table 2
Overview of architectural patterns for federated learning

Category Name Summary

Client management
patterns

Client registry Maintains the information of all the participating client devices for client management.

Client selector Actively selects the client devices for a certain round of training according to the predefined
criteria to increase model performance and system efficiency.

Client cluster Groups the client devices (i.e., model trainers) based on their similarity of certain char-
acteristics (e.g., available resources, data distribution, features, geolocation) to increase
the model performance and training efficiency.

Model management
patterns

Message compressor Compresses and reduces the message data size before every round of model exchange to
increase the communication efficiency.

Model co-versioning registry Stores and aligns the local models from each client with the corresponding global model
versions for model provenance and model performance tracking.

Model replacement trigger Triggers model replacement when the degradation in model performance is detected.

Deployment selector Selects and matches the converged global models to suitable client devices to maximise
the global models’ performance for different applications and tasks.

Model training
patterns

Multi-task model trainer Utilises data from separate but related models on local client devices to improve learning
efficiency and model performance.

Heterogeneous data handler Solves the non-IID and skewed data distribution issues through data volume and data
class addition while maintaining the local data privacy.

Incentive registry Measures and records the performance and contributions of each client and provides
incentives to motivate clients’ participation.

Model aggregation
patterns

Asynchronous aggregator Performs aggregation asynchronously whenever a model update arrives without waiting
for all the model updates every round to reduce aggregation latency.

Decentralised aggregator Removes the central server from the system and decentralizes its role to prevent single-
point-of-failure and increase system reliability.

Hierarchical aggregator Adds an edge layer to perform partial aggregation of local models from closely-related
client devices to improve model quality and system efficiency.

Secure aggregator The adoption of secure multiparty computation (MPC) protocols that manages the model
exchange and aggregation security to protect model security.

massive number of distributed client devices with dynamic
connectivity and diverse resources.
Problem: It is challenging for a federated learning system to
track any dishonest, failed, or dropout node. This is crucial
to secure the central server and client devices from adversar-
ial threats. Moreover, to effectively align the model training
process of each client device for each aggregation round, a
record of the connection and training information of each
client device that has interacted with the central server is re-
quired.
Forces: The problem requires to balance the following forces:
• Updatability. The ability to keep track of the participating

devices is necessary to ensure the information recorded is
up-to-date.

• Data privacy. The records of client information expose
the clients to data privacy issues. For instance, the device
usage pattern of users may be inferred from the device
connection up-time, device information, resources, etc.

Solution: A client registry records all the information of
client devices that are connected to the system from the first
time. The information includes device ID, connection up &
downtime, device resource information (computation, com-
munication, power & storage). The access to the client reg-
istry could be restricted according to the agreement between
the central server and participating client devices.

Consequences:

Benefits:
• Maintainability. The client registry enables the system to

effectively manage the dynamically connecting and dis-
connecting clients.

• Reliability. The client registry provides status tracking for
all the devices, which is essential for problematic node
identification.

Drawbacks:
• Data privacy. The recording of the device information on

the central server leads to client data privacy issues.
• Cost. The maintenance of client device information re-

quires extra communication cost and storage cost, which
further surgeswhen the number of client devices increases.

Related patterns: Model Co-Versioning Registry, Client
Selector, Client Cluster, Asynchronous Aggregator, Hierar-
chical Aggregator

Known uses:

• IBM Federated Learning2: Party Stack component man-
ages the client parties of IBM federated learning frame-
work, that contains sub-components such as protocol han-
dler, connection, model, local training, and data handler
2https://github.com/IBM/federated-learning-lib

SK Lo et al.: Preprint submitted to Elsevier Page 5 of 19

https://github.com/IBM/federated-learning-lib


Architectural Patterns for the Design of Federated Learning Systems

for client devices registration and management.
• doc.ai3: Client registry is designed for medical research

applications to ensure that updates received apply to a
current version of the global model, and not a deprecated
global model.

• SIEMENS Mindsphere Asset Manager 4:To support the
collaboration of federated learning clients in industrial IoT
environment, Industrial Metadata Management is intro-
duced as a device metadata and asset data manager.

3.1.2. Pattern 2: Client Selector
Selected

client

Excluded
client

Client
Selector

Central
Server

Client device
information

Selected
client

Figure 5: Client Selector.

Summary: A client selector actively selects the client de-
vices for a certain round of training according to the pre-
defined criteria to increase model performance and system
efficiency. As shown in Fig. 5, the central server assesses
the performance of each client according to the information
received. Based on the assessment results, the second client
is excluded from receiving the global model.
Context: Multiple rounds ofmodel exchanges are performed
and communication cost becomes a bottleneck. Furthermore,
multiple iterations of aggregations are performed and con-
sume high computation resources.
Problem: The central server is burdensome to accommo-
date the communication with massive number of widely-
distributed client devices every round.
Forces: The problem requires the following forces to be bal-
anced:
• Latency. Client devices have system heterogeneity (differ-

ence in computation, communication, & energy resources)
that affect the local model training and global model ag-
gregation time.

• Model quality. Local data are statistically heterogeneous
(different data distribution/quality) which produce local
models that overfit the local data.

Solution: Selecting client devices with predefined criteria
can optimise the formation of the global model. The client

3https://doc.ai/
4https://documentation.mindsphere.io/resources/html/asset-manager

/en-US/index.html

selector on the central server performs client selection ev-
ery round to include the best fitting client devices for global
model aggregation. The selection criteria can be configured
as follows:
• Resource-based: The central server assesses the resources

available on each client devices every training round and
selects the client devices with the satisfied resource status
(e.g., WiFi connection, pending status, sleep time)

• Data-based: The central server examines the information
of the data collected by each client, specifically on the
number of data classes, distribution of data sample vol-
ume per class, and data quality. Based on these assess-
ments, the model training process includes devices with
high-quality data, higher data volume per class, and ex-
cludes the devices with low-quality data, or data that are
highly heterogeneous in comparison with other devices.

• Performance-based: Performance-based client selection
can be conducted through local model performance as-
sessment (e.g., performance of the latest local model or
the historical records of local model performance).

Consequences:

Benefits:
• Resource optimisation. The client selection optimises the

resource usage of the central server to compute and com-
municate with suitable client devices for each aggregation
round, without wasting resources to aggregate the low-
quality models.

• System performance. Selecting clients with sufficient power
and network bandwidth greatly reduces the chances of clients
dropping out and lowers the communication latency.

• Model performance. Selecting clients with the higher lo-
cal model performance or lower data heterogeneity in-
creases the global model quality.

Drawbacks:
• Model generality. The exclusion of models from certain

client devices may lead to the missing of essential data
features and the loss of the global model generality.

• Data privacy. The central server needs to acquire the sys-
tem and resource information (processor’s capacity, net-
work availability, bandwidth, online status, etc.) every
round to perform devices ranking and selection. Access
to client devices’ information creates data privacy issues.

• Computation cost. Extra resources are spent on transfer-
ring of the required information for selection decision-
making.

Related patterns: Client Registry, Deployment Selector

Known uses:

• Google’s FedAvg: FedAvg [33] algorithm includes client
selection that randomly selects a subset of clients for each

SK Lo et al.: Preprint submitted to Elsevier Page 6 of 19

https://doc.ai/
https://documentation.mindsphere.io/resources/html/asset-manager/en-US/index.html
https://documentation.mindsphere.io/resources/html/asset-manager/en-US/index.html


Architectural Patterns for the Design of Federated Learning Systems

round based on predefined environment conditions and
device specification of the client devices.

• In IBM’s Helios [45], there is a training consumption pro-
filing function that fully profiles the resource consumption
for model training on client devices. Based on that pro-
filing, a resource-aware soft-training scheme is designed
to accelerate local model training on heterogeneous de-
vices and prevent stragglers from delaying the collabora-
tive learning process.

• FedCS suggested by OMRON SINIC X Corporation5 sets
a certain deadline for clients to upload the model updates.

• Communication-Mitigated Federated Learning (CMFL)
[40] excludes the irrelevant local updates by identifying
the relevance of a client update by comparing its global
tendency of model updating with all the other clients.

• CDW_FedAvg [49] takes the centroid distance between
the positive and negative classes of each client dataset into
account for aggregation.

3.1.3. Pattern 3: Client Cluster

Client device
cluster B

Client device
cluster A

Central
Server

Figure 6: Client Cluster.

Summary: A client cluster groups the client devices (i.e.,
model trainers) based on their similarity of certain charac-
teristics (e.g., available resources, data distribution, features,
geolocation) to increase the model performance and train-
ing efficiency. In Fig. 6, the client devices are clustered into
2 groups by the central server, and the central server will
broadcast the global model that is more related to the clus-
ters accordingly.
Context: The system trainsmodels over client deviceswhich
have diverse communication and computation resources, re-
sulted in statistical and system heterogeneity challenges.
Problem: Federated learning models generated under non-
IID data properties are deemed to be less generalised. This
is due to the lack of significantly representative data labels
from the client devices. Furthermore, local models may drift
significantly from each other.
Forces: The problem requires to balance the following forces:

5https://www.omron.com/sinicx/

• Computation cost and training time. More computation
costs and longer training time are required to overcome
the non-IID issue of client devices.

• Data privacy. Data privacy contradicts with the Access to
the entire or parts of the client’s raw data is needed by the
learning coordinator to resolve the non-IID issue which
creates data privacy risks.

Solution: Client devices are clustered into different groups
according to their properties (e.g., data distribution, features
similarities, gradient loss). By creating clusters of clients
with similar data patterns, the global model generated will
have better performance for the non-IID-severe client net-
work, without accessing the local data.
Consequences:

Benefits:
• Model quality. The global model created by client clusters

can have a higher model performance for highly person-
alised prediction tasks.

• Convergence speed. The consequent deployed globalmod-
els can have faster convergence speed as the models of
the same cluster can identify the gradient’s minima much
faster when the clients’ data distribution and IIDness are
similar.

Drawbacks:
• Computation cost. The central server consumes extra com-

putation cost and time for client clustering and relation-
ship quantification.

• Data privacy. The learning coordinator (i.e., central server)
requires extra client device information (e.g., data distri-
bution, feature similarities, gradient loss) to perform clus-
tering. This exposes the client devices to the possible risk
of private data leakage.

Related patterns: Client Registry, Client Selector, Deploy-
ment Selector

Known uses:

• Iterative Federated Clustering Algorithm (IFCA)6 is a
framework introduced by UC Berkley and Google to clus-
ter client devices based on the loss values of the client’s
gradient.

• Clustered Federated Learning (CFL)7 uses a cosine simila
rity-based clustering method that creates a bi-partitioning
to group client devices with the same data generating dis-
tribution into the same cluster.

• TiFL [10] is a tier-based federated learning system that
adaptively groups client devices with similar training time
per round to mitigate the heterogeneity problem without
affecting the model accuracy.
6https://github.com/jichan3751/ifca
7https://github.com/felisat/clustered-federated-learning

SK Lo et al.: Preprint submitted to Elsevier Page 7 of 19

https://www.omron.com/sinicx/
https://github.com/jichan3751/ifca
https://github.com/felisat/clustered-federated-learning


Architectural Patterns for the Design of Federated Learning Systems

• Patient clustering in a federated learning system is im-
plemented by Massachusetts General Hospital to improve
efficiency in predicting mortality and hospital stay time
[17].

3.2. Model Management Patterns
Model management patterns include patterns that handle mo
-del transmission, deployment, and governance. A message
compressor reduces the transmitted message size. A model
co-versioning registry records all local model versions from
each client and aligns them with their corresponding global
model. A model replacement trigger initiates a new model
training taskwhen the converged globalmodel’s performance
degrades. A deployment selector deploys the global model
to the selected clients to improve the model quality for per-
sonalised tasks.
3.2.1. Pattern 4: Message Compressor

Message
Compressor

Message
Compressor

Central
ServerClient

device

Figure 7: Message Compressor.

Summary: Amessage compressor reduces themessage data
size before every round of model exchange to increase the
communication efficiency. Fig. 7 illustrates the operation of
the pattern on both ends of the system (client device and cen-
tral server).
Context: Multiple rounds of model exchanges occurs be-
tween a central server and many client devices to complete
the model training.
Problem: Communication cost for model communication
(e.g., transferring model parameters or gradients) is often a
critical bottleneck when the system scales up, especially for
bandwidth-limited client devices.
Forces: The problem requires to balance the following forces:
• Computation cost. High computation costs are required

by the central server to aggregate all the bulky model pa-
rameters collected every round.

• Communication cost. Communication costs are scarce
to communicate the model parameters and gradients be-
tween resource-limited client devices and the central server.

Solution: The model parameters and the training task script
as one message package is compressed before being trans-
ferred between the central server and client devices.
Consequences:

Benefits:
• Communication efficiency. The compression of model pa-

rameters reduces the communication cost and network

throughput for model exchanges.
Drawbacks:
• Computation cost. Extra computation is required for mes-

sage compression and decompression every round.
• Loss of information. The downsizing of the model param-

eters might cause the loss of essential information.
Related patterns: Client Registry, Model Co-Versioning
Registry

Known uses:

• Google Sketched Update [24]: Google proposes two com-
munication efficient update approaches: structured update
and sketched update. Structured update directly learns an
update from a restricted space that can be parametrised
using a smaller number of variables, whereas sketched up-
date compresses the model before sending it to the central
server.

• IBM PruneFL [21] adaptively prunes the distributed pa-
rameters of the models, including initial pruning at a se-
lected client and further pruning as part of the federated
learning process.

• FedCom [15] compresses messages for uplink communi-
cation from the client device to the central server. The
central server produces a convex combination of the pre-
vious global model and the average of updated local mod-
els to retain the essential information of the compressed
model parameters.

3.2.2. Pattern 5: Model Co-versioning Registry

Newer version

Model 
co-versioning

registry

Central
Server1

2

3

1

2 3

1

32

Client
device

Client
device

Client
device

Figure 8: Model Co-versioning Registry.

Summary: Amodel co-versioning registry records all local
model versions from each client and aligns them with their
corresponding global model. This enables the tracing of
model quality and adversarial client devices at any specific
point of the training to improve system accountability. Fig. 8
shows that the registry collects and maps the local model up-
dates to the associated global model versions.
Context: Multiple new versions of local models are gener-
ated from different client devices and one global model ag-
gregated each round. For instance, a federated learning task

SK Lo et al.: Preprint submitted to Elsevier Page 8 of 19



Architectural Patterns for the Design of Federated Learning Systems

that runs for 100 rounds on 100 devices will create 10,000
local models and 100 global models in total.
Problem: With high numbers of local models created each
round, it is challenging to keep track of which local mod-
els contributed to the global model of a specific round. Fur-
thermore, the system needs to handle the challenges of asyn-
chronous updates, client dropouts, model selection, etc.
Forces: The problem requires to balance the following forces:
• Updatability. The system needs to keep track of the local

and globalmodels concerning each client device’s updates
(application’s version or device OS/firmware updates) and
ensure that the information recorded is up-to-date.

• Immutability. The records and storage of the models co-
versions and client IDs needs to be immutable.

Solution: A model co-versioning registry records the local
model version of each client device and the global model
it corresponds to. This enables seamless synchronous and
asynchronous model updates and aggregation. Furthermore,
the model co-versioning registry enables the early-stopping
of complexmodel training (stop trainingwhen the localmodel
overfits and retrieve the best performing model previously).
This can be done by observing the performance of the ag-
gregated global model. Moreover, to provide accountable
model provenance and co-versioning, blockchain is consid-
ered as one alternative to the central server due to immutabil-
ity and decentralisation properties.
Consequences:

Benefits:
• Model quality. The mapping of local models with their

corresponding version of the globalmodel allows the study
of the effect of each local model quality on the global
model.

• Accountability. System accountability improves as stake-
holders can trace the local models that correspond to the
current or previous global model versions.

• System security. It enables the detection of adversarial or
dishonest clients and tracks the local models that poisons
the global model or causes system failure.

Drawbacks:
• Storage cost. Extra storage cost is incurred to store all the

local and global models and their mutual relationships.
The record also needs to be easily retrievable and it is chal-
lenging if the central server host more task.

Related patterns: Client Registry

Known uses:

• DVC8 is an online machine learning version control plat-
form built to make models shareable and reproducible.
8https://dvc.org/

• MLflow Model Registry9 on Databricks is a centralized
model store that provides chronological model lineage,
model versioning, stage transitions, and descriptions.

• Replicate.ai10 is an open-source version control platform
for machine learning that automatically tracks code, hy-
perparameters, training data, weights, metrics, and system
dependencies.

• Pachyderm11 is an online machine learning pipeline plat-
form that uses containers to execute the different steps
of the pipeline and also solves the data versioning prove-
nance issues.

3.2.3. Pattern 6: Model Replacement Trigger

Trigger new
model

production
when

performance
degrades

Model replacement trigger

Central
Server

Client devices

Figure 9: Model Replacement Trigger.

Summary: Fig. 9 illustrates a model replacement trigger
that initiates a new model training task when the current
global model’s performance drops below the threshold value
orwhen a degrade onmodel prediction accuracy is detected.
Context: The client devices use converged global models
for inference or prediction.
Problem: As new data is introduced to the system, the global
model accuracymight reduce gradually. Eventually, with the
degrading performance, the model is no longer be suitable
for the application.
Forces: The problem requires to balance the following forces:
• Model quality. The global model deployed might expe-

rience a performance drop when new data are used for
inference and prediction.

• Performance degradation detection. The system needs
to effectively determine the reason for the global model’s
performance degradation before deciding whether to acti-
vate a new global model generation.

Solution: Amodel replacement trigger initiates a newmodel
training task when the acting global model’s performance

9https://docs.databricks.com/applications/mlflow/model-registry.h
tml

10https://replicate.ai/
11https://www.pachyderm.com/

SK Lo et al.: Preprint submitted to Elsevier Page 9 of 19

https://dvc.org/
https://docs.databricks.com/applications/mlflow/model-registry.html
https://docs.databricks.com/applications/mlflow/model-registry.html
https://replicate.ai/
https://www.pachyderm.com/


Architectural Patterns for the Design of Federated Learning Systems

drops below the threshold value. It will compare the per-
formance of the deployed global model on a certain number
of client devices to determine if the degradation is a global
event. When the global model performance is lower than
the preset threshold value for more than a fixed number of
consecutive times, given that performance degradation is a
global event, a new model training task is triggered.
Consequences:

Benefits:
• Updatability. The consistent updatability of the global

model helps to maintain system performance and reduces
the non-IID data effect. It is especially effective for clients
that generate highly personalised data that causes the ef-
fectiveness of the global model to reduce much faster as
new data is generated.

• Model quality. The ongoing model performance monitor-
ing is effective to maintain the high quality of the global
model used by the clients.

Drawbacks:
• Computation cost. The client devices will need to perform

model evaluation periodically that imposes extra compu-
tational costs.

• Communication cost. The sharing of the evaluation re-
sults among clients to know if performance degradation
is a global event is communication costly.

Related patterns: Client Registry, Client Selector, Model
Co-versioning Registry

Known uses:

• Microsoft Azure Machine Learning Designer12 provides
a platform for machine learning pipeline creation that en-
ables models to be retrained on new data.

• Amazon SageMaker13 providesmodel deployment andmon-
itoring services to maintain the accuracy of the deployed
models.

• Alibaba Machine Learning Platform14 provides end-to-
end machine learning services, including data process-
ing, feature engineering, model training, model predic-
tion, and model evaluation.

3.2.4. Pattern 7: Deployment Selector
Summary: A deployment selector deploys the converged
global model to the selected model users to improve the pre-
diction quality for different applications and tasks. As shown
in Fig. 10, different versions of converged models are de-
ployed to different groups of clients after evaluation.
Context: Client devices train local models using multitask
federated learning settings (a model is trained using data

12https://azure.microsoft.com/en-au/services/machine-learning/desi
gner/

13https://aws.amazon.com/sagemaker/
14https://www.alibabacloud.com/product/machine-learning

Client device
group 1

Client device
group 2

Client device
group 3

Deployment selector

Central
Server

1

1 2 3

32

Figure 10: Deployment Selector.

from multiple applications to perform similar and related
tasks). These models need to be deployed to suitable groups
of client devices.
Problem: Due to the inherent diversity and non-IID distri-
bution among local data, the globally trained model may not
be accurate enough for all clients or tasks.
Forces: The problem requires to balance the following forces:
• Identification of clients. The central server needs to match

and deploy the global models to the different groups of
client devices.

• Training and storage of different models. The central server
needs to train and store different global models for diverse
clients or applications.

Solution: Adeployment selector examines and selects clients
(i.e., model users) to receive the trained global model spec-
ified for them based on their data characteristics or appli-
cations. The deployment selector deploys the model to the
client devices once the globalmodel is completely trained.
Consequences:

Benefits:
• Model performance. Deploying converged global models

to suitable groups of client devices enhances the model
performance to the specific groups of clients or applica-
tions.

Drawbacks:
• Cost. There are extra costs for training of multiple per-

sonalised global models, deployment selection, storage of
multiple global models.

• Model performance. The statistical heterogeneity ofmodel
trainers produces personalised local models, which is then
generalised through FedAvg aggregation. We need to con-
sider the performance trade-off of the generalised global
model deployed for differentmodel users and applications.

SK Lo et al.: Preprint submitted to Elsevier Page 10 of 19

https://azure.microsoft.com/en-au/services/machine-learning/designer/
https://azure.microsoft.com/en-au/services/machine-learning/designer/
https://aws.amazon.com/sagemaker/
https://www.alibabacloud.com/product/machine-learning


Architectural Patterns for the Design of Federated Learning Systems

• Data privacy. Data privacy challenges exist when the cen-
tral server collects the client information to identify suit-
able models for different clients. Moreover, the global
model might be deployed to model users that have never
joined the model training process.

Related patterns: Client Registry, Client Selector

Known uses:

• AzureMachine Learning15 supportsmass deploymentwith
a step of compute target selection.

• Amazon SageMaker16 can hostmultiplemodels withmulti-
model endpoints.

• Google Cloud17 uses model resources to manage different
versions of models.

3.3. Model Training Patterns
Patterns about the model training and data preprocessing are
group together as model training patterns, including multi-
task model trainer that tackles non-IID data characteristics,
heterogeneous data handler that deals with data heterogene-
ity in training datasets, and incentive registry that increases
the client’s motivatability through rewards.
3.3.1. Pattern 8: Multi-Task Model Trainer

Central
Server

Client
device

Client
device

Figure 11: Multi-Task Model Trainer.

Summary: In federated learning, a multi-task model trainer
trains separated but related models on local client devices
to improve learning efficiency and model performance. As
shown in Fig. 11, there are two groups of applications: (i)
text-related applications (e.g., messaging, email, etc.), and
(ii) image-related applications (camera, video, etc.). The re-
lated models are trained on client devices using data of re-
lated tasks.
Context: Local data has statistical heterogeneity property
where the data distribution among different clients is skewed
and a global model cannot capture the data pattern of each
client.

15https://docs.microsoft.com/en-us/azure/machine-learning/concept-
model-management-and-deployment

16https://docs.aws.amazon.com/sagemaker/latest/dg/multi-model-endp
oints.html

17https://cloud.google.com/ai-platform/prediction/docs/deploying-m
odels

Problem: Federated learning models trained with non-IID
data suffer from low accuracy and are less generalised to
the entire dataset. Furthermore, the local data that is highly
personalised to the device users’ usage pattern creates local
models that diverge in different directions. Hence, the global
model may have relatively low averaged accuracy.
Forces: The problem requires to balance the following forces:
• Computation cost. The complex model that solves the

non-IID issue consumes more computation and energy re-
sources every round compared to general federated model
training. It also takes longer to compute all the training
results from the different tasks before submitting them to
the central server.

• Data privacy. To address the non-IID issue, more infor-
mation from the local data needs to be explored to un-
derstand the data distribution pattern. This ultimately ex-
poses client devices to local data privacy threats.

Solution: The multi-task model trainer performs similar-
but-related machine learning tasks on client devices. This
enables the local model to learn from more local data that
fit naturally to the related local models for different tasks.
For instance, a multi-task model for the next-word predic-
tion task is trained using the on-device text messages, web
browser search strings, and emails with similar mobile key-
board usage patterns. MOCHA [38] is a state-of-the-art fed-
erated multi-task learning algorithm that realises distributed
multi-task learning on federated settings.
Consequences:

Benefits:
• Model quality. Multi-task learning improves the model

performance by considering local data and loss in opti-
mization and obtaining a local weight matrix through this
process. The local model fits for non-IID data in each
node better than a global model.

Drawbacks:
• Model quality. Multi-task training often works only with

convex loss functions and performs weak on non-convex
loss functions.

• Model portability. As each client has a different model,
the model’s portability is a problem that makes it hard to
apply multi-task training on cross-device FL.

Related patterns: Client Registry, Model Co-versioning Reg-
istry, Client Cluster, Deployment Selector

Known uses:

• MultiModel18 is a neural network architecture by Google
that simultaneously solves several problems spanningmul-
tiple domains, including image recognition, translation,
and speech recognition.
18https://ai.googleblog.com/2017/06/multimodel-multi-task-machine-

learning.html

SK Lo et al.: Preprint submitted to Elsevier Page 11 of 19

https://docs.microsoft.com/en-us/azure/machine-learning/concept-model-management-and-deployment
https://docs.microsoft.com/en-us/azure/machine-learning/concept-model-management-and-deployment
https://docs.aws.amazon.com/sagemaker/latest/dg/multi-model-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/multi-model-endpoints.html
https://cloud.google.com/ai-platform/prediction/docs/deploying-models
https://cloud.google.com/ai-platform/prediction/docs/deploying-models
https://ai.googleblog.com/2017/06/multimodel-multi-task-machine-learning.html
https://ai.googleblog.com/2017/06/multimodel-multi-task-machine-learning.html


Architectural Patterns for the Design of Federated Learning Systems

• MT-DNN19 is an open-source natural language understand-
ing toolkit by Microsoft to train customized deep learning
models.

• Yahoo Multi-Task Learning for Web Ranking is a multi-
task learning framework developed by Yahoo! Labs to
rank in web search.

• VIRTUAL [12] is an algorithm for federated multi-task
learning with non-convex models. The server and devices
are treated as a star-shaped bayesian network, and model
learning is performed on the network using approximated
variational inference.

3.3.2. Pattern 9: Heterogeneous Data Handler

Heterogenous
data handler

Central
Server

Heterogenous
data handler

Client
device

Figure 12: Heterogeneous Data Handler.

Summary: Heterogeneous data handler solves the non-IID
and skewed data distribution issues through data volume and
data class addition (e.g., data augmentation or generative ad-
versarial network) while maintaining the local data privacy.
The pattern is illustrated in Fig. 12, where the heterogeneous
data handler operates at both ends of the system.
Context: Client devices possess heterogeneous data charac-
teristics due to the highly personalized data generation pat-
tern. Furthermore, the raw local data cannot be shared so the
data balancing task becomes extremely challenging.
Problem: The imbalanced and skewed data distribution of
client devices produces local models that are not generalised
to the entire client network. The aggregation of these local
models reduces global model accuracy.
Forces: The problem requires the following forces to be bal-
anced:
• Data efficiency. It is challenging to articulate the suitable

data volume and classes to be augmented to solve data
heterogeneity on local client devices.

• Data accessibility. The heterogeneous data issue that ex-
ists within the client device can be solved by collecting
all the data under a centralized location. However, this
violates the data privacy of client devices.

Solution: A heterogeneous data handler balances the data
distribution and solves the data heterogeneity issue in the
client devices through data augmentation and federated dis-
tillation. Data augmentation solves data heterogeneity by
generating augmented data locally until the data volume is
the same across all client devices. Furthermore, the classes

19https://github.com/microsoft/MT-DNN

in the datasets are also populated equally across all client de-
vices. Federated distillation enables the client devices to ob-
tain knowledge from other devices periodically without di-
rectly accessing the data of other client devices. Other meth-
ods includes taking the quantified data heterogeneity weigh-
tage (e.g, Pearson’s correlation, centroid averaging-distance,
etc.) into account for model aggregation.
Consequences:

Benefits:
• Model quality. By solving the non-IID issue of local datasets,

the performance and generality of the global model are
improved.

Drawbacks:
• Computation cost. It is computationally costly to deal

with data heterogeneity together with the localmodel train-
ing.

Related patterns: Client Registry, Client Selector, Client
Cluster

Known uses:

• Astreae [13] is a self-balancing federated learning frame-
work that alleviates the imbalances by performing global
data distribution-based data augmentation.

• Federated Augmentation (FAug) [19] is a data augmenta-
tion scheme that utilises a generative adversarial network
(GAN) which is collectively trained under the trade-off
between privacy leakage and communication overhead.

• Federated Distillation (FD) [3] is a method that adopted
knowledge distillation approaches to tackle the non-IID
issue by obtaining the knowledge from other devices dur-
ing the distributed training process, without accessing the
raw data.

3.3.3. Pattern 10: Incentive Registry

Smart
contract

Incentives

Blockchain

Figure 13: Incentive Registry.

Summary: An incentive registrymaintains the list of partic-
ipating clients and their rewards that correspond to clients’
contributions (e.g., data volume, model performance, com-
putation resources, etc.) to motivate clients’ participation.
Fig. 13 illustrates a blockchain & smart contract-based in-
centive mechanism.

SK Lo et al.: Preprint submitted to Elsevier Page 12 of 19

https://github.com/microsoft/MT-DNN


Architectural Patterns for the Design of Federated Learning Systems

Context: The model training participation rate of client de-
vices is low while the high participation rate is crucial for
the global model performance.
Problem: Although the system relies greatly on the par-
ticipation of clients to produce high-quality global models,
clients are not mandatory to join the model training and con-
tribute their data/resources.
Forces: The problem requires to balance the following forces:
• Incentive scheme. It is challenging to formulate the form

of rewards to attract different clients with different partici-
pation motives. Furthermore, the incentive scheme needs
to be agreed upon by both the learning coordinator and the
clients, e.g., performance-based, data-contribution-based,
resource-contribution-based, and provision-frequency-
based.

• Data privacy. To identify the contribution of each client
device, the local data and client information is required
to be studied and analysed by the central server. This ex-
poses the client devices’ local data to privacy threats.

Solution: An incentive registry records all client’s contri-
butions and incentives based on the rate agreed. There are
various ways to formulate the incentive scheme, e.g., deep
reinforcement learning, blockchain/smart contracts, and the
Stackelberg game model.
Consequences:

Benefits:
• Client motivatability. The incentive mechanism is effec-

tive in attracting clients to contribute data and resources
to the training process.

Drawbacks:
• System security. There might be dishonest clients that

submit fraudulent results to earn rewards illegally and harm
the training process.

Related patterns: Client Registry, Client Selector

Known uses:

• FLChain [5] is a federated learning blockchain providing
an incentive scheme for collaborative training and a mar-
ket place for model trading.

• DeepChain [42] is a blockchain-based collaborative train-
ing framework with an incentive mechanism that encour-
ages parties to participate in the deep learningmodel train-
ing and share the obtained local gradients.

• FedCoin [29] is a blockchain-based peer-to-peer payment
system for federated learning to enable ShapleyValue (SV)
based reward distribution.

3.4. Model Aggregation Patterns
Model aggregation patterns are design solutions of model
aggregation used for different purposes. Asynchronous ag-
gregator aims to reduce aggregation latency and increase

system efficiency, whereas decentralised aggregator targets
to increase system reliability and accountability. Hierarchi-
cal aggregator is adopted to improve model quality and op-
timises resources. Secure aggregator is designed to protect
the models’ security.
3.4.1. Pattern 11: Asynchronous Aggregator

1st
aggregation

2nd
aggregation

Nth
 aggregation

...

Client
device

Client
device

Client
device

Figure 14: Asynchronous Aggregator.

Summary: To increase the global model aggregation speed
every round, the central server can perform model aggrega-
tion asynchronously whenever a model update arrives with-
out waiting for all the model updates every round. In Fig. 14,
the asynchronous aggregator pattern is demonstrated as the
first client device asynchronously uploads its local model
during the second aggregation round while skipping the first
aggregation round.
Context: In conventional federated learning, the central server
receives all local model updates from the distributed client
devices synchronously and performs model aggregation ev-
ery round. The central server needs to wait for every model
to arrive before performing the model aggregation for that
round. Hence, the aggregation time depends on the lastmodel
update that reaches the central server.
Problem: Due to the difference in computation resources,
the model training lead time is different per device. Further-
more, the difference in bandwidth availability, communica-
tion efficiency affects the model’s transfer rate. Therefore,
the delay in model training and transfer increases the latency
in global model aggregation.
Forces: The problem requires the following forces to be bal-
anced:
• Model quality. There will be possible bias in the global

model if not all local model updates are aggregated in ev-
ery iteration as important information or features might
be left out.

• Aggregation latency. The aggregation of local models can
only be performed when all the model updates are col-
lected. Therefore, the latency of the aggregation process

SK Lo et al.: Preprint submitted to Elsevier Page 13 of 19



Architectural Patterns for the Design of Federated Learning Systems

is affected by the slowest model update that arrives at the
central server.

Solution: The global model aggregation is conducted when-
ever a model update is received, without being delayed by
other clients. Then the server starts the next iteration and dis-
tributes the new central model to the clients that are ready for
training. The delayed model updates that are not included in
the current aggregation roundwill be added in the next round
with some reduction in the weightage, proportioned to their
respective delayed time.
Consequences:

Benefits:
• Low aggregation latency. Faster aggregation time per round

is achievable as there is no need to wait for the model up-
dates from other clients for the aggregation round. The
bandwidth usage per iteration is reduced as fewer local
model updates are transferred and receive simultaneously
every round.

Drawbacks:
• Communication cost. The number of iteration to collect

all local mode updates increases for the asynchronous ap-
proach. More iterations are required for the entire train-
ing process to train the model till convergence compares
to synchronous global model aggregation.

• Model bias. The global model of each round does not con-
tain all the features and information of every local model
update. Hence the global model might have a certain level
of bias in prediction.

Related patterns: Client Registry, Client Selector, Model
Co-versioning Registry, Client Update Scheduler

Known uses:

• Asynchronous Online Federated Learning (ASO-fed) [11]
is a framework for federated learning that adopted asyn-
chronous aggregation. The central server update the global
model whenever it receives a local update from one client
device (or several client devices if the local updates are re-
ceived simultaneously). On the client device side, online-
learning is performed as data continue to arrive during the
global iterations.

• Asynchronous federated SGD-Vertical Partitioned (AFSGD-
VP) [14] algorithm uses a tree-structured communication
scheme to perform asynchronous aggregation. The algo-
rithm does not need to align the iteration number of the
model aggregation from different client devices to com-
pute the global model.

• Asynchronous Federated Optimization (FedAsync) [43] is
an approach that leverages asynchronous updating tech-
nique and avoids server-side timeouts and abandoned rounds
while requires no synchronous model broadcast to all the
selected client devices.

Blockchain

Figure 15: Decentralised Aggregator.

3.4.2. Pattern 12: Decentralised Aggregator
Summary: A decentralised aggregator improves system re-
liability and accountability by removing the central server
that is a possible single-point-of-failure. Fig. 15 illustrates
the decentralised federated learning system built using blockchain
and smart contract, while the model updates are performed
through the exchange between neighbour devices.
Context: The model training and aggregation are coordi-
nated by a central server and both the central server and the
owner may not be trusted by all the client devices that join
the training process.
Problem: In FedAvg, all the chosen devices have to submit
the model parameters to one central server every round. This
is extremely burdensome to the central server and network
congestion may occur. Furthermore, centralised federated
learning possesses a single-point-of-failure. Data privacy
threats may also occur if the central server is compromised
by any unauthorised entity. The mutual trust between the
client devices and the central server may not be specifically
established.
Forces: The problem requires to balance the following forces:
• Decentralised model management. The federated learn-

ing systems face challenges to collect, store, examine, and
aggregate the local models due to the removal of the cen-
tral server.

• System ownership. Currently, the central server is own by
the learning coordinator that creates the federated learning
jobs. The removal of the central server requires the re-
definition of system ownership. It includes the authority
and accessibility of learning coordinator in the federated
learning systems.

Solution: A decentralised aggregator replaces the central
server’s role in a federated learning system. The aggregation
and update of the models can be performed through peer-
to-peer exchanges between client devices. First, a random
client from the system can be an aggregator by requesting
the model updates from the other clients that are close to it.
Simultaneously, the client devices conduct local model train-
ing in parallel and send the trained local models to the aggre-
gator. The aggregator then produces a new global model and
sends it to the client network. Blockchain is the alternative
to the central server for model storage that prevents single-

SK Lo et al.: Preprint submitted to Elsevier Page 14 of 19



Architectural Patterns for the Design of Federated Learning Systems

point-of-failure. The ownership of the blockchain belongs to
the learning coordinator that creates the new training tasks
and maintains the blockchain. Furthermore, the record of
models on a blockchain is immutable that increases the reli-
ability of the system. It also increases the trust of the system
as the record is transparent and accessible by all the client
devices.
Consequences:

Benefits:
• System reliability. The removal of single-point-of-failure

increases the system reliability by reducing the security
risk of the central server from any adversarial attack or
the failure of the entire training process due to the mal-
function of the central server.

• System accountability. The adoption of blockchain pro-
motes accountability as the records on a blockchain is im-
mutable and transparent to all the stakeholders.

Drawbacks:
• Latency. Client device as a replacement of the central

server for model aggregation is not ideal for direct com-
munication with multiple devices (star-topology). This
may cause latency in the model aggregation process due
to blockchain consensus protocols.

• Computation cost. Client devices have limited computa-
tion power and resource to performmodel training and ag-
gregation parallel. Even if the training process and the ag-
gregation is performed sequentially, the energy consump-
tion to perform multiple rounds of aggregation is very
high.

• Storage cost. High storage cost is required to store all the
local and global models on storage-limited client devices
or blockchain.

• Data privacy. Client devices can access the record of all
themodels under decentralised aggregation and blockchain
settings. This might expose the privacy-sensitive infor-
mation of the client devices to other parties.

Related patterns: Model Co-versioning Registry, Incentive
Registry

Known uses:

• BrainTorrent [36] is a server-less, peer-to-peer approach
to perform federated learning where clients communicate
directly among themselves, specifically for federated learn-
ing in medical centers.

• FedPGA [20] is a decentralised aggregation algorithm de-
veloped from FedAvg. The devices in FedPGA exchange
partial gradients rather than full model weights. The par-
tial gradient exchange pulls and merges the different slice
of the updates from different devices and rebuild a mixed
update for aggregation.

• A fully decentralised framework [26] is an algorithm in
which users update their beliefs by aggregate information
from their one-hop neighbors to learn a model that best
fits the observations over the entire network.

• A Segmented gossip approach [16] splits a model into
segmentation that contains the same number of non-overlapping
model parameters. Then, the gossip protocol is adopted
where each client stochastically selects a few other clients
to exchange the model segmentation for each training it-
eration without the orchestration of a central server.

3.4.3. Pattern 13: Hierarchical Aggregator

Edge
server
1

Edge
server
2

Central
Server

Client
device

Client
device

Client
device

Client
device

Client
device

Figure 16: Hierarchical Aggregator.

Summary: To reduce non-IID effects on the global model
and increase system efficiency, a hierarchical aggregator adds
an intermediate layer (e.g., edge server) to perform partial
aggregations using the local model parameters from closely-
related client devices before the global aggregation. In Fig. 16,
edge servers are added as an intermediate layer between the
central server and client devices to serve the client devices
that are closer to them.
Context: The communication between the central server
and the client devices is slowed down or frequently disrupted
due to being physically distant from each other and are wire-
lessly connected.
Problem: The central server can access and store more data
but requires high communication overhead and suffers from
latency due to being physically distant from the client de-
vices. Moreover, client devices possess non-IID character-
istics that affect global model performance.
Forces: The problem requires the following forces to be bal-
anced:
• System efficiency. The system efficiency of the server-

client setting to perform federated learning is low, as the
central server is burdensome to accommodate the commu-
nication and themodel aggregations of thewidely-distributed
client devices.

• Data heterogeneity. In the server-client setting of a fed-
erated learning system, the data heterogeneity character-

SK Lo et al.: Preprint submitted to Elsevier Page 15 of 19



Architectural Patterns for the Design of Federated Learning Systems

istics of client devices become influential and dominant
to the global model production, as the central server deals
with all the client devices that generate non-IID data.

Solution: A hierarchical aggregator adds edge servers be-
tween the central server and client devices. The combination
of server-edge-client architecture can improve both compu-
tation and communication efficiency of the federated model
training process. Edge servers collect local models from the
nearest client devices, a subset of all the client devices. Af-
ter every k1 round of local training on each client, each edge
server aggregates its clients’ models. After every k2 edge
model aggregations, the cloud server aggregates all the edge
servers’ models, which means the communication with the
central server happens every k1k2 local updates [28].
Consequences:

Benefits:
• Communication efficiency. The hierarchical aggregators

speed up the global model aggregation and improve com-
munication efficiency.

• Scalability. Adding an edge layer helps to scale the system
by improving the system’s ability to handling more client
devices.

• Data heterogeneity and non-IID reduction. The partial
aggregation in a hierarchicalmanner aggregates localmod-
els that have similar data heterogeneity and non-IIDness
before the global aggregation on the central server. This
greatly reduces the effect of data heterogeneity and non-
IIDness on global models.

• Computation and storage efficiency. The edge devices are
rich with computation and storage resources to perform
partial model aggregation. Furthermore, edge devices are
nearer to the client devices which increase the model ag-
gregation and computation efficiency.

Drawbacks:
• System reliability. The failure of edge devices may cause

the disconnection of all the client devices under those edge
servers and affect the model training process, model per-
formance, and system reliability.

• System security. Edge servers could become security breach
points as they have lower security setups than the central
server and the client devices. Hence, they are more prone
to network security threats or becoming possible points-
of-failure of the system.

Related patterns: Client Registry, Client Cluster, Model
Co-versioning Registry

Known uses:

• HierFAVG is an algorithm that allowsmultiple edge servers
to perform partial model aggregation incrementally from
the collected updates from the client devices.

• Hierarchical Federated Learning (HFL) enables hierarchi-
cal model aggregation in large scale networks of client de-
vices where communication latency is prohibitively large
due to limited bandwidth. The HFL seeks a consensus
on the model and uses edge servers to aggregate model
updates from client devices that are geographically near.

• Federated Learning + Hierarchical Clustering (FL+HC)
is the addition of a hierarchical clustering algorithm to the
federated learning system. The cluster is formed accord-
ing to the data distributions similarity based on the fol-
lowing distance metrics: (1) Manhattan, (2) Euclidean,
(3) Cosine distance metrics.

• Astraea is a federated learning framework that tackles non-
IID characteristics of federated clients. The framework
introduces a mediator to the central server and the client
devices to balance the skewed client data distributions.
The mediator performs the z-score-based data augmenta-
tion and downsampling to relieve the global imbalanced
of training data.

3.4.4. Pattern 14: Secure Aggregator

Secure
aggregator

Central
Server

Client
device

Client
device

Secure
aggregator

Secure
aggregator

Figure 17: Secure Aggregator.

Summary: A security aggregator manages the model ex-
change and aggregation security protocols to protect model
security. Fig. 17 illustrates the security aggregator on each
components with the security protocols embedded in them.
Context: The central server sends global models to any ex-
isting or unknown device every round with no data privacy
and security protocols that protect the communication from
unauthorised access. Furthermore, model parameters con-
tain pieces of private user information that can be inferred
by the data-hungry machine learning algorithms.
Problem: There are no securitymeasures to tackle the honest-
but-curious and active adversary security threats which exist
in federated learning systems.
Forces: The problem requires to balance the following forces:
• Client device security. Client device security issues exist

when dishonest andmalicious client devices join the train-
ing process and poison the overall model performance by
disrupting the training process or providing false updates
to the central server.

SK Lo et al.: Preprint submitted to Elsevier Page 16 of 19



Architectural Patterns for the Design of Federated Learning Systems

• Data security. Data security of the client devices is chal-
lenged when the gradients or model parameters are in-
ferred by unauthorised parties through the data-hungry
machine learning algorithms.

Solution: A security aggregator handles the secure mul-
tiparty computation (SMC) protocols for model exchanges
and aggregations. The protocols provide security proof to
guarantee that each party knows only its input and output.
For instance, homomorphic encryption is a method to en-
crypt the models and only allow authorised client devices
and the central server to decrypt and access themodels. Pair-
wise masking and differential privacy (DP) methods are ap-
plied to reduce the interpretability of the model by unautho-
rised party [46]. The technique involves adding noise to the
parameters or gradient or uses a generalised method.
Consequences:

Benefits:
• Data security. The secure aggregator protects the model

from being access by adversarial and unauthorised parties
through homomorphic encryptions and prevents informa-
tion leakage due to the data-hungry property of machine
learning models.

Drawbacks:
• System efficiency. The extra security processes affect the

system efficiency if excessive security steps are required
every round for every device. It also lowers the training
and aggregation speed due to encryption and decryption
time.

• Model performance-privacy trade-off. The model perfor-
mance is affected if the model privacy methods aggres-
sively interfere with the model’s interpretability due to
being excessively obscure.

• Compromised key. For encryption and decryption func-
tions, the possible compromise of the security keys in-
creases the privacy threat.

Related patterns: Client Registry, Model Co-versioning Reg-
istry

Known uses:

• SecAgg[7] a practical protocol by Google for secure ag-
gregation in the federated learning settings.

• HybridAlpha [44] is a framework that manages the client
devices that join the federated learning process. The se-
curity operation includes functional encryption, DP, and
SMC.

• TensorFlow Privacy Library20 provides an implementa-
tion of DP-SGD machine learning.
20https://github.com/tensorflow/privacy/

• ZamaAI21 is an AI service platform that provides encryp-
tion technology that uses a homomorphic compiler to con-
vert the model into an end-to-end encrypted parameters.

• Simple Encrypted Arithmetic Library (SEAL22) is a ho-
momorphic encryptionAPI introduced byMicrosoft AI to
allow computations to be performed directly on encrypted
data.

4. Discussion
Various patterns are proposed to improve the architectural
design challenges of a federated learning system. The main
challenges include communication& computation efficiency,
data privacy, model performance, system security, and relia-
bility. First, client registry, client selector, and client cluster
are proposed for client device management in the job cre-
ation stage. These patterns manage client devices to improve
model performance, system, and training efficiency.
During the model training stage, the performance trade-off
often occurs due to the non-IID nature of the local data. The
patterns proposed to address this issue are heterogeneous
data handler and incentive registry. Furthermore, the non-
IID data that enhances the local personalisation of the model
also hurts the generalisation of the global model produced.
The patterns proposed to address this issue are client clus-
ter, hierarchical aggregator, multi-task model trainer, and
deployment selector. Specifically, multi-task model trainer
adopts multi-task or transfer learning techniques to learn dif-
ferent models or personalise a global model on local data to
optimise the model performance for clients with different lo-
cal data characteristics, whereas the deployment selector ef-
fectively selects the user clients to receive the personalised
models that fit their local data.
For the model exchange and aggregation stages, communi-
cation and computation efficiency become a system bottle-
neck. To effectively tackle these issues, client selector, client
cluster, deployment selector, asynchronous aggregator, and
hierarchical aggregator are embedded in the system to opti-
mise resource consumption. However, these patterns require
extra client information (i.e., resource or performance) to
perform the selection or scheduling of updates. Intuitively,
the collection and analysis of the client information on the
central server may lead to another form of data privacy vio-
lation. Furthermore, extra computation and communication
resources are consumed to collect and analyse the client in-
formation, in addition to the model training task and the fun-
damental tasks of the client devices. Hence, message com-
pressor and hierarchical aggregator are proposed to tackle
these issues. Moreover, incentive registry is proposed to en-
courage more client devices to join the training to improve
the model performance.
The system security issue is present due to the distributed
ownership of federated learning system components. The

21https://zama.ai/
22https://www.microsoft.com/en-us/research/project/microsoft-seal/

SK Lo et al.: Preprint submitted to Elsevier Page 17 of 19

https://github.com/tensorflow/privacy/
https://zama.ai/
https://www.microsoft.com/en-us/research/project/microsoft-seal/


Architectural Patterns for the Design of Federated Learning Systems

client nodes are mostly owned by different parties which are
not governed by the system owner. Therefore, unauthorised
clients may join the system and obtain model parameters
from the system. Furthermore, adversarial clients may harm
the model or system performance by uploading dishonest
updates. Secure aggregator, model co-versioning registry,
and client registry aim to solve these challenges. Lastly, the
trustworthiness between the client devices and the central
server is also a challenge to gain the participation of clients.
The central server may also be a single-point-of-failure that
may affect the reliability of the system. Hence, decentralised
aggregator is proposed to solve the issue.

5. Related Work
In many real-world scenarios, machine learning applications
are usually embedded as a software component to a larger
software system at enterprise level. Hence, to promote enter-
prise level adoption of machine learning-based applications,
many researchers view machine learning models as a com-
ponent of a software system so that the challenges in building
machine learning models can be tackled through systematic
software engineering approaches.
Wan et al. [39] studied how the adoption of machine learn-
ing changes software development practices. The work char-
acterises the differences in various aspects of software engi-
neering and task involved for machine learning system de-
velopment and traditional software development. Lwakatare
et al. [32] propose a taxonomy that depicts maturity stages
of use of machine learning components in the industrial soft-
ware system andmapped the challenges to themachine learn-
ing pipeline stages.
Building machine learning models is becoming an engineer-
ing discipline where practitioners take advantage of tried-
and-proven methods to address recurring problems [25].
Washizaki et al. [41] studies the machine learning design
patterns and architectural patterns. The authors also pro-
posed an architectural pattern for machine learning for im-
proving operational stability [47]. The work separates ma-
chine learning systems’ components into business logic and
machine learning components and focuses on the machine
learning pipeline management, data management, and ma-
chine learning model versioning operations.
The research on federated learning system design was first
done by Bonawitz et. al [8], focusing on the high-level de-
sign of a basic federated learning system and its protocol def-
inition. However, there is no study on the definition of ar-
chitecture patterns or reusable solutions to address federated
learning design challenges currently. Our work addresses
this particular gap with respect to software architecture de-
signs for federated learning as a distributed software system.
To the best of our knowledge, this is the first comprehensive
and systematic collection of federated learning architectural
patterns. The outcomes are intended to provide architectural
guidance for practitioners to better design and develop fed-
erated learning systems.

6. Conclusion
Federated learning is a data privacy-preserving, distributed
machine learning approach to fully utilise the data and re-
sources on IoT and smartmobile devices. Being a distributed
system with multiple components and different stakehold-
ers, architectural challenges need to be solved before feder-
ated learning can be effectively adopted in the real-world.
In this paper, we present 14 federated learning architectural
patterns associated with the lifecycle of a model in federated
learning. The pattern collection is provided as architectural
guidance for architects to better design and develop feder-
ated learning systems. In our future work, we will explore
the architectural designs that help improve the trust in feder-
ated learning.

References
[1] , 2019. General data protection regulation gdpr. URL: https://gdpr

-info.eu/.
[2] Ahmad, A., Jamshidi, P., Pahl, C., Khaliq, F., 2014. A pattern lan-

guage for the evolution of component-based software architectures.
Electronic Communications of the EASST 59.

[3] Ahn, J., Simeone, O., Kang, J., 2019. Wireless federated distillation
for distributed edge learning with heterogeneous data, in: 2019 IEEE
30th Annual International Symposium on Personal, Indoor and Mo-
bile Radio Communications (PIMRC), pp. 1–6.

[4] Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D.A., Lynn,
T., 2018. Microservices migration patterns. Software: Practice and
Experience 48, 2019–2042.

[5] Bao, X., Su, C., Xiong, Y., Huang, W., Hu, Y., 2019. Flchain: A
blockchain for auditable federated learning with trust and incentive,
in: 2019 5th International Conference on Big Data Computing and
Communications (BIGCOM), pp. 151–159.

[6] Beck, K., Cunningham, W., 1987. Using pattern languages for object
oriented programs, in: Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA).

[7] Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan,
H.B., Patel, S., Ramage, D., Segal, A., Seth, K., 2017. Practical secure
aggregation for privacy-preserving machine learning, Association for
Computing Machinery, New York, NY, USA.

[8] Bonawitz, K.A., Eichner, H., Grieskamp, W., Huba, D., Ingerman,
A., Ivanov, V., Kiddon, C.M., Konečný, J., Mazzocchi, S., McMahan,
B., Overveldt, T.V., Petrou, D., Ramage, D., Roselander, J., 2019.
Towards federated learning at scale: System design, in: SysML 2019.
To appear.

[9] Brinkkemper, S., 1996. Method engineering: engineering of infor-
mation systems development methods and tools. Information and
Software Technology 38, 275–280. Method Engineering and Meta-
Modelling.

[10] Chai, Z., Ali, A., Zawad, S., Truex, S., Anwar, A., Baracaldo, N.,
Zhou, Y., Ludwig, H., Yan, F., Cheng, Y., 2020. Tifl: A tier-based
federated learning system, in: Proceedings of the 29th International
Symposium on High-Performance Parallel and Distributed Comput-
ing, Association for Computing Machinery, New York, NY, USA. p.
125–136.

[11] Chen, Y., Ning, Y., Slawski, M., Rangwala, H., 2020. Asyn-
chronous online federated learning for edge devices with non-iid data.
arXiv:1911.02134.

[12] Corinzia, L., Buhmann, J.M., 2019. Variational federated multi-task
learning. arXiv:1906.06268.

[13] Duan, M., Liu, D., Chen, X., Tan, Y., Ren, J., Qiao, L., Liang, L.,
2019. Astraea: Self-balancing federated learning for improving clas-
sification accuracy of mobile deep learning applications, in: 2019
IEEE 37th International Conference on Computer Design (ICCD), pp.
246–254.

SK Lo et al.: Preprint submitted to Elsevier Page 18 of 19

https://gdpr-info.eu/
https://gdpr-info.eu/
http://arxiv.org/abs/1911.02134
http://arxiv.org/abs/1906.06268


Architectural Patterns for the Design of Federated Learning Systems

[14] Gu, B., Xu, A., Huo, Z., Deng, C., Huang, H., 2020. Privacy-
preserving asynchronous federated learning algorithms for multi-
party vertically collaborative learning. arXiv:2008.06233.

[15] Haddadpour, F., Kamani, M.M., Mokhtari, A., Mahdavi, M., 2020.
Federated learning with compression: Unified analysis and sharp
guarantees. arXiv:2007.01154.

[16] Hu, C., Jiang, J., Wang, Z., 2019. Decentralized federated learning:
A segmented gossip approach. arXiv:1908.07782.

[17] Huang, L., Shea, A.L., Qian, H., Masurkar, A., Deng, H., Liu, D.,
2019. Patient clustering improves efficiency of federated machine
learning to predict mortality and hospital stay time using distributed
electronic medical records. Journal of Biomedical Informatics 99,
103291.

[18] Jamshidi, P., Pahl, C., Mendonça, N.C., 2017. Pattern-based multi-
cloud architecture migration. Software: Practice and Experience 47,
1159–1184.

[19] Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., Kim, S.L.,
2018. Communication-efficient on-device machine learning: Fed-
erated distillation and augmentation under non-iid private data.
arXiv:1811.11479.

[20] Jiang, J., Hu, L., 2020. Decentralised federated learning with adap-
tive partial gradient aggregation. CAAI Transactions on Intelligence
Technology 5, 230–236.

[21] Jiang, Y., Wang, S., Valls, V., Ko, B.J., Lee, W.H., Leung, K.K., Tas-
siulas, L., 2020. Model pruning enables efficient federated learning
on edge devices. arXiv:1909.12326.

[22] Jobin, A., Ienca, M., Vayena, E., 2019. The global landscape of AI
ethics guidelines. Nature Machine Intelligence 1, 389–399.

[23] Kitchenham, B., Charters, S., 2007. Guidelines for performing sys-
tematic literature reviews in software engineering.

[24] Konečný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T.,
Bacon, D., 2017. Federated learning: Strategies for improving com-
munication efficiency. arXiv:1610.05492.

[25] Lakshmanan, L.V., Munn, M., Robinson, S., 2020. Machine Learning
Design Patterns.

[26] Lalitha, A., Shekhar, S., Javidi, T., Koushanfar, F., 2018. Fully de-
centralized federated learning, in: Third workshop on Bayesian Deep
Learning (NeurIPS).

[27] Li, T., Sahu, A.K., Talwalkar, A., Smith, V., 2020. Federated learning:
Challenges, methods, and future directions. IEEE Signal Processing
Magazine 37, 50–60.

[28] Liu, L., Zhang, J., Song, S.H., Letaief, K.B., 2020. Client-edge-cloud
hierarchical federated learning, in: ICC 2020 - 2020 IEEE Interna-
tional Conference on Communications (ICC), pp. 1–6.

[29] Liu, Y., Ai, Z., Sun, S., Zhang, S., Liu, Z., Yu, H., 2020. FedCoin: A
Peer-to-Peer Payment System for Federated Learning. Springer Inter-
national Publishing, Cham. pp. 125–138.

[30] Lo, S.K., Liew, C.S., Tey, K.S., Mekhilef, S., 2019. An interoperable
component-based architecture for data-driven iot system. Sensors 19.

[31] Lo, S.K., Lu, Q., Wang, C., Paik, H.Y., Zhu, L., 2021. A system-
atic literature review on federated machine learning: From a software
engineering perspective. ACM Comput. Surv. 54.

[32] Lwakatare, L.E., Raj, A., Bosch, J., Olsson, H.H., Crnkovic, I., 2019.
A taxonomy of software engineering challenges for machine learn-
ing systems: An empirical investigation, in: Kruchten, P., Fraser,
S., Coallier, F. (Eds.), Agile Processes in Software Engineering and
Extreme Programming, Springer International Publishing, Cham. pp.
227–243.

[33] McMahan, H.B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.,
2017. Communication-efficient learning of deep networks from de-
centralized data. arXiv:1602.05629.

[34] Meszaros, G., Doble, J., 1997. A Pattern Language for Pattern
Writing. Addison-Wesley Longman Publishing Co., Inc., USA. p.
529–574.

[35] Mirbel, I., Ralyté, J., 2006. Situational method engineering: combin-
ing assembly-based and roadmap-driven approaches. Requirements
Engineering 11, 58–78.

[36] Roy, A.G., Siddiqui, S., Pölsterl, S., Navab, N., Wachinger, C., 2019.

Braintorrent: A peer-to-peer environment for decentralized federated
learning. arXiv:1905.06731.

[37] Sattler, F., Wiedemann, S., Müller, K.R., Samek, W., 2020. Robust
and communication-efficient federated learning from non-i.i.d. data.
IEEE Transactions on Neural Networks and Learning Systems 31,
3400–3413.

[38] Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A., 2018. Federated
multi-task learning. arXiv:1705.10467.

[39] Wan, Z., Xia, X., Lo, D., Murphy, G.C., 2019. How does machine
learning change software development practices? IEEE Transactions
on Software Engineering , 1–1.

[40] WANG, L., WANG, W., LI, B., 2019. Cmfl: Mitigating communi-
cation overhead for federated learning, in: 2019 IEEE 39th Interna-
tional Conference on Distributed Computing Systems (ICDCS), pp.
954–964.

[41] Washizaki, H., Uchida, H., Khomh, F., Guéhéneuc, Y., 2019. Study-
ing software engineering patterns for designing machine learning sys-
tems, in: 2019 10th International Workshop on Empirical Software
Engineering in Practice (IWESEP), pp. 49–495.

[42] Weng, J., Weng, J., Zhang, J., Li, M., Zhang, Y., Luo, W., 2019.
Deepchain: Auditable and privacy-preserving deep learning with
blockchain-based incentive. IEEE Transactions on Dependable and
Secure Computing , 1–1.

[43] Xie, C., Koyejo, S., Gupta, I., 2020. Asynchronous federated opti-
mization. arXiv:1903.03934.

[44] Xu, R., Baracaldo, N., Zhou, Y., Anwar, A., Ludwig, H., 2019a.
Hybridalpha: An efficient approach for privacy-preserving federated
learning, in: Proceedings of the 12th ACMWorkshop on Artificial In-
telligence and Security, Association for Computing Machinery, New
York, NY, USA. p. 13–23.

[45] Xu, Z., Yu, F., Xiong, J., Chen, X., 2019b. Helios: Heterogeneity-
aware federated learning with dynamically balanced collaboration.
arXiv preprint arXiv:1912.01684 .

[46] Yang, Q., Liu, Y., Chen, T., Tong, Y., 2019. Federated machine learn-
ing: Concept and applications. ACM Trans. Intell. Syst. Technol. 10.

[47] Yokoyama, H., 2019. Machine learning system architectural pattern
for improving operational stability, in: 2019 IEEE International Con-
ference on SoftwareArchitecture Companion (ICSA-C), pp. 267–274.

[48] Zdun, U., 2007. Systematic pattern selection using pattern language
grammars and design space analysis. Software: Practice and Experi-
ence 37, 983–1016.

[49] Zhang, W., Lu, Q., Yu, Q., Li, Z., Liu, Y., Lo, S.K., Chen, S., Xu, X.,
Zhu, L., 2020. Blockchain-based federated learning for device failure
detection in industrial iot. IEEE Internet of Things Journal , 1–12.

SK Lo et al.: Preprint submitted to Elsevier Page 19 of 19

http://arxiv.org/abs/2008.06233
http://arxiv.org/abs/2007.01154
http://arxiv.org/abs/1908.07782
http://arxiv.org/abs/1811.11479
http://arxiv.org/abs/1909.12326
http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1905.06731
http://arxiv.org/abs/1705.10467
http://arxiv.org/abs/1903.03934

